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CHAPTER 1.  INTRODUCTION 
 
 
INTRODUCTION 
 

The available deflection distance from the face of guardrail to the face of a hazard is an 
important consideration in the selection and placement of a guardrail system.  Maximum 
deflection values for single and nested W-beam guardrail with a post spacing of 6 ft-3 inches and 
3 ft-1½ inches have yet to be updated to reflect the change in guardrail height due to the higher 
center of gravity for Test Level 3 (TL-3) vehicles specified in American Association of State 
Highway and Transportation Officials (AASHTO) Manual for Assessing Safety Hardware 
(MASH).(1)  The Fourth Edition of AASHTOS’s Roadside Design Guide, Table 5-6 (“Summary of 
Maximum Deflections”), lists values for single (Run No. 1 – 4) and nested (Run No. 5 – 8) 
W-beam guardrail that were simulated and crash tested using a 27-inch W-beam guardrail.(2)  
Many states have asked, “can the new 31-inch W-beam guardrail achieve the same performance 
level and maximum deflection values  shown in the Fourth Edition of AASHTO’s Roadside 
Design Guide?” 

 
Table 5-6 of Chapter 5 in the AASHTO Roadside Design Guide lists deflections for 

various beam guardrail configurations.  The majority of values listed in the table are based on 
simulations.  A limited number have been crash tested using a 4400-lb sedan to support 
deflection values.  BARRIERVII simulation was used to determine dynamic deflections for 
systems that had not been crash tested.(3)  

 
BARRIERVII is a two-dimensional (2D) finite element analysis program that was 

developed to simulate the impact behavior of flexible guardrail systems.  Since it is a simplified 
2D analysis, the software cannot capture snagging, underride of the barrier, override of the 
barrier, or vehicle stability, but it can reasonably predict the maximum deflection of a stable 
impact.  This analysis package has been used historically on many projects to predict deflection 
of barrier systems and to predict critical impact locations for full-scale crash tests.  The software 
provides a cost-effective method for simulating a large number of barrier configurations  to 
determine maximum deflection. 

 
BARRIERVII analysis were used to predict deflection for reduced post spacing (up to 

quarter spacing) for the 31-inch tall W-beam guardrail.  MGS tests with the small car have 
shown significant snagging and yawing with standard post spacing yet met MASH performance 
requirements.   Since BARRIERVII is not capable of predicting snagging potential arising from 
vehicle wheel/suspension interacting with the posts, the results of the reduced ¼ post spacing 
should be used with caution.  For this reason this study only addresses the deflection potential.  

 
Under Pooled Fund Project 405160-24 “Guardrail Deflection Analysis” (referred to 

hereafter as Phase I), crash test data for W-beam guardrail systems evaluated under National 
Cooperative Highway Research Program (NCHRP) Report 350 and AASHTO MASH were 
obtained to synthesize maximum dynamic deflections.(4, 5)  This phase only involved gathering 
available deflection information from recent crash tests, and did not include any additional 
simulation or testing.  This information was valuable in determining what system configurations 

http://www.roadsidepooledfund.org/2011/01/24/guardrail-deflection-analysis-phase-i-405160-24/
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needed to be simulated under the current Phase II project.  The gathered information was also 
valuable in validating the guardrail model before proceeding with deflection predictions of 
different configurations. 
 
 
OBJECTIVE 
 

The purpose of this research effort was to provide an update to the maximum deflection 
values presented in AASHTOS’s Roadside Design Guide based on simulations and crash test 
results for installations of strong post, 31-inch  W-beam guardrail systems (AASHTO Task Force 
13 Designator SGR47).(6)  The research summarizes the results of computer simulations and crash 
tests to determine maximum deflections for new 31-inch W-beam guardrail barrier systems with 
W6×8.5 strong posts (SGR47) with varying post spacing (full-post spacing, half-post spacing, and 
quarter-post spacing) of both single and nested guardrail elements when impacted by the 2270P 
pickup under TL-3 impact conditions. 
 

Phase I of the research was performed previously to gather the available crash test data on 
W-beam guardrail systems and is discussed under separate cover.  Phase II of the research was 
focused on simulating additional 31-inch guardrail systems to broaden the range of system 
configurations for which deflection data is available.  This phase fills in the gaps in crash test data 
by simulating useful configurations using BARRIERVII, a two-dimensional finite element 
analysis program.  These simulations were used to predict the deflection characteristics of specific 
guardrail configurations.  The resulting data was then combined with crash test data to update the 
Roadside Design Guide barrier deflection guidance table. 

 
The information compiled from this research provides design engineers with updated deflection 
values for various configurations of 31-inch W-beam guardrail under MASH impact conditions.  
These values can be used to determine an appropriate guardrail configuration to use when 
clearance to a hazard or obstruction behind the rail is less than the design deflection of standard 
31-inch W-beam guardrail.  
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CHAPTER 2.  TASK 1 – MODELING BARRIER SYSTEM USING 
BARRIERVII 

 
 
TASK OBJECTIVE 
 
 The objective of this task was to perform simulations using BARRIERVII to compare the 
maximum barrier deflection and the deflected shape of the barrier to actual full-scale crash test 
data.  A Midwest Guardrail System (Update to NCHRP Report 350 Test No. 3-11 with 28" 
Vehicle C.G. Height) was used for these simulations and comparisons.(7)  This comparison 
helped validate the guardrail system model. 
 
 
MIDWEST GUARDRAIL SYSTEM 
 
 Details for the simulated W-beam guardrail system were as described in the drawings in 
the test report.(7)  The barrier was 181 ft–3 inches in length and comprised of standard 12-guage 
W-beam guardrail supported by steel guardrail posts.  The system used 29 posts fabricated from 
ASTM A36 steel W6×8.5 sections. Each post measured 6 ft long and was installed with a center-
to-center spacing of 75 inches.  Non breakaway cable anchorage systems were used at the ends 
of the system.  The system used in the test is depicted in Figure 1. 
 
 
BARRIERVII MODELING   
 
 To increase the accuracy of the output data from the simulation, the nodes on the 
guardrail were spaced at 6.25 inches.  Appropriate material properties were assigned to the 
guardrail corresponding to standard 12-guage W-beam.  Posts were connected to the 
corresponding nodes to represent the proper post spacing.  Properties for a standard W6×8.5 post 
were assigned to corresponding line posts.  End posts (post no. 1 and 29) were stiffened to 
account for the anchorage characteristics of the cable anchors used in the actual test.  When 
evaluating pocketing and dynamic deflection performance, the output data was plotted using 
AutoCAD®.  Post stiffness and yield moment were calibrated to obtain system deflections 
comparable to the actual full-scale crash test.  A sensitivity analysis was performed by varying 
the stiffness and yield moments of the posts to better understand system behavior.  The 
simulation iterations and their corresponding results are shown in Tables 1 and 2 and Figure 2. 
 

http://mwrsf.unl.edu/researchhub/files/Report139/TRP-03-169-06.pdf
http://mwrsf.unl.edu/researchhub/files/Report139/TRP-03-169-06.pdf
http://mwrsf.unl.edu/researchhub/files/Report139/TRP-03-169-06.pdf
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Figure 1.  Midwest Guardrail System as Tested. (7)   
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Table 1.  Stiffness Parameters. 

Iteration 
# 

Stiffness Parameters (kips, inch) 
Intermediate Posts End Posts 

Strong 
axis 

Stiffness 
(kip/inch) 

 Weak 
axis 

Stiffness 
(kip/inch) 

Base 
moment 

about 
strong 

axis 
(kip-
inch) 

Base 
moment 

about 
weak axis 
(kip-inch) 

Strong 
axis 

Stiffness 
(kip/inch) 

 Weak 
axis 

Stiffness 
(kip/inch) 

Base 
moment 

about 
strong 

axis     
(kip-inch) 

Base 
moment 

about 
weak axis 
(kip-inch) 

1 0.79 3.61 77.7 361.4 1500 1500 10000 10000 
2 0.79 3.61 77.7 361.4 10 10 10000 10000 
3 0.79 3.61 77.7 361.4 1500 1500 747 10000 
4 0.79 3.61 77.7 280.4 1500 1500 547 10000 
 
 

Table 2.  Iteration Results. 

ITERATION # RESULTS 

1 
• The maximum deflection of the barrier was lower than in the actual test. 
• The barrier deflected shape from AutoCAD® plots did not match with 

the actual deflected shape of the barrier.  

2 
• Changing the stiffness about both axes of the end posts did not make 

any significant changes in the overall deflection characteristics of the 
barrier.   

3 

• Lowering the yield moment about the strong axis of the end posts 
increased the maximum deflection of the barrier to a comparable value. 

• However, there was evidence of pocketing of the vehicle in the 
AutoCAD® plots as shown: 

* 
• To acheive better correlation of the deflected barrier shape, the yield 

moments of the intermediate posts were reduced to allow the posts to 
yield sooner, which resulted in a smoother deflected barrier shape 
during redirection of the vehicle.  

4 
• With the reduced value for post yield moment about the weak axis, the 

maximum barrier deflection and the deflected shape adequately matched 
the crash test data.  

                                                 
* The wavy curve is the barrier.  Bottom curve is the CG of the vehicle, top curve is the front corner of the vehicle, 
and middle curve is the center of the driver side tire. 

* 
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Figure 2.  Final Comparison of Results with Actual Test: 
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CHAPTER 3.  TASK 2 – BARRIERVII ANALYSIS FOR SINGLE W-BEAM 
GUARDRAIL SYSTEM  

 
 
TASK OBJECTIVE 
 

The objective of this task was to find the critical impact point (CIP) that produces the 
maximum deflection for the single W-beam guardrail.  Additionally, the researchers reviewed 
the simulated impact performance of the W-beam guardrail system.   
 
 
ANALYSIS TO FIND CRITICAL IMPACT LOCATION 
 
 The previous calibration simulation used the same impact location used in the full-scale 
crash test to permit direct comparison of deflection results.  In this task, a sensitivity analysis was 
performed using BARRIERVII to find the impact location that produced the maximum overall 
barrier deflection for the guardrail system.  The impact location was varied in 6 inch increments 
upstream and downstream from the initial impact location used in the test.  For each iteration, a 
BARRIERVII simulation was performed to find the maximum barrier deflection.  The impact 
location that produced the highest maximum deflection value was chosen as the CIP for the 
system.   
 
 Posts 11 and 12 were located 787.5 inches and 862.5 inches downstream of the upstream 
end terminal, respectively.  The test impact point was 858 inches downstream of the upstream 
end terminal as shown in Figure 3.  The sensitivity analysis to find the CIP was performed in 
6-inch increments between posts 11 and 12 starting from the impact point used in the actual test 
(858 inches).  Figure 4 shows the results of the analysis.  The resulting CIP was 828 inches 
downstream of the upstream end anchor and resulted in a dynamic deflection of 48 inches. 
 
 

 
Figure 3.  CIP for Single W-Beam Guardrail System at Full-Post Spacing. 
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Figure 4.  Determination of Maximum Deflection for Single W-Beam Guardrail System at 
Full-Post Spacing. 

 
 
SIMULATION RESULTS FOR CRITICAL IMPACT LOCATION IN 
BARRIERVII 
 
 The results of the BARRIERVII simulation at the CIP were further analyzed.  The 
analysis focused on determining the maximum deflection in the guardrail and its deflection 
characteristics.  Using a program developed in Visual Basic, data from the BARRIERVII 
simulations were plotted graphically using AutoCAD®, as shown in Figure 5.  These plots 
included the deflected shape of the barrier, vehicle tire paths, and simulated vehicle nodes.  This 
provided a visual representation of the results and made it easier to evaluate potential for vehicle 
pocketing or snagging.  It also helped in understanding the deflection characteristics of the 
guardrail.  The simulation indicated a smooth redirection and a predicted maximum deflection of 
48 inches. Three curves are plotted on the image that correspond to a different part of the 
simulated impacting vehicle.  The top curve represents the trajectory of the driver side front 
corner of the vehicle.  The second curve represents the trajectory of the center of the driver side 
front tire of the simulated impacting vehicle.  The third curve represents the trajectory of the 
center of gravity (CG) of the simulated impacting vehicle.  
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Figure 5.  Sequential Images of Impact with Single W-Beam Guardrail System 

at Full-Post Spacing. 
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CHAPTER 4.  TASK 3 –MAXIMUM DEFLECTION OF SINGLE W-BEAM 
GUARDRAIL AT HALF-POST SPACING AND QUARTER-POST 

SPACING 
 
 
TASK OBJECTIVE 
 
 The objective of this task was to perform BARRIERVII simulations under MASH Test 3-
11 impact conditions to determine the maximum deflections for the single W-beam guardrail 
system at half-post and quarter-post spacing.  The goal was to study the difference in the 
deflection characteristics of the guardrail when the system was stiffened by decreasing the post 
spacing.  
 
 
HALF-POST SPACING 
 

Determination of CIP and Maximum Deflection 
 
 The post spacing for the guardrail system model was changed from 75 inches to 
37.5 inches. This resulted in a more stiffened system compared to the 75-inch full-post spacing 
system.  Analyses were performed for this system using BARRIERVII to find the CIP based on 
the maximum deflection criteria.  For the half-post spacing, the impact location was moved in 
6-inch increments, starting 828 inches downstream of the upstream barrier end anchor.  Figure 6 
shows the results of the analysis for the half-post spacing system.  The resulting CIP was 
852 inches downstream of the upstream end anchor and dynamic deflection at this location was 
29 inches. 
 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Analysis for Single W-Beam Guardrail System at Half-Post Spacing. 
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Deflected Barrier Shape at CIP  
 
 The BARRIERVII simulation of the guardrail system with half-post spacing impacted at 
the CIP was then further analyzed.  The analysis focused on the deflection characteristics of the 
deformed guardrail.  Using a program developed in Visual Basic, the data from the simulation 
was plotted using AutoCAD®, as shown in Figure 7.  The simulation indicated smooth 
redirection and a predicted maximum deflection of 29 inches. 
 
 

 
Figure 7.  Sequential Images of Impact with Single W-Beam Guardrail System  

at Half-Post Spacing. 
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QUARTER-POST SPACING   
 

Determination of CIP and Maximum Deflection 
 
 The post spacing for the guardrail system was changed from 37.5 inches to 18.75 inches.  
This further stiffened the system compared to the 37.5-inch half-post spacing system.  Analyses 
were performed for this system using BARRIERVII to identify the CIP based on the maximum 
deflection criteria.  The impact point was moved in 6-inch increments from 843.75 inches 
downstream of the upstream end anchor.  Figure 8 shows the results of the analysis for quarter-
post spacing system. The resulting CIP was 858 inches downstream of the upstream end anchor, 
and the corresponding maximum dynamic deflection at this location was 18 inches. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  Analysis for Single W-Beam Guardrail System at Quarter-Post Spacing. 
 
 
Deflected Barrier Shape at CIP  
 
 The BARRIERVII simulation of the guardrail system with quarter-post spacing impacted 
at the CIP was then further analyzed.  The analysis focused on the deflection characteristics of 
the guardrail.  Data from the simulation was plotted using AutoCAD®, as shown in Figure 9.  
The simulation indicated smooth redirection and a predicted maximum deflection of 18 inches. 
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Figure 9.  Sequential Images of Impact with Single W-Beam Guardrail System  

at Quarter-Post Spacing. 
 
 
SUMMARY AND CONCLUSIONS FOR SINGLE W-BEAM GUARDRAIL 
SYSTEM 
 
 The results of the BARRIERVII simulation analyses for the single W-beam guardrail 
system are summarized in Table 3.  This summary table indicates the respective CIP and 
maximum predicted deflection. 
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Table 3.  Results for Single W-Beam Guardrail System. 

Strong Post W-beam Guardrail 
Post Spacing Impact Location Downstream of 

Upstream End Anchor (inches) 
Maximum Barrier 
Deflection (inches) 

Full (Test) 858 44 
Full (CIP) 828 48 
Half (CIP) 852 29 

Quarter (CIP) 858 18 
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CHAPTER 5.  TASK 4 – MAXIMUM DEFLECTION OF NESTED 
W-BEAM GUARDRAIL 

 
 
TASK OBJECTIVE 
 
 The objective of this task was to perform BARRIERVII simulations under MASH Test 
3-11 impact conditions to determine the maximum dynamic deflections for a nested W-beam 
guardrail system at full-post, half-post, and quarter-post spacing.  The goal was to study the 
deflection characteristics of the guardrail system by changing the previously calibrated single W-
beam BARRIERVII barrier model to represent a nested W- beam barrier model.  The procedure 
to determine the CIP and maximum deflection was similar to the procedure used to evaluate the 
single W-beam guardrail system.  The analyses and results are discussed below. 
 
 
FULL-POST SPACING 
 

Determination of CIP and Maximum Deflection 
 
 To determine the CIP, simulation analyses were performed using BARRIERVII to 
determine the impact location that resulted in the maximum barrier deflection.  The impact 
location was iterated in 6-inch increments upstream and downstream from the impact location 
used in the full-scale crash test discussed in previous sections (full-post spacing with single 
W-beam guardrail).  For each iteration, a BARRIERVII simulation was performed to find the 
maximum barrier deflection.  The impact location that gave the highest maximum deflection 
value was chosen as the CIP for the system.  Figure 10 shows the results of the analysis for a 
nested W-beam guardrail system with full-post spacing.  The resulting CIP was 828 inches 
downstream of the upstream end anchor and the dynamic deflection at this location was 
46 inches. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.  Determination of Maximum Deflection for Nested W-Beam Guardrail System 
at Full-Post Spacing. 
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Deflected Barrier Shape at CIP 
 
 BARRIERVII simulation of a nested W-beam guardrail with full-post spacing impacted 
at the CIP was further analyzed.  The analysis focused on the deflection characteristics of the 
deformed guardrail during the impact.  Data from the simulation was plotted using AutoCAD®, 
as shown in Figure 11.  The simulation indicated smooth redirection and a predicted maximum 
deflection of 46 inches.  
 

 
Figure 11.  Sequential Images of Impact with Nested W-Beam Guardrail System  

at Full-Post Spacing. 
 
 
HALF-POST SPACING 
 

Determination of CIP and Maximum Deflection 
 
 The post spacing of the nested W-beam guardrail system model was changed from 
75 inches to 37.5 inches. This increased the stiffness of the system compared to the 75-inch full-
post spacing system.  Simulation analyses were performed for this system using BARRIERVII to 
find the CIP based on the maximum deflection criteria.  The impact location was moved in 



TR No. 603481 19 2017-02-13 

6-inch increments from 828 inches downstream of the upstream transition.  Figure 12 shows the 
results of the deflection analysis for the half-post spacing nested W-beam guardrail system.  The 
resulting CIP was 852 inches downstream of the upstream end anchor and the dynamic 
deflection at this location was 26 inches. 
 
 

  
 
 

Figure 12.  Analysis for Maximum Deflection of Nested W-Beam System  
at Half-Post Spacing. 

 
 
Deflected Barrier Shape at CIP  
 
 BARRIERVII simulation of a nested W-beam guardrail with half-post spacing impacted 
at the CIP was further analyzed.  The analysis focused on the deflection characteristics of the 
deformed guardrail during impact.  Data from the simulation was plotted using AutoCAD®, as 
shown in Figure 13.  The simulation indicated smooth redirection and a predicted maximum 
deflection of 26 inches. 
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Figure 13.  Sequential Images of Impact with Nested W-Beam Guardrail System  

at Half-Post Spacing. 
 
 
QUARTER-POST SPACING 
 

Determination of CIP and Maximum Deflection 
 
 The post spacing of the nested W-beam guardrail system model was changed from 
37.5 inches to 18.75 inches, which further stiffened the system compared to the 37.5-inch half-
post spacing system.  Simulation analyses were performed for this system using BARRIERVII to 
identify the CIP based on the maximum deflection criteria.  The impact location was moved in 
6-inch increments from 846 inches downstream of the upstream end anchor.  Figure 14 shows 
the results of the deflection analysis for quarter-post spacing nested W-beam system.  The 
resulting CIP was 852 inches downstream of the upstream end anchor and the corresponding 
dynamic deflection was 17 inches. 
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Figure 14.  Analysis for Maximum Deflection of Nested W-Beam System  
at Quarter-Post Spacing. 

 
 
Deflected Barrier Shape at CIP  
 
 BARRIERVII simulation of a nested W-beam guardrail with quarter-post spacing 
impacted at the CIP was further analyzed.  The analysis focused on the deflection characteristics 
of the deformed guardrail during impact.  Data from the simulation was plotted using 
AutoCAD®, as shown in Figure 15.  The simulation indicated smooth redirection and a predicted 
maximum deflection of 17 inches. 
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Figure 15.  Sequential Images of Impact with Nested W-Beam Guardrail System  

at Quarter-Post Spacing. 
 
 
SUMMARY AND CONCLUSIONS FOR NESTED W-BEAM GUARDRAIL 
SYSTEM 
 

The results of the BARRIERVII simulation study for the nested W-beam guardrail 
system are summarized in Table 4.  Table 4 indicates the respective CIP, maximum predicted 
deflection, and if pocketing behavior was observed. 
 
 



TR No. 603481 23 2017-02-13 

Table 4.  Results for Single W-Beam Guardrail System. 

Strong Post Nested W-beam Guardrail 
Post Spacing Impact Location Downstream of 

Upstream End Anchor (inches) 
Maximum Barrier 
Deflection (inches) 

Full (CIP) 828 46 
Half (CIP) 852 26 

Quarter (CIP) 852 17 
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