CRASH TESTING AND EVALUATION OF W-BEAM GUARDRAIL ON BOX CULVERT

by

William F. Williams, P.E.
Assistant Research Engineer

Roger P. Bligh, P.E.
Research Engineer

D. Lance Bullard, Jr., P.E.
Research Engineer

and

Wanda L. Menges
Research Specialist

Contract No. T4541-AE
Report/Test No. 405160-5-1
Date of Test: 12-08-2007

Sponsored by
Roadside Safety Research Program Pooled Fund
Study No. TPF-5(114)

August 2008
DISCLAIMER

The contents of this report reflect the views of the authors who are solely responsible for the facts and accuracy of the data, and the opinions, findings and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the State of Alaska Department of Transportation and Public Facilities, California Department of Transportation, Louisiana Department of Transportation and Development, Minnesota Department of Transportation, Tennessee Department of Transportation, Texas Department of Transportation, Washington State Department of Transportation, the Federal Highway Administration, The Texas A&M University System, or Texas Transportation Institute. This report does not constitute a standard, specification, or regulation. In addition, the above listed agencies assume no liability for its contents or use thereof. The names of specific products or manufacturers listed herein does not imply endorsement of those products or manufacturers.

KEY WORDS

Box culvert, guardrail, drainage structure, roadside safety, crash testing.
The primary objective of this project was to test and evaluate a guardrail design with standard post spacing for use across low-fill box culverts in accordance with NCHRP Report 350 TL-3. A second objective of this project, was to develop a W6x9 post with welded base plate detail for use with an epoxy anchoring system that simplifies installation. Posts anchored to a simulated concrete box culvert using the Hilti RE500 Epoxy anchoring system were evaluated through pendulum testing. The strength of the base plate, post welds, and anchoring system was sufficient to result in plastic failure of the posts under an impact load. The W6x9 post and anchorage detail was subsequently incorporated into the full-scale crash test installation.

NCHRP Report 350 test 3-11 was performed to evaluate the guardrail system across low-fill culvert. The W-beam rail element was ruptured by the impact from the vehicle. Even though the rail element was ruptured, the vehicle was contained and redirected without penetrating, underriding, or overriding the installation. The rail element ruptured after the vehicle was redirected and while it was exiting out of the barrier system.

Based on the review of all available test data, the W-Beam Guardrail on Box Culvert met the required criteria for TL-3 according to the specifications for NCHRP Report 350 test 3-11. The adhesive anchoring system worked as designed with the new W6x9 post and welded baseplate detail. No damage to the deck or failure of the adhesive anchors was observed. The new adhesive anchoring system is considered suitable for implementation as an alternative to through-bolted anchorage in successfully crash tested guardrail systems designed for use across low-fill culverts.
SI (Modern Metric) Conversion Factors

Approximate Conversions to SI Units

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>in</td>
<td>inches</td>
<td>25.4</td>
<td>millimeters</td>
<td>mm</td>
</tr>
<tr>
<td>ft</td>
<td>feet</td>
<td>0.3048</td>
<td>meters</td>
<td>m</td>
</tr>
<tr>
<td>yd</td>
<td>yards</td>
<td>0.9144</td>
<td>meters</td>
<td>m</td>
</tr>
<tr>
<td>mi</td>
<td>miles</td>
<td>1.6093</td>
<td>kilometers</td>
<td>km</td>
</tr>
</tbody>
</table>

AREA				
in²	square inches	645.2	square millimeters	mm²
ft²	square feet	0.0929	square meters	m²
yd²	square yard	0.8361	square meters	m²
ac	acres	0.4047	hectares	ha
mi²	square miles	2.59	square kilometers	km²

VOLUME				
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft³	cubic feet	0.0283	cubic meters	m³
yd³	cubic yards	0.765	cubic meters	m³

NOTE: Volumes greater than 1000 L shall be shown in m³.

MASS				
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
T	short tons (2000 lb)	0.907	megagrams (or "metric ton")	Mg (or "T")

TEMPERATURE (exact degrees)				
°F	Fahrenheit	5 (F-32)/9	Celsius	°C
or (F-32)/1.8				

ILLUMINATION				
fc	foot-candles	10.76	lux	lx
ft	foot-Lamberts	3.426	candela/m²	cd/m²

FORCE and PRESSURE or STRESS				
lbf	poundforce	4.45	newtons	N
lbf/in²	poundforce per square inch	6.89	kilopascals	kPa

Approximate Conversions from SI Units

<table>
<thead>
<tr>
<th>Symbol</th>
<th>When You Know</th>
<th>Multiply By</th>
<th>To Find</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>LENGTH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>millimeters</td>
<td>0.039</td>
<td>inches</td>
<td>in</td>
</tr>
<tr>
<td>m</td>
<td>meters</td>
<td>3.281</td>
<td>feet</td>
<td>ft</td>
</tr>
<tr>
<td>m</td>
<td>meters</td>
<td>1.094</td>
<td>yards</td>
<td>yd</td>
</tr>
<tr>
<td>km</td>
<td>kilometers</td>
<td>0.621</td>
<td>miles</td>
<td>mi</td>
</tr>
</tbody>
</table>

AREA				
mm²	square millimeters	0.0016	square inches	in²
m²	square meters	10.764	square feet	ft²
m²	square meters	1.196	square yards	yd²
ha	hectares	2.471	acres	ac
km²	square kilometers	0.395	square miles	mi²

VOLUME				
mL	milliliters	0.035	fluid ounces	fl oz
L	liters	0.264	gallons	gal
m³	cubic meters	35.315	cubic feet	ft³
m³	cubic meters	1.307	cubic yards	yd³

MASS				
g	grams	0.035	ounces	oz
kg	kilograms	2.205	pounds	lb
Mg (or "T")	megagrams (or "metric ton")	1.103	short tons (2000 lb)	T

| **TEMPERATURE (exact degrees)** | | | | |
| °C | Celsius | 1.8(F+32) | Fahrenheit | °F |

ILLUMINATION				
lx	lux	0.0685	foot-candles	fc
cd/m²	candela/m²	0.2939	foot-Lamberts	ft

FORCE and PRESSURE or STRESS				
N	newtons	0.225	poundforce	lbf
kPa	kilopascals	0.145	poundforce per square inch	lbf/in²

SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003)
ACKNOWLEDGMENTS

This research project was performed under a pooled fund program between the State of Alaska Department of Transportation and Public Facilities, California Department of Transportation (Caltrans), Louisiana Department of Transportation and Development, Minnesota Department of Transportation, Tennessee Department of Transportation, Texas Department of Transportation and Washington State Department of Transportation, and the Federal Highway Administration. The authors acknowledge and appreciate their guidance and assistance.

Roadside Safety Research
Pooled Fund Committee

CONTACTS
Revised February 2008

ALASKA
Elmer E. Marx, PE
Technical Engineer II
State of Alaska Department of Transportation and Public Facilities
3132 Channel Drive
Room 100
Juneau, AK 99801
(907) 465-6941
elmer_marx@dot.state.ak.us

Clint Adler, P.E.
Research Engineer
Alaska Department of Transportation and Public Facilities
Research and Technology Transfer
2301 Peger Road
Fairbanks, AK 99709
(907) 451-5321
Clint_adler@dot.state.ak.us

Kurt Smith, P.E.
Statewide Traffic & Safety Engineer
Alaska Department of Transportation & Public Facilities
3132 Channel Drive
Juneau, AK 99801-7898
(907) 465-6963
kurt_smith@dot.state.ak.us

CALIFORNIA
John Jewell, P.E.
Caltrans
Office of Materials and Infrastructure
Division of Research and Innovation
5900 Folsom Blvd
Sacramento, CA 95819
(916) 227-5824
(916) 227-5856
john_jewell@dot.ca.gov

LOUISIANA
Paul Fossier
Bridge and Structural Design Section
P.O. Box 94245
Baton Rouge, LA 79084-9245
(225) 379-1323
PaulFossier@dotd.louisiana.gov

Harold “Skip” Paul
Associate Director, Research
Louisiana Transportation Center
4101 Gourrier Ave.
Baton Rouge, LA 70808
(225) 767-9102
spaul@louisiana.gov.dotd
MINNESOTA
Michael Elle, P.E.
Design Standards Engineer
Minnesota Department of Transportation
395 John Ireland Blvd, MS 696
St. Paul, MN 55155
(651) 296-4859
michael.elle@dot.state.mn.us

TENNESSEE
Jeff Jones
Director, Design Division
Tennessee Department of Transportation
Suite 1300
James K. Polk State Office Building
Nashville, TN 37243-0348
(615) 741-2221
Jeff.C.Jones@state.tn.us

WASHINGTON
Dick Albin, Chair
Assistant State Design Engineer-NW Region
Washington State Department of Transportation
(360) 705-7451
AlbinD@wsdot.wa.gov

TEXAS TRANSPORTATION INSTITUTE
D. Lance Bullard, Jr., P.E.
Research Engineer
Safety and Structural Systems Division
Texas Transportation Institute
Texas A&M University System
College Station, TX 77843-3135
(979) 845-6153
L-Bullard@tamu.edu
C. Eugene Buth, Ph.D., P.E.
Senior Research Fellow
Safety and Structural Systems Division
Texas Transportation Institute
Texas A&M University System
College Station, TX 77843-3135
(979) 845-6159
G-Buth@tamu.edu

Roger P. Bligh, Ph.D., P.E.
Research Engineer
Safety and Structural Systems Division
Texas Transportation Institute
Texas A&M University System
College Station, TX 77843-3135
(979) 845-4377
RBligh@tamu.edu
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>PROBLEM</td>
<td>1</td>
</tr>
<tr>
<td>BACKGROUND</td>
<td>1</td>
</tr>
<tr>
<td>OBJECTIVES/SCOPE OF RESEARCH</td>
<td>1</td>
</tr>
<tr>
<td>TECHNICAL DISCUSSION</td>
<td>3</td>
</tr>
<tr>
<td>TEST PARAMETERS</td>
<td>3</td>
</tr>
<tr>
<td>Test Facility</td>
<td>3</td>
</tr>
<tr>
<td>Test Article – Design and Construction</td>
<td>3</td>
</tr>
<tr>
<td>Test Conditions</td>
<td>13</td>
</tr>
<tr>
<td>Evaluation Criteria</td>
<td>13</td>
</tr>
<tr>
<td>CRASH TEST 405160-5-1 (NCHRP REPORT 350 TEST NO. 3-11)</td>
<td>15</td>
</tr>
<tr>
<td>Test Vehicle</td>
<td>15</td>
</tr>
<tr>
<td>Soil and Weather Conditions</td>
<td>15</td>
</tr>
<tr>
<td>Impact Description</td>
<td>15</td>
</tr>
<tr>
<td>Damage to Test Article</td>
<td>18</td>
</tr>
<tr>
<td>Vehicle Damage</td>
<td>18</td>
</tr>
<tr>
<td>Occupant Risk Factors</td>
<td>18</td>
</tr>
<tr>
<td>SUMMARY AND CONCLUSIONS</td>
<td>25</td>
</tr>
<tr>
<td>ASSESSMENT OF TEST RESULTS</td>
<td>25</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>27</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>29</td>
</tr>
<tr>
<td>APPENDIX A. STRENGTH ANALYSES ON DESIGN POSTS</td>
<td>31</td>
</tr>
<tr>
<td>W6x9 POST</td>
<td>31</td>
</tr>
<tr>
<td>W8x21 POST</td>
<td>42</td>
</tr>
<tr>
<td>APPENDIX B. PENDULUM TESTING OF GUARDRAIL POSTS ON BOX CULVERTS... 53</td>
<td></td>
</tr>
<tr>
<td>APPENDIX C. CRASH TEST PROCEDURES AND DATA ANALYSIS</td>
<td>93</td>
</tr>
<tr>
<td>ELECTRONIC INSTRUMENTATION AND DATA PROCESSING</td>
<td>93</td>
</tr>
<tr>
<td>ANTHROPOMORPHIC DUMMY INSTRUMENTATION</td>
<td>94</td>
</tr>
<tr>
<td>PHOTOGRAPHIC INSTRUMENTATION AND DATA PROCESSING</td>
<td>94</td>
</tr>
<tr>
<td>TEST VEHICLE PROPULSION AND GUIDANCE</td>
<td>94</td>
</tr>
<tr>
<td>APPENDIX D. TEST VEHICLE PROPERTIES AND INFORMATION</td>
<td>95</td>
</tr>
<tr>
<td>APPENDIX E. SEQUENTIAL PHOTOGRAPHS</td>
<td>99</td>
</tr>
<tr>
<td>APPENDIX F. VEHICLE ANGULAR DISPLACEMENTS AND ACCELERATIONS............</td>
<td>101</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Figure 1</td>
<td>Layout of the W-Beam Guardrail on Box Culvert installation.</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Cross section of the W-Beam Guardrail on Box Culvert installation.</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Rebar detail of the W-Beam Guardrail on Box Culvert installation.</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Terminal details for the W-Beam Guardrail on Box Culvert installation.</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Post and base plate details for the W-Beam Guardrail on Box Culvert installation.</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Headwall stirrup details for the W-Beam Guardrail on Box Culvert installation.</td>
</tr>
<tr>
<td>Figure 7</td>
<td>SYTP details for the W-Beam Guardrail on Box Culvert installation.</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Box Culvert installation prior to testing.</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Vehicle/installation geometrics for test 405160-5-1.</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Vehicle before test 405160-5-1.</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Vehicle trajectory path after test 405160-5-1.</td>
</tr>
<tr>
<td>Figure 12</td>
<td>Installation after test 405160-5-1.</td>
</tr>
<tr>
<td>Figure 13</td>
<td>Vehicle after test 405160-5-1.</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Interior of vehicle for test 405160-5-1.</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Summary of results for NCHRP Report 350 test 3-11 on W-Beam Guardrail on Box Culvert.</td>
</tr>
<tr>
<td>Figure D1</td>
<td>Vehicle properties for test 405160-5-1.</td>
</tr>
<tr>
<td>Figure E1</td>
<td>Sequential photographs for test 405160-5-1 (overhead and frontal views).</td>
</tr>
<tr>
<td>Figure F1</td>
<td>Vehicle angular displacements for test 405160-5-1.</td>
</tr>
<tr>
<td>Figure F2</td>
<td>Vehicle longitudinal accelerometer trace for test 405160-5-1</td>
</tr>
<tr>
<td></td>
<td>(accelerometer located at center of gravity).</td>
</tr>
<tr>
<td>Figure F3</td>
<td>Vehicle lateral accelerometer trace for test 405160-5-1</td>
</tr>
<tr>
<td></td>
<td>(accelerometer located at center of gravity).</td>
</tr>
<tr>
<td>Figure F4</td>
<td>Vehicle vertical accelerometer trace for test 405160-5-1</td>
</tr>
<tr>
<td></td>
<td>(accelerometer located at center of gravity).</td>
</tr>
<tr>
<td>Figure F5</td>
<td>Vehicle longitudinal accelerometer trace for test 405160-5-1</td>
</tr>
<tr>
<td></td>
<td>(accelerometer located over rear axle).</td>
</tr>
<tr>
<td>Figure F6</td>
<td>Vehicle lateral accelerometer trace for test 405160-5-1</td>
</tr>
<tr>
<td></td>
<td>(accelerometer located over rear axle).</td>
</tr>
<tr>
<td>Figure F7</td>
<td>Vehicle vertical accelerometer trace for test 405160-5-1</td>
</tr>
<tr>
<td></td>
<td>(accelerometer located over rear axle).</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. Performance evaluation summary for NCHRP Report 350 test 3-11 on the W-Beam Guardrail on Box Culvert ... 28
Table D1. Exterior crush measurements for test 405160-5-1 .. 96
Table D2. Occupant compartment measurements for test 405160-5-1 97
INTRODUCTION

PROBLEM

New or replacement guardrail installations frequently must pass over new or existing reinforced concrete box culverts for various types of highways. In many cases, the depth of fill over the box culvert is very shallow and it will not allow the proper length of steel or timber posts to be installed without interfering with the concrete box culvert. A typical detail in these cases is a shortened W6x9 or W6x20 steel post attached to a steel base plate bolted into the box culvert. For existing box culverts, a proprietary epoxy injected bolt system or equivalent is often desirable. The use of an epoxy adhesive anchoring system would permit installation of the post without the need to enter in the culvert and install a bolt-thru anchoring system. This type of bolt-thru anchoring system can be difficult to install and hazardous to workers. This project addresses the use of anchoring W6x9 guardrail post using a proprietary epoxy adhesive anchoring system with a shallow soil cover on top of the box culvert.

BACKGROUND

In 1988, Hirsch and Beggs reported on a study using a W6x9 steel guardrail post with a base plate anchored to a 6-inch thick culvert slab.\(^{(1)}\) Static load tests and a full-scale crash test were performed on this design as part of this study. The testing performed on this design was successful with respect to National Cooperative Highway Research Program (NCHRP) Report 230 performance level 2.\(^{(2)}\) In 2002, Polivka, Reid, Faller, Rohde, and Sicking reported on a similar design bolted to a box culvert with approximately 9 inches of fill on top of the box culvert.\(^{(3)}\) The objective of this research was to develop a strong-post, W-beam guardrail system that can be rigidly attached to the surface of concrete box culverts. This new guardrail system with one-half post spacing (3 ft-1-1/2 inch) was designed to meet the Test Level 3 (TL-3) performance criteria found in NCHRP Report 350.\(^{(4)}\) Dynamic pendulum and full scale crash testing on this design was also successful. Information from these studies as well as other research were used to develop a new box culvert guardrail post design that meets TL-3 requirements.

OBJECTIVES/SCOPE OF RESEARCH

The primary objective of this project was to test and evaluate a guardrail design with standard post spacing for use across low-fill box culverts in accordance with NCHRP Report 350 TL-3.

A second objective of this project, was to develop a W6x9 post with welded base plate detail for use with an epoxy anchoring system that would simplify installation. Posts anchored to the simulated concrete box culvert using the Hilti RE500 Epoxy anchoring system were evaluated through pendulum testing. The strength of the base plate, post welds, and anchoring
system was sufficient to result in a plastic failure of the posts under an impact load. The W6x9 post and anchorage detail was subsequently incorporated into the full-scale crash test installation.

Included in this report are the details of the strength analyses and pendulum testing performed on the post anchorage system, details of the installations used in both the pendulum testing and the crash testing, details of the full-scale crash testing, and evaluation of the crash test.
TECHNICAL DISCUSSION

TEST PARAMETERS

Test Facility

The test facilities at the Texas Transportation Institute’s Proving Ground consist of a 809-hectare complex of research and training facilities situated 16 km northwest of the main campus of Texas A&M University. The site, formerly an Air Force Base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, durability and efficacy of highway pavements, and safety evaluation of roadside safety hardware. The site selected for the placement of the W-beam guardrail on box culvert is along the edge of a wide out-of-service apron. The apron consists of an unreinforced jointed concrete pavement in 15 ft by 12.5 ft blocks nominally 8-12 inches mm deep. The aprons are over 50 years old and the joints have some displacement, but are otherwise flat and level.

Test Article – Design and Construction

Prior to constructing the full-scale test installation, full-scale pendulum tests were performed on W6x9 steel posts anchored to smaller deck sections as previously described. Two pendulum tests were performed on two W6x9 steel posts anchored to the deck specimens. Each post was anchored using four 7/8-inch diameter Super Hilti Anchoring System (HAS) rods. The rods were anchored to the concrete using Hilti’s RE500 epoxy anchoring system. Full-scale pendulum testing performed on the post and base plate connection design revealed that the base plate connection strength was suitable to resist the ultimate plastic bending strength of the W6x9 steel shape. The results of the pendulum testing served to validate the calculated strength of the base plate and anchor design for the W6x9 steel post. For addition information on the pendulum testing, please refer to the pendulum test report provided in appendix B.

The base plate connection design utilizing 7/8-inch diameter A193 HAS threaded rods and anchored using Hilti’s RE500 epoxy adhesive anchoring systems was adequate to develop the plastic strength of the W6x9 posts. This base plate connection was designed to resist the full plastic bending strength of the W6.9 post. Based on the results from the full-scale pendulum testing on the W6x9 post design, the similar design performed on the W8x21 would also likely develop the full plastic strength of this larger post size. The W8x21 base plate connection was also designed to resist the plastic bending strength of the W8x21 post. One of the intended applications of the W8x21 post is for stiffening guardrail in the vicinity of bridge piers when the standard design cannot be accommodated. In such situations, the guardrail posts may need to be bolted to the surface of a spread footing.

The W-Beam Guardrail on Box Culvert installation consisted of a 12 gauge W-beam guardrail system supported by W6x9 steel posts anchored to a simulated box culvert. Standard
6 inch x 8 inch x 14 inch long wood blockouts were used to block out the W-beam guardrail from the steel posts. The height of the W-beam guardrail system was 27 inches from finished grade. The posts were spaced on 6 ft - 3 inches on centers. The posts were anchored to the top of a simulated box culvert slab using Hilti RE500 epoxy anchoring system. For this test installation, 9 inches of compacted NCHRP Report 350 standard soil material was constructed on top of the simulated box culvert slab. The total length of the simulated concrete slab was 105 ft. The W-beam guardrail system was anchored on each end using ET Plus extruder terminals. TTI received detailed information regarding the box culvert slab from Mike Elle with Minnesota DOT. These details were incorporated into the box culvert slab installation tested for this project, which can be found in figures 1 through 7.

The W6x9 steel posts were welded to 12 inch x 12 inch x 7/8 inch thick base plates. The total length of the posts was 37 inches. Each steel post with base plate was anchored to the 9-inch thick simulated box culvert slab using four 7/8-inch diameter A193 Super HAS all-threaded rods, 8½ inches in length. These threaded rods were embedded 6 inches in the box culvert slab and were anchored using HILTI RE500 Epoxy Anchoring System. Prior to performing this full scale crash test, structural analyses were performed on the steel post, base plate, and epoxy anchoring system. The size and thickness of the base plate, as well as the final details of the epoxy anchor rods, were determine from these analyses. A copy of the strength analyses performed on the W6x9 steel post and base plate can be found in appendix A. Based on information supplied from the supporting pooled fund states, separate analyses were performed on a similar post design (W8x21) that can be attached to a shallow footing. In cases where a post is anchored to a shallow footing, a deeper embedment would likely be provided since the thickness of the footing is likely greater than the 9 inches used for the box culvert slab. A copy of the analyses performed on the W8x21 steel post anchored to a concrete footing is also included in Appendix A. Please refer to figures 2 and 5 for additional details on the W6x9 steel post and base plate design tested for this project.

The simulated box culvert slab tested was 105 ft in length by 75 inches in width by 9 inches thick. The fill height constructed on top of the box culvert slab was 9 inches. A 9-inch high by 10-inch wide concrete headwall was constructed on the field side edge of the box culvert slab. The W6x9 steel posts were located 28 inches from the field side edge of the simulated box culvert slab. Transverse steel reinforcement in the slab consisted of #3 bars spaced at 12 inches on centers in the top and bottom mats. Longitudinal steel reinforcement in the bottom mat of steel reinforcement consisted of #5 bars spaced at 4½ inches on centers. Longitudinal steel reinforcement in the top mat of steel reinforcement consisted of #3 bars spaced at 6 inches on centers. Transverse reinforcement in the 9-inch high headwall consisted of #3 stirrups spaced at 12 inches on centers. Four #3 longitudinal steel bars were evenly spaced inside the stirrup reinforcement in the headwall. The specified concrete strength used in the box culvert slab was 5000 psi compressive strength. Please refer to figures 1 through 7 for additional information on the box culvert slab test installation. Photographs of the completed installation are shown in figure 8.
Figure 1. Layout of the W-Beam Guardrail on Box Culvert installation.
Figure 2. Cross section of the W-Beam Guardrail on Box Culvert installation.
Figure 3. Rebar detail of the W-Beam Guardrail on Box Culvert installation.
Figure 4. Terminal details for the W-Beam Guardrail on Box Culvert installation.
Figure 5. Post and base plate details for the W-Beam Guardrail on Box Culvert installation.
Figure 6. Headwall stirrup details for the W-Beam Guardrail on Box Culvert installation.
Figure 7. SYTP details for the W-Beam Guardrail on Box Culvert installation.
Figure 8. Box Culvert installation prior to testing.
Test Conditions

According to NCHRP Report 350, two tests are recommended to evaluate longitudinal barriers to test level three (TL-3) and are as described below.

NCHRP Report 350 Test Designation 3-10: An 1808 lb vehicle impacting the length of need section at a speed of 62 mi/h and an angle of 20 degrees.

NCHRP Report 350 Test Designation 3-11: A 4409 lb pickup truck impacting the length of need section at a speed of 62 mi/h and an angle of 25 degrees.

NCHRP Report 350 test 3-11 was performed and is reported herein. This is the critical test for this design.

The crash test and data analysis procedures were in accordance with guidelines presented in NCHRP Report 350. Appendix C presents brief descriptions of these procedures.

Evaluation Criteria

The crash test was evaluated in accordance with the criteria presented in NCHRP Report 350. As stated in NCHRP Report 350, “Safety performance of a highway appurtenance cannot be measured directly but can be judged on the basis of three factors: structural adequacy, occupant risk, and vehicle trajectory after collision.” Safety evaluation criteria from table 5.1 of NCHRP Report 350 were used to evaluate the crash test reported herein.
CRASH TEST 405160-5-1 (NCHRP REPORT 350 TEST NO. 3-11)

Test Vehicle

A 1998 Chevrolet C2500 pickup truck, shown in figures 9 and 10, was used for the crash test. Test inertia weight of the vehicle was 4614 lb, and its gross static weight was 4614 lb. The height to the lower edge of the vehicle front bumper was 16.25 inches, and the height to the upper edge of the front bumper was 25.0 inches. Additional dimensions and information on the vehicle are given in appendix D, figure D1. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be free-wheeling and unrestrained just prior to impact.

Soil and Weather Conditions

The crash test was performed the afternoon of December 6, 2007. No rainfall was recorded for the ten days prior to the test. Moisture content of the NCHRP Report 350 soil in which the test article was installed was 6 percent. Weather conditions at the time of testing were: Wind speed: 14 mi/h; wind direction: 335 degrees with respect to the vehicle (vehicle was traveling in a southwesterly direction); temperature: 68 °F; relative humidity: 64 percent.

Impact Description

The pickup truck, traveling at an impact speed of 62.9 mi/h, impacted the W-Beam Guardrail on Box Culvert installation just downstream of post 13 at an impact angle of 23.9 degrees. At 0.024 s, post 13 began to rotate, and at 0.044 s, posts 11 and 12 began to deflect toward traffic lanes. Post 12 began to rotate at 0.046 s, and the vehicle began to redirect at 0.048 s. At 0.049 s, the blockout at post 14 began to rotate, and at 0.056 s, the W-beam began to deform near post 14. Post 14 began to deflect toward the field side at 0.063 s, and the vehicle contacted the post at 0.073 s. At 0.083 s, post 15 began to rotate and deflect toward the field side, and at 0.085 s, the W-beam began to deform near post 15. Post 16 began to rotate and deflect toward the field side at 0.127 s, and the vehicle contacted post 15 at 0.134 s. At 0.156 s, the W-beam began to deform near post 16, and at 0.205 s, the vehicle contacted post 16 and the W-beam began to deform at post 17. Post 17 began to rotate and deflect toward the field side at 0.256 s. The W-beam rail element began to tear as the vehicle had yawed 21 degrees at 0.306 s. At 0.315 s, the vehicle was traveling parallel with the guardrail, and the pickup was traveling at a speed of 40.7 mi/h. The rail ruptured as the vehicle had yawed 24 degrees at 0.352 s. The vehicle exited the view of the overhead camera, while traveling at a speed of 33.7 mi/h and 31.7 degrees. Sequential photographs of the test period are shown in appendix E, figure E1.
Figure 9. Vehicle/installation geometrics for test 405160-5-1.
Figure 10. Vehicle before test 405160-5-1.
Damage to Test Article

Damage to the W-Beam Guardrail on Box Culvert installation is shown in figures 11 and 12. The W-beam rail element ruptured 6 inches downstream of the splice at post 15, and the rail element was separated from posts 14-18 and 20-22. Posts 7-10 rotated clockwise 0.08 inch, post 11 rotated clockwise 0.16 inch, and post 12 rotated clockwise 0.39 inch. Post 13 rotated clockwise 1.5 inches, leaned toward field side 10 degrees, and the soil was disturbed around the base. Post 14 was laid over on the ground in the downstream direction. Post 15 rotated counterclockwise 90 degrees and laid over on the ground in the downstream direction. Post 16 rotated counterclockwise 140 degrees and laid over in the downstream direction 45 degrees. Post 17 rotated clockwise 30 degrees and was leaning downstream 15 degrees. No damage to posts 18 and 19. Post 20 was laid over in the downstream direction 70 degrees. Post 21 rotated clockwise 30 degrees and was laid over downstream 70 degrees. Post 22 rotated clockwise 25 degrees.

Vehicle Damage

Damage to the 1998 Chevrolet C2500 pickup truck is shown in figure 13. The vehicle received structural damage to the right upper and lower ball joints, right outer tie rod ends, right front upper and lower A-arms, sway bar, and right frame rail. The right wheel assembly separated at the upper and lower ball joint and tie rod end. Also damaged were the front bumper, radiator and support, right front fender, right door, right side floor pan, and right rear bumper. Maximum exterior crush to the vehicle was 17.75 inches in the frontal plane at the right front corner at bumper height. Maximum occupant compartment deformation was 0.71 inch in the kickpanel area in the lateral area across the cab. Photographs of the interior of the vehicle are shown in figure 14. Exterior vehicle crush and occupant compartment measurements are shown in appendix D, tables D1 and D2.

Occupant Risk Factors

Data from the triaxial accelerometer, located at the vehicle center of gravity, were digitized to compute occupant impact velocity and ridedown accelerations. Only the occupant impact velocity and ridedown accelerations in the longitudinal axis are required from these data for evaluation of criterion L of NCHRP Report 350. In the longitudinal direction, occupant impact velocity was 5.6 m/s at 0.138 s, maximum 0.010-s ridedown acceleration was -15.6 g’s from 0.239 to 0.249 s, and the maximum 0.050-s average was -7.6 g’s between 0.199 and 0.249 s. In the lateral direction, the occupant impact velocity was 4.5 m/s at 0.138 s, the highest 0.010-s occupant ridedown acceleration was -20.6 g’s from 0.239 to 0.249 s, and the maximum 0.050-s average was -5.9 g’s between 0.142 and 0.192 s. These data and other information pertinent to the test are presented in figure 15. Vehicle angular displacements and accelerations versus time traces are shown in appendix F, figures F1 through F7.
Figure 11. Vehicle trajectory path after test 405160-5-1.
Figure 12. Installation after test 405160-5-1.
Figure 13. Vehicle after test 405160-5-1.
Figure 14. Interior of vehicle for test 405160-5-1.
Figure 15. Summary of results for NCHRP Report 350 test 3-11 on W-Beam Guardrail on Box Culvert.
SUMMARY AND CONCLUSIONS

ASSESSMENT OF TEST RESULTS

An assessment of the test based on the following applicable NCHRP Report 350 safety evaluation criteria for test designation 3-11 is as follows.

Structural Adequacy

A. Test article should contain and redirect the vehicle; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.

Results: The W-Beam Guardrail on Box Culvert contained and redirected the 2000P vehicle. The W-beam rail element ruptured, however, the 2000P vehicle did not penetrate the rail. (PASS)

Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformation of, or intrusions into, the occupant compartment that could cause serious injuries should not be permitted.

Results: Although the rail element ruptured and separated from the posts, the rail element did not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to others. Maximum occupant compartment deformation was 0.71 inch in the lateral area across the floor pan of the vehicle. (PASS)

F. The vehicle should remain upright during and after collision although moderate roll, pitching, and yawing are acceptable.

Results: The 2000P vehicle remained upright during and after the collision event. (PASS)

Vehicle Trajectory

K. After collision, it is preferable that the vehicle’s trajectory not intrude into adjacent traffic lanes.

Result: The 2000P vehicle subsequently came to rest 128 ft downstream from impact and 13.5 ft toward traffic lanes. (FAIL)

L. The occupant impact velocity in the longitudinal direction should not exceed 12 m/s and the occupant ridden down acceleration in the longitudinal direction should not exceed 20 g’s.
Result: Longitudinal impact velocity was 5.6 m/s, and longitudinal ridedown acceleration was -15.6 g’s. (PASS)

M. The exit angle from the test article preferably should be less than 60 percent of the test impact angle, measured at time of vehicle loss of contact with the test device.

Result: Exit angle at loss of contact with the guardrail was 31.7 degrees, which was 133 percent of the impact angle. (FAIL)

The following supplemental evaluation factors and terminology, as presented in the FHWA memo entitled “Action: Identifying Acceptable Highway Safety Features,” were used for visual assessment of test results: (5)

Passenger Compartment Intrusion
1. Windshield Intrusion
 a. No windshield contact
 b. Windshield contact, no damage
 c. Windshield contact, no intrusion
 d. Device embedded in windshield, no significant intrusion
 e. Complete intrusion into passenger compartment
 f. Partial intrusion into passenger compartment
2. Body Panel Intrusion
 yes or no

Loss of Vehicle Control
1. Physical loss of control
2. Loss of windshield visibility
3. Perceived threat to other vehicles
4. Debris on pavement

Physical Threat to Workers or Other Vehicles
1. Harmful debris that could injure workers or others in the area
2. Harmful debris that could injure occupants in other vehicles

Although the rail element ruptured and separated from the posts, the rail element did not present undue hazard to others.

Vehicle and Device Condition
1. Vehicle Damage
 a. None
 b. Minor scrapes, scratches or dents
 c. Significant cosmetic dents
 d. Major dents to grill and body panels
 e. Major structural damage
2. Windshield Damage
 a. None
 b. Minor chip or crack
 c. Broken, no interference with visibility
 d. Broken or shattered, visibility restricted but remained intact
 e. Shattered, remained intact but partially dislodged
 f. Large portion removed
 g. Completely removed
3. Device Damage
 a. None
 b. Superficial
 c. Substantial, but can be straightened
 d. Substantial, replacement parts needed for repair
 e. Cannot be repaired

CONCLUSIONS

NCHRP Report 350 test 3-11 was performed to evaluate a guardrail system across low-fill culvert. The W-beam rail element was ruptured by the impact from the vehicle. Even though the rail element was ruptured, the vehicle was contained and redirected without penetrating, underriding, or overriding the installation. The rail element ruptured after the vehicle was redirected and while it was exiting out of the barrier system. The occupant risk values recorded for this test were acceptable with respect to *NCHRP Report 350* criteria. Based on the review of all available test data, the W-Beam Guardrail on Box Culvert met the required criteria for TL-3 according to the specifications for *NCHRP Report 350* test 3-11, as shown in table 1.

The W6x9 post and anchorage details developed under this project demonstrated satisfactory performance. No damage to the deck or failure of the adhesive anchors was observed in the full-scale testing. The W6x9 post and anchorage details tested for this project can be used in lieu of the conventional through-bolt design for this and other box culvert guardrail design that meet *NCHRP Report 350*, including the half-post spacing system previously tested.\(^{(3)}\)
Table 1. Performance evaluation summary for NCHRP Report 350 test 3-11 on the W-Beam Guardrail on Box Culvert.

<table>
<thead>
<tr>
<th>Test Agency: Texas Transportation Institute</th>
<th>Test No.: 405160-5-1</th>
<th>Test Date: 12-06-2007</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCHRP Report 350 Test 3-11 Evaluation Criteria</td>
<td>Test Results</td>
<td>Assessment</td>
</tr>
<tr>
<td>Structural Adequacy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. Test article should contain and redirect the vehicle; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable</td>
<td>The W-Beam Guardrail on Box Culvert contained and redirected the 2000P vehicle. The W-beam rail element ruptured, however, the 2000P vehicle did not penetrate the rail.</td>
<td>Pass</td>
</tr>
<tr>
<td>Occupant Risk</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment that could cause serious injuries should not be permitted.</td>
<td>Although the rail element ruptured and separated from the posts, the rail element did not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to others. Maximum occupant compartment deformation was 0.71 inch in the lateral area across the floor pan of the vehicle.</td>
<td>Pass</td>
</tr>
<tr>
<td>F. The vehicle should remain upright during and after collision although moderate roll, pitching, and yawing are acceptable.</td>
<td>The 2000P vehicle remained upright during and after the collision event.</td>
<td>Pass</td>
</tr>
<tr>
<td>Vehicle Trajectory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. After collision, it is preferable that the vehicle’s trajectory not intrude into adjacent traffic lanes.</td>
<td>The 2000P vehicle subsequently came to rest 128 ft downstream from impact and 13.5 ft toward traffic lanes.</td>
<td>Fail*</td>
</tr>
<tr>
<td>L. The occupant impact velocity in the longitudinal direction should not exceed 12 m/s and the occupant ridedown acceleration in the longitudinal direction should not exceed 20 g’s.</td>
<td>Longitudinal impact velocity was 5.6 m/s, and longitudinal ridedown acceleration was -15.6 g’s.</td>
<td>Pass</td>
</tr>
<tr>
<td>M. The exit angle from the test article preferably should be less than 60 percent of test impact angle, measured at time of vehicle loss of contact with test device.</td>
<td>Exit angle at loss of contact with the guardrail was 31.7 degrees, which was 133 percent of the impact angle.</td>
<td>Fail*</td>
</tr>
</tbody>
</table>

*Criterion K and M are preferable, not required.
REFERENCES

APPENDIX A. STRENGTH ANALYSES ON DESIGN POSTS

W6x9 POST

Project #: 405160-000006

W6x9 Design

Hilti RE 500 Anchor System
7/8" Dia. Anchors Embed. 6" Max

Given the following general layout of a box culvert guardrail post anchored to a concrete box culvert section using an epoxy adhesive anchoring system. Find the limiting ultimate strength of the post design considering the different variables used in the design.

GUARDRAIL ON BOX CULVERT TYPICAL CROSS-SECTION

1.) Design Information:

***** Rail Geometry *****

\[\text{Rail}_{\text{cMr}} := 21 \text{in} \] Center Height of Rail (in.)

\[\text{Rail}_{h} := \text{Rail}_{\text{cMr}} + 6.125\text{in} \] Height to top of rail (in.)

\[\text{Post}_{h} := 27\text{in} \] Height of Post above grade (in.)

\[\text{Post}_{\text{load}} := 12\text{kips} \] Load applied to Rail center (kips)

\[M_{\text{load}} := \text{Post}_{\text{load}} (\text{Rail}_{h} + d_{\text{soil}}) \]

\[d_{\text{soil}} := 0\text{in} \] depth of soil (in.)

\[t_{\text{deck}} := 9\text{in} \] Thickness of Deck (in.)
Steel Beam Yield Strength: $F_y := 50 \text{ ksi}$
Beam Nominal Depth: $\text{NOMINAL_DEPTH} := 6$
Beam weight per foot: $\text{WEIGHT_PER_FOOT} := 9$

POST DETAILS

$t_x = 2.47$ in \hspace{1cm} \text{radius of gyration with respect to X-X Axis (in.)}$

$I_y = 2.19$ in$^4 \hspace{1cm} \text{Moment of Inertia (Weak Axis (in4))}$

$S_y = 1.11$ in$^3 \hspace{1cm} \text{Section Modulus (Weak Axis (in3))}$
***** Steel & Concrete Material properties *****

\(F_{\text{Ysteel}} := 50 \text{ksi} \)
Yield Strength of Steel Material (ksi)

\(F_{\text{Yrebar}} := 60 \text{ksi} \)
Yield Strength of rebar (ksi)

\(F_t := 65 \text{ksi} \)
Rupture Strength of Steel Material (ksi)

\(f_c := 4000 \text{psi} \)
Compressive Strength of Concrete (psi)

***** Anchor Bolt Properties *****

\(F_{\text{ahorn}} := 125 \text{ksi} \)
High Strength Super HAS Rod Material, ASTM A193, Grade B7 Material (ksi)

\(D_{\text{inbolt}} := \frac{7}{8} \text{in} \)
Dia. of anchor bolts (in.)

\(A_{\text{bolts}} := \pi D_{\text{inbolt}}^2 \cdot 0.25 \)
Area of bolt = 0.6 in²

\(\phi_{\text{bolts}} := 1.0 \)
Strength Reduction Factor For Bolts

\(E_s := 29 \cdot 10^6 \text{ psi} \)
Modulus of Elasticity (in.)

\(N_t := 2 \)
2 bolts on the tension face

\(A_s := \frac{\pi D_{\text{inbolt}}^2}{4} \cdot N_t \)
Area of tension bolts

\(A_s = 1.203 \text{in}^2 \)

\(E_c := 57000 \frac{f_c}{4} \text{ psi} \)
\(E_c = 3604996.533 \text{ psi} \)

\(n := \frac{E_s}{E_c} \)
\(n = 8.04 \)

***** Weld Properties *****

\(F_{\text{EXX}} := 70 \text{ksi} \)
Weld Material Strength (ksi)

\(t_{\text{weld}} := \frac{1}{4} \text{in} \)
Weld Size (in.)

\(\phi_{\text{weld}} := 1.0 \)
Reduction Factor for Weld
Subject: Box Culvert Guardrail - Task AE Calculations

Sponsor: Washington DOT Pooled Fund

****** Baseplate Properties ******

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>12 in</td>
</tr>
<tr>
<td>B</td>
<td>12 in</td>
</tr>
<tr>
<td>(t_p)</td>
<td>1.006 in</td>
</tr>
<tr>
<td>d</td>
<td>5.9 in</td>
</tr>
<tr>
<td>(b_f)</td>
<td>3.94 in</td>
</tr>
</tbody>
</table>

Hole edge cut: 1.5 in Distance to plate edge to hole center (in.)

****** Hilti Anchor Properties ******

1. As per page 163, 2006 Hilti Product Technical Guide, HIT RE 500 Epoxy System, Average values for 4000 psi concrete:

\[
\text{Tension} := \begin{pmatrix} 22670 \\ 63495 \\ 64730 \end{pmatrix} \text{ lbf} \quad \text{Shear} := \begin{pmatrix} 16365 \\ 48455 \\ 79020 \end{pmatrix} \text{ lbf}
\]

\[
\text{Depth}_{\text{embed}} := \begin{pmatrix} 4 \\ 7.875 \\ 10.5 \end{pmatrix} \text{ in}
\]

Actual Embedment Depth (inches)
- \(h_{ef} := 6.00 \text{in} \)

Use Hilti High Strength Super HAS, 7/8" Dia. Rod:

\[
\text{HIT}_{\text{ultimate tensile}} := \text{interp}(\text{Depth}_{\text{embed}}, \text{Tension}, h_{ef}) \quad \text{Interpolate for Embedment Depth, } h_{ef}
\]

\[
\text{HIT}_{\text{ultimate shear}} := \text{interp}(\text{Depth}_{\text{embed}}, \text{Shear}, h_{ef})
\]

HIT_{ultimate tensile} = 43.741-kips
HIT_{ultimate shear} = 32.928-kips

Ultimate Bond Strength
(see pg 112 Hilti 2002 Tech. Guide)

Ultimate shear strength of anchor (see pg 112)
Subject: Box Culvert Guardrail - Task AE Calculations

Sponsor: Washington DOT Pooled Fund

Temperature := 110 °F

Max Temperature for Temperature Reduction

Check Load Adjustment Factors for Anchor Spacings & Clearance:

From page 119, Hilti 2002 Technical Guide

- $S_{act} := 9.0\text{ in}$: Actual anchor spacing (inches)
- $C_{act} := 24\text{ in}$: Edge distance (inches) from concrete edge to centerline of bolts
- $h_{embed} := 7.875\text{ in}$: Standard embedment depth (inches), see page 110
- $h_{ef} := 6\text{ in}$: Actual embedment depth (in.)

- $S_{min} := 0.5\times h_{ef}$
- $S_{cr} := 1.5\times h_{ef}$
- $C_{min} := 0.5\times h_{ef}$
- $C_{cr} := 1.5\times h_{ef}$
- $h := t_{deck}$: Thickness of slab, (in)
- $h := 9\text{ in}$

ANCHOR DETAILS

ANCHOR GEOMETRY
Calculate Hilti Reduction Factors for Spacing Tension & Shear

\[f_A = \begin{cases}
0.3 \left(\frac{S_{act}}{h_{ef}} \right) + 0.55 & \text{if } S_{cr} \geq S_{act} \geq S_{min} \\
1.0 & \text{if } S_{act} \geq S_{cr} \\
0 & \text{if } S_{act} < S_{min}
\end{cases} \]

\[f_A = 1 \]

Calculate Reduction Factors for Edge Distance Tension, “frn”

\[f_{RN} = \begin{cases}
0.3 \left(\frac{C_{act}}{h_{ef}} \right) + 0.55 & \text{if } C_{cr} \geq C_{act} \geq C_{min} \\
1.0 & \text{if } C_{act} \geq C_{cr} \\
0 & \text{if } C_{act} < C_{min}
\end{cases} \]

\[f_{RN} = 1 \]

5) Calculate Reduction Factors for Edge Distance Shear, “frv\text{perp}”

\[f_{RV_{\text{perp}}} = \begin{cases}
0.54 \left(\frac{C_{act}}{h_{ef}} \right) - 0.09 & \text{if } C_{cr} \geq C_{act} \geq C_{min} \\
1.0 & \text{if } C_{act} \geq C_{cr} \\
0 & \text{if } C_{act} < C_{min}
\end{cases} \]

\[f_{RV_{\text{perp}}} = 1 \]
6) Calculate total combined Reduction Factors for tension & shear:

\[f_{KV,y} = 1 \quad f_A = 1 \quad f_{RN} = 1 \]

\[\phi_{\text{Temp}} := \begin{pmatrix} 1.0 \\ 1.0 \\ 0.37 \end{pmatrix} \quad \text{Temp} := \begin{pmatrix} 10 \\ 120 \\ 212 \end{pmatrix} \quad ^{\circ}\text{F} \quad \phi_{\text{Temp}} := \text{Temp} - \begin{pmatrix} 260.93 \\ 322.04 \\ 373.15 \end{pmatrix} \quad \text{K} \quad \text{Temp} := \begin{pmatrix} 260.93 \\ 322.04 \\ 373.15 \end{pmatrix} \quad ^{\circ}\text{K} \]

\[\text{Temp}_{\text{K}} := \frac{(\text{Temp} - 273.15) \cdot 9}{5} + 32 \frac{\text{K}}{\text{F}} \text{ Temperature conversion} \]

\[\phi_{\text{TempRed}} := \text{interp}(\text{Temp}, \phi_{\text{Temp}}, \text{Temperature}) \]

\[\phi_{\text{TempRed}} = 1 \]

\[\phi_{\text{Tension}} := (f_A f_{RN} \phi_{\text{TempRed}}) \quad \phi_{\text{Shear}} := (f_A f_{KV,y}) \]

\[\phi_{\text{Tension}} = 1 \quad \phi_{\text{Shear}} = 1 \]

\[\phi_{R_{\text{Tension}}} := \phi_{\text{Tension}} \cdot \text{Hilti Ultimate tensile} \quad \phi_{R_{\text{Shear}}} := \phi_{\text{Shear}} \cdot \text{Hilti Ultimate shear} \]

\[\phi_{R_{\text{Tension}}} = 43.74 \text{ kips} \quad \phi_{R_{\text{Shear}}} = 32.93 \text{ kips} \]

Hilti Factored Anchor Strengths for

\[b_{ef} = 6.00 \text{ in} \]
Subject: Box Culvert Guardrail - Task AE Calculations

Sponsor: Washington DOT Pooled Fund

7. Calculate the Plastic Strength of the Post:
 \[F_y = 50\text{-ksi} \]
 \[Z_x = 6.23\text{-in}^3 \]
 \[M_{plastic} := F_y Z_x \]

8. Check Baseplate details & calculate anchor bolt forces:

Given Basic Uplift Procedure as shown in Blodgett, "Design of Welded Structures" pages 3-3-8 through 10 and sketch w/ nomenclature showing Baseplate Geometry and distribution of force.

Find: Maximum Stress (\(\sigma_e\)), "Y", and force in the bolts (\(P_i\)) for applied force as shown.

This basic uplift procedure as shown in Blodgett's "Design of Welded Structures" pages 3-3-8 through 10. It solves three equations for three unknowns for any combination of vertical & applied moment to the column. You have to combine the vertical load and moment to a single vertical load at some eccentricity "e". (Input Items in Yellow):

- 4 Bolts are used in the design with 2 bolts located on the tension face

\[P_c := .10\text{-kips} \]

Vertical Load on Column (kips)

Select Design Moment from Above:

\[M_4 := M_{plastic} \]

Applied Moment (k-ft.)

\[\frac{M_4}{P_c} = \frac{e}{P_c} = 3115\text{-in} \]

Eccentricity (in.)
Subject: Box Culvert Guardrail - Task AE Calculations

\[D = 12 \text{ in} \quad B = 12 \text{ in} \quad f_c = 4000 \text{ psi} \]
\[d = 5.9 \text{ in} \quad \text{Post Depth (in)} \quad D = 12 \text{ in} \quad B = 12 \text{ in} \quad N_t = 2 \quad \# \text{Tension Bolts} \]
\[b_f = 0.33 \text{ ft} \quad \text{Post Flange Width (in)} \quad \text{Hole center distance} = 1.5 \text{ in} \]
\[f := \frac{D}{2} - \text{Hole center distance} \quad \text{Distance from Col. Centerline to tension bolts.} \]

From static, there are Three Equations & Three Unknowns, \(P_c \), \(Y \), & \(\sigma_c \):

Initial estimates required. Use these estimates to converge on solutions for the three unknowns, \(\sigma_c, Y, P_t \):

Initial Guesses for unknowns:
- \(\sigma_c = 1000 \text{ psi} \)
- \(Y = 3 \text{ ft} \)
- \(P_t = 10 \text{ kip} \)

Given

\[\frac{1}{2} Y \sigma_c B - P_t - P_c = 0 \]

\[Equation 1 \]

\[P_t f + (P_x + P_y) \left(\frac{D}{2} - \frac{Y}{3} \right) - P_c = 0 \]

\[Equation 2 \]

\[\sigma_c = \frac{P_c Y}{A_b \left(\frac{D}{2} - Y + f \right)} \]

\[Equation 3 \]

\[Y = \text{Find}(Y, \sigma_c, P_t) \]

\[Y = 3.3908 \text{ in} \]

- \(\sigma_c = 1636 \text{ psi} \quad \text{Compressive stress @ the Edge of the Baseplate on Compression side} \)
- \(P_t = 33 \text{ kips} \quad \text{Tension Force in} \left(N_t \right) \text{ Anchor Bolts} \)

\[P_{\text{Bolt}} := \frac{P_t}{N_t} \]

\[P_{\text{Bolt}} = 16.6 \text{ kips} \quad \text{Tension per Bolt (kips)} \]

\[\ldots \text{ o.k., less than Factoried Hilti Ultimate for} \quad h_{ef} = 6 \text{ in} \quad \phi P_{\text{min}} = 43.74 \text{ kips} \]
9.) Check Baseplate bending/thickness using forces & stress above separately.

Calculate moment in baseplate on bearing side:

\[
Y = 3.39 \text{ in} \quad d_{edge} = \frac{D}{2} - \frac{t_f}{2} \quad d_{edge} = 4.03 \text{ in}
\]

\[
M_{plate1} := \frac{\sigma_C \cdot Y}{2} \left(d_{edge} + \frac{t_f}{2} - \frac{Y}{3} \right)
\]

\[
M_{plate1} = 8.34 \text{ kip-in in}
\]

Calculate moment in baseplate on Tension Bolt Side:

\[
P_{Bolt} = 16.8 \text{-kips}
\]

\[
Hole_{edgedist} = 1.5 \text{ in}
\]

\[
d_{edge} = 4.03 \text{ in} \quad \text{Distance from Baseplate Edge to Post Edge}
\]

\[
Bolt_{dist} := d_{edge} - Hole_{edgedist} + \frac{t_f}{2}
\]

\[
Bolt_{dist} = 2.64 \text{ in} \quad \text{Distance from center of bolt to centerline of post flange}
\]

\[
M_{plate2} := \frac{P_{Bolt} \cdot Bolt_{dist}}{Bolt_{dist}^2} \quad M_{plate2} = 8.3 \text{ kip-in in}
\]

\[
M_{plate} := \begin{cases}
M_{plate1} & \text{if } M_{plate1} > M_{plate2} \\
M_{plate2} & \text{otherwise}
\end{cases}
\]

Select worst case bending moment in plate bearing or anchor bolt tension

\[
M_{plate} = 8.34 \text{ kip-in in} \quad \text{Design moment in the baseplate for thickness calculations}
\]

Subtract 1/8" since procedure is little conservative

Therefore:

\[
t_{\text{required}} := \sqrt{\frac{4 \cdot M_{plate}}{F_Y}}
\]

\[
t_{\text{required}} = 0.82 \text{ in} \quad t_{\text{plate}} := (t_{\text{required}} - 0.125 \text{ in})
\]

\[
t_{bp} := \text{Round}(t_{\text{plate}}, 0.125 \text{ in}) \quad t_{bp} = 0.75 \text{ in} \quad \text{Final Baseplate Design Thickness (in.)}
\]
RECOMMENDED BASEPLATE DETAILS

Anchor Bolts: 7/8" Dia. A193 Threaded Rods 8 inches long, embedded 6 inches minimum

Anchorage System: Hill RE 500 Anchoring System
W8x21 POST

Subject: Box Culvert Guardrail - Task AE Calculations
Sponsor: Washington DOT Pooled Fund

Given the following general layout of a box culvert guardrail post anchored to a concrete box culvert section using an epoxy adhesive anchoring system. Find the limiting ultimate strength of the post design considering the different variables used in the design.

1.) Design Information:

***** Rail Geometry *****

\[\text{Rail}_{\text{entr}} := 21\text{in} \quad \text{Center Height of Rail (in.)} \]

\[\text{Rail}_{\text{h}} = \text{Rail}_{\text{entr}} + 6.125\text{in} \quad \text{Height to top of rail (in.)} \]

\[\text{Post}_{\text{h}} := 27\text{in} \quad \text{Height of Post above grade (in.)} \]

\[\text{Post}_{\text{load}} := 20\text{kips} \quad \text{Load applied to Rail center (kips)} \]

\[M_{\text{load}} := \text{Post}_{\text{load}} (\text{Rail}_{\text{entr}} + \text{d}_{\text{soil}}) \]

Thickness of Deck, Slab or Footing (in.)

\[d_{\text{soil}} := 18\text{in} \]

\[t_{\text{deck}} := 14\text{in} \]
Steel Beam Yield Strength: $F_y = 50 \text{ksi}$
Beam Nominal Depth: $\text{NOMINAL_DEPTH} = 8$ in
Beam weight per foot: $\text{WEIGHT_PER_FOOT} = 21$ lb/ft

** **** Post Information **** **

Post Data for: Nominal depth = 8 in

POST DETAILS

- $t_f = 3.49 \text{ in}$
- $I_x = 75.3 \text{ in}^4$
- $I_y = 9.77 \text{ in}^4$
- $S_x = 18.2 \text{ in}^3$
- $Z_x = 20.4 \text{ in}^3$
- $Z_y = 5.69 \text{ in}^3$
- $A_f = 2.11 \text{ in}^2$
- $S_y = 3.71 \text{ in}^3$

Wt_per_foot = 21 ft$^{-1}$ lb
Wt_per_foot = 21 ft$^{-1}$ lb

Area = 6.16 in2
Actual Depth of Member (in.)
Thickness of Web (in.)
Width of Flange (in.)
Thickness of Flange (in.)
Distance to toe of fillet (in.)
Moment of Inertia (Stg. Axis (in4))
Section Modulus (Stg. Axis (in3))
Plastic Modulus (Strong Axis (in3))
Plastic Modulus (Weak Axis (in3))
Area Flange (in2)
***** Steel & Concrete Material properties *****

$F_{\text{yield}} := 50 \text{ksi}$
Yield Strength of Steel Material (ksi)

$F_{\text{rebar}} := 60 \text{ksi}$
Yield Strength of rebar (ksi)

$F_u := 65 \text{ksi}$
Rupture Strength of Steel Material (ksi)

$f_c := 4000 \text{psi}$
Compressive Strength of Concrete (psi)

***** Anchor Bolt Properties *****

$F_{\text{bolts}} := 125 \text{ksi}$
High Strength Super HAS Rod Material, ASTM A193, Grade B7 Material (ksi)

$\text{Dia}_{\text{bolt}} := \frac{7}{8} \text{in}$
Dia. of anchor bolts (in.)

$\text{Area}_{\text{bolt}} := \pi \text{Dia}_{\text{bolt}}^2 \cdot 0.25$
$\text{Area}_{\text{bolt}} = 0.6 \text{in}^2$

$\phi_{\text{bolts}} := 1.0$
Strength Reduction Factor For Bolts

$E_t := 29 \times 10^6 \text{psi}$
Modulus of Elasticity (in.)

$N_t := 2$
2 bolts on the tension face

$A_t := \frac{\pi \cdot \text{Dia}_{\text{bolt}}^2}{4} \cdot N_t$
Area of tension bolts

$A_s := 1.203 \text{in}^2$

$E_c := 57000 \sqrt{\frac{f_c}{4 \text{psi}}}$
$E_c = 3694996.533 \text{psi}$

$n := \frac{E_s}{E_c}$
n = 8.04

***** Weld Properties *****

$F_{\text{weld}} := 70 \text{ksi}$
Weld Material Strength (ksi)

$t_{\text{weld}} := \frac{1}{4} \text{in}$
Weld Size (in.)

$\phi_{\text{weld}} := 1.0$
Reduction Factor for Weld
Subject: Box Culvert Guardrail - Task AE Calculations

Sponsor: Washington DOT Pooled Fund

****** Baseplate Properties ******

$D := 14\text{ in}$ Baseplate Length (in.)

$B := 14\text{ in}$ Baseplate width (in.)

$t_p := 1.00\text{ in}$ Baseplate thickness (in.)

$d := 8.28\text{ in}$ Depth of Post (in.)

$b_f := 5.27\text{ in}$ Width of Post (in.)

$Hole_{edge} = 1.5\text{ in}$ Distance to plate edge to hole center (in.)

BASEPLATE DETAILS

****** Hilti Anchor Properties ******

1.) As per page 112, 2002 Hilti Product Technical Guide, HIT RE 500 Epoxy System, Average values for 4000 psi concrete:

\[
\begin{align*}
\text{Tension} & := \begin{bmatrix} 22670 \ 62495 \ 64730 \end{bmatrix} \text{lbf} \\
\text{Shear} & := \begin{bmatrix} 16365 \ 48455 \ 79020 \end{bmatrix} \text{lbf}
\end{align*}
\]

\[
\text{Depth}_{\text{embed}} := \begin{bmatrix} 4 \\ 7.875 \\ 10.5 \end{bmatrix} \text{ in}
\]

Actual Embedment Depth (inches), see Hilti guide

$h_{ef} := 10.50\text{ in}$

Use Hilti Hight Strength Super HAS, 7/8" Din. Rod:

\[
\begin{align*}
\text{HIT}_{\text{ultetension}} & := \text{interp}(\text{Depth}_{\text{embed}}, \text{Tension}, h_{ef}) \\
\text{HIT}_{\text{ulteshear}} & := \text{interp}(\text{Depth}_{\text{embed}}, \text{Shear}, h_{ef})
\end{align*}
\]

$\text{HIT}_{\text{ultetension}} = 64.73\text{ kips}$

$\text{HIT}_{\text{ulteshear}} = 79.02\text{ kips}$

Ultimate Bond Strength
(see pg 112 Hilti 2002 Tech. Guide)

Ultimate shear strength of anchor (see pg 112)
Subject: Box Culvert Guardrail - Task AE Calculations

Sponsor: Washington DOT Pooled Fund

Temperature := 110°F Max Temperature for Temperature Reduction

Check Load Adjustment Factors for Anchor Spacings & Clearance:

From page 119, Hilti 2002 Technical Guide

\[S_{act} := 11.0\text{in} \] Actual anchor spacing (inches)

\[C_{act} := 12\text{in} \] edge distance (inches) from concrete edge to Centerline of bolts

\[h_{nom} := 7.875\text{in} \] Standard embedment depth (inches), see page 110

\[S_{min} := 0.5\cdot h_{ef} \quad S_{min} = 5.25\text{ in} \]

\[S_{cr} := 1.5\cdot h_{ef} \quad S_{cr} = 15.75\text{ in} \]

\[C_{min} := 0.5\cdot h_{ef} \quad C_{min} = 5.25\text{ in} \]

\[C_{cr} := 1.5\cdot h_{ef} \quad C_{cr} = 15.75\text{ in} \]

\[h := \text{thickness} \quad \text{Thickness of slab, (in)} \]

\[h = 14\text{ in} \]

ANCHOR DETAILS

ANCHOR GEOMETRY
Subject: Box Culvert Guardrail - Task AE Calculations

Sponsor: Washington DOT Pooled Fund

Calculate Hilti Reduction Factors Spacing Tension & Shear

\[f_A := \begin{cases} \frac{S_{act}}{h_{ef}} + 0.55 & \text{if } S_{cr} \geq S_{act} \geq S_{min} \\ 1.0 & \text{if } S_{act} \geq S_{cr} \\ 0 & \text{if } S_{act} < S_{min} \end{cases} \]

\[f_A = 0.864 \]

Calculate Reduction Factors for Edge Distance Tension, \(f_{RN} \)

\[f_{RN} := \begin{cases} \frac{C_{act}}{h_{ef}} + 0.55 & \text{if } C_{cr} \geq C_{act} \geq C_{min} \\ 1.0 & \text{if } C_{act} \geq C_{cr} \\ 0 & \text{if } C_{act} < C_{min} \end{cases} \]

\[f_{RN} = 0.89 \]

5.) Calculate Reduction Factors for Edge Distance Shear, \(f_{RV\text{perp}} \)

\[f_{RV\text{perp}} := \begin{cases} \frac{C_{act}}{h_{ef}} - 0.05 & \text{if } C_{cr} \geq C_{act} \geq C_{min} \\ 1.0 & \text{if } C_{act} \geq C_{cr} \\ 0 & \text{if } C_{act} < C_{min} \end{cases} \]

\[f_{RV\text{perp}} = 0.75 \]
Subject: Box Culvert Guardrail - Task AE Calculations

Sponsor: Washington DOT Pooled Fund

6.) Calculate total combined Reduction Factors for tension & shear:

\[
\phi_{temp} := \begin{cases}
1.0 & \text{Temp} := \frac{70}{212} \degree F \\
1.0 & \text{Temp} := \frac{294.26}{373.15} \degree K \\
0.42 & \text{Temp} := \left(\frac{\text{Temp} - 273.15 \degree K}{5} \right) + 32 \degree K
\end{cases}
\]

\[
\text{Temperature conversion}
\]

\[\phi_{tension} := \frac{f_{tension}}{f_{tension}}\]
\[\phi_{shear} := \frac{f_{shear}}{f_{shear}}\]

\[\phi_{tension} = 0.65\]
\[\phi_{shear} = 0.65\]

\[\phi_{tension} \cdot H T_{ultimate}\] for tension
\[\phi_{shear} \cdot H T_{ultimate}\] for shear

\[\phi_{tension} = 41.79 \text{kips}\]
\[\phi_{shear} = 51.22 \text{kips}\]

Hilti Factored Anchor Strengths for
\[h_{ef} = 10.50 \text{ in}\]
Subject: Box Culvert Guardrail - Task AE Calculations

Sponsor: Washington DOT Pooled Fund

7. Calculate the Plastic Strength of the Post:
 \[F_y = 50 \text{ ksi} \] Yield Strength of Steel
 \[Z_x = 20.4 \text{ in}^3 \] Plastic Section Modulus of Post
 \[M_{\text{plastic}} = F_y Z_x \]
 \[M_{\text{plastic}} = 85 \text{ kip-ft} \]
 \[M_{\text{load}} = 65 \text{ kip-ft} \]
 Plastic Moment
 Moment from Post Load

8. Check Baseplate details & calculate anchor bolt forces:

 Given: Basic Uplift Procedure as shown in Blodgett, "Design of Welded Structures" pages 3-3-8 through 10. and sketch w/ nomenclature showing Baseplate Geometry and distribution of force.

 Find: Maximum Stress \(\sigma_e \), "Y", and force in the bolts \(P_i \) for applied force as shown.

 This basic uplift procedure as shown in Blodgett's "Design of Welded Structures" pages 3-3-8 through 10. It solves three equations for three unknowns for any combination of vertical & applied moment to the column. You have to combine the vertical load and moment to a single vertical load at some eccentricity "e".

 (Input Items in Yellow):

 4 Bolts are used in the design with 2 bolts located on the tension face

 \[P_v = 0.1 \text{ kips} \] Vertical Load on Column (kips)

 Select Design Moment from Above:

 \[M_1 := M_{\text{plastic}} \] Applied Moment (k-ft.)
 \[(Use \ Plastic \ Strength \ of \ Post) \]
 \[\delta_e := \frac{M_1}{P_v} \]
 \[e = 10200 \text{ in} \] eccentricity (in.)
Subject: Box Culvert Guardrail - Tank AE Calculations

\[D = 14 \text{-in} \quad \text{BP Length (in.)} \quad B = 14 \text{-in} \quad \text{BP Width (in.)} \quad f_c = 4000 \text{ psi} \]

\[d = 8.28 \text{-in} \quad \text{Post Depth (in.)} \quad D = 14 \text{-in} \quad \text{BP Length (in.)} \quad N_i = 2 \quad \# \text{Tension Bolts} \]

\[b_f = 5.27 \text{-in} \quad \text{Post Flange Width (in.)} \quad \text{Hole}^\text{edgedist} = 1.5 \text{ in} \]

\[f = \frac{D}{2} - \text{Hole}^\text{edgedist} \quad \text{Distance from Col. Centerline to tension bolts.} \]

From static, there are Three Equations & Three Unknowns, \(P_o, "Y", \) & \(s_c: \)

Initial estimates required. Use these estimates to converge on solutions for the three unknowns, \(s_c, Y, P_o: \)

Initial Estimates for unknowns:

\[\sigma_c = 1000 \text{-psi} \quad Y = 3 \text{-ft} \quad P_o = 10 \text{-kip} \]

Given

\[\frac{1}{2} \cdot Y \cdot \sigma_c \cdot B - P_t - P_c = 0 \quad \text{Equation 1} \]

\[P_o f + (P_c + P_t) \left(\frac{D}{2} - \frac{Y}{3} \right) - P_c e = 0 \quad \text{Equation 2} \]

\[\sigma_c = \frac{P_c Y}{A_e n \left(\frac{D}{2} - \frac{Y}{2} + f \right)} \quad \text{Equation 3} \]

\[\frac{N_i}{A_e n} := \text{Find}(Y, \sigma_c, P_o) \]

\[Y = 3.5241 \text{-in} \]

\[\sigma_c = 3653 \text{-psi} \quad \text{Compressive stress @ the Edge of the Baseplate} \]

\[\text{on Compression side} \]

\[P_t = 90 \text{-kips} \quad \text{Tension Force in } (N_i) \text{ Anchor Bolts} \]

\[P_{\text{Bolt}} := \frac{P_t}{N_i} \quad P_{\text{Bolt}} = 45.01 \text{-kips} \quad \text{Tension per Bolt (kips)} \quad \ldots \text{o.k., close to } \frac{P_{\text{tension per bolt}}}{} \]

\[h_{\text{ref}} = 10.5 \text{-in} \quad \phi P_{\text{tension}} = 41.79 \text{-kips} \]
9.) Check Baseplate bending/thickness using forces & stress above separately.

Calculate moment in baseplate on bearing side:

\[Y = 3.52 \text{ in} \]
\[d_{edge} = \frac{D}{2} - \frac{b_f}{2} \]
\[d_{edge} = 4.37 \text{ in} \]
\[M_{plate1} = \frac{\sigma_c Y}{2} \left(\frac{d_{edge} - \frac{b_f}{2} - \frac{Y}{2}}{3} \right) \]
\[M_{plate1} = 21.82 \text{ kip-in} \]

Calculate moment in baseplate on Tension Bolt Side:

\[P_{Bolt} = 45.01 \text{ kips} \]
\[Hole_{edgedist} = 1.5 \text{ in} \]
\[d_{edge} = 4.37 \text{ in} \]
\[\text{Distance from Baseplate Edge to Post Edge} \]
\[Bolt_{dist} := d_{edge} - Hole_{edgedist} + \frac{b_f}{2} \]
\[Bolt_{dist} = 3.07 \text{ in} \]
\[\text{Distance from center of bolt to centerline of post flange} \]
\[M_{plate2} := \frac{P_{Bolt} Bolt_{dist}}{Bolt_{dist}^2} \]
\[M_{plate2} = 22.5 \text{ kip-in} \]
\[M_{plate := \begin{cases} M_{plate1} & \text{if } M_{plate1} > M_{plate2} \\ M_{plate2} & \text{otherwise} \end{cases} \]
\[M_{plate} = 22.5 \text{ kip-in} \]

Select worst case bending moment in plate bearing or anchor bolt tension

Design moment in the baseplate for thickness calculations

Subtract 1/8" since procedure is little conservative

Therefore:

\[t_{required} := \sqrt{\frac{4 M_{plate}}{F_y}} \]
\[t_{required} = 1.34 \text{ in} \]
\[t_{plate} := (t_{required} - 0.125) \text{ in} \]

\[t_{bp} := \text{Round}(t_{plate}, 0.125) \]
\[t_{bp} = 1.25 \text{ in} \]

Final Baseplate Design Thickness (in.)
RECOMMENDED BASEPLATE DETAILS

\[
\begin{align*}
&\text{t} \text{bp} = 1.25 \text{ in} \\
&\text{F}_\text{y} = 50 \text{ ksi} \\
&\text{t} \text{weld} = 0.25 \text{ in}
\end{align*}
\]

W8x21 BASEPLATE DETAILS

Anchor Bolts: 7/8" Dia. A193 Threaded Rods, 14 inches Long, embedded 10.0 inches minimum

Anchorage System: Hilti RE 500 Anchoring System
APPENDIX B. PENDULUM TESTING OF GUARDRAIL POSTS ON BOX CULVERTS

INTRODUCTION

The objective of this project was to develop a guardrail design for typical box culverts that will meet the safety performance guidelines set forth in National Cooperative Highway Research Program (NCHRP) Report 350. Low-speed pendulum tests were performed on a prototype guardrail post on a simulated box culvert as a surrogate for full-scale crash testing.

PENDULUM FACILITY

The guardrail post on box culvert was tested at Texas Transportation Institute (TTI) outdoor pendulum testing facility. The pendulum bogie, built according the specifications of the Federal Outdoor Impact Laboratory's (FOIL) pendulum, and the testing area are shown in the adjacent figure. Frontal crush of the aluminum honeycomb nose of the bogie simulates the crush of an actual vehicle and the sweeper plate, constructed of steel angles and a steel plate, is attached to the body of the pendulum with a ground clearance of 4 inches to replicate roughly an automobile's undercarriage. The crushable nose configuration is the FOIL ten stage bogie nose. Cartridges of expendable aluminum honeycomb material of differing densities are placed in a sliding nose. The pendulum impacts the guardrail post on box culvert at a target speed of 22 mph and at a height of 21 inches above the ground, which represents the bumper height of a pickup truck. After a test, the honeycomb material is replaced and the bogie is reused. A sketch of the honeycomb configuration used for the pendulum bogie is shown in Attachment A. Testing was performed in accordance with NCHRP Report 350 and a brief description of the procedures is presented in Attachment B.

TEST INSTALLATION

TTI received simulated concrete box culvert details from Michael Elle of Minnesota Department of Transportation (Mn/DOT). Two W6x9 guardrail post were anchored to two simulated concrete deck specimens. Each specimen was crash tested using a dynamic pendulum surrogate vehicle. Each post was anchored to a 9-inch thick concrete deck to simulate a typical box culvert installation. The concrete deck specimens were 8 feet-3½ inches wide and 8 feet-4½ inches long. The concrete decks constructed and tested for this project were 9 inches thick. Reinforcement in the top of each deck consisted of #3 transverse bars spaced on 12-inch centers. Longitudinal reinforcement in each deck consisted of #3 bars spaced on 6-inch centers. Reinforcement in the bottom layer consisted also of #3 bars spaced on 12-inch centers with #5 bars spaced on 4½-inch centers in the longitudinal direction. To further simulate the anchorage to a typical concrete box culvert installation, the posts were anchored 2 ft-4 inches from the edge of the culvert. Additional details are shown in Attachment C.
A detailed design of the W6x9 post anchorage and base plate tested was performed. A second design utilizing W8x21 posts was also performed. However, based on the proposed frequent use, only the system utilizing W6x9 posts was tested. Based on the information provided by the participating states in this pooled fund project, the preferred anchoring system for post anchorage to the top of the box culvert system was Hilti’s RE 500 Adhesive Anchoring System. The W6x9 posts were welded to 12 inch x 12 inch x 7/8-inch thick base plates and anchored to the 9-inch thick concrete box culvert decks utilizing 7/8-inch diameter super Hilti Anchoring System (HAS) rods. These rods were embedded a minimum of 6 inches into 1-inch diameter drilled holes in the concrete decks and anchored to the deck using Hilti RE 500 Epoxy Anchoring System. A larger base plate utilizing deeper adhesive anchors was designed for the W8x21 posts to simulate anchorage to the top of a concrete footing. The base plate and anchorage designs were based on the minimum strengths to cause plastic failure in the posts. These designs can be utilized for the direct anchorage to either the box culvert or concrete footing without any contribution from soil embedment above the box culvert or footing. The anchorage and base plate designs for both the W6x9 and the W8x21 posts are provided in Attachment D.

TEST RESULTS

Test P1

The pendulum bogie, traveling at an impact speed of 21.7 mi/h, impacted the guardrail post at a height of 21 inches. At 0.012 s, the post began to deflect toward the field side, and at 0.017 s, the post returned to its upright position. The post began to deflect toward the field side again at 0.022 s, and the pendulum began to ride up the face of the post at 0.091 s. Forward motion of the pendulum stopped at 0.157 s.

The top of the post was deformed toward field side 10.8 inches. Total crush of the honeycomb nose was 14.0 inches. Photographs of the post before and after the test are shown in Attachment E.

Longitudinal occupant impact velocity was 8.9 m/s, longitudinal occupant ridedown acceleration was -3.9 g’s, and the maximum 50-ms average acceleration was -10.0 g’s. Graphs for this test are shown in Attachment F.

Test P2

The pendulum bogie, traveling at an impact speed of 21.1 mi/h, impacted the guardrail post at a height of 21 inches. At 0.010 s, the post began to deflect toward the field side, and at 0.015 s, the post returned to its upright position. The post began to deflect toward the field side again at 0.020 s, and the pendulum began to ride up the face of the post at 0.067 s. The post began to shear at the front of the base at 0.106 s.

The top of the post was deformed toward field side 10.8 inches. Total crush of the honeycomb nose was 13.7 inches. Photographs of the post before and after the test are shown in Attachment E.

Longitudinal occupant impact velocity was 6.3 m/s, longitudinal occupant ridedown acceleration was -0.6 g’s, and the maximum 50-ms average acceleration was -9.6 g’s. Graphs for this test are shown in Attachment F.
CONCLUSIONS

TTI performed low-speed pendulum tests as a surrogate for full-scale crash testing. The W6x9 post and baseplate design using 7/8-inch high strength anchor rods and anchored using the Hilti RE 500 Adhesive System and presented herein performed well in the full scale tests. Based on the testing results, the W6x9 post and anchorage details presented in this report are recommended for full-scale crash testing.
ATTACHMENT A. PENDULUM BOGIE DETAILS

![Configuration of pendulum nose and honeycomb.](image)

<table>
<thead>
<tr>
<th>Cartridge Number</th>
<th>Size (mm)</th>
<th>Area Effectively Removed by Pre-Crushing (mm²)</th>
<th>Static Crush Strength (kPa)</th>
<th>Total Crush Force for Each Cartridge (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>69.9 × 406 × 76</td>
<td></td>
<td>896.3</td>
<td>25.4</td>
</tr>
<tr>
<td>2</td>
<td>102 × 127 × 51</td>
<td></td>
<td>172.4</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>203 × 203 × 76</td>
<td>13549</td>
<td>896.3</td>
<td>24.8</td>
</tr>
<tr>
<td>4</td>
<td>203 × 203 × 76</td>
<td>9678</td>
<td>1585.8</td>
<td>50.0</td>
</tr>
<tr>
<td>5</td>
<td>203 × 203 × 76</td>
<td>3871</td>
<td>1585.8</td>
<td>59.2</td>
</tr>
<tr>
<td>6</td>
<td>203 × 203 × 76</td>
<td></td>
<td>1585.8</td>
<td>65.3</td>
</tr>
<tr>
<td>7</td>
<td>203 × 203 × 76</td>
<td>13549</td>
<td>2757.9</td>
<td>76.3</td>
</tr>
<tr>
<td>8</td>
<td>203 × 203 × 76</td>
<td>7742</td>
<td>2757.9</td>
<td>92.3</td>
</tr>
<tr>
<td>9</td>
<td>203 × 203 × 76</td>
<td></td>
<td>2757.9</td>
<td>113.6</td>
</tr>
<tr>
<td>10</td>
<td>203 × 254 × 76</td>
<td></td>
<td>2757.9</td>
<td>142.3</td>
</tr>
</tbody>
</table>

Configuration of pendulum nose and honeycomb.
ATTACHMENT B. PENDULUM TEST PROCEDURES AND DATA ANALYSIS

The pendulum test and data analysis procedures were in accordance with guidelines presented in NCHRP Report 350. Brief descriptions of these procedures are presented as follows.

ELECTRONIC INSTRUMENTATION AND DATA PROCESSING

The bogie was instrumented with two accelerometers mounted at the rear of the bogie to measure longitudinal acceleration levels. The accelerometers were strain gage type with a linear millivolt output proportional to acceleration.

The electronic signals from the accelerometers were amplified and transmitted to a base station by means of constant bandwidth FM/FM telemetry link for recording on magnetic tape and for display on a real-time strip chart. Calibration signals were recorded before and after the test and an accurate time reference signal was simultaneously recorded with the data. Pressure sensitive switches on the nose of the bogie were actuated by wooden dowel rods and initial contact to produce speed trap and "event" marks on the data record to establish the exact instant of contact with the installation, as well as impact velocity.

The multiplex of data channels, transmitted on one radio frequency, is received and demultiplexed onto TEAC® instrumentation data recorder. After the test, the data are played back from the TEAC® recorder and digitized. A proprietary software program (WinDigit) converts the analog data from each transducer into engineering units using the R-cal and pre-zero values at 10,000 samples per second, per channel. WinDigit also provides Society of Automotive Engineers (SAE) J211 class 180 phaseless digital filtering and bogie impact velocity.

The Test Risk Assessment Program (TRAP) uses the data from WinDigit to compute occupant/compartment impact velocities, time of occupant/compartment impact after bogie impact, and the highest 10-ms average ridedown acceleration. WinDigit calculates change in bogie velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms are computed. For reporting purposes, the data from the bogie-mounted accelerometers were then filtered with a 180 Hz digital filter and plotted using a commercially available software package (Microsoft EXCEL).

PHOTOGRAPHIC INSTRUMENTATION

A high-speed digital camera, positioned perpendicular to the path of the pendulum bogie and the test article, was used to record the collision period. The film from this high-speed camera was analyzed on a computer to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A Betacam camera and still cameras were used to document the crushable pendulum nose and the test article before and after the test.
ATTACHMENT C. DETAILS OF TEST ARTICLES

NOTE: CONCRETE $f'c=5$ ksi
SECTION THRU RAIL

TRAFFIC SIDE VIEW (POST ONLY)

NOTE: ALL MATERIAL SHALL BE A36 STEEL

W6x9 BASEPLATE DETAILS
ATTACHMENT D. DESIGN CALCULATIONS

W6x9 DESIGN

Project #: 405160-00005

W6x9 Design
Hilti RE 500 Anchor System
7/8” Dia. Anchors Embed. 6” Max

Given the following general layout of a box culvert guardrail post anchored to a concrete box culvert section using an epoxy adhesive anchoring system. Find the limiting ultimate strength of the post design considering the different variables used in the design.

1.) Design Information:

***** Rail Geometry *****

\[\text{Rail}_{cmt} := 21 \text{in} \]
Center Height of Rail (in.)

\[\text{Rail}_{ht} := \text{Rail}_{cmt} + 6.125 \text{in} \]
Height to top of rail (in.)

\[\text{Post}_{ht} := 27 \text{in} \]
Height of Post above grade (in.)

\[\text{Post}_{load} := 12 \text{kips} \]
Load applied to Rail center (kips)

\[M_{load} := \text{Post}_{load} \left(\text{Rail}_{ht} + d_{soil} \right) \]
Steel Beam Yield Strength: $F_y = 50$ ksi
Beam Nominal Depth: NOMINAL_DEPTH = 6
Beam weight per foot: WEIGHT_PER_FOOT = 9

----- Post Information -----

Post Data for: Nominal_depth = 6-in

\[
\begin{align*}
Wt_{\text{per foot}} &= 9 \text{ ft}^{-1} \text{ lb} \\
F_y &= 50 \text{ ksi}
\end{align*}
\]

\[
\begin{align*}
d_h &= 6 \\
\text{Nominal Depth of member}
\end{align*}
\]

\[
\begin{align*}
\text{Area} &= 2.68 \text{ in}^2 \\
d &= 5.9 \text{ in} \\
t_w &= 0.17 \text{ in} \\
b_f &= 3.94 \text{ in} \\
t_f &= 0.215 \text{ in} \\
k &= 0.56 \text{ in} \\
I_x &= 16.4 \text{ in}^4 \\
S_x &= 5.56 \text{ in}^3 \\
Z_x &= 6.23 \text{ in}^3 \\
Z_y &= 1.72 \text{ in}^3 \\
A_f &= 0.85 \text{ in}^2
\end{align*}
\]

\[
\begin{align*}
r_k &= 2.47 \text{ in} \\
I_y &= 2.19 \text{ in}^4 \\
S_y &= 1.11 \text{ in}^3
\end{align*}
\]

\[
\begin{align*}
r_{xx} &= 1.38 \text{ in} \\
I_{xx} &= 2.58 \text{ in}^4 \\
S_{xx} &= 0.50 \text{ in}^3 \\
Z_{xx} &= 1.37 \text{ in}^3
\end{align*}
\]

POST DETAILS

radius of gyration with respect to X-X Axis (in.)
Moment of Inertia (Weak Axis (in^4))
Section Modulus (Weak Axis (in^3))

8/24/2007 61
***** Steel & Concrete Material properties *****

\[F_{\text{y,steel}} = 50 \text{ksi} \]
Yield Strength of Steel Material (ksi)

\[F_{\text{y,Rebar}} = 60 \text{ksi} \]
Yield Strength of Rebar (ksi)

\[F_{\text{u}} = 65 \text{ksi} \]
Rupture Strength of Steel Material (ksi)

\[f_c = 4000 \text{psi} \]
Compressive Strength of Concrete (psi)

***** Anchor Bolt Properties *****

\[F_{\text{bolts}} = 125 \text{ksi} \]
High Strength Super HAS Rod Material, ASTM A193, Grade B7 Material (ksi)

\[D_{\text{bolts}} = \frac{7}{8} \text{ in} \]
Diameter of anchor bolts (in.)

\[A_{\text{bolts}} = \pi D_{\text{bolts}}^2 \cdot 0.25 \]
Area of anchor bolts = 0.6-in^2

\[\phi_{\text{bolts}} = 1.0 \]
Strength Reduction Factor For Bolts

\[E_s = 29 \times 10^6 \text{ psi} \]
Modulus of Elasticity (in.)

\[N_t = 2 \]
2 bolts on the tension face

\[A_s = \frac{\pi D_{\text{bolts}}^2}{4} \cdot N_t \]
Area of tension bolts

\[A_s = 1.203 \text{-in}^2 \]

\[E_c = \frac{57000 \cdot \frac{f_c}{\text{psi}}}{\text{psi}} \]
\[E_c = 3604996.533 \text{-psi} \]

\[n = \frac{E_s}{E_c} \]
\[n = 8.04 \]

***** Weld Properties *****

\[F_{\text{Weld}} = 70 \text{ksi} \]
Weld Material Strength (ksi)

\[t_{\text{weld}} = \frac{1}{4} \text{ in} \]
Weld Size (in.)

\[\phi_{\text{weld}} = 1.0 \]
Reduction Factor for Weld
***** Baseplate Properties *****

D := 12in Baseplate Length (in.)
B := 12in Baseplate width (in.)
t_p := 1.000in Approx. Baseplate thickness (in.)
d := 5.9-in Depth of Post (in.)
b_f := 3.94-in Width of Post (in.)
Hole edge dist := 1.5in Distance to plate edge to hole center (in.)

***** Hilti Anchor Properties *****

1.) As per page 163, 2006 Hilti Product Technical Guide, HIT RE 500 Epoxy System, Average values for 4000 psi concrete:

<table>
<thead>
<tr>
<th>Tension</th>
<th>Shear</th>
</tr>
</thead>
<tbody>
<tr>
<td>22670</td>
<td>16365</td>
</tr>
<tr>
<td>63495</td>
<td>48455</td>
</tr>
<tr>
<td>64730</td>
<td>79020</td>
</tr>
</tbody>
</table>

Depth_{embed} := \begin{cases} 4 & \text{in} \\ 7.875 & \text{in} \\ 10.5 & \text{in} \end{cases}

Actual Embedment Depth (inches) ; see Hilti guide

h_{ef} := 6.00in

Use Hilti High Strength Super HAS, 7/8" Dia. Rod:

\begin{align*}
\text{HIT}_{\text{ultimatetensile}} &= \text{interp}(\text{Depth}_{\text{embed}}, \text{Tension}, h_{ef}) \\
\text{HIT}_{\text{ultimateshear}} &= \text{interp}(\text{Depth}_{\text{embed}}, \text{Shear}, h_{ef})
\end{align*}

\text{HIT}_{\text{ultimatetensile}} = 43.741\text{-kips} \quad \text{Ultimate Bond Strength} \\
\text{(see pg 112 Hilti 2002 Tech. Guide)}

\text{HIT}_{\text{ultimateshear}} = 32.928\text{-kips} \quad \text{Ultimate shear strength of anchor} \\
\text{(see pg 112)}
Subject: Box Culvert Guardrail - Task AE Calculations

Sponsor: Washington DOT Pooled Fund

Temperature := 110°F Max Temperature for Temperature Reduction

Check Load Adjustment Factors for Anchor Spacings & Clearance:

From page 119, HiTi 2002 Technical Guide

- $S_{act} := 9.0\text{ in}$ Actual anchor spacing (inches)
- $C_{act} := 24\text{ in}$ edge distance (inches) from concrete edge to Centerline of bolts
- $h_{nom} := 7.875\text{ in}$ Standard embedment depth (inches), see page 110
- $h_{ef} = 6\text{ in}$ Actual embedment depth (in.)

- $S_{min} := 0.5\cdot h_{ef}$ $S_{min} = 3\text{ in}$
- $S_{cr} := 1.5\cdot h_{ef}$ $S_{cr} = 9\text{ in}$
- $C_{min} := 0.5\cdot h_{ef}$ $C_{min} = 3\text{ in}$
- $C_{cr} := 1.5\cdot h_{ef}$ $C_{cr} = 9\text{ in}$
- $h := h_{deck}$ Thickness of slab (in.)
- $h = 9\text{ in}$

ANCHOR DETAILS

ANCHOR GEOMETRY
**** Calculate Hilti Reduction Factors for Spacing Tension & Shear *******

\[
f_A := \begin{cases}
 f_A & \left(\frac{S_{act}}{h_{ef}} \right) + 0.55 \quad \text{if} \quad C_{cr} \geq C_{act} \geq C_{min} \\
 f_A & \left(\frac{S_{act}}{h_{ef}} \right) + 1.0 \quad \text{if} \quad S_{act} \geq C_{cr} \\
 f_A & 0 \quad \text{if} \quad S_{act} < S_{min}
\end{cases}
\]

\[
f_A = 1
\]

******* Calculate Reduction Factors for Edge Distance Tension, "f_{RN}" *******

\[
f_{RN} := \begin{cases}
 f_{RN} & -0.3 \left(\frac{C_{act}}{h_{ef}} \right) + 0.55 \quad \text{if} \quad C_{cr} \geq C_{act} \geq C_{min} \\
 f_{RN} & \left(\frac{C_{act}}{h_{ef}} \right) + 1.0 \quad \text{if} \quad C_{act} \geq C_{cr} \\
 f_{RN} & \left(\frac{C_{act}}{h_{ef}} \right) + 0 \quad \text{if} \quad C_{act} < C_{min}
\end{cases}
\]

\[
f_{RN} = 1
\]

5.) Calculate Reduction Factors for Edge Distance Shear, "f_{RV_{perp}}"

\[
f_{RV_{perp}} := \begin{cases}
 f_{RV_{perp}} & -0.54 \left(\frac{C_{act}}{h_{ef}} \right) - 0.09 \quad \text{if} \quad C_{cr} \geq C_{act} \geq C_{min} \\
 f_{RV_{perp}} & \left(\frac{C_{act}}{h_{ef}} \right) - 1.0 \quad \text{if} \quad C_{act} \geq C_{cr} \\
 f_{RV_{perp}} & \left(\frac{C_{act}}{h_{ef}} \right) - 0 \quad \text{if} \quad C_{act} < C_{min}
\end{cases}
\]

\[
f_{RV_{perp}} = 1
\]
6.) Calculate total combined Reduction Factors for tension & shear:

\[f_{V_{\text{perp}}} = 1 \quad f_A = 1 \quad f_{RN} = 1 \]

\[\Phi_{\text{Temp}} := \begin{pmatrix} 1.0 \\ 1.0 \\ 0.37 \end{pmatrix} \quad \text{Temp} := \begin{pmatrix} 10 \\ 120 \\ 212 \end{pmatrix} \quad ^\circ F \quad \Phi^f := \text{Temp} \quad \text{Temp} = \begin{pmatrix} 260.93 \\ 322.04 \\ 373.15 \end{pmatrix} \quad ^\circ K \quad \text{Temp} = \begin{pmatrix} 260.93 \\ 322.04 \\ 373.15 \end{pmatrix} \quad ^\circ K \]

\[\text{Temp}_F := \frac{(\text{Temp} - 273.15) \cdot 9}{5} + 32 \text{K} \]

\[\Phi_{\text{TempReduce}} := \text{interp}(\text{Temp, } \Phi_{\text{Temp}}, \text{Temperature}) \]

\[\Phi_{\text{TempReduce}} = 1 \]

\[\Phi_{\text{Tension}} := \left(f_A \cdot f_{RN} \cdot \Phi_{\text{TempReduce}} \right) \quad \Phi_{\text{Shear}} := \left(f_A \cdot f_{V_{\text{perp}}} \right) \]

\[\Phi_{\text{Tension}} = 1 \quad \Phi_{\text{Shear}} = 1 \]

\[\phi_R_{\text{Tension}} = \Phi_{\text{Tension}} \cdot \text{HIT ultimate tensile} \]

\[\phi_R_{\text{Tension}} = 43.74 \text{ kips} \]

\[\phi_R_{\text{Shear}} = \Phi_{\text{Shear}} \cdot \text{HIT ultimate shear} \]

\[\phi_R_{\text{Shear}} = 32.93 \text{ kips} \]

Hilt Factory Anchor Strengths for

\[b_{ef} = 6.00 \text{ in} \]
7. Calculate the Plastic Strength of the Post:

\[F_Y = 50 \text{ ksi} \quad \text{Yield Strength of Steel} \]
\[Z_X = 6.23\text{-in}^3 \quad \text{Plastic Section Modulus of Post} \]

\[M_{\text{plastic}} = F_Y Z_X \]

\[M_{\text{plastic}} = 25.96 \text{-kip-ft} \]

\[M_{\text{load}} = 27.12 \text{-kip-ft} \]

Plastic Moment
Moment from Post Load

8.) Check Baseplate details & calculate anchor bolt forces:

Given Basic Uplift Procedure as shown in Blodgett, "Design of Welded Structures" pages 3-3-8 through 10. and sketch w/ nomenclature showing Baseplate Geometry and distribution of force.

Find: Maximum Stress (\(\sigma_C \)), "Y", and force in the bolts (\(P_t \)) for applied force as shown.

This basic uplift procedure as shown in Blodgett's "Design of Welded Structures" pages 3-3-8 through 10. It solves three equations for three unknowns for any combination of vertical & applied moment to the column. You have to combine the vertical load and moment to a single vertical load at some eccentricity "e".

(Input Items in Yellow):

4 Bolts are used in the design with 2 bolts located on the tension face

\[P_C := .10 \text{-kips} \]

Vertical Load on Column (kips)

Select Design Moment from Above:

\[M_1 := M_{\text{plastic}} \]

Applied Moment (k-ft)

\[\delta e := \frac{M_1}{P_C} \]

\(e = 3.115 \text{-in} \)

eccentricity (in.)
Subject: Box Culvert Guardrail - Task AE Calculations

\[D = 12 \text{-in} \quad \text{BP Length (in.)} \quad B = 12 \text{-in} \quad \text{BP Width (in.)} \quad f_c = 4000 \text{-psi} \]

\[d = 5.9 \text{-in} \quad \text{Post Depth (in.)} \quad D = 12 \text{-in} \quad \text{BP Length (in.)} \quad N_t = 2 \quad \text{# Tension Bolts} \]

\[b_f = 0.33 \text{ ft} \quad \text{Post Flange Width (in.)} \]

\[f := \frac{d}{2} - \text{Hole edge dist} \quad \text{Distance from Col. Centerline to tension bolts.} \]

\text{From static, there are Three Equations & Three Unknowns, } P_t, "Y", \text{ & } s_c: \]

Use Mathcad's Solve Block to find solutions. Solve Block requires “Initial guesses and uses these guesses to converge on solutions for the three unknowns, } s_c, Y, P_t; \]

\text{Initial Guesses for unknowns: } \quad \sigma_c := 1000 \text{-psi} \quad \quad Y := .3 \text{-ft} \quad P_t := 16 \text{-kip} \]

Given

\[\frac{1}{2} Y \cdot \sigma_c B - P_t - P_c = 0 \quad \text{Equation 1} \]

\[P_t f + (P_c + P_t) \left(\frac{D}{2} - \frac{Y}{3} \right) - P_c e = 0 \quad \text{Equation 2} \]

\[\sigma_c = \frac{P_t Y}{A_\text{bf} \left(\frac{D}{2} - Y + f \right)} \quad \text{Equation 3} \]

\(X_0 \quad \sigma_0 \quad Y = 2.7545 \text{-in} \quad \text{Compressive stress @ the Edge of the Baseplate on Compression side} \)

\[Y = 2.7545 \text{-in} \quad \sigma_c = 2887 \text{-psi} \quad \text{Tension Force in } (N_t) \text{ Anchor Bolts} \]

\[P_t := 48 \text{-kips} \quad P_{\text{Bolt}} = 23.81 \text{-kips} \quad \text{Tension per Bolt (kips)} \]

\[P_{\text{Bolt}} = \frac{P_t}{N_t} \quad \text{O.K. less than Factor of Hilti Ultimate for } \quad b_{ef} = 6 \text{-in} \quad \phi P_{\text{Tension}} = 43.74 \text{-kips} \]

8/24/2007
9.) Check Baseplate bending/thickness using forces & stress above separately.

Calculate moment in baseplate on bearing side:

\[Y = 2.75 \text{ in} \]
\[d_{\text{edge}} := \frac{D}{2} - \frac{b_f}{2} \]
\[d_{\text{edge}} = 4.03 \text{ in} \]

\[M_{\text{plate1}} := \frac{\sigma_c Y}{2} \left(d_{\text{edge}} + \frac{t_f}{2} - \frac{Y}{3} \right) \]

\[M_{\text{plate1}} = 12.8 \text{ kip-in in} \]

Calculate moment in baseplate on Tension Bolt Side:

\[P_{\text{Bolt}} = 23.81 \text{ kips} \]
\[Hole_{\text{edgedist}} = 1.5 \text{ in} \]
\[d_{\text{edge}} = 4.03 \text{ in} \]

Distance from Baseplate Edge to Post Edge

\[\text{Bolt}_{\text{dist}} := d_{\text{edge}} - Hole_{\text{edgedist}} + \frac{t_f}{2} \]

\[\text{Bolt}_{\text{dist}} = 2.64 \text{ in} \]

Distance from center of bolt to centerline of post flange

\[M_{\text{plate2}} := \frac{P_{\text{Bolt}} \cdot \text{Bolt}_{\text{dist}}}{\text{Bolt}_{\text{dist}}^2} \]

\[M_{\text{plate2}} = 11.9 \text{ kip-in in} \]

\[M_{\text{plate}} := \begin{cases} M_{\text{plate1}} & \text{if } M_{\text{plate1}} > M_{\text{plate2}} \\ M_{\text{plate2}} & \text{otherwise} \end{cases} \]

Select worst case bending moment in plate bearing or anchor bolt tension

\[M_{\text{plate}} = 12.8 \text{ kip-in in} \]

Design moment in the baseplate for thickness calculations

Subtract 1/8" since procedure is little conservative

\[t_{\text{required}} := \sqrt{\frac{4 \cdot M_{\text{plate}}}{F_y}} \]

\[t_{\text{required}} = 1.01 \text{ in} \]

\[t_{\text{plate}} := (t_{\text{required}} - 0.125 \text{ in}) \]

\[t_{\text{bp}} := \text{Round}(t_{\text{plate}}, 0.125 \text{ in}) \]

\[t_{\text{bp}} = 0.875 \text{ in} \]

Final Baseplate Design Thickness (in.)
Subject: Box Culvert Guardrail - Task AE Calculations

- $t_{bp} = 0.575$ in
- $F_S = 50$ kip
- $t_{weld} = 0.25$ in

RECOMMENDED BASEPLATE DETAILS

![Diagram of recommended baseplate details]

- W6x8.5 & 9 BASEPLATE DETAILS

Anchor Bolts: 7/8" Dia. A193 Threaded Rods 8 inches long, embedded 6 inches minimum

Anchorage System: Hilti RE 500 Anchoring System

8/24/2007 70
W8x21 DESIGN

Texas Transportation Institute

W8x21 Design
Hilti RE 500 Anchor System
7/8" Dia. Anchors Embed. 10" Max

8/24/2007 71

Subject: Box Culvert Guardrail - Task AE Calculations
Sponsor: Washington DOT Pooled Fund

Given the following general intent of a box culvert guardrail post anchored to a concrete box culvert section using an epoxy adhesive anchoring system. Find the limiting ultimate strength of the post design considering the different variables used in the design.

1.) Design Information:

******** Rail Geometry ********

Rail_cen := 21in Center Height of Rail (in.)
Rail_top := Rail_cen + 6.125in Height to top of rail (in.)
Post := 27in Height of Post above grade (in.)
Post_load := 20kips Load applied to Rail center (kips)

M_load := Post_load (Rail_top + d_soil)

Rail_cen

Rail_top

Post

Soil Line

4-BOLT Steel Base Plate

Adhesive Anchors

d_soil := 18in

deck := 14in
Steel Beam Yield Strength: \(F_y = (50) \text{ ksi} \)
Beam Nominal Depth: \(\text{NOMINAL_DEPTH} = (8) \)
Beam weight per foot: \(\text{WEIGHT_PER_FOOT} = (21) \)

POST DETAILS

\(r_x = 3.49 \text{ in} \) \(r_y = 0.77 \text{ in} \) \(S_y = 3.71 \text{ in}^3 \)

\(I_x = 9.77 \text{ in}^4 \) \(I_y = 75.3 \text{ in}^4 \) \(A_t = 2.11 \text{ in}^2 \)

Wt per foot = 21 ft\(^{-1}\) lb \(F_y = 50 \text{ ksi} \)

\(\text{Area} = 6.16 \text{ in}^2 \) \(\text{d} = 8.28 \text{ in} \) \(t_y = 0.25 \text{ in} \) \(b_t = 5.27 \text{ in} \) \(t_x = 0.4 \text{ in} \) \(k = 0.81 \text{ in} \)

\(I_x = 75.3 \text{ in}^4 \) \(S_x = 18.2 \text{ in}^3 \) \(Z_x = 20.4 \text{ in}^3 \)

\(I_y = 9.77 \text{ in}^4 \) \(S_y = 5.69 \text{ in}^3 \) \(Z_y = 5.69 \text{ in}^3 \)

\(A_f = 2.11 \text{ in}^2 \) \(\text{Area Flange (in}^2\) \)

Post Data for: Nominal_depth = 8 in

***** Post Information *****

8/24/2007 72
***** Steel & Concrete Material Properties *****

- \(F_{\text{steel}} := 50 \text{ksi} \)
 Yield Strength of Steel Material (ksi)
- \(F_{\text{rebar}} := 60 \text{ksi} \)
 Yield Strength of rebar (ksi)
- \(F_\sigma := 65 \text{ksi} \)
 Rupture Strength of Steel Material (ksi)
- \(f_c := 4000 \text{psi} \)
 Compressive Strength of Concrete (psi)

***** Anchor Bolt Properties *****

- \(F_{\text{bolts}} := 125 \text{ksi} \)
 High Strength Super HAS Rod Material, ASTM A193, Grade B7 Material (ksi)

- \(D_{\text{bolts}} := \frac{7}{8} \text{ in} \)
 Dia. of anchor bolts (in.)

- \(\frac{\pi D_{\text{bolts}}^2}{4} \cdot 0.25 \)
 Area of bolts

- \(\phi_{\text{bolts}} := 1.0 \)
 Strength Reduction Factor For Bolts

- \(E_s := 29 \times 10^6 \text{ psi} \)
 Modulus of Elasticity (in.)

- \(N_t := 2 \)
 2 bolts on the tension face

- \(A_t := \frac{\pi D_{\text{bolts}}^2}{4} \cdot N_t \)
 Area of tension bolts

- \(A_v := 1.203 \text{ in}^2 \)
 Area of vertical bolts

- \(E_c := 57000 \cdot \frac{1}{15.8} \text{ psi} \)
 Concrete Modulus of Elasticity

- \(E_c := 3604996.533 \text{ psi} \)

- \(n := \frac{E_v}{E_c} \)
 \(n = 8.04 \)

***** Weld Properties *****

- \(F_{\text{weld}} := 70 \text{ksi} \)
 Weld Material Strength (ksi)

- \(t_{\text{weld}} := \frac{1}{4} \text{ in} \)
 Weld Size (in.)

- \(\phi_{\text{weld}} := 1.0 \)
 Reduction Factor for Weld
***** Baseplate Properties *****

- D := 14in Baseplate Length (in.)
- B := 14in Baseplate width (in.)
- t_p := 1.000in Baseplate thickness (in.)
- d := 8.28in Depth of Post (in.)
- b_f := 5.27in Width of Post (in.)
- Hole_edge := 1.5in Distance to plate edge to hole center (in.)

***** Hilti Anchor Properties *****

1) As per page 112, 2002 Hilti Product Technical Guide, HIT RE 500 Epoxy System, Average values for 4000 psi concrete:

- Tension := \[
\begin{pmatrix}
22670 \\ 63495 \\ 64730
\end{pmatrix}
\text{ lbf}
\]
- Shear := \[
\begin{pmatrix}
16365 \\ 48455 \\ 79020
\end{pmatrix}
\text{ lbf}
\]

Depth_{embed} := \[
\begin{pmatrix}
4 \\ 7.875 \\ 10.5
\end{pmatrix}
\text{ in}
\]

Actual Embedment Depth (inches), see Hilti guide

- h_{ef} := 10.5000in

Use Hilti High Strength Super HAS, 7/8" Dia. Rod:

- \text{HIT}_{ult tensile} := \text{interp}(\text{Depth}_{embed}, \text{Tension}, h_{ef})
- \text{HIT}_{ult shear} := \text{interp}(\text{Depth}_{embed}, \text{Shear}, h_{ef})

\text{HIT}_{ult tensile} = 64.73 \text{ kips}

\text{Interpolate for Embedment Depth, } h_{ef}

\text{HIT}_{ult shear} = 79.02 \text{ kips}

Ultimate Bond Strength
(see pg 112 Hilti 2002 Tech. Guide)

Ultimate shear strength of anchor (see pg 112)
Subject: Box Culvert Guardrail - Task AF Calculations

Sponsor: Washington DOT Pooled Fund

Temperature: 110°F Max Temperature for Temperature Reduction

Check Load Adjustment Factors for Anchor Spacings & Clearance:

From page 119, Hilti 2002 Technical Guide

\[S_{\text{act}} := 11.0 \text{ in} \]
Actual anchor spacing (inches)

\[C_{\text{act}} := 12 \text{ in} \]
Edge distance (inches) from concrete edge to Centerline of bolts

\[h_{\text{nom}} := 7.875 \text{ in} \]
Standard embedment depth (inches), see page 110

\[S_{\text{min}} := 0.5 \times h_{\text{ef}} \]
\(S_{\text{min}} = 5.25 \text{ in} \)

\[S_{\text{cr}} := 1.5 \times h_{\text{ef}} \]
\(S_{\text{cr}} = 15.75 \text{ in} \)

\[C_{\text{min}} := 0.5 \times h_{\text{ef}} \]
\(C_{\text{min}} = 5.25 \text{ in} \)

\[C_{\text{cr}} := 1.5 \times h_{\text{ef}} \]
\(C_{\text{cr}} = 15.75 \text{ in} \)

\[h := t_{\text{deck}} \]
Thickness of slab, (in)

\[h = 14 \text{ in} \]
Subject: Box Culvert Guardrail - Task AE Calculations

Sponsor: Washington DOT Pooled Fund

**** Calculate Hit Reduction Factors Spacing Tension & Shear ******

\[f_A := \begin{align*}
 f_A & \leftarrow 0.3 \left(\frac{S_{act}}{h_{ef}} \right) + 0.55 \text{ if } S_c > S_{act} > S_{min} \\
 f_A & \leftarrow 1.0 \text{ if } S_{act} > S_c \\
 f_A & \leftarrow 0 \text{ if } S_{act} < S_{min}
\end{align*} \]

\[f_A = 0.864 \]

**** Calculate Reduction Factors for Edge Distance Tension, "f_{RN}" ******

\[f_{RN} := \begin{align*}
 f_{RN} & \leftarrow 0.3 \left(\frac{C_{act}}{h_{ef}} \right) + 0.55 \text{ if } C_c > C_{act} > C_{min} \\
 f_{RN} & \leftarrow 1.0 \text{ if } C_{act} > C_c \\
 f_{RN} & \leftarrow 0 \text{ if } C_{act} < C_{min}
\end{align*} \]

\[f_{RN} = 0.89 \]

5.) Calculate Reduction Factors for Edge Distance Shear, "f_{RV, perp}"

\[f_{RV, perp} := \begin{align*}
 f_{RV, perp} & \leftarrow 0.7 \left(\frac{C_{act}}{h_{ef}} \right) - 0.05 \text{ if } C_c > C_{act} > C_{min} \\
 f_{RV, perp} & \leftarrow 1.0 \text{ if } C_{act} > C_c \\
 f_{RV, perp} & \leftarrow 0 \text{ if } C_{act} < C_{min}
\end{align*} \]

\[f_{RV, perp} = 0.75 \]
6.) Calculate total combined Reduction Factors for tension & shear:

\[f_{\text{RVpp}} = 0.75 \quad f_A = 0.86 \quad f_{R\text{N}} = 0.89 \]

\[\phi_{\text{temp}} := \begin{cases} 1.0 \\ 1.0 \\ 0.42 \end{cases} \quad \text{Temp} := \begin{cases} 70^\circ F \\ 212 \end{cases} \quad \text{Temp} = \begin{cases} 260.93 \quad \text{K} \\ 294.26 \quad \text{K} \\ 373.15 \quad \text{K} \end{cases} \]

\[\text{Temp} := \frac{(\text{Temp} - 273.15) \cdot 9}{5} + 32 \quad \text{Temperature conversion} \]

\[\phi_{\text{tempReduce}} := \text{interp(Temp, } \phi_{\text{temp}}, \text{Temperature}) \]

\[\phi_{\text{tempReduce}} = 0.84 \]

\[\phi_{\text{tension}} := (f_A \cdot f_{R\text{N}} \cdot \phi_{\text{tempReduce}}) \quad \phi_{\text{shear}} := (f_A \cdot f_{\text{RVpp}}) \]

\[\phi_{\text{tension}} = 0.65 \quad \phi_{\text{shear}} = 0.65 \]

\[\phi_{R\text{tension}} := \phi_{\text{tension}} \cdot \text{HIT ultimate tensile} \quad \phi_{R\text{shear}} := \phi_{\text{shear}} \cdot \text{HIT ultimate shear} \]

\[\phi_{R\text{tension}} = 41.79 \text{ kips} \quad \phi_{R\text{shear}} = 51.22 \text{ kips} \]

Hilti Factored Anchor Strengths for

\[h_{ef} = 10.50 \text{ in} \]
7. Calculate the Plastic Strength of the Post:

\[F_y = 50 \text{ ksi} \quad \text{Yield Strength of Steel} \]

\[Z_x = 20.4 \text{ in}^3 \quad \text{Plastic Section Modulus of Post} \]

\[M_{\text{plastic}} = F_y Z_x \]

\[M_{\text{plane}} = 85 \text{ kip-ft} \quad M_{\text{load}} = 65 \text{ kip-ft} \]

Plastic Moment
Moment from Post Load

8.) Check Baseplate details & calculate anchor bolt forces:

BASEPLATE DETAILS

Find: Maximum Stress \((\sigma_e) \), "Y", and force in the bolts (\(P_b \)) for applied force as shown.

This basic uplift procedure as shown in Blodgett's "Design of Welded Structures" pages 3-3-8 through 10. and sketch w/ nomenclature showing Baseplate Geometry and distribution of force.

Input Items in Yellow:

4 Bolts are used in the design with 2 bolts located on the tension face

\[P_e = 10 \text{ kips} \quad \text{Vertical Load on Column (kips)} \]

Select Design Moment from Above:

\[M_1 = M_{\text{load}} \quad \text{Applied Moment (k-ft)} \]

\[\sigma_e = \frac{M_1}{P_e} \quad e = 7800 \text{ in} \quad \text{eccentricity (in.)} \]
Subject: **Box Culvert Guardrail - Task AE Calculations**

\[D = 14 \text{ in} \quad BP \text{ Length (in.)} \quad B = 14 \text{ in} \quad BP \text{ Width (in.)} \quad f_c = 4000 \text{ psi} \]

\[d = 8.28 \text{ in} \quad Post \text{ Depth (in.)} \quad D = 14 \text{ in} \quad BP \text{ Length (in.)} \quad N_t = 2 \quad \# \text{Tension Bolts} \]

\[b_f = 5.27 \text{ in} \quad Post \text{ Flange Width (in.)} \]

\[f := \frac{d}{2} - \text{Hole}\text{edge} \quad \text{Distance from Col. Centerline to tension bolts.} \]

From static, there are Three Equations & Three Unknowns, } P_t, \ "Y", \ & \ s_c:

Use Mathcad's Solve Block to find solutions. Solve Block requires "Initial guesses and uses these guesses to converge on solutions for the three unknowns, } s_c, Y, P_t;"*

Initial Guesses for unknowns:

\[\sigma_c := 1600-\text{psi} \quad Y := .3-\text{ft} \quad P_t := 10-\text{kip} \]

Given

\[\frac{1}{2} Y \sigma_c B - P_t - P_c = 0 \quad \text{Equation 1} \]

\[P_t f + \left(P_c + P_t \right) \left(\frac{D}{2} - \frac{Y}{3} \right) - P_c e = 0 \quad \text{Equation 2} \]

\[\sigma_c = \frac{P_t Y}{A_n \left(\frac{D}{2} - Y + f \right)} \quad \text{Equation 3} \]

\[\left(\sigma_{\text{max}} \right) := \text{Find}(Y, \sigma_c, P_t) \]

\[Y = 3.0253 \text{ in} \]

\[\sigma_c = 4269 \text{ psi} \quad \text{Compressive stress @ the Edge of the Baseplate on Compression side} \]

\[P_t = 90 \text{kips} \quad \text{Tension Force in (} N_t \text{) Anchor Bolts} \]

\[\text{P}_{\text{Bolt}} := \frac{P_t}{N_t} \quad \text{P}_{\text{Bolt}} = 45.15 \text{ kips} \quad \text{Tension per Bolt (kips)} \]

\[\ldots \text{o.k. close to Factored Hilti Ultimate for} \quad h_{ef} = 10.5 \text{ in} \quad \phi_{\text{tension}} = 41.79 \text{ kips} \]
Subject: Box Culvert Guardrail – Task AE Calculations

9.) Check Baseplate bending/thickness using forces & stress above separately.

Calculate moment in baseplate on bearing side:

\[Y = 3.03 \text{ in} \quad d_{\text{edge}} := \frac{D}{2} - \frac{t_f}{2} \quad \text{d}_{\text{edge}} = 4.37 \text{ in} \]

\[M_{\text{plate1}} := \frac{\sigma_c Y}{2} \left[\frac{d_{\text{edge}} + t_f}{2} - \frac{Y}{3} \right] \]

\[M_{\text{plate1}} = 22.96 \text{ kip-in in} \]

Calculate moment in baseplate on Tension Bolt Side:

\[P_{\text{Bolt}} = 45.15 \text{ kips} \]

\[\text{Hole}_{\text{edge}} = 1.5 \text{ in} \]

\[d_{\text{edge}} = 4.37 \text{ in} \quad \text{Distance from Baseplate Edge to Post Edge} \]

\[\text{Bolt}_{\text{dist}} := d_{\text{edge}} - \text{Hole}_{\text{edge}} + \frac{t_f}{2} \]

\[\text{Bolt}_{\text{dist}} = 3.07 \text{ in} \quad \text{Distance from center of bolt to centerline of post flange} \]

\[M_{\text{plate2}} := \frac{P_{\text{Bolt}} \cdot \text{Bolt}_{\text{dist}}}{\text{Bolt}_{\text{dist}}^2} \quad M_{\text{plate2}} = 22.57 \text{ kip-in in} \]

\[M_{\text{plate}} := \begin{cases} M_{\text{plate1}} & \text{if } M_{\text{plate1}} > M_{\text{plate2}} \\ M_{\text{plate2}} & \text{otherwise} \end{cases} \]

Select worst case bending moment in plate bearing or anchor bolt tension

\[M_{\text{plate}} = 22.96 \text{ kip-in in} \quad \text{Design moment in the baseplate for thickness calculations} \]

Subtract 1/8" since procedure is little conservative

Therefore:

\[t_{\text{required}} = \sqrt{\frac{4 \cdot M_{\text{plate}}}{F_y}} \quad t_{\text{required}} = 1.36 \text{ in} \]

\[t_{\text{plate}} := t_{\text{required}} - 0.125 \text{ in} \]

\[t_{\text{bp}} := \text{Round}(t_{\text{plate}}, 0.125 \text{ in}) \quad t_{\text{bp}} = 1.25 \text{ in} \quad \text{Final Baseplate Design Thickness (in.)} \]
RECOMMENDED BASEPLATE DETAILS

$t_{bp} = 1.25$ in
$F_y = 50$ ksi
$t_{weld} = 0.25$ in

W8x21 BASEPLATE DETAILS

Anchor Bolts: 7/8" Dia. A193 Threaded Rods, 14 inches Long, embedded 10.0 inches minimum

Anchorage System: Hilti RE 500 Anchoring System
ATTACHMENT E. PHOTOGRAPHS OF TESTING

Figure E1. W6x9 post and deck sample before test P1.
Figure E2. W6x9 post after test P1.
Figure E3. Pendulum bogie nose before and after test P1.
Table E1. Summary of results for pendulum test 405160-5-P1.

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>0.049</td>
<td></td>
</tr>
<tr>
<td>0.098</td>
<td></td>
</tr>
<tr>
<td>0.147</td>
<td></td>
</tr>
</tbody>
</table>

General Information
- Test Agency: Texas Transportation Institute
- Test No.: 405160-5-P1
- Date: 07-16-2007

Test Article
- Type: Guardrail Post
- Name: Guardrail Post on Box Culvert
- Installation Height (m): 37 inches
- Material of Key Element: W6x9

Soil Type: Simulated Box Culvert Deck

Test Vehicle
- Type: Bogie
- Designation: Pendulum
- Test Inertia Mass: 839 kg

Impact Conditions
- Speed: 35.0 km/h
- Angle: 90 deg

Occupant Risk Values
- Impact Velocity
 - Longitudinal direction: 8.9 m/s
- Ridedown Accelerations
 - Longitudinal direction: -3.9 g’s

![Diagram](image5.jpg)
Figure D4. W6x9 post and deck sample before test P2.
Figure E5. W6x9 post after test P2.
Figure E6. Pendulum bogie nose before and after test P2.
Table E2. Summary of results for pendulum test 405160-5-P2.

<table>
<thead>
<tr>
<th>Time</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000 s</td>
<td></td>
</tr>
<tr>
<td>0.037 s</td>
<td></td>
</tr>
<tr>
<td>0.074 s</td>
<td></td>
</tr>
<tr>
<td>0.123 s</td>
<td></td>
</tr>
</tbody>
</table>

General Information
- Test Agency: Texas Transportation Institute
- Test No.: 405160-5-P2
- Date: 07-16-2007

Test Article
- Type: Guardrail Post
- Name: Guardrail Post on Box Culvert
- Installation Height (m): 37 inches
- Material of Key Element: W6x9

Soil Type: Simulated Box Culvert Deck

Test Vehicle
- Type: Bogie
- Designation: Pendulum
- Test Inertia Mass: 839 kg

Impact Conditions
- Speed: 35.0 km/h
- Angle: 90 deg

Occupant Risk Values
- Impact Velocity: 6.3 m/s
- Ridedown Accelerations: -0.6 g's
ATTACHMENT F. ACCELERATION AND FORCE TRACES

Figure F1. Accelerometer trace for test 405160-5 P1.

Figure F2. Force trace for test 4005160-5 P1.
Figure F3. Accelerometer trace for test 405160-5 P2.

Figure F4. Force trace for test 4005160-5 P2.
APPENDIX C. CRASH TEST PROCEDURES AND DATA ANALYSIS

The crash test and data analysis procedures were in accordance with guidelines presented in NCHRP Report 350. Brief descriptions of these procedures are presented as follows.

ELECTRONIC INSTRUMENTATION AND DATA PROCESSING

The test vehicle was instrumented with three solid-state angular rate transducers to measure roll, pitch, and yaw rates; a triaxial accelerometer near the vehicle center of gravity (c.g.) to measure longitudinal, lateral, and vertical acceleration levels; and a backup biaxial accelerometer in the rear of the vehicle to measure longitudinal and lateral acceleration levels. These accelerometers were ENDEVCO® Model 2262CA, piezoresistive accelerometers with a ± 100 g range.

The accelerometers are strain gage type with a linear millivolt output proportional to acceleration. Angular rate transducers are solid state, gas flow units designed for high-“g” service. Signal conditioners and amplifiers in the test vehicle increase the low-level signals to a ± 2.5 volt maximum level. The signal conditioners also provide the capability of an R-cal (resistive calibration) or shunt calibration for the accelerometers and a precision voltage calibration for the rate transducers. The electronic signals from the accelerometers and rate transducers are transmitted to a base station by means of a 15-channel, constant-bandwidth, Inter-Range Instrumentation Group (IRIG), FM/FM telemetry link for recording and for display. Calibration signals from the test vehicle are recorded before the test and immediately afterwards. A crystal-controlled time reference signal is simultaneously recorded with the data. Wooden dowels actuate pressure-sensitive switches on the bumper of the impacting vehicle prior to impact by wooden dowels to indicate the elapsed time over a known distance to provide a measurement of impact velocity. The initial contact also produces an “event” mark on the data record to establish the instant of contact with the installation.

The multiplex of data channels, transmitted on one radio frequency, is received and demultiplexed onto TEAC® instrumentation data recorder. After the test, the data are played back from the TEAC® recorder and digitized. A proprietary software program (WinDigit) converts the analog data from each transducer into engineering units using the R-cal and pre-zero values at 10,000 samples per second, per channel. WinDigit also provides Society of Automotive Engineers (SAE) J211 class 180 phaseless digital filtering and vehicle impact velocity.

All accelerometers are calibrated annually according to the (SAE) J211 4.6.1 by means of an ENDEVCO® 2901, precision primary vibration standard. This device and its support instruments are returned to the factory annually for a National Institute of Standards Technology (NIST) traceable calibration. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel, per SAE J211. Calibrations and evaluations are made any time data are suspect.
The Test Risk Assessment Program (TRAP) uses the data from WinDigit to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest 10-milliseconds (ms) average ridedown acceleration. WinDigit calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with a 60-Hz digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate systems being initial impact.

ANTHROPOMORPHIC DUMMY INSTRUMENTATION

Use of a dummy in the 2000P vehicle is optional according to NCHRP Report 350, and there was no dummy used in the tests with the 2000P vehicle.

PHOTOGRAPHIC INSTRUMENTATION AND DATA PROCESSING

Photographic coverage of the test included three high-speed cameras: one overhead with a field of view perpendicular to the ground and directly over the impact point; one placed behind the installation at an angle; and a third placed to have a field of view parallel to and aligned with the installation at the downstream end. A flashbulb activated by pressure-sensitive tape switches was positioned on the impacting vehicle to indicate the instant of contact with the installation and was visible from each camera. The films from these high-speed cameras were analyzed on a computer-linked motion analyzer to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A video camera and recorder and still cameras recorded and documented conditions of the test vehicle and installation before and after the test.

TEST VEHICLE PROPULSION AND GUIDANCE

The test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A two-to-one speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released to be free-wheeling and unrestrained. The vehicle remained free-wheeling, i.e., no steering or braking inputs, until the vehicle cleared the immediate area of the test site, at which time brakes on the vehicle were activated to bring it to a safe and controlled stop.
APPENDIX D. TEST VEHICLE PROPERTIES AND INFORMATION

Date: 12-06-2007 Test No.: 405160-5-1 VIN No.: 1GCGC24R6W22686B1

Year: 1998 Make: Chevrolet Model: C2500

Tire Inflation Pressure: 60 psi Odometer: 184843 Tire Size: 245 75R16

Describe any damage to the vehicle prior to test: ________________________________

- Denotes accelerometer location.

NOTES: __

Engine Type: V8
Engine CID: 5.7 liter
Transmission Type: x Auto ___ Manual
Optional Equipment: __

Dummy Data:
Type: None
Mass:
Seat Position: ________________________________

Geometry (inch)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>J</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>O</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>74</td>
<td>32</td>
<td>132</td>
<td>71.75</td>
<td>51.5</td>
<td>215.25</td>
<td>57.5</td>
<td></td>
<td>41</td>
<td>25</td>
<td>2.75</td>
<td>16.25</td>
<td>62.5</td>
<td>63.5</td>
<td>28.5</td>
<td>17.25</td>
<td>29.5</td>
<td>35.5</td>
<td>57.5</td>
<td></td>
</tr>
</tbody>
</table>

Mass (lb) Curb Test Inertial Gross Static

M₁ 2707 2604
M₂ 2046 2010
M_Total 4753 4614

Figure D1. Vehicle properties for test 405160-5-1.
Table D1. Exterior crush measurements for test 405160-5-1.

VEHICLE CRUSH MEASUREMENT SHEET

<table>
<thead>
<tr>
<th>End Damage</th>
<th>Side Damage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undeformed end width</td>
<td>Bowing: B1 _____ X1 _____</td>
</tr>
<tr>
<td>Corner shift: A1 _____</td>
<td>B2 _____ X2 _____</td>
</tr>
<tr>
<td>A2 _____</td>
<td>Bowing constant</td>
</tr>
<tr>
<td>End shift at frame (CDC)</td>
<td>$\frac{X1 + X2}{2} = _____$</td>
</tr>
<tr>
<td>(check one)</td>
<td></td>
</tr>
<tr>
<td>< 4 inches _____</td>
<td></td>
</tr>
<tr>
<td>≥ 4 inches _____</td>
<td></td>
</tr>
</tbody>
</table>

Complete When Applicable

Note: Measure C₁ to C₆ from Driver to Passenger side in Front or Rear impacts – Rear to Front in Side Impacts.

<table>
<thead>
<tr>
<th>Specific Impact Number</th>
<th>Plane* of C-Measurements</th>
<th>Direct Damage</th>
<th>Field L**</th>
<th>C<sub>1</sub></th>
<th>C<sub>2</sub></th>
<th>C<sub>3</sub></th>
<th>C<sub>4</sub></th>
<th>C<sub>5</sub></th>
<th>C<sub>6</sub></th>
<th>±D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Front plane</td>
<td>17.75</td>
<td>27.5</td>
<td>0.75</td>
<td>6</td>
<td>8.5</td>
<td>11.75</td>
<td>13.25</td>
<td>17.75</td>
<td>+13.75</td>
</tr>
<tr>
<td>2</td>
<td>Side plane</td>
<td>15.75</td>
<td>47.5</td>
<td>1.25</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>15.25</td>
<td>15.75</td>
<td>+67</td>
</tr>
</tbody>
</table>

Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.
Table D2. Occupant compartment measurements for test 405160-5-1.

Truck

Occupant Compartment Deformation

<table>
<thead>
<tr>
<th></th>
<th>BEFORE (mm)</th>
<th>AFTER (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>870</td>
<td>870</td>
</tr>
<tr>
<td>A2</td>
<td>938</td>
<td>940</td>
</tr>
<tr>
<td>A3</td>
<td>928</td>
<td>928</td>
</tr>
<tr>
<td>B1</td>
<td>1072</td>
<td>1072</td>
</tr>
<tr>
<td>B2</td>
<td>950</td>
<td>948</td>
</tr>
<tr>
<td>B3</td>
<td>1065</td>
<td>1065</td>
</tr>
<tr>
<td>C1</td>
<td>1372</td>
<td>1372</td>
</tr>
<tr>
<td>C2</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>C3</td>
<td>1370</td>
<td>1356</td>
</tr>
<tr>
<td>D1</td>
<td>322</td>
<td>322</td>
</tr>
<tr>
<td>D2</td>
<td>158</td>
<td>146</td>
</tr>
<tr>
<td>D3</td>
<td>310</td>
<td>310</td>
</tr>
<tr>
<td>E1</td>
<td>1588</td>
<td>1588</td>
</tr>
<tr>
<td>E2</td>
<td>1588</td>
<td>1588</td>
</tr>
<tr>
<td>F</td>
<td>1470</td>
<td>1470</td>
</tr>
<tr>
<td>G</td>
<td>1470</td>
<td>1470</td>
</tr>
<tr>
<td>H</td>
<td>1060</td>
<td>1060</td>
</tr>
<tr>
<td>I</td>
<td>1060</td>
<td>1060</td>
</tr>
<tr>
<td>J*</td>
<td>1522</td>
<td>1504</td>
</tr>
</tbody>
</table>

Lateral area across the cab from driver’s side kickpanel to passenger’s side kickpanel.
Figure E1. Sequential photographs for test 405160-5-1 (overhead and frontal views).
Figure E1. Sequential photographs for test 405160-5-1
(overhead and frontal views) (continued).
Roll, Pitch, and Yaw Angles

Test Number: 405160-5-1
Test Article: Box Culvert Guardrail
Test Vehicle: 1998 Chevrolet C2500 Pickup
Test Inertial Mass: 4614 lb
Impact Speed: 62.9 km/h
Impact Angle: 23.9 degrees

Axes are vehicle-fixed.
Sequence for determining orientation:
1. Yaw.
2. Pitch.
3. Roll.

Figure F1. Vehicle angular displacements for test 405160-5-1.
Figure F2. Vehicle longitudinal accelerometer trace for test 405160-5-1 (accelerometer located at center of gravity).
Figure F3. Vehicle lateral accelerometer trace for test 405160-5-1
(accelerometer located at center of gravity).
Figure F4. Vehicle vertical accelerometer trace for test 405160-5-1 (accelerometer located at center of gravity).
Figure F5. Vehicle longitudinal accelerometer trace for test 405160-5-1 (accelerometer located over rear axle).
Figure F6. Vehicle lateral accelerometer trace for test 405160-5-1 (accelerometer located over rear axle).
Figure F7. Vehicle vertical accelerometer trace for test 405160-5-1 (accelerometer located over rear axle).