

Test Report No. 607911-1&2 Test Report Date: May 2017

MASH TL-3 TESTING AND EVALUATION OF FREE-STANDING PORTABLE CONCRETE BARRIER

by

Nauman M. Sheikh, P.E. Associate Research Engineer

Wanda L. Menges Research Specialist

and

Darrell L. Kuhn, P.E. Research Specialist

Contract No.: T4541 CN Test No.: 607911-1 & 607911-2 Test Date: 2017-03-06 & 2017-03-09

Sponsored by Roadside Safety Research Program Pooled Fund Study No. TPF-5(114)

TEXAS A&M TRANSPORTATION INSTITUTE PROVING GROUND

Mailing Address: Roadside Safety & Physical Security Texas A&M University System 3135 TAMU College Station, TX 77843-3135 Located at: Texas A&M University RELLIS Campus Building 7091 3100 State Highway 47 Bryan, TX 77807

DISCLAIMER

The contents of this report reflect the views of the authors who are solely responsible for the facts and accuracy of the data, and the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Roadside Safety Research Program Pooled Fund, The Texas A&M University System, or Texas A&M Transportation Institute. This report does not constitute a standard, specification, or regulation. In addition, the above listed agencies/ companies assume no liability for its contents or use thereof. The names of specific products or manufacturers listed herein do not imply endorsement of those products or manufacturers. The results reported herein apply only to the article being tested. The full-scale crash test was performed according to TTI Proving Ground quality procedures and according to the *MASH* guidelines and standards.

REPORT REVIEWED BY:

DocuSigned by: Glenn Schroeder

Glenn Schroeder, Research Specialist Drafting & DCAT Reporting

- DocuSigned by: Cary Certe - FBA2101E9F6B4B7.

Gary Gerke, Research Specialist DCAS Construction

DocuSigned by: Scott Dobronoling -1C613885787C44C...

Scott Dobrovolny, Research Specialist DCAS Mechanical Instrumentation

REPORT APPROVED BY:

-DocuSigned by:

Ken Reeves

Ken Reeves, Research Specialist DCAS Electronics Instrumentation

DocuSigned by:

Pichard Badillo — 0F51DA60AB144F9...

Richard Badillo, Research Specialist DCAS Photographic Instrumentation

DocuSigned by: Wande L. Menges -B92179622AF24FE...

Wanda L. Menges, Research Specialist DCAS Reporting & Deputy QM

DocuSigned by: anello 4CC23E85D5B4E7..

Darrell L. Kuhn, P.E., Research Specialist Quality Manager

— DocuSigned by: Matt Robinson

Matthew N. Robinson, Research Specialist Test Facility Manager & Technical Manager

-Docusigned by: Nauman M. Shuikh

Nauman M. Sheikh, P.E. Associate Research Engineer

		reclinical Report Documentation rage	
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle		5. Report Date	
MASH TL-3 TESTING AND EVA	LUATION OF FREE-STANDING	May 2017	
PORTABLE CONCRETE BARRIE	R	6. Performing Organization Code	
7. Author(s)		8. Performing Organization Report No.	
Nauman M. Sheikh, Wanda L. Men	ges, and Darrell L. Kuhn	Test Report No. 607911-1&2	
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)	
Texas A&M Transportation Institute	e Proving Ground		
3135 TAMU		11. Contract or Grant No.	
College Station, Texas 77843-3135		T4541 CN	
12 Sponsoring Agency Name and Address		12 Tyme of Demost and Davied Covered	
Washington State Department of Tr	ansportation	Technical Report:	
Transportation Duilding MS 47272	Sentember 2016 April 2017		
Transportation Building, MS 47372	September 2016 – April 2017		
Olympia, Washington 98504-7372		14. Sponsoring Agency Code	
15. Supplementary Notes			

achieved Depart Decompositation

Project Title: MASH Testing of Free-Standing and Pinned Portable Concrete Barrier (2016 LA104) Name of Contacting Representative: Jeffery Petterson, Washington State Department of Transportation

16. Abstract

The objective of this research was to test a 32 inch tall, F-shape profile, free-standing Portable Concrete Barrier (PCB) in accordance with the American Association of State Highway Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH)* testing criteria. *MASH* Tests 3-10 and 3-11 were performed on the barrier. The overall length of the barrier installation was 201 ft-3 inches. The installation was comprised of sixteen 12 ft-6 inch long precast concrete barrier segments that were connected to each other using pin-and-loop connections.

This report provides details of the free-standing PCB, documentation of the crash tests performed, the results of each crash test, and the assessment of the performance of the free-standing PCB according to *MASH* Test Level 3 (TL-3) specifications.

The free-standing PCB performed acceptably for MASH TL-3.

17. Key Words		18. Distribution Statemen	t	
Longitudinal barrier, Portable Concrete Barrier,		Copyrighted. Not to be copied or reprinted without		
PCB, portable concrete barrier, PCB, median barrier, free-standing barrier, MASH, crash testing, roadside		consent from the <u>Roadside Safety Research Program</u> Pooled Fund.		
safety				
19. Security Classif.(of this report) Unclassified	20. Security Classif.(of th Unclassified	is page)	21. No. of Pages 82	22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.

	SI* (MODERN METRIC) CONVERSION FACTORS					
	APP	ROXIMATE CONVERSTIC	ONS TO SI UNITS			
Symbol	When You Know	Multiply By	To Find	Symbol		
		LENGTH				
in	inches	25.4	millimeters	mm		
ft	feet	0.305	meters	m		
yd	yards	0.914	meters	m		
mi	miles	1.61	kilometers	km		
. 2		AREA		2		
in ⁻	square inches	645.2	square millimeters	mm		
ft ⁻	square feet	0.093	square meters	m		
yd-	square yards	0.836	square meters	m ⁻		
ac	acres	0.405	nectares	ha		
mi	square miles	2.59	square kilometers	KM		
flor	fluid auroaa		millilitoro	ml		
	nula ounces	29.57		mL		
gai 43	gallons	3.705	illers	L m ³		
10	cubic leet	0.020	cubic meters	m ³		
yu		: volumes greater than 1000	shall be shown in m ³	111		
	NOTE	MASS				
07	0110000	28.35	drame	0		
lb	nounds	0 454	kilograms	y ka		
Т	short tons (2000 lb)	0.404	megagrams (or metric ton")	Ma (or "t")		
	311011 10113 (2000 10)		t degrees)	Mg (of t)		
°F	Fahrenheit	5(F-32)/9	Celsius	°C		
•	ramennen	or (F-32)/1.8	Celsius	U		
			N			
fc	foot-candles	10.76	lux	lx		
fl	foot-Lamberts	3.426	candela/m ²	cd/m ²		
		FORCE and PRESSURE	or STRESS	00,111		
lbf	poundforce	4.45	newtons	N		
lbf/in ²	poundforce per squa	re inch 6.89	kilopascals	kPa		
	APPR	OXIMATE CONVERSTION	IS FROM SI UNITS			
Symbol	When You Know	Multiply By	To Find	Symbol		
,				Symbol		
		LENGTH		Symbol		
mm	millimeters	LENGTH 0.039	inches	in		
mm m	millimeters meters	LENGTH 0.039 3.28	inches feet	in ft		
mm m m	millimeters meters meters	LENGTH 0.039 3.28 1.09	inches feet yards	in ft yd		
mm m m km	millimeters meters meters kilometers	LENGTH 0.039 3.28 1.09 0.621	inches feet yards miles	in ft yd mi		
mm m m km	millimeters meters meters kilometers	LENGTH 0.039 3.28 1.09 0.621 AREA	inches feet yards miles	in ft yd mi		
mm m km mm ²	millimeters meters meters kilometers square millimeters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016	inches feet yards miles square inches	in ft yd mi in ²		
mm m km mm ² m ²	millimeters meters meters kilometers square millimeters square meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764	inches feet yards miles square inches square feet	in ft yd mi in ² ft ²		
mm m km mm ² m ² m ²	millimeters meters meters kilometers square millimeters square meters square meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195	inches feet yards miles square inches square feet square yards	in ft yd mi in ² ft ² yd ²		
mm m km mm ² m ² m ² ha	millimeters meters meters kilometers square millimeters square meters square meters hectares	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47	inches feet yards miles square inches square feet square yards acres	in ft yd mi in ² ft ² yd ² ac		
mm m km mm ² m ² m ² ha km ²	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	inches feet yards miles square inches square feet square yards acres square miles	in ft yd mi in ² ft ² yd ² ac mi ²		
mm m km mm ² m ² ha km ²	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME	inches feet yards miles square inches square inches square feet square yards acres square miles	in ft yd mi in ² ft ² yd ² ac mi ²		
mm m km mm ² m ² ha km ²	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034	inches feet yards miles square inches square inches square feet square yards acres square miles fluid ounces	in ft yd mi in ² ft ² yd ² ac mi ² oz		
mm m km mm ² m ² ha km ² ha km ²	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons	in ft yd mi in ² ft ² yd ² ac mi ² oz gal		
mm m km mm ² m ² ha km ² mL L m ³ m ³	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 4.207	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet	in ft yd mi in^2 ft ² yd ² ac mi ² oz gal ft ³ ud ³		
mm m km mm ² m ² ha km ² mL L m ³ m ³	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³		
mm m km mm ² m ² ha km ² mL L m ³ m ³	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.025	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³		
mm m km m ² m ² ha km ² mL L m ³ m ³	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz		
mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.102	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tops (2000lb)	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T		
mm m km mm ² m ² ha km ² mL L m ³ m ³ m ³ g kg Mg (or "t")	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 ric ton") 1.103	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb)	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T		
mm m km m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 tic ton") 1.103 TEMPERATURE (exact	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees)	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T		
mm m km mm ² m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric Celsius	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 ric ton") 1.103 TEMPERATURE (exact 1.8C+32	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees) Fahrenheit	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T		
mm m m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric Celsius	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 ric ton") 1.103 TEMPERATURE (exact 1.8C+32 ILLUMINATIO	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees) Fahrenheit	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T °F		
mm m m km mm ² m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric Celsius	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 ric ton") 1.103 TEMPERATURE (exact 1.8C+32 ILLUMINATIO 0.0929	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees) Fahrenheit N foot-candles	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T °F		
mm m m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C Ix cd/m ²	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "meth Celsius lux candela/m ²	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 ric ton") 1.103 TEMPERATURE (exact 1.8C+32 ILLUMINATIO 0.0929 0.2919	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees) Fahrenheit N foot-candles foot-candles	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T °F fc fl		
mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C lx cd/m ²	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric Celsius lux candela/m ²	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 ric ton") 1.103 TEMPERATURE (exact 1.8C+32 ILLUMINATIO 0.0929 0.2919 FORCE and PRESSURE	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees) Fahrenheit N foot-candles foot-candles foot-Lamberts or STRESS	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T °F fc fl		
mm m m km mm ² m ² ha km ² mL L m ³ m ³ m ³ g kg Mg (or "t") °C Ix cd/m ²	millimeters meters meters kilometers square millimeters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "meter Celsius lux candela/m ²	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 ric ton") 1.103 TEMPERATURE (exact 1.8C+32 ILLUMINATIO 0.0929 0.2919 FORCE and PRESSURE 0.225	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees) Fahrenheit N foot-candles foot-Lamberts or STRESS poundforce	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T °F fc fl lbf		

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380. (Revised March 2003)

ACKNOWLEDGMENTS

This research project was performed under a pooled fund program between the following States and Agencies. The authors acknowledge and appreciate their guidance and assistance.

Roadside Safety Research Pooled Fund Committee

Revised March 2017

<u>ALASKA</u>

Jeff C. Jeffers, P.E. Alaska Department of Transportation & Public Facilities 3132 Channel Drive P.O. Box 112500 Juneau, AK 99811-2500 (907) 465-8962 Jeff.Jeffers@alaska.gov

CALIFORNIA

Bob Meline, P.E. Caltrans Office of Materials and Infrastructure Division of Research and Innovation 5900 Folsom Blvd Sacramento, CA 95819 (916) 227-7031 Bob.Meline@dot.ca.gov

John Jewell, P.E. (916) 227-5824

John_Jewell@dot.ca.gov

CONNECTICUT

David Kilpatrick State of Connecticut Department of Transportation 2800 Berlin Turnpike Newington, CT 06131-7546 (806) 594-3288 David.Kilpatrick@ct.gov

FLORIDA

Derwood C. Sheppard, Jr., P.E.

Design Standards Administrator FDOT Roadway Design Office Florida Department of Transportation 605 Suwannee Street Tallahassee, FL 32399-0450 (850) 414-4334 Derwood.Sheppard@dot.state.fl.us

<u>IDAHO</u>

Gary Sanderson Design/Traffic Section Idaho Transportation Department P. O. Box 7129 Boise, ID 83707-112 (208) 334-8211 Gary.Sanderson@ITD.idaho.gov

ILLINOIS

Paul L. Lorton Acting Bureau Chief Illinois Department of Transportation 2300 Dirksen Parkway, Room 323 Springfield, IL 62764 (217) 785-0720 Paul.Lorton@illinois.gov

LOUISIANA

Kurt Brauner, P.E. Bridge Engineer Manager Louisiana Transportation Center P. O. Box 94245 Baton Rouge, LA 79084-9245 (225) 379-1328 Kurt.Brauner@la.gov

MASSACHUSETTS

James Danila Assistant State Traffic Engineer Massachusetts Department of Transportation 10 Park Plaza, Room 7210 Boston, MA 02116 (857) 368-9640 James. Danila@state.ma.us

MICHIGAN

Carlos Torres, P.E.

Crash Barrier Engineer Geometric Design Unit, Design Division Michigan Department of Transportation P. O. Box 30050 Lansing, MI 48909 (517) 335-2852 TorresC@michigan.gov

MINNESOTA

Michael Elle, P.E. Design Standards Engineer Minnesota Department of Transportation 395 John Ireland Blvd, MS 696 St. Paul, MN 55155-1899 (651) 366-4622 Michael.Elle@state.mn.us

Michelle Moser Assistant Design Standards Engineer (651) 366-4708 Michelle.Moser@state.mn.us

OREGON

Christopher Henson Senior Roadside Design Engineer Oregon Department of Transportation Technical Service Branch 4040 Fairview Industrial Drive, SE Salem, OR 97302-1142 (503) 986-3561 Christopher.S.Henson@odot.state.or.us

PENNSYLVANIA

Divyang P. Pathak, EIT Standards & Criteria Engineer Pennsylvania Department of Transportation Bureau of Project Delivery 400 North Street Harrisburg, PA 17105 (717) 705-4190 DPathak@pa.gov

TENNESSEE

Ali Hangul, P.E. Civil Engineering Manager James K. Polk State Office Bldg, Ste 1300 Nashville, TN 37243-0348 (615) 741-0840 Ali.Hangul@tn.gov

<u>TEXAS</u>

Chris Lindsey Transportation Engineer Design Division Texas Department of Transportation 125 East 11th Street Austin, TX 78701-2483 (512) 416-2750 Christopher.Lindsey@txdot.gov

WASHINGTON

Jeffery K. Petterson, P.E.

Design Policy & Strategic Analysis Estimating Manager Roadside Safety Engineer Washington State Department of Transportation P. O. Box 47329 Olympia, WA 98504-7246 (360) 705-7278 PetterJ@wsdot.wa.gov

Rhonda Brooks Director of Research Office (360) 705-7945 BrookRh@wsdot.wa.gov

WEST VIRGINIA

Donna J. Hardy, P.E. Safety Programs Engineer West Virginia Department of Transportation – Traffic Engineering Building 5, Room A-550 1900 Kanawha Blvd E. Charleston, WV 25305-0430 (304) 558-9576 Donna.J.Hardy@wv.gov

Ted Whitmore Traffic Services Engineer (304) 558-9576 Ted.J.Whitmore@wv.gov

Joe Hall, P.E., P.S. Technical Policy QA/QC Engineer Value Engineering Coordinator Division of Highways & Engineering 1334 Smith Street Charleston, WV 25305-0430 (304) 558-9733 Joe.H.Hall@wv.gov

WISCONSIN

Erik Emerson, P.E.

Standards Development Engineer – Roadside Design Wisconsin Department of Transportation Bureau of Project Development 4802 Sheboygan Avenue, Room 651 P. O. Box 7916 Madison, WI 53707-7916 Erik.Emerson@wi.gov

FEDERAL HIGHWAY ADMINISTRATION

Richard B. (Dick) Albin, P.E.

Safety Engineer FHWA Resource Center Safety & Design Technical Services Team 12300 West Dakota Avenue, Suite 340 Lakewood, CO 80228-3266 (303) 550-8804 Dick.Albin@dot.gov

William Longstreet

Highway Engineer FHWA Office of Safety Design Room E71-107 1200 New Jersey Avenue, S.E. Washington, DC 20590 (202) 366-0087 Will.Longstreet@dot.gov

TEXAS A&M TRANSPORTATION INSTITUTE

D. Lance Bullard, Jr., P.E. Senior Research Engineer Roadside Safety & Physical Security Div. Texas A&M Transportation Institute 3135 TAMU College Station, TX 77843-3135 (979) 845-6153 L-Bullard@tti.tamu.edu

Roger P. Bligh, Ph.D., P.E. Senior Research Engineer (979) 845-4377 R-Bligh@tti.tamu.edu

TABLE OF CONTENTS

Disclaim	er		ii
List of F	igure	es	. ix
List of T	able	5	x
Chapter	1.	Introduction	1
1.1	Intro	oduction	1
1.2	Obj	ective	1
Chapter	2.	System Details	3
2.1.	Test	Article and Installation Details	3
2.2.	Mat	erial Specifications	3
Chapter	3.	Test Requirements and Evaluation Criteria	7
3.1.	Cras	sh Test Matrix	7
3.2.	Eva	luation Criteria	8
Chapter	4.	Test Conditions	9
4.1.	Test	t Facility	9
4.2	Veh	icle Tow and Guidance System	9
4.3	Data	a Acquisition Systems	9
4	.3.1	Vehicle Instrumentation and Data Processing	9
4	.3.2	Anthropomorphic Dummy Instrumentation	10
4	.3.3	Photographic Instrumentation Data Processing	11
Chapter	5.	MASH Test 3-10 (Crash Test No. 607911-1)	13
5.1	Test	t Designation and Actual Impact Conditions	13
5.2	Wea	ather Conditions	13
5.3	Test	Vehicle	13
5.4	Test	Description	14
5.5	Dan	nage to Test Installation	14
5.6	Veh	icle Damage	16
5.7	Occ	upant Risk Factors	16
5.8	Ass	essment of Test Results	19
5	.8.1	Structural Adequacy	19
5	.8.2	Occupant Risk	19
Chapter	6.	MASH Test 3-11 (Crash Test No. 607911-2)	21
6.1	Test	t Designation and Actual Impact Conditions	21
6.2	Wea	ather Conditions	21
6.3	Test	t Vehicle	21
6.4	Test	t Description	22
6.5	Dan	nage to Test Installation	22
6.6	Veh	icle Damage	25
6.7	Occ	upant Risk Factors	25
6.8	Ass	essment of Test Results	26
6	.8.1	Structural Adequacy	26
6	.8.2	Occupant Risk	26

TABLE OF CONTENTS (CONTINUED)

Page

Chapter 7	7. Summary and Conclusions	29
7.1	Assessment of Test Results	29
7.1	1.1 MASH Test 3-10 (Crash Test No. 607911-1)	29
7.1	1.2 MASH Test 3-11 (Crash Test No. 607911-2)	29
6.2	Conclusions	29
Reference	es	33
Appendix	A. Details of the Temporary PCB	35
Appendix	B. Supporting Certification Documents	41
Appenidx	x C. MASH Test 3-10 (Crash Test No. 607911-1)	43
C1	Vehicle Properties and Information	43
C2	Sequential Photographs	46
C3	Vehicle Angular Displacements	49
C4	Vehicle Accelerations	50
Appenidx	x D. MASH Test 3-11 (Crash Test No. 607911-2)	57
D1	Vehicle Properties and Information	57
D2	Sequential Photographs	61
D3	Vehicle Angular Displacements	64
D4	Vehicle Accelerations	65

LIST OF FIGURES

Figure 2.1.	Overall Details of the Free-Standing PCB.	4
Figure 2.2.	Free-Standing PCB prior to Testing.	5
Figure 3.1.	Target CIP for MASH Test 3-10 on the Free-Standing PCB.	7
Figure 3.2.	Target CIP for MASH Test 3-11 on the Free-Standing PCB.	7
Figure 5.1.	Free-Standing PCB/Test Vehicle Geometrics for Test No. 607911-1	13
Figure 5.2.	Test Vehicle before Test No. 607911-1.	
Figure 5.3.	Free-Standing PCB after Test No. 607911-1	15
Figure 5.4.	Field Side Free-Standing PCB after Test No. 607911-1	
Figure 5.5.	Test Vehicle after Test No. 607911-1	17
Figure 5.6.	Interior of Test Vehicle for Test No. 607911-1.	17
Figure 5.7.	Summary of Results for MASH Test 3-10 on the Free-Standing PCB	
Figure 6.1.	Free-Standing PCB/Test Vehicle Geometrics for Test No. 690900-2	
Figure 6.2.	Test Vehicle before Test No. 607911-2.	22
Figure 6.3.	Free-Standing PCB after Test No. 607911-2.	
Figure 6.4.	Field Side of Segments 5 and 6 after Test No. 607911-2.	
Figure 6.5.	Field Side of Segment 7 after Test No. 607911-2.	
Figure 6.6.	Field Side of Segments 8 and 9 after Test No. 607911-2.	
Figure 6.7.	Test Vehicle after Test No. 607911-2	25
Figure 6.8.	Interior of Test Vehicle for Test No. 607911-2.	
Figure 6.9.	Summary of Results for MASH Test 3-11 on the Free-Standing PCB	
Figure C.1.	Sequential Photographs for Test No. 607911-1 (Overhead and Frontal	
C	Views).	46
Figure C.2.	Sequential Photographs for Test No. 607911-1 (Rear View).	48
Figure C.3.	Vehicle Angular Displacements for Test No. 607911-1	49
Figure C.4.	Vehicle Longitudinal Accelerometer Trace for Test No. 607911-1	
-	(Accelerometer Located at Center of Gravity).	50
Figure C.5.	Vehicle Lateral Accelerometer Trace for Test No. 607911-1	
-	(Accelerometer Located at Center of Gravity).	51
Figure C.6.	Vehicle Vertical Accelerometer Trace for Test No. 607911-1	
-	(Accelerometer Located at Center of Gravity).	52
Figure C.7.	Vehicle Longitudinal Accelerometer Trace for Test No. 607911-1	
-	(Accelerometer Located Rear of Center of Gravity).	53
Figure C.8.	Vehicle Lateral Accelerometer Trace for Test No. 607911-1	
-	(Accelerometer Located Rear of Center of Gravity).	54
Figure C.9.	Vehicle Vertical Accelerometer Trace for Test No. 607911-1	
-	(Accelerometer Located Rear of Center of Gravity).	55
Figure D.1.	Sequential Photographs for Test No. 607911-2 (Overhead and Frontal	
C	Views).	61
Figure D.2.	Sequential Photographs for Test No. 607911-2 (Rear View)	63
Figure D.3.	Vehicle Angular Displacements for Test No. 607911-2	64
Figure D.4.	Vehicle Longitudinal Accelerometer Trace for Test No. 607911-2	
-	(Accelerometer Located at Center of Gravity).	65

LIST OF FIGURES (CONTINUED)

Page

Figure D.5.	Vehicle Lateral Accelerometer Trace for Test No. 607911-2	
	(Accelerometer Located at Center of Gravity).	66
Figure D.6.	Vehicle Vertical Accelerometer Trace for Test No. 607911-2	
	(Accelerometer Located at Center of Gravity).	67
Figure D.7.	Vehicle Longitudinal Accelerometer Trace for Test No. 607911-2	
	(Accelerometer Located Rear of Center of Gravity).	68
Figure D.8.	Vehicle Lateral Accelerometer Trace for Test No. 607911-2	
	(Accelerometer Located Rear of Center of Gravity).	69
Figure D.9.	Vehicle Vertical Accelerometer Trace for Test No. 607911-2	
	(Accelerometer Located Rear of Center of Gravity)	70

LIST OF TABLES

Page

Table 3.1.	Test Conditions and Evaluation Criteria Specified for MASH TL-3.	7
Table 3.2.	Evaluation Criteria Required for MASH TL-3	
Table 7.1.	Performance Evaluation Summary for MASH Test 3-10 on the Free-	
	Standing PCB	30
Table 7.2.	Performance Evaluation Summary for MASH Test 3-11 on the Free-	
	Standing PCB	31
Table 7.3.	Assessment Summary for MASH TL-3 Tests on the Free-Standing PCB	32
Table C.1.	Vehicle Properties for Test No. 607911-1.	43
Table C.2.	Exterior Crush Measurements for Test No. 607911-1	44
Table C.3.	Occupant Compartment Measurements for Test No. 607911-1.	45
Table D.1.	Vehicle Properties for Test No. 607911-2.	57
Table D.2.	Measurements of Vehicle Vertical CG for Test No. 607911-2.	58
Table D.3.	Exterior Crush Measurements for Test No. 607911-2	59
Table D.4.	Occupant Compartment Measurements for Test No. 607911-2.	60

Chapter 1. INTRODUCTION

1.1 INTRODUCTION

Through the Roadside Safety Pooled Fund Program TPF-5(114), Texas A&M Transportation Institute's researchers developed a Portable Concrete Barrier (PCB) system that can be anchored to concrete and asphalt pavements. The basic, freestanding barrier design used in the anchored barrier system was based on an Oregon DOT PCB system that was successfully tested under National Cooperative Highway Research Program (NCHRP) *Report 350 (1)*. A previous pooled fund project (405160-3) adapted this basic PCB design to develop a method to anchor the barrier on to concrete pavement (2). This anchored detail was developed and tested using *NCHRP Report 350*, which was the testing criteria at the time.

All subsequent development of the anchored barrier, which included pinning to asphalt pavement, transitions from free-standing to anchored barriers, transitions from anchored to rigid barriers, etc. (*3-6*) was performed using the American Association of State Highway Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH*) testing criteria (*7*). The pooled fund states desire to evaluate the free-standing version of the PCB used in these designs, and the anchored barrier tested on concrete, in accordance with *MASH* criteria. Successful completion of this will result in a system with all aspects tested under MASH.

1.2 OBJECTIVE

The objective of this research was to test the free-standing PCB used in the previously developed restrained PCB design, in accordance with *MASH* testing criteria. *MASH* Tests 3-10 and 3-11 were performed on the free-standing PCB, as described below.

- 1. *MASH* Test 3-10. This test involves the *MASH* 1100C small passenger car impacting the barrier at 62 mi/h and 25 degrees.
- 2. *MASH* Test 3-11. This test involves the *MASH* 2270P pickup truck impacting the barrier at 62 mi/h and 25 degrees.

This report provides details of the free-standing PCB, documentation of the crash tests performed, the results of each crash test, and the assessment of the performance of the free-standing PCB according to *MASH* Test Level 3 (TL-3) criteria.

Chapter 2. SYSTEM DETAILS

2.1. TEST ARTICLE AND INSTALLATION DETAILS

The overall length of the test installation was 201 ft-3 inches. The installation was comprised of sixteen 12 ft-6 inch long precast concrete F-shape barrier segments connected end-to-end. The F-shape segments were 32 inches tall, 24 inches wide at the base, and 9½ inches wide at the top. The barrier segments were set on an unreinforced concrete apron. No pins, anchors, or adhesives were used to secure the segments to the apron. Details of the segments, including steel reinforcement, can be found in Appendix A.

Adjacent precast barrier segments were connected using a pin-and-loop type connection. The barrier connection was comprised of two sets of three loops that extended from the ends of adjacent barrier segments. A connecting pin was inserted through the loops to establish the connection. After installation, the slack in the barrier connections was removed. The distance between the end faces of adjacent barrier segments was about 1 inch. Refer to Sheet 5 of 5 in Appendix A for details of the connection.

Figure 2.1 presents overall information on the free-standing PCB, and Figure 2.2 provides photographs of the installation. Appendix A provides further details of the Free-Standing PCB.

2.2. MATERIAL SPECIFICATIONS

The minimum compressive strength of the concrete for the precast F-shape barrier segments, provided by Waskey Bridges, Inc., was specified as 5000 psi. Cores were taken from the tops of segments 4 and 8 on Test No. 607911-1. The unconfined compressive strength of the concrete cores was 9150 psi and 4930 psi, respectively.

All reinforcing steel was grade 60 material. The loops for the connecting pin were fabricated from ASTM A36 steel. The connecting pin between adjacent barrier segments was fabricated from ASTM A449 steel. The washer on each connecting pin met ASTM A572 grade 50 standards. Certification documents for the materials used are included in Appendix B.

-ProjectFiles\607911-PF-Sheikh\607911-1\Drafting, 607911-1\607911 1-2 Drawing

Figure 2.1. Overall Details of the Free-Standing PCB.

Figure 2.2. Free-Standing PCB prior to Testing.

Chapter 3. TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1. CRASH TEST MATRIX

According to *MASH*, two tests are recommended to evaluate longitudinal barriers, such as PCBs, for *MASH* Test Level 3 (TL-3). Details of these tests are shown in Table 3.1

Test Article	Test Designation	Test Vehicle	Impact Conditions		Evolution Critoria
Test Antele			Speed	Angle	Evaluation Citteria
Longitudinal Darriar	3-10	1100C	62 mi/h	25	A, D, F, H, I
Longituunnal Darrier	3-11	2270P	62 mi/h	25	A, D, F, H, I

1 able 5.1. Test Conditions and Evaluation Criteria Specified for MASH 11

MASH Tests 3-10 and 3-11 evaluate a barrier's ability to successfully contain and redirect passenger vehicles and evaluate occupant risk. *MASH* Test 3-11 also evaluates the structural adequacy of the barrier.

Both crash tests were performed on the free-standing PCB. The target critical impact point (CIP) selected for each test was determined according to guidance provided in *MASH* (*Section 2.3.2.1 and Table 2-7*). The target CIP for *MASH* Test 3-10 on the free-standing PCB was 3.6 ft upstream of the joint between segments 6 and 7, and for *MASH* Test 3-11 was 4.3 ft upstream of the joint between segments 6 and 7. Figures 3.1 and 3.2 show the impact points on the free-standing PCB for *MASH* Tests 3-10 and 3-11, respectively.

Figure 3.1. Target CIP for MASH Test 3-10 on the Free-Standing PCB.

Figure 3.2. Target CIP for MASH Test 3-11 on the Free-Standing PCB.

The crash tests and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

3.2. EVALUATION CRITERIA

The appropriate safety evaluation criteria from Tables 2-2A and 5-1A through 5-1C of *MASH* were used to evaluate the crash tests reported herein. The test conditions and evaluation criteria required for *MASH* TL-3 are listed in Table 3.1, and the substance of the evaluation criteria in Table 3.2. An evaluation of the crash test results are presented in detail under the section entitled Assessment of Test Results.

Structural Adequacy	A. Test article should c controlled stop; the installation although acceptable.	ontain and redirect the vehicle or bring the vehicle to a vehicle should not penetrate, underride, or override the a controlled lateral deflection of the test article is
	D. Detached elements, j not penetrate or sho or present an undue work zone.	fragments, or other debris from the test article should w potential for penetrating the occupant compartment, hazard to other traffic, pedestrians, or personnel in a
Occupant	<i>Deformations of, or</i> <i>exceed limits set fort</i> <i>F. The vehicle should r</i>	intrusions into, the occupant compartment should not h in Section 5.3 and Appendix E of MASH. emain upright during and after collision. The maximum
Risk	roll and pitch angles	are not to exceed 75 degrees.
	 Longitudinal and lat preferred value of 30 40 ft/s. 	eral occupant impact velocities should fall below the) ft/s, or at least below the maximum allowable value of
	Longitudinal and lat the preferred value of value of 20.49 g.	eral occupant ridedown accelerations should fall below of 15.0 g, or at least below the maximum allowable

 Table 3.2. Evaluation Criteria Required for MASH TL-3.

Chapter 4. TEST CONDITIONS

4.1. TEST FACILITY

The full-scale crash tests reported herein were performed at Texas A&M Transportation Institute (TTI) Proving Ground, an International Standards Organization (ISO) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, and according to the *MASH* guidelines and standards.

The test facilities of the TTI Proving Ground are located on the Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 miles northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, durability and efficacy of highway pavements, and evaluation of roadside safety hardware and perimeter protective devices. The site selected for construction and testing of the PCB was an out-of-service apron. The apron consists of an unreinforced jointed-concrete pavement in 12.5-ft \times 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement, but are otherwise flat and level.

4.2 VEHICLE TOW AND GUIDANCE SYSTEM

Each test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until the vehicle cleared the immediate area of the test site (no sooner than 2 s after impact), after which the brakes were activated, if needed, to bring the test vehicle to a safe and controlled stop.

4.3 DATA ACQUISITION SYSTEMS

4.3.1 Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained, on-board data acquisition system. The signal conditioning and acquisition system is a 16-channel, Tiny Data Acquisition System (TDAS) Pro produced by Diversified Technical Systems, Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid state units designed for crash test service. The TDAS Pro hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the 16

channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 values per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit should the primary battery cable be severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark as well as initiates the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each of the TDAS Pro units is returned to the factory annually for complete recalibration and all instrumentation used in the vehicle conforms to all specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCO[®] 2901, precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive a calibration via a Genesco Rate-of-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel, per SAE J211. Calibrations and evaluations are also made any time data are suspect. Acceleration data is measured with an expanded uncertainty of ± 1.7 percent at a confidence factor of 95 percent (k=2).

TRAP uses the data from the TDAS Pro to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with a 60-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate systems being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k=2).

4.3.2 Anthropomorphic Dummy Instrumentation

An Alderson Research Laboratories Hybrid II, 50th percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the front seat on the impact side of the 1100C vehicle. The dummy was not instrumented.

According to *MASH*, use of a dummy in the 2270P vehicle is optional, and a dummy was not used in the test with the 2270P vehicle.

4.3.3 Photographic Instrumentation Data Processing

Photographic coverage of each test included three digital high-speed cameras:

- One overhead with a field of view perpendicular to the ground and directly over the impact point;
- One placed behind the installation at an angle; and
- A third placed to have a field of view parallel to and aligned with the installation at the downstream end.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the PCB. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

Chapter 5. MASH TEST 3-10 (CRASH TEST NO. 607911-1)

5.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 3-10 involves an 1100C vehicle weighing 2420 lb \pm 55 lb impacting the CIP of the free-standing PCB at an impact speed of 62 mi/h \pm 2.5 mi/h and an angle of 25 degrees \pm 1.5 degrees. The CIP for *MASH* Test 3-10 on the free-standing PCB was 3.6 ft \pm 1 ft upstream of the joint between segments 6 and 7.

The 2011 Kia Rio used in the test weighed 2428 lb, and the actual impact speed and angle were 62.8 mi/h and 25.2 degrees, respectively. The actual impact point was 3.3 ft upstream of the joint between segments 6 and 7. Minimum target impact severity (IS) was 51 kip-ft, and actual IS was 58 kip-ft.

5.2 WEATHER CONDITIONS

The test was performed on the morning of March 6, 2017. Weather conditions at the time of testing were as follows: wind speed: 16 mi/h; wind direction: 181 degrees (vehicle was traveling in a northerly direction); temperature: 77°F; relative humidity: 79 percent.

5.3 TEST VEHICLE

The 2011 Kia Rio shown in Figures 5.1 and 5.2 was used for the crash test. The vehicle's test inertia weight was 2428 lb. Its gross static weight including the dummy was 2593 lb. The height to the lower edge of the vehicle bumper was 8.0 inches, and the height to the upper edge of the bumper was 21.5 inches. Table C.1 in Appendix C1 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 5.1. Free-Standing PCB/Test Vehicle Geometrics for Test No. 607911-1.

Figure 5.2. Test Vehicle before Test No. 607911-1.

5.4 TEST DESCRIPTION

The 2011 Kia Rio, traveling at an impact speed of 62.8 mi/h, contacted the Free-Standing PCB 3.3 ft upstream of the joint between segments 6 and 7 at an impact angle of 25.2 degrees. At 0.011 s after impact, the left front tire began to climb the traffic face of segment 6, and at 0.023 s, segment 6 began to displace toward the field side and rotate about the joint between segments 5 and 6. The vehicle began to redirect at 0.034 s and the downstream end of segment 7 began to displace toward the traffic side at 0.044 s. At 0.058 s, the upstream end of segment 8 began to displace toward the traffic side, and at 0.165 s, the joint between segments 7 and 8 began to displace toward the field side. The vehicle began traveling parallel to the barrier at 0.181 s, and the left rear of the vehicle contacted segment 7, and at 0.284 s, concrete began to spall from the downstream field side toe of segment 8. The vehicle lost contact with the barrier at 0.545 s, and was traveling at an exit speed and angle of 47.7 mi/h and 5.8 degrees. Brakes on the vehicle were not applied. Figures C.1 and C.2 in Appendix C2 present sequential photographs during the test.

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft downstream from impact for cars and pickups). After loss of contact with the barrier, the vehicle yawed counterclockwise and came to rest 193 ft downstream of the impact and 9 ft toward traffic lanes. The 1100C vehicle exited within the exit box criteria defined in *MASH*.

5.5 DAMAGE TO TEST INSTALLATION

Figures 5.3 and 5.4 show the damage to the free-standing PCB. Concrete broke off at the impact side toes of segments 6 and 7 at the joint. Concrete spalled from the downstream field side toe of segment 7, from the upstream field side toe of segment 8, and from the upstream field side toe of segment 9. Tire marks and scrapes were noted along the traffic side for a distance of 16.7 ft from point of impact. Working width was 60.7 inches. Maximum dynamic deflection during the test was 36.2 inches, and maximum permanent deflection was 34.0 inches.

Figure 5.3. Free-Standing PCB after Test No. 607911-1.

Figure 5.4. Field Side Free-Standing PCB after Test No. 607911-1.

5.6 VEHICLE DAMAGE

Figure 5.5 shows the damage sustained by the vehicle. The front bumper, hood, left strut and tower, left front tire and rim, left front fender, left front and rear doors, left rear quarter panel, and rear bumper were damaged. The left side floor pan sustained light damage, and the left front door was deformed at the top near the roof/door frame, leaving a small gap. Maximum exterior crush to the vehicle was 9.5 inches in the left side plane at the left front corner at bumper height. Maximum occupant compartment deformation was 0.5 inches in the left firewall and floor pan area. Figure 5.6 shows the interior of the vehicle. Tables C.2 and C.3 in Appendix C1 provides exterior crush and occupant compartment measurements.

5.7 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the occupant impact velocity (OIV) was 18.4 ft/s at 0.084 s, the highest 0.010-s occupant ridedown acceleration was 4.7 g from 0.142 to 0.152 s, and the maximum 0.050-s average acceleration was -10.4 g between 0.018 and 0.068 s. In the lateral direction, the OIV was 22.6 ft/s at 0.084 s, the highest 0.010-s occupant ridedown acceleration was 9.2 g from 0.240 to 0.250 s, and the maximum 0.050-s average was 13.3 g between 0.006 and 0.056 s. Theoretical Head Impact Velocity (THIV) was 31.5 km/h or

8.7 m/s at 0.081 s; Post-Impact Head Decelerations (PHD) was 9.3 g between 0.240 and 0.250 s; and Acceleration Severity Index (ASI) was 1.93 between 0.040 and 0.090 s. Figure 5.7 summarizes these data and other pertinent information from the test. Figure C.3 in Appendix C3 shows the vehicle angular displacements, and Figures C.4 through C.9 in Appendix C4 show acceleration versus time traces.

Figure 5.5. Test Vehicle after Test No. 607911-1.

Before Test

After Test

Figure 5.6. Interior of Test Vehicle for Test No. 607911-1.

TR No. 607911-1&2

General Information		Impact Conditions	
Test Agency	Texas A&M Transportation Institute (TTI)	Speed	62.8 mi/h
Test Standard Test No	MASH Test 3-10	Angle	25.2 degrees
TTI Test No	607911-1	Location/Orientation	3.3 ft upstream of
Test Date	2017-03-06		joint 6-7
Test Article		Impact Severity	58 kip-ft
Туре	. Portable Concrete Barrier	Exit Conditions	
Name	. Free-Standing PCB	Speed	47.7 mi/h
Installation Length	201 ft-3 inches	Angle	5.8 degrees
Material or Key Elements	F-shape segments 32 inches tall,	Occupant Risk Values	-
	24 inches wide at the base, 91/2 inches	Longitudinal OIV	18.4 ft/s
	wide at the top with pin and loop type	Lateral OIV	22.6 ft/s
	connection	Longitudinal Ridedown	4.7 g
Soil Type and Condition	Concrete Pavement, Damp	Lateral Ridedown	9.2 g
Test Vehicle	•	THIV	31.5 km/h
Type/Designation	1100C	PHD	9.3 g
Make and Model	2011 Kia Rio	ASI	1.93
Curb	2470 lb	Max. 0.050-s Average	
Test Inertial	2428 lb	Longitudinal	−10.4 g
Dummy	165 lb	Lateral	13.3 g
Gross Static	2593 lb	Vertical	4.1 g
			-

Exit Angle Box 14.9' x 32.8'

Post-Impact Trajectory

24

Stopping Distance	
	9 ft two traffic
Vehicle Stability	
Maximum Yaw Angle	62 degrees
Maximum Pitch Angle	6 degrees
Maximum Roll Angle	20 degrees
Vehicle Snagging	No
Vehicle Pocketing	No
Test Article Deflections	
Dynamic	
Permanent	34.0 inches
Working Width	60.7 inches
Vehicle Damage	
VDS	11LFQ5
CDC	141FI FW/4

End View

VD3	I I LI QJ
CDC	141FLEW4
Max. Exterior Deformation	9.5 inches
OCDI	LF0000000
Max. Occupant Compartment	
Deformation	0.5 inches

Figure 5.7. Summary of Results for MASH Test 3-10 on the Free-Standing PCB.

5.8 ASSESSMENT OF TEST RESULTS

An assessment of the test based on the applicable safety evaluation criteria from Table 3.2 for *MASH* Test 3-10 is provided below.

5.8.1 Structural Adequacy

- A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
- <u>Results</u>: The free-standing PCB contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 36.2 inches. (PASS)

5.8.2 Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.

Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof ≤ 4.0 inches; windshield = ≤ 3.0 inches; side windows = no shattering by test article structural member; wheel/foot well/toe pan ≤ 9.0 inches; forward of A-pillar ≤ 12.0 inches; front side door area above seat ≤ 9.0 inches; front side door below seat ≤ 12.0 inches; floor pan/transmission tunnel area ≤ 12.0 inches).

<u>Results</u>: Small pieces of concrete broke off in several places, however, these fragments did not penetrate or show potential for penetrating the occupant compartment, or present hazard to others in the area. (PASS)

Maximum occupant compartment deformation was 0.5 inch in the left side firewall and floor pan area. (PASS)

- *F.* The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.
- <u>Results</u>: The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 20 degrees and 6 degrees, respectively. (PASS)

Н. Оссир	oant impact veloci	ities should satisfy the following:
<u>La</u>	ngitudinal and Lo	ateral Occupant Impact Velocity
	<u>Preferred</u>	<u>Maximum</u>
	30 ft/s	40 ft/s
Results:	Longitudinal oc	cupant impact velocity was 18.4 ft/s, and lateral
	occupant impact	t velocity was 22.6 ft/s. (PASS)
I. Occup	oant ridedown aco	celerations should satisfy the following:
Ĺ	ngitudinal and L	ateral Occupant Ridedown Accelerations
	Preferred	Maximum
	15 g	20.49 g
Results:	Maximum longi maximum latera	itudinal ridedown acceleration was 4.7 g, and al ridedown acceleration was 9.2 g. (PASS)

Chapter 6. MASH TEST 3-11 (CRASH TEST NO. 607911-2)

6.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 3-11 involves a 2270P vehicle weighing 5000 lb \pm 110 lb, impacting the CIP of the free-standing PCB at an impact speed of 62 mi/h \pm 2.5 mi/h and an angle of 25 degrees \pm 1.5 degrees. The CIP for *MASH* Test 3-11 on the free-standing PCB was 4.3 ft \pm 1 ft upstream of the joint between segments 6 and 7.

The 2012 Dodge RAM 1500 pickup truck used in the test weighed 5014 lb, and the actual impact speed and angle were 62.2 mi/h and 25.3 degrees, respectively. The actual impact point was 4.4 ft upstream of the joint between segments 6 and 7. Minimum target impact severity was 106 kip-ft, and actual IS was 118 kip-ft.

6.2 WEATHER CONDITIONS

The test was performed on the morning of March 9, 2017. Weather conditions at the time of testing were as follows: wind speed: 6 mi/h; wind direction: 165 degrees (vehicle was traveling in a northwesterly direction); temperature: 72°F; relative humidity: 81 percent.

6.3 TEST VEHICLE

The 2012 Dodge RAM 1500 pickup truck shown in Figures 6.1 and 6.2 was used for the crash test. The vehicle's test inertia weight was 5014 lb, and its gross static weight was 5014 lb. The height to the lower edge of the vehicle bumper was 12.0 inches, and height to the upper edge of the bumper was 27.5 inches. The height to the vehicle's center of gravity was 28.38 inches. Tables D.1 and D.2 in Appendix D1 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using the cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 6.1. Free-Standing PCB/Test Vehicle Geometrics for Test No. 690900-2.

Figure 6.2. Test Vehicle before Test No. 607911-2.

6.4 TEST DESCRIPTION

The 2012 Dodge RAM 1500 pickup truck, traveling at an impact speed of 62.2 mi/h, contacted the free-standing PCB 4.4 ft upstream of the joint between segments 6 and 7 at an impact angle of 25.3 degrees. At 0.014 s after impact, the left front tire began to climb the traffic face of the barrier, and at 0.020 s, the downstream end of segment 6 began to displace toward the field side and the barrier at the joint between segments 5 and 6 began to rotate. Segment 7 began to displace toward traffic lanes at 0.044 s, and the vehicle began to redirect at 0.051 s. At 0.065 s, segment 8 began to displace toward the traffic lanes. Segment 7 began to crack at the one-third point at 0.095 s, and at 0.135 s, segment 7 began to crack at the mid-point. A small piece of concrete spalled from the upstream field side toe of segment 8 at 0.142 s, and the barrier began to displace toward the field side at the joint between segments 7 and 8 at 0.151 s. At 0.196 s, the vehicle began traveling parallel with the barrier, and at 0.254 s, the left rear of the cargo bed contacted segment 7. The B-pillar between the left doors contacted the upstream end of segment 9 at 0.453 s. At 0.732 s, the vehicle lost contact with the barrier and was traveling at an exit speed and angle of 56.3 mi/h and 7.3 degrees. Figures D.1 and D.2 in Appendix D2 present sequential photographs during the test.

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft downstream from impact for cars and pickups). After loss of contact with the barrier, the vehicle yawed clockwise and came to rest 255 ft downstream of the impact and 100 ft toward traffic. The 2270P vehicle exited within the exit box criteria defined in *MASH*.

6.5 DAMAGE TO TEST INSTALLATION

Figure 5.3 shows the damage to the free-standing PCB. The field side of segment 7 was cracked near the midpoint and at the upstream quarter point. The field and impact side downstream ends of the toe of segment 4 were chipped, and both field side toes of segment 5 were chipped. Figure 5.3 shows the damage to the impact side toes of segments 6 and 7. For segments 8 and 9, the upstream non-impact and impact side toes and the downstream field side

WASKEY

toes were chipped. The upstream field side toe of segment 10 was also chipped. Working width was 87.5 inches. Maximum dynamic deflection during the test was 63.4 inches, and maximum permanent deflection was 61.5 inches.

Figure 6.3. Free-Standing PCB after Test No. 607911-2.

Figure 6.4. Field Side of Segments 5 and 6 after Test No. 607911-2.

Figure 6.5. Field Side of Segment 7 after Test No. 607911-2.

Figure 6.6. Field Side of Segments 8 and 9 after Test No. 607911-2.
6.6 VEHICLE DAMAGE

Figure 6.7 shows the damage sustained by the vehicle. The front bumper, radiator and support, grill, left front fender, left front tire and rim, left front and rear doors, left lower corner of the cab, left exterior bed, left rear rim, and rear bumper were damaged. The right frame rail was deformed. The left front and rear doors were deformed at the top near the roof/door frame leaving a small opening. Maximum exterior crush to the vehicle was 14.0 inches in the side plane at the left front corner at bumper height. No occupant compartment deformation or intrusion occurred that reduced the size of the occupant compartment. Figure 6.8 shows the interior of the vehicle. Tables D.3 and D.4 in Appendix D1 provide exterior crush and occupant compartment measurements.

Figure 6.7. Test Vehicle after Test No. 607911-2.

Before Test

After Test

Figure 6.8. Interior of Test Vehicle for Test No. 607911-2.

6.7 OCCUPANT RISK FACTORS

Data from the accelerometer, located at the vehicle center of gravity, were digitized for evaluation of occupant risk. In the longitudinal direction, the OIV was 12.1 ft/s at 0.103 s, the

highest 0.010-s occupant ridedown acceleration was 3.7 g from 0.148 to 0.158 s, and the maximum 0.050-s average acceleration was –5.8 g between 0.029 and 0.079 s. In the lateral direction, the OIV was 18.4 ft/s at 0.103 s, the highest 0.010-s occupant ridedown acceleration was 14.4 g from 0.279 to 0.289 s, and the maximum 0.050-s average was 10.5 g between 0.027 and 0.077 s. THIV was 24.2 km/h or 6.7 m/s at 0.100 s; PHD was 14.6 g between 0.279 and 0.289 s; and ASI was 1.34 between 0.052 and 0.102 s. Figure 6.9 summarizes these data and other pertinent information from the test. Figures D.3 in Appendix D3 shows the vehicle angular displacements, and Figures D.4 through D.9 in Appendix D4 show acceleration versus time traces.

6.8 ASSESSMENT OF TEST RESULTS

An assessment of the test based on the applicable safety evaluation criteria from Table 3.2 for *MASH* Test 3-11 is provided below.

6.8.1 Structural Adequacy

- A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
- <u>Results</u>: The free-standing PCB contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 63.4 inches. (PASS)

6.8.2 Occupant Risk

D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.

Deformation of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. (roof ≤ 4.0 inches; windshield = ≤ 3.0 inches; side windows = no shattering by test article structural member; wheel/foot well/toe pan ≤ 9.0 inches; forward of A-pillar ≤ 12.0 inches; front side door area above seat ≤ 9.0 inches; front side door below seat ≤ 12.0 inches; floor pan/transmission tunnel area ≤ 12.0 inches).

<u>Results</u>: Small pieces of concrete broke off in several places, however, these fragments did not penetrate or show potential for penetrating the occupant compartment, or present hazard to others in the area. (PASS)

No occupant compartment deformation or intrusion occurred that reduced the size of the occupant compartment. (PASS)

TR No. 607911-1&2

General Information

25.3

Test Agency Tex	xas A&M Transportation Institute (TTI)	Sp
Test Standard Test No MA	SH Test 3-11	Ar
TTI Test No. 607	7911-2	Lo
Test Date 201	17-03-09	_0
Test Article		Imp
Type Por	rtable Concrete Barrier	Exit
Name Fre	e-Standing PCB	Sc
Installation Length 201	1 ft-3 inches	Ar
Material or Key Elements F-s	hape segments 32 inches tall,	Occ
24	inches wide at the base, 91/2 inches	Lo
wid	le at the top with pin and loop type	La
cor	nection	Lo
Soil Type and Condition Cor	ncrete Pavement, Damp	La
Test Vehicle	<i>,</i> , ,	TH
Type/Designation 227	70P	PH
Make and Model 201	12 Dodge RAM 1500	AS
Curb 485	58 lb	Max
Test Inertial 501	14 lb	
Dummy No	dummy	I
Gross Static 501	14 lb	,

Impact Path

D

Exit Angle Box 16.6' x 32.8'

-Exit Path

Impact Conditions	
Speed	62.2 mi/h
Angle	25.3 degrees
Location/Orientation	4.4 ft upstream of
	joint 6-7
Impact Severity	, 118 kip-ft
Exit Conditions	
Speed	56.3 mi/h
Angle	7.3 degrees
Occupant Risk Values	•
Longitudinal OIV	12.1 ft/s
Lateral OIV	18.4 ft/s
Longitudinal Ridedown	3.7 g
Lateral Ridedown	14.4 g
THIV	24.2 km/h
PHD	14.6 g
ASI	1.34
Max. 0.050-s Average	
Longitudinal	−5.8 g
Lateral	10.5 g
Vertical	−2.2 g
	-

100

0

Post-Impact Trajectory

Ø1-1/4"

4-7/8

Stopping Distance	.255 ft dwnstrm
	100 ft twd traffic
Vehicle Stability	
Maximum Yaw Angle	.51 degrees
Maximum Pitch Angle	.10 degrees
Maximum Roll Angle	.32 degrees
Vehicle Snagging	.No
Vehicle Pocketing	.No
Test Article Deflections	
Dynamic	.63.4 inches
Permanent	.61.5 inches
Working Width	.87.5 inches
Vehicle Damage	
VDS	.11LFQ5
CDC	.11FLEW4
Max. Exterior Deformation	.14.0 inches
OCDI	.FS0000000
Max. Occupant Compartment	
Deformation	.None

End View

Figure 6.9. Summary of Results for MASH Test 3-11 on the Free-Standing PCB.

<i>F</i> .	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.
<u>Results</u>	The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 32 degrees and 10 degrees, respectively. (PASS)
Н.	Occupant impact velocities should satisfy the following:
	Longitudinal and Lateral Occupant Impact Velocity
	Preferred Maximum
	30 ft/s 40 ft/s
<u>Results</u>	E: Longitudinal occupant impact velocity was 12.1 ft/s, and lateral occupant impact velocity was 18.4 ft/s. (PASS)
Ι.	Occupant ridedown accelerations should satisfy the following:
	Longitudinal and Lateral Occupant Ridedown Accelerations
	Preferred Maximum
	15 g 20.49 g
<u>Results</u>	S: Maximum longitudinal ridedown acceleration was 3.7 g, and maximum lateral ridedown acceleration was 14.4 g. (PASS)

Chapter 7. SUMMARY AND CONCLUSIONS

7.1 ASSESSMENT OF TEST RESULTS

An assessment of the tests based on the applicable safety evaluation criteria from Table 3.2 for *MASH* TL-3 longitudinal barriers is provided below and in Tables 7.1 and 7.2.

7.1.1 *MASH* Test 3-10 (Crash Test No. 607911-1)

The free-standing PCB contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 36.2 inches. Small pieces of concrete broke off in several places, however, these fragments did not penetrate or show potential for penetrating the occupant compartment, or present hazard to others in the area. Maximum occupant compartment deformation was 0.5 inch in the left side firewall and floor pan area. The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 20 degrees and 6 degrees, respectively. Occupant risk factors were within the preferred limits specified in *MASH*.

7.1.2 MASH Test 3-11 (Crash Test No. 607911-2)

The free-standing PCB contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 63.4 inches. Small pieces of concrete broke off in several places, however, these fragments did not penetrate or show potential for penetrating the occupant compartment, or present hazard to others in the area. No occupant compartment deformation or intrusion occurred that reduced the size of the occupant compartment. The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 32 degrees and 10 degrees, respectively. Occupant risk factors were within the preferred limits specified in *MASH*.

6.2 CONCLUSIONS

Table 7.3 shows that the Free-Standing PCB performed acceptably for *MASH* TL-3 criteria.

Table 7.1. Performance Evaluation Summary for MASH Test 3-10 on the Free-Standing PCB.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 607911-1 Te	est Date: 2017-03-06
	MASH Test 3-10 Evaluation Criteria	Test Results	Assessment
Stru	ictural Adequacy		
<i>A</i> .	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	The free-standing PCB contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 36.2 inches.	Pass
<u>Occ</u>	cupant Risk		
D. F.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. The vehicle should remain upright during and after	Small pieces of concrete broke off in several places, however, these fragments did not penetrate or show potential for penetrating the occupant compartment, or present hazard to others in the area. Maximum occupant compartment deformation was 0.5 inch in the left side firewall and floor pan area. The 1100C vehicle remained upright during and	Pass
	collision. The maximum roll and pitch angles are not to exceed 75 degrees.	after the collision event. Maximum roll and pitch angles were 20 degrees and 6 degrees, respectively.	Pass
Н.	Longitudinal and lateral occupant impact velocities should fall below the preferred value of 30 ft/s, or at least below the maximum allowable value of 40 ft/s.	Longitudinal occupant impact velocity was 18.4 ft/s, and lateral occupant impact velocity was 22.6 ft/s.	Pass
Ι.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 g, or at least below the maximum allowable value of 20.49 g.	Maximum longitudinal ridedown acceleration was 4.7 g, and maximum lateral ridedown acceleration was 9.2 g.	Pass

TR No. 607911-1&2

Table 7.2. Performance Evaluation Summary for MASH Test 3-11 on the Free-Standing PCB.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 607911-2 Te	est Date: 2017-03-09
	MASH Test 3-11 Evaluation Criteria	Test Results	Assessment
Stru	ictural Adequacy		
А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	The free-standing PCB contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 63.4 inches.	Pass
Occ D.	<u>upant Risk</u> Detached elements, fragments, or other debris from the test article should not penetrate or show potential	Small pieces of concrete broke off in several places, however, these fragments did not	
	for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	penetrate or show potential for penetrating the occupant compartment, or present hazard to others in the area.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.	No occupant compartment deformation or intrusion occurred that reduced the size of the occupant compartment.	
<i>F</i> .	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 32 degrees and 10 degrees, respectively.	Pass
Н.	Longitudinal and lateral occupant impact velocities should fall below the preferred value of 30 ft/s, or at least below the maximum allowable value of 40 ft/s.	Longitudinal occupant impact velocity was 12.1 ft/s, and lateral occupant impact velocity was 18.4 ft/s.	Pass
Ι.	Longitudinal and lateral occupant ridedown accelerations should fall below the preferred value of 15.0 g, or at least below the maximum allowable value of 20.49 g.	Maximum longitudinal ridedown acceleration was 3.7 g, and maximum lateral ridedown acceleration was 14.4 g.	Pass

Evaluation Factors	Evaluation Criteria	Test No. 607911-1	Test No. 607911-2
Structural Adequacy	А	S	S
	D	S	S
Occupant Risk	F	S	S
	Н	S	S
	Ι	S	S
Test Designation		MASH Test 3-10	MASH Test 3-11
Pass/Fail		Pass	Pass

Table 7.3. Assessment Summary for MASH TL-3 Tests on the Free-Standing PCB.

S = Satisfactory U = Unsatisfactory N/A = Not Applicable

REFERENCES

- H. E. Ross, Jr., D. L. Sicking, and R. A. Zimmer. <u>Recommended Procedures for the</u> <u>Safety Performance Evaluation of Highway Features</u>. Report 350, National Cooperative Highway Research Program, Transportation Research Board, Washington, DC, 1993.
- N. M. Sheikh, R. P. Bligh, and W. L. Menges. <u>Crash Testing and Evaluation of the</u> <u>12 ft Pinned F-shape Temporary Barrier</u>. Test Report No. 405160-3-1/2a, Texas A&M Transportation Institute, College Station, TX, 2008.
- N. M. Sheikh and W. L. Menges. <u>Development and Testing of Anchored Portable</u> <u>Concrete Barrier for Use on Asphalt</u>. Test Report No. 405160-25-1, Texas A&M Transportation Institute, College Station, TX, 2012.
- N. M. Sheikh and W. L. Menges. *Development and Testing of a Transition From Free-Standing to Pinned Portable Concrete Barrier*. Test Report No. 405160-26, Texas A&M Transportation Institute, College Station, TX, 2013.
- N. M. Sheikh and W. L. Menges. <u>Transition Design for Pinned-Down Anchored</u> <u>Temporary Barrier to Rigid Concrete Barrier</u>. Test Report No. 405160-34-1, Texas A&M Transportation Institute, College Station, TX, 2012.
- N. M. Sheikh, W. L. Menges, and D. L. Kuhn. <u>MASH Transition From F-Shape</u> <u>Portable Concrete Barrier Pinned on Asphalt to Rigid Single-Slope Concrete Barrier</u>. Test Report No. 605641-1, Texas A&M Transportation Institute, College Station, TX, 2016.
- 7. AASHTO. *Manual for Assessing Roadside Safety Hardware, Second Edition.* 2016, American Association of State Highway and Transportation Officials: Washington, DC.

TR No. 607911-1&2

35

2017-05-23

CONCRETE CORE TEST REPOReport Number:A1171057.0001Service Date:03/09/17Report Date:03/16/17Revision 1Task:	RT - Results		Test I	No. 607911	1-1			6198 Colle 979-8	Imperial Loop ge Station, TX 346-3767 Reg	CO (77845-576: 3 No: F-3272	n
Client					Projec	t					
Texas Transportation Institute Attn: Gary Gerke TTI Business Office 3135 TAMU		Riverside Campus Riverside Campus Bryan, TX									
College Station, 1X //843-3135					Project	Number: ATT/	1057				
Material Information					Sample	Informatio	n				
Specified Strength: Specified Length: 4.00 Min Mix ID:					Placeme Date Tes Sampled Drill Dir	nt Date: Unki sted: 03/0 By: Alex rections: Vert	nown 9/17 ander Farabee ical	,	Time: 0000)	
Nominal Maximum Size Aggregate:					Date Co Date Enc Moisture	re Obtained: ds Trimmed: e Conditioning	03/09/17 03/09/17 ; History: A	According	Time: 1400 Time: 0000 to ASTM C-42)) 2	
Laboratory Test Data	Cored	Trim	Capped						Comp.		
Core <u>ID</u> Location 1 A Barrier 6	Length (in) 11.5	Length (in) 5.8	Length (in) 6.0	Diam. (in) 4.00	Area (sq in) 12.57	Length / Diam. Ratio 1.50	Max Load (lbs) 136370	Corr. Factor 0.960	Strength (psi) 10420	Fracture Type 3	Density (pcf)
1 B Barrier 7	11.5	5.7	6.0	4.00	12.57	1.50	114180	0.960	8720	3	

Comments: ASTM C42 states: "Historically, it has been assumed that core strengths are generally 85 % of the corresponding standard-cured cylinder strengths, but this is not applicable to all situations. The acceptance criteria for core strength are to be established by the specifier of the tests. ACI 318 provides core strength acceptance criteria for new construction". ACI 318, 26.12.4.1c states "Concrete in an area represented by core tests shall be considered structurally adequate if the average of three cores is equal to at least 85 percent of fc' and no single core is less than 75 percent of fc'." ACI 318, 26.4.1d states: "Additional testing of cores extracted from locations represented by erratic core strength results shall be permitted."

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

Page 1 of 2

2017-05-23

CONCRETE CORE TEST REPORTReport Number:A1171057.0001Service Date:03/09/17Report Date:03/16/17Revision 1 - ResultsTask:	Test No. 607911-1	6198 Imperial Loop College Station, TX 77845-5765 979-846-3767 Reg No: F-3272		
Client	Project			
Texas Transportation Institute	Riverside Campus			
Attn: Gary Gerke	Riverside Campus			
TTI Business Office	Bryan, TX			
3135 TAMU				
College Station, TX 77843-3135	Project Number: A1171057			

Services: Terracon Rep.: Alexander Farabee Reported To: Contractor: Report Distribution: (1) Texas Transportation Institute, Gary Gerke (1) Terracon Consultants, Inc., Nicole Farabee

Start/Stop: 1300-1645

Reviewed By: Mark E.Dornak, P.E. Project Manager

Test Methods: ASTM C42

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

CR0004, 11-16-12, Rev.5

Page 2 of 2

APPENIDX C. MASH TEST 3-10 (CRASH TEST NO. 607911-1)

C1 VEHICLE PROPERTIES AND INFORMATION

Table C.1. Vehi	cle Properties for '	Test No.	607911-1.		
Date: 2017-03-06 Test No.:	607911-1	VIN No.:	KNADH4	A34B6736	6947
Year: 2011 Make:	Kia	Model:	Rio		
Tire Inflation Pressure: <u>32 psi</u>	Odometer: 144003		Tire Size:	185/65R	14
Describe any damage to the vehicle prior	r to test: <u>None</u>				
 Denotes accelerometer location. 					
NOTES: None					
	A M — – – – – – – – – – – – – – – – – – –		•••-		
Engine Type: 4 cylinder					
Engine CID: <u>1.6 liter</u>					
I ransmission I ype: x Auto or Manual		R R			A
x FWD RWD 4WD	P	4		$ \rightarrow $	4
Optional Equipment:			e		B B
None		\mathbb{N}			J , ! ↓
Dummy Data: Type: 50 th perceptile male	IF	∎—н	→ G		К
Mass: 165 lb		W	V		
Seat Position: Driver Side			X		
Geometry: inches	•		— C ———		
A 66.38 F 33.00	K 12.00	Р	4.12	U	14.875
B 58.00 G	L 24.00	Q	22.50	V	20.38
С <u>165.75</u> Н <u>35.58</u>	M <u>57.75</u>	R	15.50	W	35.50
D <u>34.00</u> I <u>8.00</u>	N <u>57.70</u>	S	15.50	Χ_	106.00
E <u>98.75</u> J <u>21.50</u>	O <u>28.50</u>	т	66.20	_	
Wheel Center Ht Front 11.00	Wheel Center Ht	Rear	11.00	_	
GVWR Ratings: Mass: Ib	<u>Curb</u>	Test	Inertial	Gro	oss Static
Front <u>1718</u> M _{front}	1580		1553		1638
Back <u>1874</u> M _{rear}	890		875		955
Total <u>3638</u> M _{Total}	2470		2428		2593
Allowable TIM = 2420 lb ±55 lb Allowable GSM = 2585 lb ± 55 lb					
lb LF: <u>770</u>	RF: <u>783</u>	LR:	428	RR:	447

Table C.2. Exterior Crush Measurements for Test No. 607911-1.

Date:	2017-03-06	Test No.:	607911-1	VIN No.:	KNADH4A34B6736947
Year:	2011	Make:	Kia	Model:	Rio

VEHICLE CRUSH MEASUREMENT SHEET¹ Complete When Applicable

Complete with	en applicable		
End Damage	Side Damage		
Undeformed end width	Bowing: B1 X1		
Corner shift: A1	B2 X2		
A2			
End shift at frame (CDC)	Bowing constant		
(check one)	<i>X</i> 1+ <i>X</i> 2		
< 4 inches	2 =		
\geq 4 inches			

Note: Measure C_1 to C_6 from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

a		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C1	C_2	C ₃	C_4	C ₅	C ₆	±D
1	Front plane at bumper ht	20	7	40	7	5	3	2	1	0	-15
2	Side plane at bumper ht	20	9.5	48	0	1.5	3	6.5	7.25	9.5	+60
	Measurements recorded										
	in inches										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Γ

Date:	2017-03-06	Test No.:	607911-1	VIN	No.: <u>I</u>	KNAE	0H4A34B673	6947
Year:	2011	Make:	Kia	Mod	lel: I	Rio		
	H-			OC DEF	CUPA ORMA	NT (TIOI	COMPART N MEASUF	MENT REMENT
	F				Befor	e	After (inches)	Differ.
	G			A1	67.7	5	67.75	0
11		7	\sim	A2	67.5	0	67.50	0
\bigtriangledown				A3	67.7	5	67.75	0
				B1	41.0	0	41.00	0
				B2	36.2	25	36.25	0
	B1, B2,	B3, B4, B5, B6		B3	41.0	0	41.00	0
				B4	36.2	25	36.25	0
	A1, A2 D1, D2, & D3 C1, C2,	8 C3 - 1		B5	36.0	0	36.00	0
\square				B6	36.2	25	36.25	0
				C1	26.0	0	25.50	-0.50
				C2				
				C3	26.0	0	26.00	0
				D1	9.5	0	9.00	-0.50
	/			D2				
	// 1	Î Î 🔪		D3	9.	5	9.5	0
	B1 E	<u>32 вз</u>	N N	E1	51.5	0	51.75	+0.25
	$\begin{bmatrix} -1 \\ -1 \end{bmatrix}$	& E2 -		E2	51.2	25	51.50	+0.25
				F	51.0	0	51.00	0
				G	51.0	0	51.00	0
				Н	37.0	0	37.00	0
				Ι	37.0	0	37.00	0
				J*	51.0	0	50.75	-0.25

Table C.3. Occupant Compartment Measurements for Test No. 607911-1.

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

C2 SEQUENTIAL PHOTOGRAPHS

Figure C.1. Sequential Photographs for Test No. 607911-1 (Overhead and Frontal Views).

0.240 s

0.080 s

0.160 s

Figure C.1. Sequential Photographs for Test No. 607911-1 (Overhead and Frontal Views) (Continued).

0.480 s

 \mathfrak{C}

VEHICLE ANGULAR DISPLACEMENTS

Figure C.3. Vehicle Angular Displacements for Test No. 607911-1.

49

22

VEHICLE ACCELERATIONS

Figure C.5. Vehicle Lateral Accelerometer Trace for Test No. 607911-1 (Accelerometer Located at Center of Gravity).

Z Acceleration at CG

Figure C.6. Vehicle Vertical Accelerometer Trace for Test No. 607911-1 (Accelerometer Located at Center of Gravity).

X Acceleration Rear of CG

Figure C.7. Vehicle Longitudinal Accelerometer Trace for Test No. 607911-1 (Accelerometer Located Rear of Center of Gravity).

53

Figure C.8. Vehicle Lateral Accelerometer Trace for Test No. 607911-1 (Accelerometer Located Rear of Center of Gravity).

Figure C.9. Vehicle Vertical Accelerometer Trace for Test No. 607911-1 (Accelerometer Located Rear of Center of Gravity).

55

APPENIDX D. MASH TEST 3-11 (CRASH TEST NO. 607911-2)

D1 VEHICLE PROPERTIES AND INFORMATION

		Table	e D.1. Vehi	icle Pro	operties for	Test No. 6	07911-2.		
Date:	2017-03-	-09	Test No.:	60791	1-2	VIN No.:	1C6RD6GP9	CS25529)4
Year:	2012		Make:	Dodge		Model:	RAM 1500		
Tire Size	e: <u>26</u>	5/70R17			Tire	Inflation Pres	ssure: <u>35 psi</u>		
Tread Ty	/pe: <u>Hi</u>	ghway				Odor	neter: <u>17224</u>	5	
Note any	/ damage	to the ve	hicle prior to	test:	None				
 Denot 	es accele	rometer le	ocation.						
NOTES:	None			-		*71+		<u>)</u>	
Engine T Engine C	Type: CID:	V-8 4.7 liter		- - -	M IWHEEL TRACK				- N T
Transmis <u>x</u> A F	ssion Typ Auto c WD <u>x</u>	e: or RWD	_ Manual 4WD	-		°+ ⊷	TEST IN	ERTIAL C. M.	1
Optional <u>None</u>	Equipme	nt:		•					
Dummy Type: Mass: Seat Po	Data: - osition:	No Dumr NA NA	ny	- -					
Geomet	ry: inch	nes		_		▼ M FRONT		▼ M rear	
А	78.50	F	40.00	к	20.00	Р	3.00	U	27.50
В	75.00	G	28.38	L	29.00	Q	30.50	V	29.88
C _ 2	25.50	Н	62.37	M	68.50	R	18.00	W	62.30
D	47.00	<u> </u>	12.00	N	68.00	S	13.25	Χ	79.30
E <u>1</u>	40.50	J	27.50	0	46.50	_ T _	77.00		
Whe Hei	el Center ght Front		14.75 Cle	Wheel arance (F	Well ront)	6.00	Bottom Frame Height - Front		17.00
Whe Hei	el Center		14.75 Cle	Wheel earance (F	Well Rear)	9.25	Bottom Frame Height - Rear		25.50
RANGE L	IMIT: A=78 ±2 i	nches; C=237	±13 inches; E=148 ±	12 inches; F=	39 ±3 inches; G = > 2	8 inches; H = 63 ±4 i	inches; O=43 ±4 inches;	M+N/2=67 ±1.	5 inches
GVWR	Ratings:		Mass: Ib)	<u>Curb</u>	Test	Inertial	<u>Gross</u>	Static
Front		3700	M _{front}		2825		2788		
Back		3900	M _{rear}		2033		2226		
Iotal		5700	M _{Total}		<u>4858</u> (Allowat	ble Range for TIM and	5014 GSM = 5000 lb ±110 lb)	
Mass Di	stributio	n:	4000	5-	4.405		4070 5	.	
di		LF:	1383		1405	LK:	<u>1070</u> RI	.≺: <u>11</u>	30

Date: 2017-03	<u>3-09</u> T	est No.:	607911-2	2	VIN:	1C6RD6GP90	CS255294	4
Year: 2012		Make:	Dodge		Mode	el: <u>RAM 1500</u>)	
Body Style: _C	Quad Cab)			Mileag	e: <u>172245</u>		
Engine: <u>4.7 li</u>	ter V-8			Tra	ansmissio	n: <u>Automatic</u>		
Fuel Level: _E	Empty	Ba	allast:	17	6			(440 lb max)
Tire Pressure:	Front:	<u>35</u> p	si R	ear: <u>3</u>	5 psi	Size: <u>265/7</u>	′0R17	
Measured Ver	nicle Wei	ghts: (I	b)					
LF:	1383		RF:	1405		Front Axle:	2788	
LR:	1070		RR:	1156		Rear Axle:	2226	
Left:	2453		Right:	2561		Total:	5014	
						5000 ±11	0 lb allow ed	
Whe	eel Base:	140.5	inches	Track: F:	68.5	inches R:	68	inches
·	148 ±12 inch	es allow ed			Track = (F+R)/2 = 67 ±1.5 inches	allow ed	
Center of Gra	vity , SAE	J874 Sus	pension N	<i>l</i> ethod				
X:	62.38	inches	Rear of F	ront Axle	(63 ±4 inches	s allow ed)		
Y:	0.74	inches	Left -	Right +	of Vehicle	Centerline		
Z:	28.38	inches	Above Gr	ound	(minumum 28	.0 inches allow ed)		
Hood Heig	ht: 43 ±4	46.50) inches	Fro	nt Bumpe	r Height:	27.5	50 inches
Front Overhar	ng: 39 ±3	40.00) inches	Rea	ar Bumpe	r Height:	29.0	00 inches
Overall Leng	th:	225.50)_ inches					

Table D.2. Measurements of Vehicle Vertical CG for Test No. 607911-2.

Table D.3. Exterior Crush Measurements for Test No. 607911-2.

Date:	2017-03-09	Test No.:	607911-2	VIN No.:	1C6RD6GP9CS255294	
Year:	2012	Make:	Dodge	Model:	RAM 1500	

VEHICLE CRUSH MEASUREMENT SHEET ¹							
Complete Wh	en Applicable						
End Damage	Side Damage						
Undeformed end width	Bowing: B1 X1						
Corner shift: A1	B2 X2						
A2							
End shift at frame (CDC)	Bowing constant						
(check one)	<i>X</i> 1+ <i>X</i> 2						
< 4 inches	2 =						
\geq 4 inches							

Note: Measure C_1 to C_6 from Driver to Passenger Side in Front or Rear impacts – Rear to Front in Side Impacts.

a		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C1	C ₂	C ₃	C ₄	C ₅	C ₆	±D
1	Front plane at bumper ht	17	8	30	8	6	4	2	1	0	-15
2	Side plane at bumper ht	17	14	27	14	12			1.5	1	+64
	Measurements recorded										
	in inches or mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Date:	2017-03-09	Test No.:	607911-2	VIN No.:	1C6RD6GP9CS255294
Year:	2012	Make:	Dodge	Model:	RAM 1500

*Lateral area across the cab from driver's side 37.00 kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

	Before	After	Differ.
		(inches)	
A1	65.00	65.00	0
A2	63.00	63.00	0
A3	65.50	65.50	0
B1	44.00	44.00	0
B2	37.75	37.75	0
B3	44.00	44.00	0
B4	39.50	39.50	0
B5	43.25	43.25	0
B6	39.50	39.50	0
C1	27.00	27.00	0
C2			0
C3	26.00	26.00	0
D1	11.25	11.25	0
D2			0
D3	11.25	11.25	0
E1	58.50	58.50	0
E2	63.50	63.75	+0.25
E3	63.50	63.50	0
E4	63.50	63.75	+0.25
F	59.00	59.00	0
G	59.00	59.00	0
Н	37.00	37.00	0
I	37.00	37.00	0
J*	23.50	23.50	0
D2 SEQUENTIAL PHOTOGRAPHS

0.110 s

0.220 s

Figure D.1. Sequential Photographs for Test No. 607911-2 (Overhead and Frontal Views).

Figure D.1. Sequential Photographs for Test No. 607911-2 (Overhead and Frontal Views) (Continued).

0.550 s

0.660 s

0.000 s

0.110 s

0.550 s

0.220 s

0.660 s

0.330 s

0.770 s

Figure D.2. Sequential Photographs for Test No. 607911-2 (Rear View).

D3

VEHICLE ANGULAR DISPLACEMENTS

Figure D.3. Vehicle Angular Displacements for Test No. 607911-2.

D4

VEHICLE ACCELERATIONS

Y Acceleration at CG

Z Acceleration at CG

Figure D.6. Vehicle Vertical Accelerometer Trace for Test No. 607911-2 (Accelerometer Located at Center of Gravity).

X Acceleration Rear of CG

Figure D.8. Vehicle Lateral Accelerometer Trace for Test No. 607911-2 (Accelerometer Located Rear of Center of Gravity).

Figure D.9. Vehicle Vertical Accelerometer Trace for Test No. 607911-2 (Accelerometer Located Rear of Center of Gravity).