

Texas Transportation Institute The Texas A&M University System 3135 TAMU College Station, TX 77843-3135

979-845-6375 Fax: 979-845-6107 http://tti.tamu.edu

TECHNICAL MEMORANDUM

Contract No.:	T4541-AO		
Test Report No.:	: 405160-22		
Project Name:	Signs and Light Standard Foundation Design When Installed on		
	2(H):1(V) or Flatter Slopes		
Sponsor:	Roadside Safety Research Program Pooled Fund Study		
DATE:	February 28, 2012		
то:	David Olson		
	Chair, Pooled Fund		
COPY TO:	Rhonda Brooks, Washington State DOT		
	Epifania Davila, TTI RDO		
	D. L. Bullard, Jr., Head, TTI Roadside Safety & Physical Security Systems		
	Roger P. Bligh, TTI Roadway Safety Program		
	Rebecca Haug, TTI Roadside Safety & Physical Security Systems		
FROM:	William F. Williams, P.E., Associate Research Engineer, TTI Roadside Safety & Physical Security Systems		
	Wanda L. Menges, Research Specialist, TTI Proving Ground		
FOR MORE IN	ϜΟΡΜΑΤΙΟΝ·		

FOR MORE INFORMATION:

Name:	William F. Williams
Phone:	979-862-2297
Email:	w-williams@ttimail.tamu.edu

SUMMARY REPORT:

INTRODUCTION

Many steel sign supports and light standards require a concrete foundation. This foundation is usually a 2 ft to 3 ft diameter shaft. When these foundations are located on a slope, the down slope edge of the foundations typically extends more than 4 inches above ground, creating a potential snagging point. These foundations are generally used to support a triangular slip base shown in Figure 1. One option is to install the foundation below grade such that the pipe support with slip base connection does not extend more than 4 inches above grade shown in Figure 2.

TTI Proving Ground 3100 SH 47, Bldg. 7091 Bryan, TX 77807

Page 2 of 41

Iransportation Institute

Figure 2 – Typical Foundation Details Installed on Slope

For this project, a foundation was designed for a single sign support that utilizes a multidirectional breakaway sign support. This foundation was designed for a sign area of approximately 30 ft^2 or less with 7 ft from grade to the bottom of the sign. A new foundation was designed and detailed for omni-directional large sign supports that incorporate a larger sign area of approximately 110 ft^2 . This design incorporates the use of a proprietary omni-directional

slip base system. For both designs, the structural supports with slip base attachments will extend approximately 4 inches maximum from the down slope grading edge.

BACKGROUND

Sign supports placed on roadside slopes must not allow impacting vehicles to snag on either the foundation or any components extending above the foundation. Surrounding terrain must be graded to permit vehicles to pass over any non-breakaway portion of the installation that remains in the ground or rigidly attached to the foundation. Figure 3 taken from the AASHTO Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals ⁽¹⁾, illustrates the method used to measure the required 100 mm (4 inches) maximum stub height.

Figure 3 - Breakaway Support Stub Height Limits

In February 2001, Bligh and Buth⁽²⁾ reported on a study that evaluated various configurations of a bolt-down slip base for small sign supports. These different configurations were tested in an attempt to achieve an anchor system that would accommodate design wind loads, be crashworthy in vehicular collision, and have a high degree of reusability after impact. Information and the full-scale testing data from this study and other similar research projects involving sign slip base supports were considered for this project.

OBJECTIVE

The objective of this study was to design a concrete foundation for small sign supports using multi-directional slip base supports that can be constructed completely below grade on a 2(H):1(V) slope or flatter similar to that shown in Figure 2. This new foundation design will incorporate a new steel stub post that is bolted to the foundation with a multi-directional slip base connection at the ground line for the break-away features for the sign. Foundation details as well as slip base anchoring details to the top of the foundation were developed for this project. In addition, engineering calculations were performed for a foundation and sign support attachment to be used for larger signs incorporating multiple supports and using a proprietary omni-

directional slip base system. TTI received design information from Washington State Department of Transportation (WSDOT) for this project. The information provided on WSDOT Standard Plans J-28.30-01, G-24.30, G-25.10-01, G-24.60 were used for this project.

DESIGN SUMMARY AND CONCLUSIONS

Foundation Design for Small Sign Supports on a 2(H):1(V) or Flatter Slopes

Engineering analyses were performed on a typical single sign support installed on a 2(H):1(V) side slope. The sign foundation with breakaway device was oriented similar to the details shown in Figure 2, with 4 inches between the ground surface at the support and the top of stub for the breakaway device. Design information for the sign installation was obtained from Washington State Department of Transportation Standard Plan G-25.10-01 dated January 6, 2009. This drawing is shown as Figure 3. Analyses were performed on a 5.0 ft wide (X) by 6.0 ft high (Y) sign panel located 7 ft above the finished grade. The height to the sign centroid (Z) was calculated to be 10 ft. Based on this information, the XYZ calculation based on Standard Plan G-25.10-01 was 300.0 ft³. In addition, analyses were performed using a smaller sign area (XYZ = 266 ft^3). The design wind speed used in the analyses was 90 mile per hour. Wind loading on the signs and single sign supports were calculated based on the "American Association of State Highways and Transportation Officials (AASHTO) Standard Specifications for Structural Supports for Highway Sign, Luminaires and Traffic Signal, 5th Edition, 2009⁽³⁾. Calculations were performed using cohesionless (sand) and cohesive (clay) materials. For the cohesionless soil, a friction angle (ϕ) equal to 30 degrees was used in the analyses. For cohesive soil, a shear strength of 1000 psf was used in the analyses.

Based on the results of the analyses, and the information provided on WSDOT Standard Plan G-25.10-01, the required minimum depth for an 18-inch diameter foundation supporting signs with maximum XYZ of 265 ft³ and less, is 5 ft-5 inches. The required minimum depth for sign foundations supporting signs with a maximum XYZ between 265 to 300 ft³ is 5 ft-6 inches. Therefore, for signs with XYZ less than or equal to 300 ft³, the recommended foundation diameter and minimum foundation depth are 18 inches and 5 ft-6 inches, respectively. This design is valid for signs oriented in the down slope direction (wind loading on the sign perpendicular to the down slope direction). For additional information on the XYZ parameter, please refer to the details shown in Figure 4. These foundations should have a minimum diameter of 18 inches with eight #4 vertical bars equally spaced inside #3 spiral stirrups, as shown in Figure 5. Figure 5 provides details for foundations using a breakaway pipe support embedded in the foundation. Figure 6 provides details for foundations constructed with a breakaway support welded to a base plate anchored to the foundation. Details of the base plated pipe support are provided in Figure 7. Engineering calculations are provided in Appendix A.

Figure 3 – Washington State Department of Transportation Standard Plan G-25.10-01

Page 6 of 41

2012-02-27

Texas Transportation Institute

Figure 4 – Sign Details and Parameters from WSDOT Standard Plan G-25.10-01

Figure 5 – Foundation Design Details for Small Sign Supports 300 ft³ and Less Using Embedded Pipe Stub

D = 18 inches L = 5 ft-6 inches for XYZ 300 ft³ and Less

Figure 6 – Foundation Design Details for Small Sign Supports 300 ft³ and Less Using Base Plated Pipe Support

Figure 7 – Detail 1 – Slip Base Anchor Plate Details

Foundation Design for Large Sign Supports on a 2(H):1(V) or Flatter Slopes

Engineering analyses were performed on a typical large multi-post sign support system installed on a 2(H):1(V) or flatter side slope. The sign foundation with breakaway device was oriented similar to the details shown in Figure 2 with 4 inches between the ground surface at the support and the top of stub for the breakaway device. Design information for the sign installation was obtained from Washington State Department of Transportation Standard Plan G-25.10-01 dated January 6, 2009. This drawing is shown as Figure 3. Analyses were performed on a single sign support supporting a sign area 20 ft wide (X) by 9 ft high (Y) with the bottom of the sign located 7 ft from the finished grade. The height to the sign centroid (Z) was calculated to be 11.5 ft. Based on this information, the XYZ calculation based on Standard Plan G-25.10-01 was 2070.0 ft³. In addition, analyses were performed using a smaller sign area (XYZ = 1170 ft³). The design wind speed used in the analyses was 90 mile per hour. Wind loading on the signs and sign supports were calculated based on the "American Association of

State Highways and Transportation Officials (AASHTO) Standard Specifications for Structural Supports for Highway Sign, Luminaires and Traffic Signal, 5th Edition, 2009. Calculations were performed using cohesionless (sand) and cohesive (clay) materials. For the conhesionless soil, a friction angle (ϕ) equal to 30 degrees was used in the analyses. For cohesive soil, a shear strength of 1000 psf was used in the analyses.

Analyses were performed using a foundation diameter of 30 inches. Based on the results of the analyses, and the information provided on WSDOT Standard Plan G-25.10-01, the required minimum depth for sign foundations with XYZ (sign width \times sign height \times sign centroid height) between 1170 ft³ to 2070 ft³ is 10 ft-6 inches. The recommended minimum depth for sign foundations with XYZ less than 1170 ft³ is 9 ft-6 inches. This design is valid for signs oriented in the down slope direction (wind loading on the sign perpendicular to the down slope direction). For additional information on the XYZ parameter, please refer to the details shown in Figure 4. These foundations should have a minimum diameter of 30 inches with eight (8) #8 vertical bars equally spaced inside #4 spiral stirrups as shown in Figure 8. Figure 8 provides details for foundations using either a proprietary or nonproprietary breakaway sign support embedded in the foundation. Engineering calculations are provided in Appendix A.

SUMMARY & CONCLUSION

Based on the results of the analyses and the information provided on WSDOT Standard Plan G-25.10-01, the required minimum depth for an 18-inch diameter foundation supporting signs with maximum XYZ of 265 ft³ and less is 5 ft-5 inches. The required minimum depth for sign foundations supporting signs with a maximum XYZ between 265 to 300 ft³ is 5 ft-6 inches. Therefore, for signs with XYZ less than or equal to 300 ft³, the recommended foundation diameter and minimum foundation depth are 18 inches and 5 ft-6 inches, respectively. This design is valid for signs oriented in the down slope direction (wind loading on the sign perpendicular to the down slope direction). These foundations should have a minimum diameter of 18 inches with eight #4 vertical bars equally spaced inside #3 spiral stirrups.

For larger signs, analyses were performed using a foundation diameter of 30 inches. Based on the results of the analyses and the information provided on WSDOT Standard Plan G-25.10-01, the required minimum depth for sign foundations with XYZ (sign width \times sign height \times sign centroid height) between 1170 ft³ to 2070 ft³ is 10 ft-6 inches. The recommended minimum depth for sign foundations with XYZ less than 1170 ft³ is 9 ft-6 inches. This design is valid for signs oriented in the down slope direction (wind loading on the sign perpendicular to the down slope direction). These foundations should have a minimum diameter of 30 inches with eight #8 vertical bars equally spaced inside #4 spiral stirrups.

D = 30 inches

L = 9 ft-6 inches for XYZ 1170 ft³ and Less L = 10 ft-6 inches for XYZ 1170 ft³ to 2070 ft³

Figure 8 – Foundation Design Details for Single Large Sign Supports Supporting XYZ = 2070 ft³ and Less

REFERENCES

- 1. AASHTO, *Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals*, American Association of State Highway and Transportation Officials, Washington, D.C., 2001.
- R. P. Bligh, C. E. Buth, W. L. Menges, and B. G. Butler, *Evaluation of Design and Retrofit Concepts for Slip-Base Sign Supports*, Contract No. 7-3911, Texas Transportation Institute, February 2001.
- 3. AASHTO, *Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals*, American Association of State Highway and Transportation Officials, Washington, D.C., 2001, 5th Edition, 2009.

APPENDIX A. ENGINEERING CALCULATIONS

A1. Maximum XYZ of 265 ft³ and Less at 5 ft-5 inches

Reference: Standards Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals Published By AASHTO, 5th Edition 2009

V _{wind} =	90 mph	 A second sec second second sec
Kz=	0.87	See Table 3-5, Page 3-12 for Height 16.4 feet or less
Ir=	0.71	See Table 3-2, page 3-10
G=	1.14	See Section 3.8.5, page 3-12
Cd _{sign} =	1.19	Wind drag coefficient as per Table 3-6, page 3-16
Cd _{tube} =	1.1	Wind drag coefficient on 2.5" Sch. 80 Pipe

3.) Calculate the design Wind Pressure on the sign & post

Pzsign=	17.3762	psf
Pz _{post} =	16.0620	psf

Subject: 405160-22 - Foundations on Slopes

4.) Calculate the Moment & Shear on the Sign due to Wind loading

Sign Area =	28	ft^2	Area _{post} =	1.677083
Z =	9.5	ft		
OD _{post} =	2.875	in		
M _{wind} =	4.712978	kip*ft	Moment a	pplied to the top of foundation
V _{shear} =	0.51347	kip	Shear appl	ied to the top of the foundatior

5.) Design Information for Footing Design:

Reference: AASHTO Standard Specifications for Structural Supports for Highway Sign, Luminaires And Trafffic Signals, 5th Edition, 2009, Section 13 Foundation Design, pages 13-3 to 13-5

	Degrees	Radians	
φ =	30	0.5236	Cohesionless Soil Friction Angle Used in Analysis
α =	-14	-0.2443	Slope Angle for 2(H):1(V) slope, assume sign loaded 4(H):1(V)
			considering burial as shown in the detail (wind loading perpendicular
			to slope)
θ =	0	0	Soil face used for Kp calculation (this value is zero for drilled
			footing application)
δ =	0	0	This value is zero for drilled footing application
FS =	3		Factor of Safety Recommended in Section 13.
Υ _{soil} =	0.11	kip/ft^3	Unit weight of cohesionless soil used in the analysis (pcf)
D =	18	in	Diameter of Drilled footing (in.)

Reference: Principles of Geotechnical Engineering, Braja Das, 2nd Edition, page 387, EQ 5.58. (This equation takes into account a reduced K_p for sloping ground).

6.) Calculate Factored Forces for Design based on FS (Factor of Safety):

	V _F =	1.540411	kip	Factored forces used for design of footing
	MF =	14.13894	kip*ft	
н –		9 1 7 8 6 7 /		See Section 13

7.) Calculate the required length of footing in Cohesionless Soil (Sand) as per AASHTO Signs & Luminaires Standards, Section 13, 2009 Edition

Use Trail & Error to determine the required depth needed as per Eq. C13-7, Section 13, page 13-5

L _{sand} =	5.177 ft		
D =	1.5	ft	
V _F =	1.540411	kips 💦	
M _F =	14.13894	kip*ft	
Kp =	1.931597		

Required depth for Cohesionless Soil (Sand)

EQ-C13-7=	-0.01769	Equation converges close to zero "0" for L _{sand} depth (trial & error)
M _{Fmaxsand} =	15.96766 kip*ft	Maximum calculated bending moment as per Equation C13-9,
		Section 13 AASHTO 2009 Specifications in Cohesionless Soil (Sand)

8.) Calculate the required footing depth and bending moment for **Cohesive soil (Clay)** as per the AASHTO Specifications

c _{clay} =	1000 lbf/ft^2	Assumed undrained shear strength of clay material
H =	9.178674 ft	See equation C13-4, Section 13 AASHTO 2009 Specifications
q =	0.114105 ft	See Equation C13-5, Section 13 AASHTO 2009
L _{claysoil} =	5.40371 ft	Length required in Cohesive Soil (clay) as per Section 13, AASHTO 2009
M _{Fmaxclay} =	18.84805 kip*ft	Maximum calculated bending moment as per aaSHTO Section 13 Specifications in Cohesive Soil (clav)

8.) Determine worst case length as per the different soil conditions:

L = 5.40371 ft Worst case (longest length) in clay

9.) Calculate vertical reinforcement as per ACI318-83 Specifications for circular columns

f`c =	4000	psi	Compressive strength of concrete
fy =	60000	psi	Yield strength of rebar
h =	1.5	ft	Diameter of pier (ft.)
cover =	2.5	in	Concrete cover
Tie _{dia} =	0.375	in	Diameter of stirrups
Vertical _{dia} =	0.5	in	
No _{verts} =	8		Number of vertical bars
A _{st} =	1.570796	in^2	Area of Steel provided (in^2)
Ag =	254.469	in^2	Area of footing
$\rho_{act} =$	0.006173		calculated reinforcement ratio
Υh =	11.75	in	
Υ =	0.652778		
φ =	0.9	1	Strength reduction factor
$\phi M_{nact_hAg} =$	0.1366		As per ACI318-83 Bending diagram for circular columns
Mn =	57.93411	kip*ft	Nominal moment capacity of footing (kip*ft)

Subject: 405160-22 - Foundations on Slopes

10.) Final Design Details:

D = 18 inches L = 5'-5" - XYZ 265ft³ and less

Embedded Pipe Stub Option

D = 18 inches L = 5'-5" - XYZ $265ft^{3}$ and less

Base Plated Slip Base Support Option

A2. XYZ between 265 to 300 ft³ at 5 ft-6 inches

Subject: 405160-22 - Foundations on Slopes

1.) Given the following Details and Design Information:

WADOT Type PL, PL-T, & PL-U Foundations (Small Sign Supports) WSDOT Standard Plan G-25.10-01 XYZ = 300 ft³

Sign Properties & Geometry

mation		
	X=	5 ft
	Y=	6 ft
	Z=	10 ft
1	XYZ=	300 ft^3
Y (FT) SIGN HEI) GHT	30 ft^2
	Post Properti	es
	OD _{post} =	2.875 in
D. SCH. 80	Find: The size	e of the foundation
	2(H)·1(V) Slov	ne considering
	Z(II).I(V) SIO	Soil (Sand)
	and Cohesive	Soil (Clav)
	using the des	ign parameters
	for each	ign parameters
	Cohesionless	Soil Friction
	Angle Used in	n Analysis
	φ=	30 degrees
	Cohesive Soil	Strength:
	C= 10	000 psf
	Unit weight o	of soil = 110 pcf

Reference: Standards Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals Published By AASHTO, 5th Edition 2009

V _{wind} =	90 mph	
Kz=	0.87	See Table 3-5, Page 3-12 for Height 16.4 feet or le
lr=	0.71	See Table 3-2, page 3-10
G=	1.14	See Section 3.8.5, page 3-12
Cd _{sign} =	1.19	Wind drag coefficient as per Table 3-6, page 3-16
Cd _{tube} =	1.1	Wind drag coefficient on 2.5" Sch. 80 Pipe

3.) Calculate the design Wind Pressure on the sign & post

Pzsign=	17.3762	psf
Pz _{post} =	16.0620	psf

or less

4.) Calculate the Moment & Shear on the Sign due to Wind loading

Sign Area =	30	ft^2	Area _{post} =	1.677083
Z =	10	ft		
OD _{post} =	2.875	in		
M _{wind} =	5.303769	kip*ft	Moment a	pplied to the top of foundation
V _{shear} =	0.548223	kip	Shear appl	ied to the top of the foundatio

5.) Design Information for Footing Design:

Reference: AASHTO Standard Specifications for Structural Supports for Highway Sign, Luminaires And Trafffic Signals, 5th Edition, 2009, Section 13 Foundation Design, pages 13-3 to 13-5

	Degrees	Radians	
φ =	30	0.5236	Cohesionless Soil Friction Angle Used in Analysis
α =	-14	-0.2443	Slope Angle for 2(H):1(V) slope, assume sign loaded 4(H):1(V)
			considering burial as shown in the detail (wind loading perpendicular
			to slope)
θ =	0	0	Soil face used for Kp calculation (this value is zero for drilled
			footing application)
δ =	0	0	This value is zero for drilled footing application
FS =	3		Factor of Safety Recommended in Section 13.
Υ _{soil} =	0.11	kip/ft^3	Unit weight of cohesionless soil used in the analysis (pcf)
D =	18	in	Diameter of Drilled footing (in.)

Reference: Principles of Geotechnical Engineering, Braja Das, 2nd Edition, page 387, EQ 5.58. (This equation takes into account a reduced K_p for sloping ground).

6.) Calculate Factored Forces for Design based on FS (Factor of Safety):

	V _F =	1.644669	kip	Factored forces used for design of footing
	MF =	15.91131	kip*ft	
-			_	
H =		9.674476		See Section 13

7.) Calculate the required length of footing in Cohesionless Soil (Sand) as per AASHTO Signs & Luminaires Standards, Section 13, 2009 Edition

Use Trail & Error to determine the required depth needed as per Eq. C13-7, Section 13, page 13-5

L _{sand} =	5.375	ft
D =	1.5	ft
V _F =	1.644669	kips 💦
M _F =	15.91131	kip*ft
Кр =	1.931597	

Required depth for Cohesionless Soil (Sand)

EQ-C13-7=	-0.03357	Equation converges close to zero "0" for L _{sand} depth (trial & error)
M _{Fmaxsand} =	17.92879 kip*ft	Maximum calculated bending moment as per Equation C13-9,
		Section 13 AASHTO 2009 Specifications in Cohesionless Soil (Sand)

8.) Calculate the required footing depth and bending moment for **Cohesive soil (Clay)** as per the AASHTO Specifications

c _{clay} =	1000 lbf/ft^2	Assumed undrained shear strength of clay material
H =	9.674476 ft	See equation C13-4, Section 13 AASHTO 2009 Specifications
q =	0.121827 ft	See Equation C13-5, Section 13 AASHTO 2009
L _{claysoil} =	5.538559 ft	Length required in Cohesive Soil (clay) as per Section 13, AASHTO 2009
M _{Fmaxclay} =	20.94549 kip*ft	Maximum calculated bending moment as per aaSHTO Section 13 Specifications in Cohesive Soil (clay)

8.) Determine worst case length as per the different soil conditions:

L = 5.538559 ft Worst case (longest length) in clay

9.) Calculate vertical reinforcement as per ACI318-83 Specifications for circular columns

f`c =	4000	psi	Compressive strength of concrete
fy =	60000	psi	Yield strength of rebar
h =	1.5	ft	Diameter of pier (ft.)
cover =	2.5	in	Concrete cover
Tie _{dia} =	0.375	in	Diameter of stirrups
Vertical _{dia} =	0.5	in	
No _{verts} =	8		Number of vertical bars
A _{st} =	1.570796	in^2	Area of Steel provided (in^2)
Ag =	254.469	in^2	Area of footing
$\rho_{act} =$	0.006173		calculated reinforcement ratio
Υh =	11.75	in	
Υ =	0.652778		and the stand of the
φ=	0.9		Strength reduction factor
$\phi M_{nact_hAg} =$	0.1366		As per ACI318-83 Bending diagram for circular columns
Mn =	57.93411	kip*ft	Nominal moment capacity of footing (kip*ft)

Subject: 405160-22 - Foundations on Slopes

10.) Final Design Details:

D = 18 inches L = 5'-6" - XYZ $265ft^3$ to $300 ft^3$

Embedded Pipe Stub Option

TexasTransportationSubject: <u>405160-22 - Foundations on Slopes</u>Institute

L = 5'-6" - XYZ 265 - 300ft^3

Base Plated Slip Base Support Option

A3. XYZ between 1170 ft³ to 2070 ft³ at 10 ft-6 inches

WADOT Type TP-A & TP-B Fdn. (Large Sign Support) WSDOT Standard Plan G-25.10-01 XYZ = 1170 ft³

Sign Properties & Geometry

X=	15.2	ft
Y=	7.25	ft
Z=	10.625	ft
XYZ=	1170.875	ft^3
X*Y=	110.2	ft^2

Post Properties: Use W6x16

b_f = 4.03 in

Find: The size of the foundation & Depth required on a 2(H):1(V) Slope considering Cohesionless Soil (Sand) and Cohesive Soil (Clay) using the design parameters for each Cohesionless Soil Friction Angle Used in Analysis $\phi = 30$ degrees

Cohesive Soil Strength: C = 1000 psf

Unit weight of soil = 110 pcf

2.) Given the following Design Information for Wind Loading on Sign:

Reference: Standards Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals Published By AASHTO, 5th Edition 2009

V _{wind} =	90 mph	
Kz=	0.87	See Table 3-5, Page 3-12 for Height 16.4 feet or less
lr=	0.71	See Table 3-2, page 3-10
G=	1.14	See Section 3.8.5, page 3-12
Cd _{sign} =	1.19	Wind drag coefficient as per Table 3-6, page 3-16
Cd _{tube} =	1.7	Wind drag coefficient, See Table 3-6, page 3-12

3.) Calculate the design Wind Pressure on the sign & post

Pzsign=	17.3762 psf	Calculated Wind Pressures on Sign Area & Post
Pz _{post} =	24.8231 psf	The sub-sector weaks a constraint

4.) Calculate the Moment & Shear on the Sign due to Wind loading

Sign Area =	110.2	ft^2	Area _{post} =	2.350833
Z =	10.625	ft		
b _f =	4.03	in	Flange wid	th of post (in.)
M _{wind} =	20.54229	kip*ft	Moment a	pplied to the top of foundation
V _{shear} =	1.97321	kip	Shear appl	ied to the top of the foundation

5.) Design Information for Footing Design:

Reference: AASHTO Standard Specifications for Structural Supports for Highway Sign, Luminaires And Trafffic Signals, 5th Edition, 2009, Section 13 Foundation Design, pages 13-3 to 13-5

	Degrees	Radians	
φ =	30	0.5236	Cohesionless Soil Friction Angle Used in Analysis
α =	-14	-0.2443	Slope Angle for 2(H):1(V) slope, assume sign loaded 4(H):1(V)
			considering burial as shown in the detail (wind loading perpendicular
			to slope)
θ =	0	0	Soil face used for Kp calculation (this value is zero for drilled
			footing application)
δ =	0	0	This value is zero for drilled footing application
FS =	3		Factor of Safety Recommended in Section 13.
Υ _{soil} =	0.11	kip/ft^3	Unit weight of cohesionless soil used in the analysis (pcf)
D =	30	in	Diameter of Drilled footing (in.)

Reference: Principles of Geotechnical Engineering, Braja Das, 2nd Edition, page 387, EQ 5.58. (This equation takes into account a reduced K_p for sloping ground).

6.) Calculate Factored Forces for Design based on FS (Factor of Safety):

V _F =	5.919631	kip	Factored forces used for design of footing
MF =	61.62686	kip*ft	and a second

H = 10.41059 See Section 13

7.) Calculate the required length of footing in Cohesionless Soil (Sand) as per AASHTO Signs & Luminaires Standards, Section 13, 2009 Edition

Use Trail & Error to determine the required depth needed as per Eq. C13-7, Section 13, page 13-5

L _{sand} =	7.342	ft	F
D =	2.5	ft	
V _F =	5.919631	kips	
M _F =	61.62686	kip*ft	
Kp =	1.931597		

Required depth for Cohesionless Soil (Sand)

EQ-C13-7=	0.096535	Equation converges for L _{sand}
M _{Fmaxsand} =	72.29801 kip*ft	Maximum calculated bending moment as per Equation C13-9,
		Section 13 AASHTO 2009 Specifications in Cohesionless Soil (Sand)

8.) Calculate the required footing depth and bending moment for **Cohesive soil (Clay)** as per the AASHTO Specifications

C _{clay} =	1000 lbf/ft^2	Assumed undrained shear strength of clay material
H =	10.41059 ft	See equation C13-4, Section 13 AASHTO 2009 Specifications
q =	0.263095 ft	See Equation C13-5, Section 13 AASHTO 2009
L _{claysoil} =	9.141335 ft	Length required in Cohesive Soil (clay) as per Section 13, AASHTO 2009
M _{Fmaxclay} =	92.00373 kip*ft	Maximum calculated bending moment as per aaSHTO Section 13 Specifications in Cohesive Soil (clay)

8.) Determine worst case length as per the different soil conditions:

L = 9.141335 ft Worst case (longest length) in clay

9.) Calculate vertical reinforcement as per ACI318-83 Specifications for circular columns

f`c=	4000	psi	Compressive strength of concrete
fy =	60000	psi	Yield strength of rebar
h =	2.5	ft	Diameter of pier (ft.)
cover =	2.5	in	Concrete cover
Tie _{dia} =	0.5	in	Diameter of stirrups
Vertical _{dia} =	1	in	
No _{verts} =	8		Number of vertical bars
A _{st} =	6.283185	in^2	Area of Steel provided (in^2)
Ag =	706.8583	in^2	Area of footing
ρ _{act} =	0.008889		calculated reinforcement ratio
Ƴh =	23	in	
Υ =	0.766667		
φ=	0.9		Strength reduction factor
$\phi M_{nact_hAg} =$	0.189		As per ACI318-83 Bending diagram for circular columns
Mn =	371.1006	kip*ft	Nominal moment capacity of footing (kip*ft) o.k.!

10.) Final Design Details:

D = 30 inches L = 9'-6" for XYZ = 1170 ft^3 and Less

A4. XYZ less than 1170 ft³ is 9 ft-6 inches

Subject: 405160-22 - Foundations on Slopes

1.) Given the following Details and Design Information:

WADOT Type TP-A & TP-B Fdn. (Large Sign Support) WSDOT Standard Plan G-25.10-01 XYZ = 2070 ft³

Sign Properties & Geometry

X=	20 ft
Y=	9 ft
Z=	11.5 ft
XYZ=	2070 ft^3
X*Y=	180 ft^2

Post Properties: Use W8x21

b_f = 5.27 in

Find: The size of the foundation & Depth required on a 2(H):1(V) Slope considering Cohesionless Soil (Sand) and Cohesive Soil (Clay) using the design parameters for each Cohesionless Soil Friction Angle Used in Analysis $\phi = 30$ degrees

Cohesive Soil Strength: C = 1000 psf

Unit weight of soil = 110 pcf

2.) Given the following Design Information for Wind Loading on Sign:

Reference: Standards Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals Published By AASHTO, 5th Edition 2009

V _{wind} =	90 mph	
Kz=	0.87	See Table 3-5, Page 3-12 for Height 16.4 feet or less
Ir=	0.71	See Table 3-2, page 3-10
G=	1.14	See Section 3.8.5, page 3-12
Cd _{sign} =	1.19	Wind drag coefficient as per Table 3-6, page 3-16
Cd _{tube} =	1.7	Wind drag coefficient, See Table 3-6, page 3-12

3.) Calculate the design Wind Pressure on the sign & post

Pzsign=	17.3762	psf	Calculated Wind Pressures on Sign Area & Post
Pz _{post} =	24.8231	psf	

4.) Calculate the Moment & Shear on the Sign due to Wind loading

Sign Area =	180	ft^2	Area _{post} = 3.074167
Z =	11.5	ft	
b _f =	5.27	in	Flange width of post (in.)
M _{wind} =	36.22625	kip*ft	Moment applied to the top of foundation
V _{shear} =	3.204023	kip	Shear applied to the top of the foundation

5.) Design Information for Footing Design:

Reference: AASHTO Standard Specifications for Structural Supports for Highway Sign, Luminaires And Trafffic Signals, 5th Edition, 2009, Section 13 Foundation Design, pages 13-3 to 13-5

	Degrees	Radians	
φ =	30	0.5236	Cohesionless Soil Friction Angle Used in Analysis
α =	-14	-0.2443	Slope Angle for 2(H):1(V) slope, assume sign loaded 4(H):1(V)
2			considering burial as shown in the detail (wind loading perpendicular
			to slope)
θ =	0	0	Soil face used for Kp calculation (this value is zero for drilled
			footing application)
δ =	0	0	This value is zero for drilled footing application
FS =	3		Factor of Safety Recommended in Section 13.
Υ _{soil} =	0.11	kip/ft^3	Unit weight of cohesionless soil used in the analysis (pcf)
D =	30	in	Diameter of Drilled footing (in.)

Reference: Principles of Geotechnical Engineering, Braja Das, 2nd Edition, page 387, EQ 5.58. (This equation takes into account a reduced K_p for sloping ground).

6.) Calculate Factored Forces for Design based on FS (Factor of Safety):

	V _F =	9.61207	kip	Factored forces used for design of footing
М	F =	108.6787	kip*ft	
H =		11.30649		See Section 13

7.) Calculate the required length of footing in Cohesionless Soil (Sand) as per AASHTO Signs & Luminaires Standards, Section 13, 2009 Edition

Use Trail & Error to determine the required depth needed as per Eq. C13-7, Section 13, page 13-5

L _{sand} =	9.028	ft	F
D =	2.5	ft	
V _F =	9.61207	kips	
M _F =	108.6787	kip*ft	
Kp =	1.931597		

Required depth for Cohesionless Soil (Sand)

EQ-C13-7=	-0.09536	Equation converges for L _{sand}
M _{Fmaxsand} =	130.7585 kip*ft	Maximum calculated bending moment as per Equation C13-9,
		Section 13 AASHTO 2009 Specifications in Cohesionless Soil (Sand)

8.) Calculate the required footing depth and bending moment for **Cohesive soil (Clay)** as per the AASHTO Specifications

c _{clay} =	1000 lbf/ft^2	Assumed undrained shear strength of clay material
H =	11.30649 ft	See equation C13-4, Section 13 AASHTO 2009 Specifications
q =	0.427203 ft	See Equation C13-5, Section 13 AASHTO 2009
L _{claysoil} =	10.5354 ft	Length required in Cohesive Soil (clay) as per Section 13, AASHTO 2009
M _{Fmaxclay} =	158.7922 kip*ft	Maximum calculated bending moment as per aaSHTO Section 13 Specifications in Cobesive Soil (clay)

8.) Determine worst case length as per the different soil conditions:

L = 10.5354 ft Worst case (longest length) in clay

9.) Calculate vertical reinforcement as per ACI318-83 Specifications for circular columns

f`c =	4000	psi	Compressive strength of concrete
fy =	60000	psi	Yield strength of rebar
h =	2.5	ft	Diameter of pier (ft.)
cover =	2.5	in	Concrete cover
Tie _{dia} =	0.5	in	Diameter of stirrups
Vertical _{dia} =	1	in	
No _{verts} =	8		Number of vertical bars
A _{st} =	6.283185	in^2	Area of Steel provided (in^2)
Ag =	706.8583	in^2	Area of footing
ρ _{act} =	0.008889		calculated reinforcement ratio
Ƴh =	23	in	
Υ =	0.766667		
φ=	0.9		Strength reduction factor
$\phi M_{nact_hAg} =$	0.189		As per ACI318-83 Bending diagram for circular columns
Mn =	371.1006	kip*ft	Nominal moment capacity of footing (kip*ft) o.k.!

Subject: 405160-22 - Foundations on Slopes

10.) Final Design Details:

D = 30 inches L = 10'-6" XYZ 1170 ft³ to 2070ft³

