

# MASH TL-3 TESTING AND EVALUATION OF THE TXDOT T131RC BRIDGE RAIL TRANSITION



Test Report 9-1002-12-4

**Cooperative Research Program** 

TEXAS A&M TRANSPORTATION INSTITUTE THE TEXAS A&M UNIVERSITY SYSTEM COLLEGE STATION, TEXAS

TEXAS DEPARTMENT OF TRANSPORTATION

in cooperation with the Federal Highway Administration and the Texas Department of Transportation http://tti.tamu.edu/documents/9-1002-12-4.pdf

**Technical Report Documentation Page** 

|                                                           |                             | recinical Report Documentation rag    |
|-----------------------------------------------------------|-----------------------------|---------------------------------------|
| 1. Report No.                                             | 2. Government Accession No. | 3. Recipient's Catalog No.            |
| FHWA/TX-13/9-1002-12-4                                    |                             |                                       |
| 4. Title and Subtitle                                     |                             | 5. Report Date                        |
| MASH TL-3 TESTING AND EVALUATION OF THE TXDOT             |                             | October 2012                          |
| T131RC BRIDGE RAIL TRANSIT                                | ION                         | 6. Performing Organization Code       |
|                                                           |                             |                                       |
| 7. Author(s)                                              |                             | 8. Performing Organization Report No. |
| William, F. Williams, Roger P. Bligh, and Wanda L. Menges |                             | Test Report 9-1002-12-4               |
| 9. Performing Organization Name and Address               |                             | 10. Work Unit No. (TRAIS)             |
| Texas A&M Transportation Institute Proving Ground         |                             |                                       |
| College Station, Texas 77843-3135                         |                             | 11. Contract or Grant No.             |
|                                                           |                             | Project 9-1002-12                     |
| 12. Sponsoring Agency Name and Address                    |                             | 13. Type of Report and Period Covered |
| Texas Department of Transportation                        |                             | Test Report:                          |
| Research and Technology Implementation Office             |                             | September 2011–August 2012            |
| P.O. Box 5080                                             |                             | 14. Sponsoring Agency Code            |
| Austin, Texas 78763-5080                                  |                             |                                       |
| 15. Supplementary Notes                                   |                             | · · ·                                 |

Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration.

Project Title: Roadside Safety Device Crash Testing Program

URL: http://tti.tamu.edu/documents/9-1002-12-4.pdf

16. Abstract

This project designed and crash tested a transition design for the Texas Department of Transportation (TxDOT) T131RC Bridge Rail that would meet the strength and safety performance criteria for Test Level 3 of American Association of State Highway Official's (AASHTO) Manual for Assessing Safety Hardware (*MASH*).

The TxDOT T131RC Bridge Rail Transition contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic rail deflection was 7.4 inches. No detached elements, fragments, or other debris were present to penetrate or to show potential for penetrating the occupant compartment, or to present hazard to others. Maximum occupant compartment deformation was 2.5 inches in the left door at occupant hip height. The 1100C vehicle remained upright during and after the collision event. Occupant risk factors were within the limits specified in *MASH*. The 1100C crossed the exit box within the limits specified in *MASH*.

The TxDOT T131RC Bridge Rail Transition contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 8.4 inches. No detached elements, fragments, or other debris were present to penetrate or to show potential for penetrating the occupant compartment, or to present hazard to others. Maximum occupant compartment deformation was 0.25 inch in the left door at occupant hip height. The 2270P vehicle remained upright during and after the collision event. Occupant risk factors were within the limits specified in *MASH*. The 22270P vehicle crossed the exit box within the limits specified in *MASH*. The TxDOT T131RC Bridge Rail Transition performed acceptably as a *MASH* TL-3 transition.

| Run Hunstein performed deceptuory us a ministr H2 e danistion. |                                           |                                                    |                      |           |
|----------------------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------|-----------|
| 17. Key Words                                                  |                                           | 18. Distribution Statement                         |                      |           |
| Bridge Rail, Aesthetic Rail, Longitudinal Barrier,             |                                           | No restrictions. This document is available to the |                      |           |
| Transition, Roadside Hardware, Crash Testing,                  |                                           | public through NTIS:                               |                      |           |
| Roadside Safety                                                |                                           | National Technical Information Service             |                      |           |
|                                                                |                                           | Alexandria, Virginia 22312                         |                      |           |
|                                                                |                                           | http://www.ntis.gov                                |                      |           |
| 19. Security Classif.(of this report)<br>Unclassified          | 20. Security Classif.(of the Unclassified | nis page)                                          | 21. No. of Pages 106 | 22. Price |

### MASH TL-3 TESTING AND EVALUATION OF THE TXDOT T131RC BRIDGE RAIL TRANSITION

by

William F. Williams, P.E. Associate Research Engineer Texas A&M Transportation Institute

Roger P. Bligh, P.E. Research Engineer Texas A&M Transportation Institute

and

Wanda L. Menges Research Specialist Texas A&M Transportation Institute

#### Report 9-1002-12-4 Project 9-1002-12 Project Title: Roadside Safety Device Crash Testing Program

Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration

October 2012

TEXAS A&M TRANSPORTATION INSTITUTE College Station, Texas 77843-3135

### DISCLAIMER

This research was performed in cooperation with the Texas Department of Transportation (TxDOT) and the Federal Highway Administration (FHWA). The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view or policies of the FHWA or TxDOT. This report does not constitute a standard, specification, or regulation, and its contents are not intended for construction, bidding, or permit purposes. In addition, the above listed agencies assume no liability for its contents or use thereof. The United States Government and the State of Texas do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report. The engineer in charge of the project was Roger P. Bligh, P.E. (Texas, #78550).

### TTI PROVING GROUND DISCLAIMER

The results of the crash testing reported herein apply only to the article being tested.



Wanda L. Menges, Research Specialist Deputy Quality Manager

Richard A. Zimmer, Senior Research Specialist Test Facility Manager Quality Manager Technical Manager

### ACKNOWLEDGMENTS

This research project was conducted under a cooperative program between the Texas A&M Transportation Institute, the Texas Department of Transportation, and the Federal Highway Administration. The TxDOT project director for this research was Rory Meza, P.E., Design Division. John Holt, P.E., with the Bridge Division served as project advisor and was also actively involved in all aspects of this research including design conceptualization. The TxDOT research engineer was Wade Odell, P.E., with the Research and Technology Implementation Office. The authors acknowledge and appreciate the guidance and assistance of these individuals.

### **TABLE OF CONTENTS**

| LIST OF FIGURES                                        | ix |  |  |
|--------------------------------------------------------|----|--|--|
| LIST OF TABLES                                         |    |  |  |
| CHAPTER 1. INTRODUCTION                                |    |  |  |
| 1.1 INTRODUCTION                                       |    |  |  |
| 1.2 BACKGROUND                                         | 1  |  |  |
| 1.3 OBJECTIVES/SCOPE OF RESEARCH                       | 1  |  |  |
| CHAPTER 2. SYSTEM DETAILS                              |    |  |  |
| 2.1 TEST ARTICLE DESIGN AND CONSTRUCTION               | 3  |  |  |
| 2.2 MATERIAL SPECIFICATIONS                            | 6  |  |  |
| 2.3 SOIL CONDITIONS                                    | 6  |  |  |
| CHAPTER 3. TEST REQUIREMENTS AND EVALUATION CRITERIA   | 7  |  |  |
| 3.1 CRASH TEST MATRIX                                  | 7  |  |  |
| 3.2 EVALUATION CRITERIA                                |    |  |  |
| CHAPTER 4. CRASH TEST PROCEDURES                       | 9  |  |  |
| 4.1 TEST FACILITY                                      |    |  |  |
| 4.2 VEHICLE TOW AND GUIDANCE PROCEDURES                | 9  |  |  |
| 4.3 DATA ACQUISITION SYSTEMS                           | 9  |  |  |
| 4.3.1 Vehicle Instrumentation and Data Processing      | 9  |  |  |
| 4.3.2 Anthropomorphic Dummy Instrumentation            |    |  |  |
| 4.3.3 Photographic Instrumentation and Data Processing | 10 |  |  |
| CHAPTER 5. CRASH TEST NO. 490022-6 (MASH 3-20)         |    |  |  |
| 5.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS      | 11 |  |  |
| 5.2 TEST VEHICLE                                       | 11 |  |  |
| 5.3 WEATHER CONDITIONS                                 |    |  |  |
| 5.4 TEST DESCRIPTION                                   | 11 |  |  |
| 5.5 DAMAGE TO TEST INSTALLATION                        | 14 |  |  |
| 5.6 VEHICLE DAMAGE                                     |    |  |  |
| 5.7 OCCUPANT RISK FACTORS                              | 14 |  |  |
| 5.8 ASSESSMENT OF TEST RESULTS                         |    |  |  |
| 5.8.1 Structural Adequacy                              | 19 |  |  |
| 5.8.2 Occupant Risk                                    | 19 |  |  |
| 5.8.3 Vehicle Trajectory                               |    |  |  |
| CHAPTER 6. CRASH TEST 490022-8 (MASH 3-21)             |    |  |  |
| 6.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS      | 21 |  |  |
| 6.2 TEST VEHICLE                                       |    |  |  |
| 6.3 WEATHER CONDITIONS                                 | 21 |  |  |
| 6.4 TEST DESCRIPTION                                   |    |  |  |
| 6.5 DAMAGE TO TEST INSTALLATION                        | 24 |  |  |
| 6.6 VEHICLE DAMAGE                                     |    |  |  |
| 6.7 OCCUPANT RISK FACTORS                              | 24 |  |  |

## TABLE OF CONTENTS (CONTINUED)

### Page

| 6.8 ASSESSMENT OF TEST RESULTS                       |
|------------------------------------------------------|
| 6.8.1 Structural Adequacy                            |
| 6.8.2 Occupant Risk                                  |
| 6.8.3 Vehicle Trajectory                             |
| CHAPTER 7. SUMMARY AND CONCLUSIONS                   |
| 7.1 SUMMARY OF CRASH TEST RESULTS                    |
| 7.1.1 Crash Test No. 490022-6 (MASH Test 3-20)       |
| 7.1.2 Crash Test No. 490022-8 (MASH Test 3-21)       |
| 7.2 CONCLUSIONS                                      |
| CHAPTER 8. IMPLEMENTATION STATEMENT                  |
| REFERENCES                                           |
| APPENDIX A. DETAILS OF THE T131RC TRANSITION         |
| APPENDIX B. CERTIFICATION DOCUMENTATION              |
| APPENDIX C. SOIL PROPERTIES                          |
| APPENDIX D. CRASH TEST NO. 490022-6 (MASH TEST 3-20) |
| D1. TEST VEHICLE PROPERTIES AND INFORMATION          |
| D2. SEQUENTIAL PHOTOGRAPHS                           |
| D3. VEHICLE ANGULAR DISPLACEMENTS                    |
| D4. VEHICLE ACCELERATIONS                            |
| APPENDIX E. CRASH TEST NO. 490022-8 (MASH TEST 3-21) |
| E1. TEST VEHICLE PROPERTIES AND INFORMATION          |
| E2. SEQUENTIAL PHOTOGRAPHS                           |
| E3. VEHICLE ANGULAR DISPLACEMENTS                    |
| E4. VEHICLE ACCELERATIONS                            |

## LIST OF FIGURES

## Figure

| Figure 2.1. | Details of the TxDOT T131RC Bridge Rail Transition Installation             | . 4 |
|-------------|-----------------------------------------------------------------------------|-----|
| Figure 2.2. | TxDOT T131RC Bridge Rail Transition before Testing                          |     |
| Figure 5.1. | Vehicle/TxDOT T131RC Bridge Rail Transition Geometrics for Test No.         |     |
|             | 490022-6                                                                    |     |
| Figure 5.2. | Vehicle before Test No. 490022-6                                            | 13  |
| Figure 5.3. | Vehicle/TxDOT T131RC Bridge Rail Transition Positions after Test No.        |     |
|             | 490022-6                                                                    |     |
| Figure 5.4. | TxDOT T131RC Bridge Rail Transition after Test No. 490022-6                 |     |
| Figure 5.5. | Vehicle after Test No. 490022-6                                             | 17  |
| Figure 5.6. | Summary of Results for MASH Test 3-20 on the TxDOT T131RC Bridge Rail       |     |
|             | Transition.                                                                 | 18  |
| Figure 6.1. | Vehicle/TxDOT T131RC Bridge Rail Transition Geometrics for Test No.         |     |
|             | 490022-8                                                                    |     |
| Figure 6.2. | Vehicle before Test No. 490022-8                                            | 23  |
| Figure 6.3. | Vehicle/TxDOT T131RC Bridge Rail Transition Positions after Test No.        |     |
|             | 490022-8                                                                    |     |
| Figure 6.4. | TxDOT T131RC Bridge Rail Transition after Test No. 490022-8                 |     |
| Figure 6.5. | Vehicle after Test No. 490022-8                                             |     |
| Figure 6.6. | Interior of Vehicle for Test No. 490022-8.                                  | 28  |
| Figure 6.7. | Summary of Results for MASH Test 3-21 on the TxDOT T131RC Bridge Rail       |     |
|             | Transition.                                                                 |     |
| Figure C1.  | Summary of Strong Soil Test Results for Establishing Installation Procedure |     |
| Figure C2.  | Test Day Static Soil Strength Documentation for Test No. 490022-6           | 62  |
| Figure C3.  | Test Day Static Soil Strength Documentation for Test No. 490022-8           | 63  |
| Figure D1.  | Sequential Photographs for Test No. 490022-6 (Overhead and Frontal Views)   | 68  |
| Figure D2.  | Sequential Photographs for Test No. 490022-6 (Field Side Transition Views)  | 70  |
| Figure D3.  | Vehicle Angular Displacements for Test No. 490022-6                         | 72  |
| Figure D4.  | Vehicle Longitudinal Accelerometer Trace for Test No. 490022-6              |     |
|             | (Accelerometer Located at Center of Gravity).                               | 73  |
| Figure D5.  | Vehicle Lateral Accelerometer Trace for Test No. 490022-6 (Accelerometer    |     |
|             | Located at Center of Gravity).                                              | 74  |
| Figure D6.  | Vehicle Vertical Accelerometer Trace for Test No. 490022-6 (Accelerometer   |     |
|             | Located at Center of Gravity).                                              | 75  |
| Figure D7.  | Vehicle Longitudinal Accelerometer Trace for Test No. 490022-6              |     |
|             | (Accelerometer Located Rear of Center of Gravity).                          | 76  |
| Figure D8.  | Vehicle Lateral Accelerometer Trace for Test No. 490022-6 (Accelerometer    |     |
|             | Located Rear of Center of Gravity).                                         | 77  |
| Figure D9.  | Vehicle Vertical Accelerometer Trace for Test No. 490022-6 (Accelerometer   |     |
| -           | Located Rear of Center of Gravity).                                         | 78  |
| Figure E1.  | Sequential Photographs for Test No. 490022-8 (Overhead and Frontal Views)   | 83  |
| Figure E2.  | Vehicle Angular Displacements for Test No. 490022-8                         |     |

## LIST OF FIGURES (CONTINUED)

## Figure

### Page

| Figure E3. | Vehicle Longitudinal Accelerometer Trace for Test No. 490022-8            |      |
|------------|---------------------------------------------------------------------------|------|
|            | (Accelerometer Located at Center of Gravity).                             | . 86 |
| Figure E4. | Vehicle Lateral Accelerometer Trace for Test No. 490022-8 (Accelerometer  |      |
|            | Located at Center of Gravity).                                            | . 87 |
| Figure E5. | Vehicle Vertical Accelerometer Trace for Test No. 490022-8 (Accelerometer |      |
|            | Located at Center of Gravity).                                            | . 88 |
| Figure E6. | Vehicle Longitudinal Accelerometer Trace for Test No. 490022-8            |      |
|            | (Accelerometer Located Rear of Center of Gravity).                        | . 89 |
| Figure E7. | Vehicle Lateral Accelerometer Trace for Test No. 490022-8 (Accelerometer  |      |
|            | Located Rear of Center of Gravity).                                       | . 90 |
| Figure E8. | Vehicle Vertical Accelerometer Trace for Test No. 490022-8 (Accelerometer |      |
|            | Located Rear of Center of Gravity).                                       | . 91 |
|            |                                                                           |      |

## LIST OF TABLES

### Table

| Table 7.1. | Performance Evaluation Summary for MASH Test 3-20 on the TxDOT |    |
|------------|----------------------------------------------------------------|----|
|            | T131RC Bridge Rail Transition                                  | 34 |
| Table 7.2. | Performance Evaluation Summary for MASH Test 3-21 on the TxDOT |    |
|            | T131RC Bridge Rail Transition.                                 | 35 |
| Table D1.  | Vehicle Properties for Test No. 490022-6.                      | 65 |
| Table D2.  | Exterior Crush Measurements for Test No. 490022-6              | 66 |
| Table D3.  | Occupant Compartment Measurements for Test No. 490022-6.       | 67 |
| Table E1.  | Vehicle Properties for Test No. 490022-8.                      | 79 |
| Table E2.  | Vehicle Parametric Measurements for Vertical CG.               | 80 |
| Table E3.  | Exterior Crush Measurements for Test No. 490022-8              | 81 |
| Table E4.  | Occupant Compartment Measurements for Test No. 490022-8.       | 82 |
|            |                                                                |    |

### **CHAPTER 1. INTRODUCTION**

#### **1.1 INTRODUCTION**

This project was set up to provide the Texas Department of Transportation (TxDOT) with a mechanism to quickly and effectively evaluate high-priority issues related to roadside safety devices. Roadside safety devices shield motorists from roadside hazards such as non-traversable terrain and fixed objects. To maintain the desired level of safety for the motoring public, these safety devices must be designed to accommodate a variety of site conditions, placement locations, and a changing vehicle fleet. Periodically, there is a need to assess the compliance of existing safety devices with current vehicle testing criteria and develop new devices that address identified needs.

Under this project, roadside safety issues are identified and prioritized for investigation. Each roadside safety issue is addressed with a separate work plan, and the results are summarized in individual test reports.

#### **1.2 BACKGROUND**

The TxDOT Type T101RC Bridge Rail has been widely used as a retrofit for obsolete bridge rails mounted on a deck curb. The T101RC was 27 inches in height and anchored to the curb using four adhesive anchors. The height of the posts and the number of bridge rail elements varied depending on the height of the concrete curb. Based on unsatisfactory crash test performance of rail designs of similar height, TxDOT decided to develop a new retrofit bridge rail system that meets the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH)* (1). This new bridge rail system, known as the TxDOT T131RC Bridge Rail, was successfully crash tested in according with *MASH* Test Level 3 (TL-3) and was recommended for implementation on new or retrofit railing applications (2). The implementation of this new bridge rail created a need to develop a transition from standard guardrail to the TxDOT T131RC Bridge Rail.

#### 1.3 OBJECTIVES/SCOPE OF RESEARCH

This project developed a transition for connecting a 31-inch tall W-beam guardrail to the TxDOT T131RC Bridge Rail. The transition was required to meet the impact performance criteria for *MASH* TL-3.

### **CHAPTER 2. SYSTEM DETAILS**

#### 2.1 TEST ARTICLE DESIGN AND CONSTRUCTION

The TxDOT T131RC Bridge Rail Transition consists of a two nested 12 gage three beam sections supported by six W6×8.5 posts spaced at  $37\frac{1}{2}$  inches on centers. The nested three beams connect to a 10 gage asymmetric transition piece on the upstream end. This asymmetric transition section was connected to approximately 56 ft-3 inches of W-beam guardrail with an ET anchor terminal. The nested three beam transition was connected to a 10 gage end shoe on the downstream end. This end shoe was anchored to the end of the T131RC Bridge Rail. The overall length of the test installation was approximately 79 ft-6<sup>3</sup>/<sub>4</sub> inches.

The height to the top of the W-beam guardrail and transition was 31 inches above finished grade. The end shoe rail of the nested thrie beam sections were attached to the traffic face of the HSS6×6×1/4 tubes used for the T131RC Bridge Rail. Two steel fill blocks were located between the HSS6×6×1/4 tubes and were attached to the T131RC Bridge Rail tubes using two <sup>3</sup>/<sub>4</sub>-inch diameter × 20 inches long bolts. These fill blocks were mounted flush to the HSS6×6×<sup>1</sup>/<sub>4</sub> tubes in the bridge rail. The fill blocks were fabricated using HSS6×6×<sup>1</sup>/<sub>4</sub> tubes and were tapered on the exposed end in the installation. The thrie beam transition end shoe was attached to the end of the T131RC Bridge Rail using three  $\frac{7}{8}$ -inch diameter A325 bolts. The thrie beam end shoe was anchored to the end of the rail and fill blocks near the W6×15 anchor post in the concrete curb. This anchor post was anchored within a 12-inch diameter by 30-inch deep concrete footing. This post and footing was constructed within an 80-inch long concrete curb constructed on the end of the T131RC Bridge Rail test installation.

Texas A&M Transportation Institute (TTI) Proving Ground personnel constructed 80 inches of concrete curb for this project. This concrete curb was 12 inches wide and 11 inches high and closely matched the traffic side face of the concrete curb used for the T131RC Bridge Rail. The concrete curb extended approximately 62 inches from the end of the T131RC Bridge Rail curb and tapered 6 inches back from the traffic side over a distance of 18 inches. The width of the curb was 6 inches at the end. The curb was 11 inches in height above grade and 12 inches below grade. A W6×15 end anchor post was located 60 inches from the centerline of the last T131RC Bridge Rail post located on the bridge rail test installation. This anchor post was cast within a 12-inch diameter by 30-inch deep unreinforced concrete footing. This footing was cast monolithically with the concrete curb. The concrete transition curb was not anchored to the concrete curb or deck for the T131RC Bridge Rail installation. Reinforcement in the concrete curb and footing consisted of #3 "U" shaped stirrups spaced approximately 10 inches on centers. Six #3 longitudinal bars were located within these stirrups. Concrete for the concrete curb and footing was specified to be 3600 psi.

Figure 2.1 gives overall details of the TxDOT T131RC Bridge Rail Transition, and a complete set of drawings can be found in Appendix A. Figure 2.2 shows photographs of the completed installation prior to testing.



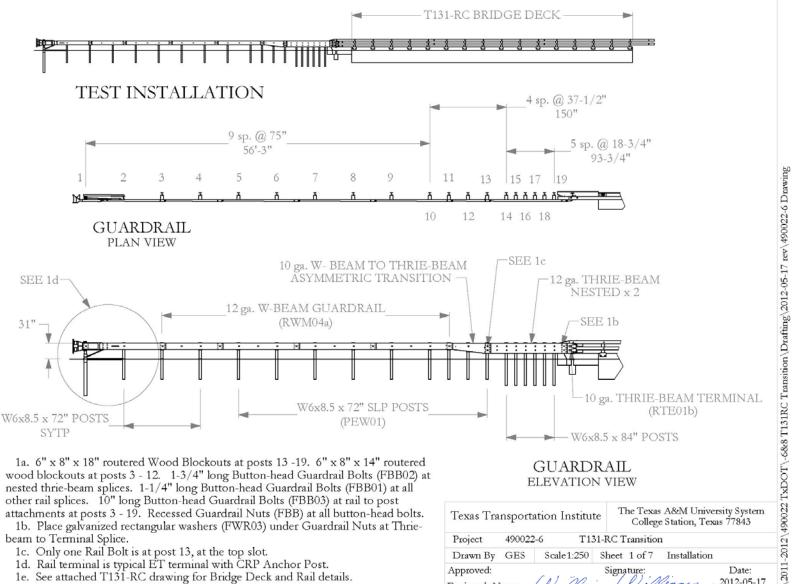



Figure 2.1. Details of the TxDOT T131RC Bridge Rail Transition Installation.

Engineer's Name:

2012-05-17

÷

elleans

Nean

4



Figure 2.2. TxDOT T131RC Bridge Rail Transition before Testing.

#### 2.2 MATERIAL SPECIFICATIONS

The fill blocks were fabricated using  $HSS6 \times 6 \times \frac{1}{4}$  A500 Grade B material with welded A36 plate. All tubular rail elements were fabricated using  $HSS6 \times 6 \times \frac{1}{4}$  A500 Grade B material. All reinforcing steel was specified to be ASTM A615 grade 60 material. All hex head bolts connecting the end shoe to the T131RC bridge rail were specified to be A325 structural bolts. All other bolts (button head bolts) used in the installation were A307 grade. Appendix B provides the material certification documents.

Concrete for the concrete curb and footing was specified to be 3600 psi. Compressive strength on the concrete used to construct the curb was measured at 4038 psi on the day of test no. 490022-6 (7 days of age). Compressive strength of the concrete on the day of test no. 490022-8 (11 days of age) was measured at 4436 psi.

#### 2.3 SOIL CONDITIONS

In accordance with Appendix B of *MASH*, soil strength was measured on the day of each crash test. During installation of the TxDOT T131RC Bridge Rail Transition, two standard W6×16 posts were installed in the immediate vicinity of the transition, utilizing the same fill materials and installation procedures followed for the guardrail system and used in the reference tests (see Appendix C, Figure C1).

As the reference tests in Appendix C, Figure C1 show, the minimum post loads required for deflections at 5 inches, 10 inches, and 15 inches, measured at a height of 25 inches, are 3940 lb, 5500 lb, and 6540 lb, respectively (90 percent of static load for the initial standard installation).

On the day of test 490022-6, May 25, 2012, load on the test post at deflections of 5 inches, 10 inches, and 15 inches was 8969 lbf, 9575 lbf, and 9181 lbf, respectively. The strength of the backfill material met minimum requirements (see Appendix C, Figure C2).

On the day of test 490022-8, June 29, 2012, load on the test post at deflections of 5 inches, 10 inches, and 15 inches was 7667 lbf, 7636 lbf, and 7333 lbf, respectively. The strength of the backfill material met minimum requirements.

### **CHAPTER 3. TEST REQUIREMENTS AND EVALUATION CRITERIA**

### 3.1 CRASH TEST MATRIX

According to *MASH*, two tests are recommended to evaluate bridge rail transitions to test level three (TL-3).

*MASH* Test Designation 3-20: A 2425-lb vehicle impacting the critical impact point (CIP) of the transition at a nominal impact speed and angle of 62 mi/h and 25 degrees, respectively. This test investigates a barrier's ability to successfully contain and redirect a small passenger vehicle.

*MASH* Test Designation 3-21: A 5000-lb pickup truck impacting the CIP of the transition at a nominal impact speed and angle of 62 mi/h and 25 degrees, respectively. This test investigates a barrier's ability to successfully contain and redirect light trucks and sport utility vehicles.

*MASH* test 3-20 for a transition section is an optional test to evaluate the occupant risk and post-impact trajectory criteria for all test levels. This test should be conducted if there is reasonable uncertainty regarding the impact performance of the system for impacts with small passenger vehicle. Due to the geometry of the transition design and certain structural components in the transition area, namely the curb, the research team decided that this test was necessary to evaluate the crash performance of the new transition design.

Procedures in *MASH* section 2.3.2.1 were used by the research team to calculate the CIP for each test. The target CIP for *MASH* test 3-20 with the small car was 5.0 ft upstream of centerline of anchor post in concrete curb (post 20). The target CIP for *MASH* test 3-21 with the pickup was 6.8 ft upstream of centerline of anchor post in concrete curb (post 20).

The crash test and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

### 3.2 EVALUATION CRITERIA

The crash test was evaluated in accordance with the criteria presented in *MASH*. The performance of the TxDOT T131RC Bridge Rail Transition is judged on the basis of three factors: structural adequacy, occupant risk, and post impact vehicle trajectory. Structural adequacy is judged upon the ability of the TxDOT T131RC Bridge Rail Transition to contain and redirect the vehicle, or bring the vehicle to a controlled stop in a predictable manner. Occupant risk criteria evaluate the potential risk of hazard to occupants in the impacting vehicle, and, to some extent, other traffic, pedestrians, or workers in construction zones, if applicable. Post-impact vehicle trajectory is assessed to determine potential for secondary impact with other vehicles or fixed objects, creating further risk of injury to occupants of the impacting vehicle and/or risk of injury to occupants in other vehicles. The appropriate safety evaluation criteria

from Table 5-1 of *MASH* were used to evaluate the crash test reported here and are listed in further detail under the assessment of the crash test.

### **CHAPTER 4. CRASH TEST PROCEDURES**

#### 4.1 TEST FACILITY

The full-scale crash tests reported herein were performed at Texas A&M Transportation Institute (TTI) Proving Ground, an International Standards Organization (ISO) 17025 accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing certificate 2821.01. The full-scale crash test was performed according to TTI Proving Ground quality procedures and according to the *MASH* guidelines and standards.

The TTI Proving Ground is a 2000-acre complex of research and training facilities located 10 miles northwest of the main campus of Texas A&M University. The site, formerly an Air Force base, has large expanses of concrete runways and parking aprons well-suited for experimental research and testing in the areas of vehicle performance and handling, vehicleroadway interaction, durability and efficacy of highway pavements, and safety evaluation of roadside safety hardware. The site selected for construction and testing of the TxDOT T131RC Bridge Rail Transition evaluated under this project was along the edge of an out-of-service apron. The apron consists of an unreinforced jointed-concrete pavement in 12.5 ft  $\times$  15 ft blocks nominally 6 inches deep. The apron is over 60 years old, and the joints have some displacement, but are otherwise flat and level.

#### 4.2 VEHICLE TOW AND GUIDANCE PROCEDURES

Each test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A two-to-one speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released to be unrestrained. The vehicle remained free-wheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site, after which the brakes were activated to bring it to a safe and controlled stop.

#### 4.3 DATA ACQUISITION SYSTEMS

#### 4.3.1 Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained, on-board data acquisition system. The signal conditioning and acquisition system is a 16-channel, Tiny Data Acquisition System (TDAS) Pro produced by Diversified Technical Systems, Inc. The accelerometers, that measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small size, solid state units designs for crash test service. The TDAS Pro hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of

the 16 channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 values per second with a resolution of one part in 65,536. Once recorded, the data are backed up inside the unit by internal batteries should the primary battery cable be severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark as well as initiating the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The raw data are then processed by the Test Risk Assessment Program (TRAP) software to produce detailed reports of the test results. Each of the TDAS Pro units are returned to the factory annually for complete recalibration. Accelerometers and rate transducers are also calibrated annually with traceability to the National Institute for Standards and Technology. Acceleration data are measured with an expanded uncertainty of  $\pm 1.7$  percent at a confidence factor of 95 percent (k=2).

TRAP uses the data from the TDAS Pro to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with a 60-Hz digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate systems being initial impact. Rate of rotation data is measured with an expanded uncertainty of  $\pm 0.7$  percent at a confidence factor of 95 percent (k=2).

#### 4.3.2 Anthropomorphic Dummy Instrumentation

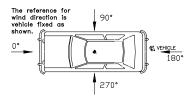
An Alderson Research Laboratories Hybrid II, 50<sup>th</sup> percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the driver's position of the 1100C vehicle. The dummy was uninstrumented. According to *MASH*, the use of a dummy in the 2270P vehicle is optional. Researchers did not use a dummy in the test with the 2270P vehicle.

#### 4.3.3 Photographic Instrumentation and Data Processing

Photographic coverage of the tests included three high-speed cameras: one overhead with a field of view perpendicular to the ground and directly over the impact point; one placed behind the installation at an angle; and a third placed to have a field of view parallel to and aligned with the installation at the downstream end. A flashbulb activated by pressure-sensitive tape switches was positioned on the impacting vehicle to indicate the instant of contact with the installation and was visible from each camera. The films from these high-speed cameras were analyzed on a computer-linked motion analyzer to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A mini-DV camera and still cameras recorded and documented conditions of the test vehicle and installation before and after the test.

### CHAPTER 5. CRASH TEST NO. 490022-6 (MASH 3-20)

#### 5.1 **TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS**


MASH test 3-20 involves an 1100C vehicle weighing 2425 lb  $\pm 55$  lb and impacting the test article at an impact speed of 62.2 mi/h  $\pm$ 2.5 mi/h and an angle of 25 degrees  $\pm$ 1.5 degrees. The target impact point was 5.0 ft upstream of centerline of anchor post in concrete curb (post 20). The 2006 Kia Rio used in the test weighed 2423 lb and the actual impact speed and angle were 61.5 mi/h and 25.6 degrees, respectively. The actual impact point was 5.0 ft (60.5 inches) upstream of post 20. Target impact severity (IS) was 55.7 kip-ft, and the actual IS was 57.2 kip-ft.

#### 5.2 **TEST VEHICLE**

A 2006 Kia Rio, shown in Figures 5.1 and 5.2, was used for the crash test. Test inertia weight of the vehicle was 2423 lb, and its gross static weight was 2602 lb. The height to the lower edge of the vehicle bumper was 7.12 inches, and it was 21.00 inches to the upper edge of the bumper. Table D1 in Appendix D give additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be free-wheeling just prior to impact.

#### 5.3 WEATHER CONDITIONS

The test was performed on the morning of May 25, 2012. Weather conditions at the time of testing were as follows: wind speed: 14 mi/h; wind direction: 168 degrees with respect to the vehicle (vehicle was traveling in a northwesterly direction), temperature: 86°F, relative humidity: 65 percent.



#### 5.4 **TEST DESCRIPTION**

The 2006 Kia Rio, traveling at an impact speed of 61.5 mi/h, impacted the TxDOT T131RC Bridge Rail Transition 60.5 inches upstream of post 20 at an impact angle of 25.6 degrees. At approximately 0.012 s after impact, the thrie beam guardrail began to deflect toward the field side, and at 0.024 s, the vehicle began to redirect. The concrete transition curb began to deflect toward the field side at 0.029 s, and a crack formed in the concrete bridge rail curb downstream of post 21 at 0.053 s. The concrete bridge rail curb under post 21 began to crack at 0.057 s with some of the pieces of concrete spalling off at 0.220 s. At 0.307 s, the vehicle lost contact with the bridge rail traveling at an exit speed and angle of 44.8 mi/h and 4.4 degrees, respectively. Brakes on the vehicle were not applied, and the vehicle came to rest 180 ft downstream of impact and 21 ft toward traffic lanes. Figures D1 and D2 in Appendix D show sequential photographs of the test period.

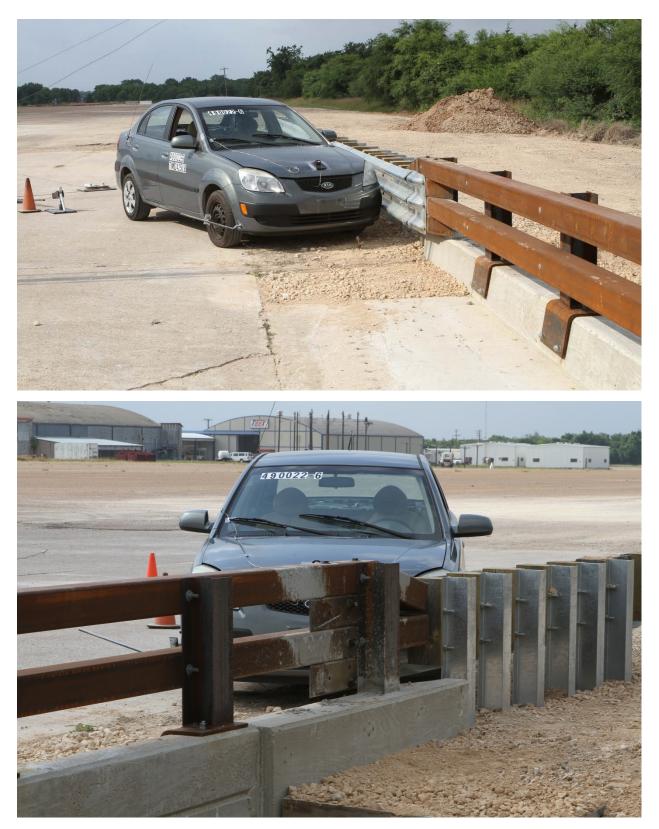



Figure 5.1. Vehicle/TxDOT T131RC Bridge Rail Transition Geometrics for Test No. 490022-6.



Figure 5.2. Vehicle before Test No. 490022-6.

#### 5.5 DAMAGE TO TEST INSTALLATION

Figures 5.3 and 5.4 show damage to the T131RC Transition and bridge rail. The transition curb deflected toward the field side 0.5 inch. No cracking of the transition curb was noted. The concrete curb around post 21 was cracked significantly, and there was minor cracking around post 22. The vehicle was in contact with the installation 13.3 ft. Vehicle intrusion (formerly working width) was 7.4 inches. Maximum deflection of the thrie beam guardrail during the test was 7.4 inches, and maximum residual deformation after the test was 1.25 inches.

#### 5.6 VEHICLE DAMAGE

Figure 5.5 presents damage to the 1100C vehicle. The left strut and strut tower were deformed. The front bumper, grill, hood, radiator, radiator support, left front fender, left front tire and wheel rim, left front door, left rear door, left rear quarter panel were deformed. The windshield sustained stress cracks from the left lower corner. Maximum crush to the exterior of the vehicle was 12.0 inches in the front plane in the left front corner at bumper height. Maximum occupant compartment deformation was 2.5 inches in the left front door near occupant hip height. The floor pan and firewall were also deformed. Tables D2 and D3 in Appendix D present the exterior crush profile and occupant compartment deformations.

### 5.7 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was 21.0 ft/s at 0.080 s, the highest 0.010-s occupant ridedown acceleration was 6.1 Gs from 0.083 to 0.093 s, and the maximum 0.050-s average acceleration was -10.8 Gs between 0.023 and 0.073 s. In the lateral direction, the occupant impact velocity was 27.6 ft/s at 0.080 s, the highest 0.010-s occupant ridedown acceleration was 6.3 Gs from 0.118 to 0.128 s, and the maximum 0.050-s average was 15.3 Gs between 0.025 and 0.075 s. Theoretical Head Impact Velocity (THIV) was 37.7 km/h or 10.5 m/s at 0.078 s; Post-Impact Head Decelerations (PHD) was 6.9 Gs between 0.117 and 0.127 s; and Acceleration Severity Index (ASI) was 1.92 between 0.025 and 0.075 s. Figure 5.6 summarizes these data and other pertinent information from the test. Vehicle angular displacements and accelerations versus time traces are presented in Appendix D, Figures D3 through D9.



Figure 5.3. Vehicle/TxDOT T131RC Bridge Rail Transition Positions after Test No. 490022-6.





Figure 5.4. TxDOT T131RC Bridge Rail Transition after Test No. 490022-6.

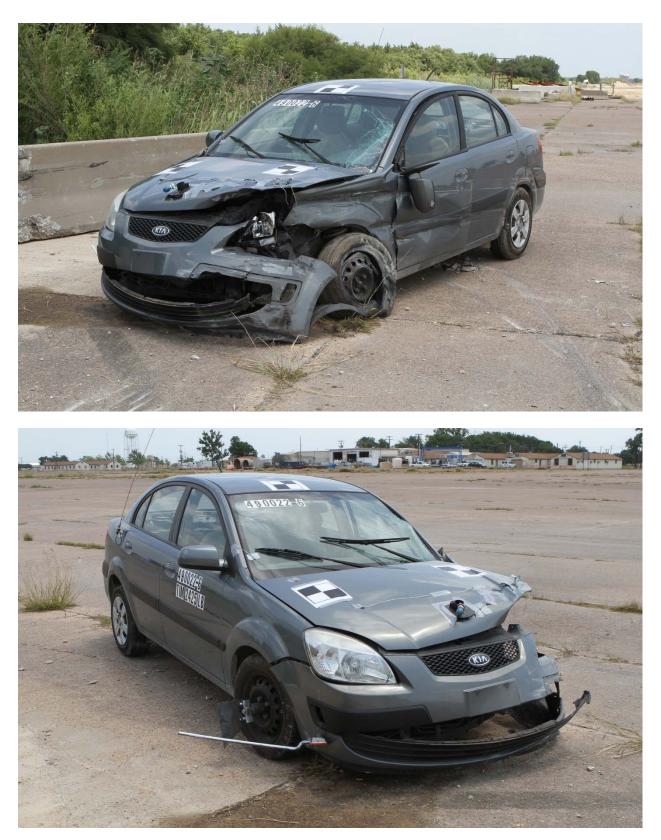
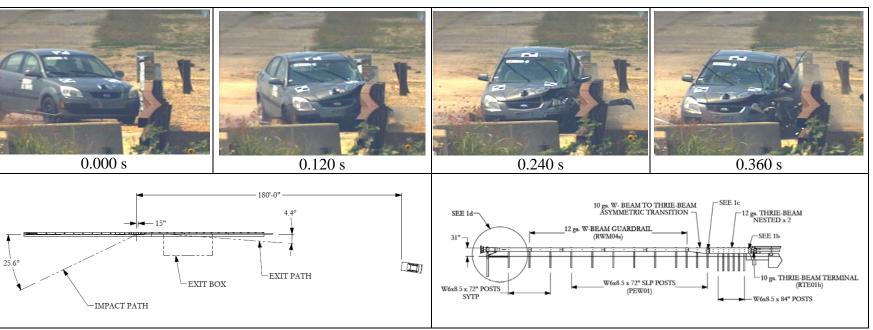




Figure 5.5. Vehicle after Test No. 490022-6.



TR No. 9-1002-12-4

| General Information   |
|-----------------------|
| Test Agency           |
| Test Standard Test No |
| TTI Test No           |

| General information                     |                                          |
|-----------------------------------------|------------------------------------------|
| Test Agency                             | Texas A&M Transportation Institute (TTI) |
| Test Standard Test No I                 | MASH Test 3-20                           |
| TTI Test No                             | 49002-6                                  |
| Test Date                               | 2012-05-25                               |
| Test Article                            |                                          |
| Туре                                    | Transition                               |
| Name                                    | TxDOT T131RC                             |
| Installation Length                     | 76.5 ft                                  |
| Material or Key Elements                | W-beam to thrie beam asymmetric          |
| t i i i i i i i i i i i i i i i i i i i | transition to nested thrie beam on       |
| N N                                     | W6x8.5 x 84-inch posts                   |
| Soil Type and Condition                 | Standard soil, dry                       |
| Test Vehicle                            |                                          |
| Type/Designation                        | 1100C                                    |
| Make and Model                          | 2006 Kia Rio                             |
| Curb                                    | 2489 lh                                  |

| 2403 | ID                          |
|------|-----------------------------|
| 2423 | lb                          |
| 179  | lb                          |
| 2602 | lb                          |
|      | 2403<br>2423<br>179<br>2602 |

#### Impact Conditions

| 51.5 mi/h         |
|-------------------|
| 5.6 degrees       |
| ft upstrm post 20 |
|                   |
| 4.8 mi/h          |
| .4 degrees        |
| 0                 |
|                   |
| 1.0 ft/s          |
| .7.6 ft/s         |
|                   |
| 5.1 G             |
| 5.3 G             |
| 7.7 km/h          |
| 5.9 G             |
| .92               |
|                   |
| ·10.8 G           |
| 5.3 G             |
| 1.7 G             |
|                   |

#### Post-Impact Trajectory

| i ost-impact majectory    |                   |
|---------------------------|-------------------|
| Stopping Distance         | 180 ft dwnstrm    |
|                           | 21 ft twd traffic |
| Vehicle Stability         |                   |
| Maximum Yaw Angle         | 33 degrees        |
| Maximum Pitch Angle       | 6 degrees         |
| Maximum Roll Angle        | 5 degrees         |
| Vehicle Snagging          | No                |
| Vehicle Pocketing         | No                |
| Test Article Deflections  |                   |
| Dynamic                   | 7.4 inches        |
| Permanent                 |                   |
| Vehicle Penetration       | 21.0 inches       |
| Vehicle Damage            |                   |
| VDS                       | 11LFQ5            |
| CDC                       | 11FLEW4           |
| Max. Exterior Deformation | 12.0 inches       |
| OCDI                      | LF0000010         |
| Max. Occupant Compartment |                   |
| Deformation               | 2.5 inches        |
|                           |                   |

Figure 5.6. Summary of Results for MASH Test 3-20 on the TxDOT T131RC Bridge Rail Transition.

#### 5.8 ASSESSMENT OF TEST RESULTS

An assessment of the test based on the applicable *MASH* safety evaluation criteria is provided below.

#### 5.8.1 Structural Adequacy

- A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
- <u>Results</u>: The TxDOT T131RC Bridge Rail Transition contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 7.4 inches. (PASS)

#### 5.8.2 Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.

Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof  $\leq 4.0$  inches; windshield =  $\leq 3.0$  inches; side windows = no shattering by test article structural member; wheel/foot well/toe pan  $\leq 9.0$  inches; forward of A-pillar  $\leq 12.0$  inches; front side door area above seat  $\leq 9.0$  inches; front side door below seat  $\leq 12.0$  inches; floor pan/transmission tunnel area  $\leq 12.0$  inches).

- Results:No detached elements, fragments, or other debris were present to penetrate<br/>or to show potential for penetrating the occupant compartment, or to<br/>present hazard to others. (PASS)<br/>Maximum occupant compartment deformation was 2.5 inches in the left<br/>door at occupant hip height. (PASS)
- *F.* The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.
- <u>Results</u>: The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 5 degrees and 6 degrees, respectively. (PASS)
- H. Occupant impact velocities should satisfy the following: <u>Longitudinal and Lateral Occupant Impact Velocity</u> <u>Preferred</u> <u>30 ft/s</u> <u>40 ft/s</u>

<u>Results</u>: Longitudinal occupant impact velocity was 21.0 ft/s, and lateral occupant impact velocity was 27.6 ft/s. (PASS)

| Ι. | Occupant ridedown accelerations should satisfy the following: |                |
|----|---------------------------------------------------------------|----------------|
|    | Longitudinal and Lateral Occupant Ridedown Accelerations      |                |
|    | <u>Preferred</u>                                              | <u>Maximum</u> |
|    | 15.0 Gs                                                       | 20.49 Gs       |

<u>Results</u>: Longitudinal occupant ridedown acceleration was 6.1 G, and lateral occupant ridedown acceleration was 6.3 G. (PASS)

### 5.8.3 Vehicle Trajectory

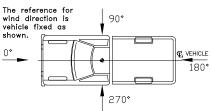
*For redirective devices, the vehicle shall exit the barrier within the exit box (not less than 32.8 ft).* 

<u>Result</u>: The 1100C crossed the exit box 80.1 ft downstream of loss of contact with the installation. (PASS)

### CHAPTER 6. CRASH TEST 490022-8 (MASH 3-21)

#### 6.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

*MASH* test 3-11 involves a 2270P vehicle weighing 5000 lb  $\pm$ 100 lb and impacting the test article at an impact speed of 62.2 mi/h  $\pm$ 2.5 mi/h and an angle of 25 degrees  $\pm$ 1.5 degrees. The target impact point was 6.8 ft upstream of centerline of anchor post in concrete curb (post 20). The 2008 Dodge Ram 1500 pickup truck used in the test weighed 5015 lb and the actual impact speed and angle were 62.7 mi/h and 25.1 degrees, respectively. The actual impact point was 7.2 ft upstream of post 20. Target IS was 115.1 kip-ft, and actual IS was 118.6 kip-ft.


#### 6.2 TEST VEHICLE

A 2008 Dodge Ram 1500 pickup truck, shown in Figures 6.1 and 6.2, was used for the crash test. Test inertia weight of the vehicle was 5015 lb, and its gross static weight was 5015 lb. The height to the lower edge of the vehicle bumper was 13.75 inches, and it was 25.38 inches to the upper edge of the bumper. The height to the vehicle's center of gravity was 29.0 inches. Tables E1 and E2 in Appendix E give additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be unrestrained just prior to impact.

#### 6.3 WEATHER CONDITIONS

The test was performed on the morning of June 29, 2012. Weather conditions at the time of testing were as follows: wind speed: 6 mi/h; wind

direction: 180 degrees with respect to the vehicle (vehicle was traveling in a northwesterly direction); temperature: 90°F, relative humidity: 63 percent.



#### 6.4 TEST DESCRIPTION

The 2008 Dodge Ram 1500 pickup truck, traveling at an impact speed of 62.7 mi/h, impacted the TxDOT T131RC Bridge Rail Transition 7.2 ft upstream of post 20 at an impact angle of 25.1 degrees. At approximately 0.024 s, the thrie beam guardrail began to deflect toward the field side, and at 0.050 s, the vehicle began to redirect. The transition curb began to deflect toward the field side at 0.127 s, and the rear of the vehicle contacted the transition at 0.209 s. At 0.363 s, the vehicle lost contact with the installation traveling at an exit speed and angle of 47.1 mi/h and 5.6 degrees, respectively. Brakes on the vehicle were applied 1.8 s after impact, and the vehicle subsequently came to rest 202 ft downstream of impact with the left side of the vehicle aligned with the traffic face of the bridge rail. Figures E1 and E2 in Appendix E show sequential photographs of the test period.



Figure 6.1. Vehicle/TxDOT T131RC Bridge Rail Transition Geometrics for Test No. 490022-8.



Figure 6.2. Vehicle before Test No. 490022-8.

#### 6.5 DAMAGE TO TEST INSTALLATION

Figure 6.3 and 6.4 show damage to the T131RC Transition and the bridge rail. Post 14 was deflected toward the field side 0.25 inch, and post 15 was deflected toward the field side 0.5 inch. The soil around post 16 and 17 was disturbed. Post 18 was deflected toward the field side 1.38 inches, and maximum residual deformation at post 18 was 1.0 inch. The soil around post 19 was disturbed. The transition curb deflected toward the field side 1.5 inches. The transition curb was not cracked, but was marred with tire marks. Significant cracking of the bridge rail curb occurred at post 21 with slight damage at post 22. Length of contact of the vehicle with the installation was 15.3 ft. Vehicle intrusion (formerly working width) was 15.9 inches. Maximum dynamic deflection during the test was 8.37 inches, and maximum permanent residual deformation was 1.0 inch.

#### 6.6 VEHICLE DAMAGE

Figure 6.5 presents damage to the 2270P vehicle. The left upper ball joint and left front upper and lower A-arms were deformed and the rear axle was broken. The front bumper, grill, hood, radiator, fan, water pump, left front fender, left front tire and wheel rim, left front door, left rear door, left rear exterior bed, left rear tire and wheel rim and rear bumper were deformed. The windshield sustained stress cracks from the right lower corner due to impact with a secondary barrier. Maximum crush to the exterior of the vehicle was not attainable due to the secondary impact. Maximum occupant compartment deformation was 0.25 inch in the left front door near occupant hip height. The floor pan and firewall were also deformed. Figure 6.6 shows photographs of the interior of the vehicle. Tables E3 and E4 in Appendix E present the exterior crush profile and occupant compartment deformations.

#### 6.7 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity was 18.4 ft/s at 0.092 s, the highest 0.010-s occupant ridedown acceleration was 6.6 Gs from 0.120 to 0.130 s, and the maximum 0.050-s average acceleration was -8.0 Gs between 0.040 and 0.090 s. In the lateral direction, the occupant impact velocity was 23.6 ft/s at 0.092 s, the highest 0.010-s occupant ridedown acceleration was 9.4 Gs from 0.221 to 0.231 s, and the maximum 0.050-s average was 12.4 Gs between 0.030 and 0.080 s. Theoretical Head Impact Velocity (THIV) was 32.4 km/h or 9.0 m/s at 0.090 s; Post-Impact Head Decelerations (PHD) was 9.5 Gs between 0.221 and 0.231 s; and Acceleration Severity Index (ASI) was 1.52 between 0.030 and 0.080 s. Figure 6.7 summarizes these data and other pertinent information from the test. Vehicle angular displacements and accelerations versus time traces are presented in Appendix E, Figures E2 through E8.





Figure 6.3. Vehicle/TxDOT T131RC Bridge Rail Transition Positions after Test No. 490022-8.



Figure 6.4. TxDOT T131RC Bridge Rail Transition after Test No. 490022-8.

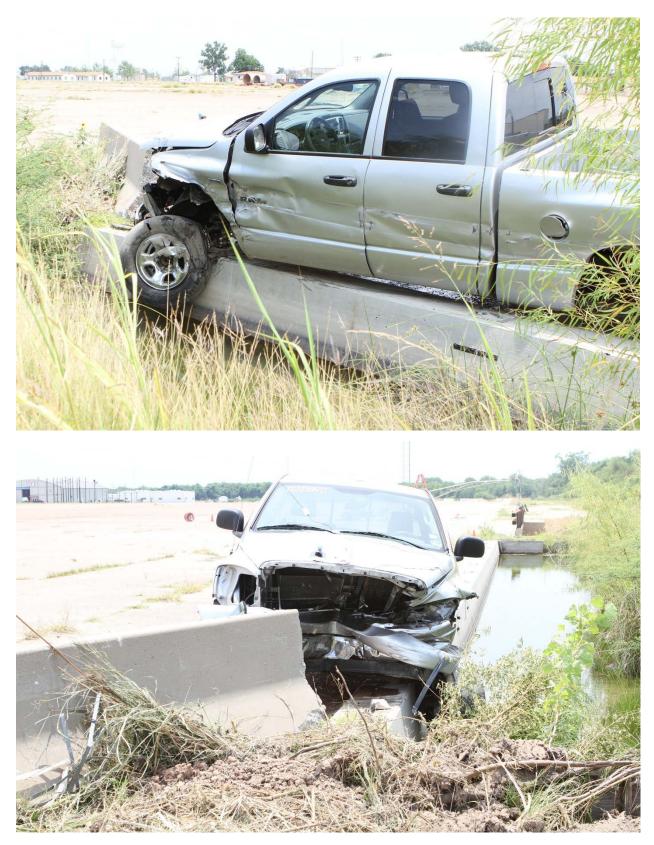
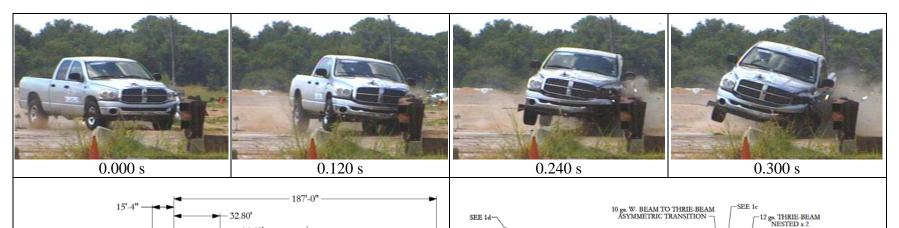



Figure 6.5. Vehicle after Test No. 490022-8.




Before Test

After Test



Figure 6.6. Interior of Vehicle for Test No. 490022-8.



31"

W6x8.5 x 72" POSTS SYTP

12 ga. W-BEAM GUARDRAIL (RWM04a)

> W6x8.5 x 72" SLP POSTS (PEW01)

SEE 1b

į.

-W6x8.5 x 84" POSTS

-10 ga. THRIE-BEAM TERMINAL (RTE01b)

25.1°

-IMPACT PATH

| eneral Information       |                                     | Impact Conditions                         | Post-Impact Trajectory                   |
|--------------------------|-------------------------------------|-------------------------------------------|------------------------------------------|
| Test Agency              | Texas A&M Transportation Institute  | Speed62.7 mi/h                            | Stopping Distance 202 ft dwnstr          |
| Test Standard Test No    | (TTI)                               | Angle25.1 degrees                         | Left side w/fa                           |
| TTI Test No              | MASH Test 3-21                      | Location/Orientation7.2 ft upstrm post 20 | Vehicle Stability                        |
| Test Date                | 490022-8                            | Exit Conditions                           | Maximum Yaw Angle 30 degrees             |
| est Article              | 2012-07-29                          | Speed47.1 mi/h                            | Maximum Pitch Angle 8 degrees            |
| Туре                     |                                     | Angle5.6 degrees                          | Maximum Roll Angle 21 degrees            |
| Name                     | Transition                          | Occupant Risk Values                      | Vehicle Snagging No                      |
| Installation Length      | TxDOT T131RC Bridge Rail Transition | Impact Velocity                           | Vehicle Pocketing No                     |
| Material or Key Elements | 76.5 ft                             | Longitudinal18.4 ft/s                     | Test Article Deflections                 |
|                          | W-beam to thrie beam asymmetric     | Lateral23.6 ft/s                          | Dynamic 8.4 inches                       |
|                          | transition to nested thrie beam on  | Ridedown Accelerations                    | Permanent 1.0 inch                       |
| oil Type and Condition   | W6x8.5 x 84-inch posts              | Longitudinal6.6 G                         | Vehicle Penetration 15.9 inches          |
| est Vehicle              | Standard soil, dry                  | Lateral9.4 G                              | Vehicle Damage                           |
| Type/Designation         |                                     | THIV32.4 km/h                             | VDS 11LFQ4                               |
| Make and Model           | 2270P                               | PHD9.5 G                                  | CDC 11FLEW3                              |
| Curb                     | 2008 Dodge Ram 1500 Pickup          | ASI1.52                                   | Max. Exterior Deformation Not obtainable |
| Test Inertial            | 5022 lb                             | Max. 0.050-s Average                      | OCDILF0000000                            |
| Dummy                    | 5015 lb                             | Longitudinal–8.0 G                        | Max. Occupant Compartment                |
| Gross Static             | No dummy                            | Lateral12.4 G                             | Deformation 0.25 inch                    |
|                          | 5015 lb                             | Vertical2.8 G                             |                                          |

- 16.60

5.6°

EXIT PATH

Figure 6.7. Summary of Results for MASH Test 3-21 on the TxDOT T131RC Bridge Rail Transition.

#### 6.8 ASSESSMENT OF TEST RESULTS

An assessment of the test based on the applicable *MASH* safety evaluation criteria is provided below.

#### 6.8.1 Structural Adequacy

- A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
- <u>Results</u>: The TxDOT T131RC Bridge Rail Transition contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 8.4 inches. (PASS)

#### 6.8.2 Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.

Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH (roof  $\leq 4.0$  inches; windshield =  $\leq 3.0$  inches; side windows = no shattering by test article structural member; wheel/foot well/toe pan  $\leq 9.0$  inches; forward of A-pillar  $\leq 12.0$  inches; front side door area above seat  $\leq 9.0$  inches; front side door below seat  $\leq 12.0$  inches; floor pan/transmission tunnel area  $\leq 12.0$  inches).

- Results:No detached elements, fragments, or other debris were present to penetrate<br/>of to show potential for penetrating the occupant compartment, or to<br/>present hazard to others. (PASS)<br/>Maximum occupant compartment deformation was 0.25 inch in the left<br/>door at occupant hip height. (PASS)
- *F.* The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.
- <u>Results</u>: The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 21 degrees and 8 degrees, respectively. (PASS)
- I. Occupant impact velocities should satisfy the following: <u>Longitudinal and Lateral Occupant Impact Velocity</u> <u>Preferred</u> <u>30 ft/s</u> <u>40 ft/s</u>

<u>Results</u>: Longitudinal occupant impact velocity was 18.4 ft/s, and lateral occupant impact velocity was 23.6 ft/s. (PASS)

| Ι. | Occupant ridedown acceleration | ns should satisfy the following: |
|----|--------------------------------|----------------------------------|
|    | Longitudinal and Lateral (     | Occupant Ridedown Accelerations  |
|    | <u>Preferred</u>               | <u>Maximum</u>                   |
|    | 15.0 Gs                        | 20.49 Gs                         |

<u>Results</u>: Longitudinal ridedown acceleration was 6.6 G, and lateral ridedown acceleration was 9.4 G. (PASS)

### 6.8.3 Vehicle Trajectory

*For redirective devices, the vehicle shall exit the barrier within the exit box (not less than 32.8 ft).* 

<u>Result</u>: The 22270P vehicle crossed the exit box within the limits specified in MASH. (PASS)

### **CHAPTER 7. SUMMARY AND CONCLUSIONS**

#### 7.1 SUMMARY OF CRASH TEST RESULTS

#### 7.1.1 Crash Test No. 490022-6 (MASH Test 3-20)

The TxDOT T131RC Bridge Rail Transition contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 7.4 inches. No detached elements, fragments, or other debris were present to penetrate of to show potential for penetrating the occupant compartment, or to present hazard to others. Maximum occupant compartment deformation was 2.5 inches in the left door at occupant hip height. The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 5 degrees and 6 degrees, respectively. Occupant risk factors were within the preferred limits specified in *MASH*. The 1100C crossed the exit box 80.1 ft downstream of loss of contact with the installation, which was within the *MASH* recommendation.

#### 7.1.2 Crash Test No. 490022-8 (MASH Test 3-21)

The TxDOT T131RC Bridge Rail Transition contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 8.4 inches. No detached elements, fragments, or other debris were present to penetrate of to show potential for penetrating the occupant compartment, or to present hazard to others. Maximum occupant compartment deformation was 0.25 inch in the left door at occupant hip height. The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 21 degrees and 8 degrees, respectively. Occupant risk factors were within the preferred limits specified in *MASH*. The 22270P vehicle crossed the exit box within the limits specified in *MASH*.

#### 7.2 CONCLUSIONS

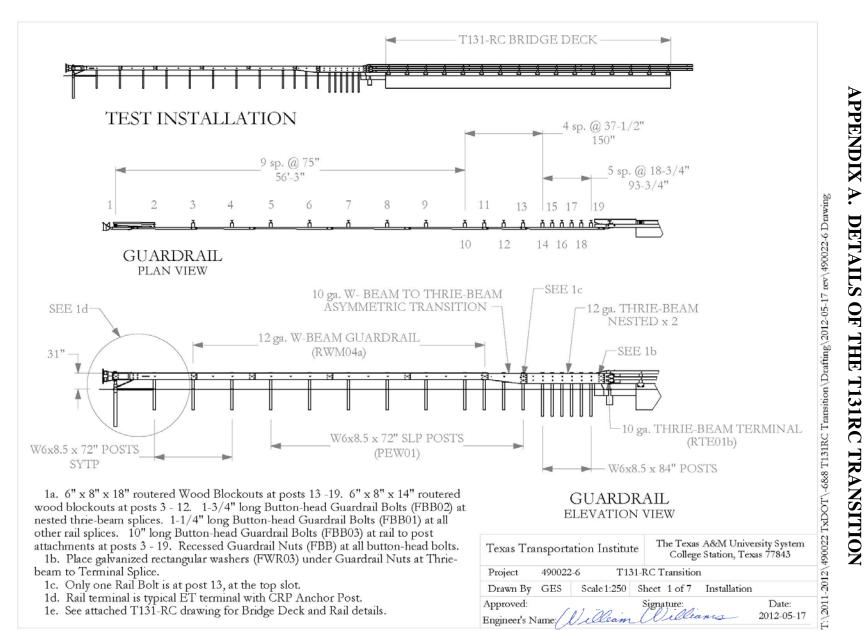
The TxDOT T131RC Bridge Rail Transition performed acceptably as a *MASH* TL-3 transitions, as shown in Tables 7.1 and 7.2.

| Tes        | st Agency: Texas A&M Transportation Institute                                                                                                                                                                                                                                       | Test No.: 490022-6                                                                                                                                                                                                                 | Test Date: 201205-25 |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
|            | MASH Test 3-20 Evaluation Criteria                                                                                                                                                                                                                                                  | Test Results                                                                                                                                                                                                                       | Assessment           |
| Stru<br>A. | uctural Adequacy<br>Test article should contain and redirect the vehicle or<br>bring the vehicle to a controlled stop; the vehicle<br>should not penetrate, underride, or override the<br>installation although controlled lateral deflection of<br>the test article is acceptable. | The TxDOT T131RC Bridge Rail Transition<br>contained and redirected the 1100C vehicle. The<br>vehicle did not penetrate, underride, or override<br>the installation. Maximum dynamic deflection<br>during the test was 7.4 inches. | Pass                 |
| Oce<br>D.  | cupant Risk<br>Detached elements, fragments, or other debris from<br>the test article should not penetrate or show potential<br>for penetrating the occupant compartment, or present<br>an undue hazard to other traffic, pedestrians, or<br>personnel in a work zone.              | No detached elements, fragments, or other debris<br>were present to penetrate of to show potential for<br>penetrating the occupant compartment, or to<br>present hazard to others.                                                 | Pass                 |
|            | Deformations of, or intrusions into, the occupant<br>compartment should not exceed limits set forth in<br>Section 5.3 and Appendix E of MASH.                                                                                                                                       | Maximum occupant compartment deformation<br>was 2.5 inches in the left door at occupant hip<br>height.                                                                                                                             | Pass                 |
| <i>F</i> . | The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.                                                                                                                                                       | The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 5 and 6 degrees, respectively.                                                                                         | Pass                 |
| Н.         | Longitudinal and lateral occupant impact velocities<br>should fall below the preferred value of 30 ft/s, or at<br>least below the maximum allowable value of 40 ft/s.                                                                                                               | Longitudinal occupant impact velocity was 21.0 ft/s, and lateral occupant impact velocity was 27.6 ft/s                                                                                                                            | Pass                 |
| Ι.         | Longitudinal and lateral occupant ridedown<br>accelerations should fall below the preferred value of<br>15.0 Gs, or at least below the maximum allowable<br>value of 20.49 Gs.                                                                                                      | Longitudinal occupant ridedown acceleration<br>was 6.1 G, and lateral occupant ridedown<br>acceleration was 6.3 G.                                                                                                                 | Pass                 |
| Vel        | hicle Trajectory<br>For redirective devices, the vehicle shall exit the<br>barrier within the exit box (not less than 32.8 ft).                                                                                                                                                     | The 1100C crossed the exit box 80.1 ft downstream of loss of contact with the installation.                                                                                                                                        | Pass                 |

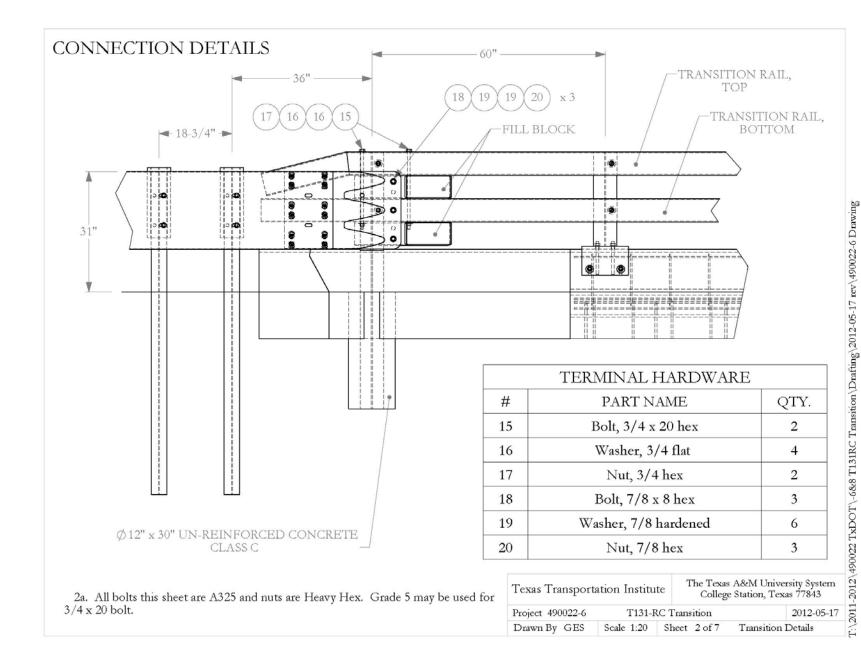
# Table 7.1. Performance Evaluation Summary for MASH Test 3-20 on the TxDOT T131RC Bridge Rail Transition.

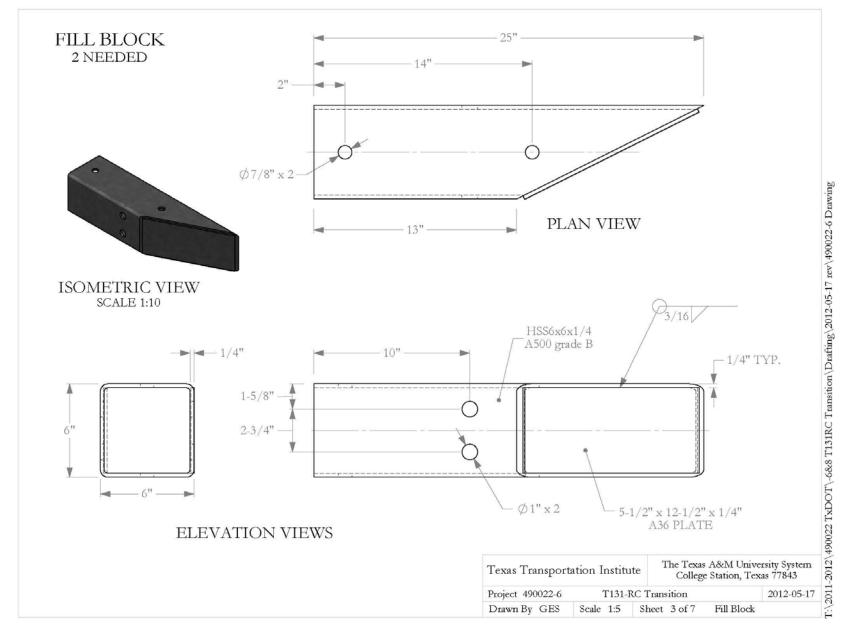
|        | Test       | t Agency: Texas A&M Transportation Institute                                                                                                                                                                                                                                        | Test No.: 490022-8 T                                                                                                                                                                                                               | est Date: 2012-06-29 |
|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| >      |            | MASH Test 3-21 Evaluation Criteria                                                                                                                                                                                                                                                  | Test Results                                                                                                                                                                                                                       | Assessment           |
|        | Stru<br>A. | Ictural Adequacy<br>Test article should contain and redirect the vehicle or<br>bring the vehicle to a controlled stop; the vehicle<br>should not penetrate, underride, or override the<br>installation although controlled lateral deflection of<br>the test article is acceptable. | The TxDOT T131RC Bridge Rail Transition<br>contained and redirected the 2270P vehicle. The<br>vehicle did not penetrate, underride, or override<br>the installation. Maximum dynamic deflection<br>during the test was 8.4 inches. | Pass                 |
|        | Occ<br>D.  | upant Risk<br>Detached elements, fragments, or other debris from<br>the test article should not penetrate or show potential<br>for penetrating the occupant compartment, or present<br>an undue hazard to other traffic, pedestrians, or<br>personnel in a work zone.               | No detached elements, fragments, or other debris<br>were present to penetrate of to show potential for<br>penetrating the occupant compartment, or to<br>present hazard to others.                                                 | Pass                 |
| с<br>Г |            | Deformations of, or intrusions into, the occupant<br>compartment should not exceed limits set forth in<br>Section 5.3 and Appendix E of MASH.                                                                                                                                       | Maximum occupant compartment deformation<br>was 0.25 inch in the left door at occupant hip<br>height.                                                                                                                              | Pass                 |
|        | F.         | The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.                                                                                                                                                       | The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 21 and 8 degrees, respectively.                                                                                        | Pass                 |
|        | Н.         | Longitudinal and lateral occupant impact velocities<br>should fall below the preferred value of 30 ft/s, or at<br>least below the maximum allowable value of 40 ft/s.                                                                                                               | Longitudinal occupant impact velocity was 18.4 ft/s, and lateral occupant impact velocity was 23.6 ft/s.                                                                                                                           | Pass                 |
|        | Ι.         | Longitudinal and lateral occupant ridedown<br>accelerations should fall below the preferred value of<br>15.0 Gs, or at least below the maximum allowable<br>value of 20.49 Gs.                                                                                                      | Longitudinal ridedown acceleration was 6.6 G, and lateral ridedown acceleration was 9.4 G.                                                                                                                                         | Pass                 |
| 2012 1 | Veh        | icle Trajectory<br>For redirective devices, the vehicle shall exit the<br>barrier within the exit box (not less than 32.8 ft).                                                                                                                                                      | The 22270P vehicle crossed the exit box within the limits specified in <i>MASH</i> .                                                                                                                                               | Pass                 |

# Table 7.2. Performance Evaluation Summary for MASH Test 3-21 on the TxDOT T131RC Bridge Rail Transition.

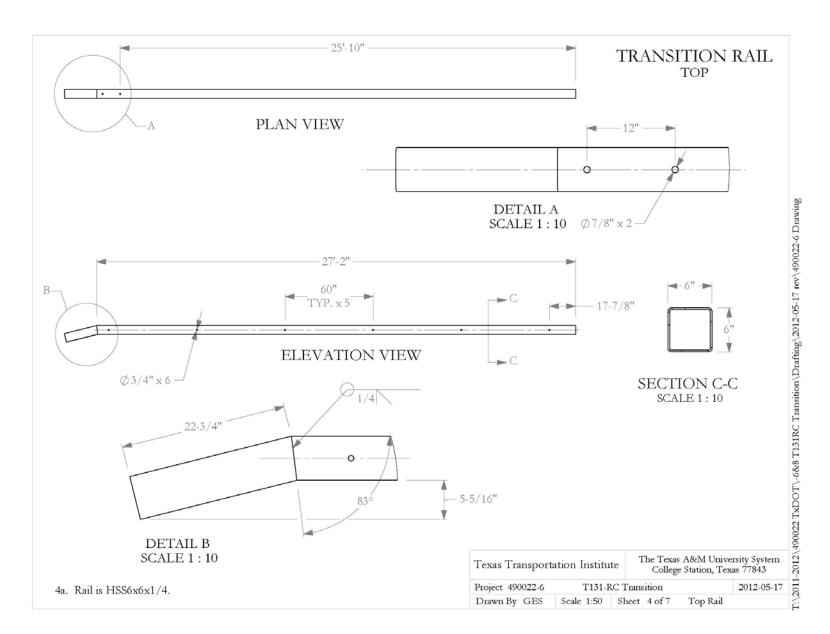

### **CHAPTER 8. IMPLEMENTATION STATEMENT**

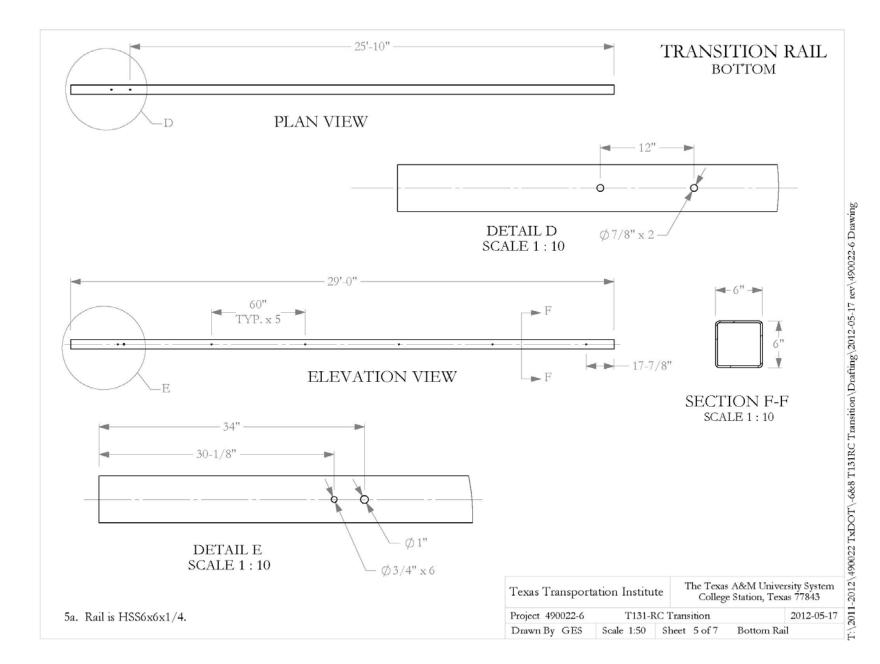
TTI researchers recently designed and successfully crash tested the TxDOT Type 131RC Bridge Rail. The T131RC Bridge Rail consists of two  $HSS6 \times 6 \times 1/4$  steel tubes supported by W6×15 steel posts spaced on 5 ft on centers. The posts were anchored to an 11-inch high concrete curb. The curb was 10 inches wide at the base and 8 inches wide at the top. The posts were anchored to the concrete curb using 3/4-inch diameter adhesive anchors. The base plate for the T131RC post design was bent to conform to the shape of the concrete curb. The TxDOT T131RC Bridge Rail tested previously met all the strength and safety performance criteria of *MASH*.


The purpose of this portion of the project was to develop a transition for connecting a 31-inch tall W-beam approach guardrail to the new T131RC Bridge Rail. The transition designed and tested for this project met all *MASH* safety performance criteria for a TL-3 transition. The transition is recommended for implementation on all projects using the new T131RC Bridge Rail design.


### REFERENCES

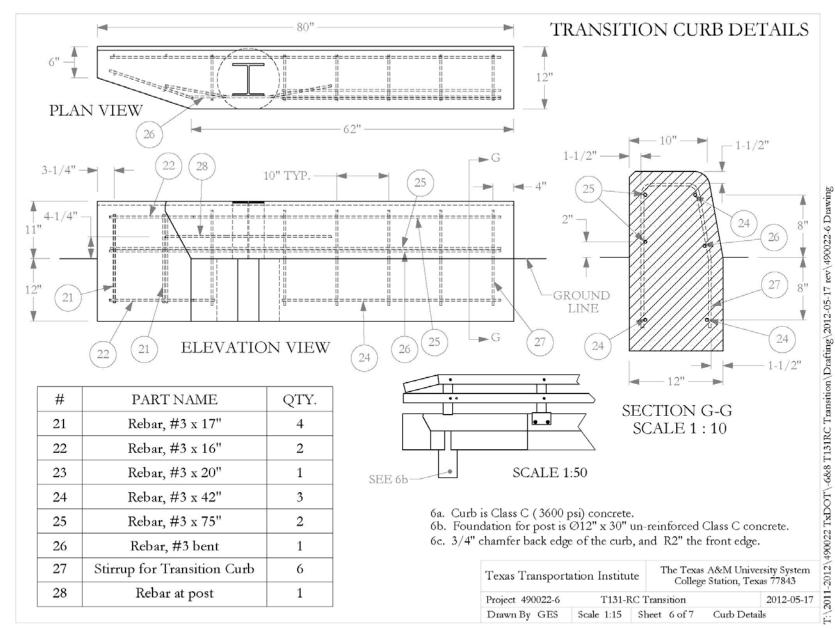
- 1. AASHTO, *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials, Washington, D.C., 2009.
- 2 W. F. Williams, R. P. Bligh, and W. L. Menges, *MASH Test 3-11 on the T131RC Bridge Rail*, Test Report No. 9-1002-1, Texas Transportation Institute, The Texas A&M University System, College Station, TX, June 2012.





41



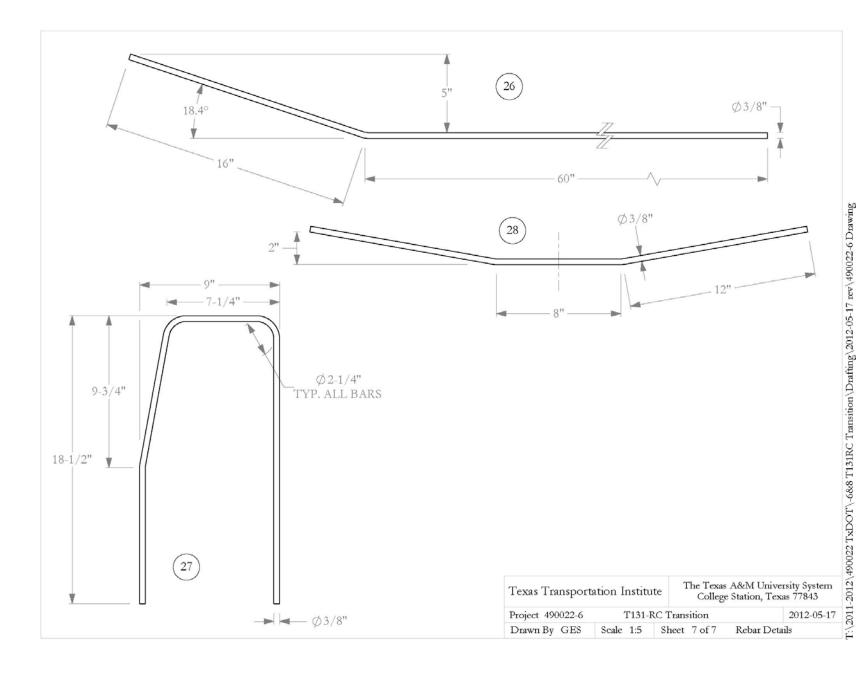



43





45






46







## **APPENDIX B. CERTIFICATION DOCUMENTATION**

MATERIAL USED

TEST NUMBER 490022-6

TEST NAME T131RC Transition

DATE 2012-05-25

| DATE RECEIVED                           | ITEM NUMBER                            | DESCRIPTION                                                | SUPPLIER                                          | HEAT #                          | NOTE        |
|-----------------------------------------|----------------------------------------|------------------------------------------------------------|---------------------------------------------------|---------------------------------|-------------|
| 2012-01-26*<br>2012-01-12<br>2012-01-12 | Parts-15<br>Rebar 03-06<br>Rebar 04-25 | Guardrail Parts<br>3/8'' x 20' grd 60<br>1/2'' x 20' gr 60 | Brazos Industries<br>CMC-Sheplers<br>CMC-Sheplers | see file<br>3028608<br>see file | 1<br>1<br>1 |
| 2012-05-02                              | Parts-20                               | Guardrail Parts                                            | Trinity                                           | see file                        | 2           |

These parts were used on the Bridge Deck for test 490022-1. These parts were used for the Transition for this test. 1

2

| BLR466                                    |            | -         |                                                                      |                                                         |                              |                              |                              |                        |                                  |                               |                                   |                                                                                             |                                                                                                                                                                                      |                                   |                                |                            |  |
|-------------------------------------------|------------|-----------|----------------------------------------------------------------------|---------------------------------------------------------|------------------------------|------------------------------|------------------------------|------------------------|----------------------------------|-------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------|----------------------------|--|
| ä                                         |            | 0         | P.R. 800 2259<br>MT. Plessat, S.C. 29654<br>Phone: (843; 336-5800    |                                                         |                              |                              |                              | CERIIFI                | ED <u>XIII TI</u><br>Ne rotu     |                               | -                                 | 11 bears<br>olled to                                                                        | 12/19/11 23:27<br>* MELTED AND MANUFACTURED IN THE USA<br>* produced by Nacon-Berkeles are case :<br>a fully killed and fine grain practi-<br>a direct santfacturing at this rateri- |                                   |                                |                            |  |
|                                           |            | Page 2    | <u>Sold Io:</u> S<br>S<br>S<br>B                                     | AMASCE CORTO<br>DE COLONIAL<br>DUTTE SOC<br>DESVELL, CA | RAIICH<br>CENIER PK<br>30076 | 97.                          |                              | <u>sti</u>             | <u>0 76)</u> BAK<br>S(7)<br>P.O. | SCO<br>H 1009<br>6DX 15       | 4 (B008 TH                        |                                                                                             |                                                                                                                                                                                      | Customer                          | R.: 485                        | . 49                       |  |
|                                           |            | ER        | SPICIFICATIONS<br>985810 : 82<br>951M : 8352<br>CSA : 560.2          | 170-50-05<br>1-11:035-0873                              |                              |                              |                              |                        |                                  |                               | aad 8370.                         | Qaality                                                                                     | Manual Re                                                                                                                                                                            | w #24.                            |                                |                            |  |
| 6376                                      |            | EL -HUGER | anassessesses<br>Description                                         | Heath<br>Grade(s)<br>Test                               | Theid/<br>Ionsilo<br>Ballo   |                              | Tensila<br>(PS1)<br>(MPa)    | ¥                      | C<br>CI<br>XXXIIX                |                               | 2222222222222<br>5<br>5<br>112333 | S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | Si<br>V<br>N                                                                                                                                                                         | CL.<br>BD<br>XXXXXX               | 64<br>1×8×84<br>1×8×84<br>1 CI | CE1<br>CE2<br>Por          |  |
| 111                                       | 707333611  | STE       | W12x19<br>040' 10.00'<br>W315K29.3<br>012.1920w                      | 2113512<br>4992-11                                      | 13.<br>13.                   | 60600<br>918<br>60130<br>919 | 72400<br>439<br>71200<br>436 | 25.80<br>26.43         | .[7<br>.[5<br>a p                | ece{a]<br>.01<br>.903         | ( .DEB<br>.9132<br>Custoser       | .033<br>.0032<br>90: 5399                                                                   | ,21<br>.004<br>.0051<br>303                                                                                                                                                          | .22<br>.030                       | .06<br>4.34<br>Inv#            | ,25<br>,2397<br>,1397<br>0 |  |
| 3                                         |            | I: NUCOR  | WERLS<br>040'00.00'<br>W150K22.5<br>9L2.1920g                        | 1113375<br>9992-11                                      | .64<br>.63                   | 57500<br>379<br>57590<br>396 | 63830<br>474<br>63530<br>473 | 27.79<br>25.15         | .L?<br>.63<br>27 p               | .83<br>.91<br>.002<br>ece{5}  | ( .51)<br>.8273<br>Custower       | .024<br>.0032<br>PD: 6464                                                                   | 1,19<br>1,804<br>1,9056<br>051                                                                                                                                                       | ,15<br>.02E                       | .04<br>].78<br>Inv#:           | .23<br>.2711<br>.1321<br>D |  |
| 2                                         | Order-Line | From      | WH N28<br>040° 00.00°<br>W200841.7<br>012.1920m                      | 2:15013<br>#992-11                                      | .EC<br>.CC                   | 58608<br>939<br>57080<br>407 | 73300<br>575<br>73300<br>505 | 23.58<br>23.39         | .67<br>.15<br>.15                | 1.10<br>.93<br>.902<br>909(5) | Custower                          | .030<br>.0092<br>201 6687                                                                   | .004<br>.004<br>.0071<br>532                                                                                                                                                         | .25<br>.825                       | 06<br>5.10<br>Thv3             | .23<br>.3339<br>.1509<br>0 |  |
|                                           |            |           | WEW31<br>040' 10.33'<br>W203K45.1<br>012.132Cm                       | 21149EL<br>A992-11                                      | .61<br>.62                   | 56601<br>390<br>37530<br>396 | 73330<br>685<br>73330<br>485 | 25.16<br>25.00         | .63<br>12 P                      | 1.96<br>.01<br>.002<br>eco(s) | Custoner                          | .029<br>.5092<br>.931 5687                                                                  | .004<br>.0033<br>532                                                                                                                                                                 | 1 €<br>.830                       | .05<br>].00<br>].00<br>].v4    | .27<br>.31 %<br>.1425<br>0 |  |
| 0 12021 1                                 |            | 10        | Elongation bas<br>Cl = 25.(104)<br>Pcm = Cl(51/30                    | ed on 8' (20<br>3-33NJ+1-200                            | .32CB) ge<br>r+1.6951+       | nge len<br>17.28P-           | igth. "N<br>(7.290)          | lo Wald H<br>,≅%i)=(9, | Repair' us<br>.10SixP)-3         | s norfo                       | rood. Eg<br>KCa) CEt              | tree and<br>= C#(Mu/6                                                                       | no contac<br>)+({Cr+Mc                                                                                                                                                               | <pre> τ with Hg +++)/5}++((</pre> | drring as                      | nafscraze                  |  |
| LO80 - 11                                 |            | 18665981  | l horaby certi<br>correct. Ail t<br>mausfacturer a<br>when designate | est results<br>te in corpli                             | and opers<br>ance with       | tions p<br>pateri            | erforme<br>al spec           | ad by the<br>ification | e Marerial<br>ons, and           | -                             | Bruco A.<br>Metalling             |                                                                                             |                                                                                                                                                                                      |                                   |                                |                            |  |
| nc                                        |            | To:       |                                                                      |                                                         |                              |                              |                              |                        |                                  |                               |                                   |                                                                                             |                                                                                                                                                                                      |                                   |                                |                            |  |
| ustries                                   |            | 12-09     |                                                                      |                                                         |                              |                              |                              |                        |                                  |                               |                                   |                                                                                             |                                                                                                                                                                                      |                                   |                                |                            |  |
| 12-20-2011 12:05<br>Brazos Industries Inc | Cust. PO - | 23:30     |                                                                      |                                                         |                              |                              |                              |                        |                                  |                               |                                   |                                                                                             |                                                                                                                                                                                      |                                   |                                |                            |  |

| -                                        |                                      | terror                                                                               |                                                                      |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |              |               |                   |            |      | 4     | ЭКа   |         | PT                     | EXCP                                | DRT                       |                                 |                   |                                        |                                 |                      |                                                                         | DACT   | 1 moen | 1 0  |
|------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|---------------|-------------------|------------|------|-------|-------|---------|------------------------|-------------------------------------|---------------------------|---------------------------------|-------------------|----------------------------------------|---------------------------------|----------------------|-------------------------------------------------------------------------|--------|--------|------|
| 80 00 00 00 00 00 00 00 00 00 00 00 00 0 | iler<br>O ME<br>GNIT<br>ST.K<br>IV30 | MBER(S<br>(B)spor<br>MK 4554<br>TOGOR<br>TROV, M<br>BOJEY<br>BOJEY<br>BOJEY<br>BOJEY | rten<br>SK 1<br>SK 1<br>SK 1<br>SK 1<br>SK 1<br>SK 1<br>SK 1<br>SK 1 | HATHIN<br>RON A<br>NULL S                                        | ND I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 400                       | 2005         | RUS           | 4 93<br>1<br>51AN |            | DER  |       |       |         |                        | Tom<br>Je Si<br>(Cep<br>Qual<br>Kow | ipoca<br>hipph<br>mity ce | ng da<br>arr m<br>tifica<br>Joh | CTE<br>E46<br>E16 | )<br>\$3235 a                          | Ne<br>n297                      | доку                 | Menr 1                                                                  | 20-1   |        |      |
| CH<br>QA<br>An                           | N AL                                 | Jaited I<br>Discipo<br>APTRO                                                         | Stati<br>CCM<br>YE S                                                 | ng<br>Ngan<br>Ngan<br>Ngan<br>Ngan<br>Ngan<br>Ngan<br>Ngan<br>Ng | A C)<br>ER (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AOP                         | EMO<br>AGLC  | HTTH<br>IDE I | ыØ а<br>JMI       | AD(        |      | ic)(I | 381   | 2 11/1  | 36390                  | 2,10P/                              | снод                      | APCIO                           | ște<br>AR         | KPAR,HI                                | 080P                            | occiu                | Ack Carlon                                                              | ICKOE  | шас    | CE   |
| Be                                       | row                                  | M F                                                                                  | ret                                                                  | ant c                                                            | <u>ur )</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hann                        | 199          | 716           | 8                 |            |      |       |       | ••      | •                      |                                     |                           | -                               | R                 |                                        |                                 |                      |                                                                         |        |        |      |
| PY                                       | ROH                                  | ыгжн                                                                                 | EDP                                                                  | ECCM                                                             | POS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date                        | -apilia      | n ol          | 1000              | -          | -    |       | -     |         |                        | -                                   | cī                        | Since<br>Since                  | (ind              |                                        |                                 | antry                | Type of pack                                                            | L'Code | Packag | e Xe |
| HQ                                       |                                      | ILLED (                                                                              |                                                                      |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |              | 3             |                   |            |      |       |       |         |                        |                                     |                           |                                 |                   |                                        |                                 |                      | PY/IOHLI<br>CORS                                                        |        | 1-3    |      |
|                                          | *                                    | Kan<br>tosepe<br>Code of<br>goods                                                    | -                                                                    | Filosop<br>Not of                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pys<br>pys<br>foe of<br>onE | Stor         | ALC: N        | opier<br>de an    | 4 2        |      | 8     | 7000  |         | Bag<br>ucong<br>Surfac |                                     | 0000                      | 1000                            | P                 | t stosm<br>Lipos;<br>E stal<br>colling | t court<br>the<br>t win<br>ding | Dime                 | ector acu<br>nations anna<br>"comp <sup>4</sup> Arabins<br>width"(ength | M      | an t   |      |
| 1                                        | 8                                    | 99131                                                                                | 10                                                                   | 19384:<br>.~                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 112                         | 88           | 8 Gr          | pe 2              | +          |      | 1     |       |         | -                      | 1                                   | -                         | K                               | 1                 | Institute                              |                                 | -                    | 300x7219                                                                |        |        | -    |
| 3                                        | ~                                    | *                                                                                    |                                                                      |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 312                         |              |               |                   |            |      |       |       |         |                        |                                     |                           | K                               | 1                 |                                        |                                 |                      | ~                                                                       |        | 10 20. |      |
|                                          |                                      |                                                                                      |                                                                      |                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | J            |               |                   | 1          |      | _     |       |         |                        |                                     | L                         | 1                               | L                 | 1                                      | L                               |                      |                                                                         | 81.15  | 0 61.  | 180  |
|                                          |                                      | По                                                                                   |                                                                      | TEAN                                                             | 2084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | teen                        | 14 TI        |               |                   |            |      |       |       |         |                        | 30                                  | •                         | Q                               | sali              | ty char                                | actor                           | intics               | of goods                                                                |        |        |      |
| 1000                                     | linenap<br>mo-ann                    | Press C                                                                              |                                                                      | Ma                                                               | The state of the s | -                           | 70)<br>27 Ni | -             | N                 | the second |      | -     | _     | -       |                        |                                     | There                     |                                 | 14                |                                        | 50                              | el ymene             | Peru G                                                                  |        | -      | 7    |
|                                          | Nos al<br>ata-lai                    |                                                                                      |                                                                      |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                           |              |               |                   |            |      |       |       | 1       |                        | .s. 1                               | Plant                     |                                 | 01                | inedit)<br>old goolass                 | (10)                            | ention               | Densi sart                                                              |        |        | -    |
| 10                                       | 9384                                 | 500                                                                                  |                                                                      | 100 10                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X 7                         | 100          | и<br>100<br>8 | × 1000            | ×<br>1000  | 1000 | 100   | 0 100 | 1 1000  | -                      |                                     | itragi<br>(Minut          | -                               |                   | -                                      |                                 |                      |                                                                         |        |        |      |
| 1.00                                     | 9384<br>9384                         | 3 16                                                                                 | 10<br>10                                                             | 97                                                               | 14 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 4                         | 4            | 8             | 7                 | 54<br>54   |      | 1111  |       | 1 1 1 1 |                        |                                     | 4                         | 10<br>10                        |                   | 206<br>205<br>206                      |                                 | 38.0<br>39.0<br>39.0 | YE BOL                                                                  |        |        |      |
|                                          |                                      |                                                                                      |                                                                      |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |              |               |                   |            |      |       |       |         |                        |                                     |                           |                                 |                   | 4                                      | 0                               | 1/2                  | × 48<br>105<br>938                                                      | 3      |        |      |
|                                          |                                      |                                                                                      |                                                                      |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |              |               |                   |            |      |       |       |         |                        |                                     | 8                         |                                 | -                 | 17                                     |                                 |                      |                                                                         | -      | ÷      |      |
|                                          |                                      |                                                                                      |                                                                      |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |              |               |                   |            |      |       |       |         |                        |                                     |                           |                                 |                   | 40                                     | 15                              | 17                   | 105                                                                     | ~      |        |      |
|                                          |                                      |                                                                                      |                                                                      |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |              |               |                   |            |      |       |       |         |                        |                                     |                           |                                 | A                 | han                                    | H                               | -10                  | 938                                                                     | 43     | Ċ      |      |
|                                          |                                      |                                                                                      |                                                                      |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |              |               |                   |            |      |       |       |         |                        |                                     |                           | 1                               | /                 | C 4/                                   | 1-1-1                           | 10                   | 390                                                                     | 46     | 5      |      |
|                                          |                                      |                                                                                      |                                                                      |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |              |               |                   | 2          |      |       |       |         |                        |                                     |                           |                                 |                   | P                                      | 0-1-1                           | 4                    | 0,0                                                                     | •      |        |      |
|                                          |                                      |                                                                                      |                                                                      |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |              |               |                   |            |      |       |       |         |                        |                                     |                           |                                 |                   |                                        |                                 |                      | T. Marta                                                                | Bett   |        |      |
|                                          |                                      | a THB3                                                                               |                                                                      |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |              |               |                   |            |      |       |       |         |                        |                                     |                           |                                 |                   |                                        |                                 | ilol                 | JE.                                                                     | 134    | 1      |      |

Дата Date: 05.05.11 05:33 Полнован, придотованного обращита обра ОСО наполновано у Полнован В.Н. Лоску това С.М. Уназачения в настоящая докумание товар оботовитору об приметру действуращина в РФ отведартых таконческие установан и полит быть отрудать на настоят. В на ванию саябвая быт в развих об соса наполнова на ба Осодинать и на ополнову чер на Полнование и полит бани бить отрудать на настоят. 97

| 2-2012 04:10 Load - 1132336<br>os Industries Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BL - 3677708<br>Heat - 762367                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BLR4       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| . PO -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Order-Line - 7073336 / 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
| 12/22/2011 THU 18:59 FAX 519 738                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 061 atlastubs shipping 2004/005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| Atles Tube Canada ULC<br>200 Clark SL.<br>Harrow, Omsrie, Canada<br>NOR 160<br>Tal: 519-738-3541<br>Fox: 519-738-3537                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATERIAL TEST REPORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Sold to<br>NAMASCO CORPORATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Shipped to<br>NAMASCO SOUTH WEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| NAMASCO CORPORATION<br>Steel Warehousing Corporati<br>500 COLONIAL CENTER PR<br>ROSWELL GA 30076<br>USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SOUTH LOOP 4, P.O. BOX<br>BUDA TX 78715-0367<br>USA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Material: 5.0x5.0x250x46'0"0(4x2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Meterial No: 500802504800 Meteria: Cenada<br>Mated In: Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (*)<br>(*) |
| Sales order: 688743                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purchase Orden: 6408907 Gust Material #: T51450A5000576                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |
| Heart No C Min P \$<br>752525 0.190 0.830 0.008 0.007<br>Bundle No PCs Yield Tensile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Si         Al         Cu         Cb         No         Ni         Cr         V         Ti         B         N           0.013         0.040         0.045         0.006         0.005         0.014         0.048         0.020         0.000         0.000         0.000           Ein.2in         Certification         CE:         0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | à          |
| M101100675 8 063850 Psi 078200 Psi<br>Material Note:<br>Sales Or.Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32.6 % ASTM ABOD-10A GRADE B&C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Sales order:         689536           Heat No         C         Np         P         S           762367         0.190         0.790         0,007         0,008           Bundle No         PCs         Yield         Tensile           M101096889         054900 Psi         067270 Psi           Material Note:         Sales Or.Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Melted in: Cansda           Purchase Order:         6409841         Cust Matarial #:         T814SQA5000480.           Si         A1         Cu         Cb         Mo         NE         Cr         V         Ti         B         N           0.014         0.051         0.042         0.005         0.006         0.019         0.022         0.000         0.000         0.000           Ehr.2in         Gertification         GE:         0.34           34.0 %         ASTM A500-10A GRADE B&C         0.021         0.022         0.022         0.023         0.022         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.023         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020         0.020 |            |
| Material: 8.0x4.0x250x40'0"0(2x4).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Materiel No: 800402504000 Made in: Canada<br>Metod In: Canada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| Sales order: 889538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Purchase Order: 6409841 Cust Material #: Y8414RECTA5000480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |
| Heat No C Ma P S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SI AI Gu Cb Béo Nã Cr V Ti B N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| 762777 0.180 0.790 0.008 0.008<br>Bundie No PCs Yield Tessails                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.013 0.066 0.049 0.005 0.005 0.015 0.025 0.002 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |
| Bundie No PCs Yield Tessails<br>M101096343 8 060430 Psi 075020 Psi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ein.2in Cerdification CE: 0.33<br>35.5 % ASTM A500-10A GRADE B&C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
| Material Note:<br>Seles Or.Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35.5 % ASTM A500-104 GRADE 8&C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |
| Authorized by Quality Accurance:<br>The results reported on this report represent the<br>specification and confract requirements.<br>Statistication with the Distance of the Source | Page : 2 Of . 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |
| The results reported on this report represent the<br>specification and contract requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Batala Pandas Pantas lantikula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |

|                                                         |                                                                                                                                                                                                                                      | Load Numbe                                                  | reel Tusca<br>reel Tusca<br>r Tall                                                    | y Rill (                                                             | Örder l                | łużber                  | 1         | .0. NL<br>361481        | Tuscal               | DC HOL               | F 80 N.E<br>ML 35404<br>7-8872 | -1004          | FICAT                          |         |           |             | ifica:                  | te Num   | ber                                   | Date       | Page #:     |          |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------|-------------------------|-----------|-------------------------|----------------------|----------------------|--------------------------------|----------------|--------------------------------|---------|-----------|-------------|-------------------------|----------|---------------------------------------|------------|-------------|----------|
|                                                         |                                                                                                                                                                                                                                      | 390866<br>Grade                                             | 000000004                                                                             | 419739 JM-1073                                                       | 72-004                 |                         | 1 10      | 501401                  |                      |                      | Custo                          | ner'i          |                                |         |           | _           |                         |          |                                       |            |             |          |
|                                                         | Order Bescription:     Sold T0:       A36, 9.6250 LN x 96.000 DN x 249.000 IN     NAMASCO Buda TX       Quality PFan Description:     Ship T0:       A36MDDMM-TRIPLE: ASTM A36-08 NDD MN/ASME SA36-03/A709-36-10     NAMASCO Buda TX |                                                             |                                                                                       |                                                                      |                        |                         |           |                         |                      |                      |                                |                |                                |         |           |             |                         |          |                                       |            |             |          |
|                                                         |                                                                                                                                                                                                                                      | Shipped                                                     | Heat/Slat                                                                             | Certifie                                                             |                        |                         | P         | s                       | \$1                  | Cu                   | M.                             | C.             | r No                           | Cb      | v         | Aĭ          | Ti                      | N2       | B                                     | Ca         | 511         | CEN      |
|                                                         |                                                                                                                                                                                                                                      | Item                                                        | Runber                                                                                | Ву                                                                   | -                      |                         | 1         |                         | 0.05                 | 0.16                 | 0.06                           | 0.0            | 0 0 071                        | 0.000   | 0.001     | 0.037       | 0.001                   | 0.008    | 0.0001                                | 0.0027     | 0.008       | 0.3      |
| 8                                                       |                                                                                                                                                                                                                                      | 1.00930                                                     | 8107759-03                                                                            |                                                                      |                        | and a second            |           |                         |                      | 0.16                 | 0.06                           | 0.0            |                                | 0.000   |           | 0.337       | A DECEMBER OF THE OWNER | 0.058    |                                       | 0.0027     | 0.008       | 0.3      |
| 14                                                      |                                                                                                                                                                                                                                      | 1800936                                                     | B107759-03                                                                            |                                                                      | ter annies weise see   | and the second second   |           |                         |                      | 0.15                 |                                | 0.0            | and and a survey of the second | 10.000  | A         |             | - ALALAN                |          | 0.0001                                | 0.0027     | 0.008       | 0.3      |
| B1U7759<br>112                                          | ~                                                                                                                                                                                                                                    | 1H0095B                                                     | 8107759-02                                                                            | *** B10775                                                           | 9 0.                   | 10.89                   | Tu. Vice  | 10.000                  | 1 1100               | 0.10                 | 10140                          | 1              |                                |         |           |             |                         |          |                                       |            |             | -        |
| Hoat - 841                                              |                                                                                                                                                                                                                                      | Shipped                                                     | Curtified                                                                             | Heat                                                                 | Yield                  | Tensile                 | Y/T       | No. of Concession, Name | ATTOM                |                      | 33 2 3 a m m m m               |                |                                |         |           | (fz-lbf)    |                         |          | She                                   | 3 at 15    | Avg         | Test     |
|                                                         |                                                                                                                                                                                                                                      | Item                                                        | By.                                                                                   | Number                                                               | ksi                    | kst                     | - %       | 2"                      | 8"                   | OK                   | 7 H                            | B              | Size m                         | 1       | 2         | 3           | Avg                     | 1        | T                                     | 1          | 14.30       | - sing   |
| H                                                       |                                                                                                                                                                                                                                      | THOORID                                                     | 5140093977                                                                            | 8107759 ***                                                          | 46.7                   | 67.9                    | 8.8       | 38.6                    |                      | _ <u>_</u>           | _                              | -              |                                |         |           |             |                         |          |                                       |            |             | 172-1410 |
| 8 1                                                     |                                                                                                                                                                                                                                      | 100938                                                      | SIHOO93MTT                                                                            | 8£07759 ***                                                          | 44.5                   | 63.8                    | 70.4      | 40.1                    |                      | -                    |                                |                |                                |         |           |             |                         |          |                                       |            |             |          |
| Order-Line                                              |                                                                                                                                                                                                                                      | 11620935                                                    | S1HOOD3FTT                                                                            | 8107759 ***                                                          | 46.7                   | 67.9                    | 68.A      | 38.6                    |                      | -                    |                                | -              |                                |         |           |             | ****                    | +        |                                       |            |             |          |
| er-L                                                    |                                                                                                                                                                                                                                      | 180093E                                                     | SIHD093MTT                                                                            | B107759 +**                                                          | 44.9                   | 63.8                    | 70.4      | 40.1                    | -                    |                      |                                |                |                                |         |           |             |                         | +        |                                       |            |             |          |
| rde                                                     |                                                                                                                                                                                                                                      | 1800958                                                     | S1H0092FTT                                                                            | 8107759 ***                                                          | 49.0                   | 68.7                    | 71.3      | 41.0                    |                      |                      |                                | -+             |                                |         |           |             |                         |          |                                       |            |             |          |
| 0                                                       |                                                                                                                                                                                                                                      | LHOODSE                                                     | S1HD094FTT                                                                            | B107759 #44                                                          | 49.0                   | 68.3                    | 71.7      | 36.6                    |                      |                      |                                |                |                                |         |           |             |                         |          | -                                     |            | ** *******  |          |
|                                                         |                                                                                                                                                                                                                                      | EH00958                                                     | \$ S1H0092HTT                                                                         | B3V7759 ***                                                          | 46.B                   | 63.3                    | 1.73.5    | 40.9                    |                      |                      |                                | -              |                                |         |           |             |                         |          |                                       | -          |             |          |
|                                                         |                                                                                                                                                                                                                                      | 1100953                                                     | S1H0094937                                                                            | 8117759 *At                                                          | 45 . B                 | 64.0                    | 1 71.8    | 39.9                    | 1                    | _                    |                                |                |                                |         |           |             | L                       | 1        | l                                     |            |             |          |
| Load - 113541/                                          |                                                                                                                                                                                                                                      | Hems: 3 PC                                                  | S: 50 Weight:                                                                         | 407238 LBS                                                           |                        |                         |           |                         |                      |                      |                                |                |                                |         |           |             |                         |          |                                       |            |             |          |
| 01-05-2012 08:06<br>Brazos Industries Inc<br>Cust. PO - | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                | Menculty has<br>manufacturin<br>Manufacturio<br>ISO 9001:20 | not como in conta<br>g process. Caráñ<br>i lo a turjy killod îli<br>08 Registered. PE | act with this product<br>ind in accordance a<br>ne graits preciliça. | vish EN 1<br>** Produc | 0204 3.1.<br>99 from Ce | NO WEID R | obeji (Ma<br>Joefik VO  | t has eat<br>bean pt | y mercon<br>erformed | y been w<br>on that r          | sed b<br>maler | ny the<br>tal.                 | We here | by cardif | y that live | Ap.                     | ite spot | ed above pr<br>Members<br>Differences | assec al c | l ine tasl: | requi    |

53

# **Porteous Fastener Company**

**Product Information Sheet** 

Carriage Bolt, Inch Series, Grade A



- > PFC Product Category: 00100
- > Typical Material: Low Carbon Steel
- Material and Mechanical Properties: Purchased to meet ASTM A307 Grade A.
- Dimensions: ASME B18.5, Round Head Square Neck Bolt, Rolled Threads
  - > Full thread to 6 inches in length.
  - Undersize body and 6 inches of threads on lengths over 6 to 12 inches.
     6 inches threads and full size body on lengths over 12 inches.
- > Zinc Plating: Purchased to meet ASTM 1941 Fe2ns and the second sec SHARE SHERE WE WILL BE REAL FOR SHERE -Care to an and a state of the state of the
- Hot-Dip Galvanized: Purchase
- > Typical Hardrose
- and a substantian and a Tensile Strength 60,000 PSI Minimum FIRST CLANS SERVIC

| Tensile Strength - NC Threads<br>ASTM A307 Grade A |        |        |  |  |  |  |  |  |  |  |
|----------------------------------------------------|--------|--------|--|--|--|--|--|--|--|--|
| Size                                               | PSI    | Pounds |  |  |  |  |  |  |  |  |
| 1/4-20                                             | 60,000 | 1900   |  |  |  |  |  |  |  |  |
| 5/16-18                                            | 60,000 | 3100   |  |  |  |  |  |  |  |  |
| 3/8-16                                             | 60,000 | 4650   |  |  |  |  |  |  |  |  |
| 7/16-14                                            | 60,000 | 6,350  |  |  |  |  |  |  |  |  |
| 1/2-13                                             | 60,000 | 8,500  |  |  |  |  |  |  |  |  |
| 9/16-12                                            | 60,000 | 11,000 |  |  |  |  |  |  |  |  |
| 5/8-11                                             | 60,000 | 13,550 |  |  |  |  |  |  |  |  |
| 3/4-10                                             | 60,000 | 20,050 |  |  |  |  |  |  |  |  |
| 7/8-9                                              | 60,000 | 27,700 |  |  |  |  |  |  |  |  |
| 1-8                                                | 60,000 | 36,350 |  |  |  |  |  |  |  |  |

| Len                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | gth Tole     | ances - C   | arriage B   | olts        |  |  |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|-------------|-------------|--|--|--|--|--|--|--|--|--|
| and the second sec | Nominal Size |             |             |             |  |  |  |  |  |  |  |  |  |
| Nominai<br>Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #10 to 3/8   | 7/16 & 1/2  | 9/16 to 3/4 | 7/8 to 1    |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | Tolerance   | on Length   |             |  |  |  |  |  |  |  |  |  |
| Up to &<br>Incl 1"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +0.02/-0.03  | +0.02/-0.03 | +0.02/-0.03 |             |  |  |  |  |  |  |  |  |  |
| Over 1" to<br>2 1/2", incl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +0.02/-0.04  | +0.04/-0.05 | +0.06/-0.08 | +0.08/-0.10 |  |  |  |  |  |  |  |  |  |
| Over 2<br>1/2" to 4",<br>Incl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +0.04/-0.06  | +0.06/-0.08 | +0.08/-0.10 | +0.10/-0.14 |  |  |  |  |  |  |  |  |  |
| Over 4" to<br>6", incl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +0.06/-0.10  | +0.08/-0.10 | +0.10/-0.10 | +0.12/-0.16 |  |  |  |  |  |  |  |  |  |
| Over 6"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +0.10/-0.18  | +0.12/-0.18 | +0.14/-0.18 | +0.16/-0.20 |  |  |  |  |  |  |  |  |  |

Porteous Fastener Company

Page 1 of 1

The information presented is believed to be accurate at the time of document creation. However, Porteous Fastener Company is not responsible for any cleim traceeble to any errors (typographical or otherwise) as contained harein. Porteous Fastener Company makes no warranties as to the accuracy of this information.

Page: 1

#### CERTIFIED MILL TEST REPORT

Ship from:

Nucor Steel - Texas 8812 Hwy 79 W JEWETT, TX 75846 800-527-6445

Date: 26-Oct-2011 B.L. Number: 586989 Load Number: 195932

SHIP ADELPHIA METALS-CUST PU N/A TO: JEWETT, TX 75846-

SOLD ADELPHIA METALS I LLC 411 MAIN ST E TO: NEW PRAGUE, MN 56071-

Material Safety Data Sheets are available at www.nucorbar.com or by contacting your inside sales representative. NBMG-08 March 9, 2011 PHYSICAL TESTS CHEMICAL TESTS HEAT NUM. \* DESCRIPTION TENSILE P.S.I. ELONG % IN 8" YIELD P.S.I. WT% С Mn Р s Si Cu BEND C.E. Ni DEF Cr Мо v Cb Sn PO# => 801746 70,000 110,500 13.0% .42 1.02 .016 .024 .12 .33 .62 JW1110880201 Nucor Steel - Texas 13/#4 Rebar 20' 483MPa 762MPa .13 .15 .039 .003 .001 A615M Gr 420 (Gr60) ASTM A615/A615M-09b GR 60[420] AASHTO M31-07 PO# => 801746 .32 JW1110880301 Nucor Steel - Texas 70,700 108,900 12.0% .42 .98 .019 .044 .14 .61 .001 13/#4 Rebar 20' 487MPa 751MPa .14 .17 .042 .003 A615M Gr 420 (Gr60) ASTM A615/A615M-09b GR 60[420] AASHTO M31-07 Ihereby certify that the material described herein has been manufactured in accordance with
 the specifications and standards listed above and that it satisfies those requirements.
 1.) Weld regain was not performed on this material.
 Allot and Manufactured in the United States.
 3.) Mercury, Radium, or Alpha source materials in any form Allan QUALITY ASSURANCE: Nathan Stewart

NUCOR

NUCOR CORPORATION

NUCOR STEEL TEXAS

| CMC ST<br>1 STEEL<br>SEGUIN                                                                                                                   | MILL DR                                                                                                                | IVE                                                                                    | CERTIFIED MILL T<br>For additional<br>830-372 | copi                       | REPORT are ac<br>es call                                                                                | curate and conf                                  | tify that the test results presented here<br>form to the reported grade specification<br>Janiel J. Schacht<br>Luality Assurance Manager |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| HEAT NO.:3028608<br>SECTION: REBAR 10MM (#3) 20'0<br>420/60<br>GRADE: ASTM A615-09b Gr 420/<br>ROLL DATE: 11/20/2011<br>MELT DATE: 11/19/2011 | L                                                                                                                      | CMC Construction<br>10650 State Hw<br>College Station<br>US 77845-7950<br>979 774 5900 | тх                                            | S<br>H<br>I<br>P<br>T<br>O | CMC Construction Svcs Coll<br>10650 State Hwy 30<br>College Station TX<br>US 77845-7950<br>979 774 5900 | ege Stati                                        | Delivery#: 80634703<br>BOL#: 70224264<br>CUST PO#: 5390AB<br>CUST P/N:<br>DLVRY LBS / HEAT: 16848.000 LB<br>DLVRY PCS / HEAT: 2240 EA   |
| Characteristic                                                                                                                                | Value                                                                                                                  |                                                                                        | Charac                                        | teris                      | tic Value                                                                                               |                                                  | Characteristic Value                                                                                                                    |
| C<br>Mn<br>P<br>S<br>Si<br>Cu<br>Cr<br>Ni<br>Mo<br>V<br>Cb<br>Sn<br>Al                                                                        | 0.45%<br>0.81%<br>0.0129<br>0.17%<br>0.17%<br>0.34%<br>0.17%<br>0.16%<br>0.059<br>0.0029<br>0.0019<br>0.0019<br>0.0139 | %<br>%<br>%<br>%                                                                       |                                               |                            |                                                                                                         |                                                  |                                                                                                                                         |
| Yield Strength test 1<br>Tensile Strength test 1<br>Elongation test 1<br>Elongation Gage Lgth test 1<br>Bend Test Diameter<br>Bend Test 1     | 70.6ks<br>108.3k<br>13%<br>8IN<br>1.313k<br>Passed                                                                     | rsi<br>N                                                                               |                                               |                            |                                                                                                         | a tha an a tha tha a tha tha a tha tha tha tha t | n og som ander för alla for ander ander af förstande ander ander ander ander af för                                                     |

THIS MATERIAL IS FULLY KILLED, 100% MELTED AND MANUFACTURED IN THE USA, WITH NO WELD REPAIR OR MERCURY CONTAMINATION IN THE PROCESS. REMARKS :

11/22/2011 18:03:39 Page 1 OF 1

| This Memorandum       is an estimate degeneral that a Bill of Lading has been issued and is not the original Bill of Lading, nor a copy or cuplicate, cove and is interded solely for filing or record.       Carrier         RECEIVED, subject to disputes ficalities and brills in effect on the dx: stimated to the carrier of the property described with the filing.       3         It is prove the Net Werk in present of the property described with a carrier of the property described with the data and with the data and with the data and the data a |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                     |              |                           |                        |                                                      | 3<br>97404<br>9026<br>1930<br>1930<br>1930<br>1930                                                | Shipper's No. 16-41901<br>S/O No. 1172458<br>SJOIN 10 Lading if this shipment is to be<br>delivered to the consigner without recourse or<br>the consigner without recourse or<br>the consigner without recourse or<br>the consigner without recourse or<br>the consigner without perment of freight and all<br>other low-it means that not make delivery of this<br>shipment without perment of freight and all<br>other low-it means that not make delivery of this<br>shipment without perment of freight and all<br>other low-it means that not make delivery of this<br>shipment without perment of freight and all<br>other low-it means that the perment<br>(Signature of Consigno)<br>I changes are to be prepaid. wille of<br>stamp here. To be perpaid. wille of<br>stamp here. To be perpaid. Will of<br>the property described hereon.<br>Agent or Cashier<br>Per |                     |                                                                                      |               |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--------------|---------------------------|------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------|---------------|---|
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Piece                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Description of Autoras                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _Street                                                             | Class or     |                           | No.                    | Piece                                                | Sta<br>Description                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | Charges advan                                                                        |               |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 10 10 10 10 10 10 10 10 10 10 10 10 1                                                   | 110<br>330<br>33003<br>33003<br>33003<br>33403<br>33403<br>33403<br>33403<br>33403<br>33403<br>33403<br>33403<br>33403<br>337353<br>337353<br>33003<br>37255<br>33003<br>39105<br>40768<br>60198<br>337353<br>40768<br>60198<br>60198<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>6149<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61498<br>61 | LES AND TESTING PROF<br>12/12/6/31.5/8<br>12/12/6/31.5/8<br>12/12/6/31.5/8<br>12/12/6/31.5/8<br>12/12/6/31.5/8<br>12/12/6/31.5/8<br>12/12/6/31.5/8<br>13/12/12/8/31/5/8<br>14/12/12/8/31/5/8<br>15/8* (GR HEX NUT<br>5/8* (GR HEX NUT<br>5 | NO.                                                                 |              |                           | 3/<br>1-~<br>GUA<br>NI | BUR<br>RDRAM<br>AFC ITE<br>CLA                       | 505<br>502<br>HWY STEE<br>5M 105460<br>5S 50                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                                                                                      |               |   |
| Alf the s<br>NOTE<br>The agr<br>specific<br>SHIP<br>OFLA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t prient inc<br>- Where th<br>eed or drock<br>- y stated h<br>PER<br>GENT<br>HERE<br>JT OR | was botween in<br>ta rate is depa-<br>ared value of it<br>y the shipper to<br>hereby au<br>shit agree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D - CONSIGNEE UP<br>an parts by a carrier by water, the law<br>near on value schepars are required to<br>be not careading<br>remove this pharmet in and music the de-<br>to the convection or and cardinous to<br>the convection or and cardinous to<br>any any any any any any any any any any<br>entra cadwed abbet the axee Afors can<br>be any                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | requires that 9<br>In state specific<br>claration of value<br>reof. | aly in writi | ing shall a<br>rg the agr | ed or decla            | It is "carrier's u<br>red value of the<br>SIGNEE Rec | ar shipper's weight?<br>a property,<br>seived the above described<br>back hereof and agrice to th | properly<br>reforegr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | omg contract t<br>/ | Total We<br>4.58<br>ilion except as the<br>erris and condition<br>A.V<br>PM.<br>TIME | 17<br>step or | 3 |

|             |                      |                                              |                                                                   |                       |                       | Certifie                                                                       | d Analysi                                                                                                                                                                                                              | is                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           |                                                                                                                      | Highway Products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------|----------------------|----------------------------------------------|-------------------------------------------------------------------|-----------------------|-----------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| rinity Hi   | ighway P             | roducts, LLC                                 |                                                                   |                       |                       |                                                                                |                                                                                                                                                                                                                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 548 N.E.    | 28th St.             |                                              |                                                                   |                       |                       | Order 1                                                                        | Number: 1172458                                                                                                                                                                                                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 't Worth, T | X 76111              |                                              |                                                                   |                       |                       | Custo                                                                          | mer PO: TTI-TEST                                                                                                                                                                                                       | 190022-                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                      | DO TROTINIC TO A ININ                        |                                                                   |                       |                       |                                                                                |                                                                                                                                                                                                                        | 190022                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           | A                                                                                                                    | ls of: 5/1/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ustomer:    |                      | LES, TESTING, TRAININ                        | GMIRLS                                                            |                       |                       |                                                                                | Number: 41901                                                                                                                                                                                                          |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | 2525 S               | TEMMONS FRWY                                 |                                                                   |                       |                       | Doci                                                                           | 1 ument #: 1                                                                                                                                                                                                           |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                      |                                              |                                                                   |                       |                       | Ship                                                                           | pped To: TX                                                                                                                                                                                                            |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | DALLA                | S, TX 75207                                  |                                                                   |                       |                       | Us                                                                             | se State: TX                                                                                                                                                                                                           |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Project:    |                      | LES AND TESTING PRO                          | DIFCT 490                                                         | 022-6                 |                       |                                                                                |                                                                                                                                                                                                                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Toject.     | SAMI                 |                                              | 55201470                                                          | 022 0                 |                       |                                                                                |                                                                                                                                                                                                                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                      |                                              |                                                                   |                       |                       |                                                                                |                                                                                                                                                                                                                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Qty         | Part #               | Description                                  | Spec                                                              | CL                    | ТҮ                    | Heat Code/ Heat #                                                              | Yield                                                                                                                                                                                                                  | TS                                                                | Elg C Mn                                                                                                                                                                                                                                                                                                                                                                                                              | P S                                                                                                                                                                                                                                                                       | Si Cu                                                                                                                | Cb Cr Vn AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6           | 11G                  | 12/12'6/3'1.5/S                              | M-180                                                             | А                     | 2                     | 103056                                                                         | 58,600 78,                                                                                                                                                                                                             | ,400                                                              | 29.0 0.190 0.770                                                                                                                                                                                                                                                                                                                                                                                                      | 0.007 0.001                                                                                                                                                                                                                                                               | 0.020 0.150                                                                                                          | 0.00 0.040 0.002 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             |                      |                                              | M-180                                                             | A                     |                       | 137784                                                                         |                                                                                                                                                                                                                        | ,800                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0.013 0.004                                                                                                                                                                                                                                                             |                                                                                                                      | 0.000 0.050 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                      |                                              | M-180                                                             | A                     | 2                     | 203516                                                                         |                                                                                                                                                                                                                        | ,100                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                       | 30 0.009 0.003                                                                                                                                                                                                                                                            |                                                                                                                      | 0.000 0.040 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                      |                                              | M-180                                                             | A                     | 2                     | 203516                                                                         |                                                                                                                                                                                                                        | ,400                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.009 0.002                                                                                                                                                                                                                                                               |                                                                                                                      | 0.000 0.050 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                      |                                              | M-180<br>M-180                                                    | A<br>A                |                       | 203517<br>204446                                                               |                                                                                                                                                                                                                        | 9,600<br>9,100                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                       | 30 0.008 0.002<br>70 0.010 0.002                                                                                                                                                                                                                                          |                                                                                                                      | 0.000 0.050 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                      |                                              | M-180                                                             | Λ                     | 2                     | a54903                                                                         |                                                                                                                                                                                                                        | 5,300                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                       | 30 0.009 0.002                                                                                                                                                                                                                                                            |                                                                                                                      | 0.000 0.040 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                      |                                              | M-180                                                             | A                     |                       | A54907                                                                         |                                                                                                                                                                                                                        | ,700                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.003 0.004                                                                                                                                                                                                                                                               |                                                                                                                      | 0.000 0.050 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                      |                                              | M-180                                                             | A                     |                       | A56188                                                                         |                                                                                                                                                                                                                        | 2,800                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                       | 50 0.012 0.004                                                                                                                                                                                                                                                            |                                                                                                                      | 0.000 0.060 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                      |                                              | M-180                                                             | А                     | 2                     | C53442                                                                         |                                                                                                                                                                                                                        | l,500                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                       | 50 0.010 0.006                                                                                                                                                                                                                                                            |                                                                                                                      | 0.000 0.040 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                      |                                              | M-180                                                             | A                     | 2                     | C54778                                                                         |                                                                                                                                                                                                                        | 3,300                                                             | 23.6 0.210 0.84                                                                                                                                                                                                                                                                                                                                                                                                       | 10 0.009 0.004                                                                                                                                                                                                                                                            | 0.020 0.020                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                      |                                              | 141-100                                                           |                       |                       |                                                                                |                                                                                                                                                                                                                        |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           | 0.030 0.070                                                                                                          | 0.000 0.050 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2           | 32G                  | 12/12'6/6'3/S ET2000 ANC                     | M-180                                                             | A                     | 2                     | 150045                                                                         |                                                                                                                                                                                                                        | ,300                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.017 0.004                                                                                                                                                                                                                                                               |                                                                                                                      | 0.00 0.070 0.000 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2           | 32G                  | 12/12'6/6'3/S ET2000 ANC                     |                                                                   |                       |                       | 150045<br>149773                                                               | 57,310 75                                                                                                                                                                                                              | ,300<br>),830                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.017 0.004                                                                                                                                                                                                                                                               | 0.010 0.130                                                                                                          | 0.00 0.070 0.000 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2           | 32G                  | 12/12'6/6'3/S ET2000 ANC                     | M-180                                                             | А                     | 2                     |                                                                                | 57,310 75,<br>54,310 70                                                                                                                                                                                                |                                                                   | 26.0         0.180         0.730           31.4         0.190         0.74                                                                                                                                                                                                                                                                                                                                            | 0.017 0.004<br>40 0.011 0.003                                                                                                                                                                                                                                             | 0.010 0.130                                                                                                          | 0.00 0.070 0.000 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2           | 32G                  | 12/12'6/6'3/S ET2000 ANC                     | M-180<br>M-180                                                    | A<br>A                | 2<br>2<br>2           | 149773                                                                         | 57,310         75,           54,310         70           55,520         72                                                                                                                                             | ,830                                                              | 26.0         0.180         0.730           31.4         0.190         0.74           29.5         0.180         0.75                                                                                                                                                                                                                                                                                                  | 0.017 0.004<br>40 0.011 0.003<br>20 0.012 0.005                                                                                                                                                                                                                           | 0.010 0.130<br>0.020 0.120                                                                                           | 0.00 0.070 0.000 4<br>0.000 0.050 0.001<br>0.000 0.060 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2           | 32G                  | 12/12'6/6'3/S ET2000 ANC                     | M-180<br>M-180<br>M-180<br>M-180<br>M-180                         | A<br>A<br>A           | 2<br>2<br>2<br>2      | 149773<br>150044<br>150046<br>150058                                           | 57,310         75,           54,310         70           55,520         72           60,750         79           59,780         77                                                                                     | ),830<br>2,990<br>9,070<br>7,600                                  | 26.0         0.180         0.730           31.4         0.190         0.74           29.5         0.180         0.77           26.0         0.200         0.74           26.0         0.200         0.74           28.0         0.190         0.74                                                                                                                                                                    | 0.017 0.004<br>40 0.011 0.003<br>20 0.012 0.005<br>40 0.009 0.003<br>40 0.008 0.003                                                                                                                                                                                       | 0.010 0.130<br>0.020 0.120<br>0.010 0.120<br>0.020 0.120<br>0.020 0.130                                              | 0.00         0.070         0.000         4           0.000         0.050         0.001         -           0.000         0.060         0.001         -           0.000         0.100         0.001         -           0.000         0.000         0.001         -                                                                                                                                                                                                                                                                               |
|             |                      |                                              | M-180<br>M-180<br>M-180<br>M-180<br>M-180<br>M-180                | A<br>A<br>A<br>A      | 2<br>2<br>2<br>2      | 149773<br>150044<br>150046<br>150058<br>150060                                 | 57,310         75,           54,310         70           55,520         72           60,750         79           59,780         77           59,460         76                                                         | 0,830<br>2,990<br>0,070<br>7,600<br>5,830                         | 26.0         0.180         0.730           31.4         0.190         0.7           29.5         0.180         0.7           26.0         0.200         0.7           28.0         0.190         0.7           28.5         0.190         0.7           28.5         0.190         0.7                                                                                                                                | 0.017         0.004           40         0.011         0.003           20         0.012         0.005           40         0.009         0.003           40         0.008         0.003           40         0.009         0.004                                          | 0.010 0.130<br>0.020 0.120<br>0.010 0.120<br>0.020 0.120<br>0.020 0.130<br>0.010 0.130                               | 0.00         0.070         0.000         4           0.000         0.050         0.001         6           0.000         0.060         0.001         6           0.000         0.100         0.001         6           0.000         0.050         0.001         6           0.000         0.050         0.001         6           0.000         0.050         0.001         6                                                                                                                                                                   |
| 2           | 32G<br>533G          | 12/12'6/6'3/S ET2000 ANC<br>6'0 POST/8.5/DDR | M-180<br>M-180<br>M-180<br>M-180<br>M-180                         | A<br>A<br>A<br>A<br>A | 2<br>2<br>2<br>2      | 149773<br>150044<br>150046<br>150058                                           | 57,310         75,           54,310         70           55,520         72           60,750         79           59,780         77           59,460         76                                                         | ),830<br>2,990<br>9,070<br>7,600                                  | 26.0         0.180         0.730           31.4         0.190         0.74           29.5         0.180         0.77           26.0         0.200         0.74           26.0         0.200         0.74           28.0         0.190         0.74                                                                                                                                                                    | 0.017         0.004           40         0.011         0.003           20         0.012         0.005           40         0.009         0.003           40         0.008         0.003           40         0.009         0.004                                          | 0.010 0.130<br>0.020 0.120<br>0.010 0.120<br>0.020 0.120<br>0.020 0.130<br>0.010 0.130                               | 0.00         0.070         0.000         4           0.000         0.050         0.001         -           0.000         0.060         0.001         -           0.000         0.100         0.001         -           0.000         0.050         0.001         -                                                                                                                                                                                                                                                                               |
|             |                      |                                              | M-180<br>M-180<br>M-180<br>M-180<br>M-180<br>M-180                | A<br>A<br>A<br>A<br>A | 2<br>2<br>2<br>2      | 149773<br>150044<br>150046<br>150058<br>150060                                 | 57,310         75,           54,310         70           55,520         72           60,750         79           59,780         77           59,460         76           54,730         71                             | 0,830<br>2,990<br>0,070<br>7,600<br>5,830                         | 26.0         0.180         0.730           31.4         0.190         0.7           29.5         0.180         0.7           26.0         0.200         0.7           28.0         0.190         0.7           28.5         0.190         0.7           28.5         0.190         0.7           28.2         0.120         0.930                                                                                     | 0.017         0.004           40         0.011         0.003           20         0.012         0.005           40         0.009         0.003           40         0.008         0.003           40         0.009         0.004           40         0.011         0.042 | 0.010 0.130<br>0.020 0.120<br>0.010 0.120<br>0.020 0.120<br>0.020 0.130<br>0.010 0.130<br>0.180 0.340                | 0.00         0.070         0.000         4           0.000         0.050         0.001         6           0.000         0.060         0.001         6           0.000         0.100         0.001         6           0.000         0.050         0.001         6           0.000         0.050         0.001         6           0.000         0.050         0.001         6                                                                                                                                                                   |
|             | 533G                 |                                              | M-180<br>M-180<br>M-180<br>M-180<br>M-180<br>A-36<br>A-36         | A<br>A<br>A<br>A<br>A | 2<br>2<br>2<br>2      | 149773<br>150044<br>150046<br>150058<br>150060<br>1017684<br>1017674           | 57,310         75,           54,310         70           55,520         72           60,750         79           59,780         77           59,460         76           54,730         71           56,593         73 | 0,830<br>2,990<br>0,070<br>7,600<br>5,830<br>,963<br>,194         | 26.0         0.180         0.730           31.4         0.190         0.7           29.5         0.180         0.7           26.0         0.200         0.7           28.0         0.190         0.7           28.5         0.190         0.7           28.5         0.190         0.7           28.2         0.120         0.930                                                                                     | 0.017         0.004           40         0.011         0.003           20         0.012         0.005           40         0.009         0.003           40         0.008         0.003           40         0.009         0.004           40         0.011         0.042 | 0.010 0.130<br>0.020 0.120<br>0.010 0.120<br>0.020 0.120<br>0.020 0.130<br>0.010 0.130<br>0.180 0.340                | 0.00         0.070         0.000         4           0.000         0.050         0.001         6           0.000         0.060         0.001         6           0.000         0.000         0.001         6           0.000         0.000         0.001         6           0.000         0.050         0.001         6           0.000         0.050         0.001         6           0.000         0.050         0.001         6           0.000         0.050         0.001         6           0.000         0.120         0.003         4 |
|             | 533G                 |                                              | M-180<br>M-180<br>M-180<br>M-180<br>M-180<br>A-36                 | A<br>A<br>A<br>A<br>A | 2<br>2<br>2<br>2      | 149773<br>150044<br>150046<br>150058<br>150060<br>1017684                      | 57,310         75,           54,310         70           55,520         72           60,750         79           59,780         77           59,460         76           54,730         71           56,593         73 | 0,830<br>2,990<br>0,070<br>7,600<br>5,830<br>,963                 | 26.0         0.180         0.730           31.4         0.190         0.7           29.5         0.180         0.7           26.0         0.200         0.7           28.0         0.190         0.7           28.5         0.190         0.7           28.5         0.190         0.7           28.2         0.120         0.930                                                                                     | 0.017 0.004<br>40 0.011 0.003<br>20 0.012 0.009<br>40 0.009 0.003<br>40 0.008 0.003<br>20 0.009 0.004<br>4 0.011 0.042<br>4 0.016 0.035                                                                                                                                   | 0.010 0.130<br>0.020 0.120<br>0.010 0.120<br>0.020 0.120<br>0.020 0.120<br>0.020 0.130<br>0.180 0.340<br>0.180 0.340 | 0.00         0.070         0.000         4           0.000         0.050         0.001         6           0.000         0.060         0.001         6           0.000         0.000         0.001         6           0.000         0.000         0.001         6           0.000         0.050         0.001         6           0.000         0.050         0.001         6           0.000         0.050         0.001         6           0.000         0.050         0.001         6           0.000         0.120         0.003         4 |
| 14          | 533G<br>533G<br>980G | 6'0 POST/8.5/DDR<br>T10/END SHOE/SLANT       | M-180<br>M-180<br>M-180<br>M-180<br>M-180<br>A-36<br>A-36<br>A-36 | A<br>A<br>A<br>A<br>A | 2<br>2<br>2<br>2<br>2 | 149773<br>150044<br>150046<br>150058<br>150060<br>1017684<br>1017674<br>125745 | 57,310       75         54,310       70         55,520       72         60,750       79         59,780       77         59,460       76         54,730       71         56,593       73         58,100       66        | ),830<br>2,990<br>0,070<br>7,600<br>5,830<br>,963<br>,194<br>,100 | 26.0         0.180         0.730           31.4         0.190         0.7           29.5         0.180         0.7           26.0         0.200         0.7           28.0         0.190         0.7           28.5         0.190         0.7           28.5         0.190         0.7           28.5         0.190         0.7           30.5         0.110         0.920           31.9         0.050         0.570 | 0.017 0.004<br>0.011 0.003<br>20 0.012 0.005<br>40 0.009 0.003<br>40 0.008 0.003<br>20 0.009 0.004<br>0.011 0.042<br>0 0.016 0.035<br>0 0.012 0.003                                                                                                                       | 0.010 0.130<br>0.020 0.120<br>0.010 0.120<br>0.020 0.120<br>0.020 0.120<br>0.020 0.130<br>0.180 0.340<br>0.180 0.340 | 0.00         0.070         0.000         4           0.000         0.050         0.001         6           0.000         0.060         0.001         6           0.000         0.100         0.001         6           0.000         0.050         0.001         6           0.000         0.050         0.001         6           0.000         0.050         0.001         6           0.000         0.120         0.003         4           0.00         0.190         0.004         4                                                        |
| 14          | 533G<br>533G         | 6'0 POST/8.5/DDR                             | M-180<br>M-180<br>M-180<br>M-180<br>M-180<br>A-36<br>A-36         | A<br>A<br>A<br>A<br>A | 2<br>2<br>2<br>2      | 149773<br>150044<br>150046<br>150058<br>150060<br>1017684<br>1017674           | 57,310       75         54,310       70         55,520       72         60,750       79         59,780       77         59,460       76         54,730       71         56,593       73         58,100       66        | 0,830<br>2,990<br>0,070<br>7,600<br>5,830<br>,963<br>,194         | 26.0         0.180         0.730           31.4         0.190         0.7           29.5         0.180         0.7           26.0         0.200         0.7           28.0         0.190         0.7           28.5         0.190         0.7           28.5         0.190         0.7           28.2         0.120         0.930           30.5         0.110         0.920                                          | 0.017 0.004<br>0.011 0.003<br>20 0.012 0.005<br>40 0.009 0.003<br>40 0.008 0.003<br>20 0.009 0.004<br>0.011 0.042<br>0 0.016 0.035<br>0 0.012 0.003                                                                                                                       | 0.010 0.130<br>0.020 0.120<br>0.010 0.120<br>0.020 0.120<br>0.020 0.120<br>0.020 0.130<br>0.180 0.340<br>0.180 0.340 | 0.00         0.070         0.000         4           0.000         0.050         0.001         -           0.000         0.060         0.001         -           0.000         0.100         0.001         -           0.000         0.000         0.001         -           0.000         0.050         0.001         -           0.000         0.050         0.001         -           0.000         0.050         0.001         -           0.000         0.120         0.003         4           0.00         0.190         0.004         4  |

85

1 of 3

|              |                                      | Certified A   | nalysis          | is the product to |
|--------------|--------------------------------------|---------------|------------------|-------------------|
| Trinity Hig  | ghway Products, LLC                  |               |                  |                   |
| 2548 N.E. 2  | 28th St.                             | Order Number: | 1172458          |                   |
| Ft Worth, TX | X 76111                              | Customer PO:  | TTI-TEST 490022- | As of: 5/1/12     |
| Customer:    | SAMPLES, TESTING, TRAINING MTRLS     | BOL Number:   | 41901            |                   |
|              | 2525 STEMMONS FRWY                   | Document #:   | 1                |                   |
|              |                                      | Shipped To:   | TX               |                   |
|              | DALLAS, TX 75207                     | Use State:    | TX               |                   |
| Project:     | SAMPLES AND TESTING PROJECT 490022-6 |               |                  |                   |

| Qty | Part # | Description              | Spec   | CL 7 | 'Y Heat Code/ Heat # |   | Yield  | TS     | Elg  | С     | Mn    | Р     | s     | Sl    | Cu    | Сь   | Cr    | Vn    | ACW |
|-----|--------|--------------------------|--------|------|----------------------|---|--------|--------|------|-------|-------|-------|-------|-------|-------|------|-------|-------|-----|
| 12  | 14784G | 7'0 POST/8.5#/3HI TX     | A-36   |      | 1017007              |   | 53,613 | 72,244 | 25.7 | 0.120 | 0.930 | 0.012 | 0.040 | 0.180 | 0.360 | 0.00 | 0.140 | 0.003 | 4   |
| 2   | 14785G | 6'0 POST/8.5#/3HI TX     | A-36   |      | 1017007              |   | 53,613 | 72,244 | 25.7 | 0.120 | 0.930 | 0.012 | 0.040 | 0.180 | 0.360 | 0.00 | 0.140 | 0.003 | 4   |
| 2   | 14786G | 6'0 POST/8.5#/TRANS TX   | A-36   |      | 1016659              |   | 56,271 | 73,902 | 27.5 | 0.110 | 0.980 | 0.023 | 0.044 | 0.180 | 0.320 | 0.00 | 0.220 | 0.004 | 4   |
| 2   | 33726Л | ET+CAN-50',12'6 HBA/SYTH | P A-36 |      | 3031507              |   | 53,600 | 75,900 | 28.0 | 0.150 | 0.910 | 0.015 | 0.040 | 0.190 | 0.370 | 0.00 | 0.090 | 0.014 | 4   |
|     | 33726A |                          | A-500  |      | 813U66380            | ŝ | 56,700 | 71,300 | 29.5 | 0.220 | 0.790 | 0.010 | 0.005 | 0.022 | 0.029 | 0.00 | 0.030 | 0.001 | 4   |
| 2   | 33795G | SYT-3"AN STRT 3-HL 6'6   | A-36   |      | 3029682              |   | 58,000 | 79,900 | 33.0 | 0.160 | 0.910 | 0.014 | 0.023 | 0.190 | 0.300 | 0.00 | 0.120 | 0.017 | 4   |
| 2   | 35247A | CONN PL 40"X20" RT MO    | A-36   |      | 37482C               |   | 44,200 | 69,500 | 34.0 | 0.190 | 0.750 | 0.010 | 0.013 | 0.011 | 0.040 | 0.00 | 0.050 | 0.000 | 4   |

TL -3 or TL-4 COMPLIANT when installed according to manufactures specifications

Upon delivery, all materials subject to Trinity Highway Products, LLC Storage Stain Policy No. LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT.

ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT"

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM-123, UNLESS OTHERWISE STATED.

BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.

NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. WASHERS COMPLY WITH ASTMF-436 SPECIFICATION AND/OR F-844 AND ARE GALVANIZED IN ACCORDANCE WITH ASTMF-2329. 3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD I." DIA ASTM 449 AASHTO M30, TYPE II BREAKING STRENGTI 49100 LB

2 of 3

## **Certified Analysis**

Trinity Highway Products , LLC 2548 N.E. 28th St. Ft Worth, TX 76111 Customer: SAMPLES,TESTING,TRAINING MTRLS 2525 STEMMONS FRWY

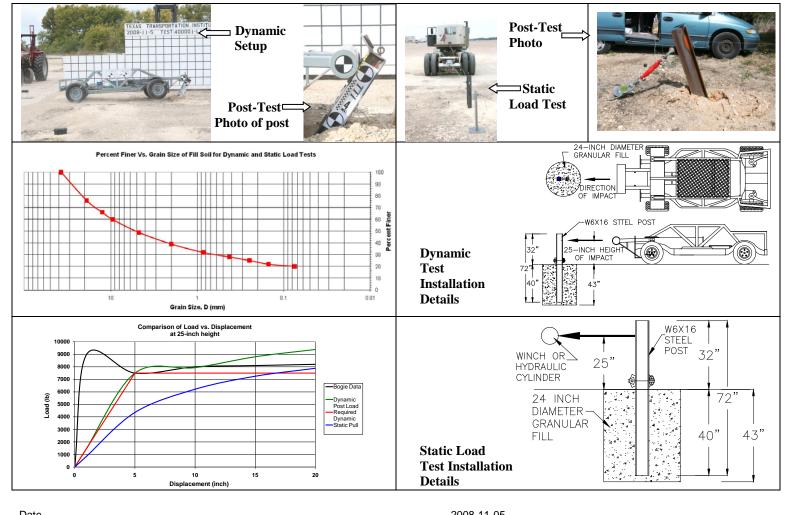
Order Number: 1172458 Customer PO: TTI-TEST 490022-BOL Number: 41901 Document #: 1 Shipped To: TX Use State: TX



Asof: 5/1/12

DALLAS, TX 75207

Project: SAMPLES AND TESTING PROJECT 490022-6

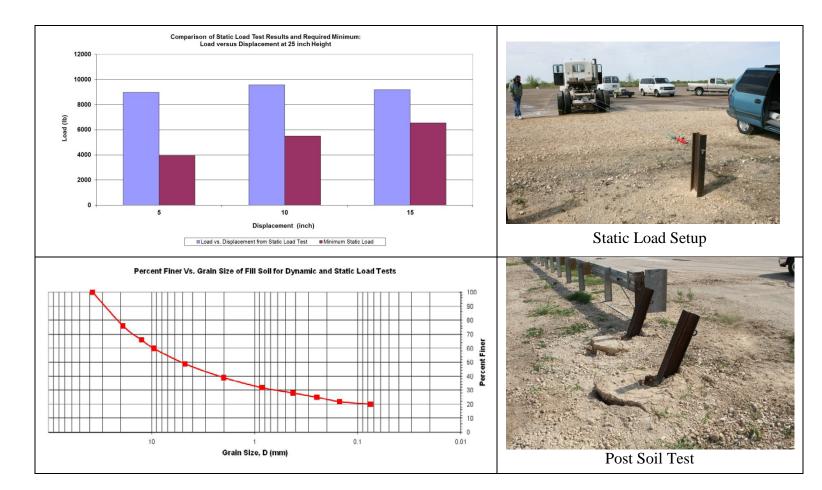

State of Texas, County of Tarrant. Sworn and subscribed before me this 1st day of May, 2012

Notary Public: Commission Expires:



Trinity Highway Pres 0 Certified By: Quality Assurance

60




**APPENDIX C.** 

SOIL PROPERTIES

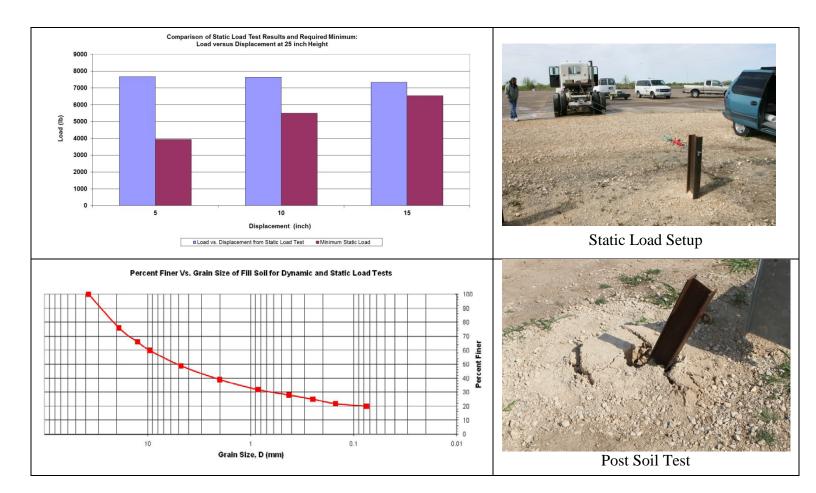

| Date                                                      | 2008-11-05                                               |
|-----------------------------------------------------------|----------------------------------------------------------|
| Test Facility and Site Location                           | TTI Proving Ground, 3100 SH 47, Bryan, TX 77807          |
| In Situ Soil Description (ASTM D2487                      | Sandy gravel with silty fines                            |
| Fill Material Description (ASTM D2487) and sieve analysis | AASHTO Grade B Soil-Aggregate (see sieve analysis above) |
| Description of Fill Placement Procedure                   | 6-inch lifts tamped with a pneumatic compactor           |
| Bogie Weight                                              | 5009 lb                                                  |
| Impact Velocity                                           | 20.5 mph                                                 |

Figure C1. Summary of Strong Soil Test Results for Establishing Installation Procedure.



| Date                                                      | May 25, 2012                                       |
|-----------------------------------------------------------|----------------------------------------------------|
| Test Facility and Site Location                           | TTI Proving Ground, 3100 SH 47, Bryan, TX          |
| In Situ Soil Description (ASTM D2487)                     | Sandy gravel with silty fines                      |
| Fill Material Description (ASTM D2487) and sieve analysis | AASHTO Grade B Soil-Aggregate (see sieve analysis) |
| Description of Fill Placement Procedure                   | 6-inch lifts tamped with a pneumatic compactor     |

Figure C2. Test Day Static Soil Strength Documentation for Test No. 490022-6.



| Date                                                      | June 29, 2012                                      |
|-----------------------------------------------------------|----------------------------------------------------|
| Test Facility and Site Location                           | TTI Proving Ground, 3100 SH 47, Bryan, TX          |
| In Situ Soil Description (ASTM D2487)                     | Sandy gravel with silty fines                      |
| Fill Material Description (ASTM D2487) and sieve analysis | AASHTO Grade B Soil-Aggregate (see sieve analysis) |
| Description of Fill Placement Procedure                   | 6-inch lifts tamped with a pneumatic compactor     |

Figure C3. Test Day Static Soil Strength Documentation for Test No. 490022-8.

## APPENDIX D. CRASH TEST NO. 490022-6 (MASH TEST 3-20)

### D1. TEST VEHICLE PROPERTIES AND INFORMATION

|                                                                                                             |                 | Tabl                    | e D1. Veh          | icle Pro   | perties for T       | est No. 4 | 90022-6.      |                |                        |
|-------------------------------------------------------------------------------------------------------------|-----------------|-------------------------|--------------------|------------|---------------------|-----------|---------------|----------------|------------------------|
| Date:                                                                                                       | 2012-05-        | 25                      | Test No.:          | 490022     | 2-6                 | VIN No.:  | KNADE1        | 233660682      | 32                     |
| Year:                                                                                                       | 2006            |                         | Make:              | Kia        |                     | Model:    | Rio           |                |                        |
| Tire In                                                                                                     | flation Press   | sure: <u>32</u>         | psi                | Odome      | eter: <u>119617</u> |           | Tire Size:    | P185/65R       | 14                     |
| Descri                                                                                                      | be any dam      | age to the              | vehicle prio       | r to test: |                     |           |               |                |                        |
| • Den                                                                                                       | otes accelei    | rometer lo              | cation.            | 4          |                     |           |               | ACCELEROMETERS |                        |
|                                                                                                             | S:              |                         |                    | -          | EEL                 |           |               |                | WHEEL N T              |
| Engine<br>Engine                                                                                            |                 | 4 cylinder<br>1.6 liter |                    | _          |                     |           |               |                |                        |
| •                                                                                                           | nission Type    |                         |                    |            |                     | I         | TEST I        | INERTIAL C.M.  |                        |
| <u>x</u> Auto or Manual<br><u>x</u> FWD RWD 4WD<br>Optional Equipment:                                      |                 |                         |                    | - +        |                     |           |               |                |                        |
| Dummy Data:<br>Type: <u>50<sup>th</sup> percentile male</u><br>Mass: <u>179 lb</u><br>Seat Position: Driver |                 |                         |                    |            | W<br>H              |           |               |                |                        |
| Geom                                                                                                        | -               | ies                     |                    |            | <u>+</u>            |           | – C           |                | <b></b> +              |
| A                                                                                                           | 66.38           | F _                     | 33.00              | K          | 11.00               | P _       | 4.12          | _ U_           | 15.75                  |
| В                                                                                                           | 57.75           | G _                     | 0470               | _ L        | 24.12               | Q _       | 22.19         | _ V_           | 21.50                  |
| С<br>D                                                                                                      | 165.75<br>34.00 | Н_                      | 34.72<br>7.12      | M<br>N     | 57.75<br>57.12      | R _<br>S  | 15.38<br>7.62 | _ W            | <u>39.50</u><br>108.50 |
| E                                                                                                           | 98.75           | י <u>–</u><br>J         | 21.00              | 0          | 30.62               | з_<br>т   | 66.12         | _ ^ _          | 100.00                 |
|                                                                                                             | Center Ht F     | _                       | 11.00              |            | Center Ht Rea       | _         | 11.00         |                |                        |
| GVW                                                                                                         | R Ratings:      |                         | Mass: Ib           | (          | <u>Curb</u>         | Test      | Inertial      | Gros           | s Static               |
| Front                                                                                                       |                 | 1918                    | M <sub>front</sub> |            | 1598                |           | 1577          |                | 1670                   |
| Back                                                                                                        |                 | 1874                    | M <sub>rear</sub>  |            | 891                 |           | 852           |                | 932                    |
| Total                                                                                                       |                 | 3638                    | M <sub>Total</sub> |            | 2489                |           | 2423          |                | 2602                   |
| Mass<br>Ib                                                                                                  | Distributior    | n:<br>LF:               | 763                | RF:        | 808                 | LR:       | 460           | RR:;           | 392                    |

#### Table D2. Exterior Crush Measurements for Test No. 490022-6.

| Date: | 2012-05-25 | Test No.: | 490022-6 | VIN No.: | KNADE123366068232 |
|-------|------------|-----------|----------|----------|-------------------|
| Year: | 2006       | Make:     | Kia      | Model:   | Rio               |

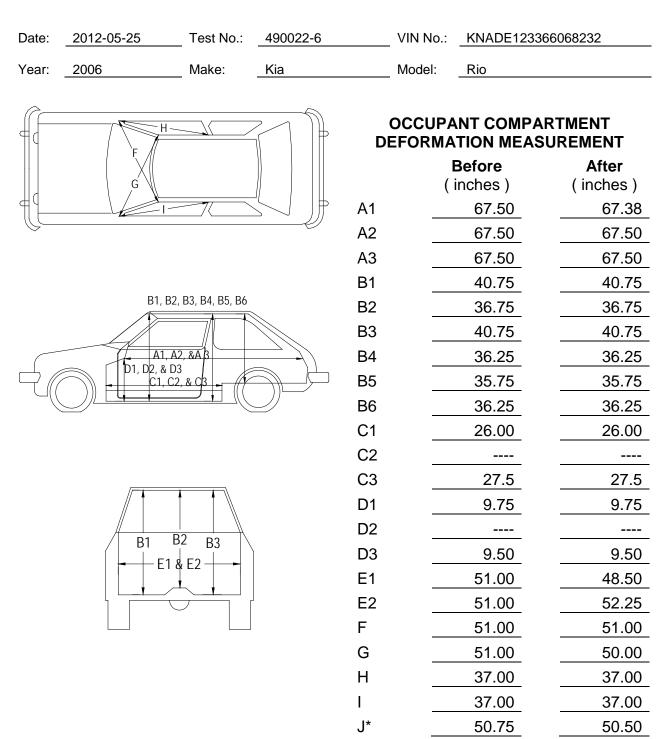
### VEHICLE CRUSH MEASUREMENT SHEET<sup>1</sup>

| Complete When Applicable |                        |  |  |  |  |  |  |  |  |  |
|--------------------------|------------------------|--|--|--|--|--|--|--|--|--|
| End Damage               | Side Damage            |  |  |  |  |  |  |  |  |  |
| Undeformed end width     | Bowing: B1 X1          |  |  |  |  |  |  |  |  |  |
| Corner shift: A1         | B2 X2                  |  |  |  |  |  |  |  |  |  |
| A2                       |                        |  |  |  |  |  |  |  |  |  |
| End shift at frame (CDC) | Bowing constant        |  |  |  |  |  |  |  |  |  |
| (check one)              | <i>X</i> 1+ <i>X</i> 2 |  |  |  |  |  |  |  |  |  |
| < 4 inches               |                        |  |  |  |  |  |  |  |  |  |
| ≥ 4 inches               |                        |  |  |  |  |  |  |  |  |  |

#### Note: Measure $C_1$ to $C_6$ from Driver to Passenger side in Front or Rear impacts – Rear to Front in Side Impacts.

| a : c                        |                             | Direct I         | Damage          |              |                |       |                |       |                |                |     |
|------------------------------|-----------------------------|------------------|-----------------|--------------|----------------|-------|----------------|-------|----------------|----------------|-----|
| Specific<br>Impact<br>Number | Plane* of<br>C-Measurements | Width**<br>(CDC) | Max***<br>Crush | Field<br>L** | C <sub>1</sub> | $C_2$ | C <sub>3</sub> | $C_4$ | C <sub>5</sub> | C <sub>6</sub> | ±D  |
| 1                            | Front plane at bumper ht    | 12               | 12              | 18           | 12             | 8     | 6              | 5.5   | 3              | 0              | -9  |
| 2                            | Side plane at bumper ht     | 20               | 11              | 48           | 0              | 1.5   | 6.75           | 8.5   | 9              | 11             | 152 |
|                              |                             |                  |                 |              |                |       |                |       |                |                |     |
|                              |                             |                  |                 |              |                |       |                |       |                |                |     |
|                              | Measurements recorded       |                  |                 |              |                |       |                |       |                |                |     |
|                              | in inches                   |                  |                 |              |                |       |                |       |                |                |     |
|                              |                             |                  |                 |              |                |       |                |       |                |                |     |

<sup>1</sup>Table taken from National Accident Sampling System (NASS).


\*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

\*\*Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

\*\*\*Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.



### Table D3. Occupant Compartment Measurements for Test No. 490022-6.

\*Lateral area across the cab from

driver's side kickpanel to passenger's side kickpanel.

0.000 s 0.060 s 0.120 s 0.180 s

## Figure D1. Sequential Photographs for Test No. 490022-6 (Overhead and Frontal Views).

D2.

SEQUENTIAL PHOTOGRAPHS





0.240s

0.300 s

0.360 s





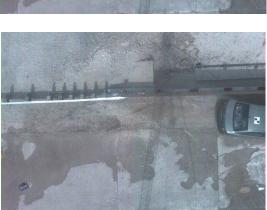



Figure D1. Sequential Photographs for Test No. 490022-6 (Overhead and Frontal Views) (continued).

0.420 s











0.060 s

0.120 s

0.000 s







Figure D2. Sequential Photographs for Test No. 490022-6 (Field Side Transition Views).

0.180 s

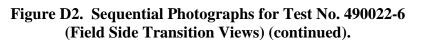






0.300 s

0.360 s


0.240s











0.420 s

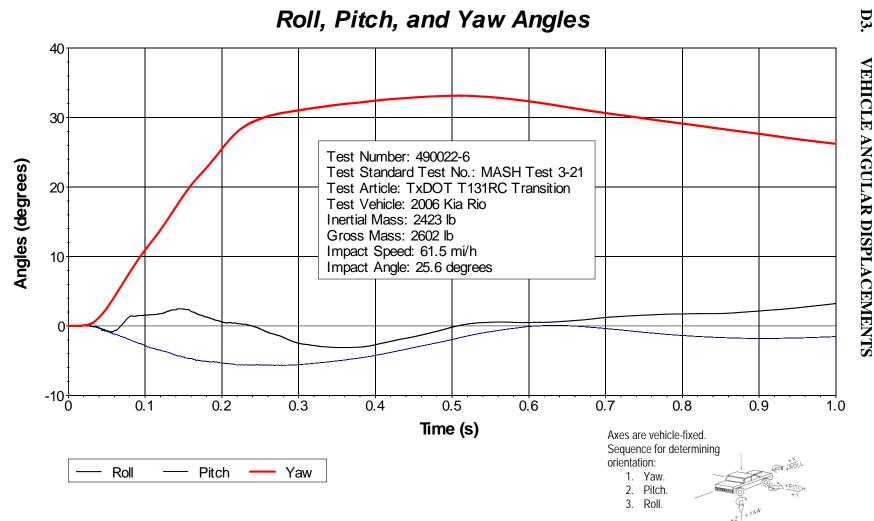



Figure D3. Vehicle Angular Displacements for Test No. 490022-6.

2012-10-25

72

TR No. 9-1002-12-4

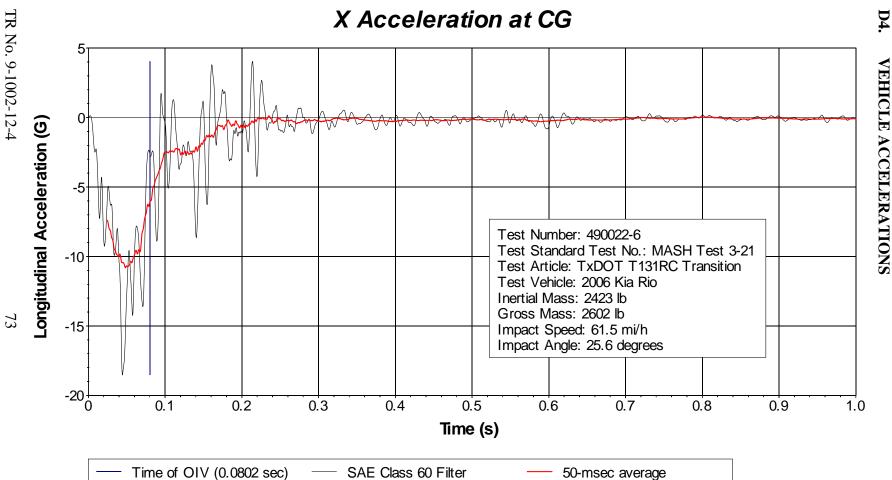



Figure D4. Vehicle Longitudinal Accelerometer Trace for Test No. 490022-6 (Accelerometer Located at Center of Gravity).

2012-10-25

73

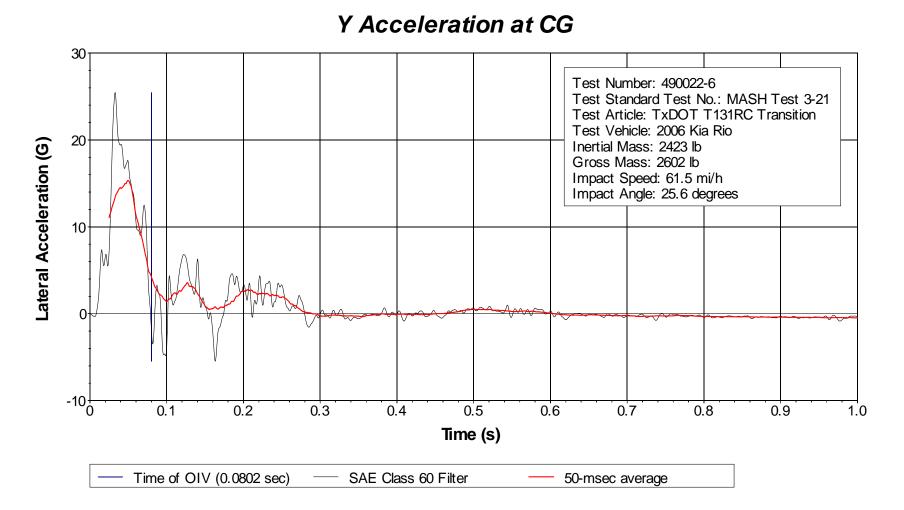



Figure D5. Vehicle Lateral Accelerometer Trace for Test No. 490022-6 (Accelerometer Located at Center of Gravity).

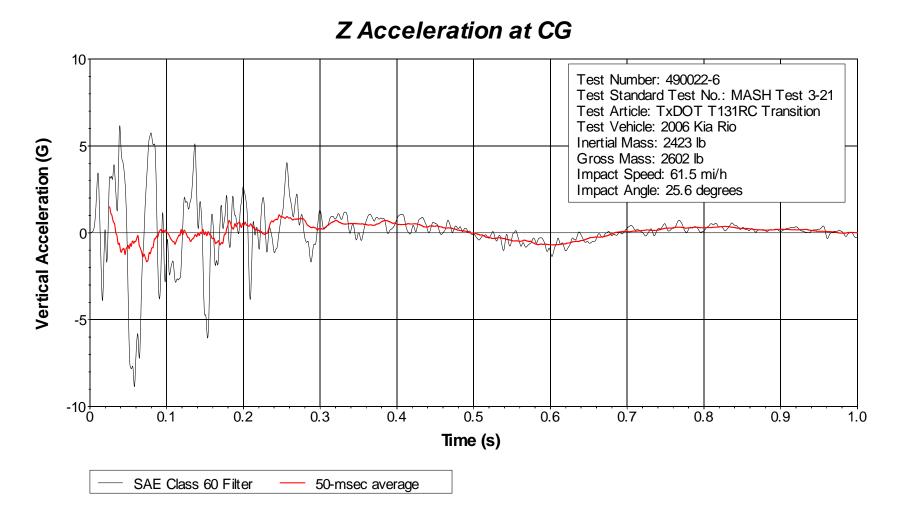
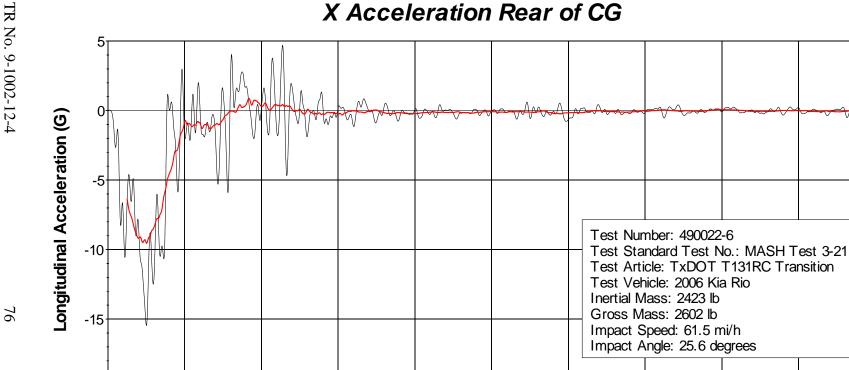




Figure D6. Vehicle Vertical Accelerometer Trace for Test No. 490022-6 (Accelerometer Located at Center of Gravity).



0.3

0.4

50-msec average

### Figure D7. Vehicle Longitudinal Accelerometer Trace for Test No. 490022-6 (Accelerometer Located Rear of Center of Gravity).

0.5

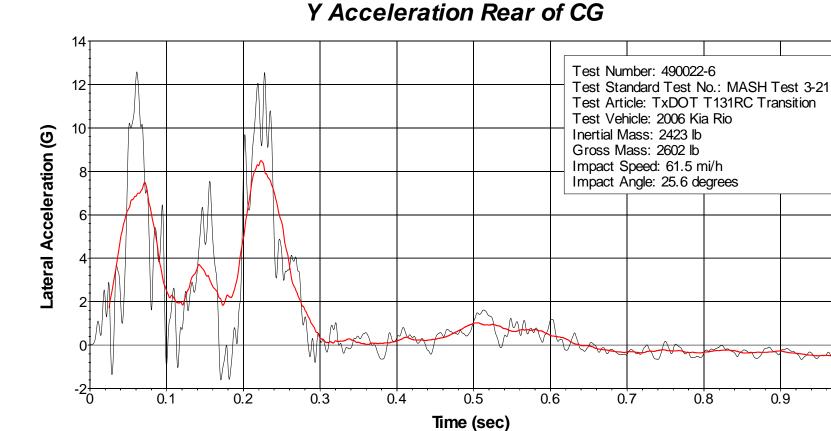
Time (s)

0.6

0.7

0.8

0.9


1.0

-20

0.1

SAE Class 60 Filter

0.2



50-msec average

Figure D8. Vehicle Lateral Accelerometer Trace for Test No. 490022-6 (Accelerometer Located Rear of Center of Gravity).

0.9

1.0

SAE Class 60 Filter



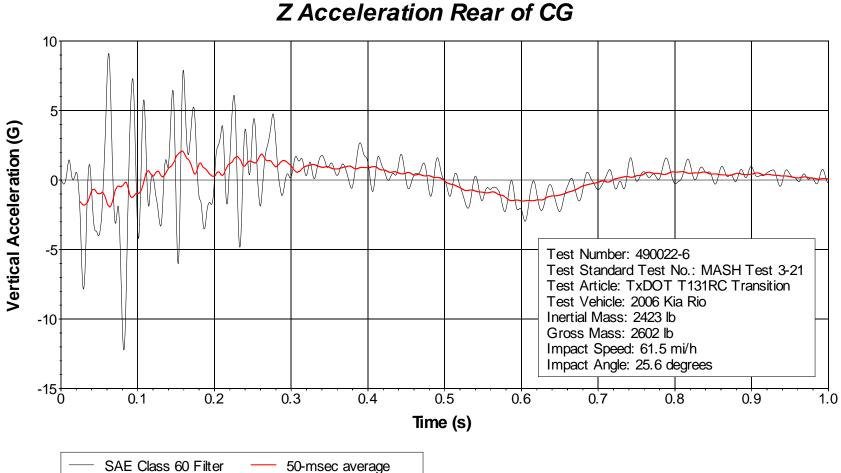



Figure D9. Vehicle Vertical Accelerometer Trace for Test No. 490022-6 (Accelerometer Located Rear of Center of Gravity).

82

## APPENDIX E. CRASH TEST NO. 490022-8 (MASH TEST 3-21)

## E1. TEST VEHICLE PROPERTIES AND INFORMATION

## Table E1. Vehicle Properties for Test No. 490022-8.

| Date:                           | 2012-06-29          |              | Test No.:          | 490022-8                 |             | VIN No.:      | 1DTHA1821                     | 8J04150        |                |
|---------------------------------|---------------------|--------------|--------------------|--------------------------|-------------|---------------|-------------------------------|----------------|----------------|
| Year:                           | 2008                |              | Make:              | Dodge                    |             | Model:        | Ram 1500                      |                |                |
| Tire Size                       | e: _265/7           | 0R17         |                    |                          | Tire I      | nflation Pres | ssure: <u>35 ps</u> i         | i              |                |
| Tread T                         | ype: <u>High</u>    | vay          |                    |                          |             | Odor          | neter: <u>13984</u>           | 19             |                |
| Note an                         | y damage to         | the veh      | nicle prior to t   | est:                     |             |               |                               |                |                |
| <ul> <li>Denot</li> </ul>       | tes acceleror       | neter lo     | ocation.           |                          |             | <b>▲</b> ×    | •                             |                |                |
| NOTES                           | :                   |              |                    |                          |             | *7/           |                               |                | 4              |
|                                 |                     |              |                    | .    <br>A M             |             |               |                               |                | - N T          |
| Engine <sup>-</sup><br>Engine ( |                     | 8<br>7 liter |                    |                          | IEEL<br>ACK |               |                               |                | WHEEL<br>TRACK |
|                                 | ssion Type:         |              |                    | L                        |             |               |                               | INERTIAL C. M. | . <u></u>      |
|                                 | Auto or<br>=WD x    | RWD          | _ Manual<br>4WD    |                          | R —         | 2+            |                               |                |                |
|                                 | I Equipment:        |              |                    |                          |             |               |                               |                | T              |
|                                 |                     |              |                    | . <u>†</u> .             | _5          |               |                               |                | ¦₿             |
| Dummy                           |                     | _            |                    | Ĭ 1-Ī                    |             |               | ⊈_ <u>↓</u> ₩₹/{(             | Pri            | К Г            |
| Type:<br>Mass:                  | _Nc                 | dumm         | у                  |                          |             |               | L <sub>v</sub> L <sub>s</sub> |                |                |
| Seat P                          | osition:            |              |                    |                          | 5           | ◄<br>✓ м      | -Е                            | ►<br>▼ M       |                |
| Geomet                          | t <b>ry:</b> inches | i            |                    |                          | -           | FRONT         | — C —                         | Ψ M<br>rear    | _              |
| Α                               | 78.25               | F _          | 36.00              | К                        | 20.50       | P             | 2.88                          | U              | 28.50          |
| В                               | 75.00               | G _          | 29.00              | _ L                      | 29.12       | Q             | 31.25                         | V              | 29.50          |
| C _ 2                           | 223.75              | н_           | 61.21              | M                        | 68.50       | R             | 18.38                         | W              | 59.50          |
| D                               | 47.25               | Ι            | 13.75              | N                        | 68.00       | S             | 12.00                         | Х              | 78.00          |
|                                 | 40.50<br>el Center  | J_           | 25.38              | O<br>Wheel We            | 44.50       | _ T _         | 77.50<br>Bottom Frame         |                |                |
|                                 | ight Front          |              | 14.75 Cle          | arance (Front            |             | 5.00          | Height - Front                |                | 17.125         |
|                                 | el Center           |              | 14.75 Cle          | Wheel We<br>arance (Rear | II<br>)     | 10.25         | Bottom Frame<br>Height - Rear |                | 24.75          |
|                                 |                     |              |                    |                          | /           |               | -                             |                |                |
|                                 | Ratings:            |              | Mass: Ib           | <u>C</u>                 | <u>urb</u>  | Test          | Inertial                      | <u>Gross</u>   | Static         |
| Front                           | 370                 |              | M <sub>front</sub> |                          | 2870        |               | 2830                          |                |                |
| Back                            | 390                 |              | M <sub>rear</sub>  |                          | 2152        |               | 2185                          |                |                |
| Total                           | 670                 | 0            | M <sub>Total</sub> |                          | 5022        |               | 5015                          |                |                |
| Mass D<br>Ib                    | istribution:        | LF:          | 1426               | RF:                      | 1404        | LR:           | 1069 F                        | R: 11          | 16             |
|                                 |                     |              |                    | · · · · · —              |             |               |                               |                |                |

## Table E2. Vehicle Parametric Measurements for Vertical CG.

| Date: 2012-06   | <u>6-29</u> Te     | st No.: 4     | 90022-8         | <u> </u>       | /IN: <u>1D</u> | THA1821            | 8J0415     | 0             |        |
|-----------------|--------------------|---------------|-----------------|----------------|----------------|--------------------|------------|---------------|--------|
| Year: 2008      |                    | Make: D       | odge            |                | Model:         | Ram 150            | 00         |               |        |
| Body Style: _Q  | uad Cab            |               |                 | N              | /lileage:      | 139849             |            |               |        |
| Engine: 5.7 lit | er V-8             |               |                 | Transr         | nission:       | Automati           | С          |               |        |
| Fuel Level: E   | mpty               | Balla         | st: <u>80 l</u> | bs in front    | of bed         |                    |            | (440 lb       | max)   |
| Tire Pressure:  | Front: 3           | 35 psi        | Rear            | 35             | psi S          | ize: <u>265</u>    | /70R17     |               |        |
| Measured Ve     | hicle Wei          | ghts: (I      | b)              |                |                |                    |            |               |        |
| LF:             | 1426               |               | RF:             | 1404           |                | Fron               | t Axle:    | 2830          |        |
| LR:             | 1069               |               | RR:             | 1116           |                | Rea                | r Axle:    | 2185          |        |
| Left:           | 2495               |               | Right:          | 2520           |                |                    | Total:     | 5015          |        |
|                 |                    |               |                 |                |                |                    | 5000 ±11   | 0 lb allow ed |        |
| Wh              | eel Base:          | 140.5         | inches          | Track: F:      | 68.            | 5 inches           | R:         | 68            | inches |
|                 | 148 ±12 inch       | es allow ed   |                 |                | Track = (F     | +R)/2 = 67 ±1      | 1.5 inches | allow ed      |        |
| Center of Gra   | <b>avity</b> , SAE | J874 Sus      | spension N      | <i>l</i> ethod |                |                    |            |               |        |
| X:              | 61.21              | in            | Rear of F       | ront Axle      | (63 +4 incl    | nes allow ed)      |            |               |        |
|                 |                    |               |                 |                |                |                    |            |               |        |
| Y:              | 0.17               | in            | Left -          | Right +        | or venic       | le Center          | line       |               |        |
| Z:              | 29                 | in            | Above Gr        | ound           | (minumum       | 28.0 inches        | allow ed)  |               |        |
| Hood Heigh      | st.                | 44 50         | inches          | Front B        | umper H        | oiaht <sup>.</sup> | 24         | 5.375 inc     | hos    |
| r iood r ieigi  |                    | ches allowed  |                 | TIONED         | umper n        | eignt              |            | <u></u> Inc   | 1105   |
| Front Overhan   | g:                 | 36.00         | inches          | Rear B         | umper H        | eight:             | 29         | 9.125 inc     | hes    |
|                 | -                  | ches allowed  |                 |                | -              |                    |            |               |        |
| Overall Lengt   | h:                 | 223.75        | inches          |                |                |                    |            |               |        |
|                 | 237 ±13            | inches allowe | d               |                |                |                    |            |               |        |

#### Table E3. Exterior Crush Measurements for Test No. 490022-8.

| Date: | 2012-06-29 | Test No.: | 490022-8 | VIN No.: | 1DTHA18218J04150 |
|-------|------------|-----------|----------|----------|------------------|
| Year: | 2008       | Make:     | Dodge    | Model:   | Ram 1500         |

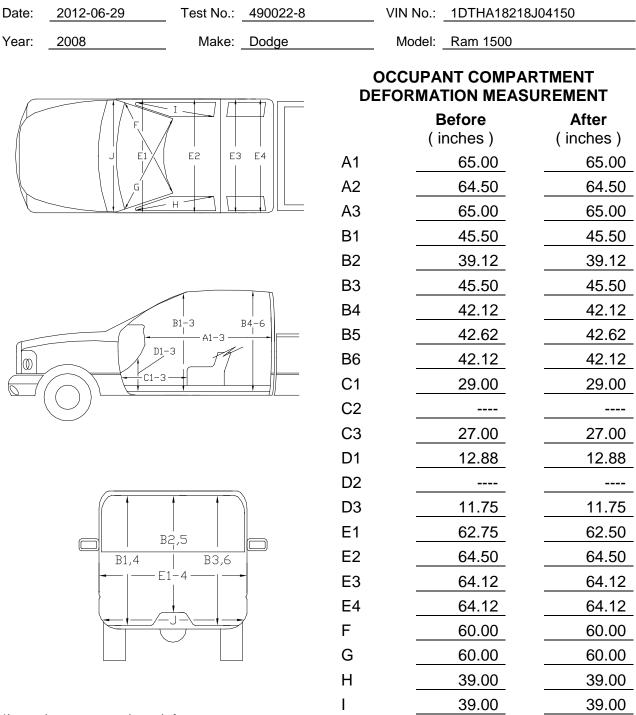
### VEHICLE CRUSH MEASUREMENT SHEET<sup>1</sup>

| Complete When Applicable |                 |  |  |  |  |  |  |  |  |
|--------------------------|-----------------|--|--|--|--|--|--|--|--|
| End Damage               | Side Damage     |  |  |  |  |  |  |  |  |
| Undeformed end width     | Bowing: B1 X1   |  |  |  |  |  |  |  |  |
| Corner shift: A1         | B2 X2           |  |  |  |  |  |  |  |  |
| A2                       |                 |  |  |  |  |  |  |  |  |
| End shift at frame (CDC) | Bowing constant |  |  |  |  |  |  |  |  |
| (check one)              | X1+X2 _         |  |  |  |  |  |  |  |  |
| < 4 inches               |                 |  |  |  |  |  |  |  |  |
| ≥ 4 inches               |                 |  |  |  |  |  |  |  |  |

#### Note: Measure $C_1$ to $C_6$ from Driver to Passenger side in Front or Rear impacts – Rear to Front in Side Impacts.

| с : с                        |                                                              | Direct Damage    |                 |              |    |                |                |                |                |                |    |
|------------------------------|--------------------------------------------------------------|------------------|-----------------|--------------|----|----------------|----------------|----------------|----------------|----------------|----|
| Specific<br>Impact<br>Number | Plane* of<br>C-Measurements                                  | Width**<br>(CDC) | Max***<br>Crush | Field<br>L** | C1 | C <sub>2</sub> | C <sub>3</sub> | C <sub>4</sub> | C <sub>5</sub> | C <sub>6</sub> | ±D |
|                              |                                                              |                  |                 |              |    |                |                |                |                |                |    |
| Meas                         | Measurements not taken due to impact with secondary barrier. |                  |                 |              |    |                |                |                |                |                |    |
|                              |                                                              |                  |                 |              |    |                |                |                |                |                |    |
|                              |                                                              |                  |                 |              |    |                |                |                |                |                |    |
|                              |                                                              |                  |                 |              |    |                |                |                |                |                |    |
|                              |                                                              |                  |                 |              |    |                |                |                |                |                |    |
|                              |                                                              |                  |                 |              |    |                |                |                |                |                |    |

<sup>1</sup>Table taken from National Accident Sampling System (NASS).


\*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

\*\*Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

\*\*\*Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.



### Table E4. Occupant Compartment Measurements for Test No. 490022-8.

\*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.


61.88

62.00

J\*

## E2. SEQUENTIAL PHOTOGRAPHS



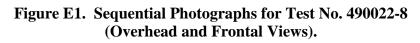




0.000 s

0.060 s

0.120 s














0.180 s





0.240 s

0.300 s

0.360 s









Figure E1. Sequential Photographs for Test No. 490022-8 (Overhead and Frontal Views) (continued).

0.420 s

Vehicle out of view

## TR No. 9-1002-12-4

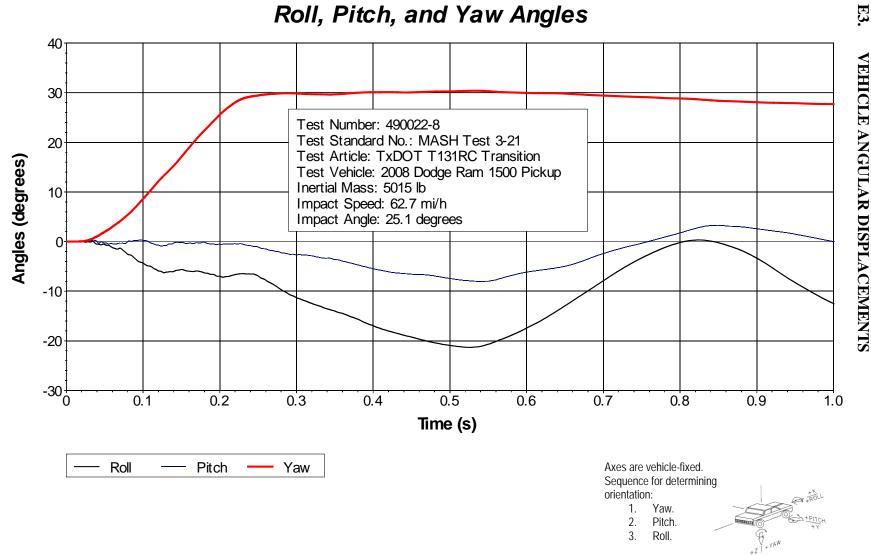



Figure E2. Vehicle Angular Displacements for Test No. 490022-8.

TR No. 9-1002-12-4

58

2012-10-25

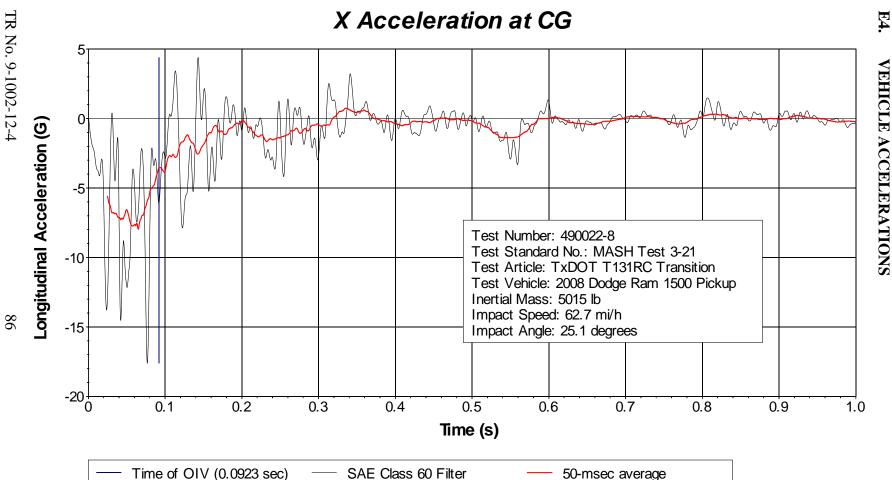




Figure E3. Vehicle Longitudinal Accelerometer Trace for Test No. 490022-8 (Accelerometer Located at Center of Gravity).

2012-10-25

98



### Figure E4. Vehicle Lateral Accelerometer Trace for Test No. 490022-8 (Accelerometer Located at Center of Gravity).

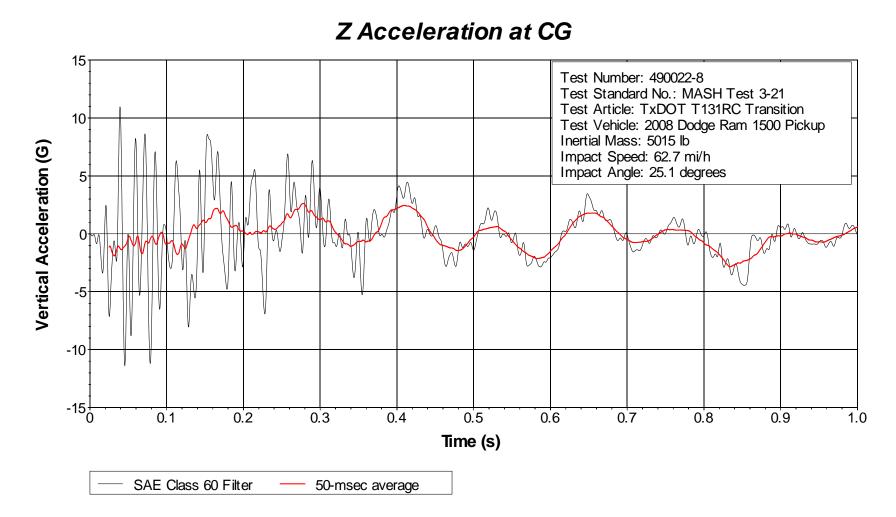



Figure E5. Vehicle Vertical Accelerometer Trace for Test No. 490022-8 (Accelerometer Located at Center of Gravity).

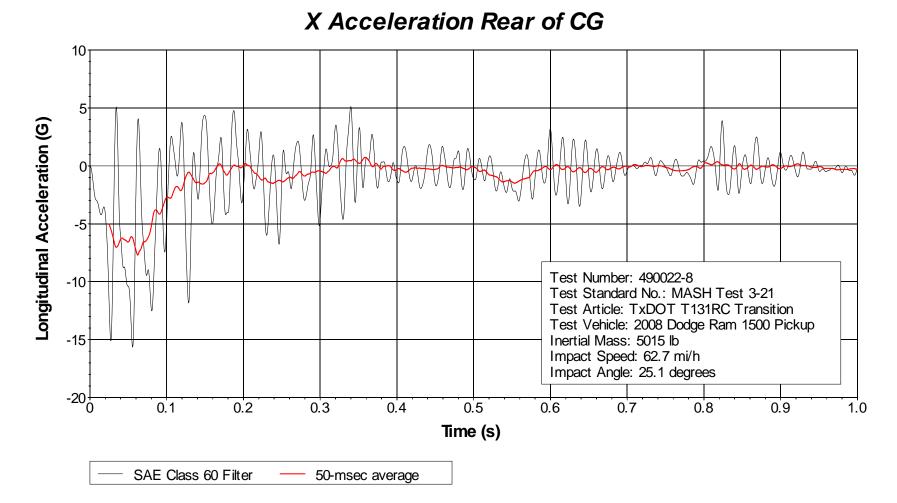
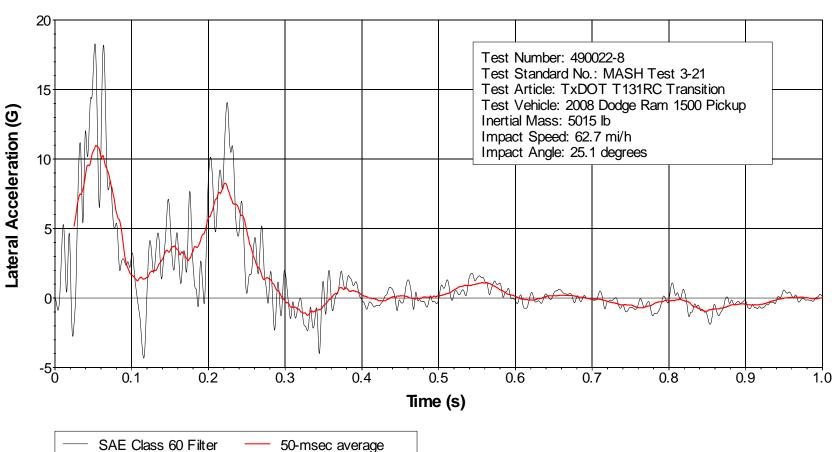




Figure E6. Vehicle Longitudinal Accelerometer Trace for Test No. 490022-8 (Accelerometer Located Rear of Center of Gravity).



# Y Acceleration Rear of CG

Figure E7. Vehicle Lateral Accelerometer Trace for Test No. 490022-8 (Accelerometer Located Rear of Center of Gravity).




Figure E8. Vehicle Vertical Accelerometer Trace for Test No. 490022-8 (Accelerometer Located Rear of Center of Gravity).