

Test Report No.: 602921-1 Test Report Date: August 2014

MASH TEST 2-11 OF THE 31-INCH W-BEAM GUARDRAIL WITH 12.5-FT POST SPACING

by

Nauman M. Sheikh, P.E. Associate Research Engineer

and

Wanda L. Menges Research Specialist

Contract No.: 1401378/P2005312.49 Test No.: 602921-1 Test Date: 2014-07-10

Sponsored by **Roadside Safety Research Program Pooled Fund Study No. TPF-5**(114)

TEXAS A&M TRANSPORTATION INSTITUTE PROVING GROUND

Mailing Address: Roadside Safety & Physical Security Texas A&M University System 3135 TAMU College Station, TX 77843-3135 Located at: Texas A&M Riverside Campus Building 7091 3100 State Highway 47 Bryan, TX 77807

DISCLAIMER

The contents of this report reflect the views of the authors who are solely responsible for the facts and accuracy of the data, and the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Roadside Safety Research Program Pooled Fund Study, The Texas A&M University System, or Texas A&M Transportation Institute. This report does not constitute a standard, specification, or regulation. In addition, the above listed agencies assume no liability for its contents or use thereof. The names of specific products or manufacturers listed herein do not imply endorsement of those products or manufacturers. The results reported herein apply only to the article being tested. The full-scale crash test was performed according to TTI Proving Ground ISO 17025 quality procedures and according to the *MASH* guidelines and standards. The simulation analysis reported herein is not within the scope of TTI Proving Ground's A2LA Accreditation.

Wanda L. Menges, Research Specialist Deputy Quality Manager

Richard A. Zimmer, Senior Research Specialist Test Facility Manager Quality Manager Technical Manager

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.		
4. Title and Subtitle MASH TEST 2-11 OF THE 31-INCH W-BEAM GUARDRAIL WITH 12.5 ET POST SPACING		5. Report Date August 2014 6. Performing Organization Code		
		of renorming organization code		
7. Author(s)8. Performing Organization Report No.Nauman M. Sheikh and Wanda L. MengesTest Report No. 602921-1				
9. Performing Organization Name and Address Texas A&M Transportation Institute Proving Ground		10. Work Unit No. (TRAIS)		
3135 TAMU		11. Contract or Grant No.		
College Station, Texas 77843-3135		1401378/P2005312.49		
12. Sponsoring Agency Name and Address Washington State Department of Tra	ansportation	13. Type of Report and Period Covered Test Report:		
Transportation Building, MS 47372		September 2013-August 2014		
Olympia, Washington 98504-7372		14. Sponsoring Agency Code		
15. Supplementary Notes				

Research Study Title: MASH TL-2 31-inch W-Beam Guardrail

Name of Contacting Representative: Michael Elle

16. Abstract

The objective of this research was to evaluate the use of a 31-inch tall, strong-post W-beam guardrail with 12 ft 6 inch post spacing and 8-inch deep wood blockouts at American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH)* Test Level 2 (TL-2) conditions. A typical strong-post W-beam guardrail uses 6 ft 3 inch post spacing. A guardrail system with fewer posts will be less expensive and therefore more cost-effective on low-speed roads.

The 31-inch W-Beam guardrail with 12 ft 6 inch post spacing contained and redirected the 2270P *MASH* test vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 36.4 inches. One of the blockouts separated from the rail element and post; however, the blockout traveled low to the ground and came to rest on the field side. It did not penetrate or show potential for penetrating the occupant compartment, or to show hazard for others in the area. The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 6 degrees and 7 degrees, respectively. Occupant risk factors were within the preferred limits specified for *MASH* test 2-11. The 2270P vehicle exited within the exit box criteria.

The 31-inch W-Beam guardrail with 12 ft 6 inch post spacing performed acceptably for *MASH* test 2-11.

^{17.} Key Words Longitudinal barrier, guardrail, guard fence, Test Level 2, TL-2, W-beam, post spacing, crash testing, roadside safety		18. Distribution Statement Copyrighted. Not to be copied or reprinted without consent from <u>Roadside Pooled Fund</u> .		
19. Security Classif.(of this report) Unclassified	20. Security Classif.(of the Unclassified	20. Security Classif.(of this page) Unclassified		22. Price

Reproduction of completed page authorized

	SI* (MODERN METRIC) CONVERSION FACTORS					
	APPRO	XIMATE CONVERSIONS	TO SI UNITS			
Symbol	When You Know	Multiply By	To Find	Symbol		
		LENGTH				
in	inches	25.4	millimeters	mm		
ft	feet	0.305	meters	m		
ya	yards	0.914	kilometers	m		
110	Thiles		Riometers	NIII		
in ²	square inches	645.2	square millimeters	mm ²		
ft ²	square feet	0.093	square meters	m ²		
vd ²	square vard	0.836	square meters	m ²		
ac	acres	0.405	hectares	ha		
mi ²	square miles	2.59	square kilometers	km ²		
		VOLUME				
fl oz	fluid ounces	29.57	milliliters	mL		
gal	gallons	3.785	liters	L		
ft	cubic feet	0.028	cubic meters	m		
Àq.	cubic yards	0.765	cubic meters	m°		
	NOTE	: volumes greater than 1000 L shall b	e shown in m			
		MASS				
oz	ounces	28.35	grams	g		
	pounds	0.454	kilograms	kg		
1	short tons (2000 lb)		megagrams (or "metric ton")	Mg (or 't')		
0-		TEMPERATURE (exact deg	rees)	10		
۳F	Fahrenheit	5 (F-32)/9	Celsius	°C		
		OF (F-32)/1.8				
		ILLUMINATION	1.22			
fC	foot-candles	10.76	lux	IX		
TI	toot-Lamperts			ca/m-		
11-5	F	ORCE and PRESSURE or S	IRESS			
IDT	poundforce	4 45	newtons	N		
lbf/in ²	poundforce per equere in		kilopagoolo	kBo.		
lbf/in ²	poundforce per square ind	ch 6.89	kilopascals	kPa		
lbf/in ²	poundforce per square inc APPROX	Ch 6.89	kilopascals ROM SI UNITS	kPa		
Ibf/in ² Symbol	poundforce per square inc APPROX When You Know	ch 6.89 (IMATE CONVERSIONS FI Multiply By	kilopascals ROM SI UNITS To Find	kPa Symbol		
Ibf/in ² Symbol	poundforce per square inc APPROX When You Know	ch 6.89 (IMATE CONVERSIONS FI Multiply By LENGTH	kilopascals ROM SI UNITS To Find	kPa Symbol		
Ibf/in ² Symbol mm	poundforce per square inc APPROX When You Know millimeters	ch 6.89 (IMATE CONVERSIONS FI Multiply By LENGTH 0.039	kilopascals ROM SI UNITS To Find inches	kPa Symbol in		
Ibf/in ² Symbol mm m	poundforce per square inc APPROX When You Know millimeters meters	ch 6.89 CIMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28	kilopascals ROM SI UNITS To Find inches feet	kPa Symbol in ft		
Ibf/in ² Symbol mm m	poundforce per square inc APPROX When You Know millimeters meters meters	ch 6.89 (IMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09	kilopascals ROM SI UNITS To Find inches feet yards	kPa Symbol in ft yd		
Ibf/in ² Symbol mm m m km	poundforce per square inc APPROX When You Know millimeters meters meters kilometers	ch 6.89 (IMATE CONVERSIONS F) Multiply By LENGTH 0.039 3.28 1.09 0.621	kilopascals ROM SI UNITS To Find inches feet yards miles	kPa Symbol in ft yd mi		
Ibf/in ² Symbol mm m km	poundforce per square inc APPROX When You Know millimeters meters meters kilometers	Ch 6.89 CIMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA	kilopascals ROM SI UNITS To Find inches feet yards miles	kPa Symbol in ft yd mi		
Ibf/in ² Symbol mm m km km mm ²	poundforce per square inc APPROX When You Know millimeters meters kilometers square millimeters	ch 6.89 (IMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 0.0016	kilopascals ROM SI UNITS To Find inches feet yards miles square inches	kPa Symbol in ft yd mi in ² o ²		
Ibf/in ² Symbol mm m km km m ² m ² m ²	poundforce per square inc APPROX When You Know millimeters meters kilometers square millimeters square meters	ch 6.89 (IMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 4.105	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet arguing feet	kPa Symbol in ft yd mi in ² ft ² ud ²		
Ibf/in ² Symbol mm m km km m ² m ² m ² ha	poundforce per square inc APPROX When You Know millimeters meters kilometers square millimeters square meters square meters bectares	ch 6.89 (IMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet square yards acree	kPa Symbol in ft yd mi in ² ft ² yd ² ac		
Ibf/in ² Symbol mm m km km m ² m ² ha km ²	poundforce per square inc APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers	ch 6.89 (IMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ²		
Ibf/in ² Symbol mm m km km m ² m ² ha km ²	poundforce per square inc APPROX When You Know millimeters meters meters kilometers square millimeters square meters hectares square kilometers	Ch 6.89 CIMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet square feet square yards acres square miles	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ²		
Ibf/in ² Symbol mm m km km m ² m ² ha km ² m	poundforce per square inc APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers	ch 6.89 (IMATE CONVERSIONS FI Multiply By LENGTH 0,039 3,28 1,09 0,621 AREA 0,0016 10,764 1,195 2,47 0,386 VOLUME 0,034	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² ft oz		
Ibf/in ² Symbol mm m km km mm ² m ² m ² ha km ² L	poundforce per square inc APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters	ch 6.89 (IMATE CONVERSIONS FI Multiply By LENGTH 0,039 3,28 1,09 0,621 AREA 0,0016 10,764 1,195 2,47 0,386 VOLUME 0,034 0,264	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal		
Ibf/in ² Symbol mm m km km mm ² m ² m ² ha km ² L m mL L m	poundforce per square inc APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters	ch 6.89 (IMATE CONVERSIONS FI Multiply By LENGTH 0,039 3,28 1,09 0,621 AREA 0,0016 10,764 1,195 2,47 0,386 VOLUME 0,034 0,264 35,314	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³		
Ibf/in ² Symbol mm m km km m ² m ² m ² ha km ² L L m ³ m ³	poundforce per square inc APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters cubic meters	ch 6.89 (IMATE CONVERSIONS FI Multiply By LENGTH 0,039 3,28 1,09 0,621 AREA 0,0016 10,764 1,195 2,47 0,386 VOLUME 0,034 0,264 35,314 1,307	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³		
Ibf/in ² Symbol mm m km km m ² m ² m ² ha km ² mL L m ³ m ³	poundforce per square inc APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square kilometers milliliters liters cubic meters	ch 6.89 IMATE CONVERSIONS FI Multiply By LENGTH 0,039 3,28 1,09 0,621 AREA 0,0016 10,764 1,195 2,47 0,386 VOLUME 0,034 0,264 35,314 1,307 MASS	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³		
Ibf/in ² Symbol mm m km km m ² m ² m ² ha km ² mL L m ³ m ³ g	poundforce per square inc APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers milliliters liters cubic meters cubic meters grams	ch 6.89 IMATE CONVERSIONS FI Multiply By LENGTH 0,039 3,28 1,09 0,621 AREA 0,0016 10,764 1,195 2,47 0,386 VOLUME 0,034 0,264 35,314 1,307 MASS 0,035	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz		
Ibf/in ² Symbol mm m km km m ² m ² ha km ² mL L m ³ m ³ g kg	poundforce per square inc APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms	6.89 IMATE CONVERSIONS F Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb		
Ibf/in ² Symbol mm m km km m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	poundforce per square into APPROX When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric to	A.89 IMATE CONVERSIONS F Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 n")	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb)	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T		
Ibf/in ² Symbol mm m km km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	poundforce per square into APPROX When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric to	6.89 IMATE CONVERSIONS F Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 n") 1.103 TEMPERATURE (exact deg	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) rees)	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T		
Ibf/in ² Symbol mm m km mm ² m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C	poundforce per square inc APPROX When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric to Celsius	6.89 IMATE CONVERSIONS F Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 n") 1.103 TEMPERATURE (exact deg 1.8C+32	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) rees) Fahrenheit	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T		
Ibf/in ² Symbol mm m km mm ² m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C	poundforce per square inc APPROX When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric to Celsius	6.89 IMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 n") 1.103 TEMPERATURE (exact deg 1.8C+32 ILLUMINATION	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) rees) Fahrenheit	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F		
Ibf/in ² Symbol mm m km mm ² m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C	poundforce per square ind APPROX When You Know millimeters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric to Celsius	6.89 IMATE CONVERSIONS F Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 n") 1.103 TEMPERATURE (exact deg 1.8C+32 ILLUMINATION 0.0929	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) rees) Fahrenheit foot-candles	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc		
Ibf/in ² Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C Ix cd/m ²	poundforce per square into APPROX When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares square meters hectares square kilometers milliliters liters cubic meters cubic meters megagrams (or "metric to Celsius	6.89 IMATE CONVERSIONS F Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 n") 1.103 TEMPERATURE (exact deg 1.8C+32 ILLUMINATION 0.0929 0.2919	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) rees) Fahrenheit foot-candles foot-Lamberts	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl		
Ibf/in ² Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C Ix cd/m ²	poundforce per square into APPROX When You Know millimeters meters meters kilometers square millimeters square meters square meters square meters hectares square kilometers milliliters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric to Celsius lux candela/m ²	6.89 IMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 n") TEMPERATURE (exact deg 1.8C+32 ILLUMINATION 0.0929 0.2919 ORCE and PRESSURE or S	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) rees) Fahrenheit foot-candles foot-Lamberts	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² fl oz gal ft ³ yd ³ oz lb T oF fc fl		
Ibf/in ² Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C Ix cd/m ² N	poundforce per square into APPROX When You Know millimeters meters meters kilometers square millimeters square meters square meters square meters square meters square kilometers milliliters liters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters frams kilograms megagrams (or "metric to Celsius lux candela/m ²	6.89 IMATE CONVERSIONS FI Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 n") 1.103 TEMPERATURE (exact deg 1.8C+32 ILLUMINATION 0.0929 0.2919 ORCE and PRESSURE or S 0.225	kilopascals ROM SI UNITS To Find inches feet yards miles square inches square feet square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000 lb) rees) Fahrenheit foot-candles foot-Lamberts TRESS poundforce	kPa Symbol in ft yd mi in ² ft ² yd ² ac rmi ² fl oz gal ft ³ yd ³ oz lb T °F fc fl lbf		

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003)

ACKNOWLEDGMENTS

This research project was performed under a pooled fund program between the State of Alaska Department of Transportation and Public Facilities, California Department of Transportation (Caltrans), Florida Department of Transportation, Illinois Department of Transportation, Louisiana Department of Transportation and Development, Minnesota Department of Transportation, Pennsylvania Department of Transportation, Tennessee Department of Transportation, Texas Department of Transportation, Washington State Department of Transportation, West Virginia Department of Transportation, and the Federal Highway Administration. The authors acknowledge and appreciate their guidance and assistance.

Roadside Safety Research Pooled Fund Committee CONTACT LIST

Revised August 2014

ALASKA

Jeff C. Jeffers, P.E. Statewide Traffic & Safety Engineering Alaska Department of Transportation and Public Facilities P.O. Box 112500 Juneau, AK 99811-2500 (907) 465-8962 jeff.jeffers@alaska.gov

CALIFORNIA

John Jewell, P.E. Caltrans Office of Materials and Infrastructure Division of Research and Innovation 5900 Folsom Blvd Sacramento, CA 95819 (916) 227-5824 john_jewell@dot.ca.gov

FLORIDA

Gevin McDaniel, P.E. Design Standards Administrator FDOT Roadway Design Office Florida Department of Transportation 605 Suwannee Street Tallahassee, FL 32399-0450 (850) 414-4284 <u>Gevin.McDaniel@dot.state.fl.us</u>

ILLINOIS

Timothy J. Sheehan, P.E. Safety Design Unit Chief Illinois Department of Transportation 2300 Dirksen Parkway, Room 323 Springfield, IL 62764 (217) 782-8608 <u>Tim.Sheehan@illinois.gov</u>

LOUISIANA

Chris Guidry, P.E. Assistant Bridge Design Administrator Bridge and Structural Design Section Louisiana Transportation Center P.O. Box 94245 Baton Rouge, LA 79084-9245 (225) 379-1323 Chris.Guidry@la.gov

Kurt M. Brauner, P.E. Bridge Engineer Manager (225) 379-1933 Kurt.Brauner@la.gov

MINNESOTA

Michael Elle, P.E. Design Standards Engineer Minnesota Department of Transportation 395 John Ireland Blvd, MS 696 St. Paul, MN 55155-1899 (651) 366-4622 michael.elle@state.mn.us

PENNSYLVANIA

Mark R. Burkhead, P.E. Standards & Criteria Engineer Pennsylvania Department of Transportation Bureau of Project Delivery 400 North Street Harrisburg, PA 17105 (717) 783-5110 mburkhead@state.pa.gov

TENNESSEE

Ali Hangul, P.E. Civil Engineering Manager Tennessee Department of Transportation James K. Polk State Office Bldg, Ste 1300 Nashville, TN 37243-0348 (615) 741-0840 <u>Ali.Hangul@tn.gov</u>

TEXAS

Aurora (Rory) Meza, P.E. Roadway Design Section Director Texas Department of Transportation Design Division 125 East 11th Street Austin, TX 78701-2483 (512) 416-2678 Rory.Meza@txdot.gov

Chris Lindsey (512) 416-2750 Christopher.Lindsey@txdot.gov

WASHINGTON

John P. Donahue, P.E. Design Policy & Strategic Analysis Estimating Manager Washington State Department of Transportation Box 47329 Olympia, WA 98504-7329 (360) 705-7952 DonahJo@wsdot.wa.gov

Jeffery K. Petterson, P.E. Roadside Safety Engineer (360) 705-7278 <u>PetterJ@wsdot.wa.gov</u> Rhonda Brooks Research Manager (360) 705-7945 Brookrh@wsdot.wa.gov

WEST VIRGINIA

Donna J. Hardy, P.E. Mobility and Safety Engineer West Virginia Department of Transportation – Traffic Engineering Building 5, Room A-550 1900 Kanawha Blvd E. Charleston, WV 25305-0430 (304) 558-9576 Donna.J.Hardy@wv.gov

FEDERAL HIGHWAY ADMINISTRATION

Richard B. (Dick) Albin, P.E. Safety Engineer FHWA Resource Center Safety & Design Technical Services Team 711 South Capitol Blvd. Olympia, WA 98504 (303) 550-8804 Dick.Albin@dot.gov

William Longstreet Highway Engineer FHWA Office of Safety Design Room E71-107 1200 New Jersey Avenue, S.E. Washington, DC 20590 (202) 366-0087 <u>Will.Longstreet@dot.gov</u>

TEXAS A&M TRANSPORTATION INSTITUTE

D. Lance Bullard, Jr., P.E. Research Engineer Roadside Safety & Physical Security Div. Texas A&M Transportation Institute 3135 TAMU College Station, TX 77843-3135 (979) 845-6153 L-Bullard@tamu.edu

Roger P. Bligh, Ph.D., P.E. Research Engineer (979) 845-4377 <u>RBligh@tamu.edu</u>

TABLE OF CONTENTS

Section

1 INTRODUCTION	1
1.1 PROBLEM	1
1.2 BACKGROUND	1
1.3 OBJECTIVES/SCOPE OF RESEARCH	1
2 SYSTEM DETAILS	
2.1 TEST ARTICLE DESIGN AND CONSTRUCTION	
2.2 MATERIAL SPECIFICATIONS	5
2.3 SOIL CONDITIONS	6
3 TEST REQUIREMENTS AND EVALUATION CRITERIA	7
3.1 CRASH TEST MATRIX	7
3.2 EVALUATION CRITERIA	
4 TEST CONDITIONS	9
4.1 TEST FACILITY	9
4.2 VEHICLE TOW AND GUIDANCE SYSTEM	9
4.3 DATA ACQUISITION SYSTEMS	9
4.3.1 Vehicle Instrumentation and Data Processing	9
4.3.2 Anthropomorphic Dummy Instrumentation	10
4.3.3 Photographic Instrumentation and Data Processing	11
5 CRASH TEST 602921-1 (<i>MASH</i> TEST NO. 2-11)	13
5.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS	13
5.2 TEST VEHICLE	13
5.3 WEATHER CONDITIONS	13
5.4 TEST DESCRIPTION	13
5.5 TEST ARTICLE AND COMPONENT DAMAGE	16
5.6 TEST VEHICLE DAMAGE	16
5.7 OCCUPANT RISK VALUES	16
6 SUMMARY AND CONCLUSIONS	
6.1 SUMMARY OF RESULTS	
6.1.1 Structural Adequacy	
6.1.2 Occupant Risk	
6.1.3 Vehicle Trajectory	
6.2 CONCLUSIONS	
6.3 RECOMMENDATIONS	
7 REFERENCES	
APPENDIX A. DETAILS OF TEST ARTICLE	
APPENDIX B. SUPPORTING CERTIFICATION DOCMENTS	
APPENDIX C. SOIL PROPERTIES DOCUMENTAITON	
APPENDIX D. CRASH TEST NO. 602921-1	41
D1 VEHICLE PROPERTIES AND INFORMATION	41
D2 SEQUENTIAL PHOTOGRAPHS	45
D3 VEHICLE ANGULAR DISPLACEMENTS	47
D4 VEHICLE ACCELERATIONS	

LIST OF FIGURES

Figure 2.1.	Details of the 31-inch Guardrail with 12 ft-6 inch Post Spacing	4
Figure 2.2.	31-inch Guardrail with 12 ft-6 inch Post Spacing Prior to Testing	. 5
Figure 3.1.	Impact Point for MASH Test 2-11 on the 31-inch W-Beam Guardrail with	
-	12 ft-6 inch Post Spacing.	. 7
Figure 5.1.	Vehicle and Installation Geometrics for Test No. 602921-1.	14
Figure 5.2.	Vehicle before Test No. 602921-1.	15
Figure 5.3.	Vehicle/Guardrail Positions after Test No. 602921-1	17
Figure 5.4.	Installation after Test No. 602921-1.	18
Figure 5.5.	Vehicle after Test No. 602921-1	19
Figure 5.6.	Interior of Vehicle for Test No. 602921-1.	20
Figure 5.7.	Summary of Results for MASH Test 2-11 on 31-inch W-Beam Guardrail with	
	12 ft 6 inch Post Spacing.	21
Figure D.1.	Sequential Photographs for Test No. 602921-1 (Overhead and Frontal Views)	45
Figure D.2.	Vehicle Angular Displacements for Test No. 602921-1	47
Figure D.3.	Vehicle Longitudinal Accelerometer Trace for Test No. 602921-1	
	(Accelerometer Located at Center of Gravity).	48
Figure D.4.	Vehicle Lateral Accelerometer Trace for Test No. 602921-1	
-	(Accelerometer Located at Center of Gravity).	49
Figure D.5.	Vehicle Vertical Accelerometer Trace for Test No. 602921-1	
-	(Accelerometer Located at Center of Gravity).	50
Figure D.6.	Vehicle Longitudinal Accelerometer Trace for Test No. 602921-1	
-	(Accelerometer Located Rear of Center of Gravity).	51
Figure D.7.	Vehicle Lateral Accelerometer Trace for Test No. 602921-1	
-	(Accelerometer Located Rear of Center of Gravity).	52
Figure D.8.	Vehicle Vertical Accelerometer Trace for Test No. 602921-1	
-	(Accelerometer Located Rear of Center of Gravity).	53

LIST OF TABLES

Page

Table 6.1.	Performance Evaluation Summary for MASH Test 2-11 on the 31-inch	
	Guardrail with 12 ft 6 inch Post Spacing.	25
Table D.1.	Vehicle Properties for Test No. 602921-1.	41
Table D.2.	Measurements of Vehicle Vertical CG for Test No. 602921-1.	42
Table D.3.	Exterior Crush Measurements for Test No. 602921-1	43
Table D.4.	Occupant Compartment Measurements for Test No. 602921-1	44

1 INTRODUCTION

1.1 PROBLEM

Most strong-post W-beam guardrail systems have been tested at the Test Level 3 (TL-3) conditions specified in National Cooperative Highway Research Program (NCHRP) *Report 350* or American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH) (1, 2)*. These systems have typically used 6 ft 3 inch post spacing. A generic strong-post W-beam guardrail system with a 27-inch rail height and using 12 ft 6 inch post spacing was tested in accordance with *NCHRP Report 350* Test Level 2 (TL-2) conditions, but did not pass due to the vehicle overriding the barrier (*3*). However, newer systems that use a rail element at a 31-inch height may be able to contain the vehicle. Using double post spacing, TL-2 W-beam guardrail system will result in significant cost reduction to the user agencies.

1.2 BACKGROUND

It is desired to reduce the number of posts installed in the TL-2 W-beam guardrail systems, which can result in significant cost savings for user agencies. Standard strong post W-beam guardrail uses 6 ft 3 inch post spacing. Most W-beam guardrail tests have been performed at TL-3 of *MASH* or *NCHRP Report 350*, which require vehicle impact speed of 62.2 mi/h. Since many of the guardrails are installed on roads that only require TL-2 (i.e. impact speed of 44 mi/h), it needs to be evaluated if successful guardrail performance can be achieved with the larger 12 ft-6 inch post spacing. In the past, a crash test was performed with the 12 ft 6 inch post spacing under *NCHRP Report 350* TL-2 impact conditions with a 27-inch tall W-beam guardrail (*3*). The pickup truck overrode the guardrail in this test. More recently, many user agencies have raised the height of the W-beam guardrail to 31 inches, and several successful tests have been performed at *MASH* TL-3 conditions. With the higher rail height, there is now a potential to use the larger 12 ft 6 inch post spacing for the 31-inch W-beam guardrail for TL-2 conditions.

1.3 OBJECTIVES/SCOPE OF RESEARCH

The objective of this research was to evaluate the use of a 31-inch tall, strong-post W-beam guardrail with 12 ft 6 inch post spacing and 8-inch deep wood blockouts at *MASH* TL-2 conditions.

Test 2-11 of *MASH* (5000-lb vehicle, 44 mi/h, 25 degrees) was conducted to evaluate the performance of the 31-inch tall guardrail with 12 ft 6 inch post spacing. The remainder of this report presents the description of the test article, testing criteria and procedure, and the results of the test.

2 SYSTEM DETAILS

2.1 TEST ARTICLE DESIGN AND CONSTRUCTION

The strong-post W-Beam guardrail test installation consisted of a 31-inch tall W-beam guardrail system in *MASH* compacted strong soil with a standard 37 ft 6 inch ET-PLUS end-terminal on each end. The total post-to-post installation length was 175 ft. The ET-PLUS end-terminals were considered to be connected to the length of need guardrail run at the splice between posts 6 and 7 on the upstream end, and at the splice between posts 14 and 15 on the downstream end. The length-of-need between the end-terminals was 100 ft. The end-terminal posts 1 through 6 and 15 through 20 were equally spaced at 6 ft 3 inches. Posts in the length-of-need (posts 6 through 15) were equally spaced at 12 ft 6 inches.

Standard 12-gauge W-beam guardrail (type RWM02a) was used in the system from posts 3 to 18. The exception was the terminal guardrail segments between posts 1 and 3 and posts 18 and 20 that had punched slots into which the anchor cable release bracket was installed.

Overlapping guardrail splices were located mid-span between posts for the guardrail between posts 6 through 15, and at every other post in the remaining terminal regions (i.e. posts 3 and 5 and posts 16 and 18).

Guardrail offset for posts 3 through 18 was accomplished by use of 8-inch deep \times 14-inch tall \times 6-inch wide treated routered wood offset blocks (PDB01b) attached with standard 10-inch long guardrail bolts and nuts (FBB03). Posts 2 and 19 had no offset blocks and were bolted directly to the guardrail with standard 1¹/₄-inch bolts and nuts (FBB01).

Guardrail posts 6 through 15 were 72-inch long guardrail line posts (type PWE01) fabricated from W6×8.5 structural steel shape and complied with American Society of Testing and Materials (ASTM) A36. These posts were embedded 40 inches deep in drilled holes with compacted strong soil as per *MASH*.

Posts 2 through 5 and posts 16 through 19 were standard 72-inch Steel Yielding Terminal Posts (SYTPs) fabricated from ASTM A36, W6×8.5 structural steel shape, and embedded 40 inches in the soil per a typical ET-PLUS terminal installation.

Posts 1 and 20 were standard ET-PLUS terminal cable release anchor posts (CRPs) fabricated from W6×15 ASTM A572-50 structural steel shape, embedded in drilled holes with compacted *MASH* strong soil per a typical ET-PLUS terminal installation. A standard 78-inch long ET-PLUS anchor cable and square tube type anchor cable release bracket were used to anchor the W-beam rail to posts 1 and 20 near grade. An 81-inch long $3\times3\times1/4$ -inch steel angle ground strut on the field side of the ET-PLUS terminal connected posts 1 and 2 and posts 19 and 20, respectively.

Figure 2.1 and Appendix A present further information on the 31-inch W-beam guardrail with 12 ft 6 inch post spacing, and Figure 2.2 provides photographs of the installation.

Figure 2.1. Details of the 31-inch Guardrail with 12 ft 6 inch Post Spacing.

T:\2013-2014\602921\602921-1\Drafting\602921 Drawing

Figure 2.2. 31-inch Guardrail with 12 ft 6 inch Post Spacing Prior to Testing.

2.2 MATERIAL SPECIFICATIONS

Certification documents are provided in Appendix B.

2.3 SOIL CONDITIONS

As stated previously, the test installation was installed in standard soil meeting AASHTO standard specifications for "Materials for Aggregate and Soil Aggregate Subbase, Base and Surface Courses," designated M147-65(2004), grading B.

In accordance with Appendix B of *MASH*, soil strength was measured the day of the crash test (see Appendix C, Figure C1). During installation of the 31-inch W-beam Guardrail with 31-inch Guardrail with 12 ft 6 inch Post Spacing for full-scale crash testing, two standard W6×16 posts were installed in the immediate vicinity of the guardrail, utilizing the same fill materials and installation procedures used in the standard dynamic test (see Appendix C, Figure C2).

As determined in the tests shown in Appendix C, Figure C2, the minimum post load required for deflections at 5 inches, 10 inches, and 15 inches, measured at a height of 25 inches, is 3940 lb, 5500 lb, and 6540 lb, respectively (90 percent of static load for the initial standard installation). On the day of the test, July 10, 2014, load on the post at deflections of 5 inches, 10 inches, and 15 inches was 8695 lbf, 8415 lbf, and 7820 lbf, respectively. The strength of the backfill material met minimum requirements.

3 TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1 CRASH TEST MATRIX

According to *MASH*, two tests are recommended to evaluate longitudinal barriers to TL-2.

- *MASH* Test 2-10: A 2420-lb vehicle impacting the critical impact point (CIP) of the length of need (LON) of the barrier at a nominal impact speed and angle of 44 mi/h and 25 degrees, respectively. This test investigates a barrier's ability to successfully contain and redirect a small passenger vehicle.
- *MASH* Test 2-11: A 5000-lb pickup truck impacting the CIP of the LON of the barrier at a nominal impact speed and angle of 44 mi/h and 25 degrees, respectively. This test investigates a barrier's ability to successfully contain and redirect light trucks and sport utility vehicles.

The test reported herein corresponds to *MASH* Test 2-11. The target CIP for *MASH* Test 2-11, determined using finite element analyses, was centered between posts 10 and 11, as shown in Figure 3.1.

Several tests have been performed in the past using the 2420-lb small passenger car with the 31-inch tall W-beam guardrail at the higher 62 mi/h impact speed of *MASH* Test 3-10 (4, 5). These tests have passed successfully and it is therefore expected that the small car test at a much lower 44 mi/h speed will also meet *MASH* criteria. Similarly, due to the lower impact speed of 44 mi/h, the small car is not expected to under-ride the guardrail. For these reasons, full-scale crash tests were performed with the pickup truck only, i.e. Test 2-11 of *MASH*.

Figure 3.1. Impact Point for *MASH* Test 2-11 on the 31-inch W-Beam Guardrail with 12 ft 6 inch Post Spacing.

The crash test and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

3.2 EVALUATION CRITERIA

The crash test was evaluated in accordance with the criteria presented in *MASH*. The performance of the 31-inch W-beam guardrail with 12 ft 6 inch post spacing is judged on the basis of three factors: structural adequacy, occupant risk, and post-impact vehicle trajectory. Structural adequacy is judged on the ability of the guardrail to contain and redirect the vehicle, or bring the vehicle to a controlled stop in a predictable manner. Occupant risk criteria evaluates the potential risk of hazard to occupants in the impacting vehicle, and, to some extent, other traffic and pedestrians or workers in construction zones, if applicable. Post impact vehicle trajectory is assessed to determine potential for secondary impact with other vehicles or fixed objects, creating further risk of injury to occupants of the impacting vehicle and/or risk of injury to occupants in other vehicles. The appropriate safety evaluation criteria from Table 5.1 of *MASH* were used to evaluate the crash test reported herein, and are listed in further detail under the assessment of the crash test.

4 TEST CONDITIONS

4.1 TEST FACILITY

The full-scale crash test reported herein was performed at Texas A&M Transportation Institute (TTI) Proving Ground. TTI Proving Ground is an International Standards Organization (ISO) 17025 accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing certificate 2821.01. The full-scale crash test was performed according to TTI Proving Ground quality procedures and according to the *MASH* guidelines and standards.

The test facilities at the TTI Proving Ground consist of a 2000 acre complex of research and training facilities situated 10 miles northwest of the main campus of Texas A&M University. The site, formerly a United States Army Air Corp Base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, durability and efficacy of highway pavements, and evaluation of roadside safety hardware. The site selected for the installation of the 31-inch W-beam guardrail with 12 ft 6 inch post spacing is along a wide out-of-service apron. The apron consists of an unreinforced jointed-concrete pavement in 12.5-ft \times 15-ft blocks nominally 6 inches thick. The apron was constructed in 1942, and the joints have some displacement, but are otherwise flat and level.

4.2 VEHICLE TOW AND GUIDANCE SYSTEM

The test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A two-to-one speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released to be free-wheeling and unrestrained. The vehicle remained freewheeling, i.e., no steering or braking inputs, until the vehicle cleared the immediate area of the test site, at which time brakes on the vehicle were activated, if needed, to bring it to a safe and controlled stop.

4.3 DATA ACQUISITION SYSTEMS

4.3.1 Vehicle Instrumentation and Data Processing

The test vehicle was instrumented with a self-contained, on-board data acquisition system. The signal conditioning and acquisition system is a 16-channel, Tiny Data Acquisition System (TDAS) Pro manufactured by Diversified Technical Systems, Inc. . The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt

output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid state units designed for crash test service. The TDAS Pro hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the 16 available channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 values per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit should the primary battery cable be severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each of the TDAS Pro units is returned to the factory annually for complete recalibration. Accelerometers and rate transducers are also calibrated annually with traceability to the National Institute for Standards and Technology. All accelerometers are calibrated annually according to SAE J211 *4.6.1* by means of an ENDEVCO[®] 2901, precision primary vibration standard. This device and its support instruments are returned to the factory annually for a National Institute of Standards Technology (NIST) traceable calibration. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel, per SAE J211. Calibrations and evaluations are also made any time data are suspect. Acceleration data is measured with an expanded uncertainty of $\pm 1.7\%$ at a confidence factor of 95 percent (k=2).

TRAP uses the data from the TDAS Pro to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with a 60-Hz digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate systems being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k=2).

4.3.2 Anthropomorphic Dummy Instrumentation

Use of a dummy in the 2270P vehicle is optional according to *MASH*, and there was no dummy used in the tests with the 2270P vehicle.

4.3.3 Photographic Instrumentation and Data Processing

Photographic coverage of the test included three high-speed cameras: one overhead with a field of view perpendicular to the ground and directly over the impact point; one placed behind the installation at an angle; and a third placed to have a field of view parallel to and aligned with the installation at the downstream end. A flashbulb activated by pressure-sensitive tape switches was positioned on the impacting vehicle to indicate the instant of contact with the installation and was visible from each camera. The films from these high-speed cameras were analyzed on a computer-linked motion analyzer to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A mini-DV camera and still cameras recorded and documented conditions of the test vehicle and installation before and after the test.

5 CRASH TEST 602921-1 (*MASH* TEST NO. 2-11)

5.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH test 2-11 involves a 2270P vehicle weighing 5000 lb \pm 110 lb and impacting the guardrail at an impact speed of 44 mi/h \pm 2.5 mi/h and an angle of 25 degrees \pm 1.5 degrees. The target impact point was centered between posts 10 and 11. The 2008 Dodge Ram 1500 quad cab pickup truck used in the test weighed 5004 lb and the actual impact speed and angle were 45.7 mi/h and 25.0 degrees, respectively. The actual impact point was centered between posts 10 and 11. Target impact severity (IS) was 57.8 kip-ft, and actual IS was 62.4 kip-ft (+8 percent).

5.2 TEST VEHICLE

Figure 5.1 and 5.2 show the 2008 Dodge Ram 1500 pickup truck used for this crash test. Test inertia weight of the vehicle was 5004 lb, and its gross static weight was 5004 lb. The height to the lower edge of the vehicle front bumper was 15.0 inches, and the height to the upper edge of the front bumper was 26.5 inches. The height to the center of gravity was 28.75 inches. Additional dimensions and information on the vehicle are given in Appendix D1, Tables D.1 and D.2. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

5.3 WEATHER CONDITIONS

The crash test was performed the morning of July 10, 2014. Weather conditions at the time of testing were: wind speed: 10 mi/h; wind direction: 180 degrees with respect to the vehicle (vehicle was traveling in a southwesterly direction); temperature: 87°F; relative humidity: 63 percent.

5.4 TEST DESCRIPTION

The 2008 Dodge Ram 1500 quad cab pickup truck, traveling at an impact speed of 45.7 mi/h, impacted the guardrail mid-span between posts 10 and 11 at an impact angle of 25.0 degrees. At approximately 0.072 s after impact, the vehicle began to redirect, and at 0.085 s, the right front corner of the vehicle bumper contacted post 11. The right front tire contacted post 11 at 0.124 s, and the right front corner of the vehicle bumper contacted post 12 at 0.319 s. At 0.324 s, the vehicle began traveling parallel with the guardrail, and at 0.338 s, the right front tire contacted post 12. The vehicle continued to ride along the traffic face of the guardrail and out of view of the high-speed cameras. Brakes on the vehicle were applied at 2.6 s after impact, and the vehicle subsequently yawed clockwise and came to rest 218.3 ft downstream of the point of impact and 7 ft toward traffic lanes. Appendix D2, Figure D.1 presents sequential photographs of the test.

Figure 5.1. Vehicle and Installation Geometrics for Test No. 602921-1.

Figure 5.2. Vehicle before Test No. 602921-1.

5.5 TEST ARTICLE AND COMPONENT DAMAGE

Figures 5.3 and 5.4 show damage to the 31-inch W-beam guardrail with 12 ft 6 inch post spacing. Post 1 was pulled downstream 1 inch. Post 10 moved 1.1 inches toward the field side and was leaning 5 degrees toward field side. Post 11 was leaning 45 degrees downstream and toward the field side, and the blockout separated from the rail element and post 11 and was resting 23 ft toward the field side of post 12. Post 12 separated from the rail element, rotated 90 degrees counterclockwise, and was leaning 45 degrees downstream. Post 13 separated from the rail element, moved through the soil 0.5 inch, and was leaning 3 degrees toward the field side. The post bolt pulled through the bolt opening in the rail element at post 19, but the blockout remained attached to the post. Post 20 was pulled upstream 0.4 inch. Length of contact of the vehicle with the guardrail was 33.3 ft. Working width was 44.3 inches, and vehicle intrusion was 41.1 inches. Maximum dynamic deflection of the rail element was 27.2 inches.

5.6 TEST VEHICLE DAMAGE

Figure 5.5 shows damage to the vehicle after the test. The front bumper, right front tire and wheel rim, right front fender, right front and rear doors, right rear exterior bed, and rear bumper were scratched and deformed. Maximum exterior crush was 9.0 inches in the side plane at the right front corner at bumper height. No occupant compartment deformation or intrusion occurred. Figure 5.6 shows the interior of the vehicle. Exterior vehicle crush and occupant compartment measurements are shown in Appendix D2, Tables D.3 and D.4.

5.7 OCCUPANT RISK VALUES

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was 12.1 ft/s at 0.203 s, the highest 0.010-s occupant ridedown acceleration was 5.9 Gs from 0.351 to 0.361 s, and the maximum 0.050-s average acceleration was -2.8 Gs between 0.133 and 0.183 s. In the lateral direction, the occupant impact velocity was 12.5 ft/s at 0.203 s, the highest 0.010-s occupant ridedown acceleration was 5.2 Gs from 0.393 to 0.403 s, and the maximum 0.050-s average was -3.7 Gs between 0.372 and 0.422 s. Theoretical Head Impact Velocity (THIV) was 18.2 km/h or 5.1 m/s at 0.195 s; Post-Impact Head Decelerations (PHD) was 6.3 Gs between 0.351 and 0.361 s; and Acceleration Severity Index (ASI) was 0.43 between 0.392 and 0.442 s. Figure 5.7 summarize these data and other pertinent information from the test. Vehicle angular displacements are presented in Appendix D3, Figure D.2, and accelerations versus time traces are presented in Appendix D4, Figures D.3 through D.8.

Figure 5.3. Vehicle/Guardrail Positions after Test No. 602921-1.

Vehicle at rest

Figure 5.4. Installation after Test No. 602921-1.

Figure 5.5. Vehicle after Test No. 602921-1.

Figure 5.6. Interior of Vehicle for Test No. 602921-1.

TR No. 602191-1

General Information Test Agency Test Standard Test No TTI Test No Date	Texas A&M Transportation Institute (TTI) MASH 2-11 602921-1 2014-07-10	Impact Condition Speed Angle Location/Orier
Test Article		Impact Severity
Туре	Guardrail	Exit Conditions
Name	31-inch W-Beam Guardrail with 12 ft 6 inch	Speed
	post spacing	Angle
Installation Length	175 ft	Occupant Risk
Material or Key Elements	12 gauge W-beam on W6x9 steel posts	Impact Velocit
	and 8-inch wood blockouts at 12 ft 6 inch	Longitudinal
	post spacing	Lateral
Soil Type and Condition	Standard Soil, Dry	Ridedown Acc
		Longitudinal
Test Vehicle		Lateral
Type/Designation	2270P	THIV
Make and Model	2008 Dodge Ram 1500 Quad Cab	PHD
Curb	4887 lb	ASI
Test Inertial	5004 lb	Max. 0.050-s Av
Dummy	No Dummy	Longitudinal
Gross Static	5004 lb	Lateral

Impact	CO	ndi	ti	OI	n	S	
Speed	d						

Speed	45.7 mi/h
Angle	25.0 degrees
Location/Orientation	Midspan btw
	Post 10-11
Impact Severity	
Exit Conditions	
	0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1
Speed	Out of view
Angle	Out of view
Occupant Risk Values	
Impact Velocity	
Longitudinal	12.1 ft/s
Lateral	12.5 ft/s
Ridedown Accelerations	
Longitudinal	5 0 C
Lateral	5.2 G
THIV	18.2 km/h
PHD	6.3 G
ASI	0.43
Max. 0.050-s Average	
Longitudinal	-28G
l atoral	-37G
Vortical	100
veilleai	1.0 G

Post-Impact Trajectory

Stopping Distance	218.3 ft dwnstrm
	7 ft toward traffic
Vehicle Stability	
Maximum Yaw Angle	33 degrees
Maximum Pitch Angle	7 degrees
Maximum Roll Angle	6 degrees
Vehicle Snagging	No
Vehicle Pocketing	No

10" Guardrail Bolt FBB03

72" Wide-Flange Guardrail Post PWE01

Test Article Deflections

Dynamic	36.4	inches
Permanent	27.2	inches
Working Width	44.3	inches
Vehicle Intrusion	41.1	inches

Vehicle Damage

VDS	01RFQ2
CDC	01FREW2
Max. Exterior Deformation	9.0 inches
OCDI	RF000000
Max. Occupant Compartment	
Deformation	None

Figure 5.7. Summary of Results for MASH Test 2-11 on 31-inch W-Beam Guardrail with 12 ft 6 inch Post Spacing.

6 SUMMARY AND CONCLUSIONS

6.1 SUMMARY OF RESULTS

An assessment of the test based on the following applicable *MASH* safety evaluation criteria is presented below.

6.1.1 Structural Adequacy

- A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
- <u>Results</u>: The 31-inch W-Beam Guardrail with 12 ft 6 inch post spacing contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 36.4 inches. (PASS)

6.1.2 Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.

Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof \leq 4.0 inches; windshield = \leq 3.0 inches; side windows = no shattering by test article structural member; wheel/foot well/toe pan \leq 9.0 inches; forward of A-pillar \leq 12.0 inches; front side door area above seat \leq 9.0 inches; front side door below seat \leq 12.0 inches; floor pan/transmission tunnel area \leq 12.0 inches).

- <u>Results</u>: The blockout at post 11 separated from the rail element and post; however, the blockout traveled low to the ground and came to rest on the field side of post 12. The blockout did not penetrate or show potential for penetrating the occupant compartment, or to show hazard for others in the area. (PASS)
- *F.* The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.
- <u>Results</u>: The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 6 degrees and 7 degrees, respectively. (PASS)

Н. С	Occupant impact velocities	should satisfy the following:
	Longitudinal and Lateral	Occupant Impact Velocity
	Preferred	Maximum
	30 ft/s	40ft/s
Results:	Longitudinal occupant in	mpact velocity was 12.1 ft/s, and lateral occupant
	impact velocity as 12.5 f	ft/s. (PASS)
I. Oce	cupant ridedown accelerat	ions should satisfy the following:
<u>L</u>	ongitudinal and Lateral O	ccupant Ridedown Accelerations
	<u>Preferred</u>	<u>Maximum</u>
	15.0 Gs	20.49 Gs

<u>Results</u>: Maximum longitudinal occupant ridedown acceleration was 5.9 G, and maximum lateral occupant ridedown acceleration was 5.2 G. (PASS)

6.1.3 Vehicle Trajectory

For redirective devices, the vehicle shall exit the barrier within the exit box (not less than 32.8 ft).

<u>Result</u>: The 2270P vehicle exited within the exit box criteria.

6.2 CONCLUSIONS

As shown in Table 6.1, the 31-inch W-beam guardrail with 12 ft 6 inch post spacing performed acceptably for *MASH* test 2-11.

6.3 **RECOMMENDATIONS***

Results of the crash test presented in this report show that user agencies can install the 31-inch tall W-beam guardrail with half the number of posts in the length of need by using 12 ft 6 inch post spacing. This is expected to result in nearly 50% reduction in the time and money spent in drilling holes, installing the posts, and backfilling the holes with soil. This will also significantly reduce the worker exposure in work zones that may need to maintain active traffic while installation or repair is ongoing.

^{*} The opinions/interpretations expressed in this section of the report are outside the scope of TTI Proving Ground's A2LA Accreditation.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 602921-1 Te	est Date: 2014-07-10
	MASH Test 2-11 Evaluation Criteria	Test Results	Assessment
<u>Stru</u> A.	<u>actural Adequacy</u> Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable	The 31-inch W-Beam Guardrail with 12 ft 6 inch post spacing contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection was 36.4 inches.	Pass
Occ D.	<u>Expant Risk</u> Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	The blockout at post 11 separated from the rail element and post; however, the blockout traveled low to the ground and came to rest on the field side of post 12. The blockout did not penetrate or show potential for penetrating the occupant compartment, or to show hazard for others in the area.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	No deformation or intrusion into the occupant compartment occurred.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 2270P vehicle remained upright during and after the collision event. Maximum roll was 6 degrees and maximum pitch was 7 degrees.	Pass
Н.	Longitudinal and lateral occupant impact velocities should fall below the preferred value of 30 ft/s, or at least below the maximum allowable value of 40 ft/s.	Longitudinal occupant impact velocity was 12.1 ft/s, and lateral occupant impact velocity as 12.5 ft/s.	Pass
Ι.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 Gs, or at least below the maximum allowable value of 20.49 Gs.	Maximum longitudinal occupant ridedown acceleration was 5.9 G, and maximum lateral occupant ridedown acceleration was 5.2 G.	Pass
Veh	<u>nicle Trajectory</u> For redirective devices, the vehicle shall exit the barrier within the exit box (not less than 32.8 ft).	The 2270P vehicle exited within the exit box criteria.	Pass

Table 6.1. Performance Evaluation Summary for MASH Test 2-11 on the 31-inch Guardrail with 12 ft 6 inch Post Spacing.

25

2014-08-26

7 REFERENCES

- Ross, H. E., D. L. Sicking, R. A. Zimmer, and J. D. Michie. *Recommended Procedures for* the Safety Performance Evaluation. NCHRP Report 350. National Academy Press, Washington, D.C., National Cooperative Highway Research Program, 1993.
- 2. AASHTO. *Manual for Assessing Safety Hardware*. Washington, DC, American Association of State Highway and Transportation Officials, 2009.
- 3. K.K. Mak, R.P. Bligh, and D.L. Bullard, Jr., *Crash Testing and Evaluation of a Low-Speed W-beam Guardrail System*, Report WA-RD 325.1, Texas A&M Transportation Institute, College Station, Texas, 1993.
- 4. R.P. Bligh, A.Y. Abu-Odeh, and W.L. Menges, *MASH Test 3-10 on 31-inch W-Beam Guardrail With Standard Offset Blocks*, Report 9-1002-4, Texas A&M Transportation Institute, College Station, Texas, 2010.
- A.Y. Abu-Odeh, K. Ha, I. Liu, and W.L. Menges, *MASH TL-3Testing and Evaluation of the W-beam Guardrail on Slope*, Report 405160-20, Texas A&M Transportation Institute, College Station, Texas, 2012.

31

MATERIAL USED

TES	ST NU	MBER	602921-1	602921-1										
TES	ST NA	ME	31" W-beam with 12.5' post spa											
DAT	E		2014-07-11											
	#	DATE RECEIVED	DESCRIPTION	GRADE	YIELD	TENSILE	SUPPLIER							
		2013-07-08	W-beam guardrail parts		see file see file		Trinity Trinity							

NUCOR STEEL		٢	METALLURGICAL TE	ST	Da	te Printed: 2/2	4/12	Page 1 c	of 1
SHEET MILL GROUP	Sold TRINIT To P.O. E	Y HIGHWAY OX 566028	PRODUCTS, LLC	Sh	ip TR	INITY HIGHWAY PR	ODUCTS,	LLC	t t
Lickman, AR 870/762-2100	DALLAS	MAILDROP 7 , TX 7535	7115 56 6028		ARM	MOREL, AR 72310			
Order/Line H290779-1	Product	HOT BAND		B/	L #	692926	Ship Da	te 2/24	1/12
P/O Number 147201 M	D	imensions	.0960 MIN x 57.	5000 MIN (INC	HES)		Vehicle	NSA74	
Description A1011-10 SS	GR50								
								PASSE	0 & CERTIF
With the following modif	ications:			Cus	tomer	Part Number 2000	0128	FEB	2 7 2012
Heat 221642 Coil ID Heat 221644 Coil ID	746087.000 746101.000	00 746 00 746	6088.0000 6103.0000					Trinity High Dallas, Te	vay Product
Heat C Mn 221642 .21 .79 . 221644 .20 .76 .	P S S 008 .001 .0 007 .002 .0	51 Cu 03 .16 03 .13	Ni Cr Mo .05 .05 .01 .04 .04 .01	Sn Al .006 .03 .005 .04	V .003 .002	с и dи), еоо, ооо,), 800, 000,	Ci B 001 .00 001 .00	Ca 5 0 .002 .0 0 .002 .0	5b 001 001
Coil ID Dir Test		Val. UC	DM Test	2	Val.	UOM Test		Val	. UOM
746087.0000 L Long	Yield	59.9 KS	SI Long T	ensile	82.0	KSI Long	Elong	19	봉
746088.0000 L Long	Yield	59.9 KS	SI Long T	ensile (32.0	KSI Long	Elong	19	8
746101.0000 L Long	Yield	58.9 KS	SI Long Te	ensile {	31.4	KSI Long	Elong	24	 8
746103.0000 L Long	Yield	58.9 KS	SI Long Te	ensile {	31.4	KSI Long	Elong	24	8
l goods are sold subject to th	e description. s	specification	and terms and con-	Attions and Earth					
<pre>cor Steel's order acknowledgem nsile specimens are tested in 2% offset yield method. Steel is material has been produced chemistry only, testing is not terials certified to most curr : hereby certify the above is c 0% METERS and the statement of the statem</pre>	ent. accordance with is aluminum kill in compliance wi performed by pr ent revision of orrect as contai	ASTM A-370 s ed and produ th the chemi- oducer. ASTM specific ned in the re	specification: stand (ced to a fine grain stry and established (cations. records of the corpor	ard rectangular t practice. d rolling practic	est con es of t	flace and reverse si figuration (Figure 3 he ordered specifics	ide, or of 3) with 2 ation. If	herwise provi inch gauge le material is o	ded with, ngth and rdered to
UN MELTED AND MANUFACTURED IN	THE USA			C	had Gen	try ////	al 1	An la.	

						Certif	ied	Analy	ysis	5							Trinic	HIS		5.6
rinity Hig	ghway Pr	oducts, LLC																		
548 N.E. 2	28th St.					Ord	ler Num	iber: 120071	15 Proc	i Ln Gr	p: 3-0	Guardr	ail (I	Dom)						
t Worth, T?	X 76111					Cu	istomer	PO:										10/12		
ustomer.	SAMPI	ES TESTING TRAININ	G MTRLS			в	OL Num	ber: 47971		Ship I)ate:					A	sor: //	8/13		
dotoiner.	2525 87	EMMONS EPWY				T	locume	nt #• 1												
	2323 81	EMMONS FRW 1				1		шан. 1 100- тът												
							Shipped	10: IX												
	DALLA	S, TX 75207					Use St	ate: TX												
roject:	DOWN	STREAM ANCHOR TX	DOT																5	
Otv	Part #	Description	Spec	CL	ту	Heat Code/ Heat		Yield	TS	Elg	С	Mn	Р	s	Si	Cu	Сь	Cr	Vn .	ACW
4	907G	12/BUFFER/ROLLED	M-180	A	2	4114810		52,300	69,600	32.0	0.190	0.390	0.008	0.003	0.020	0.020	0.001	0.030	0.004	4
	20000	CDI 2//WGC/DDI	1111/			05925														
4	3000G	CBL 3/4X00/DBL	HW			93823														
8	4140B	WD 4'0.25 POST 5.5X7.5	HW			16259														
		CONCURSE OF DUDD A IT	1.26			1019296		52 150	71.010	20.0	0 120	0.700	0.012	0.046	0.220	0.240	0.001	0.060	0.021	
8	19481G	C3X5#X0-8" RUBRAIL	A-30			V918380		55,150	/1,910	29.0	0.150	0.700	0.015	0.040	0.220	0.240	0.001	0.060	0.021	4
4	20207G	12/9'4.5/8-HOLE ANCH/S	RHC			L12013														4
			M-180	А		166224		58,340	74,860	32.3	0.190	0.730	0.0	11 0.004	0.010	0.130	0.00	0 0.090	0.001	4
			M-180	A		166282		58,270	74,990	26.7	0.190	0.720	0.0	11 0.002	0.020	0.120	0.00	0 0.070	0.001	4
			M-180	A		166767		56,550	73,470	27.8	0.190	0.730	0.0	09.0.004	0.010	0.070	0.00	0 0.040	0.001	4
			M-180	A		166768		59,620	75,820	26.8	0.200	0.740	0.0	09 0.004	0.020	0.080	0.00	1 0.050	0.000	4
						166769														4
			M-180	A		167156		57,160	74,250	30.1	0.190	0.71	0.0	08 0.004	0.020	0.090	0.00	0 0.040	0.000	4
			M-180	Α		41315760		67,000	87,600	27.0	0.200	0.87	0.0	07 0.002	2 0.030	0.080	0.00	0 0.030	0.001	4
4	36120A	DAT-31-TX-HDW-CAN	A-500			A64076		62,082	63,261	50.0	0.050	0.410	0.014	0.003	0.030	0.110	0.003	0.070	0.001	4

TL -3 or TL-4 COMPLIANT when installed according to manufactures specifications

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy No. LG-002. ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT. ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36

	Highway Products		
Trinity Highway Products, LLC			
2548 N.E. 28th St.	Order Number: 1200715	Prod Ln Grp: 3-Guardrail (Dom)	
Ft Worth, TX 76111	Customer PO:		Asof: 7/8/13
Customer: SAMPLES, TESTING, TRAINING MTRLS	BOL Number: 47971	Ship Date:	1.0011 //0/10
2525 STEMMONS FRWY	Document #: 1		
	Shipped To: TX		
DALLAS, TX 75207	Use State: TX		
Project: DOWN STREAM ANCHOR TXDOT			
ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFO ALL GALVANIZED MATERIAL CONFORMS WITH ASTM-123 (US ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A123 &	ORMED IN USA AND COMPLIES WITH THE DOMESTIC SHIPMENTS) 2 ISO 1461 (INTERNATIONAL SHIPMENTS)	BUY AMERICA ACT"	
BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND	ARE GALVANIZED IN ACCORDANCE	WITH ASTM A-153, UNLESS OTHE	ERWISE STATED.
NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND	ARE GALVANIZED IN ACCORDANCE V	WITH ASTM A-153, UNLESS OTHER	WISE STATED.

WASHERS COMPLY WITH ASIM F-436 SPECIFICATION AND/OR F-844 AND ARE GALVANIZED IN ACCORDANCE WITH ASIM F-2329. 3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II BREAKING STRENGTH – 46000 LB

State of Texas, County of Tarrant. Sworn and subscribed before me this 8th day of July, 2013

Notary Public: Commission Expires:

JOMARY LUGINSLAND MY COMMISSION EXPIRES May 24, 2015

Jonary Lugenland

Trinity Hig Certified By: uality Assurance

Trinity Highv 2548 N.E. 28t Ft Worth, TX 7 Customer: SA 25 D. Project: SA	way Pro th St. 76111 AMPLE 525 STF 0ALLAS, AMPLE	ducts , LLC SS,TESTING,TRAINING EMMONS FRWY , TX 75207 ES FOR TXDOT CRASI	G MTRLS H TESTIN	G		C 	Order Number: 120038 Customer PO: BOL Number: 47972 Document #: 1	5 Pro	od Ln Grj Ship D	o: 3-0 pate:	duardra	iil (Do	om)		A	sof: 7/2	8/13		
2548 N.E. 28t Ft Worth, TX 7 Customer: S/ 25 D, Project: S/	th St. 76111 AMPLE 525 STF PALLAS, AMPLE	S,TESTING,TRAINING EMMONS FRWY , TX 75207 ES FOR TXDOT CRASI	G MTRLS H TESTIN	G			Order Number: 120038 Customer PO: BOL Number: 47972 Document #: 1	5 Pro	od Ln Gŋ Ship D	o: 3-0 pate:	duardra	ul (Do	om)		A	s o f: 7/3	8/13		
Ft Worth, TX 7 Customer: S/ 25 D. Project: S/	76111 AMPLE 525 STF DALLAS AMPLE	S,TESTING,TRAINING EMMONS FRWY , TX 75207 ES FOR TXDOT CRASI	G MTRLS H TESTIN	G]	Customer PO: BOL Number: 47972 Document #: 1		Ship D	ate:					A	s o f: 7/3	8/13		
Customer: S/ 25 D. Project: S/	AMPLE 525 STE DALLAS,	S,TESTING,TRAINING EMMONS FRWY , TX 75207 ES FOR TXDOT CRASI	G MTRLS H TESTIN	G		1	BOL Number: 47972 Document #: 1		Ship D	ate:					A	sof: 7/3	8/13		
25 D. Project: SA	525 STE OALLAS,	EMMONS FRWY , TX 75207 ES FOR TXDOT CRASI	H TESTIN	G			Document #: 1		omp o										
D. Project: SA	ALLAS,	, TX 75207 ES FOR TXDOT CRASI	HTESTIN	G			Document #. 1												
D. Project: SA	ALLAS,	, TX 75207 ES FOR TXDOT CRASI	HTESTIN	G			Chings of Tax. TV												
D. Project: SA	ALLAS,	, TX 75207 ES FOR TXDOT CRASI	HTESTIN	G			Shipped To: TX												
Project: SA	AMPLE	ES FOR TXDOT CRASI	HTESTIN	G			Use State: TX												
Oty Pa	art#	Description	Spec	CL	тү	Heat Code/ Hea	t Yield	TS	Elg	С	Mn	Р	s	Si	Cu	Сь	Cr	Vn	ACW
8 9	9G	12/12/6/6/3 /S				F11713													
			M-180	A		B302626	63,900	83,400	26.0	0.200	0.700	0.010	0.005	0.020	0.090	0.001	0.050	0.003	4
			M-180	А		B302628	63,900	83,400	26.0	0.200	0.700	0.010	0.005	0.020	0.090	0.001	0.050	0.003	4
			M-180	. A		B302630	60,100	80,300	27.0	0.200	0.730	0.010	0.003	0.030	0.100	0.001	0.050	0.004	4
31 1	1G	12/12/6/31.5/8	N 190			F11713	62.000	83 400	26.0	0 200	0.700	0.010	0.005	0.020	0.000	0.001	0.050	0.002	
			M-180	A		B302626	63,900	83,400	26.0	0.200	0.700	0.010	0.005	0.020	0.090	0.001	0.050	0.003	4
			M-180	A		B302630	60,100	80,300	27.0	0.200	0.730	0.010	0.003	0.020	0.100	0.001	0.050	0.003	4
2 3	30G	12/12'6/S SRT-1	M-180	Α		515667	63,400	72,700	27.0	0.063	0.740	0.012	0.008	0.008	0.019	0.036	0.026	0.000	4
0 2	200	12/12/6/6/2/8 ET2000 ANC				F17313													
6 3	520	12/12 0/0 5/3 E12000 ANC	M-180			233242	58,800	80 200	26.0	0 190	0 790	0.011	0.003	0.020	0 140	0.001	0.060	0.002	4
			M-180	Ā		B303680	60,800	81,300	25.0	0.210	0.720	0.018	0.003	0.030	0.100	0.001	0.060	0.002	4
290 53	33 G	6'0 POST/8.5/DDR	A-36			58013721	62,600	78,300	26.6	0.080	1.020	0.016	0.020	0.230	0.290	0.015	0.160	0.003	4
						50051055	CO 100				0.000								
53	33G		A-36			59054825	60,100	76,100	25.1	0.080	0.830	0.009	0.022	0.240	0.330	0.013	0.130	0.002	4
53	33G		A-36			59054828	61,400	77,000	26.4	0.090	0.900	0.011	0.014	0.200	0.300	0.012	0.150	0.001	4
2 70	01A	.25X11.75X16 CAB ANC	A-36			3039454	54,900	78,100	28.0	0.180	0.870	0.027	0.038	0.200	0.350	0.001	0.160	0.012	4
8 70	/04A	CABLE ANCHOR BRKT	A-500			E46000	68,425	78,404	25.0	0.200	0.810	0.013	0.008	0.013	0.030	0.006	0.030	0.001	4
0 //							00,100		20.0										
2 9	007G	12/BUFFER/ROLLED	M-180	Α	2	4114810	52,300	69,600	32.0	0.190	0.390	0.008	0.003	0.020	0.020	0.001	0.030	0.004	4
8 30	000G	CBL 3/4X66/DBL	HW			95825													

	Certified Analysis														the products								
Trinity Hi	ighway Pı	roducts, LLC																					
2548 N.E.	28th St.					Order Number:	1200385	Prod	Ln Grp	: 3-Gu	ardrai	il (Do	om)										
Ft Worth, I	X 76111					Customer PO:									A	sof:7	/8/13						
Customer:	SAMPI	ES, TESTING, TRAINING	G MTRLS			BOL Number:	47972		Ship Da	ate:													
	2525 ST	TEMMONS FRWY				Document #:	1																
						Shipped To:	TX																
	DALLA	S, TX 75207				Use State:	TX																
Project:	SAMPI	LES FOR TXDOT CRASH	H TESTIN	G																			
Oty	Part #	Description	Spec	сLт	Y Heat Code/ H	leat Yi	eld	TS	Elg	с	Mn	Р	s	Si	Cu	Сь	Cr	Vn /	ACW				
1,216	3340G	5/8" GR HEX NUT	HW		130517N																		
816	3360G	5/8"X1.25" GR BOLT	HW		130531B																		
130	3500G	5/8"X10" GR BOLT A307	A-307		20060370		0	0	0.0	0.000 0.	000 0	.000	0.000	0.000	0.000	0.000	0.000	0.000	4				
80	3540G	5/8"X14" GR BOLT A307	HW		24228																		
16	3900G	1" ROUND WASHER F844	HW		060119																		
16	3910G	1" HEX NUT A563	HW		1244010																		
20	15000G	6'0 SYT PST/8.5/31" GR HT	A-36		11553	49,	000	71,000	25.5	0.120 0	.700 0	.022	0.024	0.250	0.300	0.002	0.260	0.005	4				
8	19258A	HBA-BRG PL/WELDED	A-36		1024916	55,	200	76,900	25.0	0.170 0	.760 0	0.018	0.025	0.170	0.320	0.001	0.150	0.032	4				
TL-3 or	TL-4 CO	MPLIANT when installed	according	g to manui	actures specific	ations																	

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy No. LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT.

ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT"

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM-123 (US DOMESTIC SHIPMENTS)

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A123 & ISO 1461 (INTERNATIONAL SHIPMENTS)

.

2 of 3

	Certified Analys	515	Trinit
frinity Highway Products, LLC			
2548 N.E. 28th St.	Order Number: 1200385	Prod Ln Grp: 3-Guardrail (Dom)	
Ft Worth, TX 76111	Customer PO:		As of: 7/8/13
Customer: SAMPLES, TESTING, TRAINING MTRLS	BOL Number: 47972	Ship Date:	
2525 STEMMONS FRWY	Document #: 1		
	Shipped To: TX		
DALLAS, TX 75207	Use State: TX		
Project: SAMPLES FOR TXDOT CRASH TESTING			
NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND A WASHERS COMPLY WITH ASTM F-436 SPECIFICATION AND/OR F 3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 S	RE GALVANIZED IN ACCORDANCI 7-844 AND ARE GALVANIZED IN ACCO TEEL ANNEALED STUD I" DIA ASTM	B WITH ASTM A-153, UNLESS OTHERW RDANCE WITH ASTM F-2329. 449 AASHTO M30, TYPE II BREAKING	ISE STATED.
NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND A WASHERS COMPLY WITH ASTM F-436 SPECIFICATION AND/OR F 3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 S STRENGTH – 46000 LB State of Texas, County of Tarrant. Sworn and subscribed before me this & Notary Public: Commission Expires: JOMARY LUGINSLAND MY COMMISSION EXPIRES May 24, 2015	RE GALVANIZED IN ACCORDANCI 844 AND ARE GALVANIZED IN ACCO TEEL ANNEALED STUD I" DIA ASTM 3th day of July, 2013	WITH ASTM A-153, UNLESS OTHERWI RDANCE WITH ASTM F-2329. 449 AASHTO M30, TYPE II BREAKING Trinity Highwa Certified By:	ISE STATED.

*

Table A.2. Test Day Static Soil Strength Documentation for Test No. 602921-1.

Date	2014-07-10
Test Facility and Site Location	TTI Proving Ground – 3100 SH 47, Bryan, Tx
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines
Fill Material Description (ASTM D2487) and sieve analysis	AASHTO Grade B Soil-Aggregate (see sieve analysis)
Description of Fill Placement Procedure	6-inch lifts tamped with a pneumatic compactor

APPENDIX D. CRASH TEST NO. 602921-1

D1 VEHICLE PROPERTIES AND INFORMATION

		,	Tabl	le D.1. Veh	icle Pr	operties fo	or Test No. 60	2921-1.					
Date:	2014	-07-10		Test No.:	60292	1-1	VIN No.:	1D7HA18	32588571453	3			
Year:	2008			Make:	Dodge	e	Model:	Ram 150	0 Quad Cab				
Tire Siz	ze:	P265/7	0P17	7		Tii	re Inflation Pres	ssure: <u>35</u>	psi				
Tread	Type:	Highwa	y				Odor	neter: <u>16</u>	3585				
Note a	ny dama	age to th	e vel	hicle prior to	test:	None							
• Den	Denotes accelerometer location.												
NOTES	S: <u>No</u> i	ne			-			⊐由		A A			
Engine Engine	e Type: e CID:	V-8 5.7 li	iter		- - -	M WHEEL TRACK				- N T			
Transn x	nission ⁻ Auto FWD	Type: or <u>x</u> R	WD	_ Manual 4WD		R -			TEST INERTIAL C. M.	•			
Option Nor	al Equip ne	oment:			-								
Dumm Type: Mass Seat	y Data: : Position	No d NA : NA	lumm	ıy	- -				; ; -	► K L			
Geom	etrv:	inches					V M front		¥ M rear				
A	78.25		F	36.00	К	20.50	Р	2.88	U	28.50			
В	75.00		G	28.75	L	29.00	Q	30.50	V	30.50			
С	223.75		н	61.24	M	68.50		16.00	W	61.20			
D	47.25			15.00	N	68.00	S	14.00	X	77.10			
E	140.50		J	26.50	0	46.00	т	77.50					
WI H	heel Cente leight Fror	er nt		14.75 Clé	Wheel earance (F	Well Front)	6.00	Bottom Fra Height - F	ame ront	18.00			
WI H	heel Cente leight Rea	er ar		14.75 CI	Wheel earance (I	Well Rear)	11.00	Bottom Fra Height - F	ame Rear	24.75			
RANGE	E LIMIT: A=7	8 ±2 inches;	C=237 ±	±13 inches; E=148 ±	12 inches; F	=39 ±3 inches; G =	> 28 inches; H = 63 ±4	inches; O=43 ±4 ii	nches; M+N/2=67 ±1	.5 inches			
GVW	R Ratin	gs:		Mass: It)	<u>Curb</u>	Test	Inertial	Gross	<u>s Static</u>			
Front		3700	_	M _{front}		2861	·	2823		2823			
Back		3900	_	M _{rear}		2026		2181		2181			
Total		6700	_	M _{Total}		4887	wable Range for TIM and	5004	+110 lb)	5004			
Mass I Ib	Distribu	tion:	LF:	1447	RF	1376	LR:	1089	RR: <u>10</u>	92			

Date: 2014-07-10 Test No.: 602921-1 VIN: 1D7HA18258S571453									
Year: 2008 Make: Dodge Model: Ram 1500									
Body Style: Quad Cab Mileage: 163585									
Engine: 5.7 liter V-8 Transmission: Automatic									
Fuel Level: Empty			last: 176 lb				(440 lb max)		
Tire Pressure: Front: 35 psi Rear: 35 psi Size: P265/70R17									
Measured Ve	hicle Wei	ghts: (I	b)						
LF:	1447		RF:	1376		Front Axle:	2823		
LR:	1089		RR:	1092		Rear Axle:	2181		
Left:	2536		Right:	2468		Total:	5004		
						5000 ±110	lb allow ed		
Wh	eel Base:	140.5	inches	Track: F:	68.5	inches R:	68	inches	
148 ±12 inches allow ed				Track = (F+R)/2 = 67 ±1.5 inches	allow ed			
Center of Gravity, SAE J874 Suspension Method									
X:	61.24	in	Rear of F	ront Axle	(63 ±4 inches	s allow ed)			
Y:	-0.47	in	Left -	Right +	of Vehicle	Centerline			
Z:	28.75	in	Above Gr	ound	(minumum 28	.0 inches allow ed)			
Hood Height: 46.00 inches Front Bumper Height: 26.50 inches				_ inches					
Front Overhang: <u>36.00</u> inches 39 ±3 inches allowed			Rea	r Bumper	Height:	29.00	_ inches		
Overall Length: <u>223.75</u> inch 237 ±13 inches allowed			_ inches						

Table D.2. Measurements of Vehicle Vertical CG for Test No. 602921-1.

Date: 2014-07-10 Test No.: 602921-1 VIN No.: 1D7HA18258S571453 Year: 2008 Make: Dodge Model: Ram 1500 Quad Cab

Table D.3. Exterior Crush Measurements for Test No. 602921-1.

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete Wh	en Applicable			
End Damage	Side Damage			
Undeformed end width	Bowing: B1 X1			
Corner shift: A1	B2 X2			
A2				
End shift at frame (CDC)	Bowing constant			
(check one)	X1+X2 _			
< 4 inches	=			
≥ 4 inches				

Note: Measure C_1 to C_6 from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C ₁	C_2	C ₃	C ₄	C ₅	C ₆	±D
1	Front plane at bumper ht	16	7	20	1	2	7				+24
2	Side plane at bumper ht	16	9	48	1.25				8	9	+74
	Measurements recorded										
	in inches										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Date:	2014-07-10	Test No.:	602921-1	VIN No.:	1D7HA18258S571453
Year:	2008	Make:	Dodge	Model:	Ram 1500 Quad Cab

Table D.4. Occupant Compartment Measurements for Test No. 602921-1.

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

	Before	After
	(inches)	(inches)
A1	65.00	65.00
A2	65.00	65.00
A3	65.25	65.25
B1	45.25	45.25
B2	39.25	39.25
B3	45.25	45.25
B4	42.00	42.00
B5	45.25	45.25
B6	42.00	42.00
C1	26.75	26.75
C2		
C3	26.50	26.50
D1	13.00	13.00
D2		
D3	11.50	11.50
E1	62.75	62.75
E2	64.50	64.50
E3	64.00	64.00
E4	64.25	64.25
F	60.00	60.00
G	60.00	60.00
Н	39.50	39.50
I	39.50	39.50
J*	62.25	62.25

TR No. 602191-1

D2 SEQUENTIAL PHOTOGRAPHS

Figure D.1. Sequential Photographs for Test No. 602921-1 (Overhead and Frontal Views).

0.000 s

0.098 s

0.196 s

Figure D.1. Sequential Photographs for Test No. 602921-1 (Overhead and Frontal Views) (Continued).

Figure D.2. Vehicle Angular Displacements for Test No. 602921-1.

Figure D.3. Vehicle Longitudinal Accelerometer Trace for Test No. 602921-1 (Accelerometer Located at Center of Gravity).

TR No. 602191-1

Y Acceleration at CG

Figure D.4. Vehicle Lateral Accelerometer Trace for Test No. 602921-1 (Accelerometer Located at Center of Gravity).

Figure D.5. Vehicle Vertical Accelerometer Trace for Test No. 602921-1 (Accelerometer Located at Center of Gravity).

X Acceleration Rear of CG

Figure D.6. Vehicle Longitudinal Accelerometer Trace for Test No. 602921-1 (Accelerometer Located Rear of Center of Gravity).

Y Acceleration Rear of CG

Figure D.7. Vehicle Lateral Accelerometer Trace for Test No. 602921-1 (Accelerometer Located Rear of Center of Gravity).

Z Acceleration Rear of CG

Figure D.8. Vehicle Vertical Accelerometer Trace for Test No. 602921-1 (Accelerometer Located Rear of Center of Gravity).