-						
1.	REPORT NO.	2. GOVERNMENT ACCESSION NO.	3. RECIPIENT'S CATALOG NO.			
	FHWA/CA17-2654					
4.	TITLE AND SUBTITLE		5. REPORT DATE			
CC	MPLIANCE CRASH TESTING	OF THE TYPE 60 MEDIAN	May 2018			
BA	RRIER, Test 140MASH3C16-0)4				
ΤY	PE 60 MEDIAN BARRIER		6. PERFORMING ORGANIZATION CODE			
7.	AUTHOR(S)		8. PERFORMING ORGANIZATION REPORT NO.			
	David Whitesel, John Jewell, Robert Meline		FHWA/CA17-2654			
9.	PERFORMING ORGANIZATION NAME AND ADDRESS		10. WORK UNIT NO.			
	Roadside Safety Research Group California Department of Transportation					
	5900 Folsom Blvd.,		11. CONTRACT OR GRANT NO.			
	Sacramento, CA. 95819		FHWA/CA17-2654			
12.	SPONSORING AGENCY NAME AND ADDRESS		13. TYPE OF REPORT & PERIOD COVERED			
	California Department of Transportation 5900 Folsom Blvd		FINAL			
	Sacramento, CA. 95819		14. SPONSORING AGENCY CODE			
15.	SUPPLEMENTARY NOTES					
This proj	project was performed in cooperation with ect titled "COMPLIANCE CRASH TESTING OF	the US Department of Transportation, Federal Hi THE TYPE 60 MEDIAN BARRIER, Test 140MASH3C	ghway Administration, under the research 16-04".			
16.	ABSTRACT					
Coo It is	The California Department of Transportation has used Type 60 Median Barrier since it passed the National Cooperative Highway Research Program (NCHRP) Report 350 safety guidelines and became a Standard Plan in 1997. It is a single-slope concrete barrier that is 36 inches high with a face sloped 9.1 degrees from vertical. The Manual for Assessing Safety Hardware (MASH09) TL-3 pickup test (Test 3-11) had been conducted					
to p bar	to perform similarly to the Type 60 with a barrier face slope of 9.1 degrees. However, no other single slope concrete barrier has been tested to MASH TL-3 with the small car (Test 3-10).					
One crash test, MASH 3-10, was conducted on the Type 60 Median Barrier. The results were within the lim of MASH guidelines.			The results were within the limits			

17. KEY WORDS	18. DISTRIBUTION STATEMENT			
Barriers, Crash Test, Median Barrier, Vehicle Impact Test, Concrete, Median, Single-slope		No Restrictions. This document is available through the National Technical Information Service, Springfield, VA 22161		
19. SECURITY CLASSIF. (OF THIS REPORT)	20. SECURITY CLASSIF. (OF THI	S PAGE)	21. NO. OF PAGES	22. PRICE
Unclassified	Unclassified		63	

DISCLAIMER STATEMENT

This document is disseminated in the interest of information exchange. The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California or the Federal Highway Administration. This publication does not constitute a standard, specification or regulation. This report does not constitute an endorsement by the Department of any product described herein. For individuals with sensory disabilities, this document is available in Braille, large print, audio cassette, or compact disk. To obtain a copy of this document in one of these alternate formats, please contact: The Division of Research and Innovation, MS-83, California Department of Transportation, P.O. Box 942873, Sacramento, CA 94273-0001.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Caltrans Roadside Safety Research Group (RSRG) has determined the uncertainty of measurements in the testing of roadside safety hardware as well as in standard full-scale crash testing of roadside safety features. The results contained in this report are only for the tested article(s) and not any other articles based on the same design. Information regarding the uncertainty of measurements for critical parameters is available upon request by the California Department of Transportation Roadside Safety Research Group.

COMPLIANCE CRASH TESTING OF THE TYPE 60 MEDIAN BARRIER (TEST 140MASH3C16-04)

STATE OF CALIFORNIA

DEPARTMENT OF TRANSPORTATION

DIVISION OF RESEARCH, INNOVATION AND SYSTEM INFORMATION OFFICE OF SAFETY INNOVATION AND COOPERATIVE RESEARCH ROADSIDE SAFETY RESEARCH GROUP

Supervised by	Robert Meline, P.E.
Principal Investigator	John Jewell, P.E.
Report Prepared by	David Whitesel, P.E.
Research Performed by	Roadside Safety Research Group

STATE OF CALIFORNIA

DEPARTMENT OF TRANSPORTATION

DIVISION OF RESEARCH, INNOVATION AND SYSTEM INFORMATION OFFICE OF SAFETY INNOVATION AND COOPERATIVE RESEARCH ROADSIDE SAFETY RESEARCH BRANCH

COMPLIANCE CRASH TESTING OF THE TYPE 60 MEDIAN BARRIER

Test 140MASH3C16-04

Supervised by	Robert Meline, P.E.
Principal Investigator	John Jewell, P.E.
Report Prepared by	David Whitesel, P.E.
Research Performed by	Roadside Safety Research Group

Joseph W. Horton, P.E. Office Chief Office of Safety Innovation and Cooperative Research

John Jewell, P.F. Senior Engineer Specialist Roadside Safety Research Group

Meli

Robert Meline, P.E. Branch Chief Roadside Safety Research Branch Roadside Safety Research Group

David Whitesel, P.E. Transportation Engineer Roadside Safety Research Group

May 18, 2018 California Department of Transportation Report No. FHWA/CA17-2654

SI CONVERSION FACTORS

Metric (SI) to English System of Measurement

To Convert From	<u>To</u>	Multiply By	
	ACCELERATION		
m/s ²	ft/s ²	3.281	
	AREA		
m ²	ft ²	10.764	
	ENERGY		
Joule (J)	ft-lb _f	0.7376	
	FORCE		
Newton (N)	lb _f	0.2248	
	LENGTH		
m	ft	3.281	
m	in	39.37	
cm	in	0.3937	
mm	in	0.03937	
	MASS		
kg	lb _m	2.205	
	PRESSURE OR STRESS		
kPa	psi	0.1450	
	VELOCITY		
km/h	mph	0.6214	
m/s	ft/s	3.281	
km/h	ft/s	0.9113	

ACKNOWLEDGEMENTS

This work was accomplished in cooperation with the United States Department of Transportation, Federal Highway administration.

Special appreciation is due to the following staff members of the Materials Engineering and Testing Services and Division of Research, Innovation, and Systems Information for their enthusiastic and competent help on this project:

Thanks to Robert Meline, John Jewell, Vue Her, Christopher Caldwell, John Williams, Mike O'Keeffe, Rachael Kwong, Jean Vedenoff, Samira Zalekian, Eric Jacobson, Karim Mirza, Arvern Lofton, and Larry Baumeister for test preparation, data reduction, vehicle preparation, and film processing. Thanks to Dave Bengal, Independent Camera Operator. Thanks to Martin Zanotti, Charles Gill, and Michael Pieruccini for their support in the machine shop. Thanks to Larry McCrum for his support in the concrete lab.

ROADSIDE SAFETY RESEARCH GROUP

Bob Meline, P.E., Branch Chief John Jewell, P.E., Principal Investigator David Whitesel, P.E., Project Manager Vue Her, M.S., P.E., Transportation Engineer Jean Vedenoff, P.E., Transportation Engineer Christopher Caldwell, Transportation Engineer John Williams, Lab Manager Rachael Kwong, Audio Visual Manager Samira Zalekian, Student Assistant

Table of Contents

1. Intr	oduction	1
1.1.	Problem	1
1.2.	Objective	1
1.3.	Background	1
1.4.	Literature Search	1
1.5.	Scope	2
2. Tes	t Article Details	2
2.1.	Barrier Design	2
2.2.	Construction	2
3. Tes	t Requirements and Evaluation Criteria	7
3.1.	Crash Test Matrix	7
3.2.	Evaluation Criteria	8
4. Tes	t Conditions	8
4.1.	Test Facilities	8
4.2.	Test Vehicle	8
4.3.	Data Acquisition System	. 11
5. Cra	sh Test Results	. 12
5.1.	Test 140MASH3C16-04 Impact Description and Results	. 12
5.2.	Test Description	. 14
5.3.	Barrier Damage	. 14
5.4.	Vehicle Damage	. 16
5.5.	Discussion of Test Results	. 21
5.5.	.1. General Evaluation Methods	. 21
5.5.	.2. Structural Adequacy	. 21
5.5.	.3. Occupant Risk	. 21
5.5.	.4. Vehicle Trajectory	. 21
6. Cor	nclusions	. 23
7. App	pendix	.24
7.1.	Test Vehicle Equipment	. 24
7.2.	Test Vehicle Guidance System	. 26
7.3.	Photo - Instrumentation	. 27
7.4.	Electronic Instrumentation and Data	. 28

May 18, 2018 California Department of Transportation Report No. FHWA/CA17-2654

7	' .5.	Vehicle Measurements	. 30
7	'.6.	Vehicle Interior Deformation Measurements	.34
7	.7.	Data Plots	36
8.	Deta	ail Drawings	47
9.	Refe	erences	49
10.	D	ocument Revision History	.49

List of Figures

Figure 2-1 Asphalt and Aggregate Base Removed for End Anchorage Footing	2
Figure 2-2 Footing Depth	3
Figure 2-3 Beginning of Slip-forming	3
Figure 2-4 Slip-forming the Barrier	4
Figure 2-5 Slip-forming Nearly Complete	4
Figure 2-6 Placing Rebar for the End Anchorage	5
Figure 2-7 Formwork and Steel in Place for End Anchorage	5
Figure 2-8 End Anchorage Pour Complete	6
Figure 2-9 Completed Test Article: Concrete Barrier Type 60	6
Figure 2-10 Rebar Tensile Strength	7
Figure 4-1 Test Vehicle Front	9
Figure 4-2 Test Vehicle Front Left	10
Figure 4-3 Test Vehicle Driver's Side	10
Figure 4-4 Test Vehicle Rear Left	10
Figure 4-5 Test Vehicle Rear	11
Figure 4-6 Test Vehicle Relative to Barrier	11
Figure 4-7 Data Brick III's	12
Figure 4-8 Test Vehicle Dummy and Instrumentation	12
Figure 5-1 Test Article Impact Area with Checkered Tape at Impact Point	13
Figure 5-2 Type 60 Barrier Point of Impact (I-beam on barrier was removed prior to test)	13
Figure 5-3 Barrier Face Downstream of Impact (I-beam on barrier was removed prior to test)	13
Figure 5-4 Downstream Impact View	14
Figure 5-5 Upstream Impact View	15
Figure 5-6 Vehicle Marks on Type 60 Barrier	15
Figure 5-7 Type 60 Barrier Post Test Upstream of Impact	15
Figure 5-8 Type 60 Barrier Post-Test Downstream of Impact	16
Figure 5-9 140MASH3C16-04 Kia Rio Damage (Right Side)	17
Figure 5-10 140MASH3C16-04 Kia Rio Damage (Rear Left)	17
Figure 5-11 140MASH3C16-04 Kia Rio Driver Side Damage	17
Figure 5-12 140MASH3C16-04 Kia Rio Damage (Front)	18
Figure 5-13 140MASH3C16-04 Kia Rio Interior Post Test	18

Figure 5-14 140MASH3C16-04 Kia Rio Floorboard Crease with Maximum Deformation	18
Figure 5-15 Trajectory after Impact	19
Figure 5-16 Vehicle in Yaw	19
Figure 5-17 Vehicle Resting Location	19
Figure 5-18. Exit Box for Longitudinal Barriers	21
Figure 7-1 Instrumentation Board Mounting Location	24
Figure 7-2 Back Seat Removed	24
Figure 7-3 Rear of Instrumentation Panel	25
Figure 7-4 Brake Pedal Actuator	25
Figure 7-5 Rail Guidance System Set-Up	
Figure 7-6 Rail Guidance System	26
Figure 7-7 High-Speed Video Camera Locations (Not to Scale)	27
Figure 7-8 Speed Trap Tape Layout	29
Figure 7-9 Longitudinal Acceleration at CG - Secondary	
Figure 7-10 Lateral Acceleration at CG – Secondary	
Figure 7-11 Vertical Acceleration at CG – Secondary	
Figure 7-12 Roll, Pitch, and Yaw Rates at CG – Combined	40
Figure 7-13 Roll, Pitch, and Yaw Angles at CG - Combined	41
Figure 7-14 Acceleration Severity Index (ASI) - Combined	42
Figure 7-15 TRAP Summary Sheet - Combined	43
Figure 7-16 Longitudinal Acceleration at CG - Primary	44
Figure 7-17 Lateral Acceleration at CG - Primary	45
Figure 7-18 Vertical Acceleration at CG – Primary	46
Figure 8-1. Standard Plan for Type 60 Barrier	47
Figure 8-2. Standard Plan for Type 60 Barrier (End Anchorage)	48

List of Tables

able 4-1 Vehicle Properties Comparison	9
able 5-1 Test 140MASH3C16-04 Data Summary Sheet2	20
able 5-2. 140MASH3C16-04 Assessment Summary2	2
able 7-1. 140MASH3C16-04 Camera Types and Location Coordinates	27
able 7-2. Accelerometer and Angular Rate Sensor Specifications	28
able 7-3. Exterior Vehicle Measurements	0
able 7-4. CG Calculation: Curb Weight	1
able 7-5. CG Calculation: Test Inertial Weight	2
able 7-6. CG Calculation: Gross Static Weight	3
able 7-7. Interior Floorboard Pre, Post, and Deformation Measurements	4
able 7-8. Interior Dashboard and Roof Pre, Post, and Deformation Measurements	5

May 18, 2018 California Department of Transportation Report No. FHWA/CA17-2654

THIS PAGE WAS LEFT INTENTIONALLY BLANK

1. Introduction

1.1. Problem

The California Department of Transportation (Caltrans) has used Type 60 Median Barrier (Type 60) for decades as a single slope concrete median barrier in Test Level 3 (TL-3) applications. It was tested in the mid 1990's by Caltrans and meets TL-3 crash test requirements of National Cooperative Highway Research Committee Report 350 guidelines (Report 350). However, it had not been tested to all of the requirements of the newest set of crash test guidelines called Manual for Assessing Safety Hardware 2009 (MASH). The Caltrans Division of Traffic Operations and the Highway Safety Features New Products Committee, a committee comprise of representatives from several Divisions within Caltrans, recognizes that compliance crash testing of the Type 60 with the small car to MASH Test Level 3 criteria is a high priority.

1.2. Objective

The objective of this research project is to verify that the Type 60 Median Barrier will meet the evaluation criteria of MASH Test 3-10 for longitudinal barriers.

1.3. Background

Caltrans has used Type 60 Median Barrier since it became a Standard Plan in 1997. Caltrans also adopted the same shape for the Type 70 series concrete bridge rails. The MASH TL-3 pickup test (Test 3-11) had been conducted successfully on the Texas SSTR (Single Slope Traffic Rail) concrete barrier with a barrier face slope of 10.8 degrees, which is considered to perform similarly to the Type 60 with a barrier face slope of 9.1 degrees¹. MASH Test 3-11 was conducted and passed on another single slope concrete barrier tested by Texas Transportation Institute (TTI) in 2009. It is not directly comparable to a rigid barrier as it was embedded in soil and had a dynamic deflection of about 6 inches. However, no single slope concrete barrier had been tested to MASH TL-3 with the small car (Test 3-10).

1.4. Literature Search

An extensive literature search was conducted related to any references to Test 3-10 on single slope barriers. Also, TTI and FHWA were contacted to follow up on informational leads. The Texas SSTR testing results were not submitted to FHWA for eligibility but TTI provided their test results to aid in our research. Several FHWA Eligibility Letters were reviewed for MASH 2009 Test 3-10 crash tests on single slope concrete barriers. No 3-10 tests were found. FHWA eligibility letters for single slope barriers, B-225 and B-249, specifically waive Test 3-10 based on results of prior F Shape barrier testing. The results of the search concluded that Test 3-10 had not been conducted by the roadside safety community on a single slope barrier.

¹ FHWA website Q/A: <u>https://safety.fhwa.dot.gov/roadway_dept/countermeasures/faqs/qa_bttabr.cfm#brrs4</u>.

[&]quot;The Texas Constant-Slope Barrier is 1070 mm (42 in) high and has a constant-slope face that makes an angle of 10.8 degrees with respect to the vertical. California developed a Single Slope profile that makes an angle of 9.1 degrees with respect to the vertical. The crash tests indicate that the performance of the Texas Constant-Slope Barrier is comparable to that of the Jersey-shape and the performance of the California Single-Slope Barrier is comparable to that of the F-shape."

May 18, 2018 California Department of Transportation Report No. FHWA/CA17-2654

1.5. Scope

One full-scale crash test will be performed and evaluated in accordance with MASH 2009 Test Level 3 guidelines. The purpose of Test 3-10 is to determine if the barrier would successfully and safely redirect a small car and meet MASH 2009 requirements.

2. Test Article Details

2.1. Barrier Design

The barrier design has been used by Caltrans since it became a standard in 1997. It is a slip-formed, singleslope, concrete barrier, which is anchored at the ends. The barrier is 36 inches high with a face sloped 9.1 degrees from vertical. Due to frequent road width constraints, Caltrans prefers the narrower base provided by the steeper face, when compared to the 10.8 degree Texas Single Slope Concrete Median Barrier. The 1999 Standard Plans, which were used to construct the test article, are shown in the Appendix (Figure 8-1 and Figure 8-2).

2.2. Construction

A section of Type 60 concrete barrier, 46 m (150 ft.) in length, was constructed in 2006 at the Caltrans Dynamic Test Facility for a previous tort response project. The section of Type 60 was still in place when it was decided to run MASH Test 3-10, so it was utilized for this project. Construction photos are shown below.

Figure 2-1 Asphalt and Aggregate Base Removed for End Anchorage Footing

May 18, 2018 California Department of Transportation Report No. FHWA/CA17-2654

Figure 2-2 Footing Depth

Figure 2-3 Beginning of Slip-forming

Figure 2-4 Slip-forming the Barrier

Figure 2-5 Slip-forming Nearly Complete

Figure 2-6 Placing Rebar for the End Anchorage

Figure 2-7 Formwork and Steel in Place for End Anchorage

Figure 2-8 End Anchorage Pour Complete

Figure 2-9 Completed Test Article: Concrete Barrier Type 60

The completed test article is 46 m (150 feet) long with a nominal height of 910 mm (36 inches). The actual test article height at the area of impact was approximately 965 mm (38 inches). The nominal width at the top and the base were 320 mm (12.6 in) and 610 mm (24 in), respectively. The nominal slope of the barrier face was 9.1 degrees. As constructed, the barrier face slope was shallower at approximately the upper two feet and steeper at the bottom foot due to concrete slump during slip forming. The average slope of the barrier face at the area of impact was measured to be approximately 7.9 degrees². The measured face slope is not within the scope of our accreditation. The ends were anchored per the End Anchorage detail in Figure 8-2. The concrete was sampled and cast into standard 6" x 12" cylinders for testing. A615 Grade 60 rebar with a tested yield strength of approximately 70 ksi was used for reinforcement, see Figure 2-10. The average compressive strength of two cylinders at 28 days was 4,440 psi. The reported rebar strength and concrete strength fall outside the lab's scope of accreditation.

² The effect of the actual average face slope being steeper than the theoretical results in conservative Occupant Risk Factors and Occupant Compartment Deformation for Test 3-10.

Figure 2-10 Rebar Tensile Strength

3. Test Requirements and Evaluation Criteria

3.1. Crash Test Matrix

MASH Test Level 3 for longitudinal barriers consists of two crash tests as follows:

- A 1,100 kg (2,420 lbs.) small car at 100 km/hr. and a 25° impact angle (MASH 2009 Test No. 3-10).
- A 2,270 kg (5,000 lbs.) pickup truck at 100 km/hr. and a 25° impact angle (MASH 2009 Test No. 3-11).

The pickup truck test (Test 3-11) was successfully conducted on another single slope concrete barrier, the TxDOT Single Slope Traffic Rail (Reference #3), which should perform similarly to the Type 60 because they are both single-slope concrete barriers of similar slope. The TxDOT barrier has a slope of 10.8° from vertical while the Type 60 has a slope of 9.1° from vertical. Thus, the 3-11 test will not be conducted as part of this research project. The objective of this project is to verify that the Type 60 meets the evaluation criteria of MASH Test 3-10.

3.2. Evaluation Criteria

The evaluation criteria are those set forth in MASH 2009 Test 3-10 for longitudinal barriers: A, D, F, H, I. Evaluation Criteria are explained later in Table 5-2.

4. Test Conditions

4.1. Test Facilities

Crash testing was conducted at the Caltrans Dynamic Test Facility in West Sacramento, California. The test area is a large, flat, asphalt concrete surface. At the time of testing, there were no obstructions nearby.

4.2. Test Vehicle

The vehicle was a 2007 Kia Rio in good condition. The test vehicle complied with all MASH 2009 requirements for 1100C vehicles except age. That said, the vehicle body style was similar to the newer 2010 Kia Rio that would have met the age requirement. The critical properties defined in MASH Table 4-1 of the 2007 Kia Rio were compared to those of a 2010 Kia Rio for a test conducted by another crash test research facility. Both met the requirements of MASH and were similar to each other. See Table 4-1 below.

The MASH 2009 1100C test for the Type 60 Median Barrier was assigned test identification number 140MASH3C16-04. The vehicle was free of major body damage and not missing any structural parts. It was not modified in any way and had no standard equipment missing. The inertial mass of 1119 kg was within the recommended mass limits of MASH 2009. To achieve the desired impact speed, the vehicle was towed. A speed control device was installed in the tow vehicle, which limited the acceleration of the vehicle once the target impact speed was reached. The steering was accomplished by means of a guidance rail anchored to the ground and a guide arm attached to the vehicle wheel hub. Remote braking was possible at any time during the test via radio control. The vehicle was released from the guidance rail a short distance before impact. Photos of the test vehicle are shown in Figure 4-1 to Figure 4-8. See Appendix 7.1 and 7.4 for more information on vehicle equipment and instrumentation.

MASH 1100C					
Property	MASH 1100C (Small Car)	Model Year 2007 (RSRG Measured)*	Model Year 2010 (TTI Measured)**		
MASS, Ib. Test Inertial Max. Ballast	2420 ± 55 175	Actual Weight 2466	Actual Weight 2426		
DIMENSIONS, inches Wheelbase Front Overhang Overall Length Overall Width Hood Height Track Width ^a	98 ± 5 35 ± 4 169 ± 8 65 ± 3 24 ± 4*** 56 ± 2	From Spec Sheet 98.5 32.99 167.48 65.91 28.62 57.44	98.75 33.00 165.75 66.38 31.50*** 57.44		
CENTER OF MASS LOCATION, ^b inches Aft of Front Axle Above Ground	39 ± 4 N/A	36.5 N/A	35.98 N/A		
LOCATION OF ENGINE	Front	Front	Front		
LOCATION OF DRIVE AXLE	Front	Front	Front		

Table 4-1 Vehicle Properties Comparison

a Average of front and rear axles. b For "test inertial" mass.

* From RSRG Test 140MASH3C16-04

**From TTI Report TR No. 9-1002-12-12

***Subject to update as part of 2015 ILC. TTI measurement was taken before 2015 ILC while there was still a great deal of ambiguity about how hood height is defined.

Figure 4-1 Test Vehicle Front

Figure 4-2 Test Vehicle Front Left

Figure 4-3 Test Vehicle Driver's Side

Figure 4-4 Test Vehicle Rear Left

Figure 4-5 Test Vehicle Rear

Figure 4-6 Test Vehicle Relative to Barrier

4.3. Data Acquisition System

The test was documented through the use of still cameras, video cameras, high-definition high-speed digital video cameras, and GMH Engineering Data Brick III data acquisition systems to record accelerations and rotational rate changes. The impact phase of the crash test was recorded with five high-definition high-speed digital video cameras, a normal-speed DVC format video camera, digital SLR cameras and three action cameras mounted inside the test vehicle set to record video. The test vehicle and barrier were photographed before and after impact with the DVC format camera and a digital SLR camera.

Figure 4-7 Data Brick III's

Figure 4-8 Test Vehicle Dummy and Instrumentation

Two sets of orthogonal accelerometers were mounted at the center of gravity of the test vehicles (as per MASH 2009 specifications). The rate gyro transducers (angular rate sensors) were also placed at the center of gravity of the test vehicles to measure roll, pitch, and yaw rates. The data was analyzed in Test Risk Assessment Program version 2.3.10 (TRAP) to determine the occupant impact velocities, ridedown accelerations, and maximum vehicle rotation. See Appendix 7.4 for more information on vehicle instrumentation.

5. Crash Test Results

5.1. Test 140MASH3C16-04 Impact Description and Results

The point of impact was approximately 6.25 meters from the upstream barrier end. The impact angle of 25° was set with a Total Station. The intended impact speed was 100 kph.

Figure 5-1 Test Article Impact Area with Checkered Tape at Impact Point

Figure 5-2 Type 60 Barrier Point of Impact (I-beam on barrier was removed prior to test)

Figure 5-3 Barrier Face Downstream of Impact (I-beam on barrier was removed prior to test)

5.2. Test Description

The vehicle was towed up to the intended target speed of 100 km/hr. The vehicle impacted the Type 60 barrier at approximately 6.25 meters from the upstream end at a speed of 61.2 mph (98.5 kph) and angle of 25.7°. The vehicle impacted on the driver's side; the front corner of the hood and front panel contacted the barrier and crumpled. The vehicle began to redirect and slide along the face of the barrier. The buckling of the front panel appears to cause the driver door to separate from the vehicle (as if it were opening and then quickly closing) at approximately 0.04 seconds to 0.05 seconds after impact. The buckling forces on the driver's side of the vehicle appear to cause the driver's side-window to spider-crack and shatter at approximately 0.066 seconds after impact. The dummy's head subsequently hit the glass fragments at approximately 0.076 seconds after impact. The vehicle continued to redirect and became parallel to the rail at approximately 0.168 seconds after impact. At approximately 0.276 seconds after impact, the rear of the vehicle lost contact with the barrier. There were approximately 3 meters of contact with the barrier. The exit speed and angle were measured to be 39.6 mph (63.8 kph) and 8.6°, respectively. The brakes were applied approximately 1.0 seconds after the initial impact and while the vehicle was moving away from the barrier. The braking action caused the car to yaw back toward the barrier, resulting in a secondary impact with the barrier. The vehicle came to a stop with the front end of the vehicle facing the barrier, approximately 2.7 feet (0.82 m) from the face of the barrier and approximately 139 feet (42.4 m) downstream from the initial point of impact.

5.3. Barrier Damage

There was no significant damage to the barrier. The only damage was extremely minor surface scrapes and gouges (see Figure 5-6, Figure 5-7, and Figure 5-8). The red contact marks are from the front left tire. The green contact marks are from the rear left tire. The barrier did not move.

Figure 5-4 Downstream Impact View

Figure 5-5 Upstream Impact View

Figure 5-6 Vehicle Marks on Type 60 Barrier

Figure 5-7 Type 60 Barrier Post Test Upstream of Impact

Figure 5-8 Type 60 Barrier Post-Test Downstream of Impact

5.4. Vehicle Damage

The front left corner and driver's side of the test vehicle sustained most of the damage from the initial impact while the front and front left corner sustained additional damage from the secondary impact. The entire length of the passenger side of the vehicle made contact with the barrier. Nearly the entire front bumper was torn off. The driver's side headlight was completely shattered and/or torn off the vehicle. As mentioned previously, the driver's side front window was shattered and broken out. The bumper, hood, left doors, and front and rear fenders were severely damaged. The airbags did not deploy because the vehicle was towed and there was no power to the airbag system. The maximum amount of passenger compartment deformation measured by known points was 2.1 inches (53 mm), which occurred at the floorboard. However, the maximum floorboard deformation occurred between known points and is estimated to be 2.6 inches (66 mm). See Figure 5-14 140MASH3C16-04 Kia Rio Floorboard Crease with Maximum Deformation. The maximum amount of deformation for the roof and dashboard were 0.5 inches (13 mm) and 1.6 inches (41 mm), respectively. These values are below the maximum MASH 2009 limits. See Table 7-7 and Table 7-8 for complete interior deformation measurements. The Vehicle Damage Scale (VDS) and Collision Deformation Classification (CDC) reported under vehicle damage on the test data summary sheet do not include the secondary impact.

Figure 5-9 140MASH3C16-04 Kia Rio Damage (Right Side)

Figure 5-10 140MASH3C16-04 Kia Rio Damage (Rear Left)

Figure 5-11 140MASH3C16-04 Kia Rio Driver Side Damage

May 18, 2018 California Department of Transportation Report No. FHWA/CA17-2654

Figure 5-12 140MASH3C16-04 Kia Rio Damage (Front)

Figure 5-13 140MASH3C16-04 Kia Rio Interior Post Test

Figure 5-14 140MASH3C16-04 Kia Rio Floorboard Crease with Maximum Deformation

Figure 5-15 Trajectory after Impact

Figure 5-16 Vehicle in Yaw

Figure 5-17 Vehicle Resting Location

May 18, 2018 California Department of Transportation Report No. FHWA/CA17-2654

 Table 5-1 Test 140MASH3C16-04 Data Summary Sheet

¹Reported from the instrumentation mounted closest to the vehicle C.G. (labeled Secondary), except for Roll and Yaw because portions of those channels did not record correctly. Roll and Yaw from the other set of instrumentation (labeled Primary) were used in TRAP calculations.

²Estimated because the maximum deformation did not occur at a defined pre-marked point. Maximum recorded deformation was 2.5 inches (64 mm) at floorboard.

5.5. Discussion of Test Results

5.5.1.General Evaluation Methods

MASH 2009 recommends that crash test performance be assessed according to three evaluation factors: (1) structural adequacy, (2) occupant risk, and (3) post-impact vehicular response.

The structural adequacy and occupant risk associated with the Type 60 Median Barrier were evaluated using evaluation criteria found in Tables 2.2 (Recommended Test Matrices for longitudinal barriers) and 5.1 (Safety Evaluation Guidelines) of MASH 2009. The post-impact vehicular response was evaluated using section 5.4 of MASH 2009.

5.5.2.Structural Adequacy

The structural adequacy of the Type 60 Median Barrier was acceptable

Refer to Table 5-2 for the assessment summary of the safety evaluation criteria for the Type 60 Median Barrier.

5.5.3.Occupant Risk

The occupant risk was acceptable. The maximum interior dashboard, roof, and floorboard measured deformations were 1.6 inches (41 mm), 0.5 inches (13 mm), and 2.5 inches (63 mm), respectively. As mentioned previously, the maximum floorboard measurement was estimated to be 2.6 inches because the point of greatest deformation did not appear to occur at a predefined point. There was no occupant compartment intrusion or potential for it. The occupant compartment was not compromised. The dummy head protruded slightly beyond the plane of the driver's side window when it was broken but did not show potential for striking any portion of the barrier. The yaw, pitch, and roll of the vehicle were within acceptable limits.

Refer to Table 5-2 for the assessment summary of the safety evaluation criteria for the Type 60 Median Barrier.

5.5.4.Vehicle Trajectory

The vehicle trajectory was acceptable. The exit trajectory was within the exit box. The yaw, pitch, and roll of the vehicle were below the maximum limits.

Figure 5-18. Exit Box for Longitudinal Barriers

Refer to Table 5-2 for the assessment summary of the safety evaluation criteria for the Type 60 Median Barrier.

Table 5-2. 140MASH5C10-04 A				Tost Posults	Accordment
				Test Results	Assessment
A. Test article should contain and redirect the vehicle: the			The vehicle was		
	vehicle should not	penetrate, underrio	le, or override the	contained and	PASS
	installation, although controlled lateral deflection of the		l deflection of the	redirected smoothly.	
	test article is accep	table.			
Oc	cupant Risk				
D.	Detached elements	, fragments, or oth	er debris from the		
	test article should r	not penetrate or sh	ow potential for	The barrier did not	
	penetrating the occ	cupant compartme	nt, or personnel in	detach any elements	
	a work zone.			fragments and/or other	PASS
				debris	
	Deformations of, o	r intrusions into, th	e occupant		
	compartment shou	ld not exceed limits	s set forth in		
_	Section 5.3 and Ap	pendix E.			
Oc	cupant Risk		in a stand after a	The vehicle remained	
F.	The vehicle should	remain upright dur	ing and after	upright during and after	PASS
	collision. The maxi	mum roll and pitch	angles are not to	the collision.	
00	exceed 75 degrees.				
н	Occupant Impact V	elocities (OIV) (see	Annendix A		
	Section A5.3 for cal	culation procedure) should satisfy the	Longitudinal OIV = 25.6	
	following limits:		,,,,	ft/s (7.8 m/s)	
	Occupant In	npact Velocity Limit	ts, ft/s (m/s)		PASS
	Component	Preferred	Maximum	Lateral OIV = -31.2 ft/s (-	
	Longitudinal	30 ft/s	40 ft/s	9.5 m/s)	
	and Lateral	(9.1 m/s)	(12.2 m/s)		
Oc	cupant Risk				
١.	The occupant rided	own acceleration (see Appendix A,		
	Section A5.3 for cal	culation procedure	e) should satisfy	Longitudinal ORA = -4.8	
	the following limits	:		G	PASS
	Occupant Ri	dedown Acceleratio	on Limits (G)		17100
	Component	Preferred	Maximum	Lateral ORA = 10.8 G	
	and Lateral	15.0 G	20.49 G		
Ve	hicle Traiectory		II		
It is	s preferable that the	vehicle be smooth	ly redirected, and		
this	s is typically indicate	d when the vehicle	leaves the barrier		
within the "exit box". The concept of the exit box is defined by the initial traffic face of the barrier and a line parallel to the initial traffic face of the barrier, at a distance A plus the width of the vehicle plus 16 percent of the length of the vehicle, starting at the final intersection (break) of the wheel track with the initial traffic face of the barrier for a distance					
			A = 14.9ft (4.55 m)	PASS	
			B = 32.8 It (10 III)		
of	B. All wheel tracks of	the vehicle should	not cross the		
par	allel line within the	distance B.			

Table 5-2. 140MASH3C16-04 Assessment Summary

6. Conclusions

Based on the physical crash testing involved in this project, the following conclusions can be drawn:

- 1. The Type 60 Median Barrier can successfully redirect an 1100-kg small car impacting at 100 km/h and 25°.
- 2. The Type 60 Median Barrier meets the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware 2009* (MASH 2009) criteria for Test 3-10 for longitudinal barriers.

7. Appendix

7.1. Test Vehicle Equipment

Test 140MASH3C16-04: The vehicle used for this test was a 2007 Kia Rio. Since the vehicle was towed and not self-powered, the fuel in the gas tank was pumped out and gaseous CO₂ added in order to purge the gas vapors and eliminate oxygen. One pair of 12-volt wet cell batteries was mounted in the vehicle. The batteries powered the GMH DataBrick 3 transient data recorders. A 12-volt deep-cycle gel cell battery powered the Electronic Control Box.

Figure 7-1 Instrumentation Board Mounting Location

Figure 7-2 Back Seat Removed

A 4800 kPA CO₂ system, actuated by a solenoid valve, controlled remote braking after the impact and emergency braking if necessary. Part of this system was a pneumatic ram which was attached to the brake pedal. The operating pressure for the ram was adjusted through a pressure regulator during a series of trial runs prior to the actual test. Adjustments were made to ensure the shortest stopping distance without locking up the wheels. When activated, the brakes could be applied in less than 100 milliseconds.

Figure 7-3 Rear of Instrumentation Panel

Figure 7-4 Brake Pedal Actuator

A speed control device was connected in-line with the ignition module signal to the coil on the tow vehicle. It was used to regulate the speed based on the signal from the vehicle transmission speed sensor. This device was calibrated prior to the test by conducting a series of trial runs through a speed trap comprised of two tape switches (set at a specific distance apart) and a digital timer.

7.2. Test Vehicle Guidance System

A rail guidance system directed the vehicle into the barrier. The guidance rail, anchored at 3.8 m intervals along its length was used to guide a mechanical arm, which was attached to the hub of the front right wheel of the vehicle. A plate and lever were used to trigger the release pin on the guidance arm, thereby releasing the vehicle from the guidance system before impact.

Figure 7-5 Rail Guidance System Set-Up

Figure 7-6 Rail Guidance System

7.3. Photo - Instrumentation

Several high-speed video cameras recorded the impact during the test. The high-speed video frame rates were set to 500 frames per second. The types of cameras and their locations are shown in Figure 7-7 and Table 7-1. The origin of the coordinates is at the intended point of impact.

Figure 7-7 High-Speed Video Camera Locations (Not to Scale)

Camora	Camora	Camora		Lens	Coordinates			
Location	Make/Model	del Serial No.		Serial No.	х	у	z	
V1 Upstream	Olympus iSpeed3	1400022	35 mm	259936	-89.58′	-1.0′	4.2′	
V2 Downstream	Olympus iSpeed3	1400014	135 mm	309666	305.75'	1.92'	6.6′	
V3 Across	V3 Across iSpeed3		20 mm	182398	19.67'	88.92'	5.6′	
V4 Upstream Tower	V4 Vision Upstream Research Tower Miro 110		20 mm	447169	-6.75'	-6.42	28'	
V5 Downstream Tower	Vision Research Miro 110	13234	14 mm	217706	25.67'	-11.83'	41'	

 Table 7-1. 140MASH3C16-04 Camera Types and Location Coordinates

The following are the pretest procedures that were required to enable video data reduction to be performed using the Research's video analysis software (Phantom Camera Control):

- 1. Butterfly targets were attached to the top and sides of the test vehicle. The targets were located on the vehicle at intervals of 500 mm and 1000 mm. The targets established scale factors.
- 2. Flashbulbs, mounted on the test vehicle, were electronically triggered to establish initial vehicleto-barrier contact and the time of the application of the vehicle brakes.

- 3. High-speed digital video cameras were all time-coded through the use of a portable computer and were triggered as the test vehicle passed over a tape switch located on the vehicle path upstream of impact.
- 7.4. Electronic Instrumentation and Data

Transducer data were recorded on two separate GMH Engineering, Data Brick, Model III, digital transient data recorders (TDRs) that were mounted in the test vehicle. These transducers included two sets of accelerometers and two sets of angular rate sensors at the center of gravity. The TDR data were reduced using a desktop personal computer. DADiSP 2002 version 6.0 NI NK B14 was used for pre-processing. TRAP was used for the post-processing. Accelerometer and angular rate sensor specifications are shown in Table 7-2. Accelerometer and Angular Rate Sensor Specifications

Туре	Manufacturer	Model	Serial #	Location	Range	Orientation
Accelerometer	Measurement Specialties	64CM32	MS13366	CG	±200	Primary Longitudinal
Accelerometer	Measurement Specialties	64CM32	MS13328	GC	±200	Primary Lateral
Accelerometer	Measurement Specialties	64CM32	MS13358	CG	±200	Primary Vertical
Accelerometer	Measurement Specialties	64CM32	MS13364	CG	±200	Secondary Longitudinal
Accelerometer	Measurement Specialties	64CM32	MS13361	CG	±200	Secondary Lateral
Accelerometer	Measurement Specialties	64CM32	MS13329	CG	±200	Secondary Vertical
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS4018	CG	±1500	Primary Roll
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS4217	CG	±1500	Primary Pitch
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS3348	CG	±1500	Primary Yaw
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS3355	CG	±1500	Secondary Roll
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS3336	CG	±1500	Secondary Pitch
Angular Rate Sensors	Data Acquisition Systems	ARS-1500 (1000HZ)	ARS4019	CG	±1500	Secondary Yaw

Table 7-2. Accelerometer and Angular Rate Sensor Specifications

A rigid stand with three retro-reflective 90° polarizing tape strips spaced 1000 mm apart was placed on the ground near the test article and alongside the path of the test vehicle. The strips were measured immediately before the test to account for any thermal expansion. The test vehicle had an onboard optical sensor that produced sequential impulses or "event blips" as the vehicle passed the reflective tape strips. The event blips were recorded concurrently with the accelerometer signals on the TDR, serving as "event markers". The impact velocity of the vehicle could be determined from these sensor impulses, the data record time, and the known distance between the tape strips. A pressure sensitive tape switch on the front bumper of the vehicle closed at the instant of impact and triggered two events: 1) "event marker" was added to the recorded data, and 2) a flashbulb mounted on the top of the vehicle was activated. One set of pressure activated tape switches, connected to a speed trap, was placed 4 m apart just upstream of the test article to check the impact speed of the test vehicle (not a reported measurement). The layout for all of the pressure sensitive tape switches and reflective tape is shown in Figure 7-8.

Figure 7-8 Speed Trap Tape Layout

7.5. Vehicle Measurements

Table 7-3.	Exterior	Vehicle	Measurements
1 and 7-3.	LAUTION	v unuu	

Policies and Procedures Manual Roadside Safety Research Group Revised: 2/26/2016 Page 1

Attachment 5.4.5 --- 1100C and 1500A Small Car Parameters

Date:	11/1/2016	5	Test N	lumber: 140MAS	6H3C16-04	Model:	Kio
Make: Kia		VIN:	KNA	DE123376242	513		
Tire Size: 18565R14		Year:	2007		Odometer:	145564	
Tire Inflatio	n Pressure:	32 psi		Tape Measure Used:	Tape #1	CLE:	

*(All Measurements Refer to Impacting Side)

(785.93) Scale:

(450.73) Scale:

	Veł	nicle Ge	eometry	- mm (i	inche	s)			
	а	1674	4 (65.	.91)	b	1472	2 (57.95)	
	с	4254	4 (167	.48)	d	915	(36.02)	
	e	250	2 (98	.5)	f	838	(32.99)	
t	g	N/A	#VA	LUE!	h	927		(36.5)	
	i	185	j (7.	28)	j	563	(22.17)	
	k	283	(11	.14)	1	613	(24.13)	
	m	147	2 (57.	.95)	n	1446	5 (56.93)	
	0	727	(28	.62)	р	25		(0.98)	
	q	572	. (22	.52)	r	384	(15.12)	
	s	190) (7.	48)	t	1682	2 (66.22)	
	Wh	eel Cen	ter Height	Front:		275		(10.83)	
	Wh	eel Cen	ter Height	Rear:		282		(11.1)	
	Wh	eel Wel	l Clearand	:e (F)		125		(4.92)	
	Wh	eel Wel	l Clearand	:e (R)		130		(5.12)	
			Frame H	eight (F):	172		(6.77)	
			Frame H	eight (R):	190		(7.48)	
			Eng	ine Type	2:	4	Cylind	er	
			En	gine Size	2:	1	L.6 Lite	er	
		Tra	nsmission	Type:					
			Automati	c or Ma	nual:		Auton	natic	
			FWD or R	WD or 4	4WD:		FW	D	
ig	sht F	ront:	347.6	(766	.31)	Scale:		green	
ig	ht R	lear:	210.25	(463	.51)	Scale:		blue	
Gr	oss	Static							
4.	9	(1642	.2)						
2.	4	(997.3	35)						
_									

Mass	Distribution	

356.5

204.45

Left Front:

Left Rear:

Weights				
kg (lbs)	Curb	Test Inertial	Gross Static	
W _{front}	710.2 (1565.7)	704.1 (1552.25)	744.9 (1642.2)	
W _{rear}	422.6 (931.66)	414.7 (914.24)	452.4 (997.35)	
W _{total}	1132.8 (2497.35)	1118.8 (2466.49)	1197.3 (2639.55)	
GVWR Rat	ings		Dummy Data	
Front:	870	(1918)	Type:	Hybrid III 50th Male Dummy
Back:	850	(1874)	Mass:	78.5 kg
Total:	1650	(3638)	Seat Position:	Driver
Note any	damage prior to test:		Small dent/scra	tch on hood.

red

yellow

Christopher Caldwell reviewed calculations on 8/20/2014

If R is negative the CG is left of center, if R is positive the CG is right of center

Curb Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.)

140MASH3C16-04 CG Data Calculation Worksheet.xlsx

Curb WorkSheet

Table 7-5. CG Calculation: Test Inertial Weight

If R is negative the CG is left of center, if R is positive the CG is right of center

Test Inertial Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.) Initial weight recorded as 1150kg; MASH max. is 1125kg. So removed rear dash panel, rear speakers and seat-belts along with back doors panel's, pumped out the gas. Also removed the glove box, front door panels and speakers.

140MASH3C16-04 CG Data Calculation Worksheet.xlsx

Test Inertial WorkSheet

Policies and Proce Roadside Safety R A2LA Certificate N	dures Man esearch Gr Io. 3046.01	nual roup Attachm	nent 5.4.2 -	CG Data Calculation Wo	Revised: 01/20/20 Page 1 o Last Revised by John Jew rksheet
Make:		CG Cal Kia	lculation We	orksheet #3: Gross Static Wei Test Number:	ght 140MASH3C16-04
Model:		Rio 4 door l	Х	Date:	Nov. 10th, 2016
Year:		2007		Temperature:	75
VIN:	ŀ	KNADE1233762	42513		
Fuel in Tank:		none			М
Fuel Removed:		approx. 3 ga	al.	×	→
Staff:	Vue H	I.,Chris C., John	W., Jean V.		
				-	\bigcap
	J	ean V. recorded	data,		W2
	pe	riormed the ca	iculation	— [[™]] î	
W1 = Left Front (LF) =	389 7	kσ	\bigcirc	
Scale Used:		red	16		
				•	
W2 = Right Front (R	(F) =	355.2	kg		IΨ I
Scale Used:	·	green			
					E
W3 = Left Rear (LR)	=	228.4	kg	Fuel	
Scale Used:		yellow		Tank	
				< →	
W4 = Right Rear (RI	R) =	224	kg		
Scale Used:		blue		Ċ	
Total Maight				Wa	
Wtotal (meas	ured) -	1196 3	kσ	"3	
withtai (meas	ureu) =	1150.5	r.g	C R-	
Wtotal (calcul	ated) = 119	97.3	kø	1	
				Γ	N
Distance between f	ront wheels	:			
M =	1472	mm		W _	W + W + W + W
				Total —	$m_1 + m_2 + m_3 + m_4$
Distance between r	ear wheels:				
N =	1446	mm		H - ($W_3 + W_4) E_{-}$
				11 – –	W Total
Distance from front	to rear whe	eels:			
£ =	2502	mm		(117 117	
Distance from front	wheels had	k to CG		$R = \frac{(W_2 - W)}{2}$	$_{1}$) $_{1}$ + ($_{1}$ + ($_{4}$ - $_{3}$) $_{1}$
H = 945	wheels bac	mm			2 W Total
11- 545					
Distance from vehic	cle centerlin	e to CG:			

Table 7-6. CG Calculation: Gross Static Weight

If R is negative the CG is left of center, if R is positive the CG is right of center

Gross Static Weight Conditions: (vehicle condition, items removed, items added, environmental conditions, etc.)

140MASH3C16-04 CG Data Calculation Worksheet.xlsx

Gross Static WorkSheet

7.6. Vehicle Interior Deformation Measurements

Table 7-7. Interior Floorboard Pre, Post, and Deformation Measurements

olicies and	Procedures I	Manual						Revis	ed: 9/28/2
padside Sa	fety Research	n Group							Pa
		Att	achment 5.5	Interior	Vehicle Meas	urement Re	eport		
ehicle Typ	e	1100C			Test Numbe	r	140MASH30	16-04	
/ake		Kia			Model		Rio LX		
ear		2007			Color		Red		
IN #		KNADE1233	76242513		-				
					-				
oorboard	Measureme	nts - Dimens	ions in mm (inches)					
Point		Pre-Impact			Post-Impact			Difference	
1 Onite	Х	Y	Z	Х	Y	Z	ΔX	ΔY	ΔZ
F7	620 (24.4)	-350 (-13.8)	-173 (-6.8)	612 (24.1)	-342 (-13.5)	-163 (-6.4)	-8 (-0.3)	8 (0.3)	10 (0.4)
F8	620 (24.4)	-250 (-9.8)	-177 (-7)	616 (24.3)	-242 (-9.5)	-165 (-6.5)	-4 (-0.2)	8 (0.3)	12 (0.5)
F9	620 (24.4)	-150 (-5.9)	-170 (-6.7)	623 (24.5)	-159 (-6.3)	-152 (-6)	3 (0.1)	-9 (-0.4)	18 (0.7)
F10	520 (20.5)	-350 (-13.8)	-178 (-7)	512 (20.2)	-344 (-13.5)	-159 (-6.3)	-8 (-0.3)	6 (0.2)	19 (0.7)
F11	520 (20.5)	-250 (-9.8)	-189 (-7.4)	515 (20.3)	-249 (-9.8)	-147 (-5.8)	-5 (-0.2)	1 (0)	42 (1.7)
F12	520 (20.5)	-150 (-5.9)	-181 (-7.1)	522 (20.6)	-163 (-6.4)	-157 (-6.2)	2 (0.1)	-13 (-0.5)	24 (0.9)
F13	420 (16.5)	-350 (-13.8)	-183 (-7.2)	412 (16.2)	-345 (-13.6)	-160 (-6.3)	-8 (-0.3)	5 (0.2)	23 (0.9)
F14	419 (16.5)	-250 (-9.8)	-197 (-7.8)	417 (16.4)	-260 (-10.2)	-144 (-5.7)	-2 (-0.1)	-10 (-0.4)	53 (2.1)
F15	417 (16.4)	-150 (-5.9)	-188 (-7.4)	423 (16.7)	-164 (-6.5)	-165 (-6.5)	6 (0.2)	-14 (-0.6)	23 (0.9)
F16	870 (34.3)	-553 (-21.8)	-182 (-7.2)	859 (33.8)	-545 (-21.5)	-190 (-7.5)	-11 (-0.4)	8 (0.3)	-8 (-0.3)
F17	870 (34.3)	-450 (-17.7)	-175 (-6.9)	856 (33.7)	-442 (-17.4)	-189 (-7.4)	-14 (-0.6)	8 (0.3)	-14 (-0.6
F18	870 (34.3)	-347 (-13.7)	-173 (-6.8)	853 (33.6)	-349 (-13.7)	-186 (-7.3)	-17 (-0.7)	-2 (-0.1)	-13 (-0.5
F19	870 (34.3)	-249 (-9.8)	-180 (-7.1)	862 (33.9)	-247 (-9.7)	-175 (-6.9)	-8 (-0.3)	2 (0.1)	5 (0.2)
F20	870 (34.3)	-150 (-5.9)	-167 (-6.6)	870 (34.3)	-147 (-5.8)	-168 (-6.6)	0 (0)	3 (0.1)	-1 (0)
F21	972 (38.3)	-551 (-21.7)	-193 (-7.6)	959 (37.8)	-538 (-21.2)	-204 (-8)	-13 (-0.5)	13 (0.5)	-11 (-0.4
F22	972 (38.3)	-450 (-17.7)	-174 (-6.9)	957 (37.7)	-439 (-17.3)	-187 (-7.4)	-15 (-0.6)	11 (0.4)	-13 (-0.5
F23	972 (38.3)	-348 (-13.7)	-174 (-6.9)	954 (37.6)	-338 (-13.3)	-184 (-7.2)	-18 (-0.7)	10 (0.4)	-10 (-0.4
F24	972 (38.3)	-247 (-9.7)	-187 (-7.4)	961 (37.8)	-254 (-10)	-185 (-7.3)	-11 (-0.4)	-7 (-0.3)	2 (0.1)
F25	972 (38.3)	-146 (-5.7)	-179 (-7)	970 (38.2)	-152 (-6)	-172 (-6.8)	-2 (-0.1)	-6 (-0.2)	7 (0.3)
F26	1070 (42.1)	-553 (-21.8)	-193 (-7.6)	1059 (41.7)	-536 (-21.1)	-204 (-8)	-11 (-0.4)	17 (0.7)	-11 (-0.4
F27	1070 (42.1)	-450 (-17.7)	-174 (-6.9)	1057 (41.6)	-435 (-17.1)	-185 (-7.3)	-13 (-0.5)	15 (0.6)	-11 (-0.4
F28	1070 (42.1)	-348 (-13.7)	-173 (-6.8)	1055 (41.5)	-334 (-13.1)	-182 (-7.2)	-15 (-0.6)	14 (0.6)	-9 (-0.4)
F29	1070 (42.1)	-245 (-9.6)	-189 (-7.4)	1059 (41.7)	-255 (-10)	-159 (-6.3)	-11 (-0.4)	-10 (-0.4)	30 (1.2)
F30	1070 (42.1)	-144 (-5.7)	-176 (-6.9)	1069 (42.1)	-157 (-6.2)	-168 (-6.6)	-1 (0)	-13 (-0.5)	8 (0.3)
F31	1175 (46.3)	-554 (-21.8)	-184 (-7.2)	1161 (45.7)	-535 (-21.1)	-190 (-7.5)	-14 (-0.6)	19 (0.7)	-6 (-0.2)
F32	1175 (46.3)	-450 (-17.7)	-174 (-6.9)	1157 (45.6)	-431 (-17)	-185 (-7.3)	-18 (-0.7)	19 (0.7)	-11 (-0.4
F33	1175 (46.3)	-348 (-13.7)	-174 (-6.9)	1156 (45.5)	-329 (-13)	-177 (-7)	-19 (-0.7)	19 (0.7)	-3 (-0.1)
F34	11/5 (46.3)	-246 (-9.7)	-180 (-7.1)	1154 (45.4)	-255 (-10)	-140 (-5.5)	-21 (-0.8)	-9 (-0.4)	40 (1.6)
F35	1175 (46.3)	-145 (-5.7)	-174 (-6.9)	1171 (46.1)	-163 (-6.4)	-157 (-6.2)	-4 (-0.2)	-18 (-0.7)	17 (0.7)
F36	1225 (48.2)	-554 (-21.8)	-152 (-6)	1288 (50.7)	-535 (-21.1)	-161 (-6.3)	63 (2.5)	19 (0.7)	-9 (-0.4)
F37	1224 (48.2)	-450 (-17.7)	-1/3 (-6.8)	1259 (49.6)	-429 (-16.9)	-180 (-7.1)	35 (1.4)	21 (0.8)	-/(-0.3)
F38	1220 (48)	-350 (-13.8)	-1/1 (-6./)	1257 (49.5)	-330 (-13)	-1/2 (-6.8)	37 (1.5)	20 (0.8)	-1 (0)
F39	1219 (48)	-244 (-9.6)	-1/4 (-6.9)	1247 (49.1)	-224 (-8.8)	-156 (-6.1)	28 (1.1)	20 (0.8)	18 (0.7)
F40	1217 (47.9)	-142 (-5.6)	-165 (-6.5)	1258 (49.5)	-157 (-6.2)	-114 (-4.5)	41 (1.6)	-15 (-0.6)	51(2)
F41	1327 (52.2)	-452 (-17.8)	-137 (-5.4)	1341 (52.8)	-434 (-17.1)	-137 (-5.4)	14 (0.6)	18 (0.7)	0 (0)
F42	1323 (52.1)	-348 (-13.7)	-139 (-5.5)	1349 (53.1)	-327 (-12.9)	-131 (-5.2)	26 (1)	21 (0.8)	8 (0.3)
F43	1319 (51.9)	-242 (-9.5)	-135 (-5.3)						
F44	1317 (51.9)	-143 (-5.6)	-140 (-5.5)	1359 (53.5)	-11/(-4.6)	-14/(-5.8)	42 (1.7)	26 (1)	-/ (-0.3)
F40	1426 (56.2)	-555 (-21.9)	-80 (-3.1)	1301 (53.6)	-521 (-20.5)	-79(-3.1)	10 (0.4)	34 (1.3)	14 (0, 0)
F46	1426 (56.1)	-450 (-17.7)	-80 (-3.1)	1445 (56.9)	-435 (-1/.1)	-66 (-2.6)	19 (0.7)	15 (0.6)	14 (0.6)
F4/	1420 (50.1)	-348 (-13./)	-80 (-3.1)	1440 (50.9)	-528 (-12.9)	-05 (-2.6)	20 (0.8)	20 (0.8)	15 (0.6)
- //	1417(558)	-/4/(-9.5)	-/ð(-3.1)					L CNBIVI	

NOTE: CNBM stands for "Could Not Be Measured" due to loss of the measured mark.

Table 7-8. Interior Dashboard and Roof Pre, Post, and Deformation Measurements

Policies and Procedures Manual Roadside Safety Research Group Revised: 9/28/2015

Page 2

Attachment 5.5 --- Interior Vehicle Measurement Report

Vehicle Type	1100C	Test Number	140MASH3C16-04
Make	Kia	Model	Rio LX
Year	2007	Color	Red
VIN #	KNADE123376242513		

Point	Pre-Impact			Post-Impact			Difference		
Folin	Х	Y	Z	Х	Y	Z	ΔX	ΔY	ΔZ
D1	1058 (41.7)	-550 (-21.7)	522 (20.6)	1099 (43.3)	-545 (-21.5)	538 (21.2)	41 (1.6)	5 (0.2)	16 (0.6)
D2	1044 (41.1)	-448 (-17.6)	569 (22.4)	1041 (41)	-441 (-17.4)	566 (22.3)	-3 (-0.1)	7 (0.3)	-3 (-0.1)
D3	1008 (39.7)	-345 (-13.6)	615 (24.2)	1008 (39.7)	-340 (-13.4)	615 (24.2)	0 (0)	5 (0.2)	0 (0)
D4	980 (38.6)	-249 (-9.8)	592 (23.3)	1031 (40.6)	-233 (-9.2)	597 (23.5)	51 (2)	16 (0.6)	5 (0.2)
D5	1040 (40.9)	-148 (-5.8)	540 (21.3)	1092 (43)	-143 (-5.6)	546 (21.5)	52 (2)	5 (0.2)	6 (0.2)
D6	1106 (43.5)	0 (0)	560 (22)	1086 (42.8)	2 (0.1)	549 (21.6)	-20 (-0.8)	2 (0.1)	-11 (-0.4)

Roof Measurements - Dimensions in mm (inches)

Point	Pre-Impact			Post-Impact			Difference		
	Х	Y	Z	Х	Y	Z	ΔX	ΔY	ΔZ
R1	717 (28.2)	-551 (-21.7)	838 (33)	730 (28.7)	-539 (-21.2)	837 (33)	13 (0.5)	12 (0.5)	-1 (0)
R2	720 (28.3)	-450 (-17.7)	920 (36.2)	724 (28.5)	-446 (-17.6)	917 (36.1)	4 (0.2)	4 (0.2)	-3 (-0.1)
R3	720 (28.3)	-350 (-13.8)	929 (36.6)	722 (28.4)	-347 (-13.7)	926 (36.5)	2 (0.1)	3 (0.1)	-3 (-0.1)
R4	720 (28.3)	-250 (-9.8)	939 (37)	721 (28.4)	-245 (-9.6)	937 (36.9)	1 (0)	5 (0.2)	-2 (-0.1)
R5	720 (28.3)	-150 (-5.9)	945 (37.2)	721 (28.4)	-146 (-5.7)	943 (37.1)	1 (0)	4 (0.2)	-2 (-0.1)
R6	720 (28.3)	148 (5.8)	945 (37.2)	720 (28.3)	149 (5.9)	945 (37.2)	0 (0)	1 (0)	0 (0)
R7	620 (24.4)	-350 (-13.8)	962 (37.9)	622 (24.5)	-346 (-13.6)	963 (37.9)	2 (0.1)	4 (0.2)	1 (0)
R8	620 (24.4)	-250 (-9.8)	971 (38.2)	619 (24.4)	-246 (-9.7)	972 (38.3)	-1 (0)	4 (0.2)	1 (0)
R9	620 (24.4)	-150 (-5.9)	978 (38.5)	620 (24.4)	-144 (-5.7)	981 (38.6)	0 (0)	6 (0.2)	3 (0.1)
R10	520 (20.5)	-350 (-13.8)	973 (38.3)	519 (20.4)	-346 (-13.6)	976 (38.4)	-1 (0)	4 (0.2)	3 (0.1)
R11	520 (20.5)	-250 (-9.8)	982 (38.7)	520 (20.5)	-240 (-9.4)	986 (38.8)	0 (0)	10 (0.4)	4 (0.2)
R12	520 (20.5)	-150 (-5.9)	986 (38.8)	523 (20.6)	-141 (-5.6)	989 (38.9)	3 (0.1)	9 (0.4)	3 (0.1)
R13	420 (16.5)	-350 (-13.8)	1000 (39.4)	419 (16.5)	-344 (-13.5)	1004 (39.5)	-1 (0)	6 (0.2)	4 (0.2)
R14	419 (16.5)	-250 (-9.8)	1009 (39.7)	419 (16.5)	-240 (-9.4)	1014 (39.9)	0 (0)	10 (0.4)	5 (0.2)
R15	417 (16.4)	-150 (-5.9)	1016 (40)	420 (16.5)	-140 (-5.5)	1020 (40.2)	3 (0.1)	10 (0.4)	4 (0.2)

NOTE: CNBM stands for "Could Not Be Measured" due to loss of the measured mark.

7.7. Data Plots

The TRAP data plots are shown in Figure 7-9 through Figure 7-18. The plots included are the accelerations, angular rate sensor rates, angular rate sensor degrees, Acceleration Severity Index (ASI), and TRAP test summary sheets. All data were analyzed using TRAP. As noted on the Test Data Summary Sheet, the data was analyzed using the "Secondary" Acceleration records and a hybrid of the "Primary" and "Secondary" Angular Rate Sensor (ARS) records. The reasons for this are: 1) The "Secondary" channels were closer to the vehicle CG and 2) Some of the ARS Channels did not record properly so the ARS channels that recorded properly were combined to provide a complete set of ARS data³. The plots of data used for the TRAP analysis are shown on the following pages preceding the TRAP summary with the "Primary" Acceleration plots shown thereafter for reference.

³ Roll and Yaw were used from the "Primary" Set. Pitch was used from the "Secondary" Set. Both "Primary" and "Secondary" were within the recommended distance from the vehicle C.G.

Figure 7-9 Longitudinal Acceleration at CG - Secondary

May 18, 2018 California Department of Transportation Report No. FHWA/CA17-2654

Figure 7-10 Lateral Acceleration at CG – Secondary

Figure 7-11 Vertical Acceleration at CG – Secondary

Figure 7-12 Roll, Pitch, and Yaw Rates at CG – Combined

Figure 7-13 Roll, Pitch, and Yaw Angles at CG - Combined

Figure 7-14 Acceleration Severity Index (ASI) - Combined

Test Summary Report (Using SAE Class 180 Filter on Acceleration Data and Angular Velocity/Displa General Information Test Agency: California Department of Transportation Test Number: 140MASH3C16-04 Test Date: 11/30/2016 Test Article: Type 60 Median Barrier Test Vehicle 2007 Kia Rio 1119 kg 1197 kg Description: Test Inertial Mass: Gross Static Mass: Impact Conditions Speed: 61.2 Angle: 25.7 mph degrees Occupant Risk Factors Impact Velocity (m/s) at 0.0711 seconds on left side of interior x-direction 7.8 -9.5 y-direction THIV (km/hr): THIV (m/s): at 0.0692 seconds on left side of interior 44.0 12.2 Ridedown Accelerations (g's) x-direction -4.8 y-direction 10.8 (0.2019 - 0.2119 seconds) (0.2036 - 0.2136 seconds) y-direction PHD (g's): 11.6 (0.2035 - 0.2135 seconds) 2.79 (0.0407 - 0.0907 seconds) AST: Max. 50msec Moving Avg. Accelerations (g's) x-direction -14.5 (0.0130 - 0.0630 seconds) y-direction 19.2 (0.0103 - 0.0603 seconds) z-direction -3.1 (0.0225 - 0.0725 seconds) Max Roll, Pitch, and Yaw Angles (degrees) 12.0 (0.6686 seconds) -4.2 (0.5589 secon 44.8 (0.7551 seconds) Roll Pitch (0.5589 seconds) Yaw

Figure 7-15 TRAP Summary Sheet - Combined

Figure 7-16 Longitudinal Acceleration at CG - Primary

Y Acceleration at CG

Figure 7-17 Lateral Acceleration at CG - Primary

May 18, 2018 California Department of Transportation Report No. FHWA/CA17-2654

Figure 7-18 Vertical Acceleration at CG – Primary

8. Detail Drawings

The following details in Figure 8-1 and Figure 8-2 are Type 60 Median Barrier Standard Plans.

Figure 8-1. Standard Plan for Type 60 Barrier

Figure 8-2. Standard Plan for Type 60 Barrier (End Anchorage)

9. References

- 1. *Manual for Assessing Safety Hardware 2009 (MASH 09).* American Association of State Highway and Transportation Officials. Washington, DC. 2009.
- 2. (Caltrans) Standard Plans 1997. State of California Department of Transportation. Sacramento. 1997.
- *3.* William F. Williams, Roger P. Bligh, and Wanda L. Menges. MASH TEST 3-11 OF THE TXDOT SINGLE SLOPE BRIDGE RAIL (TYPE SSTR) ON PAN-FORMED BRIDGE DECK. Texas Transportation Institute. Austin. 2011.
- 4. William F. Williams, R. P. MASH TL-3 CRASH TESTING AND EVALUATION OF THE TXDOT T631 BRIDGE RAIL. Texas Transportation Institute. Austin. 2016.
- 5. *Vehicle Damage Scale for Traffic Crash Investigators.* Texas Department of Public Safety. Austin. 2006.
- 6. Collision Deformation Classification SAE Recommended Practice J224 MAR80. Society of Automotive Engineers. New York, NY. 1980
- 7. Test Risk Assessment Program. Texas Transportation Institute. Austin. 2013.

Date	Description

10. Document Revision History