

Midwest States Regional Pooled Fund Research Program Fiscal Year 2009-2010 (Year 20) Research Project Number TPF-5(193) NDOR Sponsoring Agency Code RPFP-10-MGS

DETERMINATION OF THE MAXIMUM MGS MOUNTING HEIGHT – PHASE I CRASH TESTING

Submitted by

Cale J. Stolle, B.S.M.E., E.I.T. Graduate Research Assistant

> John D. Reid, Ph.D. Professor

Robert W. Bielenberg, M.S.M.E., E.I.T. Research Associate Engineer

> Dean L. Sicking, Ph.D., P.E. Professor and MwRSF Director

Karla A. Lechtenberg, M.S.M.E., E.I.T. Research Associate Engineer

Ronald K. Faller, Ph.D., P.E. Research Assistant Professor

Scott K. Rosenbaugh, M.S.C.E., E.I.T. Research Associate Engineer

Erin A. Johnson, B.S.M.E., E.I.T. Former Graduate Research Assistant

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln 130 Whittier Research Center 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965

Submitted to

MIDWEST STATES REGIONAL POOLED FUND PROGRAM

Nebraska Department of Roads 1500 Nebraska Highway 2 Lincoln, Nebraska 68502

MwRSF Research Report No. TRP-03-255-12

March 9, 2012

TECHNICAL REPORT DOCUMENTATION PAGE

2.	3. Recipient's Accession No.		
m MGS Mounting Height	 5. Report Date March 9, 2012 6. 		
., Reid, J.D., Faller, R.K., h, S.K., Sicking, D.L., and	8. Performing Organization Report No. TRP-03-255-12		
ess ility (MwRSF)	10. Project/Task/Work Unit No.		
ter In 53	11. Contract © or Grant (G) No. TPF-5(193)		
ress led Fund Program	13. Type of Report and Period Covered Final Report: 2010-2012		
ls	14. Sponsoring Agency Code RPFP-10-MGS		
U.S. Department of Transpo	rtation, Federal Highway Administration.		
	m MGS Mounting Height , Reid, J.D., Faller, R.K., h, S.K., Sicking, D.L., and ility (MwRSF) ter ln 53 ress led Fund Program ls		

Post-and-rail guardrail systems encounter environmental conditions, such as severe frost heave or erosion, which may drastically affect the post embedment depth and rail mounting height. In addition, guardrail systems may be designed to accommodate future roadway surface overlays. As these scenarios arise, it becomes evident that the rail mounting height tolerances for post-and-rail systems need to be evaluated. Over the years, the recommended minimum top rail mounting height for the MGS was established as 27¾ in. (705 mm) based on crash testing with pickup trucks at 25-degree angles and according to the NCHRP Report No. 350 and MASH safety standards. However, no maximum height has been set.

The primary objective of this study was to evaluate the potential for increasing the maximum rail mounting height of the MGS. The research study included two full-scale crash tests with Kia Rio passenger cars, each weighing approximately 2,425 lb (1,100 kg). The first system utilized a 34-in. (864-mm) top rail mounting height and a line post embedment depth of 37 in. (940 mm). The second system utilized a 36-in. (914-mm) top rail mounting height with a line post embedment depth of 35 in. (889 mm). Following the success of the full-scale crash test program, both system heights were found to satisfy MASH TL-3 evaluation criteria for test no. 3-10. Evaluation of these rail heights under pickup truck impacts (test no. 3-11) is necessary before these taller systems can be deemed crashworthy according to MASH.

17. Document Analysis/Descriptors Highway Safety, Crash Test,	11 /	18. Availability Statement No restrictions. Document available from:		
Compliance Test, MASH, MC Maximum Height, Decreased		National Technical Information Services, Springfield, Virginia 22161		
19. Security Class (this report) Unclassified	20. Security Class (this page) Unclassified	21. No. of Pages 227	22. Price	

DISCLAIMER STATEMENT

This report was completed with funding from the Federal Highway Administration, U.S. Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the state highway departments participating in the Midwest States Regional Pooled Fund Program nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

The Independent Approving Authority (IAA) for the data contained herein was Mario Mongiardini, Post-Doctoral Research Assistant.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) the Midwest States Regional Pooled Fund Program funded by the Illinois Department of Transportation, Iowa Department of Transportation, Kansas Department of Transportation, Minnesota Department of Transportation, Missouri Department of Transportation, Nebraska Department of Roads, Ohio Department of Transportation, South Dakota Department of Transportation, Wisconsin Department of Transportation, and Wyoming Department of Transportation for sponsoring this project; and (2) MwRSF personnel for constructing the barriers and conducting the crash tests.

Acknowledgement is also given to the following individuals who made a contribution to the completion of this research project.

Midwest Roadside Safety Facility

J.C. Holloway, M.S.C.E., E.I.T., Test Site Manager C.L. Meyer, B.S.M.E., E.I.T., Research Associate Engineer M. Mongiardini, Ph.D., Post-Doctoral Research Assistant A.T. Russell, B.S.B.A., Shop Manager K.L. Krenk, B.S.M.A., Maintenance Mechanic A.T. McMaster, Former Laboratory Mechanic Undergraduate and Graduate Research Assistants

Illinois Department of Transportation

David Piper, P.E., Safety Implementation Engineer

Iowa Department of Transportation

David Little, P.E., Assistant District Engineer Deanna Maifield, P.E., Methods Engineer Chris Poole, P.E., Roadside Safety Engineer

Kansas Department of Transportation

Ron Seitz, P.E., Bureau Chief Rod Lacy, P.E., Metro Engineer Scott King, P.E., Road Design Leader

Minnesota Department of Transportation

Michael Elle, P.E., Design Standard Engineer

Missouri Department of Transportation

Joseph G. Jones, P.E., Engineering Policy Administrator

Nebraska Department of Roads

Amy Starr, P.E., Research Engineer Phil TenHulzen, P.E., Design Standards Engineer Jodi Gibson, Research Coordinator

Ohio Department of Transportation

Dean Focke, P.E., Road Safety Engineer (Retired) Michael Bline, P.E., Standards and Geometrics Engineer

South Dakota Department of Transportation

David Huft, Research Engineer Bernie Clocksin, Lead Project Engineer

Wisconsin Department of Transportation

Jerry Zogg, P.E., Chief Roadway Standards Engineer John Bridwell, P.E., Standards Development Engineer Erik Emerson, P.E., Standards Development Engineer

Wyoming Department of Transportation

William Wilson, P.E., Architectural and Highway Standards Engineer

Federal Highway Administration

John Perry, P.E., Nebraska Division Office Danny Briggs, Nebraska Division Office Bill Bremer, Safety and Traffic Operations Engineer, FHWA Wisconsin Division Office

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	V
LIST OF FIGURES	vii
LIST OF TABLES	xii
1 INTRODUCTION 1.1 Background 1.2 Objectives 1.3 Scope	1
2 LITERATURE REVIEW	
 3 RAIL HEIGHT TESTING RECOMMENDATION	15 15 19
 4 TEST REQUIREMENTS AND EVALUATION CRITERIA 4.1 Test Requirements 4.2 Evaluation Criteria 4.3 Soil Strength Requirements 	
5 TEST CONDITIONS	
5.5 Data / Yogustuon 5 ystems	

5.5.1 Accelerometers	33
5.5.2 Rate Transducers	34
5.5.3 Pressure Tape Switches	
5.5.4 Digital Cameras	
6 DESIGN DETAILS – 34-IN. (864-mm) TOP RAIL MOUNTING HEIGHT	38
7 FULL-SCALE CRASH TEST NO. MGSMRH-1	51
7.1 Static Soil Test	51
7.2 Test No. MGSMRH-1	51
7.3 Weather Conditions	51
7.4 Test Description	52
7.5 Barrier Damage	53
7.6 Vehicle Damage	55
7.7 Occupant Risk	56
7.8 Discussion	57
8 DESIGN DETAILS – 36-IN. (914-mm) TOP RAIL MOUNTING HEIGHT	80
9 FULL-SCALE CRASH TEST NO. MGSMRH-2	85
9.1 Static Soil Test	85
9.2 Test No. MGSMRH-2	85
9.3 Weather Conditions	85
9.4 Test Description	86
9.5 Barrier Damage	87
9.6 Vehicle Damage	88
9.7 Occupant Risk	90
9.8 Discussion	90
10 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	110
10.1 Discussion	
10.2 Future Work	118
11 REFERENCES	119
12 APPENDICES	123
Appendix A - Material Specifications	
Appendix B - Vehicle Center of Gravity Determination	156
Appendix C - Static Soil Tests	159
Appendix D - Vehicle Deformation Records	163
Appendix E - Accelerometer and Rate Transducer Data Plots, Test No. MGSMRH-1	176
Appendix F – System Details, Test No. MGSMRH-2	192
Appendix G - Accelerometer and Rate Transducer Data Plots, Test No. MGSMRH-2	.203

LIST OF FIGURES

Figure 1. Test No. FR-3, Potential for Wheel Snag	11
Figure 2. Test No. FR-5, Wheel Snag	
Figure 3. Test No. 2214MG-3, Wheel Snag	13
Figure 4. Test No. 2214MG-3, Vehicle Yaws Toward the Barrier	13
Figure 5. Test No. 2214MG-3, Rail Snags Under the Hood	14
Figure 6. 1100C Vehicle Schematic, Average Measurements	15
Figure 7. 1100C Front End Dimensions	
Figure 8. 1100C Next to 32-, 34-, and 36-in. (813-, 864-, and 914-mm) MGS - Rear View	17
Figure 9. 1100C Next to 32-, 34-, and 36-in. (813-, 864-, and 914-mm) MGS - Front View	18
Figure 10. Test Vehicle, Test No. MGSMRH-1	
Figure 11. Vehicle Dimensions, Test No. MGSMRH-1	27
Figure 12. Test Vehicle, Test No. MGSMRH-2	
Figure 13. Vehicle Dimensions, Test No. MGSMRH-2	30
Figure 14. Target Geometry, Test No. MGSMRH-1	
Figure 15. Target Geometry, Test No. MGSMRH-2	
Figure 16. Camera Locations, Speeds, and Lens Settings, Test No. MGSMRH-1	36
Figure 17. Camera Locations, Speeds, and Lens Settings, Test No. MGSMRH-2	
Figure 18. Test Installation Layout, Test No. MGSMRH-1	40
Figure 19. 34-in. (864-mm) Tall MGS Details, Test No. MGSMRH-1	41
Figure 20. BCT End Anchor Details, Test No. MGSMRH-1	42
Figure 21. BCT End Anchor Details, Test No. MGSMRH-1	43
Figure 22. Line Post Details, Test No. MGSMRH-1	
Figure 23. Anchor Post Details, Test No. MGSMRH-1	45
Figure 24. BCT Anchor Cable Details, Test No. MGSMRH-1	46
Figure 25. Ground Strut and Anchor Bracket Details, Test No. MGSMRH-1	47
Figure 26. W-Beam Guardrail Details, Test No. MGSMRH-1	48
Figure 27. Bill of Materials, Test No. MGSMRH-1	
Figure 28. Test Installation Photographs, Test No. MGSMRH-1	50
Figure 29. Summary of Test Results and Sequential Photographs, Test No. MGSMRH-1	59
Figure 30. Additional Sequential Photographs, Test No. MGSMRH-1	60
Figure 31. Additional Sequential Photographs, Test No. MGSMRH-1	61
Figure 32. Additional Sequential Photographs, Test No. MGSMRH-1	62
Figure 33. Additional Sequential Photographs, Test No. MGSMRH-1	63
Figure 34. Impact Location, Test No. MGSMRH-1	
Figure 35. Vehicle Final Position and Trajectory Marks, Test No. MGSMRH-1	65
Figure 36. System Damage, Test No. MGSMRH-1	66
Figure 37. System Damage, Test No. MGSMRH-1	
Figure 38. System Damage, Test No. MGSMRH-1	68
Figure 39. System Damage, Test No. MGSMRH-1	
Figure 40. Soil Gap at Upstream End Anchor, Test No. MGSMRH-1	70
Figure 41. Splice Damage, Test No. MGSMRH-1	
Figure 42. Splice Damage, Test No. MGSMRH-1	72
Figure 43. Post Nos. 13 and 14 Damage, Test No. MGSMRH-1	
Figure 44. Post Nos. 15 and 16 Damage, Test No. MGSMRH-1	
Figure 45. Post Nos. 17 and 18 Damage, Test No. MGSMRH-1	75

Figure 46. Vehicle Damage, Test No. MGSMRH-1	76
Figure 47. Vehicle Damage, Test No. MGSMRH-1	77
Figure 48. Occupant Compartment Damage, Test No. MGSMRH-1	78
Figure 49. Undercarriage Damage, Test No. MGSMRH-1	
Figure 50. Test Installation Layout, Test No. MGSMRH-2	81
Figure 51. 36-in. (914-mm) Tall MGS Details, Test No. MGSMRH-2	82
Figure 52. BCT End Anchor Details, Test No. MGSMRH-2	83
Figure 53. Test Installation Photographs, Test No. MGSMRH-2	
Figure 54. Summary of Test Results and Sequential Photographs, Test No. MGSMRH-2	
Figure 55. Additional Sequential Photographs, Test No. MGSMRH-2	
Figure 56. Additional Sequential Photographs, Test No. MGSMRH-2	94
Figure 57. Additional Sequential Photographs, Test No. MGSMRH-2	
Figure 58. Documentary Photographs, Test No. MGSMRH-2	
Figure 59. Impact Location, Test No. MGSMRH-2	97
Figure 60. Vehicle Final Position and Trajectory Marks, Test No. MGSMRH-2	98
Figure 61. System Damage, Test No. MGSMRH-2	99
Figure 62. System Damage, Test No. MGSMRH-2	
Figure 63. Soil Gap at Upstream End Anchor, Test No. MGSMRH-2	
Figure 64. Post-To-Rail Bolt Hole Damage, Test No. MGSMRH-2	
Figure 65. Post Damage, Test No. MGSMRH-2	103
Figure 66. Post Damage, Test No. MGSMRH-2	
Figure 67. Post Damage, Test No. MGSMRH-2	
Figure 68. Vehicle Damage, Test No. MGSMRH-2	
Figure 69. Vehicle Damage, Test No. MGSMRH-2	
Figure 70. Occupant Compartment Damage, Test No. MGSMRH-2	
Figure 71. Undercarriage Damage, Test No. MGSMRH-2	
Figure 72. Vehicle-to-Rail Interaction	
Figure 73. Vehicle-to-Rail Interaction	
Figure 74. System Damage Comparison	
Figure 75. Static Soil Strength Comparison	117
Figure A-1. W6x8.5 (W152x12.6) Steel Post Material Specifications, Test Nos.	
MGSMRH-1 and MGSMRH-2.	127
Figure A-2. W6x8.5 (W152x12.6) Steel Post Material Specifications, Test Nos.	
MGSMRH-1 and MGSMRH-2.	128
Figure A-3. W6x8.5 (W152x12.6) Steel Post Material Specifications, Test No.	
MGSMRH-2	129
Figure A-4. Wood Blockout Material Specifications, Test Nos. MGSMRH-1 and	
MGSMRH-2	130
Figure A-5. 12-ft 6-in. (3.8-m) Long W-Beam Section Material Specifications, Test Nos.	
MGSMRH-1 and MGSMRH-2	131
Figure A-6. 75-in. (1,905-mm) Long W-Beam Section Material Specifications, Test Nos.	
MGSMRH-1 and MGSMRH-2	132
Figure A-7. BCT Anchor Foundation Tube Material Specifications, Test Nos. MGSMRH-1	
and MGSMRH-2	133
Figure A-8. BCT Anchor Timber Post Material Specifications, Test No. MGSMRH-1	
Figure A-9. BCT Anchor Timber Post Material Specifications, Test No. MGSMRH-2	
- · ·	

Figure A-10. BCT Anchor Groundline Strut and Yoke Assembly Material Specifications,	
Test Nos. MGSMRH-1 and MGSMRH-2	136
Figure A-11. BCT Cable Anchor Assembly Material Specifications, Test Nos.	
MGSMRH-1 and MGSMRH-2	137
Figure A-12. BCT Cable Anchor Assembly Material Specifications, Test Nos.	
MGSMRH-1 and MGSMRH-2	138
Figure A-13. BCT Anchor Bracket Assembly Material Specifications, Test Nos.	
MGSMRH-1 and MGSMRH-2	139
Figure A-14. BCT Anchor Bearing Plate Material Specifications, Test Nos. MGSMRH-1	
and MGSMRH-2	140
Figure A-15. BCT Anchor Post Sleeve Material Specifications, Test Nos. MGSMRH-1 and	
MGSMRH-2	141
Figure A-16. Guardrail Splice Bolt Material Specifications, Test Nos. MGSMRH-1 and	
MGSMRH-2	142
Figure A-17. Guardrail Splice Bolt Material Specifications, Test Nos. MGSMRH-1 and	
MGSMRH-2	143
Figure A-18. 10-in. (254-mm) Guardrail Bolt Material Specifications, Test Nos.	
MGSMRH-1 and MGSMRH-2	144
Figure A-19. 14-in. (356-mm) Guardrail Bolt Material Specifications, Test Nos.	
MGSMRH-1 and MGSMRH-2	145
Figure A-20. Guardrail Nut Material Specifications, Test Nos. MGSMRH-1 and	
MGSMRH-2	146
Figure A-21. Guardrail Nut Material Specifications, Test Nos. MGSMRH-1 and	
MGSMRH-2	147
Figure A-22. Guardrail Nut Material Specifications, Test Nos. MGSMRH-1 and	
MGSMRH-2	148
Figure A-23. 1 ¹ / ₂ -in. (38-mm) Hex Bolt Material Specifications, Test Nos. MGSMRH-1	
and MGSMRH-2	149
Figure A-24. 9 ¹ / ₂ -in. (241-mm) Hex Bolt Material Specifications, Test Nos. MGSMRH-1	
and MGSMRH-2	150
Figure A-25. ⁵ / ₈ -in. (16-mm) Diameter Hex Nut Material Specifications, Test Nos.	
MGSMRH-1 and MGSMRH-2	151
Figure A-26. ⁵ / ₈ -in. (16-mm) Diameter Flat Washer Material Specifications, Test Nos.	
MGSMRH-1 and MGSMRH-2	152
Figure A-27. ³ / ₄ -in. (19-mm) Diameter Hex Bolt Material Specifications, Test Nos.	1.50
MGSMRH-1 and MGSMRH-2	.153
Figure A-28. ³ / ₄ -in. (19-mm) Diameter Hex Nut Material Specifications, Test Nos.	1 7 4
MGSMRH-1 and MGSMRH-2	154
Figure A-29. ³ / ₄ -in. (19-mm) Diameter Flat Washer Material Specifications, Test Nos.	165
MGSMRH-1 and MGSMRH-2.	
Figure B-1. Vehicle Mass Distribution, Test No. MGSMRH-1	
Figure B-2. Vehicle Mass Distribution, Test No. MGSMRH-2	
Figure C-1. Soil Strength, Initial Baseline Tests	
Figure C-2. Static Soil Test, Test No. MGSMRH-1	
Figure C-3. Static Soil Test, Test No. MGSMRH-2	
Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSMRH-1	
Figure D-2. Floor Pan Deformation Data – Set 2, Test No. MGSMRH-1	.103

Figure D-3. Occupant Compartment Deformation Data – Set 1, Test No. MGSMRH-1	166
Figure D-4. Occupant Compartment Deformation Data – Set 2, Test No. MGSMRH-1	
Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSMRH-1	
Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSMRH-1	169
Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSMRH-2	170
Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSMRH-2	171
Figure D-9. Occupant Compartment Deformation Data – Set 1, Test No. MGSMRH-2	
Figure D-10. Occupant Compartment Deformation Data – Set 2, Test No. MGSMRH-2	
Figure D-11. Exterior Vehicle Crush (NASS) - Front, Test No. MGSMRH-2	
Figure D-12. Exterior Vehicle Crush (NASS) - Side, Test No. MGSMRH-2	
Figure E-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. MGSMRH-1	
Figure E-2. Longitudinal Occupant Impact Velocity (DTS), Test No. MGSMRH-1	
Figure E-3. Longitudinal Occupant Displacement (DTS), Test No. MGSMRH-1	
Figure E-4. 10-ms Average Lateral Deceleration (DTS), Test No. MGSMRH-1	
Figure E-5. Lateral Occupant Impact Velocity (DTS), Test No. MGSMRH-1	
Figure E-6. Lateral Occupant Displacement (DTS), Test No. MGSMRH-1	
Figure E-7. Vehicle Angular Displacements (DTS), Test No. MGSMRH-1	
Figure E-8. Acceleration Severity Index (DTS), Test No. MGSMRH-1	
Figure E-9. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. MGSMRH-1	
Figure E-10. Longitudinal Occupant Impact Velocity (EDR-3), Test No. MGSMRH-1	
Figure E-11. Longitudinal Occupant Displacement (EDR-3), Test No. MGSMRH-1	
Figure E-12. 10-ms Average Lateral Deceleration (EDR-3), Test No. MGSMRH-1 Figure E-13. Lateral Occupant Impact Velocity (EDR-3), Test No. MGSMRH-1	
Figure E-13. Lateral Occupant Impact Velocity (EDR-3), Test No. MGSMRH-1	
Figure E-14. Lateral Occupant Displacement (EDR-3), Test No. MOSMRH-1	
Figure E-15. Receleration Severity index (EDR-5), Test No. MOSINICI-1	
Figure F-2. 36-in. (914-mm) Tall MGS Details, Test No. MGSMRH-2	
Figure F-3. BCT End Anchor Details, Test No. MGSMRH-2	195
Figure F-4. BCT End Anchor Details, Test No. MGSMRH-2	
Figure F-5. Line Post Details, Test No. MGSMRH-2	
Figure F-6. Anchor Post Details, Test No. MGSMRH-2	
Figure F-7. BCT Anchor Cable Details, Test No. MGSMRH-2	
Figure F-8. Ground Strut and Anchor Bracket Details, Test No. MGSMRH-2	200
Figure F-9. W-Beam Guardrail Details, Test No. MGSMRH-2	
Figure F-10. Bill of Materials, Test No. MGSMRH-2	
Figure G-1. 10-ms Average Longitudinal Deceleration (EDR-4), Test No. MGSMRH-2	204
Figure G-2. Longitudinal Occupant Impact Velocity (EDR-4), Test No. MGSMRH-2	
Figure G-3. Longitudinal Occupant Displacement (EDR-4), Test No. MGSMRH-2	206
Figure G-4. 10-ms Average Lateral Deceleration (EDR-4), Test No. MGSMRH-2	207
Figure G-5. Lateral Occupant Impact Velocity (EDR-4), Test No. MGSMRH-2	
Figure G-6. Lateral Occupant Displacement (EDR-4), Test No. MGSMRH-2	
Figure G-7. Vehicle Angular Displacements (EDR-4), Test No. MGSMRH-2	
Figure G-8. Acceleration Severity Index (EDR-4), Test No. MGSMRH-2	
Figure G-9. 10-ms Average Longitudinal Deceleration (DTS), Test No. MGSMRH-2	
Figure G-10. Longitudinal Occupant Impact Velocity (DTS), Test No. MGSMRH-2	
Figure G-11. Longitudinal Occupant Displacement (DTS), Test No. MGSMRH-2	
Figure G-12. 10-ms Average Lateral Deceleration (DTS), Test No. MGSMRH-2	215

Figure G-13. Lateral Occupant Impact Velocity (DTS), Test No. MGSMRH-2	216
Figure G-14. Lateral Occupant Displacement (DTS), Test No. MGSMRH-2	217
Figure G-15. Vehicle Angular Displacements (DTS), Test No. MGSMRH-2	218
Figure G-16. Acceleration Severity Index (DTS), Test No. MGSMRH-2	219
Figure G-17. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. MGSMRH-2	220
Figure G-18. Longitudinal Occupant Impact Velocity (EDR-3), Test No. MGSMRH-2	221
Figure G-19. Longitudinal Occupant Displacement (EDR-3), Test No. MGSMRH-2	222
Figure G-20. 10-ms Average Lateral Deceleration (EDR-3), Test No. MGSMRH-2	223
Figure G-21. Lateral Occupant Impact Velocity (EDR-3), Test No. MGSMRH-2	224
Figure G-22. Lateral Occupant Displacement (EDR-3), Test No. MGSMRH-2	225
Figure G-23. Acceleration Severity Index (EDR-3), Test No. MGSMRH-2	226

LIST OF TABLES

Table 1. Recent Small-Car Testing Performed on W-Beam Guardrail Systems	5
Table 2. Post-Soil Dynamic Yield Forces	20
Table 3. MASH TL-3 Crash Test Conditions	22
Table 4. MASH Evaluation Criteria for Longitudinal Barrier	24
Table 5. Weather Conditions, Test No. MGSMRH-1	51
Table 6. Sequential Description of Impact Events, Test No. MGSMRH-1	52
Table 7. Maximum Occupant Compartment Deformations by Location, Test No.	
MGSMRH-1	56
Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSMRH-1	57
Table 9. Weather Conditions, Test No. MGSMRH-2	85
Table 10. Sequential Description of Impact Events, Test No. MGSMRH-2	86
Table 11. Maximum Occupant Compartment Deformations by Location, Test No.	
MGSMRH-2	89
Table 12. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSMRH-2	90
Table 13. Summary of Safety Performance Evaluation Results	112
Table 14. Comparison of Wheel Snag and Barrier Underride Factors	115
Table A-1. Material Certification Listing for Test No. MGSMRH-1	125
Table A-2. Material Certification Listing for Test No. MGSMRH-2	126

1 INTRODUCTION

1.1 Background

In post-and-rail systems, the rail height plays a crucial role in the way an errant vehicle interacts with the barrier. A low rail height may increase the chance of vehicle rollover, while an excessively tall rail may cause vehicle snagging, underride, and occupant compartment penetration. The rail mounting height and the post embedment depth may be altered by various installation or environmental occurrences, such as soil erosion, frost heave, human error, and future roadway surface overlays. Hence, the maximum and minimum heights of a barrier system are selected to mitigate concerns for mounting height variability while allowing for safe vehicle containment and redirection.

The Midwest Guardrail System (MGS) is a post-and-rail system which was originally developed according to the Test Level 3 (TL-3) standards set forth by the National Cooperative Highway Research Program (NCHRP) Report No. 350 [1] to provide a reliable W-beam guardrail system capable of capturing and redirecting larger vehicles, specifically the ³/₄-ton pickup truck, while minimizing the potential for barrier underride by the small car [2]. The MGS has also been successfully crash tested and evaluated according to the TL-3 procedures provided in the *Manual for Assessing Safety Hardware* (MASH) [3] for both the 1100C passenger car and the 2270P pickup truck [4-5]. For the NCHRP Report No. 350 and MASH testing programs, the top rail mounting height of the MGS was 32 in. (813 mm) for passenger cars and 31 in. (787 mm) for pickup trucks.

Although the MGS was crash tested with pickup trucks using a 31-in. (787-mm) top rail mounting height, the MGS would provide acceptable safety performance at lower mounting heights. For example, the modified G4(1S) W-beam guardrail system demonstrated acceptable safety performance according to the TL-3 criteria provided in MASH when installed with a 27³/₄-

in. (705-mm) top rail mounting height [6, 7]. Prior full-scale crash testing with pickup trucks at 25-degree angles has demonstrated that the MGS provides improved barrier performance over that observed with the modified G4(1S) barrier system. Therefore, the MGS should also meet the TL-3 requirements found in MASH when installed with a top rail height of $27\frac{3}{4}$ in. (705 mm). Based on prior crash testing of the modified G4(1S) and MGS barrier systems, researchers at the Midwest Roadside Safety Facility (MwRSF) reasoned that the standard MGS would provide acceptable safety performance when installed with top rail mounting heights ranging between $27\frac{3}{4}$ in. (705 mm) and 32 in. (813 mm). Therefore, the recommended minimum and maximum top rail mounting heights for the standard MGS were previously established as $27\frac{3}{4}$ in. (705 mm) and 32 in. (813 mm), respectively.

The MGS has also been successfully crash-tested and evaluated with 820C small passenger cars with flare rates as high as 5:1 [8]. The increased impact severity of this particular configuration did not accompany barrier underride and provided evidence that the upper height tolerance for the MGS may be increased significantly from the current maximum allowable value.

Raising the height of the rail can lead to the following five problems regarding system performance of the MGS: (1) vehicle underride (small car); (2) post snagging (small car); (3) occupant compartment penetration (small car); (4) excessive deflection due to reduced lateral resistance (pickup truck); and (5) overloaded anchors that were designed for shorter heights (pickup truck). Before the larger deflections are quantified or the anchorages are evaluated at new heights, the rail height limit for acceptable small car interaction has to be defined. Although many full-scale crash tests have utilized a small car impacting a guardrail system, there have been no recent underride issues which could provide useful insight into the upper limits for the MGS.

1.2 Objectives

The objective of this research project was to evaluate the safety performance of an increased-height MGS with respect to underride and post snagging for small cars. The guardrail systems were to be evaluated according to the Test Level 3 (TL-3) safety performance criteria set forth by the American Association of State Highway and Transportation Officials (AASHTO) in MASH [3].

1.3 Scope

The research objectives were achieved through the completion of several tasks. First, a literature review was performed of recent W-beam tests to examine the interaction between small cars and guardrails. Second, engineering analysis, evaluation of 1100C vehicle and W-beam rail geometries, dynamic response for posts embedded in soil, and experience with crash testing various guardrail systems were all considered to determine the initial maximum top rail height for the MGS. Next, two full-scale crash tests were performed on the MGS with a top rail mounting height of 34 in. (864 mm) and 36 in. (914 mm), respectively, impacted by 1100C vehicles. Finally, conclusions and recommendations were made that pertain to the safety performance of the maximum-height MGS.

2 LITERATURE REVIEW

2.1 Introduction

Several differences exist between the NCHRP Report No. 350 and MASH testing criteria for longitudinal barriers [1, 3]. First, the small car vehicle utilized in NCHRP Report No. 350 weighed 1,808 lb (820 kg), while the small car vehicle utilized in MASH weighs 2,425 lb (1,100 kg). Second, the impact angle for the TL-3 small car full-scale crash test was 20.0 degrees for NCHRP Report No. 350, but was increased to 25.0 degrees for MASH. Both of these changes result in a significantly higher impact severity (IS) for the MASH testing. On the other hand, the 820C vehicle is expected to have higher occupant ridedown accelerations. Third, the height of the center of gravity (c.g.) for the pickup truck was set at 28 in. (711 mm) in MASH, whereas there was no required c.g. height in NCHRP Report No. 350. Finally, the weight of the pickup truck was increased from 4,409 lb (2,000 kg) to 5,000 lb (2,268 kg).

Most of the current strong-post, W-beam systems have been modified to improve performance for impacts with high-center-of-gravity light trucks introduced by MASH. One of the typical modifications includes raising the top rail mounting height from the previous standard of 27 or 27³/₄ in. (686 or 705 mm) to a nominal top mounting height of 31 in. (787 mm). Although this height increase improves system performance for pickup truck impacts, it also makes the system more susceptible to vehicle snag and/or underride when impacted by small cars.

The guardrail systems incorporating the increased mounting height have typically been tested to NCHRP Report No. 350 [1]. However, with the adoption of the new MASH standards [3], some systems have been tested with the new 2,425-lb (1,100-kg) 1100C small car. Systems that have been validated by either NCHRP Report No. 350 or MASH at higher top rail mounting heights will be discussed in detail in the following sections. A summary of passenger car tests on

Test No.	Proprietary (Y/N)	System	Top Rail Height in. (mm)	Barrier Features	Accepted to	Vehicle	Developer	Ref. No.
GMS-2	Y	GMS Guardrail	31 (787)	Gregory Mini- Spacer, no blockouts	350 / MASH	820C	Gregory Highway Products	9-11
057073101	Y	NU- GUARD	31 (787)	Rib-Bak U-Channel Posts, no blockouts	350 / MASH	820C	Nucor Steel Marion, Inc.	12
220570-1	Y	T-31	31 (787)	Modified W6x8.5 (W152x12.6) steel posts, no blockouts	350 / MASH	1100C	Trinity Highway Safety Products	14-15
220570-4	Y	T-31	31 (787)	Modified W6x8.5 (W152x12.6) steel posts, no blockouts	350 / MASH 820C		Trinity Highway Safety Products	14-15
400001-TGS2	Y	TGS	31 (787)	Standard W6x8.5 (W152x12.6) steel posts, no blockouts	350 / MASH	820C	Trinity Highway Safety Products	16
NPG-1	N	MGS	32 (813)	Standard W6x8.5 (W152x12.6) steel posts, 12-in. deep blockouts	350	820C	MwRSF	2, 17- 19
2214MG-3	Ν	MGS	32 (813)	Standard W6x8.5 (W152x12.6) steel posts, 12-in. deep blockouts	MASH	1100C	MwRSF	5, 20- 21
FR-3	Ν	MGS	31 (787)	Standard W6x8.5 (W152x12.6) steel posts, 12-in. deep blockouts, 7:1 flare	No acceptance granted currently	820C	MwRSF	8
FR-5	N	MGS	31 (787)	Standard W6x8.5 (W152x12.6) steel posts, 12-in. deep blockouts, 5:1 flare	No acceptance granted currently	820C	MwRSF	8

Table 1. Recent Small-Car Testing Performed on W-Beam Guardrail Systems

March 9, 2012 MwRSF Report No. TRP-03-255-12

 \boldsymbol{v}

guardrail systems utilizing higher top rail mounting heights is shown in Table 1. A majority of sources from agencies outside the Midwest Roadside Safety Facility were in the form of Federal Highway Administration (FHWA) acceptance letters and Transportation Research Board (TRB) articles and papers. Therefore, testing information and specific system detail are limited for these agencies.

2.2 Proprietary Systems

2.2.1 Gregory Highway Products

In 2006, Gregory Highway Products developed a proprietary fastener called the Gregory Mini Spacer (GMS) to replace standard guardrail bolts. Southwest Research Institute (SwRI) conducted two tests using this fastener on a Modified G4(1S) W-beam system utilizing 820C and 2270P vehicles. The modified G4(1S) system has a nominal barrier height of 31 in. (787 mm) and no blockouts. Test no. GMS-2 with the 820C vehicle was successful, and FHWA gave acceptance for the fastener to be used in place of a standard guardrail bolt on any non-proprietary strong or weak post W-beam system that currently meets NCHRP Report No. 350 standards [8]. The guardrail system utilizing this new fastener is called the GMS Guardrail [10]. Although the system was tested with the pickup truck specified in MASH, it was not accepted to MASH standards at this time.

In 2008, Gregory Highway Products requested formal FHWA acceptance of the GMS Guardrail under the provisions of the new MASH standards. Two tests, in addition to the ones performed for the previous acceptance letter, were performed using 2270P vehicles. The system was tested with a top rail height of 27⁵/₈ in. (702 mm). No new tests were performed using the small car, although acceptance was granted for use of the GMS Guardrail system under MASH standards [11].

2.2.2 Nucor Steel Marion, Inc.

In 2007, Nucor Steel Marion Inc. developed a new post for their NU-Guard 31-in. (787mm) high and NU-Guard 27-in. (686-mm) high strong post W-beam systems. Nucor sought FHWA acceptance for both NCHRP Report No. 350 and MASH standards for the 31-in. (787mm) system, but just NCHRP Report No. 350 acceptance for the 27-in. (686-mm) system. In order to reduce the number of tests required to meet both standards, and to avoid redundancy, three tests were conducted by Holmes Solutions of New Zealand. Test nos. 3-10 and 3-11 with 820C and 2270P vehicles, respectively, were conducted on the 31-in. (787-mm) system, while test no. 3-11 with a 2000P vehicle was performed on the 27-in. (686-mm) system. An 1100C vehicle was not used due to the lighter 820C vehicle having an increased propensity for excessive ridedown decelerations, snag, and underride.

MASH test no. 3-10 (test no. 057073101) was performed on a median barrier configuration of the 31-in.(787-mm) system. It was considered to produce the greatest risk to the occupant because it was stiffer than the roadside configuration. The 31-in. (787-mm) system did not utilize blockouts in either the median or roadside applications. The test was successful utilizing the 820C small car with a 31 in. (787 mm) top rail mounting height, and the system was accepted to both NCHRP Report No. 350 and MASH standards for blocked and non-blocked configurations [12-13].

2.2.3 Trinity Highway Safety Products

In 2005, a strong post W-beam guardrail system called the T-31 was designed by Trinity Highway Safety Products Division. The system was tested by Texas Transportation Institute (TTI) and uses standard 12-gauge W-beam and modified W6x8.5 (W152x12.6) steel posts with a top rail height of 31 in. (787 mm). Three tests were performed on this barrier: (1) NCHRP Report No. 350 test no. 3-10 utilizing an 820C vehicle (test no. 220570-4), (2) MASH test no. 3-

10 utilizing an 1100C vehicle (test no. 220570-1), and (3) MASH test no. 3-11 utilizing a 2270P vehicle (test no. 220570-2). At the time, these vehicles were tested in the anticipation of the MASH testing standards. All test results satisfied the safety criteria of NCHRP Report No. 350 and MASH. Therefore, the T-31 was accepted as a TL-3 barrier under both NCHRP Report No. 350 and MASH [14-15].

In 2007, TTI tested another proprietary guardrail system called the Trinity Guardrail System (TGS) for Trinity Highway Safety Products Division. The TGS used standard W6x8.5 (W150x12.6) steel line posts without blockouts and a 12-gauge W-beam mounted at a top rail height of 31 in. (787 mm). Two tests were performed on this barrier: (1) MASH test no. 3-11 (test no. 400001-TGS1) utilizing a 2270P vehicle, and (2) NCHRP Report No. 350 test no. 3-10 (test no. 400001-TGS2) utilizing an 820C vehicle. Results from both tests satisfied the safety performance criteria of their corresponding standard, NCHRP Report No. 350 or MASH. Therefore, the TGS was accepted as a TL-3 barrier under both NCHRP Report No. 350 and MASH [16].

2.3 Non-Proprietary Systems

2.3.1 Midwest Roadside Safety Facility (MwRSF)

In the early 2000s, researchers at the Midwest Roadside Safety Facility (MwRSF) developed a new guardrail system called the Midwest Guardrail System (MGS) in order to improve performance for high-center-of-gravity light trucks. The MGS incorporated a 31-in. (787-mm) nominal height to the top of the rail, splices located between posts, and an increased blockout depth of 12 in. (305 mm). One small car test was performed on the new system, NCHRP Report No. 350 test no. 3-10 with an 820C vehicle (test no. NPG-1). For this test, the top of the rail was placed at 32 in. (813 mm) to demonstrate the barrier performance at the maximum allowable rail height, and the MGS satisfied NCHRP Report 350 evaluation criteria

[2, 17-18]. Subsequently, FHWA acceptance was granted for the MGS to NCHRP Report No.350 standards in 2005 [19].

While the MASH document was being written, NCHRP Project No. 22-14(2) was undertaken by researchers at MwRSF to evaluate current roadside safety devices. One of the selected barriers was the MGS barrier mounted at a top rail height of 32 in. (813 mm) when impacted by a 2,425-lb (1,100-kg) small car (test no. 2214MG-3). Test results showed the barrier satisfied the TL-3 evaluation criteria found in MASH [5,20]. The MGS has since been accepted according to MASH standards [21].

In 2008, MwRSF conducted a study that examined critical flare rates for the MGS. Two tests were performed with an 820C small car and a 31-in. (787-mm) nominal rail mounting height. The first test, test no. FR-3, was performed on the MGS with a flare rate of 7:1, while the second, test no. FR-5, had a flare rate of 5:1. Thus, the effective impact angles for these tests were 28.7 and 31.8 degrees, respectively. Both tests satisfied the safety performance criteria of NCHRP Report No. 350. Tests with vehicles in the light truck category were also successfully performed and reported [8], thus establishing the maximum recommended flare rate of 5:1.

2.4 Terminals

With the modification of several standard barriers to a new rail height, terminals for these barriers were affected. FHWA accepted several terminals to be used with the taller W-beam strong post systems. Terminals that were accepted for the MGS are: SKT (test no. SMG-1), SKT-LITE, FLEAT (test nos. FLEAT-5, FLEAT-6, and FLEAT-8), and the ET-Plus 31 (test no. 220601-2) [22-25]. Additionally, researchers at MwRSF tested an SKT-MGS Tangent End Terminal while working on NCHRP Project 22-14(2) (test no. 2214TT-1). The rail was mounted at a height of 32 in. (813 mm) and met the proposed standards of MASH [26]. SKT and FLEAT terminals were also accepted for use with the GMS-WB31 system through similarities to the

MGS [27]. The SRT-31 terminal has been accepted for use with the MGS, T-31, and GMS-WB31 systems through test no. 220541-2 [28].

2.5 Discussion

All of the systems discussed in this literature review were deemed acceptable according to the respective standards to which they were tested. Upon reviewing the test results, the potential for wheel snag and underride was evident.

Two concerns arise when wheel snag occurs: (1) the wheel is pushed rearward against the wheel well, which could deform the floorpan and (2) the longitudinal forces on the wheel increase the occupant risk values. Test no. FR-3 showed the propensity for wheel snag, as shown in Figure 1. Additionally, the small car utilized in test no. FR-5 encountered wheel snag on post no. 15, as shown in Figure 2. These flare rate tests, however, were more severe than a standard W-beam test, as the small car impacted at a higher effective angle of 31.8 degrees. As stated before, both of these tests passed the NCHRP Report No. 350 test criteria, and experienced acceptable floorpan deflections and occupant risk values. Thus, wheel snag may not pose a critical risk to the small car at higher rail heights. In test no. 2214MG-3, slight wheel snag occurred that did not abruptly stop the vehicle but caused it to yaw toward the barrier, as shown in Figures 3 and 4.

Barrier underride also poses a significant risk for two reasons: (1) the rail slides along the top of the hood and comes into contact with the base of the windshield, which could cause unacceptable deformations of the windshield and/or intrusion into the occupant compartment, and (2) the vehicle may traverse under the rail and impact a hazard behind the barrier. No recent W-beam guardrail tests have experienced significant barrier underride. Thus, recent tests were evaluated for the potential for barrier underride.

The potential for barrier underride was seen in several tests. In some tests, the rail contacted the front of the vehicle and began to slide upward, but snagged under the hood and the quarter panel, as shown in Figure 5. The hood snag did not pose a threat to the occupants of the vehicle, but the rail may not be caught under the hood at higher rail heights, which would allow underride to occur.

Figure 1. Test No. FR-3, Potential for Wheel Snag

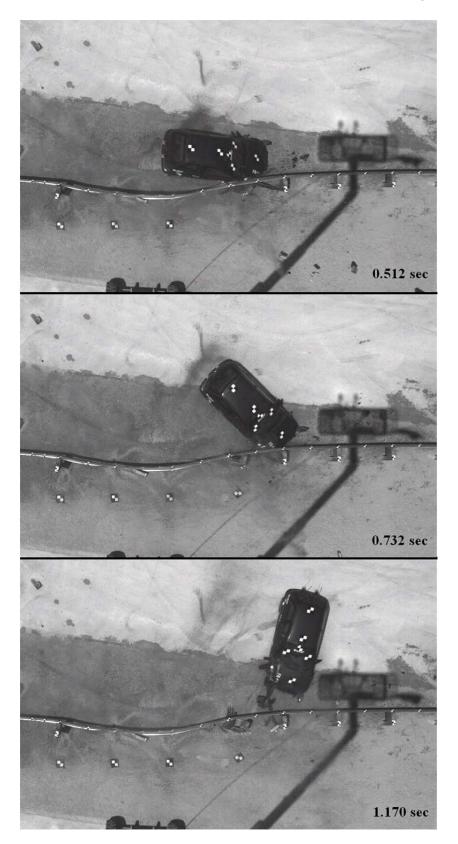


Figure 2. Test No. FR-5, Wheel Snag

Figure 3. Test No. 2214MG-3, Wheel Snag

Figure 4. Test No. 2214MG-3, Vehicle Yaws Toward the Barrier

Figure 5. Test No. 2214MG-3, Rail Snags Under the Hood

3 RAIL HEIGHT TESTING RECOMMENDATION

3.1 Introduction

The MGS has successfully redirected an 1100C small car with the top rail height at 32 in. (813 mm) and several 820C small cars at a top rail height of 31 in. (787 mm). Several factors need to be considered in order to make a recommendation for a maximum top rail height for the MGS. These factors include small car geometry, rail geometry, soil and post yielding forces, post length, and post embedment depth. The new height will affect the way the light truck interacts with the system, but that is beyond the scope of this project.

3.2 Vehicle and Rail Geometry

Front end geometry of the 1100C vehicle is a key factor in deciding how high the rail can be raised without the vehicle underriding the barrier. Averaged vehicle dimensions are shown in Figure 6, and dimensions for two specific 1100C vehicles are shown in Figure 7.

Figure 6. 1100C Vehicle Schematic, Average Measurements

Another key geometric factor is the vehicle to rail relationship, as shown in Figures 8 and 9. When the rail is mounted at a height of 32 in. (813 mm), the rail no longer contacts the bumper—its contact is primarily with the hood and side quarter panel of the vehicle. Because several tests have successfully passed with that type of contact, the height of the rail may be increased several inches and still successfully capture the vehicle. As shown in Figure 6, the distance between the top of the bumper and the upper edge of the side panel is approximately

17.5 in. (445 mm), providing a broad area for rail interaction without the rail contacting the Apillar.

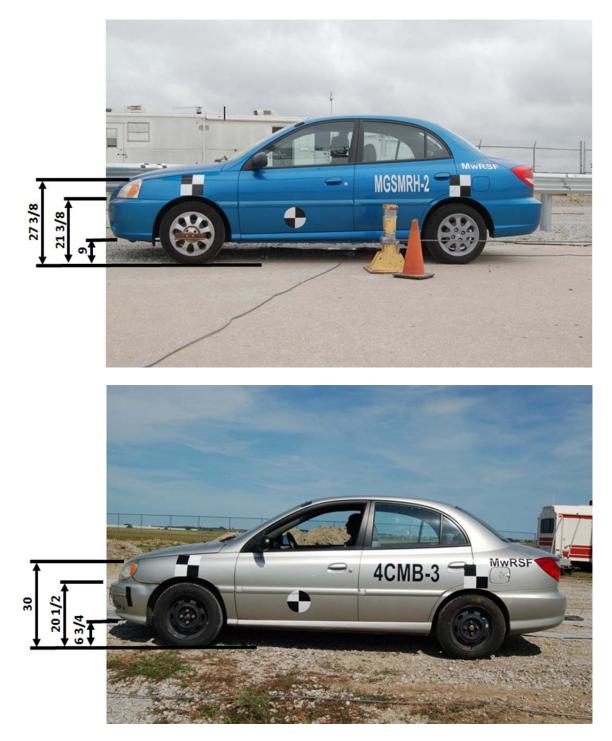


Figure 7. 1100C Front End Dimensions

32-in. (813-mm) MGS

34-in. (864-mm) MGS

36-in. (914-mm) MGS

Figure 8. 1100C Next to 32-, 34-, and 36-in. (813-, 864-, and 914-mm) MGS - Rear View

32-in. (813-mm) MGS

34-in. (864-mm) MGS

Figure 9. 1100C Next to 32-, 34-, and 36-in. (813-, 864-, and 914-mm) MGS - Front View

3.3 Post Length, Post Embedment Depth, and Rail Height

A different factor to be considered is post length and embedment depth. If the top rail height increases, so is the height of the post above the ground. Since it is desired to use the standard, 72-in. (1,829-mm) length, W6x8.5 or W6x9 (W152x12.6 or W152x13.4) steel post, as used in the original MGS, the embedment depth will decrease in direct proportion to the raising of the rail.

The post height above ground is 1 in. (25 mm) higher than the top of the rail height. Thus, for the nominal rail height of 31 in. (787 mm), the nominal post embedment depth is 40 in. (1,016 mm).

When the rail is raised, the dynamic yield force for the post-soil interaction is decreased due to the longer moment arm between the ground and the mounting height of the rail.

$$F_{new}h_{new} = F_{nominal}h_{nominal}$$
 [Eq. 1]

where

F = dynamic yield force

h = rail mounting height (or acting force height)

As the post embedment depth is decreased, the dynamic yield force also decreases. According to Appendix A of NCHRP Report No. 350 [1], this relationship is given as:

$$F_{new} = F_{nominal} \left(\frac{d_{new}}{d_{nominal}}\right)^2$$
 [Eq. 2]

where

d = post embedment depth

Since both of these factors are occurring in raising the standard MGS, the accumulative effect on the dynamic yield force would be:

$$F_{new} = F_{nominal} \left(\frac{h_{nominal}}{h_{new}}\right) \left(\frac{d_{new}}{d_{nominal}}\right)^2 \qquad [Eq. 3]$$

Using Equation 3, the effect on the dynamic yield force can be investigated for various rail heights and corresponding post embedment depths.

However, the nominal dynamic yield force is not simply defined. Based on many previous post-in-soil bogie testing [2,3,29,30], the typical dynamic yield force falls within a range of 6-10 kips (27-44 kN). Thus, dynamic yield forces for top rail heights of 32-38 in. (813-965 mm) by 1-in. (25-mm) increments were calculated for nominal dynamic yield forces of 6, 8, and 10 kips (27, 36, and 44 kN). Results are shown in Table 2. Calculations were performed for Equations 1, 2, and 3 so that the individual, as well as the accumulative, effect of raising the rail could be distinguished.

	nominal							
Top Rail Height [in.]	31	32	33	34	35	36	37	38
Acting Force Height [in.]	24.875	-	26.875	27.875			•.	31.875
Embedment Depth [in.]	40		38	37	36	35	34	33
		calculated	calculated Dynamic Yield Forces based on decreased embedment depth					
			•		ht remains			
Dynamic Yield Force [kips]	6	5.7	5.4	5.1		4.6		4.1
Dynamic Yield Force [kips]	8	7.6	7.2	6.8	6.5	6.1	5.8	5.4
Dynamic Yield Force [kips]	10	9.5	9.0	8.6	8.1	7.7	7.2	6.8
		calcu	lated Dyna	mic Yield I	Forces base	ed on incre	ased rail h	eight
			(e	embedmer	nt depth st	ays at 40 in	.)	
Dynamic Yield Force [kips]	6	5.8	5.6	5.4	5.2	5.0	4.8	4.7
Dynamic Yield Force [kips]	8	7.7	7.4	7.1	6.9	6.7	6.4	6.2
Dynamic Yield Force [kips]	10	9.6	9.3	8.9	8.6	8.3	8.1	7.8
			calculated Dynamic Yield Forces based on both					
		increased rail height and decreased embedment depth						
Dynamic Yield Force [kips]	6	5.5	5.0	4.6	4.2	3.8	3.5	3.2
Dynamic Yield Force [kips]	8	7.3	6.7	6.1	5.6	5.1	4.7	4.2
Dynamic Yield Force [kips]	10	9.1	8.4	7.6	7.0	6.4	5.8	5.3

3.4 Discussion and Recommendation

There is no "formula" that can be applied to determine the maximum rail height to test. The goal is to determine what might be considered a reasonable and practical maximum height to the experts in roadside safety. This includes a thoughtful use of the geometry and force information detailed in sections 3.2 and 3.3. The rail should be low enough such that a good portion of it remains alongside of the vehicle's side fender and door, and not rely on capture via the A-pillar and window area of the door. Other small vehicles, with a lower profile than the current 1100C, should be kept in mind. Calculated post-in-soil dynamic yield forces around 8 kips (36 kN) might be considered ideal, but less than 6 kips (27 kN) should be avoided if possible.

After several discussions and time for contemplation, it was recommended to test the MGS at a rail height of 34 in. (864 mm). If that test were to pass all MASH criteria, then a follow-up test at 36 in. (914 mm) would be recommended unless test results clearly indicated that a higher or lower height should be considered.

4 TEST REQUIREMENTS AND EVALUATION CRITERIA

4.1 Test Requirements

Longitudinal barriers, such as W-beam guardrails, must satisfy impact safety standards in order to be accepted by FHWA for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH [3]. According to TL-3 of MASH, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests. The two full-scale crash tests are noted below:

- 1. Test Designation 3-10 consisting of a 2,425-lb (1,100-kg) passenger car impacting the system at a nominal speed and angle of 62 mph (100 km/h) and 25 degrees, respectively.
- 2. Test Designation 3-11 consisting of a 5,000-lb (2,268-kg) pickup truck impacting the system at a nominal speed and angle of 62 mph (100 km/h) and 25 degrees, respectively.

The test conditions of TL-3 longitudinal barriers are summarized in Table 3.

Test Article	Test Designation	Test Vehicle	Impact Conditions			
			Speed		Angle	Evaluation Criteria ¹
			mph	km/h	(deg)	Cincina
Longitudinal Barrier	3-10	1100C	62	100	25	A,D,F,H,I
	3-11	2270P	62	100	25	A,D,F,H,I

Table 3. MASH TL-3 Crash Test Conditions

¹ Evaluation criteria explained in Table 4.

4.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the guardrail system to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 4 and defined in greater detail in MASH. The full-scale vehicle crash tests were conducted and reported in accordance with the procedures provided in MASH.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported on the test summary sheets. Additional discussion on PHD, THIV and ASI is provided in MASH.

4.3 Soil Strength Requirements

In order to limit the variation of soil strength among testing agencies, foundation soil must satisfy the recommended performance characteristics set forth in Chapter 3 and Appendix B of MASH. Testing facilities must first subject the designated soil to a dynamic post test to demonstrate a minimum dynamic load of 7.5 kips (33.4 kN) at deflections between 5 and 20 in. (127 and 508 mm). If satisfactory results are observed, a static test is conducted using an identical test installation. The results from this static test become the baseline requirement for soil strength in future full-scale crash testing in which the designated soil is used. An additional post installed near the impact point is statically tested on the day of the full-scale crash test in the same manner as used in the baseline static test. The full-scale crash test can be conducted only if the static test results show a soil resistance equal to or greater than 90 percent of the baseline test at deflections of 5, 10, and 15 in. (127, 254, and 381 mm). Otherwise, the crash test must be postponed until the soil demonstrates adequate post-soil strength.

Table 4	MASH	Evaluation	Criteria	for I	ongitudinal Barr	ier
	IVIT IOI I	Lvaluation	Cincina	IOI L	Dinghuumai Darr	IUI

Structural Adequacy	Test article should contain a vehicle to a controlled stop underride, or override the in deflection of the test article is	p; the vehicle shound shout shout the provided should be a should be should be should be a	ald not penetrate,			
	Detached elements, fragment should not penetrate or show compartment, or present a pedestrians, or personnel in intrusions into, the occupant set forth in Section 5.3 and Ap	potential for penetra an undue hazard a work zone. De compartment should	ating the occupant to other traffic, formations of, or not exceed limits			
	The vehicle should remain upright during and after collision. The naximum roll and pitch angles are not to exceed 75 degrees.					
Occupant	Occupant Impact Velocities (OIV) (see Appendix A, Section A5.3 of MASH for calculation procedure) should satisfy the following limits:					
Risk	Occupant Ir	Impact Velocity Limits				
	Component	Preferred	Maximum			
	Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)			
	The Occupant Ridedown Ad Section A5.3 of MASH for ca following limits:					
	Occupant Ridedown Acceleration Limits					
	Component	Preferred	Maximum			
	Longitudinal and Lateral	15.0 g's	20.49 g's			

5 TEST CONDITIONS

5.1 Test Facility

The testing facility is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

5.2 Vehicle Tow and Guidance System

A reverse cable tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [31] was used to steer the test vehicle. A guide-flag, attached to the left-front wheel and the guide cable, was sheared off before impact with the barrier system. The ³/₈-in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide-flag struck and knocked each stanchion to the ground.

5.3 Test Vehicles

For test no. MGSMRH-1, a 2003 Kia Rio sedan was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,401 lb (1,089 kg), 2,429 lb (1,102 kg), and 2,599 lb (1,179 kg), respectively. The test vehicle is shown in Figure 10, and vehicle dimensions are shown in Figure 11.

For test no. MGSMRH-2, a 2004 Kia Rio sedan was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,449 lb (1,111 kg), 2,412 lb (1,094 kg), and

Figure 10. Test Vehicle, Test No. MGSMRH-1

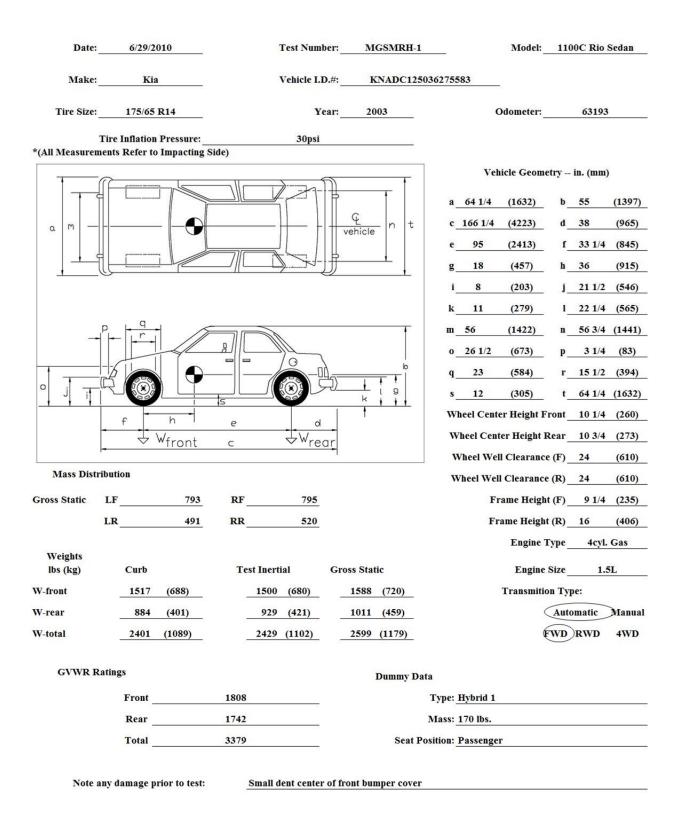


Figure 11. Vehicle Dimensions, Test No. MGSMRH-1

2,583 lb (1,172 kg), respectively. The test vehicle is shown in Figure 12, and vehicle dimensions are shown in Figure 13.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights [32]. The vertical component of the c.g. of each 1100C vehicle was estimated based on historical c.g. height measurements. The location of the final c.g. of each vehicle is shown in Figures 11 and 13 through 15. Data used to calculate the location of the c.g. and ballast information are shown in Appendix B.

Square, black and white-checkered targets were placed on each vehicle for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figures 14 and 15. Round, checkered targets were placed at the center of gravity on the left-side door, the right-side door, and the roof of each vehicle.

The front wheels of each test vehicle were aligned to vehicle standards except the toe-in value was adjusted to zero so that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted on the right side of the vehicle's dash and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed videos. A remote controlled brake system was installed in each test vehicle so the vehicle could be brought safely to a stop after the test.

5.4 Simulated Occupant

For both tests, a Hybrid II 50th Percentile Adult Male Dummy, equipped with clothing and footwear, was placed in the right-front seat of the test vehicle with the seat belt fastened. The dummy, which had a final weight of 170 lb (77 kg), was represented by model no. 572, serial no. 451, and was manufactured by Android Systems of Carson, California. As recommended by MASH, the dummy was not included in calculating the c.g location.



Figure 12. Test Vehicle, Test No. MGSMRH-2

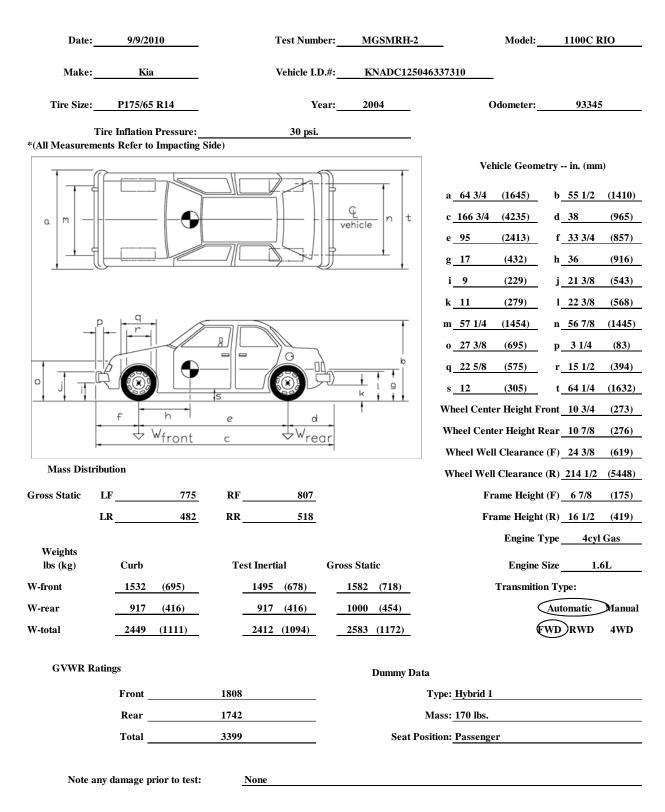


Figure 13. Vehicle Dimensions, Test No. MGSMRH-2

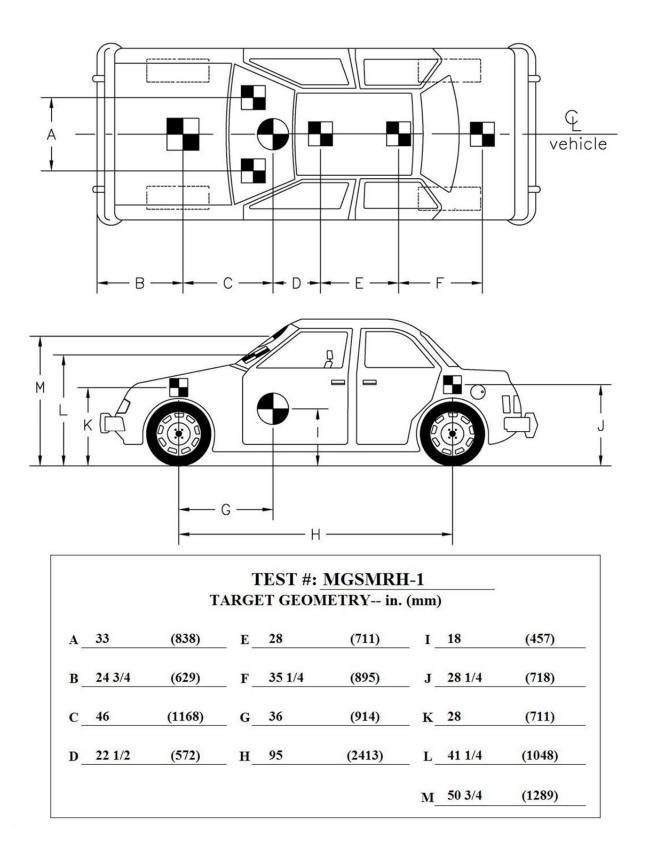


Figure 14. Target Geometry, Test No. MGSMRH-1

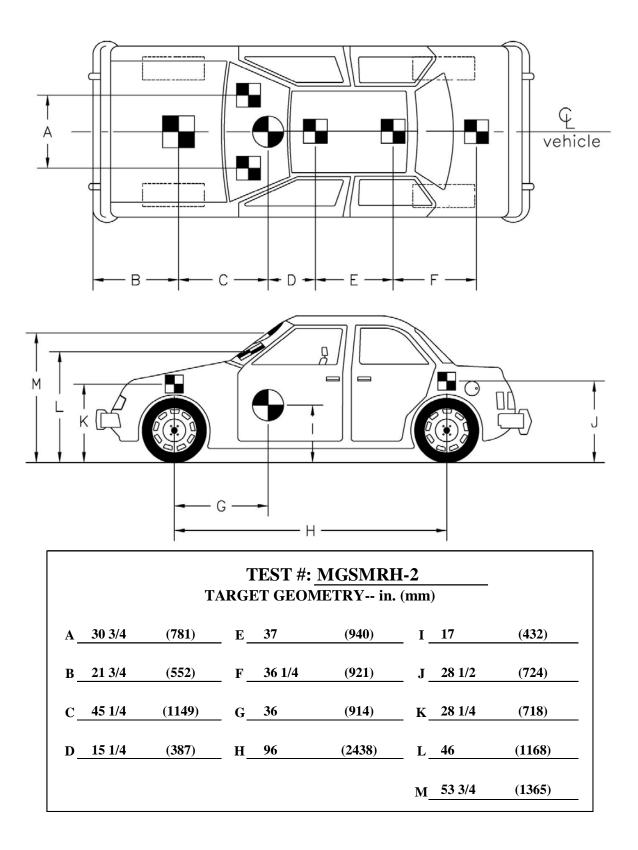


Figure 15. Target Geometry, Test No. MGSMRH-2

5.5 Data Acquisition Systems

5.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. All of the accelerometers were mounted near the center of gravity of the test vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [33].

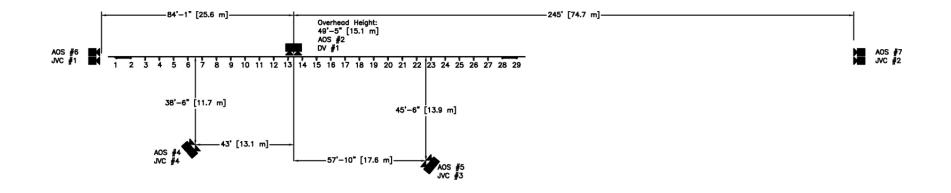
The first accelerometer system was a two-arm piezoresistive accelerometer system manufactured by Endevco of San Juan Capistrano, California. Three accelerometers were used to measure each of the longitudinal, lateral, and vertical accelerations independently at a sample rate of 10,000 Hz. The accelerometers were configured and controlled using a system developed and manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. More specifically, data was collected using a DTS Sensor Input Module (SIM), Model TDAS3-SIM-16M. The SIM was configured with 16 MB SRAM memory and 8 sensor input channels with 250 kB SRAM/channel. The SIM was mounted on a TDAS3-R4 module rack. The module rack was configured with isolated power/event/communications, 10BaseT Ethernet and RS232 communication, and an internal backup battery. Both the SIM and module rack were crashworthy. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

The second system, Model EDR-3, was a triaxial piezoresistive accelerometer system manufactured by IST of Okemos, Michigan. The EDR-3 was configured with 256 kB of RAM memory, a range of ± 200 g's, a sample rate of 3,200 Hz, and a 1,120 Hz low-pass filter. The "DynaMax 1 (DM-1)" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

5.5.2 Rate Transducers

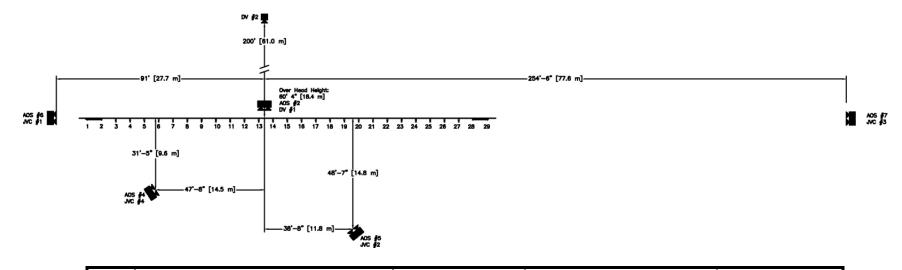
An angle rate sensor, the ARS-1500, with a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) was used to measure the rates of rotation of the test vehicles. The angular rate sensor was mounted on an aluminum block inside the test vehicle near the center of gravity and recorded data at 10,000 Hz to the SIM. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

For test no. MGSMRH-2, a second system, an Analog Systems 3-axis rate transducer with a range of 1,200 degrees/sec in each of the three directions (roll, pitch, and yaw), was used to measure the rates of motion of the test vehicles. The rate transducer was mounted inside the body of the EDR-4 6DOF-500/1200 and recorded data at 10,000 Hz to a second data acquisition board inside the EDR-4 6DOF-500/1200 housing. The raw data measurements were then downloaded, converted to the appropriate Euler angles for analysis, and plotted. The "EDR4COM" and "DynaMax Suite" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate transducer data.


5.5.3 Pressure Tape Switches

For test nos. MGSMRH-1 and MGSMRH-2, five pressure-activated tape switches, spaced at approximately 6.56-ft (2-m) intervals, were used to determine the speed of the vehicle before impact. Each tape switch fired a strobe light which sent an electronic timing signal to the data acquisition system as the right-front tire of the test vehicle passed over it. Test vehicle speeds were determined from electronic timing mark data recorded using TestPoint and LabVIEW computer software programs. Strobe lights and high-speed video analysis are used only as a backup in the event that vehicle speed cannot be determined from the electronic data.

5.5.4 Digital Cameras


For test nos. MGSMRH-1 and MGSMRH-2, two AOS VITcam high-speed digital video cameras, three AOS X-PRI high-speed digital video cameras, and four JVC digital video cameras were utilized to film the full-scale crash test. In addition, one Canon digital video camera was utilized to film test no. MGSMRH-1 and two Canon digital video cameras were utilized to film test no. MGSMRH-1 and two Canon digital video cameras were utilized to film test no. MGSMRH-1 and two Canon digital video cameras were utilized to film test no. MGSMRH-1 and two Canon digital video cameras were utilized to film test no. MGSMRH-2. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figures 16 and 17.

The high-speed videos were analyzed using ImageExpress MotionPlus and RedLake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A Nikon D50 digital still camera was also used to document pre- and post-test conditions for all tests.

	No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
5	2	AOS Vitcam CTM	500	Cosmicar 12.5mm Fixed	NA
Speed	4	AOS Vitcam CTM	500	Canon 17-102	75
	5	AOS X-PRI Gigabit	500	Sigma 50mm Fixed	NA
High- Vi	6	AOS X-PRI Gigabit	500	Fujinon 50mm Fixed	NA
Т	7	AOS X-PRI Gigabit	500	Sigma 24-135	100
00	1	JVC – GZ-MC500 (Everio)	29.97		
Video	2	JVC – GZ-MG27u (Everio)	29.97		
	3	JVC – GZ-MG27u (Everio)	29.97		
Digital	4	JVC – GZ-MG27u (Everio)	29.97		
Ď	1	Canon ZR90	29.97		

Figure 16. Camera Locations, Speeds, and Lens Settings, Test No. MGSMRH-1

_	No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
	2	AOS Vitcam CTM	500	Cosmicar 12.5mm Fixed	NA
o 0	4	AOS Vitcam CTM	500	Sigma 24-70	70
gh-Spe Video	5	AOS X-PRI Gigabit	500	Fujinon 50mm Fixed	NA
High-Speed Video	6	AOS X-PRI Gigabit	500	Sigma 50mm Fixed	NA
Ц	7	AOS X-PRI Gigabit	500	Sigma 24-135	100
	1	JVC – GZ-MC500 (Everio)	29.97		
Video	2	JVC – GZ-MG27u (Everio)	29.97		
	3	JVC – GZ-MG27u (Everio)	29.97		
ital	4	JVC – GZ-MG27u (Everio)	29.97		
Digital	1	Canon ZR90	29.97		
,	2	Canon ZR10	29.97		

6 DESIGN DETAILS - 34-IN. (864-mm) TOP RAIL MOUNTING HEIGHT

The test installation consisted of 175 ft (53.3 m) of MGS with a top rail mounting height of 34 in. (864 mm), as shown in Figures 18 through 27. Photographs of the test installation are shown in Figure 28. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.

The system was constructed with 29 guardrail posts. Post nos. 3 through 27 were galvanized, ASTM A36, W6x8.5 (W152x12.6) steel sections measuring 72 in. (1,829 mm) long. Post nos. 1, 2, 28, and 29 were 5½-in. wide x 7½-in. deep x 46-in. long (140-mm x 191-mm x 1,168-mm) BCT timber posts. The anchor posts were set 16 in. (406 mm) into a 6-in. wide x 8-in. deep x 72-in. long (152-mm x 203-mm x 1,829-mm), ASTM A500 Grade B, steel foundation tube, as shown in Figures 20 and 21. Post nos. 1, 2, 28, and 29 were placed such that the top of the BCT post was 32 in. (813 mm) from the groundline. The BCT posts and foundation tubes were part of the anchor system designed to replicate the capacity of a tangent guardrail terminal.

All posts were spaced 75 in. (1,905 mm) on center and placed in a compacted, coarse, crushed limestone material that met Grading B of AASHTO M147-65 (1990), as recommended by MASH [3]. Posts nos. 3 through 27 had an embedment depth of 37 in. (940 mm). A 6-in. wide x 12-in. deep x 14¹/₄-in. long (152-mm x 305-mm x 362-mm) southern yellow pine wood spacer blockout was used to block the rail away from the front face of each steel post, as shown in Figure 22. A 16D double head nail was also driven through a hole in the front flange of the post into the top of the blockout assembly to prevent rotation of the blockout.

Standard 12-gauge (2.66-mm thick) W-beam rails with additional post bolt slots at halfpost spacing intervals were mounted on post nos. 1 through 29, as shown in Figures 18, 19, and 26. The W-beam top rail height was 34 in. (864 mm) above ground surface with a 27⁷/₈-in. (708mm) center mounting height, such that the center of the rail was mounted 4¹/₈ in. (105 mm) from the top of the BCT timber posts. Rail splices were located at the midspan between posts, as shown in Figures 18 and 19. The lap splice connections between the rail sections were configured to reduce vehicle snag potential at the splice during the crash test.

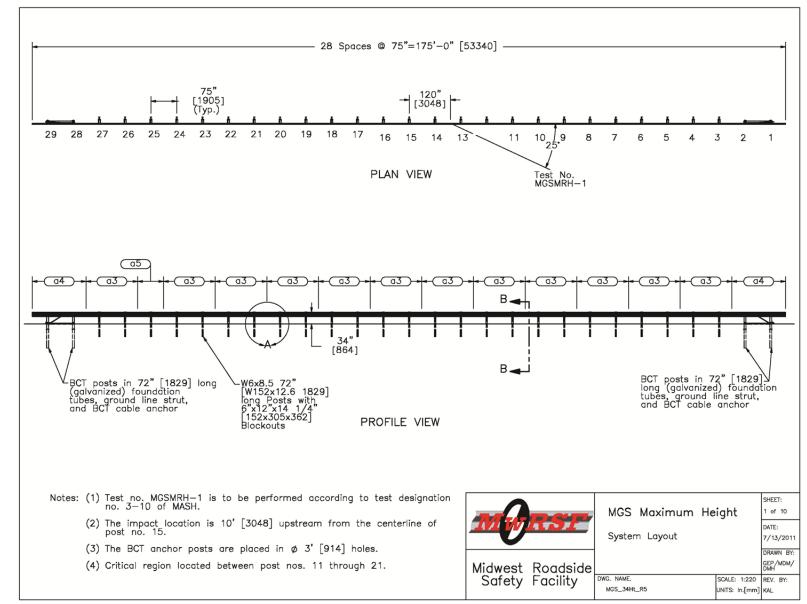


Figure 18. Test Installation Layout, Test No. MGSMRH-1

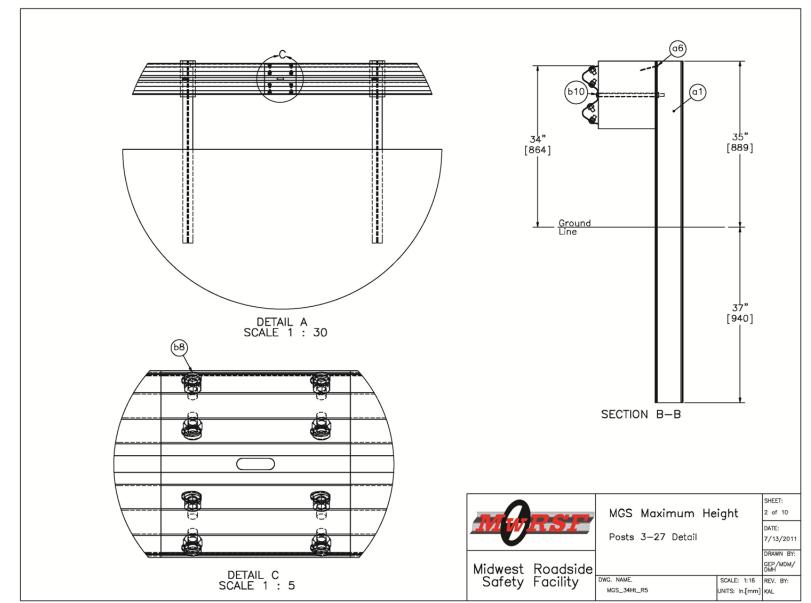


Figure 19. 34-in. (864-mm) Tall MGS Details, Test No. MGSMRH-1

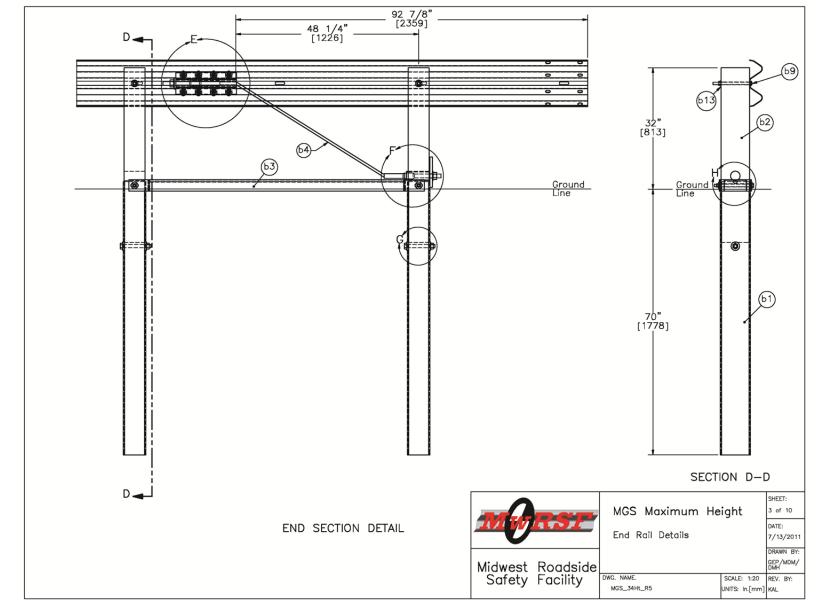


Figure 20. BCT End Anchor Details, Test No. MGSMRH-1

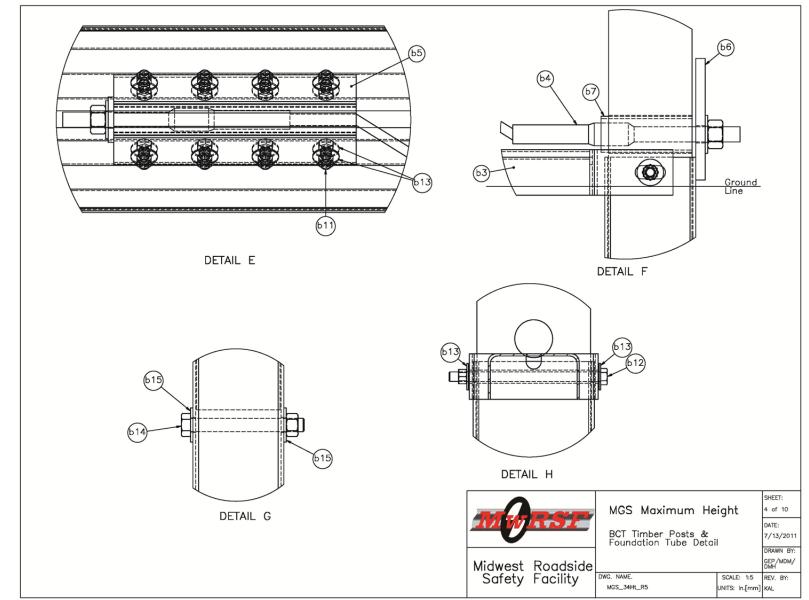


Figure 21. BCT End Anchor Details, Test No. MGSMRH-1

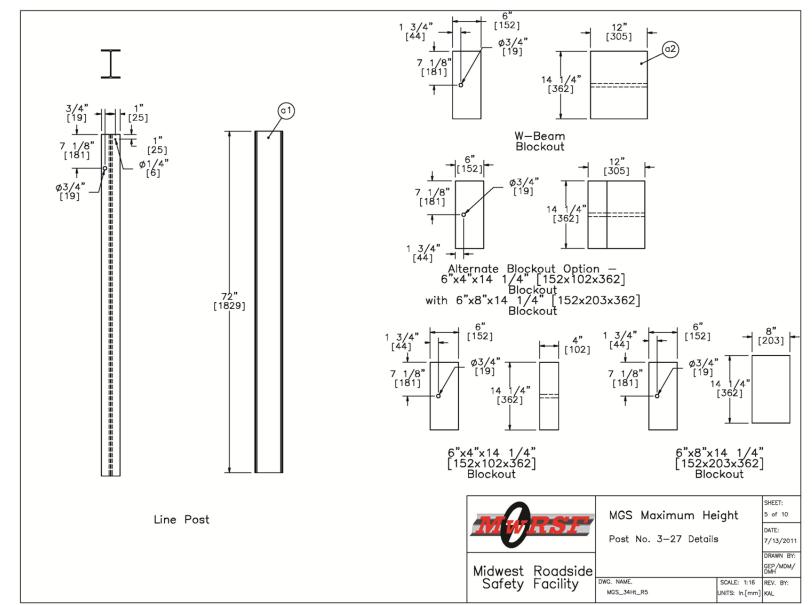


Figure 22. Line Post Details, Test No. MGSMRH-1

44

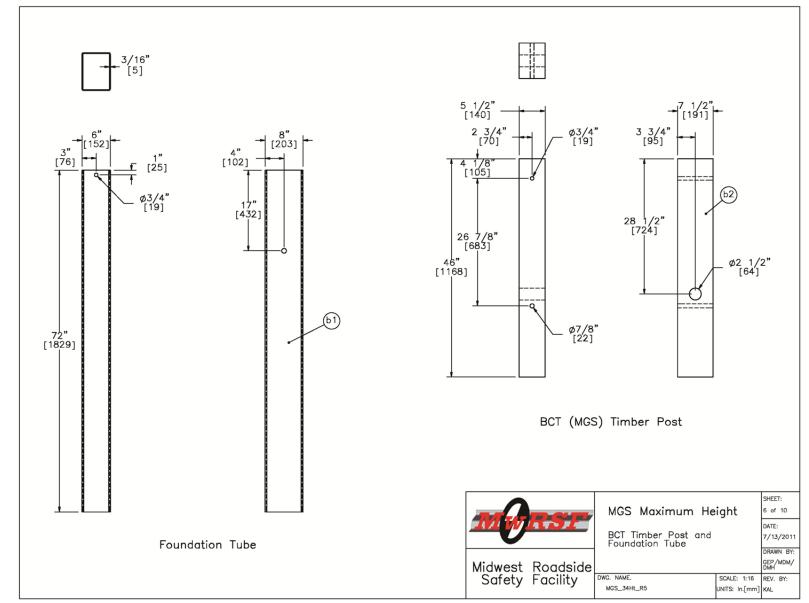


Figure 23. Anchor Post Details, Test No. MGSMRH-1

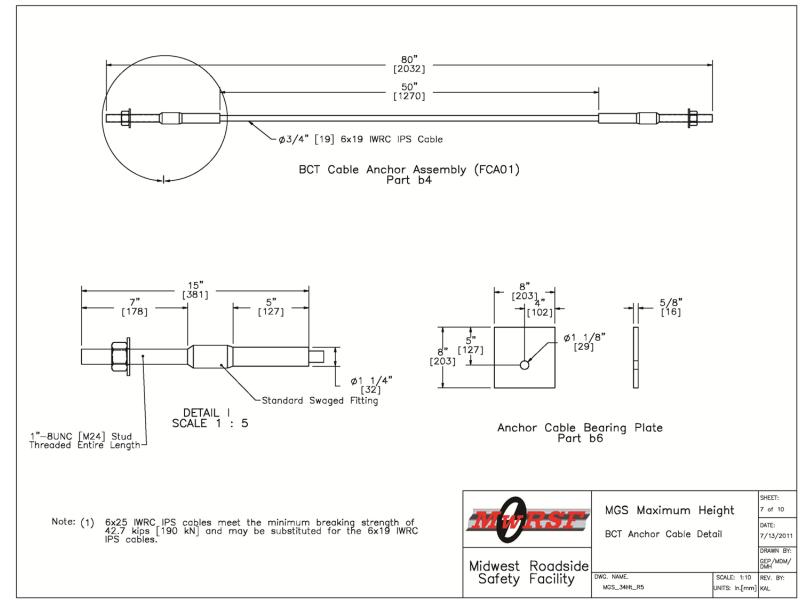


Figure 24. BCT Anchor Cable Details, Test No. MGSMRH-1

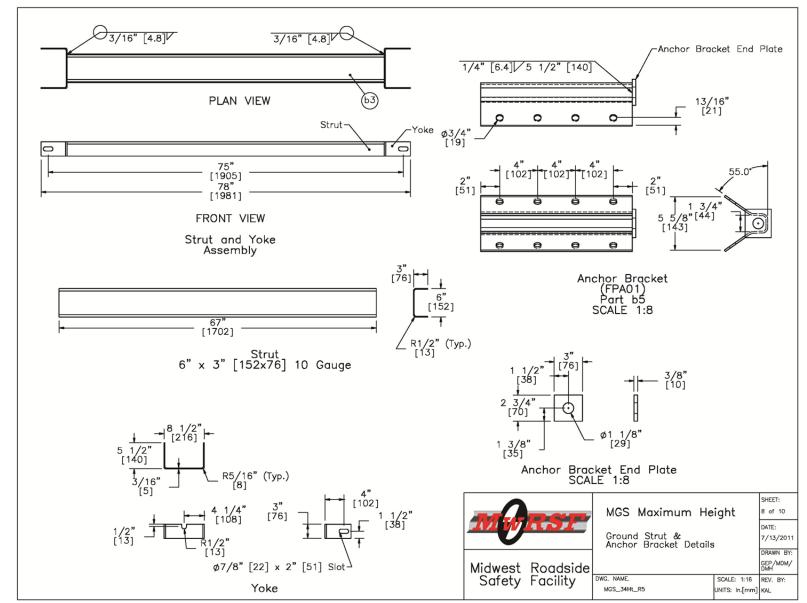


Figure 25. Ground Strut and Anchor Bracket Details, Test No. MGSMRH-1

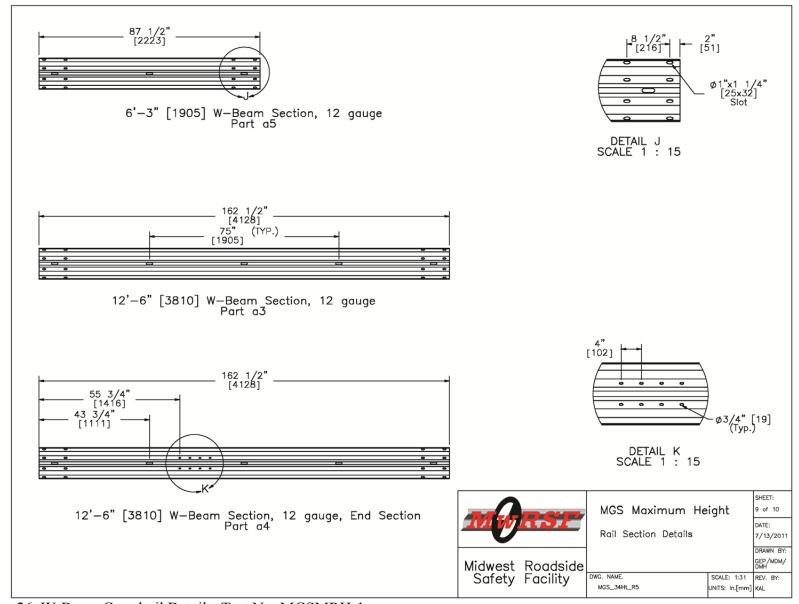


Figure 26. W-Beam Guardrail Details, Test No. MGSMRH-1

Item No.	QTY.	Description	Material Specification	Hardware Guide
a1	25	W6x8.5 72in [W152x12.6 1829] long Steel Post	ASTM A36 Steel	PWE06
a2	25	6"x12"x14 1/4" [152x305x362] Blockout	SYP Grade No.1 or better	PDB10a-b
a3	12	12'-6" [3810] W-Beam MGS Section	12 gauge [2.7] AASHTO M180	RWM04a
a4	2	12'-6" [3810] W-Beam MGS End Section	12 gauge [2.7] AASHTO M180	RWM14a
a5	1	6'-3" [1905] W-Beam MGS Section	12 gauge [2.7] AASHTO M180	RWM01a
a6	25	16D Double Head Nail	_	_
ь1	4	72" [1829] Foundation Tube	ASTM A500 Grade B	PTE06
b2	4	BCT Timber Post MGS Height	SYP Grade No. 1 or better (No knots, 18" [457] above or below ground tension face)	PDF01
b3	2	Strut and Yoke Assembly	ASTM A36 Steel Galvanized	-
b4	2	BCT Cable Anchor Assembly	Ø3/4" [19] 6x19 IWRC IPS Galvanized Wire Rope	FCA01-02
b5	2	Anchor Bracket Assembly	ASTM A36 Steel	FPA01
b6	2	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36 Steel	FPB01
ь7	2	2 3/8" [60] O.D.x 6" [152] long BCT Post Sleeve	ASTM A53 Grade B Schedule 40	FMM02
b8	112	5/8"Dia. x 1 1/2" [M16 x 38] Guardrail Bolt and Nut	ASTM A307	FBB01
Ь9	4	5/8"Dia. x 10" [M16 x 254] long Guardrail Bolt and Nut	ASTM A307	FBB03
ь10	25	5/8"Dia. x 14" [M16 x 356] long Guardrail Bolt and Nut	ASTM A307	FBB06
b11	16	5/8"Dia. x 1 1/2" [M16 x 38] long Hex Head Bolt and Nut	ASTM A307	FBX16a
b12	4	5/8"Dia. x 9 1/2" [M16 x 241] long Hex Head Bolt and Nut	ASTM A307	FBX16a
b13	44	5/8"Dia. [16] Flat Washer	ASTM F436 Grade 1	FWC14a
b14	4	3/4"Dia. x 7 1/2" [M20 x 191] long Hex Head Bolt and Nut	ASTM A325	FBX22a
b15	8	3/4"Dia. [19] Flat Washer	ASTM F436 Grade 1	FWC22a
			MGS Maximum Bill of Materials Midwest Roadside Safety Facility	Height 5HEET Ho of DATE: 7/13, DRAWI SCALE: None REV.

Figure 27. Bill of Materials, Test No. MGSMRH-1

Figure 28. Test Installation Photographs, Test No. MGSMRH-1

7 FULL-SCALE CRASH TEST NO. MGSMRH-1

7.1 Static Soil Test

Before full-scale crash test no. MGSMRH-1 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

7.2 Test No. MGSMRH-1

The 2,599-lb (1,179-kg) passenger car impacted the 34-in. (864-mm) tall MGS at a speed of 63.6 mph (102.4 km/h) and at an angle of 25.0 degrees. A summary of the test results and sequential photographs are shown in Figure 29. Additional sequential photographs are shown in Figures 30 through 33.

7.3 Weather Conditions

Test no. MGSMRH-1 was conducted on June 29, 2010 at approximately 11:45 am. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 5.

Temperature	78° F
Humidity	49 %
Wind Speed	5 mph
Wind Direction	60° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.02 in.
Previous 7-Day Precipitation	1.32 in.

Table 5. Weather Conditions, Test No. MGSMRH-1

7.4 Test Description

Initial vehicle impact was to occur 10 ft (3.0 m) upstream of the centerline of post no. 15, as shown in Figure 34, which was selected using the critical impact point (CIP) plots found in Section 2.3 of MASH. The actual point of impact was 10 ft – 1 in. (3.1 m) upstream from the centerline of post no. 15. A sequential description of the impact events is contained in Table 6. The vehicle came to rest facing downstream, located 190 ft – 5 in. (58.0 m) downstream from impact and 5 ft – $11\frac{1}{4}$ in. (1.8 m) laterally behind the front face of the guardrail. The vehicle trajectory and final position are shown in Figures 29 and 35.

TIME	EVENT
(sec)	
0.000	The right side of the front bumper impacted the bottom corrugation of the W-beam guardrail 1 in. (25 mm) upstream of the intended impact location.
0.008	Post no. 14 deflected laterally backward.
0.024	Post no. 13 deflected laterally backward.
0.028	The right side of the front bumper contacted the blockout on post no. 14.
0.032	Post no. 15 deflected laterally backward, the posts upstream of impact twisted downstream.
0.038	The vehicle redirected downstream, and the engine hood became ajar.
0.042	The right side of the front bumper contacted the front face of post no. 14.
0.052	Rail flattening occurred at post no. 14, and the vehicle rolled away from the barrier.
0.056	Post no. 16 deflected laterally backward.
0.062	Post nos. 17 through 19 twisted upstream
0.094	The rail separated from post no. 15, and the right side of the front bumper contacted the upstream side of post no. 15 and disengaged from the vehicle.
0.106	Post no. 17 deflected laterally backward, and the vehicle continued to redirect and roll away from the barrier.
0.112	Right-front tire became airborne.
0.162	The rail downstream of post no. 15 contacted the base of the A-pillar, the vehicle rolled toward the barrier, and the front-right corner of the windshield cracked.
0.174	The right-rear quarter panel contacted the face of the rail just downstream of post no. 14, the right side of the front bumper contacted the upstream side of post no. 16, the rail separated from post no. 16, and the 16D double headed nail preventing

Table 6. Sequential Description of Impact Events, Test No. MGSMRH-1

	blockout rotation in post no. 16 bent which allowed the top of the blockout to rotate upstream.
0.180	The right side mirror disengaged from the vehicle.
0.188	Post no. 18 deflected laterally backward.
0.236	Post no. 17 twisted upstream, and the vehicle was parallel to the system with a velocity of 43.8 mph (70.5 km/h).
0.262	The right-rear tire became airborne.
0.268	The rail separated from post no. 17.
0.290	The right-front tire contacted the upstream edge of the front flange of post no. 17.
0.304	The right-front wheel rim contacted the upstream edge of the front flange of post no. 17 and bent inward, and the right-front tire deflated.
0.386	The right-front tire contacted the ground as the vehicle continued to redirect and roll toward the right.
0.438	The vehicle ceased to yaw.
0.518	The right-rear quarter panel lost contact with the rail between post nos. 17 and 18, and the vehicle exited the system with a velocity of 39.3 mph (63.2 km/h) and at an angle of 12.3 degrees.
0.528	Right-rear tire contacted the ground.
0.556	The vehicle ceased to roll to the right.

7.5 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 36 through 45. Barrier damage consisted of deformed guardrail posts, disengaged wooden blockouts, contact marks on posts and guardrail, and deformed W-beam rail. The length of vehicle contact along the barrier was approximately 25 ft – $10\frac{1}{2}$ in. (7.9 m) which spanned from 10 ft – 1 in. (3.1 m) upstream of the centerline of post no. 15 to $35\frac{1}{2}$ in. (902 mm) upstream of post no. 18.

Red paint transfer was found on the rail between the impact location and post no. 18. Minor kinks in the top and bottom corrugations of the rail were found between post nos. 12 and 19, as shown in Figure 38. Flattening and deformation of the rail occurred between post nos. 13 and 18. The bottom corrugation was flattened between post nos. 14 and 16. The bottom edge of the rail was folded upward at post no. 14. The post bolt pulled through the slots in the rail at post nos. 15 through 17. There was a ³/₄-in. (19-mm) long tear in the bolt slot at post no. 15. There was a 2¹/₄-in. (57-mm) long tear and a 1¹/₂-in. (38-mm) long tear on the upstream and downstream sides, respectively, of the bolt slot on post no. 16. There was a 1¹/₄-in. (32-mm) long tear and a 1-in. (25-mm) long tear on the upstream and downstream sides, respectively, of the bolt slot on post no. 16. There was a 1¹/₄-in. (32-mm) long tear and a 1-in. (25-mm) long tear on the upstream and downstream sides, respectively, of the bolt slot on post no. 17. There was a ³/₈-in. (10-mm) lateral separation between the W-beam sections in the splices between post nos. 12 and 13 and between post nos. 14 and 15. The splices between post nos. 14 and 15, 16 and 17, and 18 and 19 were extended ¹/₈ in. (3 mm) longitudinally. The splice damage is shown in Figures 41 and 42.

Contact marks were found on the front flange of post no. 14, on the upstream edge of the front flange and on the face of the back flange of post no. 15, on the front flange and the upstream side of the web of post no. 16 as well as on the corresponding blockout, and on both the upstream edge of the front flange on post no. 17 and the corresponding blockout.

Post nos. 3 through 12 twisted downstream. Post no. 14 rotated backward, and the top of the blockout rotated upstream. Post no. 15 was bent downstream and the blockout was disengaged. The front flange of post no. 15 twisted upstream, and the downstream edge of the front flange buckled at groundline. Post no. 16 was completely pulled out of the ground. The post bolt was bent, and the blockout split. The back flange of post no. 16 buckled 44 in. (1,118 mm) from the top of the post. Post no. 17 bent and twisted downstream, and the top of the blockout rotated upstream. The post bolt on post no. 17 bent, and the front flange was bent outward at two locations along the upstream edge.

A soil gap measuring $1\frac{1}{2}$ in. (38 mm) was present on the upstream side of post no. 1, as shown in Figure 40. A soil gap measuring $\frac{3}{8}$ in. (10-mm) was present on the downstream side of post no. 2. A $\frac{1}{16}$ -in. (2-mm) soil gap was present on the front face of post nos. 12 and 18. A $1\frac{1}{4}$ -

in. (32-mm) soil gap was present on the front face of post no. 13. Soil gaps measuring $2\frac{1}{2}$ in. (64 mm) and 2 in. (51 mm) were present on the front and back faces of post no. 14, respectively. A 3-in. (76-mm) soil gap was present on the front side of post no. 15. A soil crater was present at the base of post no. 16. A $\frac{1}{16}$ -in. (2-mm) soil gap was present on the back face of post no. 18.

The maximum permanent set rail and post deflections of the barrier system were 18¹/₄ in. (464 mm) at the midspan between post nos. 15 and 16 and 17 in. (432 in.) at post no. 16, respectively, as measured in the field. The maximum lateral dynamic rail and post deflections were 29.0 in. (737 mm) at the midspan between post nos. 15 and 16 and 20.2 in. (513 mm) at post no. 16, respectively, as determined from high-speed video analysis. The working width of the system was found to be 49.4 in. (1,255 mm), also determined from high-speed digital video analysis.

7.6 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 46 through 49. The maximum occupant compartment deformations are listed in Table 7 alongside the deformation limits established in MASH for various areas of the occupant compartment. It should be noted that none of the MASH established deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

Contact marks spanned the length of the right side of the vehicle. Part of the plastic covering from the right tail light disengaged. Two dents were located along the right-rear quarter panel, and there was a 1¹/₄-in. (32-mm) gap between the right-rear quarter panel and the right side of the rear bumper. Small dents were found in the right-rear and right-front doors. The right-front fender and wheel well cover crushed inward. A 5-in. (127-mm) long tear was located in the

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH ALLOWABLE DEFORMATION in. (mm)
Wheel Well & Toe Pan	³ / ₄ (19)	≤ 9 (229)
Floor Pan & Transmission Tunnel	1/2 (13)	≤ 12 (305)
Side Front Panel (in Front of A-Pillar)	1/2 (13)	≤ 12 (305)
Side Door (Above Seat)	¹ / ₄ (6)	≤9 (229)
Side Door (Below Seat)	¹ / ₄ (6)	≤ 12 (305)
Roof	NA	≤4 (102)
Windshield	NA	≤3 (76)

Table 7. Maximum Occupant Compartment Deformations by Location, Test No. MGSMRH-1

right-front fender. The right side mirror disengaged, and the mirror mount fractured. The base of the right-side A-pillar crushed inward. The right-front tire deflated and the rim folded inward. The upper control arm connector on the right-front wheel bent at the thread location. The right-front hood corner crushed inward. The right-side bumper cover and foam disengaged. The right-side headlight disengaged and was fractured. The bumper cover was pulled down ½ in. (13 mm). The left side of the hood was ajar. The antenna disengaged. The windshield washer fluid container was dented, cracked, and leaking fluid. The drive linkage was leaking fluid at the transmission housing. Minor scraping was found near the bumper connection to the unibody. Minor spiderweb cracking was found at the right side of the windshield along the entire height of the windshield. All other window glass, the roof, the rear, and the left side of the vehicle were undamaged.

7.7 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 8. It is noted that the OIVs and ORAs were within the suggested limits provided in MASH. The

calculated THIV, PHD, and ASI values are also shown in Table 8. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 29. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix E.

Evoluot	ion Criteria	Trans	ducer	MASH
Evaluati	ion Criteria	EDR-3	DTS	Limits
OIV	Longitudinal	-15.56 (-4.74)	-15.84 (-4.83)	≤ 40 (12.2)
ft/s (m/s)	Lateral	-17.65 (-5.38)	-19.03 (-5.80)	≤40 (12.2)
ORA	Longitudinal	-8.45	-8.41	≤ 20.49
g's	Lateral	-8.17	-9.19	≤ 20.49
	HIV s (m/s)	NA	22.94 (6.99)	not required
	PHD g's	NA	11.29	not required
	ASI	0.90	0.90	not required

Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSMRH-1

7.8 Discussion

The analysis of the test results for test no. MGSMRH-1 showed that the 34-in. (864-mm) tall MGS adequately contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. There were no detached elements nor fragments which showed potential for penetrating the occupant compartment nor presented undue hazard to other traffic. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor underride the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements were deemed acceptable because they did not adversely influence occupant risk safety criteria nor

cause rollover. After impact, the vehicle exited the barrier at an angle of 12.3 degrees and its trajectory did not violate the bounds of the exit box. Therefore, test no. MGSMRH-1 conducted on the 34-in. (864-mm) tall MGS was determined to be acceptable according to the MASH safety performance criteria for test designation no. 3-10.

		The state of the second s	AND A CARLEY LONG TO AND A CARLEY AND A CARL			107 - 1 - 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
0.000 sec	0.038 sec 0).104 sec	0.7	230 sec	· · ·	.518 sec
0.000 200		104 500	0.2	.30 SCC		
				×=		
LE ST	LR fire LF fire 14'-91" [4.5 m]					
25.0	RF Tire			34" [863]	35" [888]	
4 5 6 7 8 9 10 11 12 13	3 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29					
	190'-5" [58.0 m	5'-11 ‡ * [1.8 m]J			
Test Agency						-
• •	MGSMRH-1					
Date						
MASH Test Designation						
Test Article					37"	
					[941]	
Key Component – Steel MGS	Rail					
Top Mounting Height						
Key Component - Steel Posts			m Test Article Defl		ii	01/: (464
Post Spacing			ermanent Set			
Post Dimensions		n				
	.W6x8.5 x 72 in. long (W152x12.6 x 1,829 mm)					9.0 in. (737 mm
		W	orking Width			9.0 in. (737 mm
		W • Maximu	/orking Width m Angular Displace	ements		9.0 in. (737 mm 4 in. (1,255 mm
Embedment Depth Key Component – Wood Spac Dimensions	er Blocks 	W • Maximu R	/orking Width m Angular Displace oll	ements		9.0 in. (737 mm 4 in. (1,255 mm 10.6 ° < 75
Embedment Depth Key Component – Wood Spac Dimensions		W • Maximu R P	/orking Width m Angular Displace oll itch	ements	2 49.	9.0 in. (737 mm 4 in. (1,255 mm 10.6 ° < 75 5.1 ° < 75
Embedment Depth Key Component – Wood Spac Dimensions Soil Type	er Blocks 	W • Maximu R P Y	/orking Width m Angular Displace oll itch aw	ements		9.0 in. (737 mm 4 in. (1,255 mm 10.6 ° < 75 5.1 ° < 75 36.8
Embedment Depth Key Component – Wood Spac Dimensions Soil Type Vehicle Make /Model Curb		W • Maximu R P Y • Impact S	/orking Width m Angular Displace oll itch aw everity (IS)	ements		9.0 in. (737 mm 4 in. (1,255 mm 10.6 ° < 75 5.1 ° < 75 36.8
Embedment Depth Key Component – Wood Spac Dimensions Soil Type Vehicle Make /Model Curb Test Inertial		W • Maximu R P Y	/orking Width m Angular Displace oll itch aw everity (IS)	ements 	2	9.0 in. (737 mm 4 in. (1,255 mm
Embedment Depth Key Component – Wood Spac Dimensions Soil Type Vehicle Make /Model Curb Test Inertial Gross Static		W Maximu R P Y Impact S Transduc	/orking Width m Angular Displace oll itch aw everity (IS)	ements 	2	9.0 in. (737 mm 4 in. (1,255 mm
Embedment Depth Key Component – Wood Spac Dimensions Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions		W • Maximu R P Y • Impact S • Transduc Evalua	/orking Width m Angular Displace oll itch aw everity (IS) cer Data tion Criteria	ements 58.7 ki EDR-3	2	9.0 in. (737 mm 4 in. (1,255 mm
Embedment Depth Key Component – Wood Spac Dimensions Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed		W Maximu R P Y Impact S Transduc Evalua OIV	/orking Width m Angular Displace oll itch aw everity (IS) cer Data	ements 	2	9.0 in. (737 mm 4 in. (1,255 mm
Embedment Depth Key Component – Wood Spac Dimensions Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle		• Maximu R P Y • Impact S • Transduc Evalua OIV ft/s	/orking Width m Angular Displace oll itch aw everity (IS) cer Data tion Criteria Longitudinal	ements 58.7 ki EDR-3 -15.56 (-4.74)	2 	9.0 in. (737 mm 4 in. (1,255 mm -10.6 $^{\circ}$ < 75
Embedment Depth Key Component – Wood Spac Dimensions Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle Impact Location		W Maximu R P Y Impact S Transduc Evalua OIV	/orking Width m Angular Displace oll itch aw everity (IS) cer Data tion Criteria	ements 58.7 ki EDR-3	2	9.0 in. (737 mm 4 in. (1,255 mm
Embedment Depth Key Component – Wood Spac Dimensions Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle Impact Location Exit Conditions		• Maximu R P Y • Impact S • Transduc Evalua OIV ft/s	/orking Width m Angular Displace oll aw everity (IS) cer Data tion Criteria Longitudinal Lateral	ements 58.7 ki EDR-3 -15.56 (-4.74) -17.65 (-5.38)	2 	9.0 in. (737 mm 4 in. (1,255 mm -10.6 $^{\circ}$ < 75
Embedment Depth Key Component – Wood Spac Dimensions Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle Exit Conditions Speed		• Maximu R P Y • Impact S • Transduc Evalua OIV ft/s	/orking Width m Angular Displace oll itch aw everity (IS) cer Data tion Criteria Longitudinal	ements 58.7 ki EDR-3 -15.56 (-4.74)	2 	9.0 in. (737 mm 4 in. (1,255 mm -10.6 ° < 75
Embedment Depth Key Component – Wood Spac Dimensions Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Angle Exit Conditions Speed Angle		• Maximu R P Y • Impact S • Transduc Evalua OIV ft/s (m/s)	/orking Width m Angular Displace oll everity (IS) everity (IS) cer Data tion Criteria Longitudinal Lateral Longitudinal	ements 58.7 ki EDR-3 -15.56 (-4.74) -17.65 (-5.38) -8.45	2 	9.0 in. (737 mm 4 in. (1,255 mm 10.6 $^{\circ}$ < 75 5.1 $^{\circ}$ < 75 36.8 4 kip-ft (69.7 kJ MASH Limit ≤ 40 (12.2) ≤ 40 (12.2) ≤ 20.49
Embedment Depth Key Component – Wood Spac Dimensions Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Impact Location Exit Conditions Speed Angle Exit Box Criterion		• Maximu R P Y • Impact S • Transduc Evalua OIV ft/s (m/s) ORA	/orking Width m Angular Displace oll aw everity (IS) cer Data tion Criteria Longitudinal Lateral	ements 58.7 ki EDR-3 -15.56 (-4.74) -17.65 (-5.38)	2 	9.0 in. (737 mm 4 in. (1,255 mm -10.6 $^{\circ}$ < 75
Embedment Depth Key Component – Wood Spac Dimensions Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Impact Location Exit Conditions Speed Angle Exit Box Criterion Vehicle Stability		• Maximu R P Y • Impact S • Transduc Evalua OIV ft/s (m/s) ORA g's	/orking Width m Angular Displace oll	ements 58.7 ki EDR-3 -15.56 (-4.74) -17.65 (-5.38) -8.45 -8.17	$\begin{array}{c} 2 \\ 49. \\ p-ft (79.5 \text{ kJ}) > 51. \\ \hline \\ \text{ducer} \\ \hline \\ 15.84 (-4.83) \\ -19.03 (-5.80) \\ \hline \\ -8.41 \\ -9.19 \\ \hline \end{array}$	9.0 in. (737 mm 4 in. (1,255 mm -10.6 ° < 75
Embedment Depth Key Component – Wood Spac Dimensions Soil Type Vehicle Make /Model Curb Test Inertial Gross Static Impact Conditions Speed Impact Location Exit Conditions Speed Angle Exit Box Criterion Vehicle Stability		• Maximu R P Y • Impact S • Transduc Evalua OIV ft/s (m/s) ORA g's	/orking Width m Angular Displace oll everity (IS) everity (IS) cer Data tion Criteria Longitudinal Lateral Longitudinal	ements 58.7 ki EDR-3 -15.56 (-4.74) -17.65 (-5.38) -8.45	2 	9.0 in. (737 mm 4 in. (1,255 mm -10.6 ° < 75 5.1 ° < 75 36.8 4 kip-ft (69.7 kJ MASH Limit ≤ 40 (12.2) ≤ 20.49 ≤ 20.49
Embedment Depth Key Component – Wood Spac Dimensions Soil Type Vehicle Make /Model Test Inertial Gross Static Impact Conditions Speed Angle Exit Conditions Speed Exit Conditions Speed Exit Box Criterion		• Maximu R P Y • Impact S • Transduc Evalua OIV ft/s (m/s) ORA g's THIV	/orking Width m Angular Displace oll itch everity (IS) cer Data tion Criteria Longitudinal Lateral Longitudinal Lateral – ft/s (m/s)	ements 58.7 ki EDR-3 -15.56 (-4.74) -17.65 (-5.38) -8.45 -8.17 NA	$2 = \frac{2}{49}$ p-ft (79.5 kJ) > 51. ducer -15.84 (-4.83) -19.03 (-5.80) -8.41 -9.19 22.94 (6.99)	9.0 in. (737 mm 4 in. (1,255 mm -10.6 ° < 75
Embedment Depth Key Component – Wood Spac Dimensions Soil Type Vehicle Make /Model Test Inertial Gross Static Impact Conditions Speed Impact Location Exit Conditions Speed		• Maximu R P Y • Impact S • Transduc Evalua OIV ft/s (m/s) ORA g's THIV	/orking Width m Angular Displace oll	ements 58.7 ki EDR-3 -15.56 (-4.74) -17.65 (-5.38) -8.45 -8.17	$\begin{array}{c} 2 \\ 49. \\ p-ft (79.5 \text{ kJ}) > 51. \\ \hline \\ \text{ducer} \\ \hline \\ 15.84 (-4.83) \\ -19.03 (-5.80) \\ \hline \\ -8.41 \\ -9.19 \\ \hline \end{array}$	9.0 in. (737 mm 4 in. (1,255 mm -10.6 ° < 75 5.1 ° < 75 36.8 4 kip-ft (69.7 kJ MASH Limit ≤ 40 (12.2) ≤ 20.49 ≤ 20.49 not required

59

March 9, 2012 MwRSF Report No. TRP-03-255-12

0.028 sec

0.064 sec

0.094 sec

0.108 sec

0.156 sec

0.206 sec

0.302 sec

Figure 30. Additional Sequential Photographs, Test No. MGSMRH-1

0.000 sec

0.096 sec

0.160 sec

0.244 sec

0.290 sec

0.344 sec

0.424 sec

0.488 sec

0.094 sec

0.166 sec

0.274 sec

0.374 sec

0.518 sec

0.840 sec

1.594 sec

Figure 32. Additional Sequential Photographs, Test No. MGSMRH-1

0.158 sec

0.354 sec

0.518 sec

0.854 sec

1.254 sec

1.654 sec

2.254 sec

Figure 34. Impact Location, Test No. MGSMRH-1



Figure 35. Vehicle Final Position and Trajectory Marks, Test No. MGSMRH-1

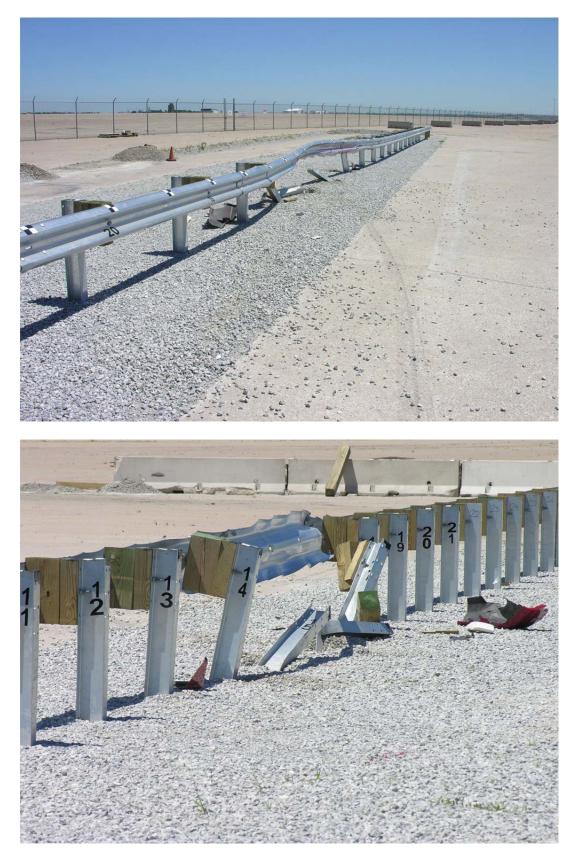


Figure 36. System Damage, Test No. MGSMRH-1

Figure 37. System Damage, Test No. MGSMRH-1

Figure 38. System Damage, Test No. MGSMRH-1

Figure 39. System Damage, Test No. MGSMRH-1

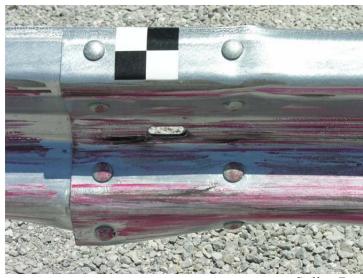


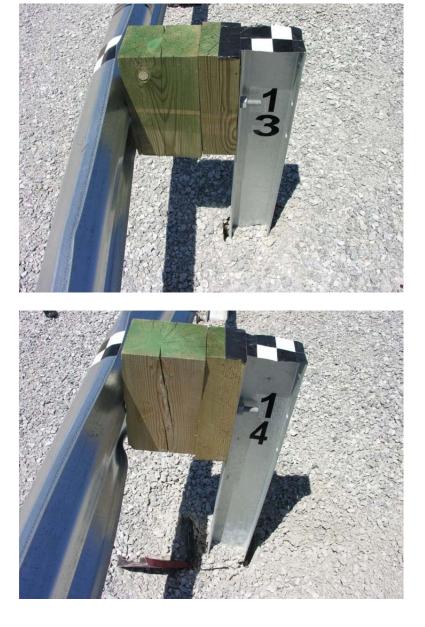
Figure 40. Soil Gap at Upstream End Anchor, Test No. MGSMRH-1

Splice Between Post Nos. 12 and 13

Splice Between Post Nos. 14 and 15

Figure 41. Splice Damage, Test No. MGSMRH-1

Splice Between Post Nos. 16 and 17



Splice Between Post Nos. 18 and 19

Figure 42. Splice Damage, Test No. MGSMRH-1

Figure 43. Post Nos. 13 and 14 Damage, Test No. MGSMRH-1

March 9, 2012 MwRSF Report No. TRP-03-255-12

Figure 44. Post Nos. 15 and 16 Damage, Test No. MGSMRH-1

Figure 45. Post Nos. 17 and 18 Damage, Test No. MGSMRH-1

March 9, 2012 MwRSF Report No. TRP-03-255-12

Figure 46. Vehicle Damage, Test No. MGSMRH-1

Figure 47. Vehicle Damage, Test No. MGSMRH-1

Figure 48. Occupant Compartment Damage, Test No. MGSMRH-1

Figure 49. Undercarriage Damage, Test No. MGSMRH-1

8 DESIGN DETAILS - 36-IN. (914-mm) TOP RAIL MOUNTING HEIGHT

The W-beam guardrail system tested in test no. MGSMRH-2 was identical to that of test no. MGSMRH-1, except that the top rail mounting height was increased from 34 in. (864 mm) to 36 in. (914 mm), as shown in Figures 50 through 52. The line posts, post no. 3 through 27, were embedded to a depth of 35 in. (889 mm), such that the top of the post was 37 in. (940 mm) from the ground. Similar to test no. MGSMRH-1, the top of the BCT anchor posts were 32 in. (813 mm) from the groundline. The center of the guardrail was mounted 2¹/₈ in. (54 mm) from the top of the BCT timber post. A full set of design details is shown in Appendix F. Photographs of the test installation are shown in Figure 53. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.

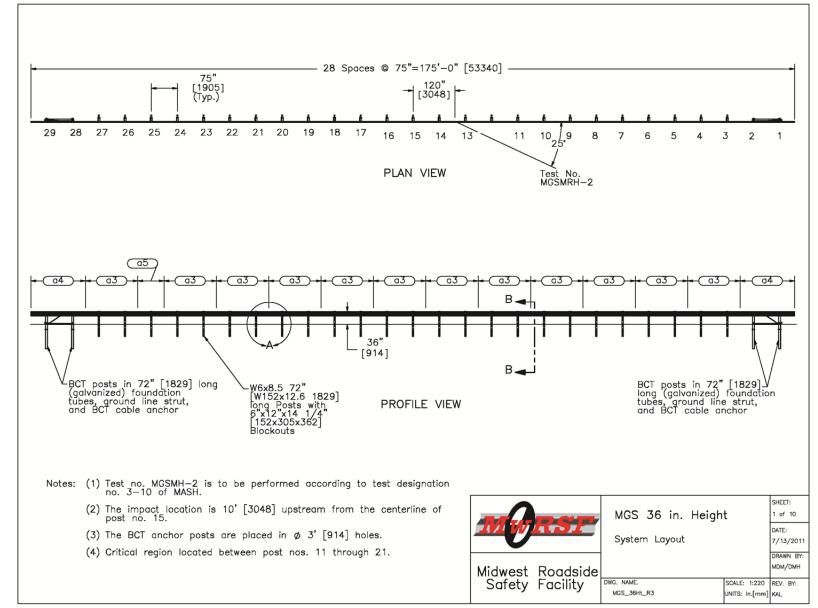


Figure 50. Test Installation Layout, Test No. MGSMRH-2

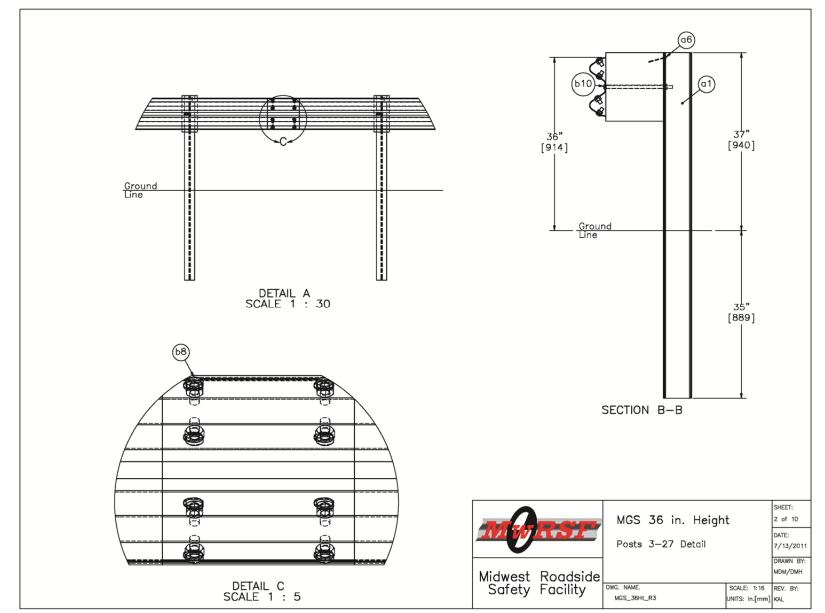


Figure 51. 36-in. (914-mm) Tall MGS Details, Test No. MGSMRH-2

March 9, 2012 MwRSF Report No. TRP-03-255-12

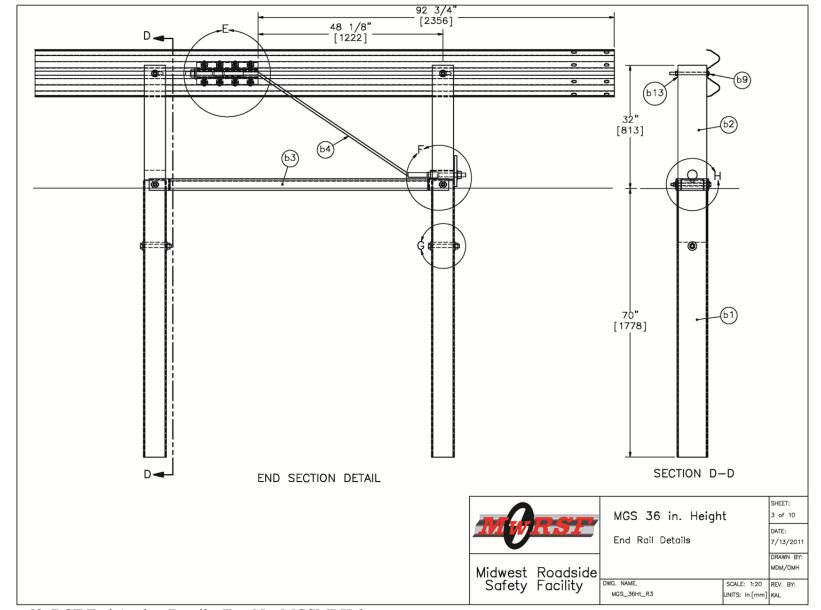


Figure 52. BCT End Anchor Details, Test No. MGSMRH-2

Figure 53. Test Installation Photographs, Test No. MGSMRH-2

9 FULL-SCALE CRASH TEST NO. MGSMRH-2

9.1 Static Soil Test

Before full-scale crash test no. MGSMRH-2 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

9.2 Test No. MGSMRH-2

The 2,583-lb (1,172-kg) passenger car impacted the 36-in. (914-mm) MGS at a speed of 64.1 mph (103.2 km/h) and at an angle of 25.6 degrees. A summary of the test results and sequential photographs are shown in Figure 54. Additional sequential photographs are shown in Figure 55 through 57. Documentary photographs of the crash test are shown in Figure 58.

9.3 Weather Conditions

Test no. MGSMRH-2 was conducted on September 9, 2010 at approximately 2:45 pm. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 9.

Temperature	77° F
Humidity	71%
Wind Speed	15 mph
Wind Direction	130° from True North
Sky Conditions	Overcast
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.01 in.
Previous 7-Day Precipitation	0.01 in.

Table 9. Weather Conditions, Test No. MGSMRH-2

9.4 Test Description

Initial vehicle impact was to occur 10 ft (3.0 m) upstream of the centerline of post no. 15, as shown in Figure 59, which was selected using the CIP plots found in Section 2.3 of MASH. The actual point of impact was 9 ft – 8 in. (2.9 m) upstream of post no. 15. A sequential description of the impact events is contained in Table 10. The vehicle came to rest facing downstream at 129 ft – 9 in. (39.5 m) downstream of the initial impact point and 61 ft – 1 in. (18.6 m) laterally away from the front of the rail. The vehicle trajectory and final position are shown in Figures 54 and 60.

TIME (sec)	EVENT
0.000	The right headlight contacted the bottom corrugation of the rail downstream of the intended impact location.
0.006	Post no. 14 deflected laterally backward, and the right side of the front bumper contacted the rail between post nos. 13 and 14.
0.018	Post no. 13 deflected laterally backward, and the engine hood became ajar.
0.024	The vehicle rolled toward the left.
0.030	Post no. 15 deflected laterally backward, and the posts upstream of impact twisted downstream.
0.040	A buckle point formed in the rail at post no. 15.
0.060	The vehicle began to redirect downstream.
0.078	The rail separated from post no. 15 as the right side of the front bumper contacted the blockout on post no. 15.
0.088	The front bumper contacted the upstream flange of post no. 15 as the right-front tire became airborne.
0.106	The surrogate occupant's head contacted the right-front window causing the window to shatter, and post no. 17 deflected laterally backward.
0.132	The rail released from post no. 16.
0.162	The vehicle rolled toward the right, and post no. 18 deflected laterally backward.
0.170	The right-rear tire became airborne.
0.182	The right side of the front bumper contacted the upstream side of post no. 16.
0.208	Right-rear quarter panel contacted the rail.
0.232	The right-rear tire contacted the upstream side of post no. 15.

Table 10. Sequential Description of Impact Events, Test No. MGSMRH-2

0.262	The vehicle was parallel to the system with a velocity of 41.1 mph (66.1 km/h).
0.276	The right-front tire contacted the upstream side of post no. 17.
0.532	Vehicle rolled toward the left.
0.562	The vehicle exited the system at a speed of 36.2 mph (58.3 km/h) and at an angle of 21.9 degrees as the right-rear quarter panel lost contact with the rail at post no. 18.

9.5 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 61 through 67. Barrier damage consisted of deformed W-beam rail, contact marks on the sections of guardrail and posts, and deformed steel posts. The length of vehicle contact along the barrier was approximately 28 ft – 3 in. (8.6 m) which spanned from 9 ft – 8 in. (2.9 m) upstream of the centerline of post no. 15 through 2 in. (51 mm) upstream of the centerline of post no. 18.

Deformation and flattening of the W-beam guardrail occurred between post nos. 14 and 16. A buckle point occurred in the W-beam at post no. 18. A kink occurred in the W-beam's top corrugation at $22\frac{1}{2}$ in. (572 mm) downstream of post no. 18. The W-beam guardrail was detached from post nos. 15 through 17 as the bolt head was pulled through the rail. The slot in the rail at post no. 18 was deformed.

Post nos. 13 and 14 rotated backward. Post nos. 15 through 17 bent and deflected downstream. Post nos. 15 and 17 were also twisted downstream. The front flange of post no. 15 was slightly deformed, and a buckle on the downstream side of the front flange was located $40\frac{1}{2}$ in. (1,029 mm) from the top of the post. Post no. 16 was twisted upstream. A buckle on the downstream side of the front flange of post no. 16 was located 44 in. (1,118 mm) from the top of the post. The wood blockouts detached from post nos. 15 through 17.

A ³/₄-in. (19-mm) soil gap was present at the upstream face of post no. 1, as shown in Figure 63. A ¹/₈-in. (3-mm) soil gap was present on the front face of post no. 12. A ¹/₄-in. (6-mm) soil gap was present on the back face of post no. 13 and the front face of post no. 18. A 1-in. (25-

mm) soil gap was present on the front face of post no. 13. A $3\frac{1}{2}$ -in. (89-mm) soil gap was present at the front face of post no. 14, and a $1\frac{1}{4}$ -in. (32-mm) soil gap was present at the back face. A $2\frac{1}{2}$ -in. (64-mm) soil gap was present at the front face of post nos. 15 and 16. A 3-in. (76-mm) soil gap was present at the upstream face of post no. 16. A $1\frac{3}{4}$ -in. (44-mm) soil gap was present at the upstream face of post no. 16. A $1\frac{3}{4}$ -in. (44-mm) soil gap was present at the front face. A $\frac{3}{8}$ -in. (10-mm) soil gap was present at the back face of post no. 18. A 39-in. diameter by $2\frac{3}{4}$ -in. tall (991- x 70-mm) soil heave was present at post no. 16.

The maximum permanent set rail and post deflections were 16³/₄ in. (425 mm) at the midspan between post nos. 15 and 16 and 15¹/₂ in. (394 mm) at post no. 15, respectively, as measured in the field. The maximum lateral dynamic set rail and post deflections were 23.5 in. (597 mm) at post no. 15 and 15.9 in. (404 mm) at post no. 15, respectively, as determined from high-speed digital video analysis. The working width of the system was 40.5 in. (1,029 mm), also determined from high-speed digital video analysis.

9.6 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 68 through 71. The maximum occupant compartment deformations are listed in Table 11 with the deformation limits established in MASH for various areas of the occupant compartment. It should be noted that none of the MASH established deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

The majority of the damage was concentrated on the right-front corner and right side of the vehicle where the impact occurred. The right fender was crushed back and inward. A fold was present in the right fender above the wheel. The right-front wheel was scuffed. The right-

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH ALLOWABLE DEFORMATION in. (mm)
Wheel Well & Toe Pan	1/2 (13)	≤ 9 (229)
Floor Pan & Transmission Tunnel	3⁄4 (19)	≤ 12 (305)
Side Front Panel (in Front of A-Pillar)	¹ / ₄ (6)	≤ 12 (305)
Side Door (Above Seat)	¹ / ₄ (6)	≤ 9 (229)
Side Door (Below Seat)	1/2 (13)	≤12 (305)
Roof	NA	≤4 (102)
Windshield	NA	≤3 (76)

Table 11. Maximum Occupant Compartment Deformations by Location, Test No. MGSMRH-2

front door was ajar, and there was a 2½-in. (64-mm) gap between the right-front door and fender. The right-front window shattered. Scraping and denting occurred across the top of the right-side doors. There was a dent in the roof above the right-side doors. The right-rear door and right-rear quarter panel were scraped. A 16-in. (406-mm) long dent was present in the right-rear quarter panel. The right corner of the trunk and taillight were scuffed. A ¾-in. (19-mm) gap was present between the left fender and the left-front door. The right side of the hood was crushed inward, and a buckle was present in the left side of the hood. The right side of the bumper cover was disengaged, and the right side of the bumper was dented. The radiator was pushed inward and the vehicle frame around the radiator bent. The windshield washer fluid container was broken. Power steering fluid was present beneath the vehicle. The grill fractured. The left headlight was partially disengaged. The right headlight fractured. Cracking occurred on the right side of the windshield, and a fold in the glass was present 2¼-in. (57-mm) from the right side. The remaining window glass was undamaged.

9.7 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 12. It is noted that the OIVs and ORAs were within the suggested limits provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 12. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 54. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix G.

Evaluation Criteria		Transducer			MASH
		EDR-3	EDR-4	DTS	Limits
OIV ft/s (m/s)	Longitudinal	-17.46 (-5.32)	-16.26 (-4.96)	-17.44 (-5.32)	≤ 40 (12.2)
	Lateral	-18.08 (-5.51)	-16.27 (-4.96)	-18.87 (-5.75)	≤40 (12.2)
ORA g's	Longitudinal	-9.16	-7.95	-9.27	≤ 20.49
	Lateral	-9.27	-7.85	-8.64	≤ 20.49
THIV ft/s (m/s)		NA	23.30 (7.10)	23.14 (7.05)	not required
PHD g's		NA	10.35	11.19	not required
ASI		0.87	0.80	0.90	not required

Table 12. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MGSMRH-2

9.8 Discussion

The analysis of the test results for test no. MGSMRH-2 showed that the 36-in. (914-mm) tall MGS adequately contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. There were no detached elements nor fragments which showed potential for penetrating the occupant compartment nor presented undue hazard to other traffic.

Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor underride the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements were deemed acceptable because they did not adversely influence occupant risk safety criteria nor cause rollover. After impact, the vehicle exited the barrier at an angle of 21.9 degrees. The vehicle trajectory did violate the bounds of the exit box as the vehicle was smoothly redirected. However, the exit box criteria is preferable but not a test requirement. Therefore, test no. MGSMRH-2 conducted on the 36-in. (914-mm) tall MGS was determined to be acceptable according to the MASH safety performance criteria for test designation no. 3-10.

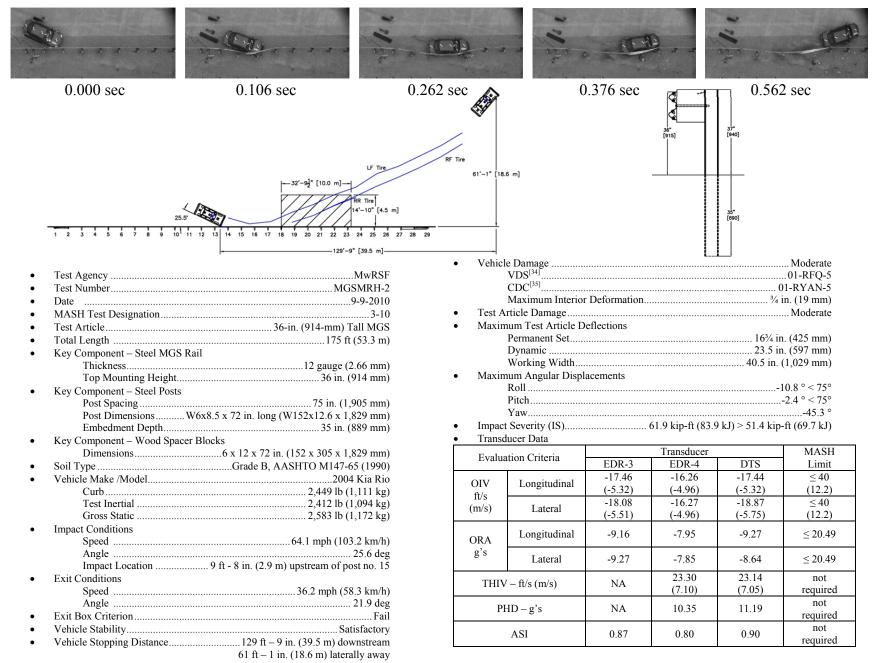


Figure 54. Summary of Test Results and Sequential Photographs, Test No. MGSMRH-2

92

March 9, 2012 MwRSF Report No. TRP-03-255-12

0.000 sec

0.058 sec

0.088 sec

0.108 sec

0.166 sec

0.018 sec

0.040 sec

0.078 sec

0.108 sec

Figure 55. Additional Sequential Photographs, Test No. MGSMRH-2

0.112 sec

0.208 sec

0.308 sec

0.408 sec

0.508 sec

0.562 sec

0.960 sec

Figure 56. Additional Sequential Photographs, Test No. MGSMRH-2

0.024 sec

0.078 sec

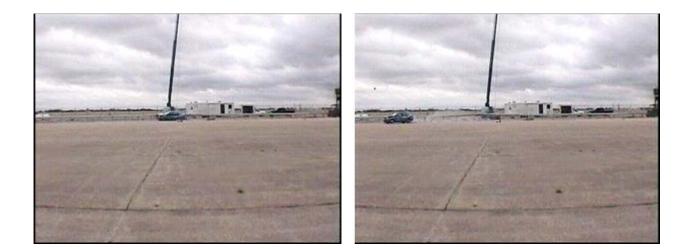
0.152 sec

0.228 sec

0.328 sec

0.428 sec

0.562 sec


0.728 sec

0.948 sec

Figure 57. Additional Sequential Photographs, Test No. MGSMRH-2

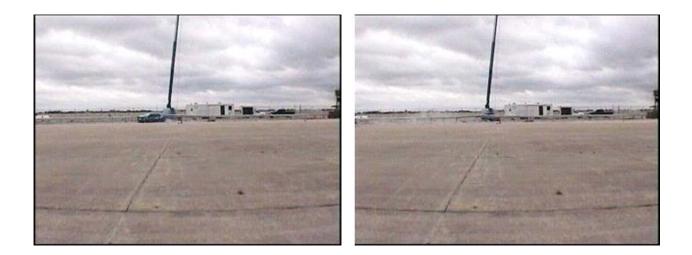


Figure 58. Documentary Photographs, Test No. MGSMRH-2

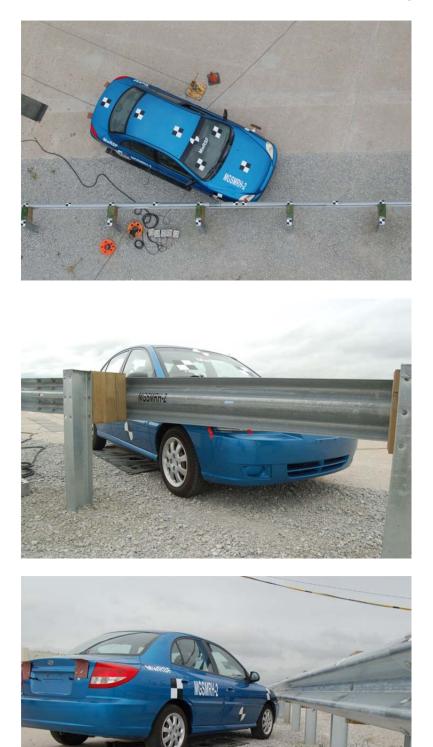


Figure 59. Impact Location, Test No. MGSMRH-2

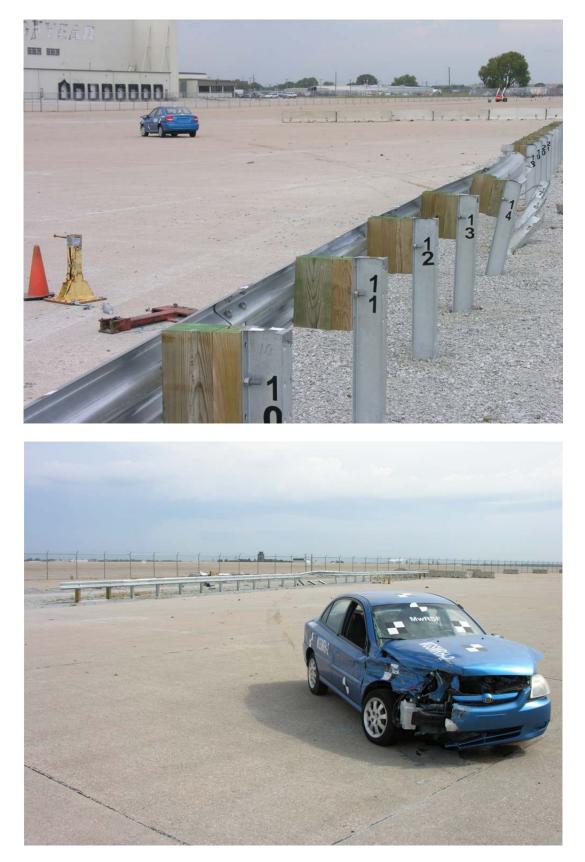


Figure 60. Vehicle Final Position and Trajectory Marks, Test No. MGSMRH-2

Figure 61. System Damage, Test No. MGSMRH-2

Figure 62. System Damage, Test No. MGSMRH-2

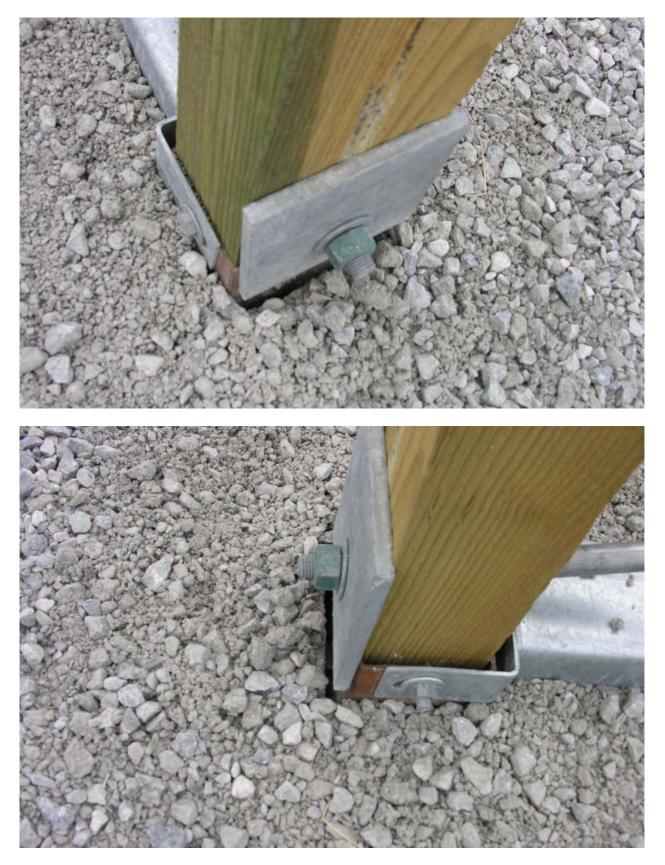


Figure 63. Soil Gap at Upstream End Anchor, Test No. MGSMRH-2

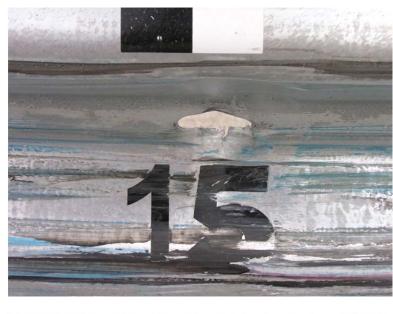


Figure 64. Post-To-Rail Bolt Hole Damage, Test No. MGSMRH-2

Figure 65. Post Damage, Test No. MGSMRH-2

103

March 9, 2012 MwRSF Report No. TRP-03-255-12

Figure 66. Post Damage, Test No. MGSMRH-2

104

Figure 67. Post Damage, Test No. MGSMRH-2

March 9, 2012 MwRSF Report No. TRP-03-255-12

106

Figure 68. Vehicle Damage, Test No. MGSMRH-2

Figure 69. Vehicle Damage, Test No. MGSMRH-2

Figure 70. Occupant Compartment Damage, Test No. MGSMRH-2

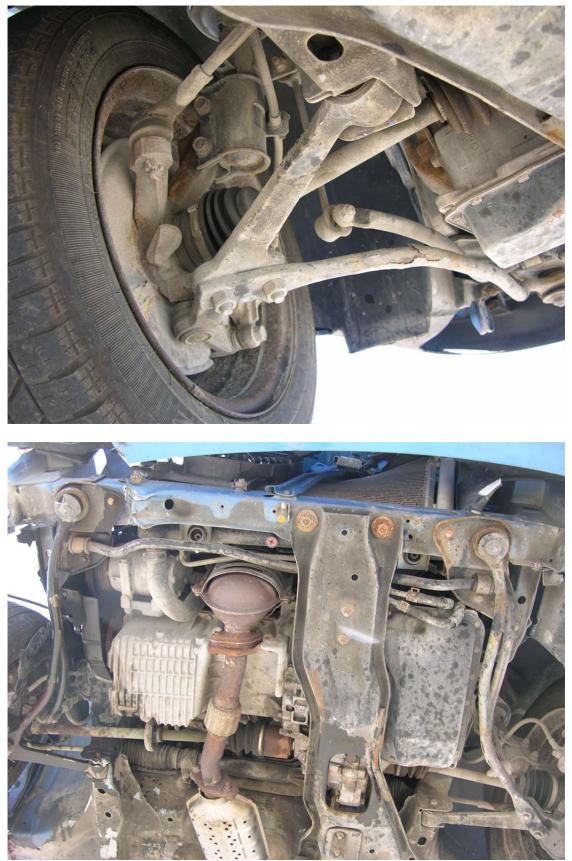


Figure 71. Undercarriage Damage, Test No. MGSMRH-2

10 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

This study set out to evaluate the maximum allowable rail mounting height for the MGS when impacted by a small passenger vehicle. All safety performance evaluations were performed using the criteria found in MASH. Two full-scale crash tests were run on the steel-post MGS with different rail mounting heights. The barrier system test installations were 175 ft (53.3 m) long. A summary of the safety performance evaluation of the two full-scale crash tests is provided in Table 13.

The first full-scale crash test, test no. MGSMRH-1, was performed on the MGS with a top rail mounting height of 34 in. (864 mm). The system incorporated 72-in. (1,829-mm) long, W6x9 (W152x13.4) steel posts with an embedment depth of 37 in. (940 mm). The test consisted of a 2,599-lb (1,179-kg) passenger car impacting the barrier system at a speed of 63.6 mph (102.4 km/h) and at an angle of 25.0 degrees. During the test, the vehicle was smoothly redirected without any significant snagging or vehicle underride. The maximum permanent set and dynamic deflections were 18¹/₄ in. (464 mm) and 29.0 in. (737 mm), respectively. The working width of the system was found to be 49.4 in. (1,255 mm). The test results were found to meet all of the MASH safety requirements for test designation 3-10.

The second full-scale crash test, test no. MGSMRH-2, was performed on the MGS with a top rail mounting height of 36 in. (914 mm). The system incorporated 72-in. (1,829-mm) long, W6x9 (W152x13.4) steel posts with an embedment depth of 35 in. (889 mm). The test consisted of a 2,583-lb (1,172-kg) passenger car impacting the barrier system at a speed of 64.1 mph (103.2 km/h) and at an angle of 25.6 degrees. During the test, the vehicle was smoothly redirected without any significant snagging or vehicle underride. The maximum permanent set and dynamic deflections were 16³/₄ in. (425 mm) and 23.5 in. (597 mm), respectively. The

working width of the system was found to be 40.5 in. (1,029 mm). The test results were found to meet all of the MASH safety requirements for test designation 3-10.

10.1 Discussion

Wheel snag did not pose a significant threat to the vehicle in test nos. MGSMRH-1 or MGSMRH-2. In test no. MGSMRH-1, wheel snag occurred when the right-front tire contacted the upstream edge of the front flange of post no. 17. At that time, post no. 17 was not attached to the rail. After contact with the wheel, the post twisted and bent downstream. Wheel snag did not occur in test no. MGSMRH-2, and the vehicle was smoothly redirected.

Rail snag under the hood did not occur for either test. For the 32-in. (813-mm) tall MGS, the corner of the 1100C vehicle hood was located above the top corrugation of the rail. In test nos. MGSMRH-1 and MGSMRH-2, the corner of the hood was located between the corrugations of the rail, as shown in Figures 8 and 9. As a result, the corner of the hood slid into the valley of the W-beam and crumpled, jarring the hood open.

During redirection, the rail deflected upward as it released from the posts and slid up the side of the vehicle. The vehicle contacted the detached posts and overrode them, which caused the vehicle to pitch upward and roll away from the barrier, as shown in Figures 72 and 73. In both tests, the vehicle reached a maximum roll angle of about 11 degrees and pitched upward about 2 degrees. As the vehicle rolled away from the barrier, the right side of the vehicle that was in contact with the rail moved upward. As a consequence, the rail slid up the vehicle, contacted the base of the A-pillar, and did not slide any higher. At this same time, the rail was applying a downward force on the vehicle which counteracted the vehicle roll.

Table 13. Summary	of Safety Performance	Evaluation Results

Evaluation Factors		Eva		Test No. MSGMRH-1	Test No. MGSMRH-2	
Structural Adequacy	А.	Test article should contain and controlled stop; the vehicle sh installation although controlled la	erride, or override the	S	S	
	D.	Detached elements, fragments penetrate or show potential for an undue hazard to other traf Deformations of, or intrusions in limits set forth in Section 5.3 and	compartment, or present onnel in a work zone.	S	S	
	F.	The vehicle should remain uprig and pitch angles are not to excee	S	S		
Occupant	H.	Occupant Impact Velocities (OI calculation procedure) should sat	tion A5.3 of MASH for			
Risk		Occupa	S	S		
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)		
	I.	The Occupant Ridedown Accele MASH for calculation procedure				
		Occupant H	Ridedown Acceleration Lir	nits	S	S
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		
S – Sati	sfacto	ory U – Unsatisfactory	NA - Not Applicable			

112

34-in. (864-mm) tall rail

36-in. (914-mm) tall rail

Figure 72. Vehicle-to-Rail Interaction

34-in. (864-mm) tall rail

36-in. (914-mm) tall rail

Figure 73. Vehicle-to-Rail Interaction

The MGS performed very similarly with mounting heights at 32, 34, and 36 in. (813, 864,

and 914 mm). A summary of the barrier performances are shown in Table 14.

Parameter	Units	Test No.					
Parameter	Units	2214MG-3	MGSMRH-1	MGSMRH-2			
Barrier Height	in. (mm)	32 (813)	34 (864)	36 (914)			
Maximum Floorpan Deflection near Wheel Well	in. (mm)	1/4 (6)	¹ / ₄ (6)	1/4 (6)			
Maximum Lateral Rail Dynamic Deflections	in. (mm)	35.9 (913)	29.0 (737)	23.5 (597)			
Longitudinal OIV	ft/s (m/s)	-14.83 (-4.52)	-15.56 (-4.74)	-17.46 (-5.32)			
Longitudinal ORA	g's	-16.14	-8.45	-9.16			
Exit Speed	mph (km/h)	30.1 (48.4)	39.3 (63.2)	36.2 (58.3)			
Exit Angle	deg.	14.1	12.3	21.9			
Exit Orientation Angle	deg.	1.6 toward barrier	11.1 away from barrier	16.5 away from barrier			
Maximum Roll Angle during Redirection	deg.	-12.8	-10.6	-10.8			
Maximum Pitch Angle during Redirection	deg.	1.2	1.9	1.6			

Table 14. Comparison of Wheel Snag and Barrier Underride Factors

The 32-in. (813-mm) tall MGS showed greater wheel snag than the 34- or 36-in. (864- or 914-mm) tall MGS, as evidenced by the high ORA value, the damage to the wheel, and the disparity between the exit angle and the exit orientation angle. The wheel snag and barrier underride performances observed in tests MGSMRH-1 and MGSMRH-2 were nearly identical to one another. Both the 34- and 36-in. (864- and 914-mm) tall MGS had similar OIV and ORA values. The exit angle and exit orientation angle were both higher for the 36-in. (914-mm) tall

MGS than the 34-in. (864-mm) MGS, but the vehicle appeared to exit the system with all wheels tracking in those systems.

System damage differed between the 32-, 34-, and 36-in. (813-, 864-, and 914-mm) tall MGS, as shown in Figure 74. In test no. 2214MG-3, the 32-in. (813-mm) tall MGS rail did not fully flatten, although rail kinking occurred between post nos. 13 and 17 and the rail lifted approximately 1¹/₂ in. (38 mm). In test no. MGSMRH-1, the 34-in. (864-mm) MGS rail was not fully flattened, but the corrugations were compressed between post nos. 14 and 17, and the rail lifted approximately 2¹/₂ in. (64 mm). In test no. MGSMRH-2, the lower corrugation of the 36-in. (914-mm) tall MGS was flattened beginning at the splice between post nos. 14 and 15 and ending at the splice between post nos. 16 and 17. The rail was lifted approximately 3 in. (76 mm), and the degree of rail twist was greater than the twist in the 32- and 34-in. (813- and 864-mm) tall MGS.

The post-soil interaction also differed between the systems. Soil comparisons cannot be made between test no. 2214MG-3 and test nos. MGSMRH-1 and MGSMRH-2, as the soil compaction method was not the same. The lateral post deflections seen in test no. MGSMRH-1 were, on average, larger than the lateral post deflections seen in test no. MGSMRH-2. The static soil strength data for each system is shown in Figure 75. The 34-in. (864-mm) tall MGS had slightly stiffer soil at the time of the test, but the overall rail deflection was greater than the deflection of the 36-in. (914-mm) tall MGS. However, more posts were deformed during the test of the 36-in. (914-mm) tall MGS.

Figure 74. System Damage Comparison

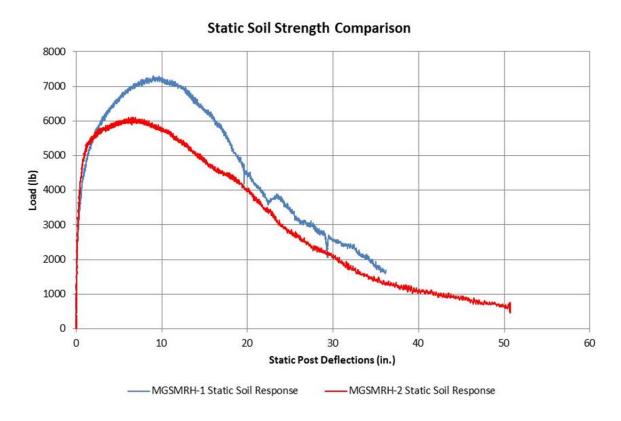


Figure 75. Static Soil Strength Comparison

10.2 Future Work

Current MASH FHWA approval for the MGS consists of a nominal 31-in. (787-mm) top rail mounting height. The crash tests reported herein indicate that there exists a considerable factor-of-safety applicable to barrier height. However, a taller MGS is not ready for MASH approval as more research must be performed on the system.

Phase II of this project will utilize LS-DYNA computer simulation to investigate several issues related to increased rail height (and corresponding decreased post embedment depth), including: (1) the 2270P behavior; (2) the effects on the end anchorages due to increased cable anchor angle; (3) the non-blocked MGS; and (4) end terminals and the possibility of a transition between the 31-in. (787-mm) rail to a higher rail height.

11 REFERENCES

- Ross, H.E., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *Recommended Procedures for the* Safety Performance Evaluation of Highway Features, National Cooperative Highway Research Program (NCHRP) Report 350, Transportation Research Board, Washington, D.C., 1993.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Reid, J.D., Rohde, J.R., Holloway, J.C., Bielenberg, R.W., and Kuipers, B.D., *Development of the Midwest Guardrail System (MGS) for Standard and Reduced Post Spacing and in Combination with Curbs*, Final Report to the Midwest States Regional Pooled Fund Program, Transportation Research Report No. TRP-03-139-04, Project No. SPR-3(017)-Years 10, and 12-13, Project Code: RPFP-00-02, 02-01, and 03-05, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, September 1, 2004.
- 3. *Manual for Assessing Safety Hardware (MASH)*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, B.W., and Reid, J.D., *Performance Evaluation of the Midwest Guardrail System - Update to NCHRP 350 Test No. 3-11 with 28" C.G. Height (2214MG-2)*, Final Report to the National Cooperative Highway Research Program (NCHRP), Transportation Research Board, Transportation Research Report No. TRP-03-171-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, October 11, 2006.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, B.W., and Reid, J.D., *Performance Evaluation of the Midwest Guardrail System - Update to NCHRP 350 Test No.* 3-10 (2214MG-3), Final Report to the National Cooperative Highway Research Program (NCHRP), Transportation Research Board, Transportation Research Report No. TRP-03-172-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, October 11, 2006.
- Faller, R.K., Sicking, D.L., Bielenberg, R.W., Rohde, J.R., Polivka, K.A., and Reid, J.D., *Performance of Steel-Post, W-Beam Guardrail Systems*, Paper No. 07-2642, Transportation Research Record No. 2025, Journal of the Transportation Research Board, TRB AFB20 Committee on Roadside Safety Design, Transportation Research Board, Washington D.C., January 2007.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, B.W., and Reid, J.D., *Performance Evaluation of the Modified G4(1S) Guardrail System - Update to NCHRP 350 Test No. 3-11 with 28" C.G. Height (2214WB-2)*, Final Report to the National Cooperative Highway Research Program (NCHRP), Transportation Research Board, Transportation Research Report No. TRP-03-169-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, October 9, 2006.
- 8. Stolle, C.S., Polivka, K.A., Reid, J.D., Faller, R.K., Sicking, D.L., Bielenberg, R.W., and Rohde, J.R., *Evaluation of Critical Flare Rates for the Midwest Guardrail System (MGS)*,

Final Report to the Midwest States Regional Pooled Fund Program, Transportation Research Report No. TRP-03-191-08, Project No.: SPR-3(017), Project Code: RPFP-04-03 and RPFP-05-05 - Years 14 and 15, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, July 15, 2008.

- 9. Baxter, J.R., FHWA NCRHP Report No. 350 Acceptance Letter B-150 of Gregory Mini Spacer Fastener, To A. Artar, Gregory Highway Products, Canton, OH, October 27, 2006.
- 10. Ochoa, C.M., *GMS Guardrail Mini Spacer Releasable Fastener: Improving Performance and Reliability of Conventional Strong-Post Guardrail*, Paper No. 08-0811 submitted for publication and presentation at the Annual Transportation Research Board Meeting, Washington, D.C., January 2008.
- 11. Nicol, D.A., FHWA MASH Acceptance Letter B-150A of GMS Guardrail System, To A. Artar, Gregory Highway Products, Canton, OH, March 26, 2008.
- Rice, G.E., FHWA NCRHP Report No. 350 Acceptance Letter B-162 of Nucor Strong Post W-Beam Guardrail, To R. Mauer, Nucor Steel Marion Inc., Marion, OH, September 11, 2007.
- 13. Nicol, D.A., FHWA NCHRP Report No. 350 Acceptance Letter B-185 of Nu-Guard 27 Barrier System, To R. Mauer, Nucor Steel Marion Inc., Greenland, NH, December 8, 2008.
- 14. Baxter, J.R., *FHWA NCHRP Report No. 350 Acceptance Letter B-140 of T-31 Guardrail System*, To S.L. Brown, Trinity Highway Safety Products Division, Dallas, TX, November 3, 2005.
- 15. Bligh, R.P, Buth, C.E, Bullard, D.L., and Alberson, D.C., *An Increased Capacity, Strong-Post Guardrail System with Reduced Offset*, Paper No. 07-3124 in the Proceedings of the 86th Annual Transportation Research Board Meeting, Washington, D.C., January 2007.
- 16. Nicol, D.A., FHWA NCHRP Report No. 350 and MASH Acceptance Letter B-177 of Trinity Guardrail System (TGS), To B. Smith, Trinity Highway Products, Dallas, TX, July 16, 2007.
- 17. Sicking, D.L., J.D. Reid, and J.R. Rohde. *Development of the Midwest Guardrail System*. Transportation Research Record No. 1797, 2002, pp. 44-52.
- Faller, R.K., K.A. Polivka, B.D. Kuipers, R.W. Bielenberg, J.D. Reid, J.R. Rohde, and D.L. Sicking. *Midwest Guardrail System for Standard and Special Applications*. Transportation Research Record No. 1890, 2004, pp. 19-33.
- 19. Baxter, J.R., FHWA NCHRP Report No. 350 Acceptance Letter B-133 of Midwest Guardrail System (MGS), To R.K. Faller, Midwest Roadside Safety Facility, Lincoln, NE, March 1, 2005.
- 20. Faller, R.K., Sicking, D.L., Bielenberg, R.W., Rohde, J.R., Polivka, K.A., and Reid, J.D., *Performance of Steel-Post, W-Beam Guardrail Systems*, Transportation Research Record No. 2025, 2007, pp. 18-33.

- 21. Griffith, M.S., FHWA MASH Acceptance Letter B-212 of Midwest Guardrail System (MGS), To K.A. Lechtenberg, Midwest Roadside Safety Facility, Lincoln, NE, 2011.
- 22. Baxter, J.R., FHWA NCHRP Report No. 350 Acceptance Letter CC-88 of SKT, SKT-LITE, and FLEAT for MGS, To K. Kothmann, Road Systems, Inc. Big Spring, TX, March 8, 2005.
- 23. Bielenberg, B.W., Faller, R.K., Holloway, J.C., Reid, J.D., Rohde, J.R., and Sicking, D.L., *Performance Evaluation of the FLEAT-MGS End Terminal –NCHRP 350 Test No. 3-34* (*FLEAT-6*), Final Report to Safety by Design Company, Transportation Research Report No. TRP-03-152-04, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, June 29, 2004.
- 24. Bielenberg, B.W., Faller, R.K., Holloway, J.C., Reid, J.D., Rohde, J.R., and Sicking, D.L., Performance Evaluation of the FLEAT-MGS End Terminal with Redesigned Breakaway Posts and End Anchorage –NCHRP 350 Test No. 3-30 (FLEAT-8), Final Report to Safety by Design, Inc., Transportation Research Report No. TRP-03-153-04, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, June 30, 2004.
- 25. Baxter, J.R., FHWA NCHRP Report No. 350 Acceptance Letter CC-94 of ET-Plus 31 Terminal for MGS, To S.L. Brown, Trinity Highway Safety Products Division, September 2, 2005.
- 26. Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, R.W., Reid, J.D., and Coon, B.A., *Performance Evaluation of the SKT-MGS Tangent End Terminal – Update to NCHRP 350 Test No. 3-34 (2214TT-1)*, Final Report to the National Cooperative Highway Research Program (NCHRP), Transportation Research Report No. TRP-03-176-06, Project No. 22-14(2), Midwest Roadside Safety Facility, University of Nebraska-Lincoln, October 12, 2006.
- 27. Rice, G.E., FHWA NCHRP Report No. 350 Acceptance Letter CC-96 of SKT and FLEAT Terminals, To A. Artar, Gregory Highway Products, Canton, OH, December 21, 2007.
- 28. Rice, G.E., FHWA NCHRP Report No. 350 Acceptance Letter CC-100 of SRT-31 Terminal for MGS, T-31, and GMS, To H. Ross, Texas Transportation Institute, August 30, 2007.
- 29. Kuipers, B.D., and Reid, J.D., Testing of W152x23.8 (W6x16) Steel Posts Soil Embedment Depth Study for the Midwest Guardrail System (Non-Proprietary Guardrail System), Final Report to the Midwest States' Regional Pooled Fund Program, Transportation Research Report No. TRP-03-136-03, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, June 12, 2003.
- 30. Homan, D.M., Thiele, J.C., Faller, R.K., Rosenbaugh, S.K., Rohde, J.R., Arens, S.W., Lechtenberg, K.A., Sicking, D.L., and Reid, J.D., *Investigation and Dynamic Testing of Wood and Steel Posts for MGS on a Wire-Faced MSE Wall*, Draft Report to the FHWA Central Federal Lands Highway Division, Transportation Research Report No. TRP-03-231-11, Draft.

- 31. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 32. Center of Gravity Test Code SAE J874 March 1981, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 33. Society of Automotive Engineers (SAE), Instrumentation for Impact Test Part 1 Electronic Instrumentation, SAE J211/1 MAR95, New York City, NY, July, 2007.
- 34. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 35. *Collision Deformation Classification Recommended Practice J224 March 1980*, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

12 APPENDICES

Appendix A - Material Specifications

		Midwest	Guardrail System at 34" Rail Height		
Item No.	QTY.	Description	Material Spec	Hardware Guide	MwRSF Part #
a1	25	W6x8.5 72in [W152x12.6 1829] long Steel Post	ASTM A36 Steel	PWE06	002/100142-1
a2	25	6"x12"x14 1/4" [152x305x362] Blockout	SYP Grade No.1 or better	PDB10a-b	090453-4(green)
a3	12	12'-6" [3810] W-Beam MGS Section	12 gauge [2.7] AASHTO M180	RWM04a	4614
a4	2	12'-6" [3810] W-Beam MGS End Section	12 gauge [2.7] AASHTO M180	RWM14a	4614
a5	1	6'-3" [1905] W-Beam MGS Section	12 gauge [2.7] AASHTO M180	RWMO1a	100142-5
a6	25	16D Double Head Nail			N/A
b1	4	72" [1829] Foundation Tube	ASTM A500 Grade B	PTE06	09-0458
b2	4	BCT Timber Post -MGS Height	SYP Grade No. 1 or better (No knots, 18" [457] above or below ground tension face)	PDF01	10-0142(Red)
b3	2	Strut and Yoke Assembly	ASTM A36 Steel Galvanized		090453-8
b4	2	BCT Cable Anchor Assembly	3/4"Dia. [19] 6x19 IWRC IPS Galvanized Wire Rope	FCA01-02	10-0142-3
b5	2	Anchor Bracket Assembly	ASTM A36 Steel	FPA01	090453-10
b6	2	8"x8"x5/8" [203x203x15.9] Anchor Bearing Plate	ASTM A36 Steel	FPB01	090453-9
b7	2	2 3/8" [60] O.D.x 6" [152] long BCT Post Sleeve	ASTM A53 Grade B Schedule 40	FMM02	09-0458
b 8	112	5/8"Dia. X 1 1/2" [M16 x 38] long Guardrail Bolt and Nut	ASTM A307 Steel	FBB01	090453-1/09-0452
b9	4	5/8"Dia. X 10" [M16 x 254] long Guardrail Bolt and Nut	ASTM A307 Steel	FBB03	090453-2/100144-3
b10	25	5/8"Dia. X 14" [M16 x 356] long Guardrail Bolt and Nut	ASTM A307 Steel	FBB06	090453-3/100144-3
b11	16	5/8"Dia. X 1 1/2" [M16 x 38] long Hex Head Bolt and Nut	ASTM A307 Steel	FBX16a	100144-1/100144-3
b12	4	5/8"Dia. X 10" [M16 x 254] long Hex Head Bolt and Nut	ASTM A307 Steel	FBX16a	090543-11/09-0452
b13	44	5/8"Dia. [15.9] Flat Washer	ASTM F436 Grade 1	FWC14a	090453-15
b14	4	3/4"Dia. X 7 1/2" [M20 x 191] long Hex Head Bolt and Nut	ASTM A325 Steel	FBX22a	100259-3/100259-1
b15	8	3/4"Dia. [19.1] Flat Washer	ASTM F436 Grade 1	FWC22a	100259-2

Table A-1. Material Certification Listing for Test No. MGSMRH-1

		Midwest	Guardrail System at 36" Rail Height			
Item No.	QTY.	Description	Material Spec	Hardware Guide	MwRSF Part #	
a1	25	W6x8.5 72in [W152x12.6 1829] long Steel Post	ASTM A36 Steel	PWE06	002/100142-1/100144-2	
a2	25	6"x12"x14 1/4" [152x305x362] Blockout	SYP Grade No.1 or better	PDB10a-b	090453-4(green)	
a3	12	12'-6" [3810] W-Beam MGS Section	12 gauge [2.7] AASHTO M180	RWM04a	4614	
a4	2	12'-6" [3810] W-Beam MGS End Section	12 gauge [2.7] AASHTO M180	RWM14a	4614	
a5	1	6'-3" [1905] W-Beam MGS Section	12 gauge [2.7] AASHTO M180	RWMO1a	100142-5	
a6	25 16D Double Head Nail				N/A	
b1	4	72" [1829] Foundation Tube	ASTM A500 Grade B	PTE06	09-0458	
b2	4	BCT Timber Post -MGS Height	SYP Grade No. 1 or better (No knots, 18" [457] above or below ground tension face)	PDF01	10-0282(White)	
b3	2	Strut and Yoke Assembly	ASTM A36 Steel Galvanized		090453-8	
b4	b4 2 BCT Cable Anchor A	BCT Cable Anchor Assembly	3/4"Dia. [19] 6x19 IWRC IPS Galvanized Wire Rope	FCA01-02	10-0142-3	
b5	2	Anchor Bracket Assembly	ASTM A36 Steel	FPA01	090453-10	
b6	2	8"x8"x5/8" [203x203x15.9] Anchor Bearing Plate	ASTM A36 Steel	FPB01	090453-9	
b7	2	2 3/8" [60] O.D.x 6" [152] long BCT Post Sleeve	ASTM A53 Grade B Schedule 40	FMM02	09-0458	
b8	112	5/8"Dia. X 1 1/2" [M16 x 38] long Guardrail Bolt and Nut	ASTM A307 Steel	FBB01	090453-1/09-0452	
b9	4	5/8"Dia. X 10" [M16 x 254] long Guardrail Bolt and Nut	ASTM A307 Steel	FBB03	090453-2/100144-3	
b10	25	5/8"Dia. X 14" [M16 x 356] long Guardrail Bolt and Nut	ASTM A307 Steel	FBB06	090453-3/100144-3	
b11	16	5/8"Dia. X 1 1/2" [M16 x 38] long Hex Head Bolt and Nut	ASTM A307 Steel	FBX16a	100144-1/100144-3	
b12	4	5/8"Dia. X 10" [M16 x 254] long Hex Head Bolt and Nut	ASTM A307 Steel	FBX16a	090543-11/09-0452	
b13	44	5/8"Dia. [15.9] Flat Washer	ASTM F436 Grade 1	FWC14a	090453-15	
b14	4	3/4"Dia. X 7 1/2" [M20 x 191] long Hex Head Bolt and Nut	ASTM A325 Steel	FBX22a	100259-3/100259-1	
b15	8	3/4"Dia. [19.1] Flat Washer	ASTM F436 Grade 1	FWC22a	100259-2	
		Soil			5052010	

Table A-2. Material Certification Listing for Test No. MGSMRH-2

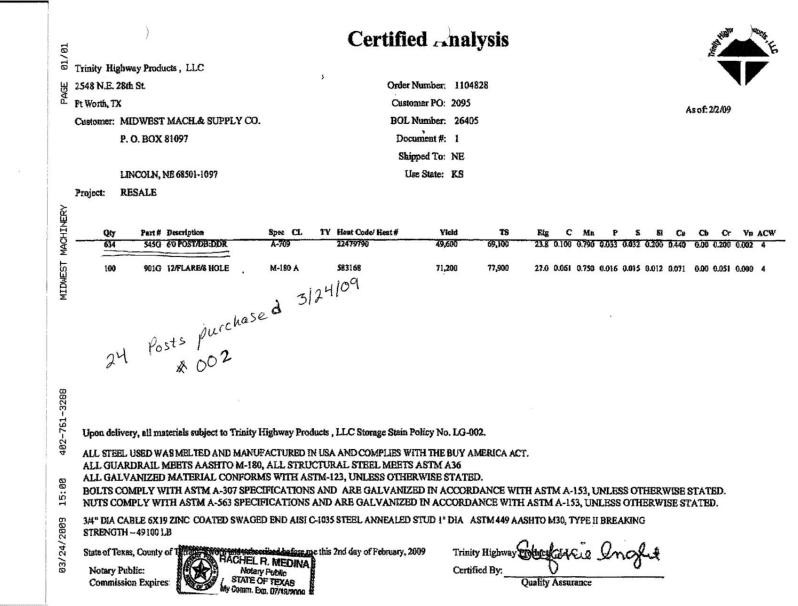


Figure A-1. W6x8.5 (W152x12.6) Steel Post Material Specifications, Test Nos. MGSMRH-1 and MGSMRH-2

127

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. P.O. Box 80508 Canton, Ohio 44708

Customer:	NIDWEST M 2200 Y STRI LINCCLN, N	EET	& SUPPLY	°CO.			Test Report B.O.L. # Customer P.O. Shipped to: Project : GHP Order N	MIDWEST	MACHINERY	-	(IPPED: (06/20/08		
HT # code G802202 G802217 G802213 G802203 13715 25267 56632 56632 25105 44330 44261	C. 0.14 0.12 0.13 0.13 0.14 0.14 0.14 0.09 0.09 0.09 0.09 0.09 0.12 0.12 0.12	Mn. 0.74 0.8 0.74 0.81 0.74 0.83 0.79 0.83 0.66 0.69 0.61	P. 0.014 0.014 0.014 0.026 0.026 0.026 0.011 0.011 0.011 0.012 0.012 0.012 0.012	5. 0.027 0.03 0.03 0.027 0.031 0.028 0.031 0.028 0.028 0.026 0.025	SI. 0.21 0.26 0.23 0.2 0.23 0.17 0.2 0.18 0.2 0.22 0.23 0.19	Tensile 78300 76400 78700 78600 78700 78600 78790 79480 78790 66000 63000 63000	Y1eld 60600 58300 69600 49000 64860 64860 66600 64860 45000 44000 45000	Elong. 22.5 28.6 24.6 22.9 24.7 24.4 23 24 23 24 23.5 20.4 27.2	Quantity 750	Class A A A A A A A A A A A A A A A A	Туре		Description 6IN WF AT 8.5 X 6FT 0IN GR POST 6IN WF AT 8.5 X 6FT 0IN GR POST	

128

Botts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-525 All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270

All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebuska Department of Fransportation

By

Andrew Artaf Vice President of Sales and Markeling Gregory Highway Products, Inc.

STATE OF OHIO: COUNTY OF STARK Swom to and subscribed before me, a Notary Public, by Artar this 23th day of June, 2008. CYNTHIA K. CRAWFORD Notary Public, State of Ohio My Commission Expires 08-16-2012

Figure A-2. W6x8.5 (W152x12.6) Steel Post Material Specifications, Test Nos. MGSMRH-1 and MGSMRH-2

$(\cdot) \cdot $	Certified Ana	ılysis	appress institute	11
Trinity Highway Products, LLC				1/84
425 E. O'Connor	Order Number: 11	4174		/2009
Lima, OH	Customer PO: 221	3	As of: 9/16/09	68
Customer: MIDWEST MACH.& SUPPLY CO.	BOL Number: 51			86:
P. O. BOX 81097	Document #: 1			10
	Shipped To: NE			
LINCOLN, NE 68501-1097	Use State: NE			402
Project: RESALE				-76
				1-33
Qty Part# Description Spe	CL TY Heat Code/Heat # Yield	TS Elg C Ma P	S SI Cu Cb Cr Vn ACW	288
750 545G 60 POST/DB:DDR A-	5 386489 50,565	68,830 26.1 0.090 0.950 0.010	0.040 0.200 0.290 0.00 0.160 0.003 4	

50	14662G 6'6 POST/8.5#DB:DDR NB	A-36	186489	50,565	68,830	26.1 0.090 0.950 0.010 0.040 0.200 0.290 0.00 0.160 0.003 4	1

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy No. LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT.

ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM-123, UNLESS OTHERWISE STATED.

BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.

3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II BREAKING STRENGTH-49100 LB

State of Ohio, County of Allon. Swom and subscribed before me this 16th day of September, 2009

Notary Public: Commission Expires

Trinity Hig Certified By

Figure A-3. W6x8.5 (W152x12.6) Steel Post Material Specifications, Test No. MGSMRH-2

MIDWEST

MACHINERY

11

A. Pagt

1.5

3.12

1: 3

," (32: 1" .. 111

۰.

MARCH 12:2009. MEDWEST MACHINERY & SUPPLY

POBox 81097 LINCOLN, NE 68501 ..

THE FOLLOWING MATERIAL DELIVERED ON 3/12/09 ON BILL OF LADING NUMBER 19216 HAS BEEN INSPECTED BEFORE AND AFTER TREATMENT AND IS IN FULL COMPLIANCE WITH APPLICABLE MEBRASKA DEPARTMENT OF ROADS REQUIREMENTS FOR SOUTHERN YELLOW PINE TIMBER GUARDRAIL COMPONENTS, PRESERVATIVE TREATED WITH CHROMATED-COPPER-ARSENATE (CCA-C) TO A MINIMUM RETENTION OF .50 LBS/CU.FT. THE ACCEPTANCE OF EACH PIECE BY COMPANY QUALITY CONTROL IS INDICATED BY A HAMMER BRAND ON THE END OF BACH PIECE . .

CERTIFICATE OF COMPLIANCE

MAT	FRIAL	CHARGE #	DATE	RETENTION	QUANTITY
6x8x14"	Blockout (CD)	09-26	1/29/09	0.66	70
6x8x14"	Blockout (CD)	09-67	2/19/09	0.60	70
- 6x8x14"	OCD Blockout	09-95	3/5/09	0.62	140
6x8x6'	CRT Post -	09-94	3/5/09	0.69	70
6x8x6'	Line Post	09-94	3/5/08	0.69	70
51/2X71/2X421/2"	BCT Post	08-74	1/29/08	0.67	48
6x8x18"	Blockout	09-95	3/5/00	0.62	70
6x8x18"	Blockout "11.	1. 1. 09.95 · · ·	3/5/09	0.62	70

TO ABLE COMENAN BRY

....

14

All States THIS CERTIFICATE APPLIES TO MATERIAL ORDERED FOR J

FOR ANY INQUIRIES, PLEASE RETAIN THIS DOCUMENT FOR FUTURE REFERENCE

THANK YOU FOR YOUR ORDER.

SINCERELY.

H-

K n Karen Storey

SIGNED REFORE ME THIS 12 DAY OF MARCH 2009.

WIDMEST WACHINERY

405-761-3288 11/05/2003 00:20

Figure A-4. Wood Blockout Material Specifications, Test Nos. MGSMRH-1 and MGSMRH-2

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. P.O. Box 80508 4 Canton, Ohio 44708 ----NAY Test Report DATE SHIPPED: 05/07/09 B.O.L. # 39963 " UNIVERSITY OF NEBRASKA-LINCOLN Customer: Customer P.O. 4500204081/ 04/06/2009 401 CANFIELD ADMIN BLDG P O BOX 880439 Shipped to: UNIVERSITY OF NEBRASKA-LINCOLN TEST PANELS Project : LINCOLN, NE. 68588-0439 GHP Order No 105271 Description Elona. Quantity Class Туре Mn. P. Si. Tensile Yield HT # code C. S. 12GA 12FT6IN/3FT1 1/2IN WB T2 19.8 160 0.21 0.84 0.011 0.003 0.03 89432 67993 A 2 4614 Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-525 All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation STATE OF OHIO: COUNTY OF STARK All controlled oxidized/co on resistant Guardrail and terminal sections meet ASTM A606, Type 4. Sworn to and subscribed before me, a Notary Public, by Artar this 8th day of May, 2009. 101 By: Andrew Artar Vice President of Sales & Marketing Gregory Highway Products, Inc. CYNTHIA K. CRAWFORD Notary Public, State of Ohio My Commission Expires 09-16-2012

Figure A-5. 12-ft 6-in. (3.8-m) Long W-Beam Section Material Specifications, Test Nos. MGSMRH-1 and MGSMRH-2

Trinity Highw coducts, LLC 25/18 N.E. 28th St. Ft Worth, TX

Customer: MIDWEST MACH.& SUPPLY CO. P. O. BOX 81097
 Sales Order:
 1112249

 Customer PO:
 2188

 BOL #
 28104

 Document #
 1

Print Date: 8/4/09 Project: RESALE Shipped To: NE Use State: KS

LINCOLN, NE 68501-1097

Trinity Highway Products, LLC Certificate Of Compliance For Trinity Industries, Inc. NCHRP Report 350 Compliant

 Pieces
 Description

 40
 12/6'3/S

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy No. LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 ALL OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM-123. BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. 3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II BREAKING STRENGTH-49100 LB n and BAGHELIDEd MEDINAne thi 4th day of August, 2009 State of Texas, County of ar saven Trinity Highway Pro Notary Public, State of Texas My Commission Expires Certified By July 13, 2013 Notary Public: **Ouality** Assu Commission Expires: 1 of 1

Figure A-6. 75-in. (1,905-mm) Long W-Beam Section Material Specifications, Test Nos. MGSMRH-1 and MGSMRH-2

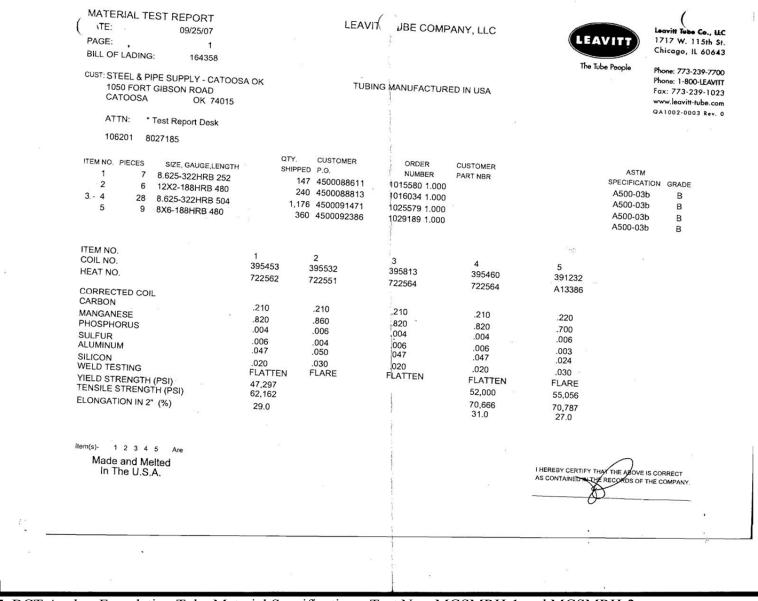


Figure A-7. BCT Anchor Foundation Tube Material Specifications, Test Nos. MGSMRH-1 and MGSMRH-2

AUGUST 4, 2009

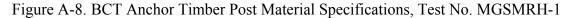
MIDWEST MACHINERY & SUPPLY PO Box 81097 Lincoln, NE 68501

The following material delivered on 8/3/09 on bill of lading number 19477 has been inspected before and after treatment and is in full compliance with applicable Nebraska Department of Roads requirements for southern yellow pine Timber Guardrail Components, preservative treated with Chromated-Copper-Arsenate (CCA-C) to a minimum retention of .60 lbs/cu.ft. The acceptance of each piece by company quality control is indicated by a hammer brand on the end of each piece.

	Мат	ERIAL	CHARGE #	DATE	RETENTION	QUANTITY	
X	6x8x14"	Blockout (CD)	09-283	7/29/09	0.67	70	
	6x8x6'	Line Post	09-283	7/29/09	0.67	175	
X	51/2x71/2-46"	TB Bullnose	09-283	7/29/09	0.67	48	
-	6x6x8"	Blockout	09-283	7/29/09	0.67	100	
	6x8x22"	Blockout	09-283	7/29/09	0.67	70	

THIS CERTIFICATE APPLIES TO MATERIAL ORDERED FOR your order no.: .2191

FOR ANY INQUIRIES, PLEASE RETAIN THIS DOCUMENT FOR FUTURE REFERENCE.


THANK YOU FOR YOUR ORDER.

SINCERELY,

for I Sh Karen Storey

SIGNED BEFORE ME THIS 4 DAY OF AUGUST 2009.

Notary: William Science Science Notary Public Floyd Colonty Georgia My Commission Explores Oct. 19, 2010	NOTA AL 3	
My Commission Explifes Oct. 19, 2010	ALIE CONTEN	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
Phone: 706-234-1605	P.O. Box 99, Armuchee, GA 30105	Fax: 706-235-8
Thone: 700-234-1003	P.O. Box 99, Armuchee, GA 50105	Pax: 700-235-4

This is to certify that the materials shipped, as indicated, conform to the State of Nebraska specifications. Order Number: 89198 Project Number:

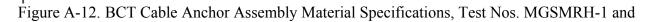
QUANTITY	DESCRIPTION	CHARGE	TREATMENT	TREATER
		NO.		
50	6x8-46" DSS SYP S4S BCT Post	38040	CCA	MWT
-				
				× 7
		+		
	· · · · ·			
	·			
				1

MWT - MIDWEST WOOD TREATING, INC., NORWALK, OH MWT-OK - MIDWEST WOOD TREATING, INC., CHICKASHA, OK

Made & Treated in the USA. Meets AASHTO Spees M133 & M168.

AMERICAN TIMBER AND STEEP	NOTARIZED
By Heather L. Seward Jally Lucard	Sworn to and subscribed before me
Title_Sales Assistant	this <u>13th</u> day of <u>April</u> 2010.
Date April 13, 2010	by Lope Wilhelm
American Timber And Steel Corp 4832 Plank Rd / PO Box 767 Norwalk, C	DH 44857 Ph: 432655 TGUS Fax: 419.687 2014
"THE TIMBER	SPECIALISTS"

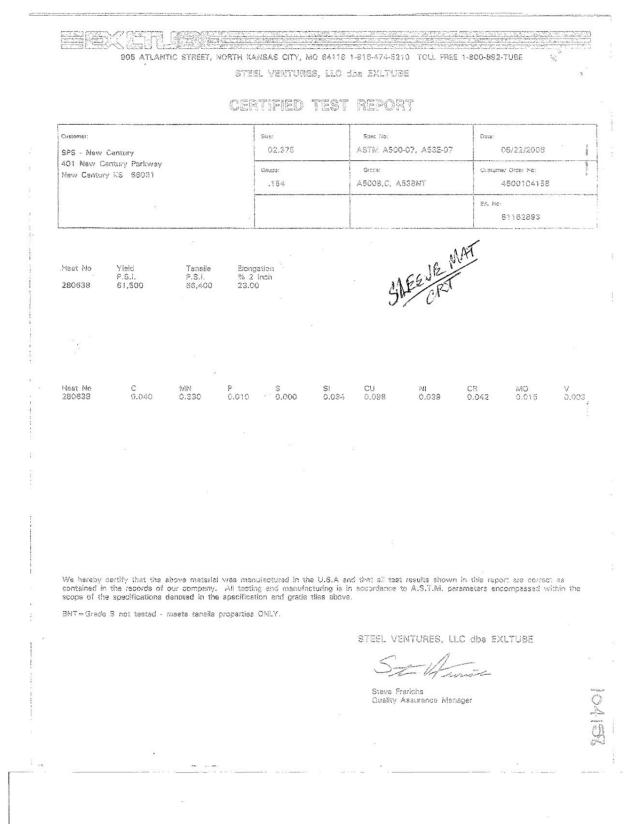
Figure A-9. BCT Anchor Timber Post Material Specifications, Test No. MGSMRH-2

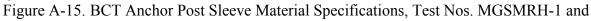

¥25 E. O'C Lima, OH	ODMOF						
Sustomer:	MIDWEST MACH & SUPPLY CO. P. O. BOX 81097 LINCOLN, NE 68501-1097	Sales Order: Customer PO: BOL # Document #	2030 43073	Print Date: Project: Shipped To: Use State:	RESALE		
	,	Tri	nity Highway Pro	nducts LLC			
	Certificate (nc. ** SLOTTED RAIL T	ERMINAL **		
		-	HRP Report 350				
		110	and report 550	Comprise			
Pieces	Description						
64	5/8"X10" GR BOLT A307	₩₩₩~&1.₩₩^\$	and Chanada and a first free states of the second second second second second second second second second secon	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩	nden fan it besen en oarlen (en verstel en ryk het besen de neemen verstel kerker fan te se		
192 32	5/8"X18" GR BOLT A307 1" ROUND WASHER F844						
64	1" HEX NUT A563						
192	WD 6'0 POST 6X8 CRT		**		MG	SBR	£.
192 64	WD BLK 6X8X14 DR						i
.64	NAIL 16d SRT WD 3'9 POST 5.5X7.5 BAND						
132	STRUT & YOKE ASSY						
128	SLOT GUARD '98				Ground S	int	0
32	3/8 X 3 X 4 PL WASHER				Oround .	SCRUC	i
				a.		090453-	8
Jpon delive	ery, all materials subject to Trinity Highway	y Products , LLC Stora	ge Stain Policy No.	LG-002.			1
		•					· .
1							
LL STEE	LUSED WAS MELTED AND MANUFA	CTURED IN USA AN	D COMPLIES WIT	TH THE BUY AMERICA AC	CT		1
LL GUAR	DRAIL MEETS AASHTO M-180, ALL S	STRUCTURAL STEEL	L MEETS ASTM A	36			
	R GALVANIZED MATERIAL CONFOR				4 152 1 mm 1000 0711701 110	CO OTATED	
THE COL	MPLY WITH ASTM A-307 SPECIFICAT APLY WITH ASTM A-563 SPECIFICAT	TIONS AND ARE GA	LVANIZED IN AC	CORDANCE WITH ASIM	A-155, UNLESS OTHERWISE	SE STATED.	
'4" DIA CA	BLE 6X19 ZINC COATED SWAGED END					· · · · · · · · · · · · · · · · · · ·	
TRENGTH	- 49100 LB				A A	10	
tate of Ohio	, County of Allen. Swom and Subscribed befo	remethis 30th day of Ju	me, 2008			N R	
5	man	(H)		Trinity Highway Products,	LLC WIKLI'	am D	
ctary Publ		in		Certified By:	K		
amminging	Remirae ELA VAL	1					2 of 4

		4			Certif	fiec' Ina	lysis						÷	and the
	Trinity Hig	ghway Products, I	LC										The second	33
	425 E. O'C	onnor			Or	der Number: 1114	4174						V	
	Lima, OH				С	ustomer PO: 2213							s of: 9/16/09	
1	Customer:	MIDWEST MAC	H.& SUPPLY CO).	В	OL Number: 5116	59					A	15 01. 9/ 10/ 09	
1		P. O. BOX 81097			1	Document #: 1								
						Shipped To: NE								
		LINCOLN, NE 683	501-1097			Use State: NE								
	Project:	RESALE												
1														
	Qty	Part # Descrip	ation	Spec CL	TY Heat Code/ Heat #	Yield	TS	Elg	C Mn	P	S Si	Cu	Cb Cr V	/n .
	¥ 750	545G 6'0 POS		A-36	J86489	50,565	68,830	-	90 0.950				0.00 0.160 0.0	
	. 50	146620 66 000	T/8.5#/DB:DDR NI	3 A-36	J86489	50,565	68,830	261.00	00 0.050	0.010 0.0	140 0 200	0.200	0.00 0.160 0.0	0.2
-														
	Upon deli	very, all materials	subject to Trinity	Highway Produ	ucts , LLC Storage Stai	n Policy No. LG-00)2.							
	ALL STEE ALL GUA ALL GAL BOLTS C	EL USED WAS MEL ARDRAIL MEETS VANIZED MATE OMPLY WITH A	TED AND MANU AASHTO M-180 ERIAL CONFORI STM A-307 SPE0	IFACTURED IN), ALL STRUC MS WITH AST CIFICATIONS	ucts , LLC Storage Stai N USA AND COMPLIES CTURAL STEEL MEE TM-123, UNLESS OTI 3 AND ARE GALVANI AND ARE GALVANI	WITH THE BUY A TTS ASTM A36 HERWISE STATE NIZED IN ACCORI	MERICA AC D. DANCE WIT	'H ASTM						
	ALL STEE ALL GUA ALL GAL BOLTS C NUTS CC	EL USED WAS MEI ARDRAIL MEETS VANIZED MATE OMPLY WITH A OMPLY WITH AS	TED AND MANU AASHTO M-180 ERIAL CONFORI STM A-307 SPEC TM A-563 SPEC	IFACTURED IN 0, ALL STRUC MS WITH AST CIFICATIONS IFICATIONS	N USA AND COMPLIES CTURAL STEEL MEE TM-123, UNLESS OT AND ARE GALVAN	WITH THE BUY A TS ASTM A36 HERWISE STATE NIZED IN ACCORD ZED IN ACCORD	MERICA AC D. DANCE WITH ANCE WITH	H ASTM ASTM A	153, UN	LESS OT	THERWI			
	ALL STEE ALL GUA ALL GAI BOLTS C NUTS CC 3/4" DIA C STRENGT State of Of	EL USED WAS MEL REDRAIL MEETS VANIZED MATE COMPLY WITH A DMPLY WITH AS CABLE 6X19 ZINC H – 49100 LB	TED AND MANU AASHTO M-180 RIAL CONFORI STM A-307 SPEC TM A-563 SPEC COATED SWAGE	IFACTURED IN 0, ALL STRUC MS WITH AST CIFICATIONS IFICATIONS A ED END AISI C	N USA AND COMPLIES CTURAL STEEL MEE TM-123, UNLESS OT AND ARE GALVAN AND ARE GALVAN	WITH THE BUY A TTS ASTM A36 HERWISE STATE NIZED IN ACCORD ZED IN ACCORD ED STUD 1" DIA A er, 2009 Trinit	MERICA AC D. DANCE WITH ANCE WITH ASTM 449 AA y Highway	H ASTM ASTM A	153, UN	LESS OT	THERWI			
	ALL STEE ALL GUA ALL GAI BOLTS C NUTS CC 3/4" DIA C STRENGT State of OP Notary F	EL USED WAS MEL REDRAIL MEETS VANIZED MATE COMPLY WITH A DMPLY WITH AS CABLE 6X19 ZINC H – 49100 LB	TED AND MANU AASHTO M-180 RIAL CONFORI STM A-307 SPEC TM A-563 SPEC COATED SWAGE	IFACTURED IN 0, ALL STRUC MS WITH AST CIFICATIONS IFICATIONS A ED END AISI C	N USA AND COMPLIES CTURAL STEEL MEE TM-123, UNLESS OTJ AND ARE GALVAN AND ARE GALVANI 2-1035 STEEL ANNEAL	WITH THE BUY A TTS ASTM A36 HERWISE STATE NIZED IN ACCORD ZED IN ACCORD ED STUD 1" DIA A er, 2009 Trinit	MERICA AC D. DANCE WIT ANCE WITH ASTM 449 AA	TH ASTM ASTM A SHTO M3(roducts , I	153, UN	LESS OT	THERWI			

Figure A-11. BCT Cable Anchor Assembly Material Specifications, Test Nos. MGSMRH-1 and MGSMRH-2

		(1)				
	Certification		BRASKA BOLT Order: 12484			
FASTENE	R DIVISION				phone 260/33	7-1600
CUSTONER NO/MANE 267 PORTEOUS FAST	ENER CD.		18934			
TEST REPORT SERIALS TEST REPORT ISSUE DA	FB285168 TE 4/20/07 10/04/07	CLIST PART Q 40	1219-4888-884	DH		7
DATE SHIPPED NAME OF LAB SAMPLER:		REPORTENTATES	1			
NUCOR PART NO C	7200 222445A	DESCRIPTION 1-6 CR DH HV M.D.C	S .			
	according the second se	HEK NUT H.D.G. GRADE -1045L		54.0	12	
MATERIAL HEAT NUMBER NUMBER	C HN	POSITION (WT% NEAT /		COR STEEL - I		
NU 838828	MIN :20 .60	.013 .021 .18	A2 FC	ILA NO: 780.0	EXP: 200	8-11-30
	TES IN ACCORDANCE WIT	TH ASTH A563-044				
SURFACE CORE HARDNESS HARDNESS	PROOF LOAD	TENSILE ST	EDGE			
(RSON) (RC) N/A 28.1 N/A 30.8	PASS	(LBS) NZA NZA	STRESS (PSZ) N/A N/A			
H/A 31.0 H/A 28.5	PASS	N/A N/A	11/A 11/A	5		
N/A 28.0 AVERAGE VALUES FROM 29.3	TESTS PRODUCTION	NAL LOT SIZE 6700	N/A PCS			2
ROTATIONAL CAPACITY	TESTED IN ACCORDANCE	WITH A325, A563 AND	F606 TO 360 DEGREES OF	ROTATION.		
VISUAL INSPECTION	IN ACCORDANCE WITH A	STN 4563-044	BO PCS. SAMPLED LOT	PASSED		
COATING - Hot Dip 1. 0:09433 2.	0.00404 3. 0.00	356 4. 0.00331	5. 0.00354 6. 0.00	468 7. 0	.00617	
8. 0.00567 9.	0.00341 10. 0.00	637 11. 0.00426	12. 0.00495 13. 0.80 19. 0.00364 20. 0.60	387 14. 4	.04399	
15. 0.00395 14.	0.00344 17. 0.80					
AVERAGE THICKNESS FO	TENITIZED; DIL QUENC	HED & TEMPERED (MIN	BRO DES FJ		Δ.	
AVERAGE THICKNESS FO HEAT TREATMENT - AU DIMENSIONS PER ASI CHARACTERISTIC	TEMITIZED, DIL QUENCI BIB.2,6-2003	HED & TEMPERED (MIN)	BIO DES FJ		4	,
AVERAGE THICKNESS FO HEAT TREATMENT - AU DIMENSIONS PER AS	TEMITIZED, DIL QUENCI BIB.2,6-2003	HED & TEMPSKED (MIN) HININUM MAKIN 1.8199 2	BIO DES FJ		ð.	
AVERAGE THICKNESS FO HEAT TREATMENT - AU DIMENSIONS PER ASI CHARACTERISTIC Width Across C	TENITIZED, DIALS TENITIZED, DIL QUENC BIB.2.6-2003 BIB.2.6-2005 BIB.2.7-2005 BIB.2.	HED & TEMPSKED (MIN) HININUM MAKIN 1.8199 2	880 DES F) KUNI 18300		E.	
AVERAGE THICKNESS FO HEAT TREATMENT - AU DIMENSIONS PER ASI CHARACTERISTIC Width Across C	TENITIZED, DIALS TENITIZED, DIL QUENC BIB.2.6-2003 HEAHPLES TESTED	HED & TEMPSKED (MIN) HININUM MAKIN 1.8199 2	880 DES F) KUNI 18300		Ċ.	, ,
AVERAGE THICKNESS FO HEAT TREATMENT - AU DIMENSIONS PER ASI CHARACTERISTIC Width Across C	TENITIZED, DIALS TENITIZED, DIL QUENC BIB.2.6-2003 HEAHPLES TESTED	HED & TEMPSKED (MIN) HININUM MAKIN 1.8199 2	880 DES F) KUNI 18300		ά.	
AVERAGE THEIRNESS F Heat TREATHENT - AU DIRENSIGNS PER AS CHARACTURISTIC Width Across C Thickness	ION 20 TESTS .00413 STENITIZED; OIL QUENC HE B18.2.6-2003 HEAMPLES TESTED STORE 5 32	НЕВ I ТЕНРЕКЕВ (НІН) Нікінин Макін 1.8199 д 8.9670 б	880 DEE FJ 484 8300 9830	· · ·	LE SÁE NO A	STM.
AVERAGE THEIRNESS F Heat TREATHENT - AU DIRENSIGNS PER AS CHARACTURISTIC Width Across C Thickness	ION 20 TESTS .00413 STENITIZED; OIL QUENC HE B18.2.6-2003 HEAMPLES TESTED STORE 5 32	НЕВ I ТЕНРЕКЕВ (НІН) Нікінин Макін 1.8199 д 8.9670 б	880 DEE FJ 484 8300 9830	· · ·	LE SAE AND A WERE NAMPAR IN THE U.S.	STM Stured A.
AVERAGE THEIRNESS F Heat TREATHENT - AU DIRENSIGNS PER AS CHARACTURISTIC Width Across C Thickness	ION 20 TESTS .00413 STENITIZED; OIL QUENC HE B18.2.6-2003 HEAMPLES TESTED STORE 5 32	НЕВ I ТЕНРЕКЕВ (НІН) Нікінин Макін 1.8199 д 8.9670 б	880 DEE FJ 484 8300 9830	· · ·	LE SÁE AND A WERE MANUFA In The U.S. Liter and N This	STM CTURED A.
AVERAGE THEIRNESS F Heat TREATHENT - AU DIRENSIGNS PER AS CHARACTURISTIC Width Across C Thickness	ION 20 TESTS .00413 STENITIZED; OIL QUENC HE B18.2.6-2003 HEAMPLES TESTED STORE 5 32	HED & TEMPERED (MIN MAKTI 1.8190 2 1.9670 0 TEST REVISIONS OF THE FORM TO THE SPECIFIC, N THE U.S.A. AND THE RESENTATION OF INFORM MATERIAL TEST REPOR PT IN FULL.	BBO DEC FJ HUM B380 ,9830 F RETHODS PRESCRIBED IM NTIONS AS DESCRIBED/IS PROBUCT WAS MANUFACTUR (ATION PAGUTO THE S A HUM FE GARY TO THE I	· · ·	LE SAE AND A Were Handfa In the U.S. Lifer and H This	STM CTURED A.
AUGRAGE THETAKHESS FI HEAT TREATHENT - AU DIRENSIDAS PER AS CHARACTURISTIC Width Across C Thickness ALL TESTS ARE IN A SPECIFICATIONS. T PREY OF HERCINY CO THE STREEL WAS MELT WE CERTIFY THAT TH GUR TESTING LABORA DOCUMENT AND HAY N	ION 20 TESTS .00413 STENITIZED; OIL QUENC HE B18.2.6-2003 HESAMPLES TESTED STORE 5 32	HED & TEMPERED (MIN MAKTI 1.8190 2 1.9670 0 TEST REVISIONS OF THE FORM TO THE SPECIFIC, N THE U.S.A. AND THE RESENTATION OF INFORM MATERIAL TEST REPOR PT IN FULL.	880 DEE FJ 484 8300 9830	· · ·	LE SÁE AND A Were Hannfa In the U.S. Lier And N This	STM CTURED A.
AUGRAGE THECKNESS F. HEAT TREATHENT - AU DIRENSIDES FRE AS CHARACTERISTIC Width Across C Thickness ALL TESTS ARE IN A SPECIFICATIONS. T FREE OF HERCURY CO THE STEEL WAS THEN WE CERTIFY THAT TH GUR TESTIMC LABORA DOCUMENT AND HAY N	CORDANCE WITH THE LAN SCORDANCE WITH THE LAN SAMPLES TESTED CORDANCE WITH THE LAN SAMPLES TESTED CON TANDATION, SD AND MANUFACTURED IN SD AND M	HED & TEMPERED (MIN MAKTI 1.8190 2 1.9670 0 TEST REVISIONS OF THE FORM TO THE SPECIFIC, N THE U.S.A. AND THE RESENTATION OF INFORM MATERIAL TEST REPOR PT IN FULL.	BBO DEC FJ HUM B380 ,9830 F METHODS PRESCRIBED IM NTIONS AS DESCRIBED/IS PROBUCT WAS MANUFACTURE (ATION PAGUTO THE NAMUFACTURE) T RELATES GARY TO THE I	· · ·	LE SAE AND A WERE MANUFA IN THE U.S. LIER AND N THIS	STM CTURED A.
AUGRAGE THETATIESS AF HEAT TREATHENT - AUG -DIRINSIDAS PER AS CHARACTURISTIC Width Across C Thickness ALL TESTS ARE IN A SPECIFICATIONS. T PREY OF HERCINY CO THE STREEL WAS MELT WE CERTIFY THAT TH GUR TESTING LABORA DOCUMENT AND HAY N	ION 20 TESTS	HED & TEMPERED (MIN) HED & TEMPERED (MIN) 1.8299 2 8.9670 0 TEST REVISIONS OF TH FORM TO THE SPECIFIC PORM TO THE SPECIFIC PORM TO THE SPECIFIC NTRE LA. AND THE RESENTATION OF INFORM PT IN FULL. NUCOR FASTENE A DIVISION OF A DIVISION OF	BBO DEC FJ HUM B380 ,9830 F METHODS PRESCRIBED IM NTIONS AS DESCRIBED/IS PROBUCT WAS MANUFACTURE (ATION PAGUTO THE NAMUFACTURE) T RELATES GARY TO THE I		LE SAE AND A Were Handfa In The U.S. Lifer and N This	SIM TURED A.
AUGRAGE THECKNESS F. HEAT TREATHENT - AUG DIRENSIDAS PER AS CHARACTERISTIC Width Across C Thickness ALL TESTS ARE IN A SPECIFICATIONS. T FREE OF HERCHAY O THE CERTER WANT TH CORTEEN HEALTH AND HAY N DOCUMENT AND HAY N DOCUMENT AND HAY N	ION 20 TESTS	HED & TEMPERED (MIN) HED & TEMPERED (MIN) 1.8299 2 8.9670 0 TEST REVISIONS OF TH FORM TO THE SPECIFIC PORM TO THE SPECIFIC PORM TO THE SPECIFIC NTRE LA. AND THE RESENTATION OF INFORM PT IN FULL. NUCOR FASTENE A DIVISION OF A DIVISION OF	BBD DEE FJ TAN B300 PESO E RETHODS PRESCRIBED IN PRODUCT WAS TANNEFACTUR ATIONS AS DESCRIBED/LIST PRODUCT WAS TANNEFACTUR TREATES GARY TO THE I R NUCOR CORPORATION A AMA		8	STM CTURED A.
AUGRAGE THECKNESS F. HEAT TREATHENT - AUG DIRENSIDAS PER AS CHARACTERISTIC Width Across C Thickness ALL TESTS ARE IN A SPECIFICATIONS. T THE OF HERCHAY O THE CERTER WANTEN BOCUTENT AND HAY N DOCUTENT AND HAY N DOCUTENT AND HAY N	ION 20 TESTS	HED & TEMPERED (MIN) HED & TEMPERED (MIN) 1.8299 2 8.9670 0 TEST REVISIONS OF TH FORM TO THE SPECIFIC PORM TO THE SPECIFIC PORM TO THE SPECIFIC NTRE LA. AND THE RESENTATION OF INFORM PT IN FULL. NUCOR FASTENE A DIVISION OF A DIVISION OF	BBD DEE FJ TAN B300 PESO E RETHODS PRESCRIBED IN PRODUCT WAS TANNEFACTUR ATIONS AS DESCRIBED/LIST PRODUCT WAS TANNEFACTUR TREATES GARY TO THE I R NUCOR CORPORATION A AMA		8	STM CTURED A.
AUGRAGE THECKNESS F. HEAT TREATHENT - AUG DIRENSIDAS PER AS CHARACTERISTIC Width Across C Thickness ALL TESTS ARE IN A SPECIFICATIONS. T THE OF HERCHAY O THE CERTER WANTEN BOCUTENT AND HAY N DOCUTENT AND HAY N DOCUTENT AND HAY N	ION 20 TESTS	HED & TEMPERED (HIN M HERTHUH MAKED 1.8299 2 9.9670 0 TEST REVISIONS OF TH FORM TO THE SPECIFIC RESENTATION OF INFORM RESENTATION OF INFORM THIS RAL TEST REPOR PT IN FULL. NUCOR FASTENE A DIVISION OF CHMETS RAMER QUALITY ASSUR	BBD DEE FJ TAN B300 PESO E RETHODS PRESCRIBED IN PRODUCT WAS TANNEFACTUR ATIONS AS DESCRIBED/LIST PRODUCT WAS TANNEFACTUR TREATES GARY TO THE I R NUCOR CORPORATION A AMA		8	IM TURED A.
AUGRAGE THECKNESS F. HEAT TREATHENT - AUG DIRENSIDAS PER AS CHARACTERISTIC Width Across C Thickness ALL TESTS ARE IN A SPECIFICATIONS. T THE OF HERCHAY O THE CERTER WANTEN BOCUTENT AND HAY N DOCUTENT AND HAY N DOCUTENT AND HAY N	ION 20 TESTS	HED I TEMPERED (MIN) HERTHUH MARTI 1.8199 2 9.9670 0 HEST REVISIONS OF THM FORM TO THE SPECIFIC, N THE U.S.A. AND THE RESENTATION OF INFOM PATERIAL TEST REPOR FT IN FULL. NUCCE FASTENE A DIVISION OF CHATS RAMER QUALITY ASSUR	BBD DEE FJ TAN B300 PESSO E RETHODS PRESCRIBED IN TO DOUG WAS TANUFACTUR ATION PROJUCT WAS TANUFACTUR TREATES ONLY TO THE I R NUCOR CORPORATION ANCE SUPERVISOR		8	Etcreb A.
AUGRAGE THECKNESS F. HEAT TREATHENT - AUG DIRENSIDAS PER AS CHARACTERISTIC Width Across C Thickness ALL TESTS ARE IN A SPECIFICATIONS. T TREE OF HERCHARY O THE CERTER WANTEN BOCUTENT AND HAY N DOCUTENT AND HAY N DOCUTENT AND HAY N	ION 20 TESTS	HED I TEMPERED (MIN) HERTHUH MARTI 1.8199 2 9.9670 0 HEST REVISIONS OF THM FORM TO THE SPECIFIC, N THE U.S.A. AND THE RESENTATION OF INFOM PATERIAL TEST REPOR FT IN FULL. NUCCE FASTENE A DIVISION OF CHATS RAMER QUALITY ASSUR	BBO DEE FJ TH BBO DEE FJ BSO SOG SOG SOG SOG THE RESCRIBED IM FRODUCT WAS NAMUFACTURE TREATES ONLY TO THE I RELATES ONLY TO THE I RUCOR CORPORATION ANCE SUPERVISOR		8	
AUGRAGE THECKNESS F. HEAT TREATHENT - AUG DIRENSIDAS PER AS CHARACTERISTIC Width Across C Thickness ALL TESTS ARE IN A SPECIFICATIONS. T TREE OF HERCHARY O THE CERTER WANTEN BOCUTENT AND HAY N DOCUTENT AND HAY N DOCUTENT AND HAY N	ION 20 TESTS	HED I TEMPERED (MIN) HERTHUH MARTI 1.8199 2 9.9670 0 HEST REVISIONS OF THM FORM TO THE SPECIFIC, N THE U.S.A. AND THE RESENTATION OF INFOM PATERIAL TEST REPOR FT IN FULL. NUCCE FASTENE A DIVISION OF CHATS RAMER QUALITY ASSUR	BBD DEE FJ TAN B300 PESSO E RETHODS PRESCRIBED IN TO DOUG WAS TANUFACTUR ATION PROJUCT WAS TANUFACTUR TREATES ONLY TO THE I R NUCOR CORPORATION ANCE SUPERVISOR		8	
AUGRAGE THECKNESS AF HEAT TREATHENT - AU -DIREATHENT - AU CHARACTERISTIC WIGHT ACTORS C THICKINGS ALL TESTS ARE IN A SPECIFICATIONS T FREE OF HERCINY CO THE STREEL WAS MELT WE CERTIFY THAT TH GUR TESTING LABORA DOCUMENT AND HAY N ACCARDITED HECHANICAL PASTENE CERTIFICATE NO. A EXPIRATION DATE 12	ION 20 TESTS	HED I TEMPERED (MIN) HERTHUH MARTI 1.8199 2 9.9670 0 HEST REVISIONS OF THM FORM TO THE SPECIFIC, N THE U.S.A. AND THE RESENTATION OF INFOM PATERIAL TEST REPOR FT IN FULL. NUCCE FASTENE A DIVISION OF CHATS RAMER QUALITY ASSUR	BBD DEE FJ TAN B300 PESSO E RETHODS PRESCRIBED IN TO DOUG WAS TANUFACTUR ATION PROJUCT WAS TANUFACTUR TREATES ONLY TO THE I R NUCOR CORPORATION ANCE SUPERVISOR		8	


PAGE 52/52		th St.	MACH& SUPPLY CO.			Order Cust BOL Do	ed Analy Number: 10951 onner PO: 2041 Number: 24481 cument #: 1 ipped To: NE	99 -		As of: 6/20/08	
	51	MYDIN I	NE 68501-1097				Ise State: KS		-		
		ESALE	142 06,901-1077			e e	190 06660, 150				
22	Project: R	COMINS								Set.	
INE											1
ACH	Qty 25		Description 12/6/3/8	Spec CL M-180 A	TY	Rent Code/ Heat # 84964	¥1eld 64,230	19 81,300	Edg C Min F S Si C 25.4 0.160 0.720 0.012 0.001 0.040 0.0	Ca Ch Cr Va ACW	
ž			2470 210	142.204 13		07207	01,200	51,200	ANT 9.100 0.729 0.012 0.001 0.000 0.00		
MIDWEST MACHINERY	20	701A	.25X11.75X16 CAB ANC	A-36		4153095	44,900	60,800	34.0 0.240 0.750 0.012 0.003 0.020 0.0	20 0.000 0.040 0.002 4	
UIM	10	742G	670 TUBE SL/.188X8X6	A-500		A\$P1160	74,000	87,000	25.2 0.050 0.670 0.013 0.005 0.030 0.2	20 0.000 0.060 0.021 4	1
	-== 20	782G	5/8"X8"X8" BEAR PL/OF	A-36		6106195	46,790	69,900	23.5 0.120 0.830 0.010 0.005 0.020 0.2	30 0.000 0.070 0.005 4	
	40	907G	12/BUFFER/ROLLED	M-180 A		£0049	54,200	73,500	25,0 0.160 0.700 0.011 0.008 0.020 0.2	80 0.000 0.100 0.800 4	
482-761-3288											
-76			terials subject to Trinity H				•				
	ALL GUAR ALL OTHE	R GALV	AS MELTED AND MANUF MEETS AASHTO M-180, ANIZED MATERIAL CO	ALL STRU	CTUR	AL STEEL MEET ASTM-123.	S ASTM A36		ж. У	1975 - 2021 A. 1979 745	
16:36	NUIS COM	IPLY WE	TH ASTM A-563 SPECIE	TCATIONS	AND	ARE GALVANIZE	D IN ACCORDA	NCE WITH	TH ASTM A-153, UNLESS OTHERWIS I ASTM A-153, UNLESS OTHERWISE		
	34" DIA CA STRENGTH			D END AISI (2-1035	STEEL ANNEALEC	STUD I" DIA AS	TM 449 A/	ASHTO M30, TYPE II BREAKING		
1/20	State of Texas	s, County o	of Tarrant. Sworn and subsc	ribed before m	e this :	20th day of June, 200	B			54) (4)	
06/04/2009	Notary Pul Commissio		RACHEL R. / Notary P State of My Complant	Ublic F				ly Highway fied By:	Products, LLC Stelania	Omal.s	


Figure A-13. BCT Anchor Bracket Assembly Material Specifications, Test Nos. MGSMRH-1 and MGSMRH-2

March 9, 2012 MwRSF Report No. TRP-03-255-12

PAGE 52/52		th St.	MACH& SUPPLY CO.			Orde Ous BOI Do	ccd Analy t Number: 109519 tomer PO: 2041 2 Number: 24481 ocument #: 1 hipped To: NE		As of: 6/20/08	ille.
	L)	INCOLN,	NE 68501-1097			. 1	Use State: KS			
	Project: R	ESALB								
ERV										
NIF	Qty	Manth	Description	Spec CL	7742	Heat Code/ Heat #	Yleid	13	Ring C Mass F S Si Cha Cha Cr Vin Ad	when.
MAC	25		12/6/3/8	M-180 A	2.6	84964	64,230	81,300	25.4 0.180 0.720 0.012 0.001 0.040 0.080 0.090 0.060 0.000 4	
MIDWEST MACHINERY	20	701A	.25X11.75X16 CAB ANC	A-36		4153095	44,900	60,800	34.0 0.240 0.759 0.012 0.093 0.029 0.020 0.000 0.040 0.002 4	6 o
IIW	10	742G	60 TUBE SL/.188X8X6	A-500		A8P1160	74,000	87,000	25.2 0.050 0.670 0.013 0.005 0.030 0.220 0.000 0.060 0.021 4	1
	<10 ×10	782G	SAS"XS"XS" BEAR PL/OF	A-36		6106195	46,790	69,900	23.5 0.120 0.830 0.010 0.005 0.020 0.230 0.000 0.070 0.006 4	
	40	907G	12/BUFFER/ROLLED	M-180 A		1.0049	54,200	73,500	25,0 0.160 0.700 0.011 0.008 0.026 0.200 0.000 0.100 0.000 4	î.
482-761-3288									· · · ·	
2-76			terials subject to Trizity I							
	ALL GUÀR ALL OTHE	DRAIL N	AS MELTED AND MANU MEETS AASHTO M-180 ANIZED MATERIAL CO TTH ASTM A-307 SPEC	ALL STRU	CTUE	AL STEEL MEET ASTM-123.	'S ASTM A36		TT. ITH ASTM A-153, UNLESS OTHERWISE STATED.	
16:36									H ASTM A-153, UNLESS OTHERWISE STATED.	
	344° DIA CA STRENGTH			D END AISI (C-1035	STEEL ANNEALED	D SYUD I" DIA AS	TM 449 A/	ASHTO M30, TYPE II BREAKING	
1/26	State of Texa	s, County o	of Tarrant. Sworn and subsc	ribed before a	e this.	20th day of June, 200	18			
06/04/2009	Notary Pul Commissio		RACHEL R / Notary of State of My Commissi	Ublic Lexas				y Highway ied By:	y Products, LLC Stekanie Onal.a	

Figure A-14. BCT Anchor Bearing Plate Material Specifications, Test Nos. MGSMRH-1 and MGSMRH-2

11/04/2009 05:10 402-761-3289 MIDWEST MACHINERY MIDWEST MACH	PAGE 04/10
CERTIFICATE OF TESTS LOCAL AND	
CERTIFICATE OF TESTS REPUBLIC ENGINEERED PRODUCTS May 6,2009 PAGE 1 PURCHASE ADDRESS 238-438-5694 PURCHASE OF TESTS REPUBLIC ENGINEERED PRODUCTS May 6,2009 PAGE 1 PURCHASE 0001: 130663M PURCHASE	
CRETERICATE OF TESTS REPUBLIC ENGINEERED PRODUCTS May 6,2009 PACE 1 PURCHASE OF TESTS REPUBLIC ENGINEERED PRODUCTS May 6,2009 PACE 1 PURCHASE 0001: 1300-438-5695 PACE 1 PURCHASE 0001: 1300-438-5695 PACE 1 PURCHASE 0001: 1300-438 PURCHASE 0	
CERTIFICATE OF TESTS REPUBLIC ENGINEERED PRODUCTS May 6,2009 PAGE 1 PURCHASE ADDRESS 238-438-5694 PURCHASE OF TESTS REPUBLIC ENGINEERED PRODUCTS May 6,2009 PAGE 1 PURCHASE 0001: 130663M PURCHASE	
CERTIFICATE OF TESTS REPUBLIC ENGINEERED PRODUCTS May 6,2009 PAGE 1 PURCHASE ADDRESS 238-438-5694 PURCHASE OF TESTS REPUBLIC ENGINEERED PRODUCTS May 6,2009 PAGE 1 PURCHASE 0001: 130663M PURCHASE	
CRETERICATE OF TESTS REPUBLIC ENGINEERED PRODUCTS May 6,2009 PACE 1 PURCHASE OF TESTS REPUBLIC ENGINEERED PRODUCTS May 6,2009 PACE 1 PURCHASE 0001: 1300-438-5695 PACE 1 PURCHASE 0001: 1300-438-5695 PACE 1 PURCHASE 0001: 1300-438 PURCHASE 0	
CERTIFICATE OF TESTS 1807 EAST 28TH ST. LORADI, OH 44055 CERTIFICATE OF TESTS REPUBLIC ENGINEERED PRODUCTS May 6,2009 PAGE 1 OF 2 PURCHASE 1009418 ACCOUNT RUMARE: 5550-1007-01 SCHEDULE: 1009418 ACCOUNT RUMARE: 5550-1007-01 SCHEDULE: 5550-1007-01 SCHEDULE: 5550-1007-01 SCHEDULE: 100957RISS INC REAT: SOTEOLE: SAUCE ADDRESS FARMARE ENGINEERED PRODUCTS SNIF: 1 INCLASE ORDERSS FARMARE ENGINEERED PRODUCTS SNIF TO ADDRESS FARMARE SNIF TO ADDRESS FARMARE FARMARE FOR ADDRESS FARMARE FARMARE FARMARE FOR ADDRESS FARMARE FAR	
OF 2 PURCHASE OF CASE AND	6-8-09
OF 2 PURCHASE OF CASE AND	6-8-09
OF2 FURCHASE OF TESTS LORADI, OH 44055 OF2 PURCHASE 000000000000000000000000000000000000	6-8-09
OF2 FURCHASE OF TESTS LORADI, OH 44055 OF2 PURCHASE 000000000000000000000000000000000000	
A CLARGE NODESS INC FROME F	
CERTIFICATE OF TESTS May 6,2009 PAGE 1 OF 2 PURCHASE ORDE: 130653M PURCHASE, 1009418 PURCHASE, 1009418	2 4
PAGE i PA	• •
PURCHAST ORDER JUNDOSTRIES INC NIGHNAL ADVISTALS INC PURCHAST ORDER JUNDOSTRIES INC NIGHNAL SUBSTRIES INC NIGH	
PURCHASE ORD: 130863M PURCHASE ORDER DATE: 4/1/2009 PURCHASE 0609418 ACCOUNT RUMARE: 5550-3007-01 PURCHASE, 1409019 - 01 SCHEDULE: 5063-86 HEAT: 5072014 REVISION: 1 TRIMITE INDUSTRIES TO ORDER DEPENDENT OF THE PURCHASE SHIP TO ORDER OF THE PURCHASE SHIP TO ORDER DEPENDENT OF THE PU	
ORDER NUMBER: 1409019 - 01 SCHEDULE: \$063-86 NEXT: 5072014 REVISION: 1 EDDEA CHARGE ADDRESS ANDRENESSAUDRENESSAUDRENESSAUDRENESSAUDRENESSEN YXINITY INDOSTRIES INC HIGHWAY SAGETY BRODUCTS INC C/O BCS METALS PROP P 0 DX 508087 478 FLOOR S00 STEDLING AVE	
NEXT: 5072014 REVISION: 1 ===== CHARGE ADDEXSS takended a bedge and charge and charge are cannot still to an approximate and charge are cannot be an approximate and charge are cannot be approximate and charge are cannot be approximate and charge are cannot be approximate and c	
TRINIT INDUSTRIES INC HIGHWAY SAUSTY PRODUCTS INC P D BOX 568087 477 FLOOR C/O BCS METALS PREP 5800 STERLING AVE	
Highway saget fromats inc c/o BCS metals prop P o Box 568887 477 Floor 5800 Sterling ave	
P O BOX 568887 478 FLOOR 5800 STERLING AVE	
DALLAS, TX 75356-0607 MAPLE HEIGHTS, OH 44137	
MATERIAL DESCRIPTION	
NT ROLLED STEEL COILS CARBON AISI-1015 AX AL XILLED FINR GRAIN COLD WORKING QUALITY TEET REPORTS OF	
ischanical properties for INFO Crly Extra trefing Izze: Ros .6390 Dunm X Coil	
EDS 16.2306NM DEAN X COIL	
C NN 2 S SI CU NI CR	
D.25 D.47 0.006 0.002 0.09 0.05 0.06 0.05	
V MO AN AL CE N 7.000 0.02 0.005 0.046 0.000 0.005∋	
CALCULATED TESTS	
CEDUCTION RATIO 112.3 TO 1	
USTENTIC GRAIN SIZE 5 OR FINER BASED ON A TOTAL ALUMINUM CONTENT EQUAL TO OR GREATER TRAN .020% PER	
STM 129.	
semi - pirisked results	
ensile test standard format Trusile Tield(0.73) ra e	
psi psi e e	2
CR 2728 63100 44200 65.4 39.0	
ARDNESS TEST ASTM SIO/ASTM A370 HEW AS-RLD/CD HEW	
MID-RADIUS CR 2729 216	
NOTES	
Henical Annuysis conforms to applicable specs: Astm E415, Lelio129, LpL10170, Astm E1019, Blio150, Lelio114, And Astm Exces, Lelio184, Lelio180.	
epolic riginarrad products mereby certify that the patrilal ligted merety has been inspected and Ested in accordance with the methods prescribed in the governing specifications and based upon the	
SULTS OF SUCH INSPECTION AND TESTING WAS BEEN APPROVED FOR COMPORAME TO THE SPECIFICATIONS.	
EXTIFICATE OF TESTS SHALL NOT BE REPRODUCED EXCEPT IN FULL.	
	ł
LL TESTING HAS BEEN PERFORMED USING THE CURRENT REVISION OF THE TRETING SPECIFICATIONS.	
ECOEDING OF FALSE, FICTITIOUS OR PRAUDULANT STATEMENTS OR ENTRIES ON THIS DOCUMENT MAY BE PUNISHED	
S & PELONY UNDER FED STATUES TITLE 18 CHAPTER 47.	
DRING PROCESSING OR WHILE IN OUR POSSESSION.	1
URING PROCESSING OR WHILE IN OUR POSSESSION. D WELD OR WELD REBAIR WAS PERPORMED ON THIS MATERIAL. R. A. SZELIGA BY NILDA BESTE	I
URING PROCESSING OR WHILE IN OUR POSSESSION. D WELD OR WELD REBAIR WAS PERFORMED ON THIS NATERIAL. R. A. SZELIGA BY HILDA HEADE WHATER TECH. SERVICES	
URING PROCESSING OR WHILE IN OUR POSSESSION. O NELD OR WELD REALR WAS PERFORMED ON TRIS WATERIAL. R. A. SZELIGA BY HILDA BESUE ANGER TECH. SERVICES	
URING PROCESSING OR WHILE IN OUR POSSESSION. D WELD OR WELD REEAR WAS PERFORMED ON THIS NATERIAL. R. A. SZELIGA BY HILDA BESUE NAMEER TECH. SERVICES	
URING PROCESSING OR WHILE IN OUR POSSESSION. O MELD OR WELD REPAIR WAS PERPORMED ON THIS WATERIAL. R. A. SZELIGA BY MILDA BESOE ANDRER TECH. SERVICES	
URING PROCESSING OR WHILE IN OUR POSSESSION. O NELD OR WELD REALR WAS PERFORMED ON TRIS WATERIAL. R. A. SZELIGA BY HILDA BESUE ANGER TECH. SERVICES	
URING PROCESSING OR WHILE IN OUR POSSESSION. O NELD OR WELD REALR WAS PERFORMED ON TRIS WATERIAL. R. A. SZELIGA BY HILDA BESUE ANGER TECH. SERVICES	
URING PROCESSING OR WHILE IN OUR POSSESSION. O MELD OR WELD REPAIR WAS PERPORMED ON THIS WATERIAL. R. A. SZELIGA BY MILDA BESOE ANDRER TECH. SERVICES	
ME MATERIAL WAS NOT EMPOSED TO MERCURY OR ANY METAL ALLOY THAY 19 LIOUID AT AMPLENT TRAPERATURE URING PROCESSING OR WHILF IN OUR POSSESSION. O WELD REPAIR WAS FERPORMED ON THIS MATERIAL. R. A. SZELIGA EY MILDA BEADE ARMEER TECH. SERVICES P. A. System.	

Figure A-16. Guardrail Splice Bolt Material Specifications, Test Nos. MGSMRH-1 and

11.	/04	/2009	06:	:10	402-	-761-	3288				MIDWE	ST MAC	HINER	,			PA	GE (82710 ·
				'n		425 E.	Plan O' COl Lima, 419-2	nt #55 NNOR , OH 4 227-129	AVEN 5801 6	CTS, L UE TIFIC/									<u></u>
	cu	STOM	ER:	STOC	CK.				:: JUL ICE #	¥29, 20	09							1	
						<u> </u>		LOT	NUMB	ER: 09	07038					_			-
	PA	RT NU	MBER	: 336	G			QUAN	TITY	: 110,7	65								
	DE	SCRIP	TION:	5/8"x 1	%" GR	BOLT		DATE	SHIP	PED:				R , 1					
	SP	ECIFIC	ATIO	NS: AS1	CM A30	7-A /A			1. CM	72014 Emisti									
5										T		r					٦		
	C	. MN	P	s	SI	NŢ	CR	MO	CU	SN	v	AL	N	B	TI	NB	1		
1	15	.47	.006	.003	.09	.06	.05	.02	.05	.005	.009	.046	.0063	.000	.000	.000	7		ŀ
				F	LAT	ING	AND	ORI	RO	FECT	IVE (OAT	ING				-		
I	HC	T DIP	GALV	ANTZEI	0 (07.	PERS	Q. FT.)		T			T	1.25 A	vg.					
		T	HE MA	TERIA	l Usei) IN TI	HIS PRO	oduct He be	WAS U.S.A ST OF	MELT	ED AND	MANU	OF AM FACTUR LL INFO	ED IN '	THE				
										An	NITVI	UCHW.	Y PROT	UCTS,	LLC.				F
		SW	ORN A	F OHIO	SCRIBE	D BEFC	RE ME	IN					v						
			Si	im	A	Enl	ne		ÎNTAI	ry pub	LIC								•
4 3		425	E.0'	CONNO	R AVI	INUE		Lim	, OR	45801		419	-227-129	5					
																		1	

Figure A-17. Guardrail Splice Bolt Material Specifications, Test Nos. MGSMRH-1 and

85/84/2889	16:35 402-751-3288		MIDWEST MACHINERY		rhul	00, 05	
*							ſ
11							F
ni da a s) WEST						
	ATING CO.						
A DE ALLER STO							1
	G	ERTIFICATE OF CO	OMPLIANCE				
			ND MANUFACTURED IN	THE USA.			
TC	: TRINITY INDUSTRIES	INC.					
	Plant #55 425 E. O'Connor		440.000.7	202			
	Lima,Ohio	45801	419-222-7				
	SHIP DATE: 11/6/200	8					
MA	UFACTURER: MID WES	ST FABRICATING C	0,				
G	ASTM: A307A ALVANIZERS: Columbu	s/Ploit T(A-153 CLASS C				
							-
QTY	PART NO.	HEAT NO.	LOT NO.	P.O.NO.			
3,524	5/8.X 10-6" 5/8 X 10-6"	7261134 7261134	85204 85204	126266BR80 126266BR78			E
8,900	5/8 X 10-6"	7261134	85204	126266BR74			
Eld a com	510 1/ 40 55	- 100 (100 - 100 -	an an 45 Juni				
YIIG 4.500	5/8 X 10-6"	7261611 🗡	85217	126266BR74			
2,550	5/6 X 10W-6"	7261286	85180	126266BR84			-
4,500	5/8 X 14-6"	7366618	85199	128256BR68			
6,000	5/8 X 18-6"	7366618	85157	126266BR84			
1,536 130	5/8 X 18-6" 5/8 X 18-6"	7366618 7366618	85157 85156	126266BR74 126266BR74			-
2,964	5/8 X 18-6"	7366618	85149	126266BR74			. [
4,370	5/8 X 18-6"	7261611	85146	126286BR74 -		21	
400	5/8 X 3.5°	5978691	86016	126266BR82			
	Signat	ure D. Smith	D. Smith				
	2	TITLE: QUALITY DATE: 1	CONTROL 1/6/2008				
		DATE: 1	10/2006				
×		2					
				3		3	
					12		
313 NOT	h Johns Street • Amanria, Ol	vio 43102 » 740/969 44	11 - FAX: 740/969-4433				

Figure A-18. 10-in. (254-mm) Guardrail Bolt Material Specifications, Test Nos. MGSMRH-1

and MGSMRH-2

05. 04	2009 15:3	36 402-761-328	B MIDW	EST MACHINERY	PAGE 15/52
55	04/14/2008	10:14 FAX 740 681 44	33 NID WEST FAD:	ROCEMILL.	35406
,					304
	MIC	WEST			<i>e</i>
		ATING CO.			
		5			
		•	CERTIFICATE OF COM	PLIANCE]
		WE CERTIFY THAT	ALL BOLTS ARE MADE AND I		THE USA.
	TO	TRINITY INDUSTR	IES INC.		
		Plant #55 550 East Robb Ave		419-222-7	308
		Lima, Ohio	45801	"T I G"Gededa" 1	Jao I
	MAN	SHIP DATE: 4/13/2 UFACTURER: MID V	VEST FABRICATING CO.		
4	6	ASTM: A307	A I/Pilot/Columbus TO A-	459 01 460 0	
	100	llyanilerg, didic	Areavoaumous IV A	100 ULA88 C	
	QIY	PART NO.	HEAT NO.	LOT NO.	P.O.NO. 130236BR25
	5,250 2,625	5/8 X 10-6" 5/8 X 10-6"	20060370 20060370	95065 95052	1302369R25
	28,500	5/8 X14-6"	7366618	85199	126266BR114
		*			
			and in the	Smith	
		210	nature D. Smath. V TITLE: QUALITY CI	Particle Providence and Carl	
				2009	
6	9				
	313 North	Iohns Street # Amanda	, Chio 43102 o 740/969-4411 -	Fax: 740/969-4433	

Figure A-19. 14-in. (356-mm) Guardrail Bolt Material Specifications, Test Nos. MGSMRH-1

and MGSMRH-2

								н				•	:,
										. .			
	D.	or	nubli	~	3049 L)	KESHORE	-SATE 6		BUFFALA		לי לכי. 1219	7:09	
		1		·** 1	PHONE :	330-43	8-5694		FAX: 3	30-438-5			
CERTIFI	CATE OF TH	STS		REPU	BLIC EN	GINBEREL	PRODUCTS		June 3, 200 P/	9 NGE 1			
	E ORD: 130			-			URCHASE ORDER		4/15/200				
PART NO. ORDER N HEAT:	MBER: 1009 UMBER: 1405 5072	44B 650 - 1				1	CCOUNT NUMBER: CHEDULE: LEVISION:		5550-300 5977-68 1	7-02			
	TRINITY IN	DUSTRIE		******		1	RINITY INDUSTR	IES INC					
1	PO BOX SE	8887 4T	H FLOOR			5	APLE HEIGHTS,	78					
						,							
SIZE:	CAL PROPER RDS 1.2190 RDS 30.962	DIAN X	NR INFO ONLY EX COIL M X COIL	Ladu	TING	STRY 4	IN COLD WORKING						
0.24	0.4	5	p 0.013	0.00	3	0.14	0.05	0.05	0	R . 07			
V 0.002	MQ 0.0		51N 0,005	AJ. 0.03		CB 0.000	N 0.0060						- 1
REDUCTIO	ON RATIO 3	9.1 TO	1			86 TS		OR GRRATER	THAN .02	W PER			
REDUCTIO	ON RATIO 3 TIC GRAIN 1 9. THET STAN	9.1 TO SING S	1. OR FINER BASED	on a t BBMI - FINISH	otal ala Finisasi RD Size	BOTS UMINUM CO D RESULTS							
REDUCTION AUSTENIA ASTM A29 TENSILS	ON RATIO 3 TIC GRAIN : 9. THAT STAN TENS PSI	9.1 TO SING S DARD PO ILE) OR FINER BASED NRMAT XIRLD (0.24) PSI	on a t Semi - Finish Ra 7	TOTAL ALA PINISMSI RD 9122 B E	BOTS UMINUM CO D RESULTS	NTENT EQUAL TO						
REDUCTION AUSTENIA ASTM A23 TENSILS	on ratio 3 fic grain 1 9. Test fian Tens PSI 6453	9.1 TO SINE 5 DARD PC ILE Q) OR FINER BASED)RMAT YIRLD (0.24) PSI 38930	ON A T SEMI - FINISH RA 3 64.2	FINISHS FINISHS FD 912E 5 5 5 5 5 33.0	ests Uminum co d results results	NTENT EQUAL TO						
REDUCTION AUSTENII ASTM A21 TENSILS PCE 01 HARDNESS AVG	ON RATIO 3 TIC GRAIN 1 9. THET FTAN TENS PSI 6453 S TEST MID- 112	9.1 TO SINE S DARD FO LLE Q ASTM RADIUS) GR FINER BASED))RHAT YIRLD (0.24) FSI 30930 E10/ASTM 1370	OF A T BBMX - FINISH RA 8 64.2 HBW	PINISHS RD SIZE 5 5 33.0 A9-RLD	DESTS UMINUM CO D RESOLTS RESOLTS	NTENT EQUAL TO						
REDUCTION AUSTENIA ASTM A21 ASTM A21 AS	ON RATIO 3 TIC GRAIN 1 9. THET FTAN TENS PSI 6453 S TEST MID- 12 RNGINEERI MID- 12	9.1 TO SINE S DARD PC ILE Q ASTM RADIUS SD PROD KCE WITH	A OR FINER BASED DRMAT YIRLD (0.24) PSI 30930 E10/ASTM A370 E10/ASTM A370 H THS METHODS I	ON A T SEMI - FINISH RA 3 64.2 HBW	OTAL ALA FINISHSI RD SIZE 5 5 5 33.0 A9-RLD A9-RLD - NOTES HAT THE BED IN 7	MATERIAL MATERIAL	NTENT EQUAL TO	KAS BERN I IONS AND B	NSPECTED A	ND			
REDUCTION AUSTENIA ASTM A21 TENSILS PCE 01 HARDNESS AVG REPOBLIC TESTED I RESOLTS	ON RATIO 3 XIC GRAIN 9 9. THAT STAN FRI FRI G453 S TEST MID- 112- 122- S RECIMBERIA N ACCORDAN OF SUCH IN	9.1 TO SINE S DARD PC ILE 0 ASTM RADIUS ED PROD ICE WITH	A OR FINER BASED DRMAT YIRLD (0.24) PSI 30930 E10/ASTM A370 E10/ASTM A370 H THS METHODS I	ON A 1 SEMI - FINISH RA 8 64.2 HBW RTIFY T PRESCRI HAS RE	NOTAL ALA FINISHSI RD 9122 5 5 33.0 A9-RLD A9-RLD A9-RLD HAT THS BED IN 7 ZN APPRO	MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL RE GOVER	NTENT EQUAL TO	KAS BERN I IONS AND B	NSPECTED A	ND			the second s
REDUCTION AUSTENII AUSTENII ASTM A21 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ON RATIO 3 TIC GRAIN 1 9. THST STAN TENS PSI 6453 S TEST MID- 112 RNGINEERI N ACCORDAN OF SUCH IN 2ATE OF TES	9.1 TO SIXE S DARD PC LLE Q ASTM RADIUS SD PROD NCE WITT SIRPECTION	A OR FINER BASED NHAT YIRLD (0.24) PSI 31930 E10/ASTM A370 OCTS HEREBY CM H THS METHODS I ON AND TESTING LL NOT BE REPR	ON A I SEMI - FINISH RA 8 64.2 HBW ETIFY I RESCRI HAS RE EDUCED :	Thisks RD 9122 33.0 A9-RLD A9-RLD A9-RLD A9-RLD RLAT THE BBD XN 7 ZN APPEC EXCEPT 1	MATERIAL MATERIAL MATERIAL MATERIAL (NE GOVER) VED FOR (() FULL.	NTENT EQUAL TO	HAS BEEN I IONS AND B THE SPECIP	NSPECTED & ASED UPON ICATIONS.	ND			the second
REDUCTION AUSTENIZ ASTM A23 TENSILS PCE 01 HARDNESS AVG REPOBLIC TESTED I RESULTS CERTIFIC LL TEST RECORDIN	ON RATIO 3 XIC GRAIN 9 9. THET FIAN FSI G453 S TEST MID- 132 S REGIMENT N ACCORDAN OF SUCH IN CATS OF TESS FING HAS BY NG OF FALSE	9.1 TO SINE S DARD PC LLR Q ASTM RADIUS SD PRODUCE WITH SSPECTION SEN PERIOD	A OR FINER BASED NRAT YIRLD(0.24) PSI 30930 E10/ASTM A370 OCTS REREBY CB N AND TESTING LL NOT BE REPRO FORMED USING TO	ON A I SEMI - FINISH RA 8 64.2 HBW TIFY I PRESCRI HAS RE EDUCED : DE CURE ULENT :	NOTAL ALA PINISHSI RD 9122 5 5 5 33.0 A9-RLD A9-RLD A9-RLD A9-RLD A9-RLD A9-RLD A9-RLD A9-RLD A9-RLD A9-RLD A9-RLD A9-RLD A9-RLD A1-A1-A1-A1-A1-A1-A1-A1-A1-A1-A1-A1-A1-A	MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL RE COVEL IN FULL. SION OF 1	NTENT EQUAL TO	HAS BERN I IONS AND B INE SPRCIP CIFICATION	NSFECTED A ASED UPON [CATIONS. 5.	ND THE	, ,		the second
REDUCTION AUSTENIA AUSTENIA ASTM A22 TENSILUS PCE 01 HARDNESS AVG AFPOBLIC TESTED I RESULTS CERTIFIC ALL TEST RECORDINUS A FEL THE MATE	ON RATIO 3 XIC GRAIN 9 9. TEST STAN TENS PSI G453 S TEST MID- 112 S RNGINEERI N ACCORDAN OF SUCH IN CATE OF TESS NIG HAS BI NO OF FALSE ONY UNDER RIAL WAS N	9.1 TO SITE S DARD PC ILE 0 ASTM RADIUS 5D PRODUCE WITH SEPECTION STA SHALL SEN PERION SEN PERION STA STA	A OR FINER BASED WHAT YIRLD (0.24) PSI 13930 E10/ASTM A370 CCTS HEREBY CB H THS METHODS I ON AND TESTING LL NOT BE REPRO FORMED USING TH TITIOUS OR FRAID ATUES TITLE 10	ON A T SEMI - FINISH RA 8 64.2 HBW TIFY T RESCRI HAS RE SOUCED COLOR CLAPTS OR AM	NOTAL ALA PINISHSI RD SIZE 5 5 5 7 9 33.0 A9-RLD - NOTBS ENT THE BED IN 7 EN APPRC EXCEPT 1 SNT REVI STATEMEN R 47.	MATERIAL MATERIAL MATERIAL SIGN OF T	LISTED HERRIN VING SPECIFICAT SUNFORMANCE TO	HAS BEEN I THE SPECIF CIFICATION OCOMENT MA	NSPECTED A ASED UPON (CATIONS. 5. Y BR PONIS	ND THE			the second
REDUCTION AUSTENIA ASTM A23 FENSILUS PCE 01 HARDNESS AVG REPOBLIC FESTED I RESOLTS CERTIFIC VIL TEST RECORDINUS A FEL FOR MATE FOR MATE	ON RATIO 3 XIC GRAIN 9 9. THET STAN FSI G453 S TEST MID- 122 RMGINEERI N ACCORDAN OF SUCH IN CATS OF TES VING HAS BY NG OF FALSE ONY UNDER RIAL WAS N ROCKSSING	9.1 TO SIZE S DARD FO LLR 0 ASTM RADIUS 20 PROD 30 PROD 30 PROD 31 PROD 31 PRO 31 PRO	A OR FINER BASED DRMAT XIRUD (0.24) PSI 30930 E10/ASTM A370 E10/ASTM A370 DCTS HEREBY (PSI H THS METHODS I ON AND TESTING LL NOT BE REPRI FORMED USING TH TIXOUS OR FRALE ATUES TITUE 18 DSED TO MERCURY	ON A T SEMI - FINISH RA 8 64.2 HBW CTIPY T RESCRI HAS RE COUCED : CHAPTSI OR AN SSICN.	NOTAL ALA PINISHSI RD SIZE 5 5 5 33.0 A9-RLD - NOTES HAT THE BED IN 7 EN APERC EXCEPT 1 ENT REVI STATEMEN R 47. Y METAL	MATTRIAL MATTRIAL MATTRIAL MATTRIAL RESOLTS MATTRIAL REGOVERING SIGN OF THIS ALLOY THIS	NTENT EQUAL TO LISTED HERRIN VING SPECIFICAT JUNFORMANCE TO THE TRETING SPE TRIES ON THIS D	HAS BEEN I THE SPECIF CIFICATION OCOMENT MA	NSPECTED A ASED UPON (CATIONS. 5. Y BR PONIS	ND THE			and the second of a second of a second of the second of th
REDUCTION AUSITEMIA AUSITEMIA AUSITEMIA STEMIALS RECONTINUES AND REPORTS CERTIFIC ALL TEST RESOLTS CERTIFIC ALL TEST RESOLTS CERTIFIC ALL TEST RESOLTS CERTIFIC ALL TEST RESOLTS CERTIFIC ALL TEST RESOLTS RESOLTS RESOLTS RESOLTS REPORTS RESOLTS REPORTS RESOLT RESOLTS RESOLTS RESOLTS RESO	ON RATIO 3 TIC GRAIN 1 9. THST STAN TENS PST G451 S TEST MID- 112 RNG/NEBER C RNG/NEBER S DCH IN CATS OF TESS RING HAS BY ROCRSSING OR WELD RE	9.1 TO SIXE S DARD FO ILE ASTM RADIUS D PROD SPECTION SPE	A OR FINER BASED DRMAT YIRLD(0.24) FSI 38930 E10/ASTM A370 DCTS HEREBY CB H THS METHODS I ON AND TESTING LL NOT BE REPRO FORMED USING TH TIXOUS OR FRAID ATUSS TITLE 18 DSED TO MERCURY E IN OUR POSSE	ON A 1 SEMI - FINISH RA 8 64.2 HBW CTIPY T RESCRI HAS RE COLLENT : CHAPTES OR AM SSION.	YOTAL ALA PINISHSI RD SIZE 33.0 A9-RLD A9-RLD NOTBS HAT THE BED IN 7 EN APPEC EXCEPT 1 SINT REVI SILATEMEN R 47. Y METAL	MATTRIAL MATTRIAL MATTRIAL MATTRIAL RESOLTS MATTRIAL REGOVERING SIGN OF THIS ALLOY THIS	NTENT EQUAL TO LISTED HERRIN VING SPECIFICAT JUNFORMANCE TO THE TRETING SPE TRIES ON THIS D	HAS BEEN I THE SPECIF CIFICATION OCOMENT MA	NSPECTED A ASED UPON (CATIONS. 5. Y BR PONIS	ND THE	, T		and the second
REDUCTION AUSTENIA AUSTENIA AUSTENIA AUSTENIA TENSILUS REGO AUSTONISSS AVG AUSTONISSS AVG AUSTONISSS AVG AUSTONISSS AUSTONISSS AUSTONISSS AUSTONIS AUSTONIS AU	ON RATIO 3 TIC GRAIN 1 9. THET STAN TENS PSI G453 S TEST MID- 112 C RNOINEBEL C RNOINEBEL C RNOINEBEL RIAL WAS N ROOF FALGE CONY UNDER RIAL WAS N ROOF SALGE CONY UNDER RIAL WAS N ROOF SALGE CONY UNDER	9.1 TO SIZE S DARD PC ILR G ASTM RADIUS SD PROD KCE WITH SSPECTION STS SKAL SEN PERI SC FICTO ST SKAL SEN PERI SC FICTO SC WITH SPAIR WITH FED RELL	A OR FINER BASED NRMAT YIRLD(0.24) PSI 30930 E10/ASTM A370 OCTS HEREBY CB E10/ASTM A370 OCTS HEREBY CB E10/ASTM A370 CTS HEREBY CB OCTS HEREBY CB NATURE AND TESTING LL NOT BE REPAIL ATUES TITLE AB DSED TO MERCURY LE IN OUR POSSE AS PERFORMED ON	ON A 1 SEMI - FINISH RA 8 64.2 HBW TYPY T RESCRI HAS RE 200CED CHAPTE CHAPTE SSION. THIS I 1TEMS	YOTAL ALA PINISHSI RD SIZE 33.0 AS-RLD AS-RLD AS-RLD AS-RLD NOTES HAT THE BED IN 7 EXCEPT 1 SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT SIAT	MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL SIGN OF 1 MISSING OF 1 MISSIN	NTENT EQUAL TO LISTED HERRIN VING SPECIFICAT JUNFORMANCE TO THE TRETING SPE TRIES ON THIS D	HAS BEEN I THE SPECIF CIFICATION OCOMENT MA	NSPECTED A ASED UPON (CATIONS. 5. Y BR PONIS	ND THE	·		and the second
REDUCTION AUSTENIA AUSTENIA ASTM A22 TENSILUS PCE 01 HARDNESS AVG REPOBLIC TESTED I RESOLTS CERTIFIC ALL TEST RECORDING F HO WELD THE RESO RELATION R. A. T IRECTOR	ON RATIO 3 XIC GRAIN 1 9. THEY STAN TENS PSI 6453 S TEST MID- 132 S REGIMENT N ACCORDAN OF SUCH IN C RNGIMEERI IN ACCORDAN OF SUCH IN ATE OF TESS NG OF FALSE ONY UNDER ERIAL WAS N ROCKSSING OR WELD RE LITS REPORT ND MANUFAC BULLOCK QUAL. ASS	9.1 TO SIXE S SIXE S DARD FO LLR G ASTM RADIUS SD PRODUCT SD PRODUCT SD PRODUCT STS SHAI SEN PERIO ST FIFT OR WALL SPAIR W FED RELL TURED 1	A OR FINER BASED NEMAT YIRLD (0.24) PSI 30930 E10/ASTM A370 DCTS HEREBY CBJ H THS METHODS I ON AND TESTING LL NOT BE REPRI- FORMED USING TH TIOUS OR FRALE VIUSS TITLE 19 SEED TO MERCURY DE IN OUR POSSE AS PERFORMED ON ATE ONLY TO THE	ON A 1 SEMI - FINISH RA 8 64.2 HBW TYPY T RESCRI HAS RE 200CED CHAPTE CHAPTE SSION. THIS I 1TEMS	YOTAL ALA PINISHSI RD SIZE 33.0 A9-RLD A9-RLD NOTBS HAT THE BED IN 7 EN APPEC EXCEPT 1 SINT REVI SILATEMEN R 47. Y METAL	MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL SIGN OF 1 MISSING OF 1 MISSIN	NTENT EQUAL TO LISTED HERRIN VING SPECIFICAT JUNFORMANCE TO THE TRETING SPE TRIES ON THIS D	HAS BEEN I THE SPECIF CIFICATION OCOMENT MA	NSPECTED A ASED UPON (CATIONS. 5. Y BR PONIS	ND THE			and the second
REDUCTION AUSTENIA AND ASTM A23 TENSILUS PCE 01 HARDNESS AVG REPOBLIC TESTED I RESOLTS CERTIFIC VIL TEST RESOLTS CERTIFIC VIL TEST RECORDINUS A FEL MALES NO WELD HE RESO RELATION R. A. 1	ON RATIO 3 XIC GRAIN 1 9. THEY STAN TENS PSI 6453 S TEST MID- 132 S REGIMENT N ACCORDAN OF SUCH IN C RNGIMEERI IN ACCORDAN OF SUCH IN ATE OF TESS NG OF FALSE ONY UNDER ERIAL WAS N ROCKSSING OR WELD RE LITS REPORT ND MANUFAC BULLOCK QUAL. ASS	9.1 TO SIXE S SIXE S DARD FO LLR G ASTM RADIUS SD PRODUCT SD PRODUCT SD PRODUCT STS SHAI SEN PERIO ST FIFT OR WALL SPAIR W FED RELL TURED 1	A OR FINER BASED NEMAT YIRLD (0.24) PSI 30930 E10/ASTM A370 DCTS HEREBY CBJ H THS METHODS I ON AND TESTING LL NOT BE REPRI- FORMED USING TH TIOUS OR FRALE VIUSS TITLE 19 SEED TO MERCURY DE IN OUR POSSE AS PERFORMED ON ATE ONLY TO THE	ON A 1 SEMI - FINISH RA 8 64.2 HBW TYPY T RESCRI HAS RE 200CED CHAPTE CHAPTE SSION. THIS I 1TEMS	YOTAL ALA PINISHSI RD SIZE 33.0 AS-RLD AS-RLD AS-RLD AS-RLD NOTES HAT THE BED IN 7 EXCEPT 1 SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT SIAT	MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL SIGN OF 1 MISSING OF 1 MISSIN	NTENT EQUAL TO LISTED HERRIN VING SPECIFICAT JUNFORMANCE TO THE TRETING SPE TRIES ON THIS D	HAS BEEN I THE SPECIF CIFICATION OCOMENT MA	NSPECTED A ASED UPON (CATIONS. 5. Y BR PONIS	ND THE			and the second
REDUCTION AUSTENIA AUSTENIA ASTM A22 TENSILUS PCE 01 HARDNESS AVG REPOBLIC TESTED I RESOLTS CERTIFIC ALL TEST RECORDING F HO WELD THE RESO RELATION R. A. T IRECTOR	ON RATIO 3 XIC GRAIN 1 9. THEY STAN TENS PSI 6453 S TEST MID- 132 S REGIMENTIAL S REGIMENTIAL S REGIMENT N ACCORDAN OF SUCH IN ATE OF THESE NG HAS BI NG OF FALSE ONY UNDER SRIAL WAS N ROCKSSING OR WELD RE LITS REPORT ND MANUFAC BULLOCK QUAL. ASS	9.1 TO SIXE S SIXE S DARD FO LLR G ASTM RADIUS SD PRODUCT SD PRODUCT SD PRODUCT STS SHAI SEN PERIO ST FIFT OR WALL SPAIR W FED RELL TURED 1	A OR FINER BASED NEMAT YIRLD (0.24) PSI 30930 E10/ASTM A370 DCTS HEREBY CBJ H THS METHODS I ON AND TESTING LL NOT BE REPRI- FORMED USING TH TIOUS OR FRALE VIUSS TITLE 19 SEED TO MERCURY DE IN OUR POSSE AS PERFORMED ON ATE ONLY TO THE	ON A 1 SEMI - FINISH RA 8 64.2 HBW TYPY T RESCRI HAS RE 200CED CHAPTE CHAPTE SSION. THIS I 1TEMS	YOTAL ALA PINISHSI RD SIZE 33.0 AS-RLD AS-RLD AS-RLD AS-RLD NOTES HAT THE BED IN 7 EXCEPT 1 SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT REVI SIATEMENT SIAT	MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL MATERIAL SIGN OF 1 MISSING OF 1 MISSIN	NTENT EQUAL TO LISTED HERRIN VING SPECIFICAT JUNFORMANCE TO THE TRETING SPE TRIES ON THIS D	HAS BEEN I THE SPECIF CIFICATION OCOMENT MA	NSPECTED A ASED UPON (CATIONS. 5. Y BR PONIS	ND THE			

Figure A-20. Guardrail Nut Material Specifications, Test Nos. MGSMRH-1 and MGSMRH-2

Trinity Metals Laboratory A DIVISION OF TRINITY INDUSTRIES 4001 IRVING BLVD. 75247 - P.O. BOX 568887 OALLAS, TX 75359-6887 Phone: 214.589.7591 FAX: 214.589.7594	A COUNTY	8		
Lab No: 9080059F SUE HENLINE TRINTY MY PRODUCTS, LLC #55 ROLLFORM LIMA, OH 45801	Received Date: 08/07/2009 Heat Code: Heat Number: 5072080, PC or Work Order: 55-50083 Test Spoc: F606 ASTM Other Information: Lot # 0907	METHODS		
Hardness Type: HARDNESS ROCKWELL BV	Measured Value	Measured Amt	PASSED	
Hardness Location: SURFACE of WRENCH		88		
Hardness Average: 88	Measured Value	88		
OTHER TEST:				
Type; NUT PROOF LOAD		Quant	ity amount: 5	
Type: HEAD MARKINGS		Quant	ty amount 1	
TRNL			*	÷
*				
an a' gaala baalaa ah ahaanka ahaakaa ka kataankaa y		an a the state of		
Min contline the other to maritis to be a true and approximate	reditation effective through 12-31-09. This	report may not be used to cla	m product	
We certify the above results to be a true and accurate report will void certification. NVLAP Certificate of Acc certification, approval, or endorsement by NVLAP, Ni			2, 1	,
report will void certification. NVLAP Certificate of Acc		Mille Q	2 Anno and a second	
report will void certification. NVLAP Certificate of Acc	· . ·	Mialian B.		
report will void certification. NVLAP Certificate of Acc	Page 2 of 2	Mishal States		
report will void certification. NVLAP Certificate of Acc	Page 2 of 2	Mieler S.		
report will void certification. NVLAP Certificate of Acc	Page 2 of 2	Wielker St.		
report will void certification. NVLAP Certificate of Acc	Page 2 of 2	Mieler S.		

	5				
rinity Metals Laboratory DIVISION OF TRINITY INDUSTRIES OF IRVING BLVD. 75247 - P.O. BOX 568887 ALLAS, TX 75556-8887 Onc: 214.589.7561 FAX: 214.588.7694	Asta A			-	. *
MA. OH 45801	Received Date: 08/07/2009 Heat Code: Heat Numbor: 5072060 or Work Order: 55-50083 Test Spec: F806 ASTM M ther Information: Lot # 09071	ETHODS			÷
ARDNESS TEST:					
Hardness Type: HARDNESS ROCKWELL BW Hardness Location: SURFACE of WRENCH FLAT - A	Measured Value Measured Valuo	Measured Amt 89	PASSED		
Hardness Average: 88.5	Meesurad Value	88			
Hardness Type: HARDNESS ROCKWELL BW	Measured Value	Measured Amt	PASSED		
Hardmess Location: SURFACE of WRENCH FLAT - B Herdmess Average: 92	Measured Value Measured Value	92 92			
Hardness Type: HARDNESS ROCKWELL BW Hardness Location: SURFACE of WRENCH FLAT - C Mardness Average: 87.5	Measuréd Value	· Measured Amt 88 87	PASSED		
	Measured Value	Measured Amt	PASSED		
Hardness Type: HARDNESS-ROCKWELL BW Hardness Location: SURFACE of WRENCH FLAT - D Hardness Average: 89,5	Measured Value Measured Value	90 89			
		4			
cortify the above results to be a true and accurate roprocental ort will void certification, NVLAP Certificate of Accreditation off tification, approval, or endorsement by NVLAP, NIST, or any a	ective through 12-31-09. This re	port may not be used to cial	iction of this in product		
	• • • • • • • • • • • • • • • • • • •	Michael &	3		•
	Page 1 of 2				
-					

Figure A-22. Guardrail Nut Material Specifications, Test Nos. MGSMRH-1 and MGSMRH-2

402-751-3288

.

T I DEP
VI

TRINITY HIGHWAY PRODUCTS, LLC. 425 L. O'CONNOR AVENUE LIMA, OHIO 45881 419-227-1296

MATERIAL CERTIFICATION

CUSTOMER: STOCK	DATE: JANUARY 2, 2008
	INVOXCE #
	LQT #: 961229B
PART NUMBER: 3388G	QUANTITY: 103,132
description: 5/8° X i ½ de Bolt	DATE SHIPPED:
SPECIFICATIONS: ASTM A307-A/A153	HEAT #: 443270 & 446650

MATERIAL CHEMISTY

Same and the second	The state of the s	- BRAT		Part			and a second second	-	Ber	199.9				Contraction of the local division of the loc	and the second s	
C	MN	P	8	SI	CU	NI	CR	MO	AL	V	N	CB	SN	B	TA	MB
and the second	Longer and					_	_		1	_		1				
.09	.38	.886	.009	.100	.02	.06	.06	.02	.032	.601	.8060	.500	.005	10001	.001	.001
00	08	007	616	000	0.0	DC.	1001	8349	649	804	6670	000	000	.0001	0014	det
0000	23		PLAN (1020	1 100	UD	601	- St. 60	1443	LUUA !	1 25.5 1 1	20540	1000	10001	V CRAFT	.993

PLATING AND/OR PROTECTIVE COATING

HOT DIP GALVANIZING (OZ. PER SQ. FT.)	1.35 AVG.	
****THIS PRODUCT WAS MANUFACT	ured in the united states of America***	
THE MATERIAL USED IN THIS PRODUCT	WAS MELTED AND MANUFACTURED IN THE U.S.A.	
	BEST OF OUR KNOWLEDGE ALL INFORMATION	
	MINITY ELCHWAY PRODUCTS, LLC.	
STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED REFORE ME THIS 2 ²⁰ DAY OF JANUARY, 2008		
1. All	otary publac	
425 E. O'CONNOR AVENUE	LIMA, OINO 45801 419-227-1296	

Figure A-23. 1¹/₂-in. (38-mm) Hex Bolt Material Specifications, Test Nos. MGSMRH-1 and

 #25 E. O'Connor

 I.ima, OH

 *

 Customer:

 MIDWEST MACH.& SUPPLY CO.

 P. O. BOX \$1097

 *

.

Sales Order: 1093497 Customer PO: 2030 BOL # 43073 Document # 1 Print Date: 6/30/08 Project: RESALE Shipped To: NE Use State: KS

LINCOLN, NE 68501-1097

Trinity Highway Products. LLC

Certificate Of Compliance For Trinity Industries, Inc. ** SLOTTED RAIL TERMINAL ** NCHRP Report 350 Compliant

2	Pieces	Description	
MACHINERY	32	12/12/6/S SRT-1	and an and a state of the state
É.	32	12/250/SPEC/S SRT-2	
ġ	32 32	3/16X12.5X16 CAB ANC BRKT	
	32	2" X 5 1/2" PIPE (LONG)	
S	64	60 TUBE SL/188X8X6	
불	32	5/6 X 6 X 8 BEARING PLATE	
MIDWEST	32 32 32	12/BUFFER/ROLLED	
£.,		CBL 3/4X66/DBL SWG/NOEWD	
	640	5/8" RD WASHER 1 3/4 OD	
	1,728	5/8" GR HEX NUT	
	1,152 256	5/8"X1,25" GR BOLT 5/8"X1.5" HEX BOLT A307	
	230	5/8"X9.5" HEX BOLT A307	
	-04	JO ANJ HEA BUELASS	
	Thon delivery a	II materials subject to Trinity Highway Products, LLC Storage Stain Folicy No. LG-002.	
3088			
1			
20			
0			
YO	ALL STEEL US	ED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT	
	ALL GUARDR	AIL MEETS AASHTO M-130, ALL STRUCTURAL STEEL MEETS ASTM A36	
		ALVANIZED MATERIAL CONFORMS WITH ASTM-123.	
2	BOLTS COMPI	Y WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.	
	NUTS COMPLY	Y WITH ASTM A-363 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.	
1		6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II BREAKING	
	TRENGTH-49		
	vitate of Unio, Col	inty of Allen. Sworn and Subscribed before mother 30th day of June, 2008	
	5.	Trinity Highway Products, LLC M Qu' I Who D	
	Votary Public:	CORING Certified By: THERE LEANING	
	Inmusission Fra	nirae Ry h Val VIA	1 3- 1

Figure A-24. 9¹/₂-in. (241-mm) Hex Bolt Material Specifications, Test Nos. MGSMRH-1 and MGSMRH-2

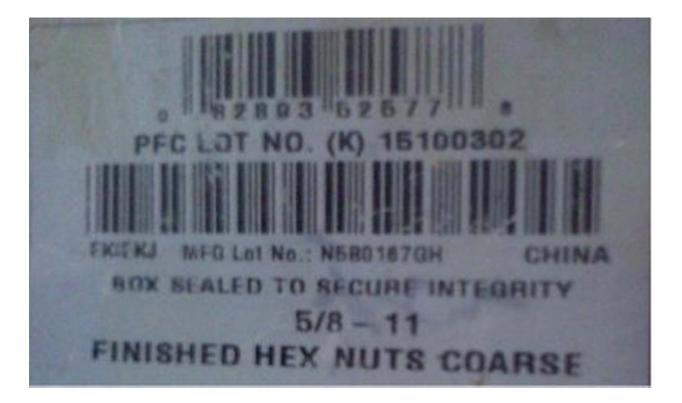


Figure A-25. ⁵/₈-in. (16-mm) Diameter Hex Nut Material Specifications, Test Nos.

 #25 E. O'Connor

 Lima, GH

 *

 Constoner:

 MIDWEST MACH.& SUPPLY CO.

 P. O. BOX \$1097

 *

.

Sales Order: 1093497 Customer PO: 2030 BOL # 43073 Document # 1 Print Date: 6/30/08 Project: RESALE Shipped To: NE Use State: KS

LINCOLN, NE 68501-1097

Trinity Highway Products. LLC

Certificate Of Compliance For Trinity Industries, Inc. ** SLOTTED RAIL TERMINAL ** NCHRP Report 350 Compliant

Pieces	Description		
N 32 HOVE 32	12/12/6/S SRT-1		
1HOAN 35	12/25'0/SPEC/S SRT-2 3/16X12.5X16 CAB ANC BRKT		
¥ 32	2" X 5 1/2" PIPE (LONG)		
5 64	6'0 TUBE SL/188X8X6		
学 32	5/8 X 6 X 8 BEARING PLATE		
32	12/BUFFER/ROLLED		
[≥] 32 640	CBL 3/4X6'6/DBL SWG/NOHWD 5/8" RD WASHER 1 3/4 OD		
1,728	5/8" GR HEX NUT		
1,152	5/8"X1.25" GR BOLT		
256	5/8"X1.5" HEX BOLT A307		
64	5%"X9.5" HEX BOLT A307		
	all materials subject to Trinity Highway Products, LLC Storage Stain Policy No. LG-002.	×.	
8865	· · ·		
7			
-08			
	SED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT		
	AIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 BALVANIZED MATERIAL CONFORMS WITH ASTM-123.		
	LY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UND	ESS OTHERWISE STATED.	
VILTS COMPL	Y WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLES	SS OTHERWISE STATED.	
14" DIA CABL	E 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II BR	EAKING	
STRENGTH-4			
State of Ohio, Co	sunty of Allen. Sworn and Subscribed before motifie 36th day of June, 2008	NO X	
5	Man Mill Certified By:	URE LAURAD	
Stotary Public:	CORLIGUE	X	
Inmusission Fr	mirae By h Val. VII A		1 3- 1

Figure A-26. 5%-in. (16-mm) Diameter Flat Washer Material Specifications, Test Nos. MGSMRH-1 and MGSMRH-2

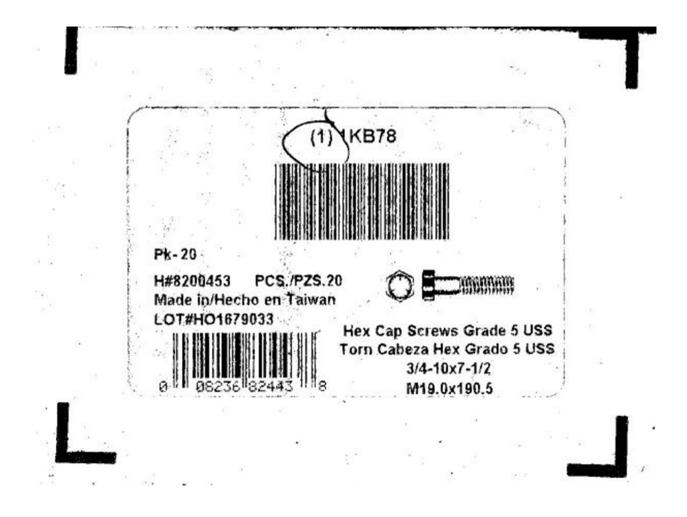


Figure A-27. ³/₄-in. (19-mm) Diameter Hex Bolt Material Specifications, Test Nos.

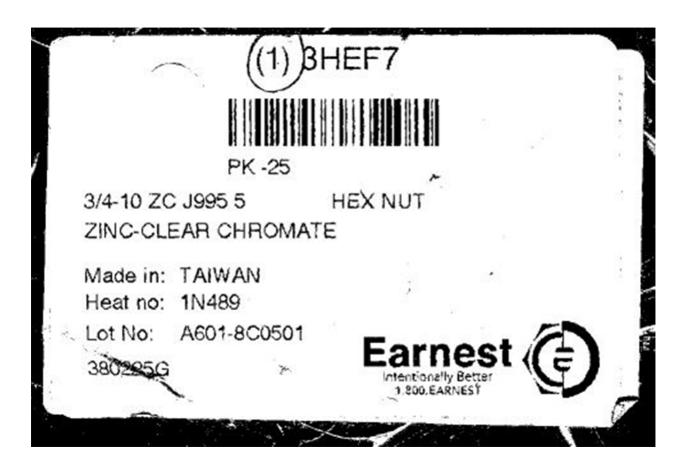


Figure A-28. ³/₄-in. (19-mm) Diameter Hex Nut Material Specifications, Test Nos.

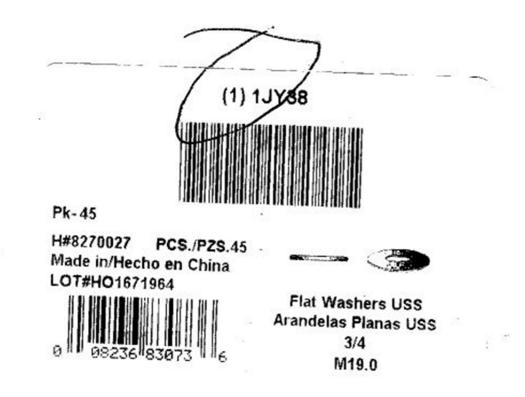


Figure A-29. ³/₄-in. (19-mm) Diameter Flat Washer Material Specifications, Test Nos.

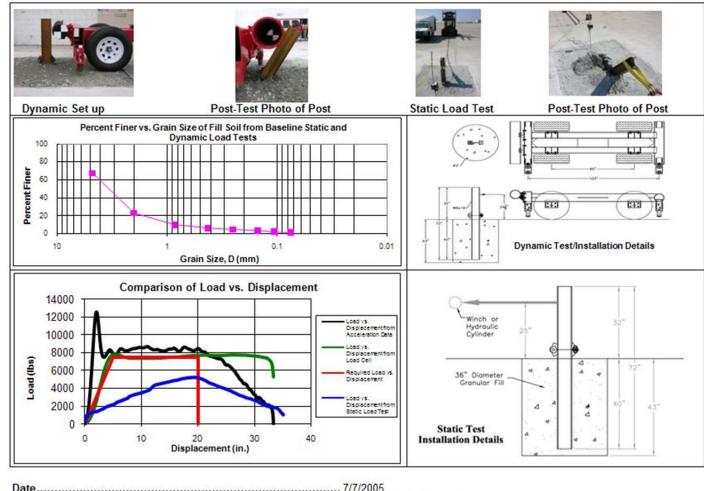
Appendix B - Vehicle Center of Gravity Determination

Test	MGSMRH-1		Vehicle:	1100C Rio S	edan	
			Vehicle C	G Determina	tion	
		Weight	Long CG	Lat CG	Long M	Lat M
VEHICLE	Equipment	(lb)	(in.)	(in.)	(lb-in.)	(lb-in.)
+	Unbalasted Car	2401	34.98	-0.62	83980	-1493.94
+	Brake receivers/wires	10	130	0	1300	0
+	Brake Frame	5	29	-13	145	-65
+	Brake Cylinder	22	63	14.5	1386	319
+	Strobe Battery	4	59	0	236	0
+	Hub	20	0	-38	0	-760
+	CG Plate (EDRs)	15	35.25	0	528.75	0
+	DTS	18	61	-13	1098	-234
-	Battery	-28	-9	-17.5	252	490
-	Oil	-6	-6	10	36	-60
-	Interior	-50	63	0	-3150	0
-	Fuel	-26	79	0	-2054	0
2	Coolant	-7	-19	4	133	-28
-	Washer fluid	-1	-15	20.5	15	-20.5
BALLAST	Water	41	79	0	3239	0
	Misc.				0	0
	Misc.				0	0
	TOTAL WEIGHT	2418	Ib	CG locat	87144.75 ion (in.) 36.04001	-1852.44 -0.7661
wheel base		in.				
	MASH targets			CURRENT	Difference	
	Test Inertial Wt (Ib)	2420	(+/-)55	2418	-2.0	
	Long CG (in.)	39	(+/-)4	36.04	-2.95999	
	Lateral CG (in.)	N/A		-0.77	NA	
	Note: Long. CG is me	asured fron	front axle	of test vehicle		
	Note: Lateral CG mea	isured from	centerline -	positive to vel	nicle right (passenge	er) side
				Du	mmy = 166lbs.	
	Curb Weight (lb)				tual test inertial weight	ght (lb)
	5 (<i>i</i>)				m scales)	
		Left	Right		MARYAND DAVIS AND AN AND AN	Right
	Front	759		Fro		729
	Rear	468		Re		461
	FRONT	1517	lb	FR	ONT 1500 I	b
	REAR	884		0000	AR 929	
	TOTAL	2401	24.6	District of the second s	TAL 2429	
	IVIAL	2401	10	10	TAL 2429	0

Figure B-1. Vehicle Mass Distribution, Test No. MGSMRH-1

Test	: MGSMRH-2		Vehicle: 1	100C RIO		
				G Determinat	A STATE OF A	
			Long CG		Long M	Lat M
VEHICLE	Equipment	(lb)	(in.)	(in.)	(lb-in.)	(lb-in.)
+	Unbalasted Car	2449	35.57	-0.06	87115	-142.656
+	Brake receivers/wires	6	132	0	792	0
+	Brake Frame	5	31	-13	155	-65
+	Brake Cylinder	22	64	16	1408	352
+	Strobe Battery	6	64	0	384	0
+	Hub	20	0	-37	0	-740
+	CG Plate (EDRs)	8	37	0	296	0
+	DTS	18	65	-9	1170	-162
-	Battery	-34	-8.5	-15	289	510
-	Oil	-5	-6.5	10	32.5	-50
-	Interior	-35	45	0	-1575	0
-	Fuel	-43	77	0	-3311	0
1	Coolant	-5	-18.5	0	92.5	0
-	Washer fluid	-2	-15.5	22	31	-44
BALLAST	Water				0	0
	Misc.	1			0	0
	Misc.				0	0
	TOTAL WEIGHT	2410	þ	CG locati	on (in.) 36.04938	-0.14177
wheel base		in.				
	MASH targets			URRENT	Difference	
	Test Inertial Wt (Ib)	2420 (2410	-10.0	
	Long CG (in.)		+/-)4	36.05	-2.95062	
	Lateral CG (in.)	N/A		-0.14	NA	
	Note: Long. CG is me					
	Note: Lateral CG mea	asured from c	enterline - I	positive to veh	icle right (passenge	er) side
				Dur	mmy = 166lbs.	
	Curb Weight (Ib)				ual test inertial wei n scales)	ght (Ib)
		Left F	Right		Left	Right
	Front	789	743	Fro		742
	Rear	438	479	Rea		455
	Real Providence	Carlowed R.	1.000			Sec.
	FRONT	1532 II	b	FR	ONT 1495 I	b
	REAR	917 1		RE		2.8.2
	TOTAL	2440 1		TO		

Figure B-2. Vehicle Mass Distribution, Test No. MGSMRH-2


TOTAL

2449 lb

TOTAL

2412 lb

Appendix C - Static Soil Tests

Date	. ////2005
Test Facility & Site Location	Midwest Roadside Safety Facility
In situ soil description (ASTM D2487)	Well Graded Gravel (GW)
Fill material description (ASTM D2487) & sieve analysis	Well Graded Gravel (GW) (see sieve analyses above)
Description of fill placement procedure	.6-inch lifts tamped with a pneumatic compactor
Bogie Weight	. 1605 lbs
Impact Velocity	. 19.08 mph

Figure C-1. Soil Strength, Initial Baseline Tests

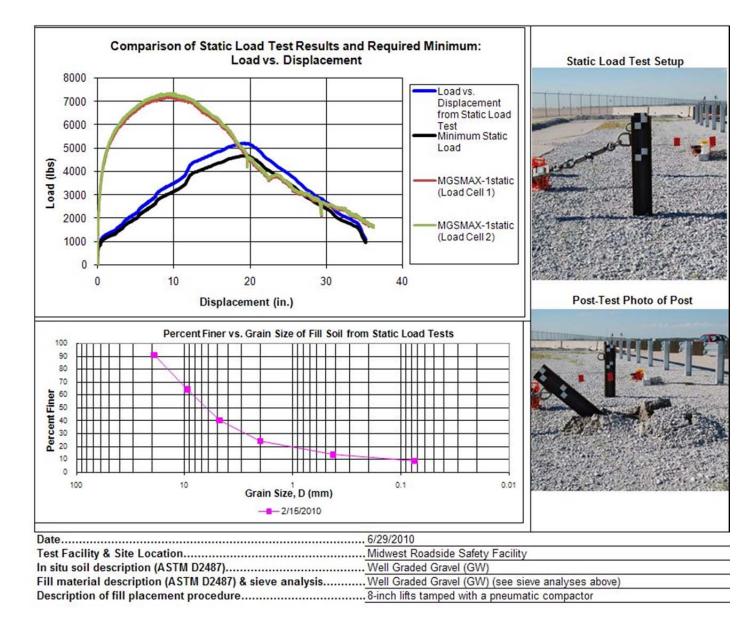


Figure C-2. Static Soil Test, Test No. MGSMRH-1

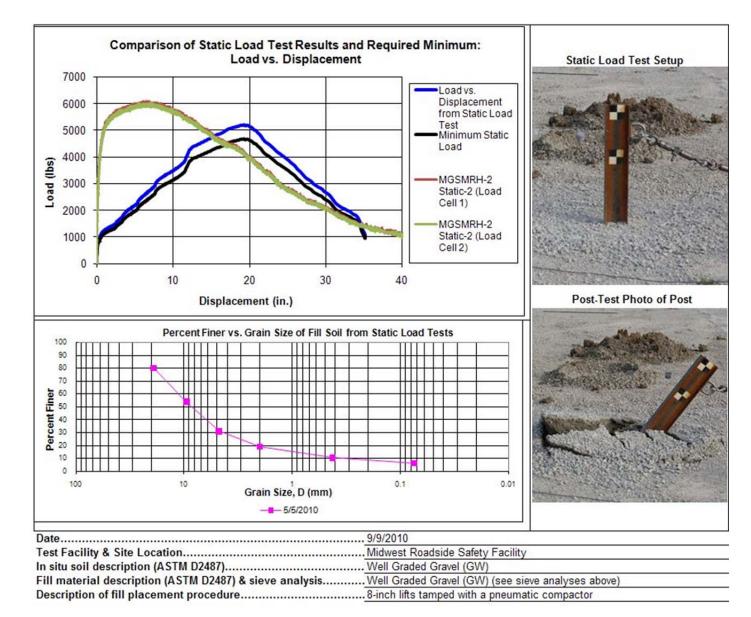


Figure C-3. Static Soil Test, Test No. MGSMRH-2

Appendix D - Vehicle Deformation Records

VEHICLE PRE/POST CRUSH FLOORPAN - SET 1

TEST: MGSMRH-1 VEHICLE: 1100C Rio Sedan Note: If impact is on driver side need to enter negative number for Y

	Х	Y	Z	X	Y'	Z	ΔX	ΔΥ	ΔZ
POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
1	28	8 1/4	-4 1/2	28 1/4	8 1/2	-4 3/4	1/4	1/4	- 1/4
2	29 3/4	12 3/4	-4 1/2	30	13	-4 1/2	1/4	1/4	0
3	30 1/4	18	-3 1/4	30	18 1/4	-3 1/2	- 1/4	1/4	- 1/4
4	26	24 3/4	-1 3/4	25 3/4	24 1/2	-1 3/4	- 1/4	- 1/4	0
5	23 3/4	7 1/2	-7 1/4	23 3/4	7 3/4	-7 1/2	0	1/4	- 1/4
6	25 3/4	12 3/4	-8 1/4	26	13	-8 1/4	1/4	1/4	0
7	26	17 1/4	-8	26 1/4	17 1/4	-7 1/4	1/4	0	3/4
8	24 1/4	25 3/4	-4 3/4	24 1/4	25 3/4	-4 3/4	0	0	0
9	20 1/4	7 1/2	-9 1/2	20 1/4	7 3/4	-9 1/2	0	1/4	0
10	21 1/4	13	-9 1/2	21 1/4	13 1/4	-9 3/4	0	1/4	- 1/4
11	22	19	-8 1/2	22	19 1/4	-8 3/4	0	1/4	- 1/4
12	22	24 1/2	-8 1/2	22 1/4	24 1/2	-8 1/2	1/4	0	0
13	16	8	-9	16	8 1/4	-9 1/4	0	1/4	- 1/4
14	16 1/2	13 1/4	-9	16 1/2	13 3/4	-9 1/4	0	1/2	- 1/4
15	17 3/4	18 1/4	-8 1/2	17 1/2	18 3/4	-8 3/4	- 1/4	1/2	- 1/4
16	18	25 1/2	-8 1/2	18	25	-8 1/2	0	- 1/2	0
17	9 3/4	3 1/4	-4 1/2	9 3/4	3 1/4	-4 3/4	0	0	- 1/4
18	11 1/4	8 1/4	-9	11 1/2	8 1/4	-9	1/4	0	0
19	11 3/4	13 1/2	-9	12	13 1/2	-9	1/4	0	0
20	12	18 1/4	-8 1/4	12	18 1/2	-8 1/2	0	1/4	- 1/4
21	14 1/2	24 1/4	-8 1/4	14 1/2	25	-8 1/4	0	3/4	0
22	4 3/4	4	-4 1/4	4 3/4	4	-4 1/4	0	0	0
23	6 1/2	11	-8 1/2	6 3/4	11 1/4	-8 3/4	1/4	1/4	- 1/4
24	7	19 1/2	-8	6 3/4	19 3/4	-8	- 1/4	1/4	0
25	6 3/4	25	-7 3/4	6 3/4	25 1/4	-7 3/4	0	1/4	0
26	3/4	6 1/2	-4 3/4	3/4	6 1/2	-4 3/4	0	0	0
27	1/2	13 1/4	-5 1/4	1/2	13 1/4	-5 1/4	0	0	0
28	1/2	23	-4 1/4	1/4	23 1/4	-4 1/4	- 1/4	1/4	0
29	-						0	0	0
30							0	0	0
31	-			1			0	0	0

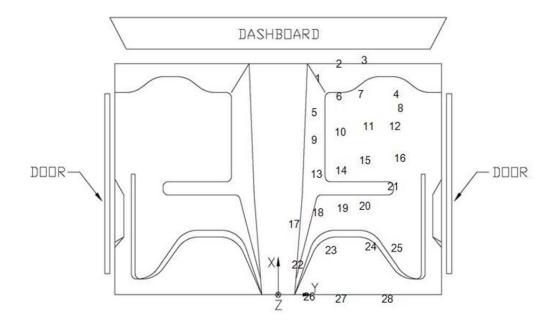


Figure D-1. Floor Pan Deformation Data – Set 1, Test No. MGSMRH-1

VEHICLE PRE/POST CRUSH FLOORPAN - SET 2

TEST: MGSMRH-1 VEHICLE: 1100C Rio Sedan Note: If impact is on driver side need to enter negative number for Y

	Х	Y	Z	Х	Y'	Z	ΔΧ	ΔΥ	۵Z
POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
1	38	12	-4	38	12	-4 1/4	0	0	- 1/4
2	40	16 1/2	-4 1/2	39 3/4	16 1/2	-4 3/4	- 1/4	0	- 1/4
3	40 1/4	22	-4	39 3/4	22	-4	- 1/2	0	0
4	35 3/4	28 1/4	-3	35 1/2	28 1/4	-3 1/4	- 1/4	0	- 1/4
5	33 3/4	11 1/4	-7	33 3/4	11 1/2	-7	0	1/4	0
6	36	16 1/4	-8 1/2	36	16 1/4	-8 1/2	0	0	0
7	36 1/4	21	-7 3/4	36 1/4	20 3/4	-7 3/4	0	- 1/4	0
8	34 1/4	29 1/2	-6 1/4	34 1/4	29 1/2	-6 1/4	0	0	0
9	30 1/2	11 1/2	-9	30 1/2	11 1/2	-9 1/4	0	0	- 1/4
10	31 1/2	16 3/4	-9 1/2	31 1/2	16 3/4	-10	0	0	- 1/2
11	32 1/4	22 3/4	-9 1/4	32 1/4	22 3/4	-9 1/2	0	0	- 1/4
12	32 1/2	27 3/4	-9 3/4	32 1/4	28	-10	- 1/4	1/4	- 1/4
13	26	11 1/2	-8 1/2	26 1/4	11 1/2	-9	1/4	0	- 1/2
14	26 3/4	17 1/4	-9 1/4	27	17	-9 1/2	1/4	- 1/4	- 1/4
15	28	22 1/4	-9 1/4	28	22 1/2	-9 1/2	0	1/4	- 1/4
16	28 1/4	28 1/4	-9 3/4	28 1/4	28 3/4	-9 3/4	0	1/2	0
17	19 1/2	7 1/4	-3 3/4	19 1/2	7 1/4	-4	0	0	- 1/4
18	22	11 1/2	-8 3/4	22	11 1/2	-8 3/4	0	0	0
19	22 1/2	17	-9	22 1/2	16 3/4	-9 1/4	0	- 1/4	- 1/4
20	22 3/4	21 1/2	-9	22 3/4	21 1/2	-9	0	0	0
21	25	28 1/4	-9 1/2	24 3/4	28 1/4	-9 1/2	- 1/4	0	0
22	14 3/4	8	-3 1/2	14 1/2	8	-3 1/2	- 1/4	0	0
23	17	14 1/2	-8 1/2	17	14 1/2	-8 3/4	0	0	- 1/4
24	17	23	-8 3/4	17 1/4	23	-8 3/4	1/4	0	0
25	17	28 1/2	-9 1/4	17 1/4	28 1/2	-9 1/4	1/4	0	0
26	10 3/4	10 1/2	-4 1/4	10 3/4	10 1/4	-4 1/2	0	- 1/4	- 1/4
27	10 3/4	17 1/4	-5 1/2	10 3/4	17	-5 1/2	0	- 1/4	0
28	10 3/4	27	-5 1/2	10 3/4	26 3/4	-5 1/2	0	- 1/4	0
29						0	0	0	0
30	Ş				3		0	0	0
31		3	5	1	3		0	0	0

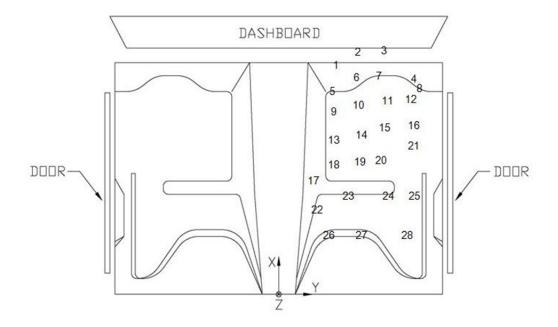


Figure D-2. Floor Pan Deformation Data - Set 2, Test No. MGSMRH-1

VEHICLE PRE/POST CRUSH INTERIOR CRUSH - SET 1

TEST: MGSMRH-1 VEHICLE: 1100C Rio Sedan Note: If impact is on driver side need to enter negative number for Y

		Х	Y	Z	X	Y'	Z	ΔX	ΔΥ	ΔZ
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
	A1	33 1/2	32	18 1/2	33 1/4	31 3/4	18 3/4	- 1/4	- 1/4	1/4
	A2	33 1/2	38 3/4	19	33 1/2	38 1/2	19	0	- 1/4	0
DASH	A3	33 1/2	45 1/2	19 1/4	33 1/2	45 1/2	19 1/4	0	0	0
DA	A4	28 1/2	33 1/4	14	28 1/4	32 1/2	13 3/4	- 1/4	- 3/4	- 1/4
	A5	28 1/2	40	14 1/4	28 1/2	39 1/4	14 1/4	0	- 3/4	0
_	A6	28 1/2	48 1/4	14 1/4	28 1/4	47 1/2	14 1/2	- 1/4	- 3/4	1/4
ш 🖬	B1	32 3/4	24 1/4	-3	32 3/4	24 3/4	-3 1/4	0	1/2	- 1/4
PANEL	B2	30	24 1/2	3/4	30	25	1/2	0	1/2	- 1/4
D d	B3	29	23 3/4	-2 1/2	29	24	-3	0	1/4	- 1/2
	C1	26 3/4	36	16 3/4	26 3/4	36	16 1/2	0	0	- 1/4
ä	C2	17 1/2	36	17 3/4	17 1/2	36 1/4	17 3/4	0	1/4	0
IMPACT SIDE DOOR	C3	8	36 3/4	18 3/4	8	37	18 3/4	0	1/4	0
BAC	C4	21 3/4	29 3/4	- 1/4	21 3/4	29 3/4	- 1/2	0	0	- 1/4
AP -	C5	13 3/4	29 1/2	-1 1/2	13 3/4	29 1/2	-1 1/2	0	0	0
-	C6	3 3/4	30 1/2	5	3 3/4	30 3/4	5 1/4	0	0 1/4	1/4
	D1							0	0	0
	D2							0	0	0
	D3							0	0	0
	D4							0	0	0
	D5							0	0	0
	D6							0	0	0
Ц.	D7							0	0	0
ROOF	D8							0	0	0
Ř	D9					1		0	0	0
	D10	_						0	0	0
	D11							0	0	0
	D12							0	0	0
	D13							0	0	0
	D14							0	0	0
	D15							0	0	0

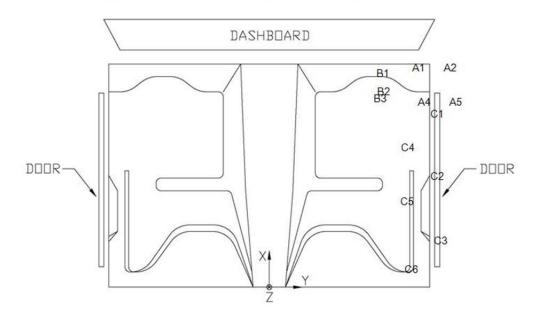


Figure D-3. Occupant Compartment Deformation Data - Set 1, Test No. MGSMRH-1

VEHICLE PRE/POST CRUSH INTERIOR CRUSH - SET 2

TEST: MGSMRH-1 VEHICLE: 1100C Rio Sedan Note: If impact is on driver side need to enter negative number for Y

1		Х	Y	Z	X	Y'	Z	ΔX	ΔΥ	۵Z
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
	A1	49 3/4	34 1/2	19	50	34 1/4	19	1/4	- 1/4	0
	A2	50	41	18 1/2	50 1/4	41	18 1/2	1/4	0	0
DASH	A3	50 1/4	48	17 3/4	50 1/4	48	17 3/4	0	0	0
DA	A4	45 1/2	34 1/4	14	45 3/4	34 1/4	14	1/4	0	0
	A5	45 3/4	41 1/4	13 1/2	45 3/4	41 1/4	13 1/2	0	0	0
	A6	45 1/2	49 1/2	12 3/4	45 1/2	49 1/4	13	0	- 1/4	1/4
	B1	52	28	-5	52	28	-4 3/4	0	0	1/4
PANEL	B2	49 1/4	27	-1	49 1/4	27	-1	0	0	0
P	B3	48 1/4	26 1/4	-4 1/4	48 1/2	26 1/4	-4 1/4	1/4	0	0
	C1	30 1/2	38	14 3/4	30 1/4	38	14 3/4	- 1/4	0	0
BOI	C2	21	38 3/4	16	21	38 3/4	16	0	0	0
T S SR	C3	11 1/2	39 1/2	17	11 1/2	39 1/2	17	0	0	0
DOAC	C4	28 1/4	33 1/4	-2	28 1/4	33 1/4	-2	0	0	0
IMPACT SIDE DOOR	C5	20 1/4	33 1/4	-3 1/4	20 1/4	33 1/4	-3	0	0	1/4
-	C6	8 3/4	34	3 1/4	9	34 1/4	3 1/2	1/4	1/4	1/4
	D1				í.			0	0	0
	D2				1			0	0	0
	D3							0	0	0
	D4							0	0	0
	D5							0	0	0
	D6							0	0	0
LL.	D7							0	0	0
ROOF	D8							0	0	0
R	D9							0	0	0
	D10							0	0	0
	D11						1	0	0	0
	D12							0	0	0
0	D13							0	0	0
9	D14							0	0	0
	D15							0	0	0

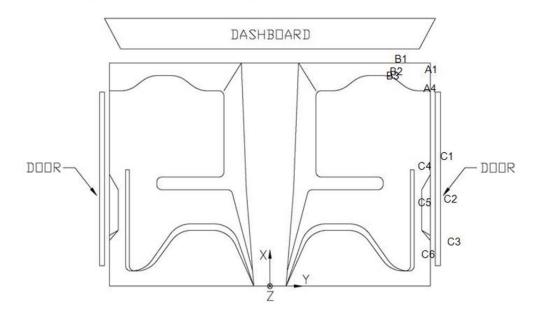
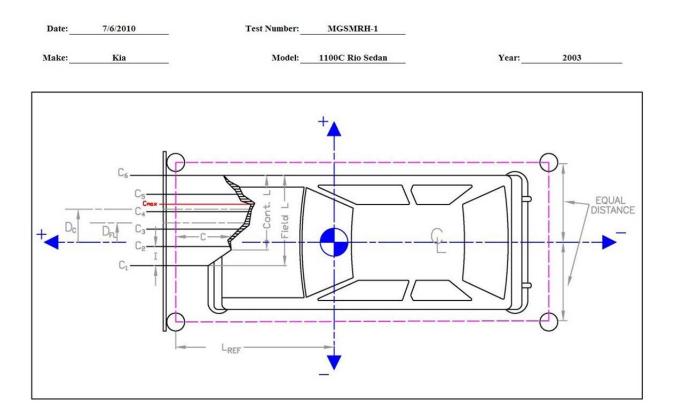
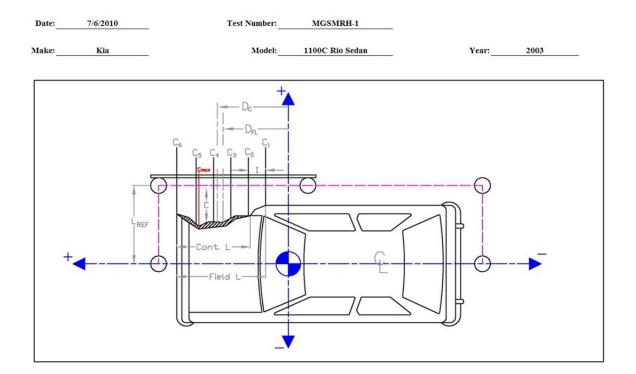



Figure D-4. Occupant Compartment Deformation Data - Set 2, Test No. MGSMRH-1



	in.	(mm)
Distance from C.G. to reference line - \mathbf{L}_{REF}	77	(1956)
Width of contact and induced crush - Field L:	32.125	(816)
Crush measurement spacing interval (L/5) - I:	6.425	(163)
Distance from center of vehicle to center of Field L - DFL:	16.0625	(408)
Width of Contact Damage:	28.125	(714)
Distance from center of vehicle to center of contect damage - D _C :	18.0625	(459)

NOTE: Enter "NA" for crush measurement if distance can not be measured (i.e., side of vehicle has been pushed inward)

	Crush Measurement				Late Loca			l Profile rement		ween Ref. nes	Actual	Crush
	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)		
C1	8	(203)	0	0	9.25	(235)	-1.54	-(39)	0.3	(7)		
22	9	(229)	6.425	(163)	9.39	(239)			1.1	(29)		
23	9.5	(241)	12.85	(326)	10.02	(254)			1.0	(26)		
24	14	(356)	19.275	(490)	11.52	(292)			4.0	(102)		
25	30	(762)	25.7	(653)	14.09	(358)			17.4	(443)		
26	31	(787)	32.125	(816)	29.50	(749)			3.0	(77)		
CMAX	30	(762)	25.7	(653)	14.09	(358)			17.4	(443)		

Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. MGSMRH-1

	in.	(mm)
Distance from centerline to reference line - \mathbf{L}_{REF}	39	(991)
Width of contact and induced crush - Field L:	166	(4216)
Crush measurement spacing interval (L/5) - I:	33.2	(843)
Distance from vehicle c.g. to center of Field L - DFL:	-14	-(356)
Width of Contact Damage:	58.75	(1492)
Distance from vehicle c.g. to center of contect damage - Dc:	39.875	(1013)

NOTE: Enter "NA" for crush measurement if distance can not be measured (i.e., front of vehicle has been pushed inward or tire has been remeoved)

	Crush Measurement				-	itudinal cation	Original Measu			Between Lines	Actual	Crush
	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)		
C1	NA	NA	-97	-(2464)	22.75	(578)	3	(76)	NA	NA		
C_2	7.5	(191)	-63.8	-(1621)	4.25	(108)			0.3	(6)		
C ₃	6.5	(165)	-30.6	-(777)	3.13	(79)			0.4	(10)		
C4	6.25	(159)	2.6	(66)	3.13	(79)			0.1	(3)		
C5	Na	NA	35.8	(909)	4.00	(102)			NA	NA		
C6	NA	NA	69	(1753)	23.50	(597)			NA	NA		
CMAX	14	(356)	47	(1194)	4.38	(111)			6.6	(168)		

Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. MGSMRH-1

VEHICLE PRE/POST CRUSH FLOORPAN - SET 1

TEST: MGSMRH-2 VEHICLE: 1100C RIO Note: If impact is on driver side need to enter negative number for Y

	Х	Y	Z	Х	Y'	Z	ΔX	ΔΥ	ΔZ
POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
1	27 1/2	8	-4 3/4	27 1/2	8	-4 1/2	0	0	1/4
2	29 1/4	12 3/4	-4 3/4	29 1/4	12 3/4	-4 1/2	0	0	1/4
3	28 3/4	17	-4 1/2	28 3/4	17 1/2	-4	0	1/2	1/2
4	26 1/4	24	-1 3/4	26	24 1/2	-1 1/4	- 1/4	1/2	1/2
5	24 1/4	8	-6 1/4	24 1/4	8	-6	0	0	1/4
6	25 1/2	11 1/4	-8	25 1/2	11 1/4	-7 1/2	0	0	1/2
7	25 3/4	17	-7	26	17	-6 1/2	1/4	0	1/2
8	24 1/2	24 3/4	-4 3/4	24 1/4	25	-4 1/2	- 1/4	1/4	1/4
9	20 1/2	8	-8 3/4	20 1/2	8	-8 1/2	0	0	1/4
10	21 1/2	12 3/4	-9	21 1/2	12 3/4	-8 3/4	0	0	1/4
11	21 3/4	17	-8	22	17	-7 3/4	1/4	0	1/4
12	21 1/2	23 3/4	-8 1/4	21 1/2	23 3/4	-7 3/4	0	0	1/2
13	16 1/4	7 1/2	-8 1/4	16 1/4	7 1/2	-8 1/4	0	0	0
14	16 1/2	13 3/4	-8 1/2	16 3/4	13 1/2	-8 1/4	1/4	- 1/4	1/4
15	17	18 1/2	-8	17	18 1/2	-7 3/4	0	0	1/4
16	18	24 1/2	-8	18	24 3/4	-7 1/2	0	1/4	1/2
17	9 3/4	4	-3 1/2	9 3/4	4	-3 1/2	0	0	0
18	11 1/2	7 3/4	-8	11 1/2	7 3/4	-8	0	0	0
19	11 3/4	14	-8	11 3/4	13 3/4	-7 3/4	0	- 1/4	1/4
20	12	18 1/2	-7 1/2	12	18 3/4	-7 1/2	0	1/4	0
21	11 1/4	24 1/2	-7 1/2	11 1/4	24 1/2	-6 1/2	0	0	1
22	6 1/4	4	-3 1/4	6	4	-3 1/4	- 1/4	0	0
23	6 3/4	11 1/4	-7 3/4	6 3/4	11 1/4	-7 1/2	0	0	1/4
24	6 3/4	18 1/2	-7 1/4	6 3/4	18 3/4	-7	0	1/4	1/4
25	7 3/4	25 1/4	-7 1/4	7 1/2	25	-6 1/2	- 1/4	- 1/4	3/4
26	1 1/4	7 3/4	-4	1 1/4	7 3/4	-3 3/4	0	0	1/4
27	1	17 1/4	-4 1/2	1	17 1/4	-4 1/4	0	0	1/4
28	1 1/2	24 1/2	-3 3/4	1 1/2	24 1/4	-3 3/4	0	- 1/4	0
29			0	2			0	0	0
30							0	0	0
31	S	5 m	S	1. C		5 m	0	0	0

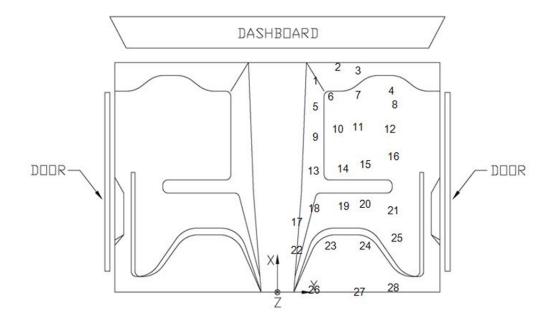


Figure D-7. Floor Pan Deformation Data – Set 1, Test No. MGSMRH-2

VEHICLE PRE/POST CRUSH FLOORPAN - SET 2

TEST: MGSMRH-2 VEHICLE: 1100C RIO Note: If impact is on driver side need to enter negative number for Y

	Х	Y	Z	X	Y'	Z	ΔX	ΔΥ	ΔZ
POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
1	33.5	11.25	-4.25	33.5	11.75	-4.25	0	1/2	0
2	35.25	16.5	-4	35.25	16.25	-4.25	0	- 1/4	- 1/4
3	34.75	21.25	-3.75	34.5	21.25	-4	- 1/4	0	- 1/4
4	32	28	-1.25	31.75	28.5	-1.25	- 1/4	1/2	0
5	30.25	11.25	-5.75	30.25	11	-5.75	0	- 1/4	0
6	31.75	14.25	-7.5	31.75	14.75	-7.25	0	1/2	1/4
7	32	20.25	-6.5	32	20.5	-6.5	0	1/4	0
8	30.25	29	-4.5	30.25	29.5	-4.5	0	1/2	0
9	26.5	11.5	-8.5	26.5	11.25	-8.5	0	- 1/4	0
10	27.5	16.25	-8.5	27.5	16.25	-8.75	0	0	- 1/4
11	28	20.25	-7.5	28	20.5	-7.75	0	1/4	- 1/4
12	27.5	27.5	-8	27.5	28	-8	0	1/2	0
13	22.25	11.5	-8	22.5	11.25	-8	1/4	- 1/4	0
14	22.75	17	-8.25	23	16.75	-8.5	1/4	- 1/4	- 1/4
15	23.25	21.75	-8	23.25	22	-8	0	1/4	0
16	24	28.25	-8	24	28.5	-7.5	0	1/4	1/2
17	15.75	8	-3.5	15.75	8	-3.5	0	0	0
18	17.5	11.75	-8	17.5	11.25	-8	0	- 1/2	0
19	18	17.75	-8	18	17.5	-8	0	- 1/4	0
20	18.25	22.25	-7.75	18.25	22.5	-7.75	0	1/4	0
21	17.5	28.25	-7.75	17.25	28.5	-6.75	- 1/4	1/4	1
22	12.25	8	-3.25	12	7.5	-3.25	- 1/4	- 1/2	0
23	12.75	15.25	-7.75	13	15.25	-8	1/4	0	- 1/4
24	13	22.25	-7.5	13	22.5	-7.5	0	1/4	0
25	14	29	-7.5	13.5	29.25	-7	- 1/2	1/4	1/2
26	7.25	11.5	-4.25	7.5	11.5	-4.25	1/4	0	0
27	7	21	-4.75	7.25	21	-4.75	1/4	0	0
28	7.25	28.25	-4.25	7.5	28	-4.25	1/4	- 1/4	0
29	*	2			9 - 1 I I	200 B 100 B	0	0	0
30							0	0	0
31	1. 1.		·		S-	· · · · · · · · · · · · · · · · · · ·	0	0	0

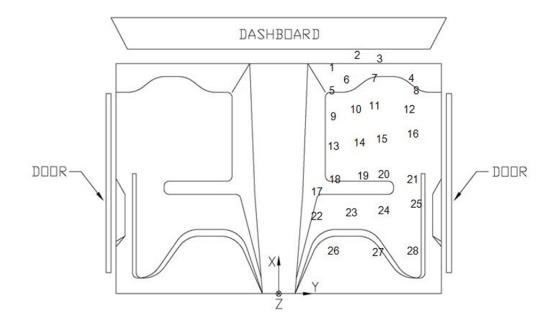


Figure D-8. Floor Pan Deformation Data – Set 2, Test No. MGSMRH-2

VEHICLE PRE/POST CRUSH INTERIOR CRUSH - SET 1

TEST: MGSMRH-2 VEHICLE: 1100C RIO Note: If impact is on driver side need to enter negative number for Y

		Х	Y	Z	X	Y	Z	ΔX	ΔΥ	ΔZ
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
	A1	49 3/4	31 3/4	19 3/4	49 3/4	31 1/2	20	0	- 1/4	1/4
	A2	50 1/4	39	19 3/4	50 1/4	39	20	0	0	1/4
SH	A3	50 1/4	45 1/2	19 1/2	50	45 1/2	19 3/4	- 1/4	0	1/4
DASH	A4	45 1/4	33 1/4	14 1/2	45 1/4	33	14 3/4	0	- 1/4	1/4
	A5	45 1/2	39 3/4	14 3/4	45 1/2	39 1/2	14 3/4	0	- 1/4	0
_	A6	45 1/2	47	14 3/4	45 1/2	47	15	0	0	1/4
ᇤᆏ	B1	21	23 1/4	1/2	21	23 1/4	1/2	0	0	0
SIDE	B2	22 1/4	23 1/2	-2 3/4	22 1/2	23 3/4	-2 1/2	1/4	1/4	1/4
P	B3	19 3/4	23	-2 1/2	19 3/4	23 1/4	-2 1/4	0	1/4	1/4
	C1	26	33	17	25 3/4	33	17 1/4	- 1/4	0	1/4
SIDE	C2	15	36 1/2	18 1/2	14 3/4	36 3/4	18 1/2	- 1/4	1/4	0
OR	C3	6 3/4	37 1/4	19 3/4	6 1/2	37 1/2	19 3/4	- 1/4	1/4	0
IMPACT SI DOOR	C4	21 1/2	26	1	21 1/2	26	1	0	0	0
MP	C5	15	29 3/4	- 3/4	14 1/2	29 3/4	- 1/2	- 1/2	0	1/4
_	C6	3 1/2	30 1/2	3	3 1/4	30 1/4	3 1/4	- 1/4	- 1/4	1/4
	D1							0	0	0
	D2							0	0	0
6	D3							0	0	0
	D4							0	0	0
	D5	Om	nitted due to	o improbabi	lity of dama	age		0	0	0
	D6							0	0	0
L	D7)		0	0	0
ROOF	D8							0	0	0
Ř	D9							0	0	0
	D10							0	0	0
	D11							0	0	0
	D12							0	0	0
	D13							0	0	0
	D14							0	0	0
	D15							0	0	0

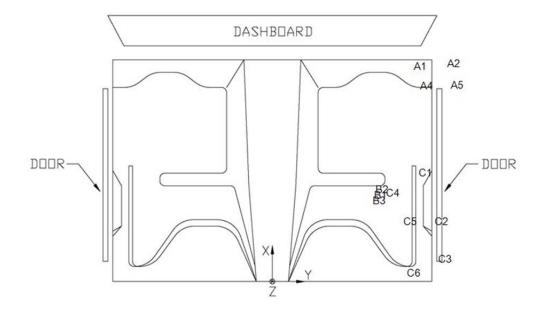


Figure D-9. Occupant Compartment Deformation Data - Set 1, Test No. MGSMRH-2

VEHICLE PRE/POST CRUSH INTERIOR CRUSH - SET 2

TEST: MGSMRH-2 VEHICLE: 1100C RIO

Note: If impact is on driver side need to enter negative number for Y

		Х	Y	Z	X	Y'	Z'	ΔX	ΔΥ	۵Z
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
	A1	32 3/4	32 3/4	19 3/4	32 3/4	32 1/2	19 1/2	0	- 1/4	- 1/4
	A2	33 1/4	39 1/4	19 3/4	33	39 3/4	20	- 1/4	1/2	1/4
DASH	A3	33 1/4	45 3/4	19 1/2	33	46	19 3/4	- 1/4	1/4	1/4
	A4	29 3/4	33 3/4	14 3/4	29 1/2	33 3/4	14 3/4	- 1/4	0	0
	A5	29 3/4	40 1/4	15	29 3/4	40 1/4	14 3/4	0	0	- 1/4
_	A6	30	47 1/4	15	29 3/4	47 1/2	14 3/4	- 1/4	1/4	- 1/4
шd	B1	26 1/2	24 1/2	3/4	26 1/2	24 1/2	1/2	0	0	- 1/4
PANEL	B2	28	24	-2 1/2	28 1/4	24 1/4	-2 1/2	1/4	1/4	0
PLOS	B3	25 1/2	23 3/4	-2 1/4	25 1/2	24	-2 1/4	0	1/4	0
10	C1	30	57 1/4	17	30	57	17	0	- 1/4	0
B	C2	19 1/4	57 1/2	18	19	57 1/4	18	- 1/4	- 1/4	0
IMPACT SIDE DOOR	C3	11	57 1/2	19	11	57 3/4	19	0	1/4	0
	C4	28 1/2	53 1/4	3/4	28 1/2	53 3/4	1/2	0	1/2	- 1/4
MP	C5	22 1/2	53 1/4	-1	22 1/4	53 1/4	-1	- 1/4	0	0
-	C6	11 1/4	53 1/4	2 1/2	11	53 1/4	2 1/2	- 1/4	0	0
	D1							0	0	0
	D2				1			0	0	0
	D3							0	0	0
	D4			· · · · · · · · · · · · · · · · · · ·				0	0	0
	D5	On	nitted due t	o improbab	ility of dama	age		0	0	0
	D6							0	0	0
L	D7							0	0	0
ROOF	D8							0	0	0
Ř	D9							0	0	0
	D10							0	0	0
	D11							0	0	0
	D12							0	0	0
	D13							0	0	0
	D14							0	0	0
	D15							0	0	0

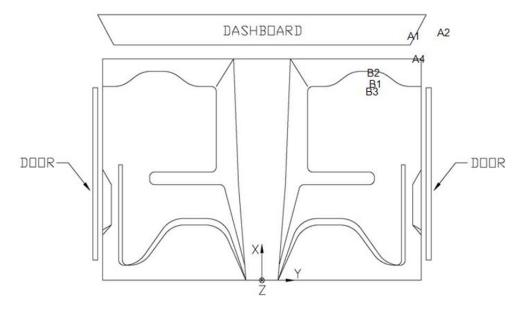
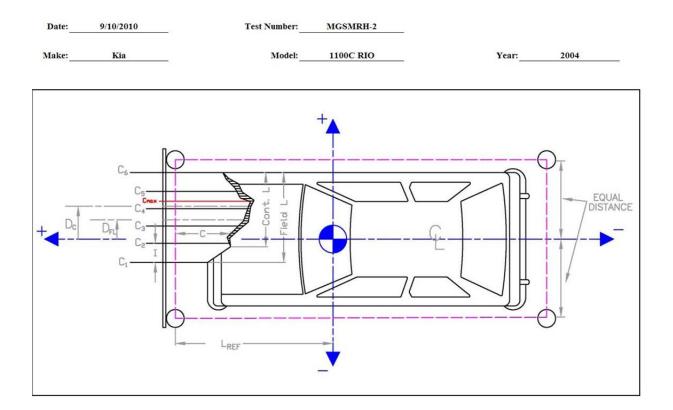



Figure D-10. Occupant Compartment Deformation Data – Set 2, Test No. MGSMRH-2


b	

in.	(mm)
71.75	(1822)
32.375	(822)
6.475	(164)
16.1875	(411)
25.375	(645)
19.6875	(500)
	71.75 32.375 6.475 16.1875

NOTE: Enter "NA" for crush measurement if distance can not be measured (i.e., side of vehicle has been pushed inward)

	Crush Measurement		Late Loca			l Profile rement	101010101010101	ween Ref. nes	Actual	Crush
	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)
C_1	3	(76)	0	0	9.25	(235)	-6.80	-(173)	0.5	(14)
C2	3.5	(89)	6.475	(164)	9.39	(239)	-		0.9	(23)
C3	4.25	(108)	12.95	(329)	10.02	(254)			1.0	(26)
C4	9.5	(241)	19.425	(493)	11.52	(292)			4.8	(122)
C5	12.25	(311)	25.9	(658)	14.23	(362)			4.8	(122)
C ₆	NA	NA	32.375	(822)	29.50	(749)			NA	NA
CMAX	8.25	(210)	14	(356)	10.25	(260)			4.8	(122)

Figure D-11. Exterior Vehicle Crush (NASS) - Front, Test No. MGSMRH-2

	in.	(mm)
Distance from centerline to reference line - \mathbf{L}_{REF}	39	(991)
Width of contact and induced crush - Field L:	90.75	(2305)
Crush measurement spacing interval (L/5) - I:	18.15	(461)
Distance from vehicle c.g. to center of Field L - DFL:	24.375	(619)
Width of Contact Damage:	90.75	(2305)
Distance from vehicle c.g. to center of contect damage - Dc:	50.25	(1276)

NOTE: Enter "NA" for crush measurement if distance can not be measured (i.e., front of vehicle has been pushed inward or tire has been remeoved)

	Crush Measurement		Longitudinal Location		Original Profile Measurement		Dist. Between Ref. Lines		Actual	Crush
	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)	in.	(mm)
C1	7.25	(184)	-21	-(533)	3.13	(79)	3	(76)	1.1	(29)
C2	7.25	(184)	-2.85	-(72)	3.13	(79)			1.1	(29)
C3	7.75	(197)	15.3	(389)	3.13	(79)			1.6	(41)
C4	7.75	(197)	33.45	(850)	4.00	(102)			0.8	(19)
C5	12.25	(311)	51.6	(1311)	4.03	(102)			5.2	(133)
C ₆	NA	NA	69.75	(1772)	23.50	(597)			NA	NA
CMAX	18	(457)	57	(1448)	5.00	(127)			10.0	(254)

Figure D-12. Exterior Vehicle Crush (NASS) - Side, Test No. MGSMRH-2

Appendix E - Accelerometer and Rate Transducer Data Plots, Test No. MGSMRH-1

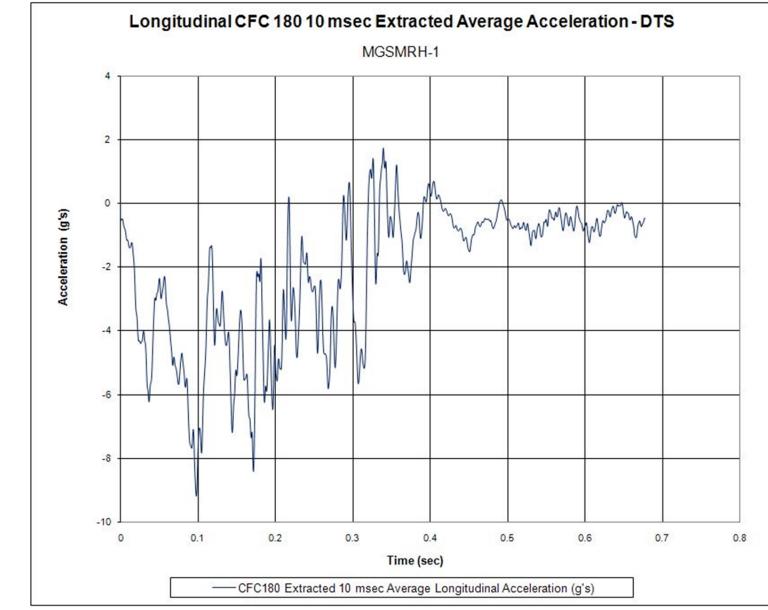


Figure E-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. MGSMRH-1

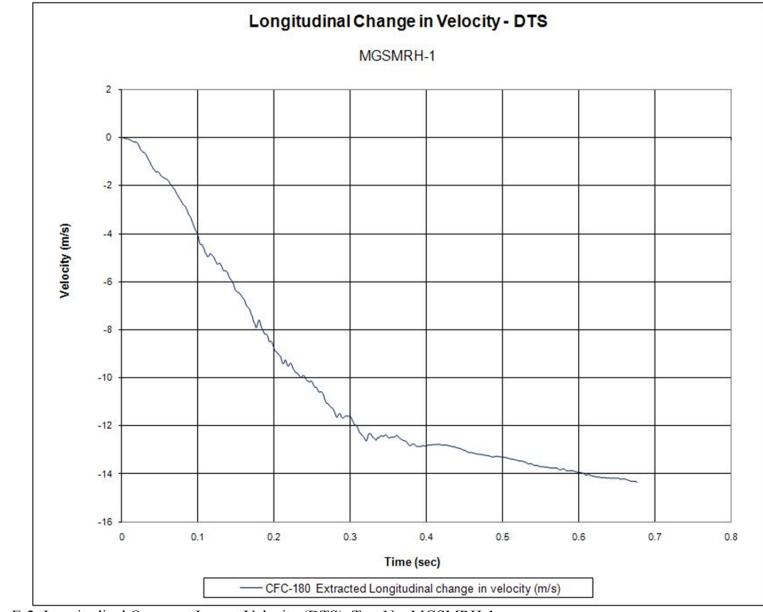


Figure E-2. Longitudinal Occupant Impact Velocity (DTS), Test No. MGSMRH-1

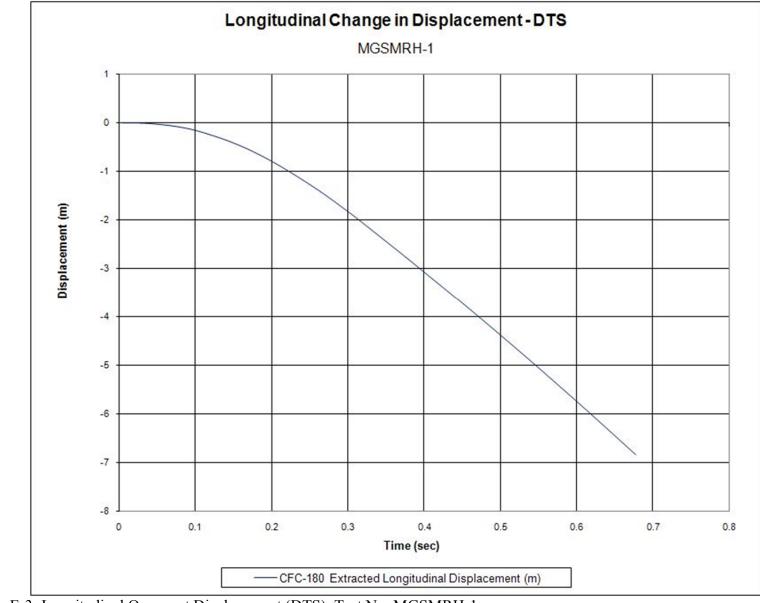


Figure E-3. Longitudinal Occupant Displacement (DTS), Test No. MGSMRH-1

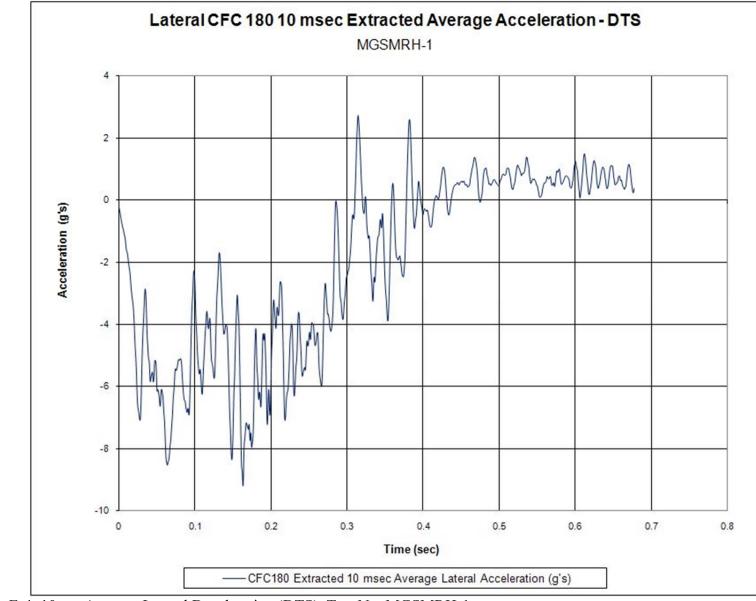


Figure E-4. 10-ms Average Lateral Deceleration (DTS), Test No. MGSMRH-1

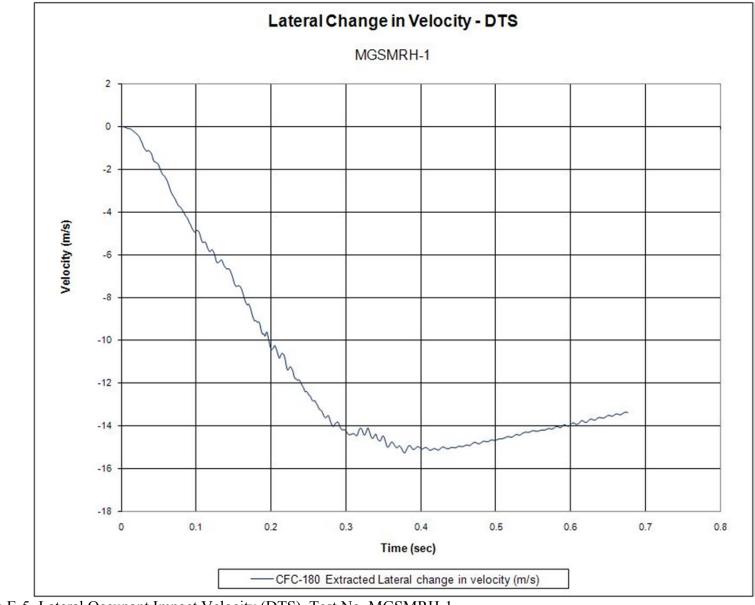


Figure E-5. Lateral Occupant Impact Velocity (DTS), Test No. MGSMRH-1

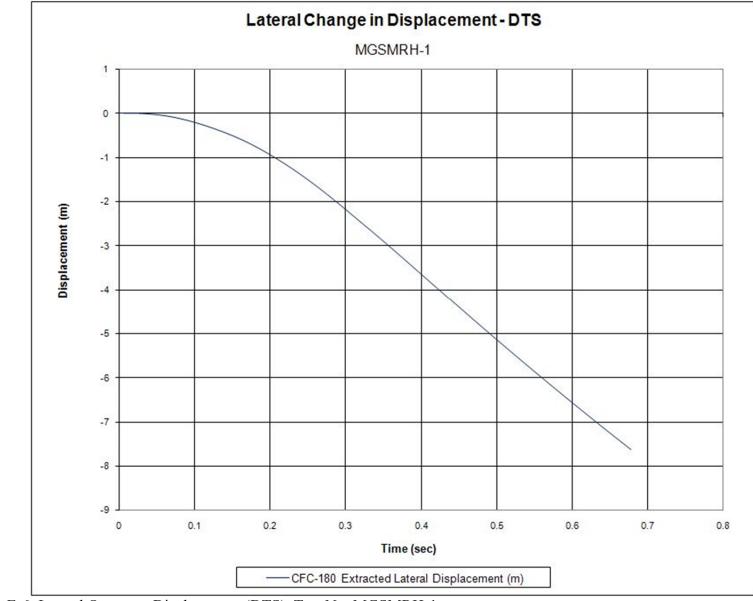


Figure E-6. Lateral Occupant Displacement (DTS), Test No. MGSMRH-1

Figure E-7. Vehicle Angular Displacements (DTS), Test No. MGSMRH-1

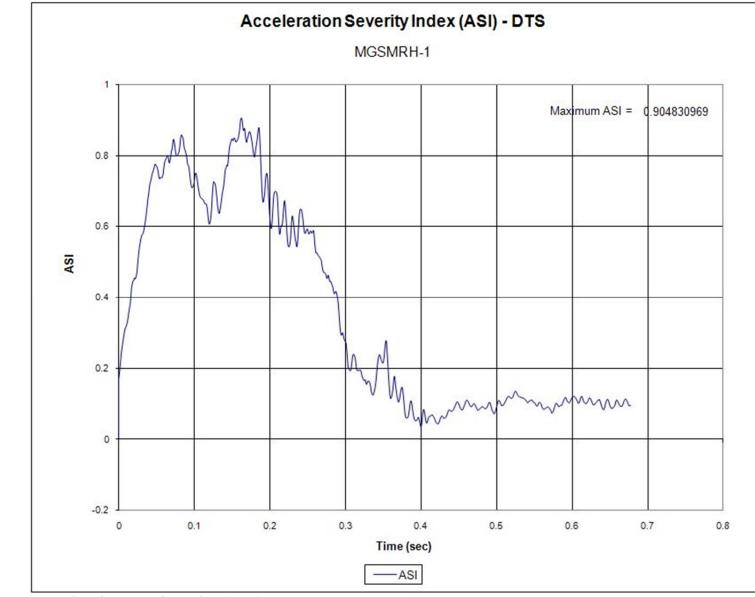


Figure E-8. Acceleration Severity Index (DTS), Test No. MGSMRH-1

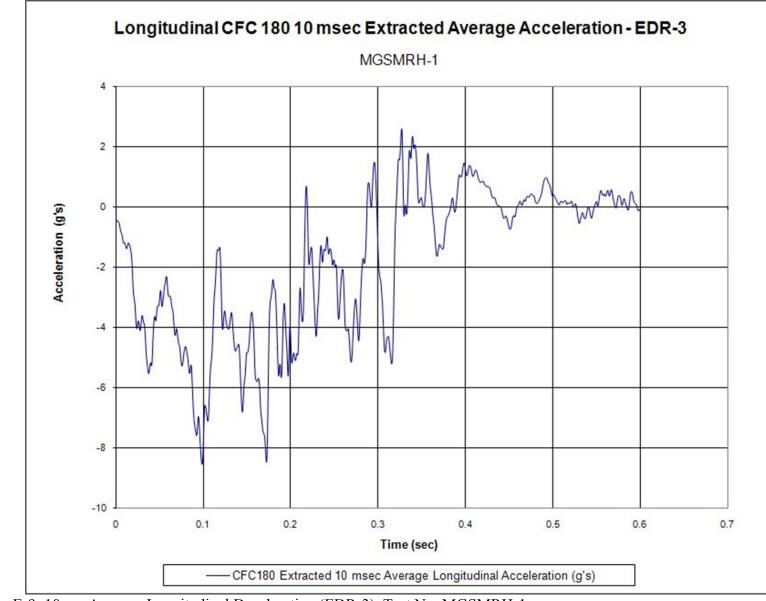


Figure E-9. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. MGSMRH-1

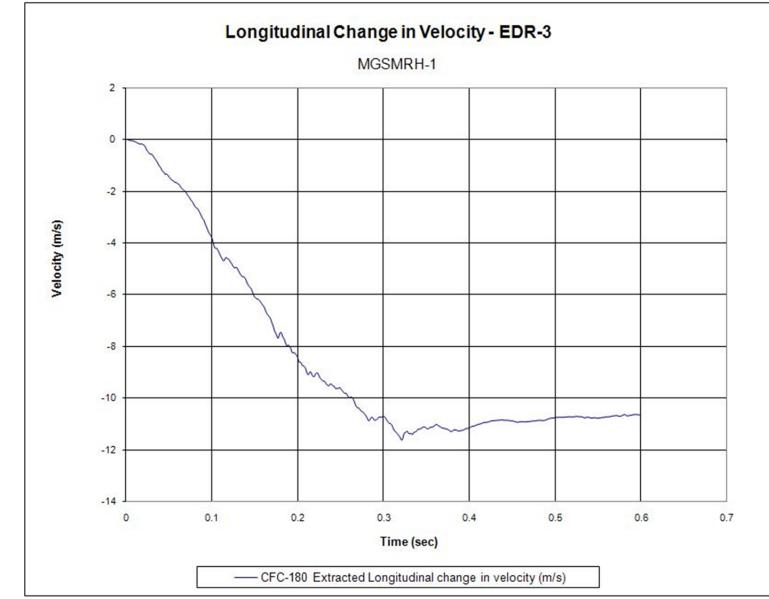


Figure E-10. Longitudinal Occupant Impact Velocity (EDR-3), Test No. MGSMRH-1

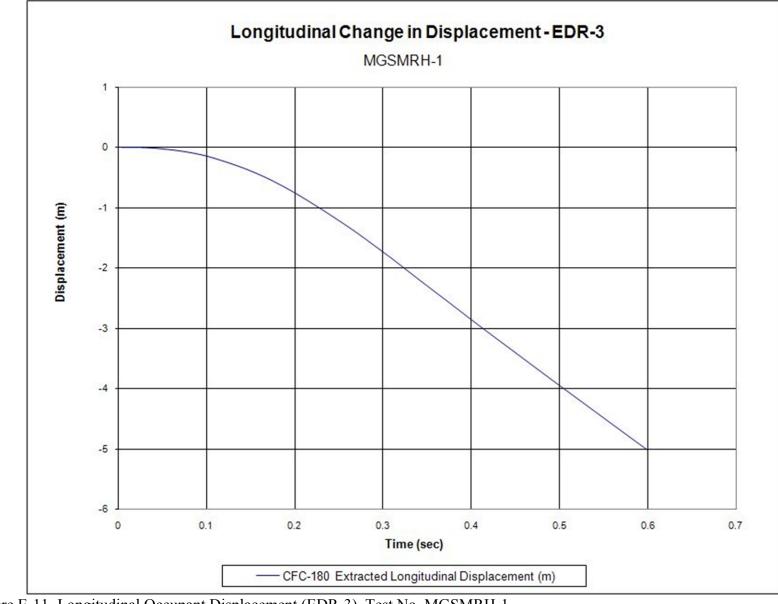


Figure E-11. Longitudinal Occupant Displacement (EDR-3), Test No. MGSMRH-1

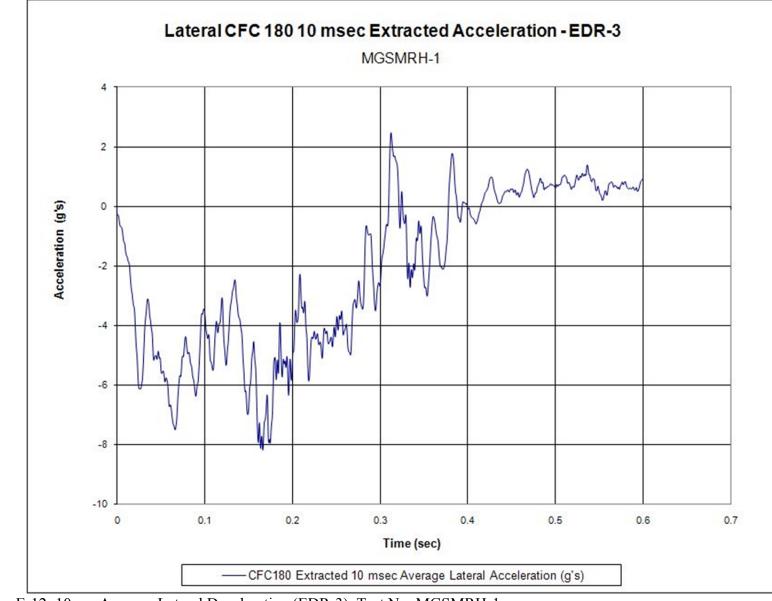


Figure E-12. 10-ms Average Lateral Deceleration (EDR-3), Test No. MGSMRH-1

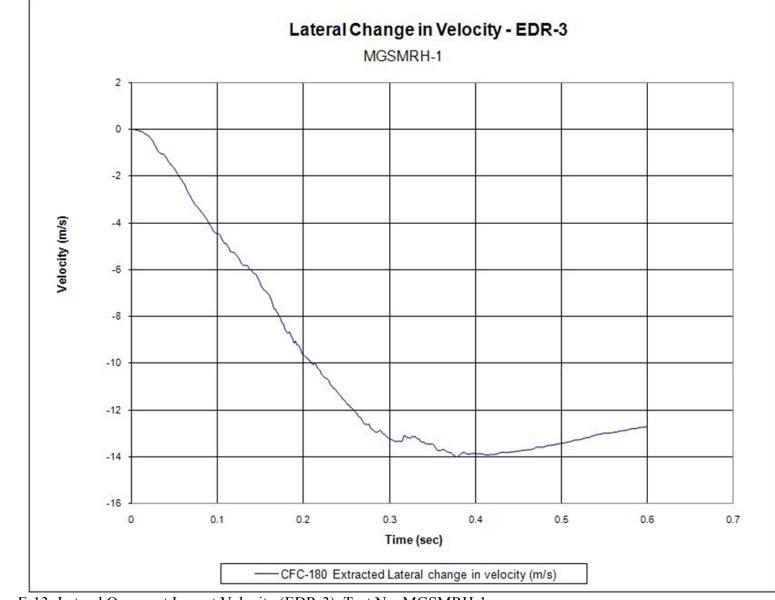


Figure E-13. Lateral Occupant Impact Velocity (EDR-3), Test No. MGSMRH-1

Figure E-14. Lateral Occupant Displacement (EDR-3), Test No. MGSMRH-1

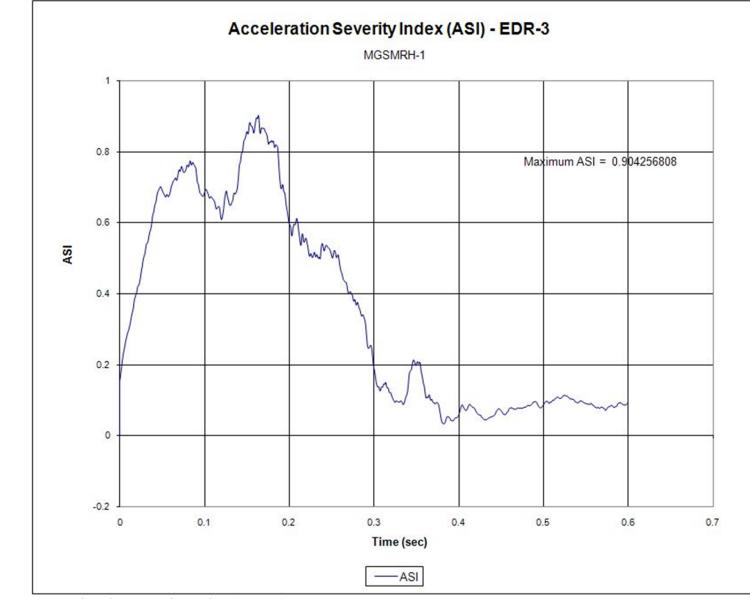


Figure E-15. Acceleration Severity Index (EDR-3), Test No. MGSMRH-1

Appendix F – System Details, Test No. MGSMRH-2

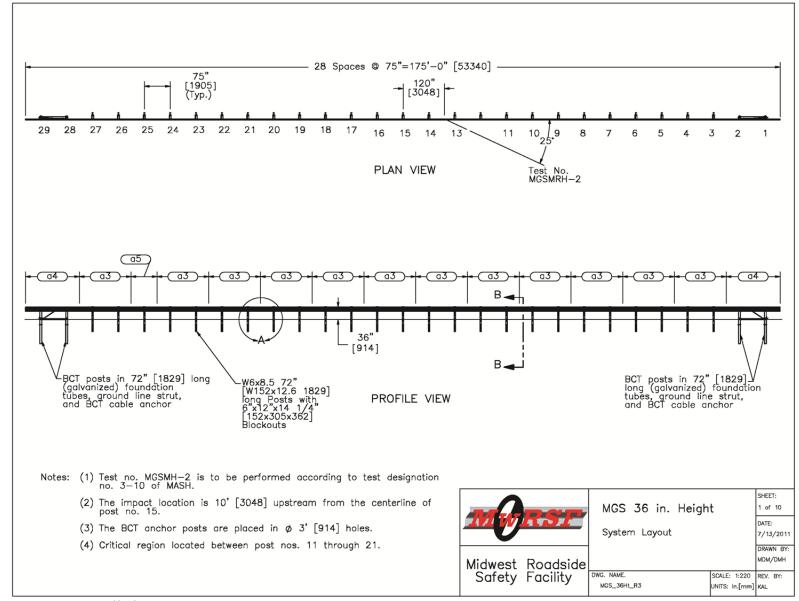


Figure F-1. Test Installation Layout, Test No. MGSMRH-2

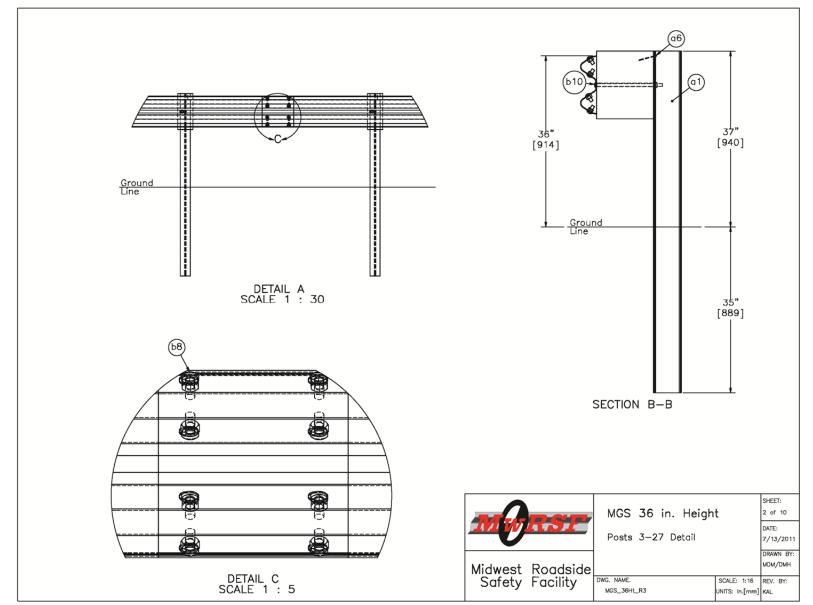


Figure F-2. 36-in. (914-mm) Tall MGS Details, Test No. MGSMRH-2

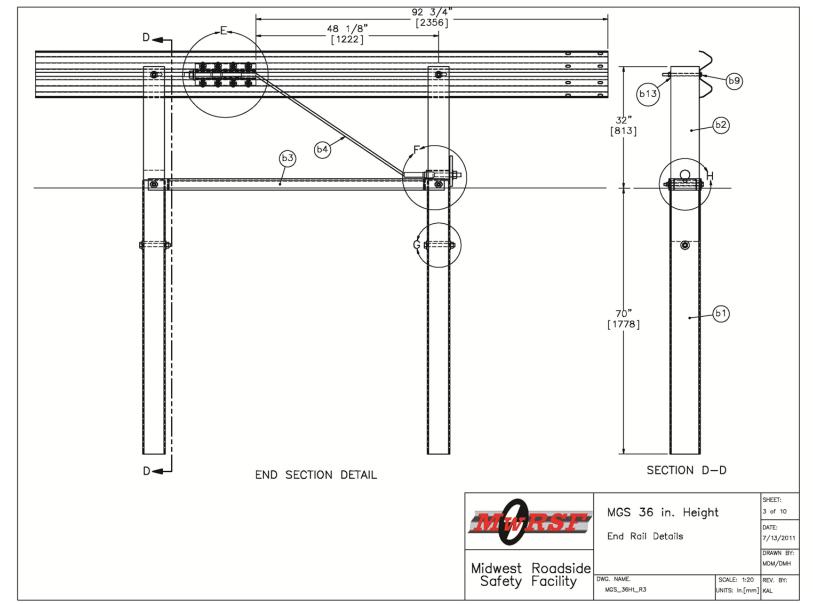


Figure F-3. BCT End Anchor Details, Test No. MGSMRH-2

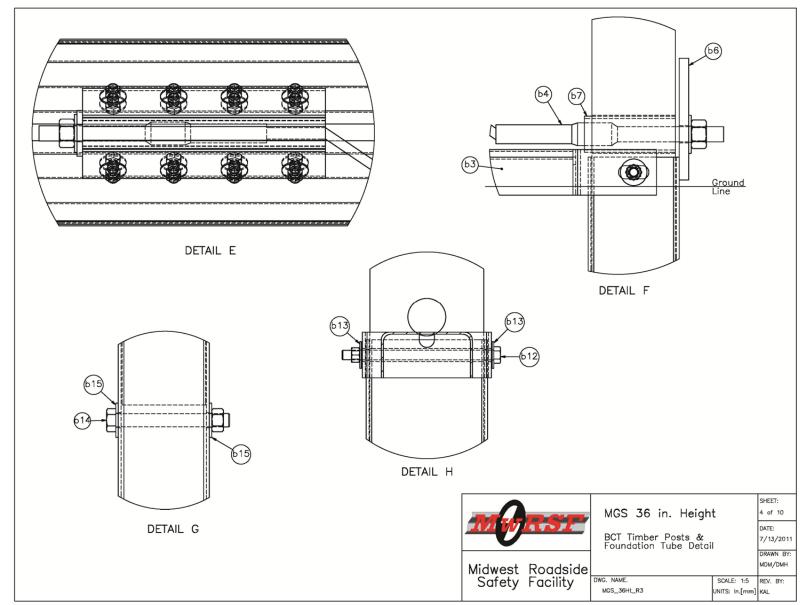


Figure F-4. BCT End Anchor Details, Test No. MGSMRH-2

196

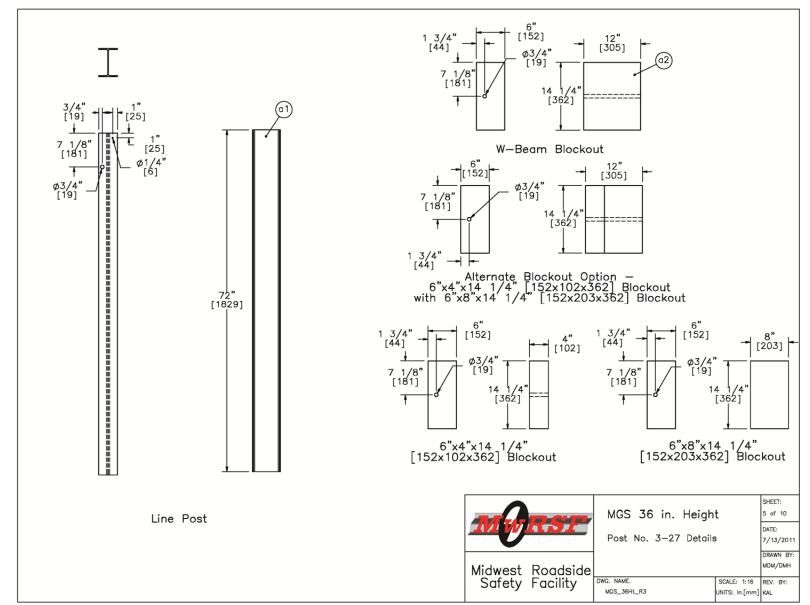


Figure F-5. Line Post Details, Test No. MGSMRH-2

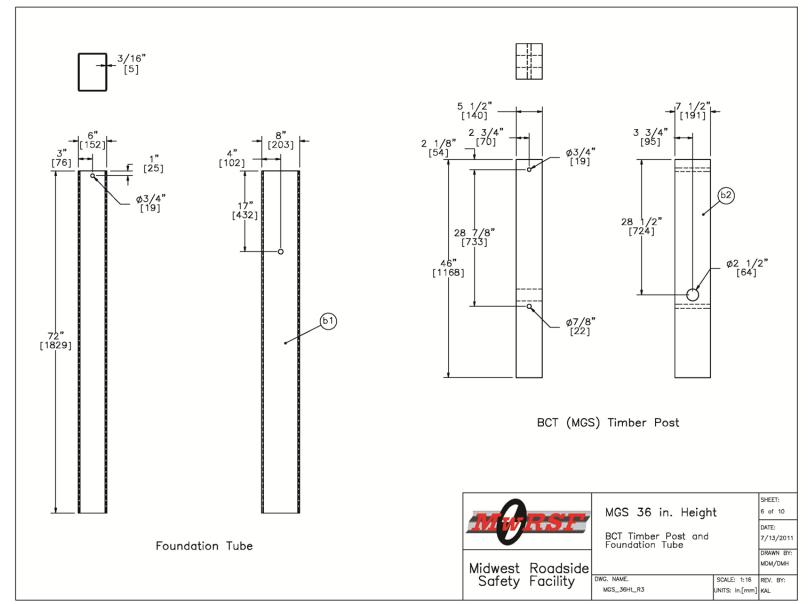


Figure F-6. Anchor Post Details, Test No. MGSMRH-2

198

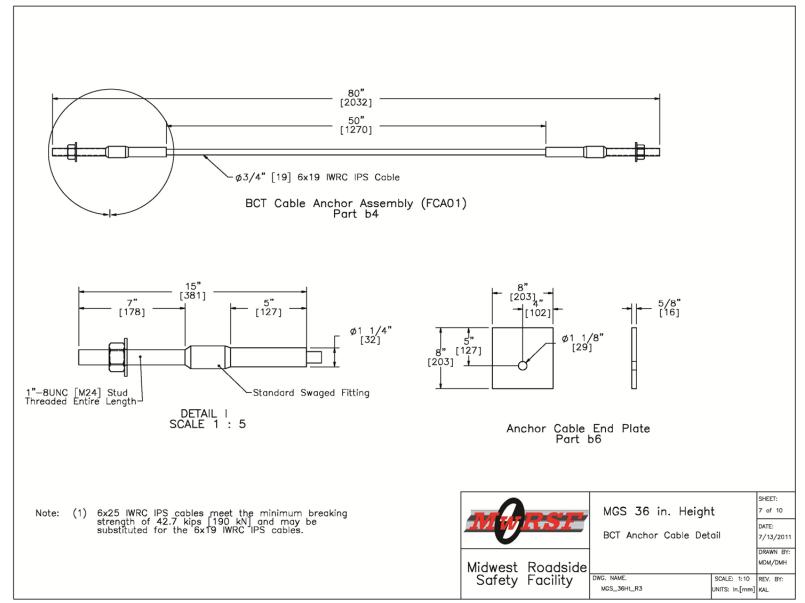


Figure F-7. BCT Anchor Cable Details, Test No. MGSMRH-2

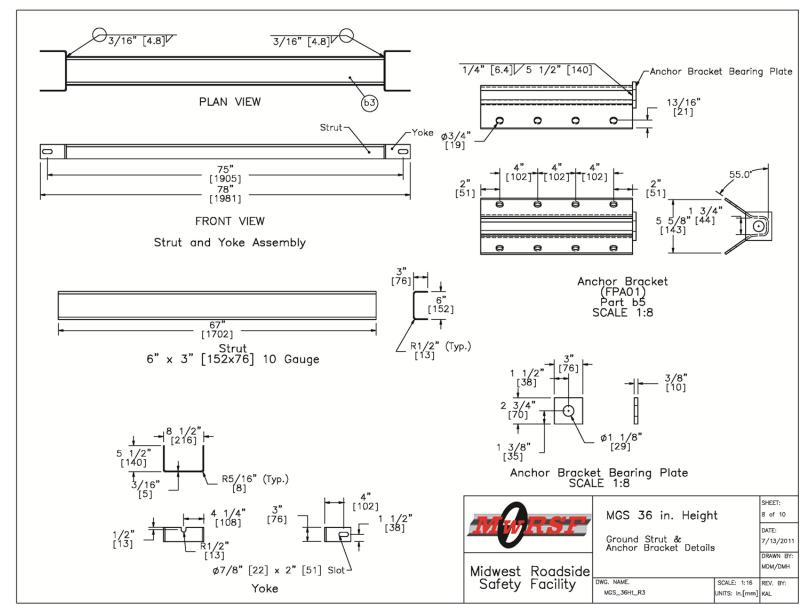


Figure F-8. Ground Strut and Anchor Bracket Details, Test No. MGSMRH-2

200

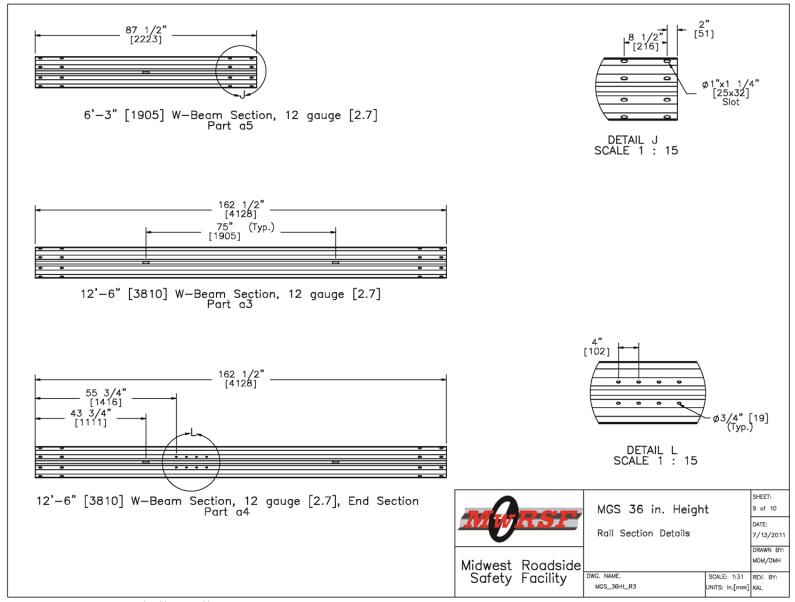


Figure F-9. W-Beam Guardrail Details, Test No. MGSMRH-2

		Midwest Guardrail System at 36" Ro	il Height	
Item No.	QTY.	Description	Material Specification	Hardware Guid
a1	25	W6x8.5 72in [W152x12.6 1829] long steel post	ASTM A36 Steel	PWE06
a2	25	6"x12"x14 1/4" [152x305x362] Blockout	SYP Grade No.1 or better	PDB10a-b
a3	12	12'-6" [3810] W-Beam MGS Section	12 gauge [2.7] AASHTO M180	RWM04a
a4	1	12'-6" [3810] W-Beam MGS End Section	12 gauge [2.7] AASHTO M180	RWM14a
a5	1	6'-3" [1905] W-Beam MGS Section	12 gauge [2.7] AASHTO M180	RWM01a
a6	25	16D Double Head Nail	-	-
b1	4	72" [1829] Foundation Tube	ASTM A500 Grade B	PTE06
b2	4	BCT Timber Post -MGS Height	SYP Grade No. 1 or better (No knots, 18 [457] above or below ground tension fac	PDF01
b3	2	Strut and Yoke Assembly	ASTM A36 Steel Galvanized	-
b4	2	BCT Cable Anchor Assembly	Ø3/4" [19] 6x19 IWRC IPS Galvanized Win Rope	FCA01-02
b5	2	Anchor Bracket Assembly	ASTM A36 Steel	FPA01
b6	2	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36 Steel	FPB01
b7	2	2 3/8" [60] O.D.x 6" [152] long BCT Post Sleeve	ASTM A53 Grade B Schedule 40	FMM02
b8	112	5/8"Dia. x 1 1/2" [M16 x 38] Guardrail Bolt and Nut	ASTM A307 Steel	FBB01
b9	4	5/8"Dia. x 10" [M16 x 254] long Guardrail Bolt and Nut	ASTM A307 Steel	FBB03
ь10	25	5/8"Dia. x 14" [M16 x 356] long Guardrail Bolt and Nut	ASTM A307 Steel	FBB06
b11	16	5/8"Dia. x 1 1/2" [M16 x 38] long Hex Head Bolt and Nut	ASTM A307 Steel	FBX16a
b12	4	5/8"Dia. x 10" [M16 x 254] long Hex Head Bolt and Nut	ASTM A307 Steel	FBX16a
b13	44	5/8"Dia. [16] Flat Washer	ASTM F436 Grade 1	FWC14a
b14	4	3/4"Dia. x 7 1/2" [M20 x 191] long Hex Head Bolt and Nut	ASTM A325 Steel	FBX22a
b15	8	3/4"Dia. [19] Flat Washer	ASTM F436 Grade 1	FWC22a
			MGS 36 in. H Bill of Materials	DATE: 7/13/ DRAWN
		Ν	Aidwest Roadside Safety Facility	MDM/ SCALE: None REV. UNITS: In.[mm] KAL

Figure F-10. Bill of Materials, Test No. MGSMRH-2

Appendix G - Accelerometer and Rate Transducer Data Plots, Test No. MGSMRH-2

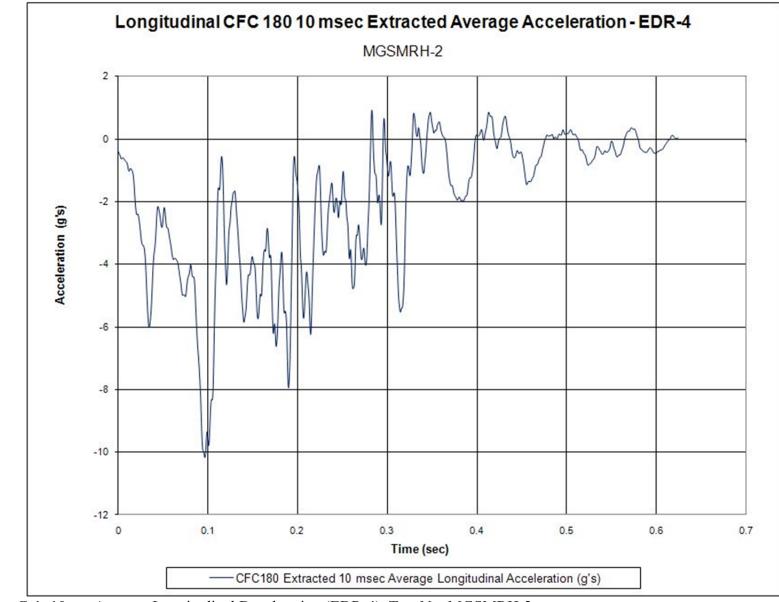


Figure G-1. 10-ms Average Longitudinal Deceleration (EDR-4), Test No. MGSMRH-2

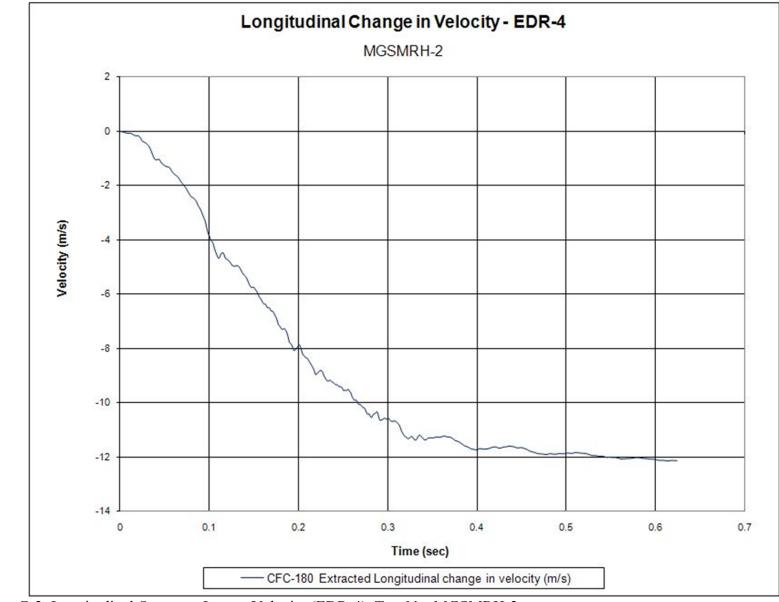


Figure G-2. Longitudinal Occupant Impact Velocity (EDR-4), Test No. MGSMRH-2

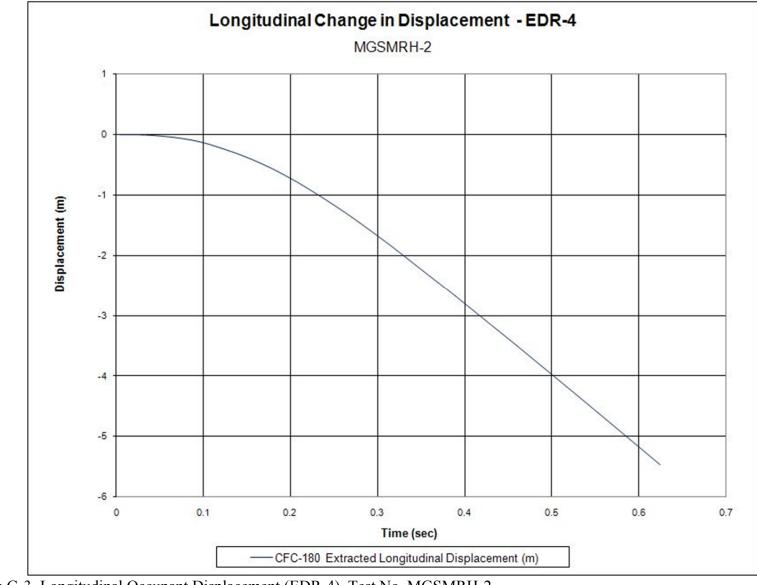


Figure G-3. Longitudinal Occupant Displacement (EDR-4), Test No. MGSMRH-2

206

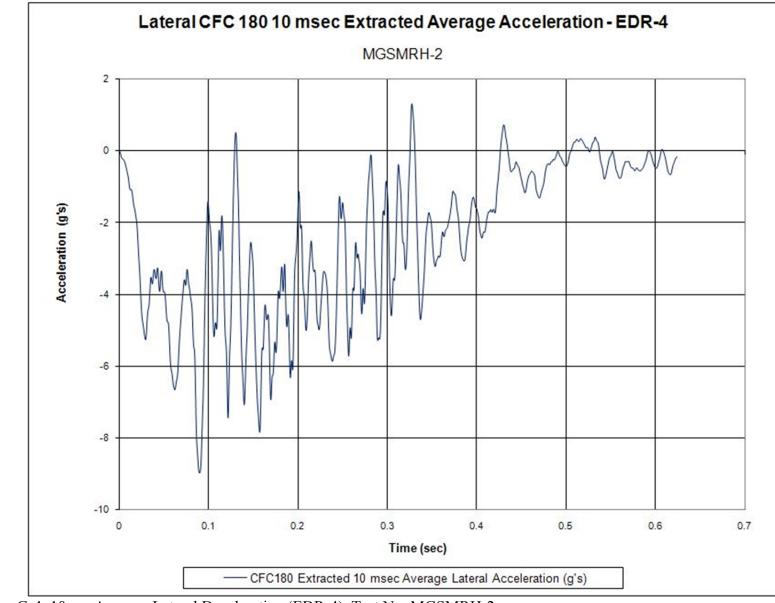


Figure G-4. 10-ms Average Lateral Deceleration (EDR-4), Test No. MGSMRH-2

207

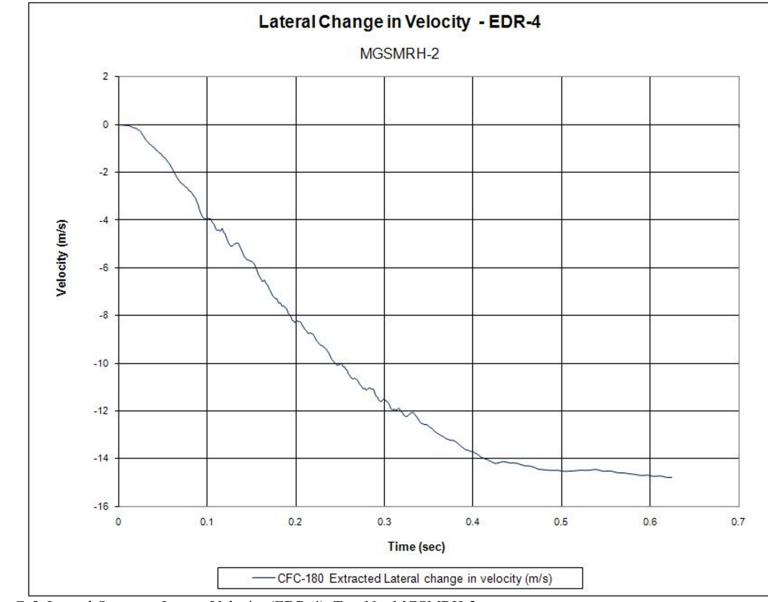


Figure G-5. Lateral Occupant Impact Velocity (EDR-4), Test No. MGSMRH-2

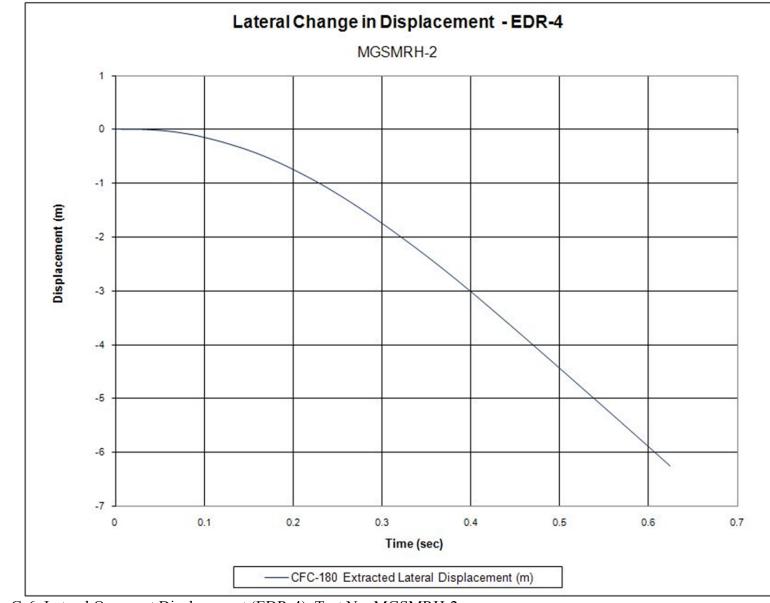


Figure G-6. Lateral Occupant Displacement (EDR-4), Test No. MGSMRH-2

Figure G-7. Vehicle Angular Displacements (EDR-4), Test No. MGSMRH-2

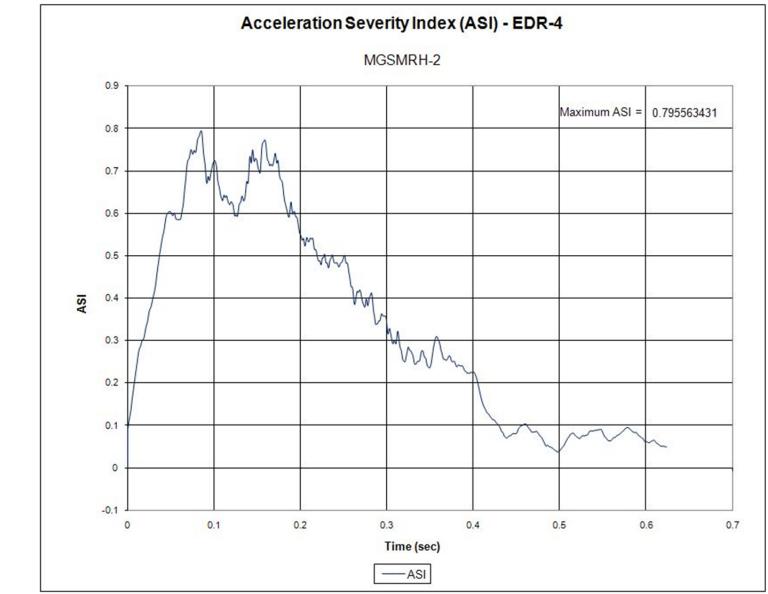


Figure G-8. Acceleration Severity Index (EDR-4), Test No. MGSMRH-2

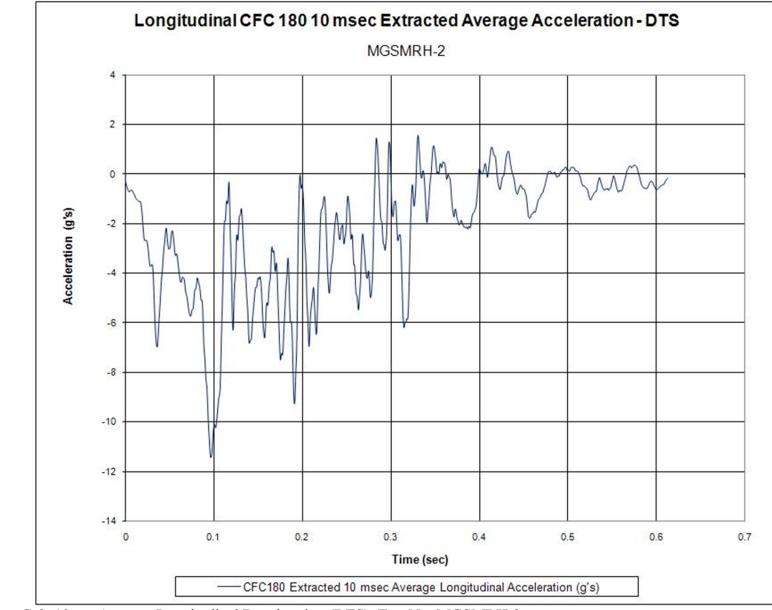


Figure G-9. 10-ms Average Longitudinal Deceleration (DTS), Test No. MGSMRH-2

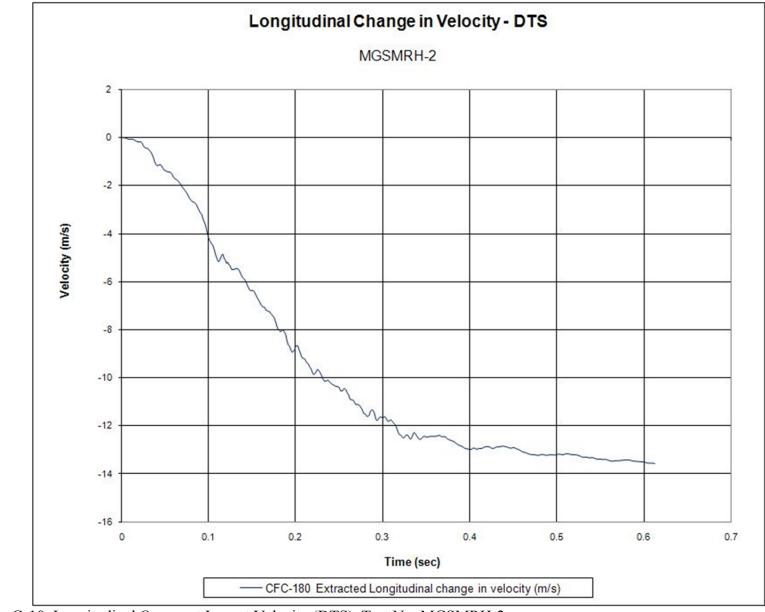


Figure G-10. Longitudinal Occupant Impact Velocity (DTS), Test No. MGSMRH-2

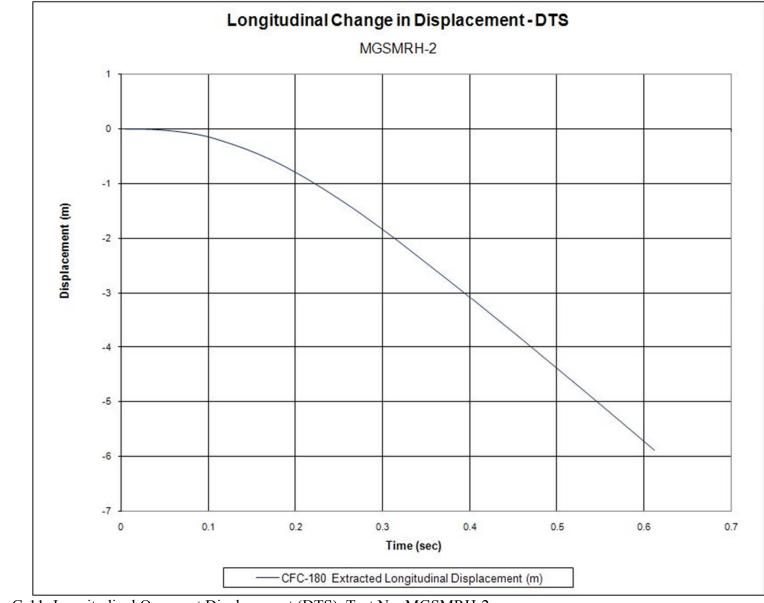


Figure G-11. Longitudinal Occupant Displacement (DTS), Test No. MGSMRH-2

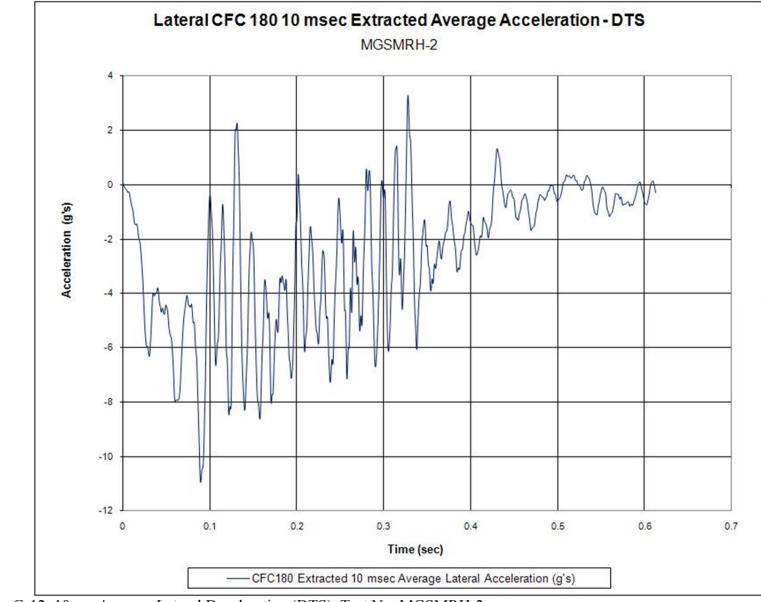


Figure G-12. 10-ms Average Lateral Deceleration (DTS), Test No. MGSMRH-2

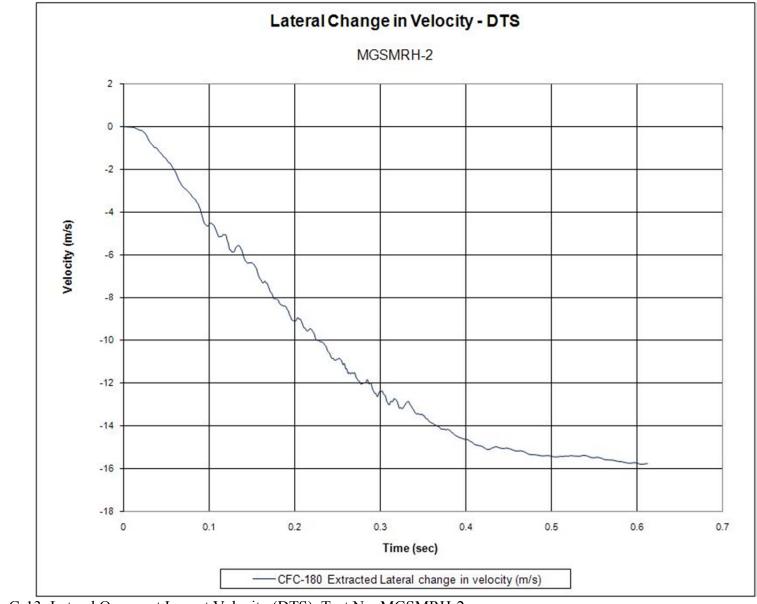


Figure G-13. Lateral Occupant Impact Velocity (DTS), Test No. MGSMRH-2

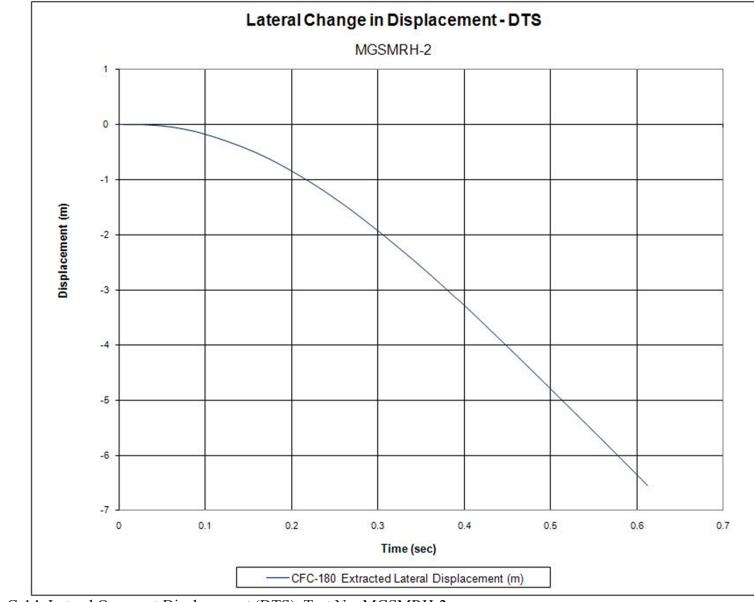
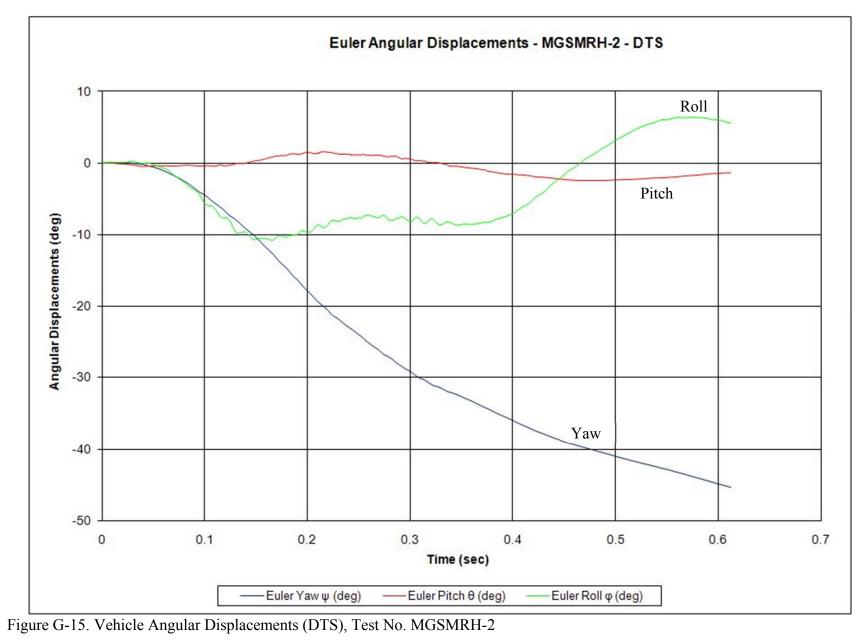



Figure G-14. Lateral Occupant Displacement (DTS), Test No. MGSMRH-2

218

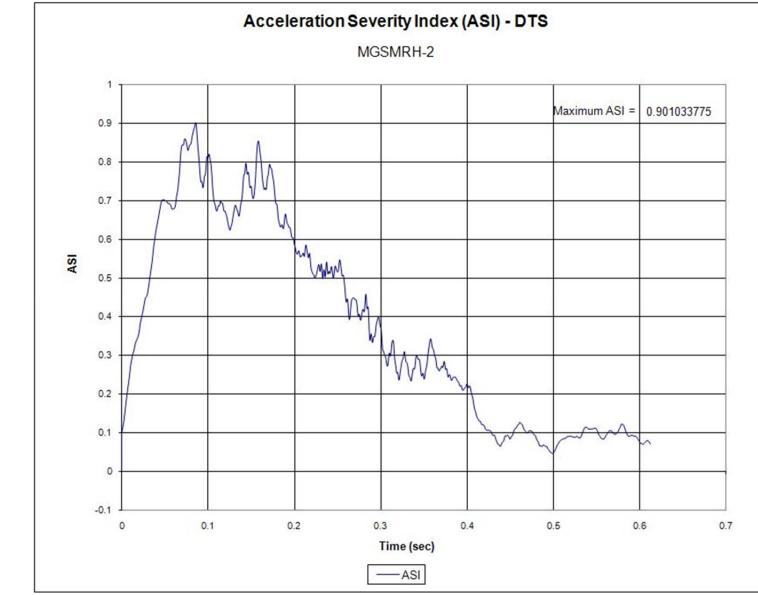


Figure G-16. Acceleration Severity Index (DTS), Test No. MGSMRH-2

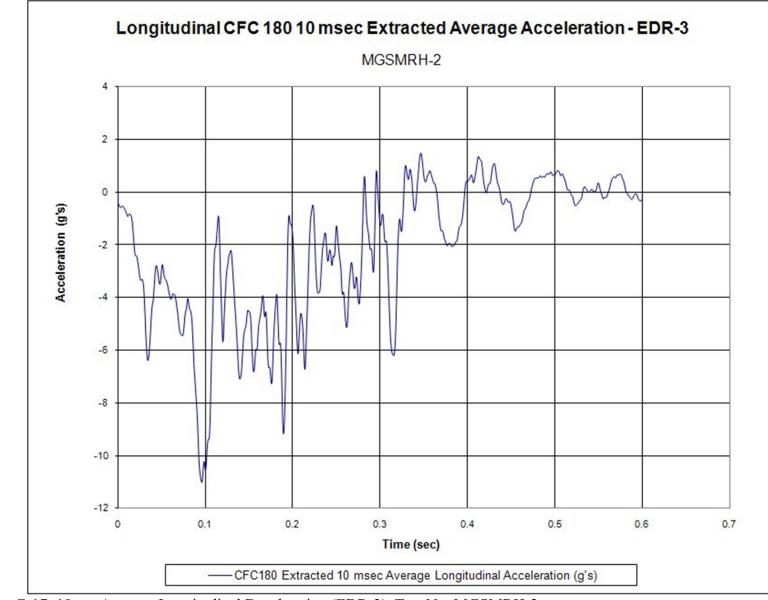


Figure G-17. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. MGSMRH-2

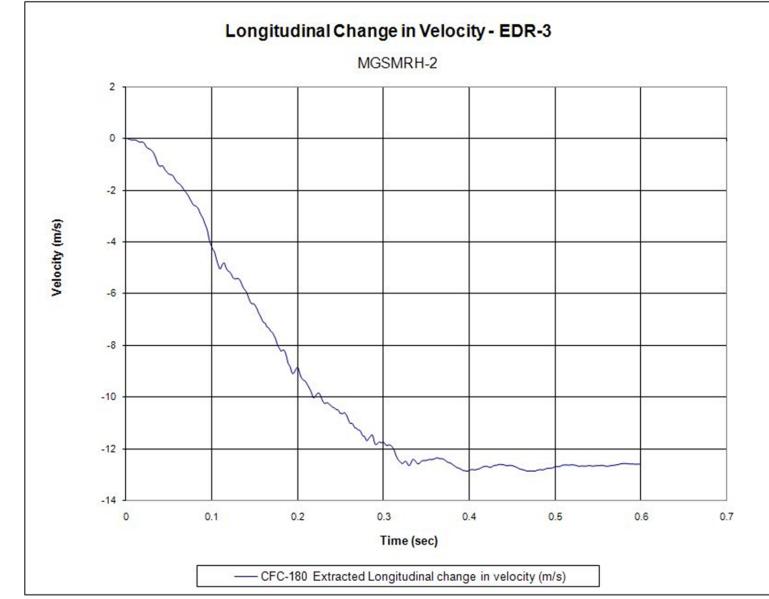


Figure G-18. Longitudinal Occupant Impact Velocity (EDR-3), Test No. MGSMRH-2

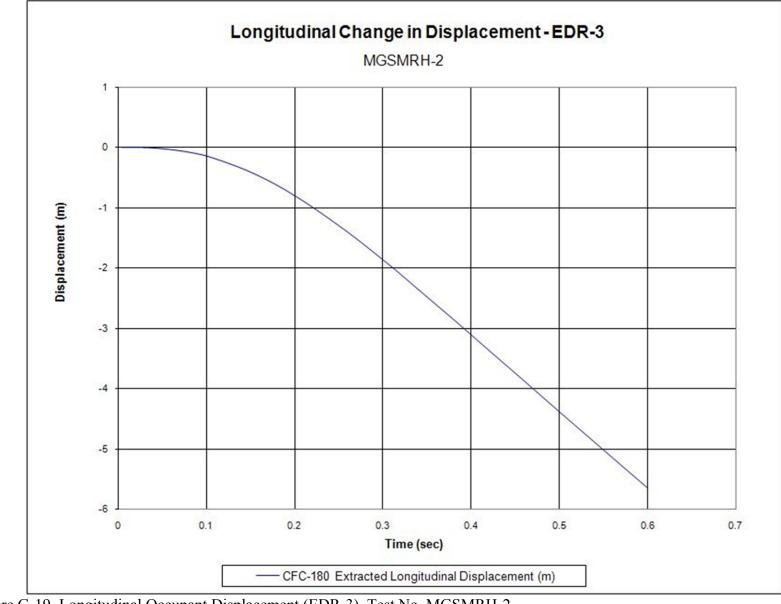


Figure G-19. Longitudinal Occupant Displacement (EDR-3), Test No. MGSMRH-2

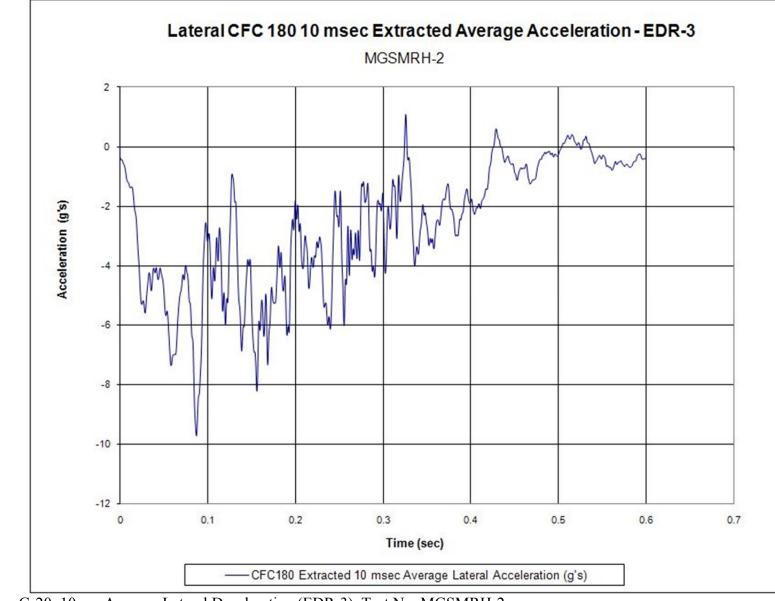


Figure G-20. 10-ms Average Lateral Deceleration (EDR-3), Test No. MGSMRH-2

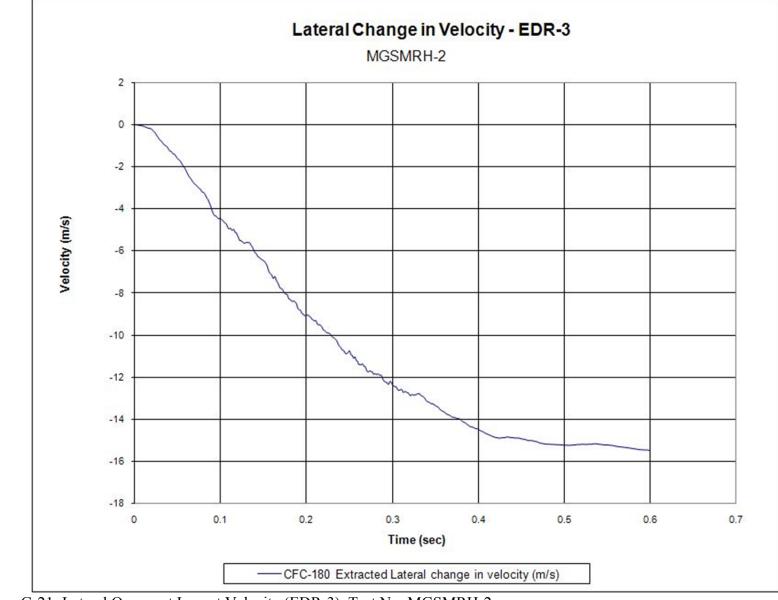


Figure G-21. Lateral Occupant Impact Velocity (EDR-3), Test No. MGSMRH-2

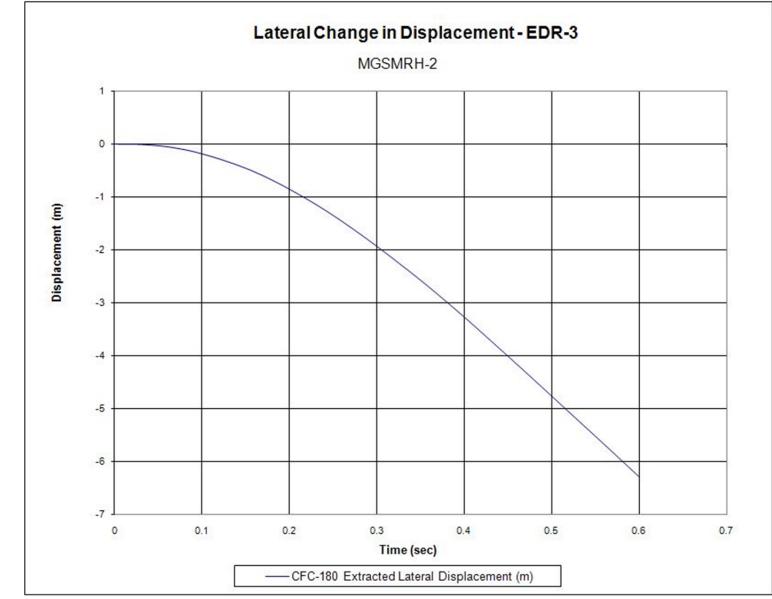


Figure G-22. Lateral Occupant Displacement (EDR-3), Test No. MGSMRH-2

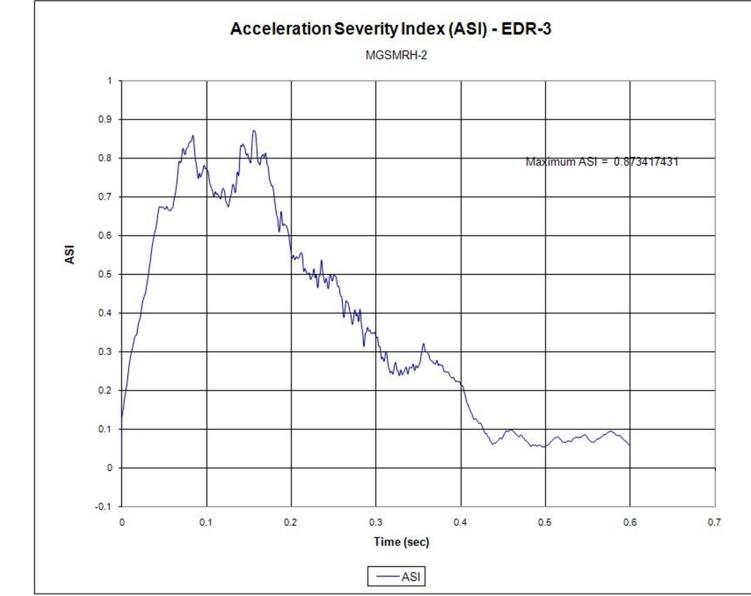


Figure G-23. Acceleration Severity Index (EDR-3), Test No. MGSMRH-2

END OF DOCUMENT