

Research Project Number TPF-5(193) Supplement #130

EVALUATION OF THE NEW YORK LOW-TENSION THREE-CABLE BARRIER ON CURVED ALIGNMENT

Submitted by

Tyler L. Schmidt Undergraduate Research Assistant

Curt L. Meyer, B.S.M.E., E.I.T. Former Research Associate Engineer

Robert W. Bielenberg, M.S.M.E., E.I.T. Research Associate Engineer Karla A. Lechtenberg, M.S.M.E., E.I.T. Research Associate Engineer

> Ronald K. Faller, Ph.D., P.E. Research Assistant Professor Interim MwRSF Director

> > John D. Reid, Ph.D. Professor

Dean L. Sicking, Ph.D., P.E. Emeritus Professor Former MwRSF Director

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln 130 Whittier Research Center 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965

Submitted to

New York State Department of Transportation

50 Wolf Road, 6th Floor Albany, New York 68502

MwRSF Research Report No. TRP-03-263-12

February 19, 2013

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-263-12	2.	3. Recipient's Accession No.				
4. Title and Subtitle Evaluation of the New York I	Low-Tension Three-Cable	5. Report Date February 19, 2013				
Barrier on Curved Alignment		6.				
^{7. Author(s)} Schmidt, T.L., Lechtenberg, H R.K., Bielenberg, R.W., Reid	K.A., Meyer, C.L., Faller, , J.D., and Sicking, D.L.	8. Performing Organization Report No. TRP-03-263-12				
9. Performing Organization Name and Addree Midwest Roadside Safety Fac	ess ility (MwRSF)	10. Project/Task/Work Unit No.				
Nebraska Transportation Cen University of Nebraska-Linco 130 Whittier Research Center 2200 Vine Street Lincoln Nebraska 68583 08	ter vln 53	11. Contract © or Grant (G) No. TPF-5(193) Supplement #130				
12. Sponsoring Organization Name and Add New York State Department	ress of Transportation	13. Type of Report and Period Covered Final Report: 2010 – 2012				
50 Wolf Road, 6 th Floor Albany, New York 68502		14. Sponsoring Agency Code				
15. Supplementary Notes Prepared in cooperation with	15. Supplementary Notes Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration.					
16. Abstract (Limit: 200 words) Three full-scale crash tests were performed on the New York Department of Transportation's (NYSDOT's) curved, low- tension, three-cable barrier systems utilizing the MASH Test Level 3 safety performance criteria. The cable barrier system for test no. NYCC-1 was 399.1 ft (121.6 m) long and used a radius of 360 ft (110 m). For test nos. NYCC-2 and NYCC-3, the cable barrier systems were 396.5 ft (120.9 m) long and used radii of 440 ft (134 m). In test nos. NYCC-1 and NYCC-2, the three cables were positioned at heights of 1 ft 3 in. (0.38 m), 1 ft 9 in. (0.53 m), and 2 ft 3 in. (0.69 m). In each of the tests, a 2270P vehicle was used. The first test redirected the pickup truck with all safety performance criteria being satisfied. During the second test, the pickup truck overrode the cable barrier and came to rest behind the system, thus resulting in unacceptable barrier performance. The barrier system was modified using a 2 in. (51 mm) height increase and retested with cables centered at 1 ft 5 in. (0.41 m), 1 ft 11 in.(0.58 m) and 2 ft 5 in. (0.74 m). In the third test, the pickup truck was redirected, and all safety performance criteria were satisfied.						
17. Document Analysis/Descriptors Highway Safety, Crash Test, Compliance Test, MASH, Cu Tension, NYSDOT	Roadside Appurtenances, rved Cable Barrier, Low	18. Availability Statement No restrictions. Docu National Technical Ir Springfield, Virginia	 18. Availability Statement No restrictions. Document available from: National Technical Information Services, Springfield Virginia 22161 			
19. Security Class (this report) Unclassified	20. Security Class (this page) Unclassified	21. No. of Pages 287	22. Price			

DISCLAIMER STATEMENT

This report was completed with funding from the New York State Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the New York State Department of Transportation nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Mr. Scott Rosenbaugh, Research Associate Engineer.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project:

(1) the New York State Department of Transportation for sponsoring this project and (2)

MwRSF personnel for constructing the barriers and conducting the crash tests.

Acknowledgement is also given to the following individuals who made a contribution to

the completion of this research project.

Midwest Roadside Safety Facility

J.C. Holloway, M.S.C.E., E.I.T., Test Site Manager
S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Associate Engineer
M. Mongiardini, Ph.D., Former Post-Doctoral Research Assistant
A.T. Russell, B.S.B.A., Shop Manager
K.L. Krenk, B.S.M.A., Maintenance Mechanic
S.M. Tighe, Laboratory Mechanic
D.S. Charroin, Laboratory Mechanic
D.M. Homan, Former Undergraduate Research Assistant
Undergraduate and Graduate Research Assistants

New York State Department of Transportation

Lyman L. Hale III, Senior Engineer Pratip Lahiri, P.E., Standards and Specifications Section Robert Lohse, Design Quality Assurance Bureau James Turley, Design Quality Assurance Bureau

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vi
LIST OF TABLES	xii
1 INTRODUCTION	1
1.1 Background	1
1.2 Objective	1
1.3 Scope	2
2 TEST REQUIREMENTS AND EVALUATION CRITERIA	4
2.1 Test Requirements	4
2.2 Evaluation Criteria	5
2.3 Soil Strength Requirements	5
3 TEST CONDITIONS	8
3.1 Test Facility	8
3.2 Vehicle Tow and Guidance System	8
3.3 Test Vehicles	8
3.4 Simulated Occupant	19
3.5 Data Acquisition Systems	19
3.5.1 Accelerometers	19
3.5.2 Rate Transducers	20
3.5.3 Pressure Tape Switches	21
3.5.4 Digital Photography	22
3.5.5 Load Cell	22
4 DESIGN DETAILS - TEST NO. NYCC-1	27
5 FULL-SCALE CRASH TEST NO. NYCC-1	47
5.1 Static Soil Test	47
5.2 Test No. NYCC-1	47
5.3 Weather Conditions	47
5.4 Test Description	48
5.5 Barrier Damage	50
5.6 Vehicle Damage	51
5.7 Occupant Risk	52
5.8 Load Cell Results	53
5.9 Discussion	54
6 DESIGN DETAILS - TEST NO. NYCC-2	84
7 FULL-SCALE CRASH TEST NO. NYCC-2	90
7.1 Static Soil Test	90
7.2 Test No. NYCC-2	90
7.3 Weather Conditions	90
7.4 Test Description	91
7.5 Barrier Damage	92

7.6 Vehicle Damage	92
7.7 Occupant Risk	93
7.8 Load Cell Results	94
7.9 Discussion	95
8 DESIGN DETAILS - TEST NO. NYCC-3	111
9 FULL-SCALE CRASH TEST NO. NYCC-3	130
9.1 Dynamic Soil Test	130
9.2 Test No. NYCC-3	130
9.3 Weather Conditions	130
9.4 Test Description	131
9.5 Barrier Damage	132
9.6 Vehicle Damage	133
9.7 Occupant Risk	134
9.8 Load Cell Results	135
9.9 Discussion	136
10 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	160
REFERENCES	163
11 APPENDICES	164
Appendix A. Vehicle Center of Gravity Determination	165
Appendix B. Material Specifications	169
Appendix C. Soil and Calibration Tests	206
Appendix D. Vehicle Deformation Records	212
Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. NYCC-1	231
Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. NYCC-2	247
Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. NYCC-3	263

LIST OF FIGURES

Figure 1. Test Vehicle, Test No. NYCC-1	. 10
Figure 2. Vehicle Dimensions, Test No. NYCC-1	. 11
Figure 3. Test Vehicle, Test No. NYCC-2	12
Figure 4. Vehicle Dimensions, Test No. NYCC-2	. 13
Figure 5. Test Vehicle, Test No. NYCC-3	14
Figure 6. Vehicle Dimensions, Test No. NYCC-3	. 15
Figure 7. Target Geometry, Test No. NYCC-1	. 16
Figure 8. Target Geometry, Test No. NYCC-2	. 17
Figure 9. Target Geometry, Test No. NYCC-3	. 18
Figure 10. Camera Locations, Speeds, and Lens Settings, Test No. NYCC-1	23
Figure 11. Camera Locations, Speeds, and Lens Settings, Test No. NYCC-2	24
Figure 12. Camera Locations, Speeds, and Lens Settings, Test No. NYCC-3	25
Figure 13. Typical Load Cell Locations	26
Figure 14. Test Installation Layout, Test No. NYCC-1	29
Figure 15. Critical Region, Test No. NYCC-1	30
Figure 16. Line Post Assembly Details, Test No. NYCC-1	31
Figure 17. Terminal Details, Test No. NYCC-1	32
Figure 18. Anchor Details, Test No. NYCC-1	33
Figure 19. Cable Anchor Bracket Details, Test No. NYCC-1	34
Figure 20. Cable Anchor Bracket Component Details, Test No. NYCC-1	35
Figure 21. Anchor Post Assembly Details, Test No. NYCC-1	36
Figure 22. Anchor Post Component Details, Test No. NYCC-1	37
Figure 23. Cable Clip Details, Test No. NYCC-1	38
Figure 24. Line Post Details, Test No. NYCC-1	39
Figure 25. Cable Compensator Component Details, Test No. NYCC-1	40
Figure 26. Bill of Materials, Test No. NYCC-1	41
Figure 27. System Notes, Test No. NYCC-1	42
Figure 28. Test Installation Photographs, Test No. NYCC-1	43
Figure 29. Post Photographs, Test No. NYCC-1	44
Figure 30. End Anchorage Photographs, Test No. NYCC-1	45
Figure 31. Cable Splices and Load Cells, Test No. NYCC-1	46
Figure 32. Summary of Test Results and Sequential Photographs, Test No. NYCC-1	. 55
Figure 33. Additional Sequential Photographs, Test No. NYCC-1	56
Figure 34. Additional Sequential Photographs, Test No. NYCC-1	57
Figure 35. Additional Sequential Photographs, Test No. NYCC-1	58
Figure 36. Additional Sequential Photographs, Test No. NYCC-1	59
Figure 37. Additional Sequential Photographs, Test No. NYCC-1	60
Figure 38. Documentary Photographs, Test No. NYCC-1	61
Figure 39. Impact Location, Test No. NYCC-1	62
Figure 40. Vehicle Final Position and Trajectory Marks, Test No. NYCC-1	63
Figure 41. System Damage, Test No. NYCC-1	64
Figure 42. System Damage: Upstream Anchor and Post No. 1, Test No. NYCC-1	65
Figure 43. System Damage: Upstream Angle Plate and Top Cable, Test No. NYCC-1	66
Figure 44. System Damage: Downstream Anchor and Post No. 40, Test No. NYCC-1	67
Figure 45. System Damage: Downstream Angle Plate and Middle Cable, Test No. NYCC-1	68

Figure 46.	System Damage: Middle Cable between Post Nos. 17 and 18, Test No. NYCC-1	. 69
Figure 47.	System Damage: Post Nos. 17 and 18, Test No. NYCC-1	. 70
Figure 48.	System Damage: Post Nos. 19 and 20, Test No. NYCC-1	. 71
Figure 49.	System Damage: Post Nos. 21 and 22, Test No. NYCC-1	. 72
Figure 50.	System Damage: Post Nos. 23 and 24, Test No. NYCC-1	. 73
Figure 51.	System Damage: Post Nos. 25 and 26, Test No. NYCC-1	. 74
Figure 52.	System Damage: Post Nos. 27 and 28, Test No. NYCC-1	. 75
Figure 53.	System Damage: Post Nos. 29 and 30, Test No. NYCC-1	. 76
Figure 54.	System Damage: Post Nos. 31 and 32, Test No. NYCC-1	. 77
Figure 55.	System Damage: Post Nos. 33 and 34, Test No. NYCC-1	. 78
Figure 56.	Working Width, Test No. NYCC-1	. 79
Figure 57.	Vehicle Damage: Right Side, Test No. NYCC-1	. 80
Figure 58.	Vehicle Damage: Front and Left Side, Test No. NYCC-1	. 81
Figure 59.	Individual Cable Tension vs. Time, Test No. NYCC-1	. 82
Figure 60.	Total Cable Tension vs. Time, Test No. NYCC-1	. 83
Figure 61.	Test Installation Layout, Test No. NYCC-2	. 85
Figure 62.	Test Installation Photographs, Test No. NYCC-2	. 86
Figure 63.	Post Photographs, Test No. NYCC-2	. 87
Figure 64.	End Anchorage Photographs, Test No. NYCC-2	. 88
Figure 65.	Cable Splices and Load Cells, Test No. NYCC-2	. 89
Figure 66.	Summary of Test Results and Sequential Photographs, Test No. NYCC-2	. 96
Figure 67.	Additional Sequential Photographs, Test No. NYCC-2	. 97
Figure 68.	Additional Sequential Photographs, Test No. NYCC-2	. 98
Figure 69.	Additional Sequential Photographs, Test No. NYCC-2	. 99
Figure 70.	Impact Location, Test No. NYCC-2.	100
Figure 71.	Vehicle Final Position and Trajectory Marks, Test No. NYCC-2	101
Figure 72.	System Damage: Upstream Anchorage, Test No. NYCC-2	102
Figure 73.	System Damage, Test No. NYCC-2	103
Figure 74.	System Damage: Post Nos. 17 through 19, Test No. NYCC-2	104
Figure 75.	Vehicle Damage, Test No. NYCC-2	105
Figure 76.	Vehicle Damage, Test No. NYCC-2	106
Figure 77.	Vehicle Damage, Test No. NYCC-2	107
Figure 78.	Vehicle Damage, Test No. NYCC-2	108
Figure 79.	Individual Cable Tension vs. Time, Test No. NYCC-2	109
Figure 80.	Total Cable Tension vs. Time, Test No. NYCC-2	110
Figure 81.	Test Installation Layout, Test No. NYCC-3	112
Figure 82.	Critical Region, Test No. NYCC-3	113
Figure 83.	Line Post Assembly Details, Test No. NYCC-3	114
Figure 84.	Terminal Details, Test No. NYCC-3	115
Figure 85.	Anchor Details, Test No. NYCC-3	116
Figure 86.	Cable Anchor Bracket Details, Test No. NYCC-3	117
Figure 87.	Cable Anchor Bracket Component Details, Test No. NYCC-3	118
Figure 88.	Anchor Post Assembly Details, Test No. NYCC-3	119
Figure 89.	Anchor Post Component Details, Test No. NYCC-3	120
Figure 90.	Cable Clip Details, Test No. NYCC-3	121
Figure 91.	Line Post Details, Test No. NYCC-3	122
Figure 92.	Cable Compensator Component Details, Test No. NYCC-3	123

Figure 93. Bill of Materials, Test No. NYCC-3	124
Figure 94. System Notes, Test No. NYCC-3	125
Figure 95. Test Installation Photographs, Test No. NYCC-3	126
Figure 96. Post Photographs, Test No. NYCC-3	127
Figure 97. End Anchorage Photographs, Test No. NYCC-3	128
Figure 98. Cable Splices and Load Cells, Test No. NYCC-3	129
Figure 99. Summary of Test Results and Sequential Photographs, Test No. NYCC-3	137
Figure 100. Additional Sequential Photographs, Test No. NYCC-3	138
Figure 101. Additional Sequential Photographs, Test No. NYCC-3	139
Figure 102. Additional Sequential Photographs, Test No. NYCC-3	140
Figure 103. Additional Sequential Photographs, Test No. NYCC-3	141
Figure 104. Additional Sequential Photographs, Test No. NYCC-3	142
Figure 105. Impact Location, Test No. NYCC-3	143
Figure 106. Vehicle Final Position and Trajectory Marks, Test No. NYCC-3	144
Figure 107. System Damage, Test No. NYCC-3	145
Figure 108. System Damage: Post No. 1, Test No. NYCC-3	146
Figure 109. System Damage: Post Nos. 16 through 18, Test No. NYCC-3	147
Figure 110. System Damage: Post Nos. 19 and 20, Test No. NYCC-3	148
Figure 111. System Damage: Post Nos. 21 through 23, Test No. NYCC-3	149
Figure 112. System Damage: Post Nos. 24 and 25, Test No. NYCC-3	150
Figure 113. System Damage: Post Nos. 26 and 27, Test No. NYCC-3	151
Figure 114. System Damage: Post Nos. 28 and 29, Test No. NYCC-3	152
Figure 115. System Damage: Post Nos. 30 and 31, Test No. NYCC-3	153
Figure 116. System Damage: Post No. 40, Test No. NYCC-3	154
Figure 117. Working Width, Test No. NYCC-3	155
Figure 118. Vehicle Damage, Test No. NYCC-3	156
Figure 119. Vehicle Damage, Test No. NYCC-3	157
Figure 120. Individual Cable Tension vs. Time, Test No. NYCC-3	158
Figure 121. Total Cable Tension vs. Time, Test No. NYCC-3	159
Figure A-1. Vehicle Mass Distribution, Test No. NYCC-1	166
Figure A-2. Vehicle Mass Distribution, Test No. NYCC-2	167
Figure A-3. Vehicle Mass Distribution, Test No. NYCC-3	168
Figure B-1. Bill of Materials, Test No. NYCC-1	170
Figure B-2. Bill of Materials, Test No. NYCC-2	1/1
Figure B-3. Bill of Materials, Test No. NYCC-3	172
Figure B-4. Cable, Test Nos. NYCC-1 through NYCC-3	1/3
Figure B-5. Cable, Test Nos. NYCC-2 and NYCC-5	174
Figure B-6. Compensating Cable Assembly, Test Nos. NYCC-1 through NYCC-3	175
Figure B-7. Compensating Cable Assembly Cont., Test Nos. NYCC-1 through NYCC-3	1/0
Figure B-8. Compensating Cable Assembly Cont., Test Nos. NYCC-1 through NYCC-3	1 / /
Figure D-9. Compensating Cable Assembly Cont., Test Nos. NYCC-1 through NYCC-3	1/ð 170
Figure D-10. Lille Post, Test Nos. INTCC-1 ulfough INTCC-5	100
Figure B 12 Line Post Soil Date Test Nos NVCC 1 through NVCC 2	10U 101
Figure B-13 Cable Hook Bolt Test Nos NVCC-1 through NVCC-3	187
Figure B-14 Cable Hook Bolt Cont. Test Nos. NVCC-1 through NVCC-3	182
Figure B-15 Cable Anchor Assembly Test Nos NVCC-1 through NVCC-3	18/
1 igure D-13. Caule Allenoi Assenioly, 1631 N03. N 1 CC-1 IIIOugli N 1 CC-3	104

Figure B-16. Cable Anchor Assembly, Test Nos. NYCC-1 through NYCC-3	185
Figure B-17. Cable Anchor Assembly, Test Nos. NYCC-1 through NYCC-3	186
Figure B-18. Cable Anchor Assembly, Test Nos. NYCC-1 through NYCC-3	187
Figure B-19. Cable Anchor Assembly, Test Nos. NYCC-1 through NYCC-3	188
Figure B-20. Cable Anchor Assembly, Test Nos. NYCC-1 through NYCC-3	189
Figure B-21. Anchor Rods, Test No. NYCC-1	190
Figure B-22. Concrete Anchor, Test No. NYCC-1	191
Figure B-23. Post Nos. 1 and 40 Bolt Assembly, Test Nos. NYCC-1 through NYCC-3	192
Figure B-24. Cable End Washer, Test Nos. NYCC-1 through NYCC-3	193
Figure B-25. Concrete Anchor Post, Test Nos. NYCC-2 and NYCC-3	194
Figure B-26. Concrete Anchor Cont., Test No. NYCC-2	195
Figure B-27. Concrete Anchor Cont., Test Nos. NYCC-2 and NYCC-3	196
Figure B-28. Galvanized Wire, Test No. NYCC-2	197
Figure B-29. Galvanized Wire Cont., Test No. NYCC-2	198
Figure B-30. Galvanized Wire Cont., Test No. NYCC-2	199
Figure B-31. Cable Wedge, Test No. NYCC-2	200
Figure B-32. Cable Hook Nuts, Test Nos. NYCC-2 and NYCC-3	201
Figure B-33. Anchor Post Assembly, Test No. NYCC-3	202
Figure B-34. Anchor Post Assembly Cont., Test No. NYCC-3	203
Figure B-35. Anchor Post Assembly Cont., Test No. NYCC-3	204
Figure B-36. Galvanized Wire, Test No. NYCC-3	205
Figure C-1. Soil Strength, Initial Calibration Tests, Test No. NYCC-1	207
Figure C-2. Static Soil Test, Test No. NYCC-1	208
Figure C-3. Soil Strength, Initial Calibration Tests, Test No. NYCC-2	209
Figure C-4. Static Soil Test, Test No. NYCC-2	210
Figure C-5. Dynamic Soil Strength Test, Test No. NYCC-3	211
Figure D-1. Floor Pan Deformation Data – Set 1, Test No. NYCC-1	213
Figure D-2. Floor Pan Deformation Data – Set 2, Test No. NYCC-1	214
Figure D-3. Occupant Compartment Deformation Data – Set 1, Test No. NYCC-1	215
Figure D-4. Occupant Compartment Deformation Data – Set 2, Test No. NYCC-1	216
Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. NYCC-1	217
Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. NYCC-1	218
Figure D-7. Floor Pan Deformation Data – Set 1, Test No. NYCC-2	219
Figure D-8. Floor Pan Deformation Data – Set 2, Test No. NYCC-2	220
Figure D-9. Occupant Compartment Deformation Data – Set 1, Test No. NYCC-2	221
Figure D-10. Occupant Compartment Deformation Data – Set 2, Test No. NYCC-2	222
Figure D-11. Exterior Vehicle Crush (NASS) - Front, Test No. NYCC-2	223
Figure D-12. Exterior Vehicle Crush (NASS) - Side, Test No. NYCC-2	224
Figure D-13. Floor Pan Deformation Data – Set 1, Test No. NYCC-3	225
Figure D-14. Floor Pan Deformation Data – Set 2, Test No. NYCC-3	226
Figure D-15. Occupant Compartment Deformation Data – Set 1, Test No. NYCC-3	227
Figure D-16. Occupant Compartment Deformation Data – Set 2, Test No. NYCC-3	228
Figure D-17. Exterior Vehicle Crush (NASS) - Front, Test No. NYCC-3	229
Figure D-18. Exterior Vehicle Crush (NASS) - Side, Test No. NYCC-3	230
Figure E-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. NYCC-1	232
Figure E-2. Longitudinal Occupant Impact Velocity (DTS), Test No. NYCC-1	233
Figure E-3. Longitudinal Occupant Displacement (DTS), Test No. NYCC-1	234

Figure E-4. 10-ms Average Lateral Deceleration (DTS), Test No. NYCC-1	235
Figure E-5. Lateral Occupant Impact Velocity (DTS), Test No. NYCC-1	236
Figure E-6. Lateral Occupant Displacement (DTS), Test No. NYCC-1	237
Figure E-7. Acceleration Severity Index (DTS), Test No. NYCC-1	238
Figure E-8. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. NYCC-1	239
Figure E-9. Longitudinal Occupant Impact Velocity (EDR-3), Test No. NYCC-1	240
Figure E-10. Longitudinal Occupant Displacement (EDR-3), Test No. NYCC-1	241
Figure E-11. 10-ms Average Lateral Deceleration (EDR-3), Test No. NYCC-1	242
Figure E-12. Lateral Occupant Impact Velocity (EDR-3), Test No. NYCC-1	243
Figure E-13. Lateral Occupant Displacement (EDR-3), Test No. NYCC-1	244
Figure E-14. Acceleration Severity Index (EDR-3), Test No. NYCC-1	245
Figure E-15. Vehicle Angular Displacements (EDR-4), Test No. NYCC-1	246
Figure F-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. NYCC-2	248
Figure F-2. Longitudinal Occupant Impact Velocity (DTS), Test No. NYCC-2	249
Figure F-3. Longitudinal Occupant Displacement (DTS), Test No. NYCC-2	250
Figure F-4. 10-ms Average Lateral Deceleration (DTS), Test No. NYCC-2	251
Figure F-5. Lateral Occupant Impact Velocity (DTS), Test No. NYCC-2	252
Figure F-6. Lateral Occupant Displacement (DTS), Test No. NYCC-2	253
Figure F-7. Vehicle Angular Displacements (DTS), Test No. NYCC-2	254
Figure F-8. Acceleration Severity Index (DTS), Test No. NYCC-2	255
Figure F-9. 10-ms Average Lateral Deceleration (EDR-3), Test No. NYCC-2	256
Figure F-10. Longitudinal Occupant Impact Velocity (EDR-3), Test No. NYCC-2	257
Figure F-11. Longitudinal Occupant Displacement (EDR-3), Test No. NYCC-2	258
Figure F-12. 10-ms Average Lateral Deceleration (EDR-3), Test No. NYCC-2	259
Figure F-13. Lateral Occupant Impact Velocity (EDR-3), Test No. NYCC-2	260
Figure F-14. Lateral Occupant Displacement (EDR-3), Test No. NYCC-2	261
Figure F-15. Acceleration Severity Index (EDR-3), Test No. NYCC-2	262
Figure G-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. NYCC-3	264
Figure G-2. Longitudinal Occupant Impact Velocity (DTS), Test No. NYCC-3	265
Figure G-3. Longitudinal Occupant Displacement (DTS), Test No. NYCC-3	266
Figure G-4. 10-ms Average Lateral Deceleration (DTS), Test No. NYCC-3	267
Figure G-5. Lateral Occupant Impact Velocity (DTS), Test No. NYCC-3	268
Figure G-6. Lateral Occupant Displacement (DTS), Test No. NYCC-3	269
Figure G-7. Vehicle Angular Displacements (DTS), Test No. NYCC-3	270
Figure G-8. Acceleration Severity Index (DTS), Test No. NYCC-3	271
Figure G-9. 10-ms Average Longitudinal Deceleration (DTS SLICE), Test No. NYCC-3	272
Figure G-10. Longitudinal Occupant Impact Velocity (DTS SLICE), Test No. NYCC-3	273
Figure G-11. Longitudinal Occupant Displacement (DTS SLICE), Test No. NYCC-3	274
Figure G-12. 10-ms Average Lateral Deceleration (DTS SLICE), Test No. NYCC-3	275
Figure G-13. Lateral Occupant Impact Velocity (DTS SLICE), Test No. NYCC-3	276
Figure G-14. Lateral Occupant Displacement (DTS SLICE), Test No. NYCC-3	277
Figure G-15. Vehicle Angular Displacements (D1S SLICE), Test No. NYCC-3	278
Figure G-16. Acceleration Severity Index (D18 SLICE), Test No. NYCC-3	279
Figure G-17. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. NYCC-3	280
Figure G-18. Longitudinal Occupant Impact Velocity (EDR-3), Test No. NYCC-3	281
Figure G-19. Longitudinal Occupant Displacement (EDR-3), Test No. NYCC-3	282
Figure G-20. 10-ms Average Lateral Deceleration (EDR-3), Test No. NYCC-3	283

Figure G-21. Lateral Occupant Impact Velocity (EDR-3), Test No. NYCC-3	. 284
Figure G-22. Lateral Occupant Displacement (EDR-3), Test No. NYCC-3	. 285
Figure G-23. Acceleration Severity Index (EDR-3), Test No. NYCC-3	. 286

LIST OF TABLES

Table 1. MASH TL-3 Crash Test Conditions	4
Table 2. MASH Evaluation Criteria for Longitudinal Barrier	7
Table 3. Weather Conditions, Test No. NYCC-1	. 47
Table 4. Sequential Description of Impact Events, Test No. NYCC-1	. 48
Table 5. Maximum Occupant Compartment Deformations by Location, Test No. NYCC-1	. 52
Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NYCC-1	. 53
Table 7. Summary of Load Cell Results, Test No. NYCC-1	. 54
Table 8. Weather Conditions, Test No. NYCC-2	. 90
Table 9. Sequential Description of Impact Events, Test No. NYCC-2	. 91
Table 10. Maximum Occupant Compartment Deformations by Location, Test No. NYCC-2	. 93
Table 11. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NYCC-2	. 94
Table 12. Summary of Load Cell Results, Test No. NYCC-2	. 95
Table 13. Weather Conditions, Test No. NYCC-3	130
Table 14. Sequential Description of Impact Events, Test No. NYCC-3	131
Table 15. Maximum Occupant Compartment Deformations by Location, Test No. NYCC-3	134
Table 16. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NYCC-3	135
Table 17. Summary of Load Cell Results, Test No. NYCC-3	136
Table 18. Summary of Safety Performance Evaluation Results	162

1 INTRODUCTION

1.1 Background

For several decades, the New York State Department of Transportation (NYSDOT) has installed its generic cable barrier systems in various configurations, including placement around curves. The active tensioning required for these installations have occasionally resulted in the posts being pulled to the inside of the curve. As a result, limitations were placed on the amount of curvature that could be used for a given post spacing, thus raising questions of whether there exists a minimum limit of curvature for a given roadway.

NYSDOT currently restricts cable barrier installations to roads with curves having radii greater than or equal to 440 ft (139 m). However, the post spacing is reduced from 16 ft (4.9 m) to 12 ft (3.7 m) or less on curves ranging between 440 ft (139 m) and 715 ft (218 m). Post spacing is believed to be directly related to system deflection, such that reduced post spacing will decrease the system deflection during an impact event. Currently, the safety performance and dynamic barrier deflections of low-tension, three-cable barriers placed around curves is unknown. Unfortunately, no prior research studies have involved the full-scale crash testing of low-tension, three-cable barrier systems with curved alignment. The NYSDOT personnel have desired that the low tension, three-cable barrier system be available for use on roads with radii of 360 ft and 440 ft (110 m and 139 m) but using an 8-ft (2.4-m) post spacing. Therefore, full-scale crash testing was deemed necessary on these smaller radii systems according to the Test Level 3 (TL-3) impact safety standards published in the American Association of State Highway and Transportation Officials (ASSHTO) *Manual for Assessing Safety Hardware* [1].

1.2 Objective

The purpose of this study was to determine dynamic deflections for a cable barrier system placed around a curve for a known impact condition and post spacing as well as to determine the energy absorbed when an impacting vehicle strikes a typical weak post, rubs on the cable rail, and skids on the ground/pavement surface. During this research project, evaluations were made on the performance of the systems using different radii and according to the TL-3 criteria designated in MASH.

However, per the request from the NYSDOT, the full-scale crash test program was to be performed using a speed of 62 mph (98 km/h) and an angle of 20 degrees to the tangent segment. It was assumed by NYSDOT that roads with sharp curves would be mostly two-way secondary highways which would limit the offset distance from which the guide rail could be approached. Based on an assumption of steep curves and normal pavement friction limitations, a NYSDOT analysis indicated that only a 20-degree maximum impact angle was possible for a vehicle traveling at 62 mph (100 km/h) and crossing 25 ft (7.6 m) of travel lanes and shoulder prior to contacting a barrier on a roadway with a 360-ft (110-m) radius. Thus, a 20-degree target impact angle was recommended for the full-scale crash testing program.

1.3 Scope

The research study was accomplished by completing a series of tasks. First, a curved, low-tension, three-cable barrier system with an interior radius of 360 ft (110 m) and a post spacing of 8 ft (2.4 m) was constructed. Next, a full-scale crash test was performed with a pickup truck weighing approximately 5,000 lb (2,268 kg) and impacting the system at a speed of 62 mph (100 km/h) and at an angle of 20 degrees relative to the tangent (modified test designation no. 3-11). Next, the cable barrier system was reconstructed with an interior radius of 440 ft (134 m) and a post spacing of 8 ft (2.4 m). The second full-scale crash test was performed with a pickup truck weighing approximately 5,000 lb (2,268 kg) and striking the system at a speed of 62 mph (100 km/h) and at an angle of 20 degrees relative to the tangent (modified test designation no. 3-11). Following the unsatisfactory test, the 440 ft (134 m) radius cable system with 8-ft (2.4-m)

post spacing was reconstructed, but the entire system was raised 2 in. (51 mm) to where the top cable was located 29 in. (734 mm) from the ground. The third full-scale crash test was performed with a pickup truck weighing approximately 5,000 lb (2,268 kg) and striking the system at a speed of 62 mph (100 km/h) and at an angle of 20 degrees relative to the tangent (modified test designation no. 3-11). Finally, the test results were analyzed, evaluated, and documented as they pertain to the safety performance of the cable barrier systems. The additional crash investigation and analysis was performed to investigate the impacting vehicle's energy dissipation as a function of time and various events and will be included in Volume II.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Historically, longitudinal barriers, such as cable guardrails, have been required to satisfy safety performance criteria in order to be accepted by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). Currently, these safety standards consist of the guidelines and procedures published in MASH [1]. According to TL-3 testing conditions identified in MASH, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests. The two full-scale crash tests are noted below:

- 1. Test Designation No. 3-10 consists of a 2,425-lb (1,100-kg) passenger car impacting the system at a nominal speed and angle of 62 mph (100 km/h) and 25 degrees, respectively.
- 2. Test Designation No. 3-11 consists of a 5,000-lb (2,268-kg) pickup truck impacting the system at a nominal speed and angle of 62 mph (100 km/h) and 25 degrees, respectively.

The test conditions of TL-3 longitudinal barriers are summarized in Table 1.

	Test	Test Vehicle	Impact Conditions			
Article	Designation		Speed		Angle	Evaluation Critoria ¹
	No.		mph	km/h	(deg)	Cincila
Longitudinal	3-10	1100C	62	100	25	A,D,F,H,I
Barrier	3-11	2270P	62	100	25	A,D,F,H,I

¹ Evaluation criteria explained in Table 2.

According to the request of NYSDOT personnel, a curved run of generic, low-tension, three-cable barrier was crash tested according to modified test designation no. 3-11 for test nos. NYCC-1, NYCC-2, and NYCC-3. According to MASH, the critical impact point for cable barrier systems is 1 ft (0.3 m) upstream from a given post. However, NYSDOT personnel

requested that an impact angle of 20 degrees be used in combination with an impact location of 70 ft (21.3 m) downstream from the tangent along the arc or 24 in. (610 mm) upstream of post no. 17. The impact angle was to be measured relative to the curve's tangent line at the impact point.

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the cable guardrails to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to be involved in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH. The full-scale vehicle crash tests were conducted and reported in accordance with the procedures provided in MASH with the exceptions of impact angle and system length, as requested by NYSDOT.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported on the test summary sheet. Additional discussion on PHD, THIV and ASI is provided in MASH.

2.3 Soil Strength Requirements

In order to limit the variation of soil strength among testing agencies, foundation soil must satisfy the recommended performance characteristics set forth in Chapter 3 and Appendix B of MASH. Testing facilities must first subject the designated soil to a dynamic post test to

demonstrate a minimum dynamic load of 7.5 kips (33.4 kN) at deflections between 5 and 20 in. (127 and 508 mm). If satisfactory results are observed, a static test is conducted using an identical test installation. The results from this static test become the baseline requirement for soil strength in future full-scale crash testing in which the designated soil is used. An additional post installed near the impact point was to be statically tested on the day of full-scale crash test in the same manner as used in the baseline static test. The full-scale crash test could be conducted only if the static test results showed a soil resistance equal to or greater than 90 percent of the baseline test at deflections of 5, 10, and 15 in. (127, 254, and 381 mm). Otherwise, the crash test was to be postponed until the soil demonstrated adequate post-soil strength.

Table 2.	MASH	Evaluation	Criteria t	for Loi	ngitudinal	Barrier

Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.						
	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH.						
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.						
Occupant	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.3 of MASH for calculation procedure) should satisfy the following limits:						
Risk		Occupant Impact Velocity Limits						
		Component	Preferred	Maximum				
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)				
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix Section A5.3 of MASH for calculation procedure) should satisf following limits:						
		Occupant Ridedown Acceleration Limits						
		Component	Preferred	Maximum				
		Longitudinal and Lateral	15.0 g's	20.49 g's				

3 TEST CONDITIONS

3.1 Test Facility

The testing facility is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

3.2 Vehicle Tow and Guidance System

A reverse cable tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [2] was used to steer the test vehicle. A guide flag, attached to the left-front wheel and the guide cable, was sheared off before impact with the barrier system. The ³/₈-in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

3.3 Test Vehicles

For test no. NYCC-1, a 2005 Dodge Ram was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,094 lb (2,311 kg), 5,020 lb (2,277 kg), and 5,190 lb (2,354 kg), respectively. The test vehicle is shown in Figure 1, and vehicle dimensions are shown in Figure 2.

For test no. NYCC-2, a 2005 Dodge Ram was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,001 lb (2,268 kg), 4,998 lb (2,267 kg), and 5,168

lb (2,344 kg), respectively. The test vehicle is shown in Figure 3, and vehicle dimensions are shown in Figure 4.

For test no NYCC-3, a 2005 Dodge Ram was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,134 lb (2,329 kg), 4,994 lb (2,265 kg), and 5,166 lb (2,343 kg), respectively. The test vehicle is shown in Figure 5, and vehicle dimensions are shown in Figure 6.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [3] was used to determine the vertical component of the c.g. for the pickup truck. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The locations of the final centers of gravity are shown in Figures 1 through 6. Data used to calculate the location of the c.g. and ballast information are shown in Appendix A.

Square, black- and white-checkered targets were placed on the vehicle for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figures 7 through 9. Round, checkered targets were placed on the center of gravity on the left-side door, the right-side door, and the roof of the vehicle.

The front wheels of the test vehicle were aligned to vehicle standards except the toe-in value was adjusted to zero so that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted on the left side of the vehicle's dash and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed

Figure 1. Test Vehicle, Test No. NYCC-1

Date:	8/2/2011	Test Number:	NYCC-1	Model:	2270P/Ram
Make:	Dodge	Vehicle I.D.#:	1D7HA18N05J50	50193	
Tire Size:	LT265/70 R17	Year.	2005	Odometer:	147869
3	fire Inflation Pressure:	35psi			
*(All Measureme	uts Refer to Impacting Side				
				Vehicle Geomet	try — in. (mm)
l n t Wheel		9	m Wheel a	a <u>78 (1981)</u>	b <u>74 (1880)</u>
Track			Track	c 227 3/4 (5785)	d_47 (1194)_
<u> </u>				e 140 1/4 (3562)	f 40 1/2 (1029)
1	Test Inertial C.M		ĥ	g 28 7/8 (733)	k 63 (1602)
		+_ a _+ +	-TIRE DIA	i 15 (381)	j 27 (686)
1			WHEEL DIA	k 21 (533)	1 29 1/4 (743)
	A		p	68 1/8 (1730)	67 1/2 (1715)
ю І – – –				n 45 1/2 (1156)	n 3 (70)
				a 31 1/2 (800)	г 181/4 (464)
++1				s 151/2 (394)	t 751/2 (1918)
		h		Nheel Center Height Fr	nut 15 (381)
	- d	eff	-	Wheel Center Height P	on <u>15 1/4 (397</u>)
	Wrear	-r-Wfront	-	Wheel Well Channels	(E) 25 (995)
Mass Distributi	ion Ib (kg)		-j	Wheel Well Clearance	(F) <u>35 (889)</u>
				wheel well Clearance	(R) <u>371/2 (953)</u>
Gross Static 1	LF 1494 (678)	RF <u>1380 (626)</u>		Frame Height	(F) <u>173/4 (451)</u>
	R 1107 (502)	RR 1209 (548)		Frame Height	(R) <u>24 3/4 (629)</u>
Weights				Engine T	ype <u>8cyl GAS</u>
lb (kg)	Curb	Test Inertial G	ross Static	Engine S	Size 4.7L
W-front	2819 (1279)	2769 (1256)	2874 (1304)	Transmitio)	а Туре:
W-rear	2275 (1032)	2251 (1021)	2316 (1051)	\langle	Automatic Manual
W-total	5094 (2311)	5020 (2277)	5190 (2354)	F	WD RWD 4WD
GVWR Ratings Dummy Data					
	Front	3650	Туре	: Hybrid II	
	Rear	3900	Mass	: 170 lbs	
	Total	6650	Seat Position	: Passenger	
Note an	y damage prior to test:	None	culturing topol 4		

Figure 2. Vehicle Dimensions, Test No. NYCC-1

Figure 3. Test Vehicle, Test No. NYCC-2

Date:	11/1/2011	Test Nu	iber: NYCC-2	2Mode	ct:2270P
Make:	Dodge Ram	Vehicle I.	.D.#: 1D7HA1	8N95J610492	
Tire Size:	265/70 R17	3	(ear: 2005	Odomete	:r. <u>84180</u>
Tir	e Inflation Pressure: _	35			
*(All Measurements	Refer to Impacting S	ide)	<u> </u>		
				Vehicle Ge	ometry — in. (mm)
l n t Wheel I Track		₽	Wheel a Track I	a 77 3/4 (1975) b <u>731/8 (1857)</u>
				c 227 7/8 (5788)) d <u>48 (1219)</u>
<u>+(</u>				e 140 1/4 (3562)) f <u>395/8 (1006)</u>
Tes	st Inertial C.M.—<			g <u>28</u> (711)	h 63 8/9 (1623)
2		- 9-	TIRE DIA	i <u>15 (381)</u>	j 25 1/2 (648)
3 7 -	(k <u>20 1/2 (521)</u>	l 28 1/2 (724)
l f]			E 67 7/8 (1724)) 1 67 3/8 (1711)
				o <u>43</u> (1092)) p <u>2 3/4 (70)</u>
				q <u>30 3/4 (781)</u>	r <u>181/2</u> (470)
		h	T	s <u>14 1/2</u> (368)	t75 (1905)
-	d	e	- f	Wheel Center Heigh	it Front 14 1/2 (368)
	Wrear	Wfront		Wheel Center Heig	ht Rear 14 3/4 (375)
		— C	-	Wheel Well Clears	unce (F) <u>35 (889)</u>
	m (kg)			Wheel Well Cleara	uce (R) 37 3/8 (949)
Gross Static LF	1442 (654)	RF <u>1386 (629)</u>	ti -	Frame He	ight (F) <u>17 1/8</u> (435)
LR	1172 (532)	RR 1168 (530)	2	Frame He	ight (R) <u>24 1/2 (622)</u>
Weights				Engi	ie Type <u>8cyl Gas</u>
lb (kg)	Curb	Test Inertial	Gross Static	Eng	ine Size 4.7L
W-front	2774 (1258)	2721 (1234)	2828 (1283)	Transm	uition Type:
W-rear	2227 (1010)	2277 (1033)	2340 (1061)	<u>) </u>	Antomatic Manual
W-total	5001 (2268)	4998 (2267)	5168 (2344)		FWD RWD 4WD
GVWR Ratin	gs		Dummy	y Data	
	Front	3700	erentet an and Unite	Type: Hybrid II	
	Rear	3900		Mass: 170 lbs	
	Total	6650	Seat	Position: Passenger	
Note any d	lamage prior to test:	Small door dent k	ft rear door.		

Figure 4. Vehicle Dimensions, Test No. NYCC-2

Figure 5. Test Vehicle, Test No. NYCC-3

Date:	4/26/2012	Test Numb	er: NYCC-3		Model:	2270P
Make:	Dodge Ram	Vehicle I.I).#:1D7HA18I	0458262716		
Tire Size:	265/70 R17	Ye	ar. 2005	0	lometer:	89914
Т	ire Inflation Pressure:	: 35 Psi		14		
*(All Measuremen	its Refer to Impacting	(Side)				
				Vehi	cle Geometry	— 11. (22)
l n t Wheel			m Wheel a	a 78 1/4	<u>(1988)</u> I	75 1/4 (1911)
Track			Track	c 228 1/2	(5804) d	47 1/4 (1200)
<u> </u>				e 140 1/2	(3569)	40 3/4 (1035)
т	est Inertial C.M.—	_		g 29	(737) 1	62 (1574)
2			TIRE DIA	i 151/4	(387)	27 (686)
· •			- WHEEL DIA	k 21 1/4	(540)	29 3/4 (756)
	6			68 1/8	(1730) 1	67 1/2 (1715)
, , ,				0 46	(1168) T	31/2 (89)
	(0)			a 31 3/4	<u>(806)</u> 1	18 1/2 (470)
4 4 4			<u> </u>	s 16	(406)	75 1/2 (1918)
		h		Wheel Center	Height From	14.7/8 (378)
	d	e	f	Wheel Cente	r Height Rea	151/8 (384)
		c		Wheel Well	Clearance (F	36 (914)
Mass Distributi	ion Ib (kg)			Wheel Well	Clearance (P)	38 1/2 (978)
Cross Static I	F 1410 (640)	DF 1484 (673)		Fra	me Height (F	181/4 (464)
UTUN STAIR. I	P 1123 (500)	RP1140(521)		E	me Height (P)	25 1/4 (641)
	A 1125 (505)	KR (J21)			Engine Tree	2.5 1.4 (041)
Weights					Engine Type	0(y1 (345
lb (kg)	Carb	Test Inertial	Gross Static		Engine Size	5.7L
W-front	2884 (1308)	2792 (1266)	2894 (1313)	. 1	ransmition T	урс:
W-rear	2250 (1021)		2272 (1031)	đ		tomatic Manual
W-total	5134 (2329)	4994 (2265)	5166 (2343)	5	FWI	RWD 4WD
GVWR Ratings Damage Data						
	Front	3700		Type: Hybrid II		
	Rear	3900		Mass: 170 lbs		
	Total	6650	Seat P	osition: Passenger		-27
Note an	y damage prior to test	: None				

Figure 6. Vehicle Dimensions, Test No. NYCC-3

Figure 7. Target Geometry, Test No. NYCC-1

Figure 8. Target Geometry, Test No. NYCC-2

Figure 9. Target Geometry, Test No. NYCC-3

videos. A remote controlled brake system was installed in the test vehicle so the vehicle could be brought safely to a stop after the test.

3.4 Simulated Occupant

For test nos. NYCC-1, NYCC-2, and NYCC-3, a Hybrid II 50th-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the right-front seat of the test vehicle with the seat belt fastened. The dummy, which had a final weight of 170 lb (77 kg), was represented by model no. 572, serial no. 451, and was manufactured by Android Systems of Carson, California. As recommended by MASH, the dummy was not included in calculating the c.g location.

3.5 Data Acquisition Systems

3.5.1 Accelerometers

Three environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. All of the accelerometers were mounted near the center of gravity of the test vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [4].

The first accelerometer system was a two-arm piezoresistive accelerometer system manufactured by Endevco of San Juan Capistrano, California. The three accelerometers were used to measure each of the longitudinal, lateral, and vertical accelerations independently at a sample rate of 10,000 Hz. The accelerometers were configured with a range of ±500 g's and controlled using a DTS Sensor Input Module (SIM), Model TDAS3-SIM-16M manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SIM was configured with 16 MB SRAM and 8 sensor input channels with 250 kB SRAM/channel. The SIM was mounted on a TDAS3-R4 module rack which was configured with isolated

power/event/communications, 10BaseT Ethernet and RS232 communication, and an internal backup battery. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

The second system, SLICE 6DX, was a modular data acquisition system manufactured by DTS of Seal Beach, California. The acceleration sensors were mounted inside the body of the custom built SLICE 6DX event data recorder and recorded data at 10,000 Hz to the onboard microprocessor. The SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

The third system, Model EDR-3, was a triaxial piezoresistive accelerometer system manufactured by IST of Okemos, Michigan. The EDR-3 was configured with 256 kB of RAM, a range of ± 200 g's, a sample rate of 3,200 Hz, and a 1,120 Hz low-pass filter. The "DynaMax 1 (DM-1)" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

The DTS and EDR-3 units were utilized on test nos. NYCC-1 through NYCC-3. The DTS-SLICE unit was only utilized during test no. NYCC-3.

3.5.2 Rate Transducers

An angle rate sensor, the ARS-1500, with a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) was used to measure the rates of rotation of the test vehicles. The angular rate sensors were mounted on an aluminum block inside the test vehicle near the center of gravity and recorded data at 10,000 Hz to the SIM. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and

plotted. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

A second angle rate sensor system, the SLICE MICRO Triax ARS, with a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) was used to measure the rates of rotation of the test vehicles. The angular rate sensors were mounted inside the body of the custom built SLICE 6DX event data recorder and recorded data at 10,000 Hz to the onboard microprocessor. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

A third system, an Analog Systems 3-axis rate transducer with a range of 1,200 degrees/sec in each of the three directions (roll, pitch, and yaw), was used to measure the rates of motion of the test vehicles. The rate transducer was mounted inside the body of the EDR-4 6DOF-500/1200 and recorded data at 10,000 Hz to a second data acquisition board inside the EDR-4 6DOF-500/1200 housing. The raw data measurements were then downloaded, converted to the appropriate Euler angles for analysis, and plotted. The "EDR4COM" and "DynaMax Suite" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate transducer data.

The rate gyro within the DTS unit was utilized in test nos. NYCC-1 through NYCC-3. The EDR-4 unit was only utilized during test no. NYCC-1. The DTS-SLICE unit was only utilized during test no. NYCC-3.

3.5.3 Pressure Tape Switches

For test nos. NYCC-1, NYCC-2, and NYCC-3, five pressure-activated tape switches, spaced at approximately 6.56-ft (2-m) intervals, were used to determine the speed of the vehicle

before impact. Each tape switch fired a strobe light which sent an electronic timing signal to the data acquisition system as the right-front tire of the test vehicle passed over it. Test vehicle speeds were determined from electronic timing mark data recorded using TestPoint and LabVIEW computer software programs. Strobe lights and high-speed video analysis are used only as a backup in the event that vehicle speed cannot be determined from the electronic data.

3.5.4 Digital Photography

Three AOS VITcam high-speed digital video cameras, three AOS X-PRI high-speed digital video cameras, four JVC digital video cameras, and one Canon digital video camera were utilized to film test nos. NYCC-1, NYCC-2, and NYCC-3. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figures 10 through 12.

The high-speed videos were analyzed using ImageExpress MotionPlus and RedLake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A Nikon D50 digital still camera was also used to document pre- and post-test conditions for all tests.

3.5.5 Load Cell

Each of the three cables in the barrier system had a load cell installed along it. Each load cell was positioned in line with the cable on the upstream end. The load cells were placed between post nos. 1 and 2, as shown in Figure 13.

The load cells were manufactured by Transducer Techniques and conformed to model no. TLL-50K with a load range up to 50 kips (222 kN). During testing, output voltage signals were sent from the load cells to a Keithly Metrabyte DAS-1802HC data acquisition board, acquired with Test Point software, and stored permanently on a personal computer. The data collection rate for the load cells was 10,000 samples per second (10,000 Hz).

	No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
	1	AOS Vitcam CTM	500	Cosmicar 12.5 mm Fixed	
ed	2	AOS Vitcam CTM	500	Kowa 8 mm Fixed	
Spe leo	3	AOS Vitcam CTM	500	Sigma 50 mm Fixed	
High-S Vid	5	AOS X-PRI Gigabit	500	Canon 17-102 mm	100 mm
	6	AOS X-PRI Gigabit	500	Fuji 50 mm	
	7	AOS X-PRI Gigabit	500	Computar 12.5 mm Fixed	
Digital Video	1	JVC – GZ-MC500 (Everio)	29.97		
	2	JVC – GZ-MG27u (Everio)	29.97		
	3	JVC – GZ-MG27u (Everio)	29.97		
	4	JVC – GZ-MG27u (Everio)	29.97		
	1	Canon ZR90	29.97		
	2	Canon ZR10	29.97		

Figure 10. Camera Locations, Speeds, and Lens Settings, Test No. NYCC-1

	No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
	2	AOS Vitcam CTM	500	Cosmicar 12.5 mm Fixed	
ed	3	AOS Vitcam CTM	500	Kowa 8 mm Fixed	
Spe leo	4	AOS Vitcam CTM	500	Fuji 50 mm Fixed	
High-S- Vid	5	AOS X-PRI Gigabit	500	Computar 12.5 mm Fixed	
	6	AOS X-PRI Gigabit	500	TV Zoom 17-102 mm	50 mm
	7	AOS X-PRI Gigabit	500	Sigma 50 mm Fixed	
	1	JVC – GZ-MC500 (Everio)	29.97		
Digital Video	2	JVC – GZ-MG27u (Everio)	29.97		
	3	JVC – GZ-MG27u (Everio)	29.97		
	4	JVC – GZ-MG27u (Everio)	29.97		
	1	Canon ZR90	29.97		
	2	Canon ZR10	29.97		

Figure 11. Camera Locations, Speeds, and Lens Settings, Test No. NYCC-2

	No.	Туре	Type Operating Speed (frames/sec)		Lens Setting
ideo	2	AOS Vitcam CTM	500	Cosmicar 12.5 mm Fixed	
	3	AOS Vitcam CTM	500	Sigma 24-135	35 mm
ΛĘ	4	AOS Vitcam CTM	500	Kowa 8 mm Fixed	
Dee(5	AOS X-PRI Gigabit	500	Canon 17-102	50 mm
High-Sp	6	AOS X-PRI Gigabit	500	Sigma 50 mm Fixed	
	7	AOS X-PRI Gigabit	500	Fujinon 50 mm Fixed	
	8	AOS S-VIT 153A	500	OSAWA 28-80	28 mm
	1	JVC – GZ-MC500 (Everio)	29.97		
Digital Video	2	JVC – GZ-MG27u (Everio)	29.97		
	3	JVC – GZ-MG27u (Everio)	29.97		
	4	JVC – GZ-MG27u (Everio)	29.97		
	1	Canon ZR90	29.97		
,	2	Canon ZR10	29.97		

Figure 12. Camera Locations, Speeds, and Lens Settings, Test No. NYCC-3

25

Figure 13. Typical Load Cell Locations

4 DESIGN DETAILS - TEST NO. NYCC-1

Test no. NYCC-1 utilized a generic low-tension 3-cable barrier system, as shown in Figures 14 through 27. Photographs of the test installation are shown in Figures 28 through 31. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

The cable barrier system had a total length of 399.1 ft (121.6 m). The cable barrier layout consisted of a 96-ft (29.3-m) long straight section spanning between post nos. 1 and 8, a 200-ft (61-m) long curved section with a 360-ft (110-m) radius spanning an angle of 32 degrees between post nos. 8 and 33, and another 96-ft (29.3-m) long straight section spanning between post nos. 33 and 40. The test installation was comprised of several distinct components, systems, and features: (1) wire ropes or cables; (2) steel support posts; (3) cable-to-post attachments; (4) cable compensating hardware; (5) cable anchorage plates; and (6) reinforced concrete anchor foundations.

Three $\frac{3}{4}$ -in. (19-mm) diameter 3x7, Class A galvanized wire ropes were utilized for the cable elements. For the standard line posts, the three cables were attached to the posts and placed at 15 in. (381 mm), 21 in. (533 mm), and 27 in. (686 mm) above the ground surface. Each cable was attached to the impact side of the post utilizing a $\frac{5}{16}$ -in. (8-mm) steel J-bolt, as shown in Figures 14 and 26. Each of the three wire ropes was spliced to a cable tension compensating assembly between post nos. 1 and 2, as shown in Figures 21 and 25. The cables were tensioned according to NYSDOT standards, as shown in Figure 27.

The cables were supported by 40 posts and anchored at the upstream and downstream ends, as shown in Figure 14. Post nos. 2 through 39 consisted of S3x5.7 (S76x8.5) standard steel line posts measuring 63 in. (1,600 mm) long, and a $24x8x^{1/4}$ in. (610x203x6 mm) soil plate was welded to the back side of each post. The spacing between posts on the curved portion of the

system plus the first adjacent span, post nos. 8 through 33, was 8 ft (2.4 m). The two straight segments of the system utilized a 16 ft (4.9 m) post spacing with the exceptions of 8 ft (2.4 m) spans between post nos. 2 and 3 and between post nos. 38 and 39. These two spans are set by the end terminal design of the system.

Each anchorage system consisted of a reinforced concrete foundation, a welded plate anchor angle, and an end post. The concrete foundation was 4 ft - 9 in. (1.4-m) long, 3 ft - 9 in. (1.1 m) wide, and 3 ft - 3 in. (1 m) deep. Both the welded plate anchor angle and the end post were attached to the foundation with ³/₄-in. (19-mm) diameter, hooked anchor studs. The welded anchor angle was assembled from ¹/₂-in. (13-mm) steel plates and used to restrain the ends of the cables, as shown in Figures 18 through 20. The end post was an S3x5.7 (S76x8.5) bolted to the slipbase assembly anchored to the foundation, as shown in Figures 21 and 22.

Figure 14. Test Installation Layout, Test No. NYCC-1

29

Figure 15. Critical Region, Test No. NYCC-1

30

Figure 16. Line Post Assembly Details, Test No. NYCC-1

Figure 17. Terminal Details, Test No. NYCC-1

Figure 18. Anchor Details, Test No. NYCC-1

Figure 19. Cable Anchor Bracket Details, Test No. NYCC-1

Figure 20. Cable Anchor Bracket Component Details, Test No. NYCC-1

Figure 21. Anchor Post Assembly Details, Test No. NYCC-1

Figure 22. Anchor Post Component Details, Test No. NYCC-1

Figure 23. Cable Clip Details, Test No. NYCC-1

38

Figure 24. Line Post Details, Test No. NYCC-1

Figure 25. Cable Compensator Component Details, Test No. NYCC-1

item No.	QTY.	Description	Material Spec	Hardware Gu	
a1	2	S3x5.7 27 3/16" long Anchor Post	ASTM A36 Galvanized	-	
a2	24	Hooked Anchor Stud and Nut	ASTM A36 and ASTM A563 DH Galvanized	FRH20a	
a3	6	Ø3/16" 5 1/4" Long Brass Rod	Brass	-	
a4	36	Ø3/4" Plain Round Washer-OD 1.5"	Grade 2	FWC20a	
a5	2	S3x7.5 Anchor Post Stub	ASTM A36 Galvanized	2 <u>—</u> 1	
a6	4	Slip Impact Base	ASTM A36 Galvanized	-	
۵7	2	4"x5" 28 Gauge Keeper Plate	ASTM A36 Galvanized	-	
a8	8	Ø1/2" x2 1/2" Long Bolt and Nut	Grade 2 Galvanized	FBX14a	
a9	24	Ø1/2" Narrow Washer-OD 1"	Grade 2 Galvanized	FWC12a	
a10	2	3/4" Anchor Post Support Plate	ASTM A707 Grade 36 Galvanized	-	
a11	2	Anchor Post Base	ASTM A709 Grade 36 Galvanized	-	
b1	2	Anchor Bracket Plate	ASTM A709 Grade 36 Galvanized		
b2	4	1/2" Thick External Stiffener	ASTM A709 Grade 36 Galvanized		
b3	2	Ø1/4"x15" Brass Rod	Brass	-	
b4	4	1/4" Thick Internal Stiffener	ASTM A709 Grade 36 Galvanized	-	
b5	2	Anchor Angle Middle Plate	ASTM A709 Grade 36 Galvanized	-	
b6	2	Cable Plate	ASTM A709 Grade 36 Galvanized	8-10	
c1	6	Cable End Fitting	ASTM A27 Galvanized	RCE03	
c2	6	Ø3/4" Plain Round Washer-OD 2"	Grade 2 Galvanized	FWC20a	
c3	3	Compensating Cable End Assembly	ASTM A27 Galvanized	RCE01	
c4	38	S3x5.7 63 in. long Line Post	ASTM A36 Galvanized	-	
c5	114	Cable Hook Bolt	ASTM F568 Class 4.6 and ASTM A563 Galvanized	FBH04	
c6	3	Ø3/4" Cable Approx. 392'	AASHTO M30 Type 1 Class A Galvanized	RCM01	
c7	38	2'x8"x0.25" Soil Plate	ASTM A36 Galvanized	-	
d1	2	Concrete Anchor Block	3000 psi Compressive Strength		
d2	12	#3 Rebar 32.5" long	Grade 60	-	
d3	12	#3 Rebar 44.5" long	Grade 60	-	
d4	16	#3 Rebar 33" long	Grade 60		
e1	12	Cable Wedge	ASTM A47 Grade 32510	FMM01	
e2	3	50,000-lb Load Cell	N/A	. 	

Midwest Roadside Safety Facility

DWG. NAME. NY curved cable-R21

SCALE: None UNITS: Inches

REV. BY: KAL/RJT/ CLM/JCH

Figure 26. Bill of Materials, Test No. NYCC-1

- (1) All posts shall be s3x5.7 rolled steel section. The anchor post stub shall be s3x7.5. Where the rail is parallel to the edge of the pavement, every sixth post starting with the first shall be reflectorized. Do not reflectorize posts in the intermediate anchorage section, typical approach and terminal section, or when used as a median barrier.
- (2) Reflectors shall be aluminum alloy 1/16" thick with reflective sheeting. The reflective sheeting shall be white when installed on the right side of traffic and fluorescent yellow when on the left.
- (3) 3/4" round wire cable shall consist of three strands (7 wires per strand) and have a minimum tensile strength of 25,000 lbf.
- (4) Cable ends shall be fabricated from malleable iron or cast steel. The cable splice and wedge shall be fabricated from malleable iron or ASTM A536 ductile.
- (5) All cable ends and splices shall be designed to use the wedge shown on sheet 12 and shall develop the full strength of the 3/4" round cable (25000 lbs.). The cables, ends, and splices shall be hot dipped galvanized as indicated in material specification for cable guide rail. The wedge shall not be galvanized.
- (6) Stagger cable splices, provide a minimum of 20' between any pair. Provide a minimum of 100' between cable splices on the same cable.
- (7) Alternate designs for the steel turnbuckle cable end assembly or spring cable end assembly shall be submitted for approval.
- (8) For arrangement of spring cable end assemblies (compensating device) and turnbuckle cable end assemblies, the following criteria shall apply: -Length of cable runs up to 1000'-use compensating device (RCE01) on one end, and turnbuckle on the other end of each individual cable. -Length of cable runs 1000' to 2000'-use compensating device (RCE01) on the ends of each individual cable. -Length of cable runs over 2000'-start a new stretch by interlacing at last parallel post (see typical intermediate anchorage details).

Prior to final acceptance by the state, the following values shall be used to tighten the turnbuckles, depending on the temperature at the time of adjustment.

					Temper	ature (deg	rees Farer	nheit)	6	27			3
120	109	99	89	79	69	59	49	39	29	19	9	-1	-20
to	to	to	to	to	to	to	to	to	to	to	to	to	to
110	100	90	80	70	60	50	40	30	20	10	0	-19	-29
110	100	50	Spring Co	mpressio	n from Unlo	aded Posit	ion in Eac	h Spring-I	Measured in	Inches	<u> </u>	10	
1	11/4	11/2	13/4	2	21/4	21/2	23/4	3	31/4	3 1/2	33/4	4	4

The concrete anchor shall be set into the excavation as detailed. The bottom of the anchor shall have a full and even bearing on the surface under it. The top shall be back filled in accordance with the requirements of 203-3.15 "fill and back fill at structures, culverts, pipes, conduits, and direct (9) burial cables.

(10) Do not install cable guide railing on curves with a centerline radius of less than 440'.

(11) Curbs greater than 3" high are not to be retained or placed if design, posted, or operating speed exceeds 35 mph. Rail mounting height is to be measured from pavement if offset between pavement and curb is less than or equal to 9" and from ground beneath rail if offset > 9".

(12) Lifting devices, if embedded in concrete, shall be rated by their manufacturer as having a "safe working load" of four tons for the one piece anchor and two tons for each of the halves of the two piece anchor unit.

(13) At all locations where the cable is connected to a cable socket with a wedge type connection, one wire of the wire rope shall be crimped over the base of the wedge to hold it firmly in place.

1			NY Curved Cable		SHEET: 14 of 14
		17.74	Notes		DATE: 1/31/2013
2	Midwest	Roadside			DRAWN BY: MDM/CWP/ JGP
	Safety	Facility	DWG. NAME. NY curved cable-R21	SCALE: None UNITS: Inches	REV. BY: KAL/RJT/ CLM/JCH

Figure 27. System Notes, Test No. NYCC-1

Figure 28. Test Installation Photographs, Test No. NYCC-1

Figure 29. Post Photographs, Test No. NYCC-1

Figure 30. End Anchorage Photographs, Test No. NYCC-1

Figure 31. Cable Splices and Load Cells, Test No. NYCC-1

46

5 FULL-SCALE CRASH TEST NO. NYCC-1

5.1 Static Soil Test

Before full-scale crash test no. NYCC-1 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results demonstrated a soil resistance above the baseline test limits, as shown in Appendix C. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

5.2 Test No. NYCC-1

The 5,020-lb (2,277-kg) pickup truck impacted the curved, three-cable barrier system at a speed of 61.6 mph (99.1 km/h) and at an angle of 19.9 degrees. A summary of the test results and sequential photographs are shown in Figure 32. Additional sequential photographs are shown in Figures 33 through 37. Documentary photographs are shown in Figure 38.

5.3 Weather Conditions

Test no. NYCC-1 was conducted on August 2, 2011 at approximately 12:00 P.M. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were recorded and are shown in Table 3.

Temperature	91° F
Humidity	56%
Wind Speed	11 mph
Wind Direction	340° from True North
Sky Conditions	Sunny / Overcast
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0 in.
Previous 7-Day Precipitation	0.1 in.

Table 3. Weather Conditions, Test No. NYCC-1

5.4 Test Description

Initial vehicle impact occurred at the targeted impact point 70 ft (21.3 m) downstream of post no. 8, or 2 ft (0.6 m) upstream of post no. 17, as shown in Figure 39, which was selected by NYSDOT personnel. A sequential description of the impact events is contained in Table 4. The vehicle came to rest 220 ft - 10 in. (67.3 m) downstream of impact and adjacent to the downstream anchorage. The vehicle trajectory and final position are shown in Figures 32 and 40.

Table 4. Sequential Description of Impact Events, Test No. NYCC-1

TIME	FVFNT
(sec)	
0.000	The right-front bumper impacted middle cable.
0.006	The right-front bumper contacted post no. 17, which bent backward and downstream.
0.012	Post no. 16 rotated backward.
0.030	All the cables had released from post no. 17.
0.038	The right-front tire contacted post no. 17.
0.052	The right-front tire overrode bottom cable, and post 18 deflected backward and
	downstream.
0.086	The right-front tire overrode middle cable.
0.096	The bumper contacted post no. 18.
0.100	All the cables had released from post no. 18.
0.114	Post no. 19 bent backward.
0.136	Vehicle yawed away from system.
0.162	The top cable released from post no. 19.
0.174	Post no. 20 deflected backward and downstream.
0.190	Post no. 21 deflected backward and downstream.
0.194	The bumper and left-front tire contacted post no. 19.
0.200	The top cable released from post no. 20.
0.214	The right-rear tire overrode bottom cable.
0.230	The right-rear tire overrode middle cable.
0.234	The middle cable released from post no. 19.
0.238	Vehicle rolled toward the system.
0.270	The left-front tire overrode bottom cable.
0.282	The top cable released from post no. 21.
0.296	The middle cable released from post no. 20.
0.302	Post no. 22 deflected backward and downstream.
0.310	The left-front tire overrode middle cable.
0.366	The top cable released from post no. 22.
0.386	Post no. 23 deflected backward and downstream.
0.406	The top cable released from post no. 23.

0.432	Post no. 24 deflected backward.
0.482	Vehicle rolled away from system.
0.486	The thread rod anchoring the top cable to the anchor plate fractured and the cable was
	pulled down stream.
0.628	Vehicle was parallel with system.
0.718	The top cable released from post no. 24.
0.862	Post no. 25 deflected downstream.
0.912	The top cable released from post no. 25.
1.002	Post no. 26 deflected downstream.
1.126	The top cable released from post no. 26.
1.200	The top cable released from post no. 8.
1.270	Post no. 27 deflected downstream.
1.282	Vehicle contacted the backside of the system.
1.286	The middle cable released from post no. 30, and the top cable released from post 7.
1.340	The top cable released from post no. 27.
1.344	The vehicle bumper contacted post no. 30, causing it to bend downstream.
1.366	Vehicle pitched upward.
1.420	The middle cable released from post no. 31.
1.450	The vehicle was overriding the top and bottom cables. The middle cable was
	interlocked with the vehicle's left-front bumper corner.
1.454	The middle cable released from post no. 32.
1.458	Vehicle contacted post no. 31, causing it to bend downstream.
1.470	The middle cable released from post no. 33.
1.554	The top cable released from post no. 9.
1.578	Vehicle contacted post no. 32, causing it to bend downstream.
1.610	The middle cable released from post no. 34.
1.630	The top cable released from post no. 10.
1.660	Right-rear tire leaves ground.
1.704	The middle cable released from post no. 35.
1.722	The top cable released from post no. 11.
1.730	Right-front tire struck post no. 31.
1.756	The middle cable released from post no. 36, and top cable released from post no. 31.
1.778	The top cable released from post no. 32.
1.808	The middle cable released from post no. 37.
1.818	The top cable released from post no. 14.
1.850	The middle cable released from post no. 38.
1.874	The middle cable released from post no. 39.
1.882	The top cable released from post no. 12.
1.928	Right-rear contacted ground.
2.200	The vehicle yawed toward the system due to interacting with middle cable.
2.032	The top cable released from post no. 13.
2.062	The top cable released from post no. 15.
2.362	The top cable released from post no. 16.
2.650	The weld connecting the lower base plate to the post stub on post no. 40 failed due to
	tension loading from the middle cable.

2.725	The threaded rod anchoring the middle cable to the anchor plate fractured, and the
	cable was pulled upstream
4.000	The vehicle had exited the system by rolling over the detached downstream end of the
	middle cable.
5.500	The vehicle came to a stop parallel to the system and adjacent to the downstream
	anchorage.

5.5 Barrier Damage

Damage to the barrier was extensive, as shown in Figures 41 through 55. Barrier damage consisted of bent posts, disengaged cables, weld failures, and anchor rod fractures. The length of vehicle contact along the barrier was approximately 130 ft (39.6 m), which spanned from 2 ft (0.6 m) upstream from post no. 17 through post no. 33.

The upstream anchorage was moderately and unexpectedly damaged. The weld between post no. 1 and the slip base plate failed, as shown in Figure 42. Both the post and the plate were found adjacent to the slip base stub. All of the cables were disengaged from post no. 1. The top cable anchor rod fractured and the middle cable anchor rod bent, as shown in Figure 43. The upstream end of the top cable came to rest about 10 ft (3 m) in front of post no. 15. The brass keeper rod on the angled anchor plate was also bent.

The downstream anchorage experienced similar damage. The weld between the bottom slip base plate and the post stub failed, as shown in Figure 44. The post came to rest adjacent to the stub with the slip base completely intact. All three cables were disengaged from the post. The middle cable anchor rod fractured, as shown in Figure 45, due to the cable being snagged on the vehicle. The downstream end of the middle cable came to rest behind the vehicle, about 6 ft (2 m) in front of post no. 38.

The top cable disengaged from post nos. 2 through 39. The middle cable disengaged from post nos. 17, 19 through 21, and 28 through 39. The bottom cable disengaged from post nos. 17

through 19, 30, and 33. The middle cable between post nos. 17 and 18 frayed. The fray consisted of two broken wire strands, as shown in Figure 46.

Post no. 16 had rotated backward and post no. 17 was bent and rotated downstream and rotated slightly backward. Post nos. 18 through 33 were bent and rotated downstream. Post nos. 21, 22, and 29 had also twisted downstream. The top J-bolt cable attachments on post nos. 2 through 39 were bent downward. Similarly, the middle cable J-bolts were bent downward on post nos. 17 through 22, 28, 29, and 31 through 39. The bottom cable J-bolts were twisted downward on post nos. 17 through 19, 21, 29, 30, and 33. Additionally, the top J-bolts were twisted through 34, while the middle J-bolts were twisted downstream on post nos. 18 through 16, 18, 20, 29, 30, and 33.

The maximum lateral dynamic barrier deflection before the cable release at the end anchorage was 8.5 ft (2.6 m) located 2 ft (0.6 m) upstream from post no. 21, as determined from high-speed digital video analysis. The working width of the system was determined to be 12 ft – 8 in. (3.9 m), as shown in Figure 56. The maximum lateral dynamic barrier deflection after the cable released from the end anchorage was 12 ft – 7 in. (3.8 m), which was calculated at the same location and time as the working width. The working width of the system was determined to be larger than expected due to the fracture of the top cable's upstream end anchor rod.

5.6 Vehicle Damage

The damage to the vehicle was minimal, as shown in Figures 57 and 58. The maximum occupant compartment deformations are listed in Table 5 along with the deformation limits established in MASH for various areas of the occupant compartment. Note that none of the MASH established deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH ALLOWABLE DEFORMATION in. (mm)
Wheel Well & Toe Pan	³ / ₄ (19)	≤ 9 (229)
Floor Pan & Transmission Tunnel	³ ⁄ ₄ (19)	≤ 12 (305)
Side Front Panel (in Front of A-Pillar)	1/4 (6)	≤12 (305)
Side Door (Above Seat)	1/4 (6)	≤ 9 (229)
Side Door (Below Seat)	0 (0)	≤12 (305)
Roof	0 (0)	\leq 4 (102)
Windshield	0 (0)	≤3 (76)

Table 5. Maximum Occupant Compartment Deformations by Location, Test No. NYCC-1

The majority of the damage was concentrated on the right-front corner and right side of the vehicle where the impact occurred. The lower front bumper trim was disengaged, and the front bumper was dented and bent inward near the vehicle centerline due to contact with posts. The right side of the front bumper had contact marks from the cables as well as denting and kinking due to contact with posts. The left side of the front bumper had dents and contact marks from the cables and posts. The right-front door experienced some gouging and denting. The right-rear door was dented and had a tear and fold at the front edge of the door, caused by the top cable contact. The right-rear quarter panel experienced gouging. The left-front wheel experienced gouging along the edge of the rim. The left-rear door was gouged along the bottom. The left-rear quarter panel had a small dent near the cab. Contact marks from the cables extended along the entire right side of the vehicle.

5.7 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 6. Note that the OIVs and ORAs were within the suggested limits provided in MASH. The

calculated THIV, PHD, and ASI values are also shown in Table 6. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 32. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix E. Due to technical difficulties, DTS unit did not collect valid rate gyro data.

Evaluation Criteria		Trans	MASH Limits	
		EDR-3	DTS	(Absolute Value)
OIV	Longitudinal	-6.60 (-2.01)	-7.73 (-2.36)	≤ 40 (12.2)
ft/s (m/s)	Lateral	-7.34 (-2.24)	-6.52 (-1.99)	≤ 40 (12.2)
ORA	Longitudinal	-4.25	-4.42	≤ 20.49
g's	Lateral	-2.71	-3.35	≤ 20.49
THIV ft/s (m/s)		NA	9.25 (2.82)	not required
PHD g's		NA	4.86	not required
ASI		0.22	0.20	not required

Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NYCC-1

5.8 Load Cell Results

As previously discussed, tension load cells were installed in line with the cables at the upstream end of the barrier system in order to monitor the total load transferred to the end anchor system with respect to time. The load cell results are summarized in Table 7. The individual cable loads and the total combined cable load imparted to the upstream end anchor are shown graphically in Figures 59 and 60, respectively. The pre-tension for each cable was 800 lb (3.56 kN), as measured by displacements in the spring compensators near the upstream anchorage. During the test, the top cable anchor rod fractured, and the cable was pulled upstream. Subsequently, the load cell wire severed, and data was no longer recorded for the top cable. Also,

near the end of the test, the downstream end anchor rod on the middle cable fractured. Thus, the tension in the middle cable dropped to nearly zero for the remainder of the test. At the end of the test, the tension in the middle and bottom cables were 29.5 lb (0.13 kN) and 277 lb (1.23 kN), respectively.

Cable Leastian	Sansar Logation	Maximum	Time [*]	
Cable Location	Sensor Location	kips	kN	(sec)
Combined Cables	Upstream End	14.67	65.26	0.271
Top Cable	Upstream End	12.25**	54.51	0.271
Middle Cable	Upstream End	12.38	55.07	2.223
Bottom Cable	Upstream End	2.67	11.88	0.073

Table 7. Summary of Load Cell Results, Test No. NYCC-1

* - Time determined from initial vehicle impact with the barrier system.

** - Cable fracture, so data stopped recording at 0.3067 seconds

5.9 Discussion

The analysis of the test results for test no. NYCC-1 showed that the generic, three-cable barrier with a 360 ft (109.7 m) curved radius and a 27 in. (686 mm) top mounting height adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. There were no detached elements nor fragments which showed potential for penetrating the occupant compartment nor presented undue hazard to other traffic. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix E, were deemed acceptable because they did not adversely influence occupant risk safety criteria nor cause rollover. Therefore, test no. NYCC-1 was determined to be acceptable according to the MASH safety performance criteria for modified test designation no. 3-11.

Figure 32. Summary of Test Results and Sequential Photographs, Test No. NYCC-1

S

0.200 sec

0.000 sec

0.196 sec

0.294 sec

0.392 sec

0.498 sec

0.596 sec

0.694 sec

0.988 sec

Figure 35. Additional Sequential Photographs, Test No. NYCC-1

0.196 sec

0.400 sec

0.576 sec

0.772 sec

0.970 sec

1.166 sec

1.286 sec

1.458 sec

1.756 sec

2.026 sec

2.518 sec

Figure 36. Additional Sequential Photographs, Test No. NYCC-1
February 19, 2013 MwRSF Report No. TRP-03-263-12

Figure 38. Documentary Photographs, Test No. NYCC-1

Figure 39. Impact Location, Test No. NYCC-1

Figure 40. Vehicle Final Position and Trajectory Marks, Test No. NYCC-1

Figure 41. System Damage, Test No. NYCC-1

Figure 42. System Damage: Upstream Anchor and Post No. 1, Test No. NYCC-1

Figure 43. System Damage: Upstream Angle Plate and Top Cable, Test No. NYCC-1

Figure 44. System Damage: Downstream Anchor and Post No. 40, Test No. NYCC-1

Figure 45. System Damage: Downstream Angle Plate and Middle Cable, Test No. NYCC-1

Figure 46. System Damage: Middle Cable between Post Nos. 17 and 18, Test No. NYCC-1

Figure 47. System Damage: Post Nos. 17 and 18, Test No. NYCC-1

Figure 48. System Damage: Post Nos. 19 and 20, Test No. NYCC-1

Post No. 21

Figure 49. System Damage: Post Nos. 21 and 22, Test No. NYCC-1

Figure 50. System Damage: Post Nos. 23 and 24, Test No. NYCC-1

Figure 51. System Damage: Post Nos. 25 and 26, Test No. NYCC-1

Figure 52. System Damage: Post Nos. 27 and 28, Test No. NYCC-1

75

Figure 53. System Damage: Post Nos. 29 and 30, Test No. NYCC-1

Post No. 31

Figure 54. System Damage: Post Nos. 31 and 32, Test No. NYCC-1

TT

Figure 55. System Damage: Post Nos. 33 and 34, Test No. NYCC-1

Figure 56. Working Width, Test No. NYCC-1

Figure 57. Vehicle Damage: Right Side, Test No. NYCC-1

Figure 58. Vehicle Damage: Front and Left Side, Test No. NYCC-1

Figure 59. Individual Cable Tension vs. Time, Test No. NYCC-1

Figure 60. Total Cable Tension vs. Time, Test No. NYCC-1

February 19, 2013 MwRSF Report No. TRP-03-263-12

6 DESIGN DETAILS - TEST NO. NYCC-2

The generic, low-tension, three-cable barrier system for test no. NYCC-2 was nearly identical to the system used for test no. NYCC-1 except for the radius of the curve. The radius of the system in test no. NYCC-2 was 440 ft (134 m) spanning an angle of 26 degrees between post nos. 8 and 33, as shown in Figure 61. Due to the radius change, and utilizing the same anchor locations, the cable barrier system had a total length of 396.5 ft (120.9 m). The impact angle and location remained the same - 20 degrees and 2 ft (0.6 m) upstream of post no. 17 or 70 ft (21.3 m) downstream of post no. 8, respectively. Photographs of the test installation are shown in Figures 62 through 65. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

Figure 61. Test Installation Layout, Test No. NYCC-2

Figure 62. Test Installation Photographs, Test No. NYCC-2

Figure 63. Post Photographs, Test No. NYCC-2

Figure 64. End Anchorage Photographs, Test No. NYCC-2

Figure 65. Cable Splices and Load Cells, Test No. NYCC-2

7 FULL-SCALE CRASH TEST NO. NYCC-2

7.1 Static Soil Test

Before full-scale crash test no. NYCC-2 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

7.2 Test No. NYCC-2

The 4,998-lb (2,267-kg) pickup truck impacted the curved, three-cable barrier system at a speed of 61.7 mph (99.3 km/h) and at an angle of 22.1 degrees. A summary of the test results and sequential photographs are shown in Figure 66. Additional sequential photographs are shown in Figures 67 through 69.

7.3 Weather Conditions

Test no. NYCC-2 was conducted on November 1, 2011 at approximately 2:45 pm. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were recorded and are shown in Table 8.

Temperature	77° F
Humidity	36%
Wind Speed	8 mph
Wind Direction	350° from True North
Sky Conditions	Sunny / Clear
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0 in.
Previous 7-Day Precipitation	0 in.

Table 8. Weather Conditions, Test No. NYCC-2

7.4 Test Description

Initial vehicle impact occurred at the targeted impact point 2 ft (0.6 m) upstream of post no. 17, or 70 ft (21.3 m) downstream of post no. 8, as shown in Figure 70, which was selected by NYSDOT personnel. A sequential description of the impact events is contained in Table 9. The vehicle came to rest on its side behind the barrier at a location of 282 ft (86.0 m) downstream of impact and 7 ft (2.1 m) laterally behind a line parallel to the impact point, as shown in Figures 66 and 71.

TIME (sec)	EVENT
0.000	The right-front bumper impacted top cable.
0.006	The right-front bumper contacted post no. 17.
0.030	The right-front tire contacted post no. 17.
0.038	Post no. 17 was bending backward and down with all cables still attached.
0.044	The right-front tire overrode post no. 17.
0.046	The top cable disengaged from post no. 17.
0.056	The middle cable disengaged from post no. 17.
0.058	The right-front tire rose off the ground.
0.064	The right-front tire overrode the bottom and middle cables.
0.086	The front bumper contacted post no. 18 and deflected it downstream.
0.090	The right-front tire overrode the top cable.
0.102	Vehicle began to override post no. 18.
0.108	Vehicle pitched upward.
0.176	The left-front bumper deflected post no. 19 downstream.
0.198	The left-front tire contacted post no. 19.
0.202	The left-front tire deflected post no. 19, and the vehicle began to pitch upward
0.214	Post no. 20 deflected backwards and downstream.
0.230	Vehicle began to roll away from backside of barrier.
0.236	Left-front tire became airborne as it overrode post no. 19 and all 3 cables.
0.340	Vehicle began to pitch downward.
0.356	The right front tire contacted the ground.
0.400	Post no. 20 stopped deflecting.
0.440	Vehicle completely overrode system and was no longer in contact with system.
0.600	Vehicle was free-wheeling behind barrier in a stable manor.
1.206	Vehicle contacted and began to climb embankment and rolled toward barrier.
1.480	Right-front tire was airborne.
1.532	Left-front tire became airborne.
1.708	Left-rear tire became airborne

 Table 9. Sequential Description of Impact Events, Test No. NYCC-2

2.242	The left side of the vehicle contacted the ground.
13.000	Vehicle came to a stop on its right side after rolling over twice.

7.5 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 71 through 74. Barrier damage consisted of bent posts and disengaged cables. The length of vehicle contact along the barrier was approximately 24 ft (7.32 m), which spanned from 2 ft (0.6 m) upstream from post 17 through 2 ft (0.6 m) upstream from post 20.

The upstream cable anchor assembly experienced minor damage. The top and middle cables had disengaged from both the angled anchor bracket and post no. 1. Post no. 1 was slightly bent downstream. Post nos. 17 through 19 were all bent backward and downstream.

The top, middle, and bottom cables disengaged from post nos. 17 through 19. All cableto-post J-bolt attachments on post nos. 17 and 18 were bent. Additionally, the top and middle Jbolts on post nos. 17 and 18 were rotated upstream. The top and middle J-bolts on post no. 19 were fractured and the bottom J-bolt was bent and rotated upstream.

The maximum lateral dynamic barrier deflection was 30.0 in. (762 mm) at post no. 17, as determined from high-speed digital video analysis. The working width of the system was not calculated since the vehicle overrode the system.

7.6 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 75 through 78. However, only minor vehicle damage resulted from the interaction with the barrier. The damage due to rollover was not attributable to the curved-cable system as the vehicle was stable and tracking before climbing the embankment. The maximum occupant compartment deformations are listed in Table 10 along with the deformation limits established in MASH for various areas of the occupant compartment. Note that the maximum permissible roof crush limits described in

MASH were exceeded. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH ALLOWABLE DEFORMATION in. (mm)
Wheel Well & Toe Pan	³ / ₈ (10)	≤ 9 (229)
Floor Pan & Transmission Tunnel	3½ (89)	≤ 12 (305)
Side Front Panel (in Front of A-Pillar)	1/4 (6)	≤ 12 (305)
Side Door (Above Seat)	1/2 (13)	≤ 9 (229)
Side Door (Below Seat)	1/4 (6)	≤ 12 (305)
Roof	8 (203)	\leq 4 (102)
Windshield	0 (0)	≤3 (76)

Table 10. Maximum Occupant Compartment Deformations by Location, Test No. NYCC-2

The entire cab of the vehicle was dented due to rollover. The left-front bumper was crushed inward, and the hood was bent inward. A large indentation was present on the left side. The windshield experienced spider-web cracking, concentrated in the top right corner. The rear windshield was shattered. The roof of the cab was crushed downward about 8.5 in. (216 mm). Both of the rear tail lights were disengaged as well as the right side of the tailgate. The left-front wheel was disengaged, and the ball joint support was fractured. The left-front brake line was cut. The driveshaft was disengaged from the transmission. Cable contact marks were found on the underside of the gas tank. The passenger and driver side windows were fractured.

7.7 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 11. Note that the OIVs and ORAs were within the suggested limits provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 11. The results of the occupant

risk analysis, as determined from the accelerometer data, are summarized in Figure 66. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix F.

Evaluation Criteria		Transducers		MASH Limits (Absolute Value)	
		EDR-3 DTS			
OIV	Longitudinal	-4.66 (-1.42)	-5.58 (-1.70)	≤ 40 (12.2)	
ft/s (m/s)	Lateral	-3.02 (-0.92)	-1.97 (-0.60)	≤ 40 (12.2)	
ORA g's	Longitudinal	1.04	1.01	≤ 20.49	
	Lateral	1.14	1.34	≤ 20.49	
T ft/s	THIV s (m/s)	NA	5.92 (1.80)	not required	
PHD g's		NA	1.60	not required	
ASI		0.18	0.21	not required	

Table 11. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NYCC-2

7.8 Load Cell Results

As previously discussed, tension load cells were installed in line with the cables at the upstream end of the barrier system in order to monitor the total load transferred to the end anchor system with respect to time. The load cell results are summarized in Table 12. The individual cable loads and the total combined cable load imparted to the upstream end anchor are shown graphically in Figures 79 and 80. The pre-tension in each cable was 914 lb (4.07 kN), as measured by the displacement in the spring compensators near the upstream anchorage. After the crash test, tension in the top, middle, and bottom cables was 1,398 lb (6.22 kN), 905 lb (4.03 kN), and 756 lb (3.36 kN), respectively.

Cable Location	Sensor Location	Maximum Cable Load		Time*
		kips	kN	(sec)
Combined Cables	Upstream End	16.97	75.52	0.089
Top Cable	Upstream End	13.27	59.03	0.089
Middle Cable	Upstream End	3.58	15.92	0.239
Bottom Cable	Upstream End	2.85	12.68	0.061

Table 12. Summary of Load Cell Results, Test No. NYCC-2

- Time determined from initial vehicle impact with the barrier system.

7.9 Discussion

The analysis of the test results for test no. NYCC-2 showed that the generic, three-cable barrier with a 440 ft (134.1 m) curved radius and a 27 in. (686 mm) top mounting height did not adequately contain or redirect the 2270P vehicle since the vehicle overrode the barrier. The vehicle did not remain upright after the collision; however, it is believed that the rollover was caused by contact with an embankment behind the system. Thus, the rollover was not directly caused by the system containment failure. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable prior to the vehicle rolling over the embankment. There were no detached elements or fragments which showed potential for penetrating the occupant compartment, nor did any detached elements present undue hazard to other traffic. However, excessive occupant compartment deformations were imparted to the roof of the vehicle due to the eventual vehicle rollover. Therefore, test no. NYCC-2 was determined to be unacceptable according to the MASH safety performance criteria for modified test designation no. 3-11.
0.000 sec 0.176 sec	0.386 sec	35 38	0.4 37 38 39 1	40 sec		0.640 sec	
RF TIRE 8 9 10 11 12 13 14 15 16 17 16 19 26 21 22 23 24 25 26 27 28 RF TIRE	29 30 31 32 33 64	8.0 m]		7' [2.1	m]		2'-6' 2
Test Agency MwRSI Test Number NYCC-2 Date 11/11 MASH Test Designation Modified 3-11 Test Article 440 ft (134 m) radius curved three cable barrie Total Length 389 ft - 4 in. (118.7 m Key Component – Wire Rope 3/4 in. (19 mm Diameter 3/4 in. (19 mm Size 3x' Top Cable Height 27 in. (686 mm Middle Cable Height 15 in. (381 mm	• 2 1 1 • • • • • • • • • • • • • • • •	Vehicle Da VDS ^[5] CDC ^[6] Maxim Test Article Exit Condi Maximum Perman Dynan Workin Maximum Roll Pitch	mage um Interior Defo Damage ions Fest Article Defl ent Set g Width Angular Displace	ections ements (Prior		Moderate 01-RFQ-2 01-RFLN-1 	2'-9"
Key Component - Post 63 in. (1,600 mm Length 63 in. (1,600 mm Shape S3x5.7 (S76x8.5 Spacing - Curved Section 8 ft (2.4 n Spacing - Tangent End Segments 16 ft (4.9 m) •) • 1	Impact Sev Transducer	erity (IS) Data ion Criteria	Tran EDR-3	sducers DTS	MASH Limit (Absolute Value)	
Soil Type) >)	OIV ft/s (m/s)	Longitudinal Lateral	-4.66 (-1.42) -3.02	-5.58 (-1.70) -1.97	$ \begin{array}{r} \leq 40 \\ (12.2) \\ \leq 40 \\ (12.2) \end{array} $,
I est inertial)	ORA	Longitudinal	(-0.92) 1.04	(-0.60)	(12.2) ≤ 20.49	
Speed) 	g s Thiv Ph	Lateral - ft/s (m/s) D – g's	1.14 NA NA	1.34 5.92 (1.80) 1.60	≤ 20.49 Not required Not required	
Vehicle Stopping Distance	y 1 4		ASI	0.18	0.21	Not required	

Figure 66. Summary of Test Results and Sequential Photographs, Test No. NYCC-2

Figure 67. Additional Sequential Photographs, Test No. NYCC-2

0.000 sec

0.098 sec

0.230 sec

0.000 sec

0.184 sec

0.242 sec

0.356 sec

0.466 sec

0.610 sec

0.654 sec

0.858 sec

0.000 sec

0.112 sec

0.202 sec

0.316 sec

0.408 sec

0.474 sec

Figure 68. Additional Sequential Photographs, Test No. NYCC-2

Figure 69. Additional Sequential Photographs, Test No. NYCC-2

Figure 70. Impact Location, Test No. NYCC-2

Figure 71. Vehicle Final Position and Trajectory Marks, Test No. NYCC-2

Figure 72. System Damage: Upstream Anchorage, Test No. NYCC-2

Figure 73. System Damage, Test No. NYCC-2

Figure 74. System Damage: Post Nos. 17 through 19, Test No. NYCC-2

Figure 75. Vehicle Damage, Test No. NYCC-2

Figure 76. Vehicle Damage, Test No. NYCC-2

Figure 77. Vehicle Damage, Test No. NYCC-2

Figure 78. Vehicle Damage, Test No. NYCC-2

Figure 79. Individual Cable Tension vs. Time, Test No. NYCC-2

Figure 80. Total Cable Tension vs. Time, Test No. NYCC-2

8 DESIGN DETAILS - TEST NO. NYCC-3

Due to the unsuccessful performance of the curved cable barrier in test no. NYCC-2, the system was examined to identify what features, if any, could improve barrier performance and its ability to contain and redirect high center-of-mass passenger vehicles. It was observed that the top bumper height of the test vehicle in test no. NYCC-2 was $25\frac{1}{2}$ in. (648 mm). However, the bumper cover was higher around the left-front and right-front corners adjacent to the headlights. This vertical extension was approximately $2\frac{1}{2}$ in. (64 mm) tall. To ensure adequate capture of the vehicle with at least one cable, the system would need to be at least 28 in. (711 mm) tall. In order to account for construction tolerances and variations in vehicle fleet, the cable barrier system was raised by 2 in. (51 mm), thus resulting in a reduced post embedment depth of 2 in. (51mm). The new cable mounting heights utilized in test no. NYCC-3 were 29 in., 23 in., and 17 in. (740 mm, 584 mm, and 432 mm).

The cable barrier system for test no. NYCC-3 was identical to the system used in test no. NYCC-2, with the exception that the cables were raised by 2 in. (51 mm), as shown in Figures 81 through 94. Photographs of the test installation are shown in Figures 95 through 98. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

Figure 81. Test Installation Layout, Test No. NYCC-3

Figure 82. Critical Region, Test No. NYCC-3

Figure 83. Line Post Assembly Details, Test No. NYCC-3

Figure 84. Terminal Details, Test No. NYCC-3

115

Figure 85. Anchor Details, Test No. NYCC-3

Figure 86. Cable Anchor Bracket Details, Test No. NYCC-3

Figure 87. Cable Anchor Bracket Component Details, Test No. NYCC-3

118

Figure 88. Anchor Post Assembly Details, Test No. NYCC-3

Figure 89. Anchor Post Component Details, Test No. NYCC-3

Figure 90. Cable Clip Details, Test No. NYCC-3

Figure 91. Line Post Details, Test No. NYCC-3

Figure 92. Cable Compensator Component Details, Test No. NYCC-3

Item No.	QIY.	Description	Material Spec	Hardware Guide	
a1	2	S3x5.7 27 3/16" long Anchor Post	ASTM A36 Galvanized	-	
a2	24	Hooked Anchor J-Bolt and Nut	ASTM A36 and ASTM A-563 DH Galvanized	FRH20a	
a3	6	Ø3/16" 5 1/4" Long Brass Rod	Brass		
a4	36	ø3/4" Plain Round Washer-OD 1.5"	Grade 2 Galvanized	FWC20a	
a5	2	S3x7.5 Anchor Post Stub	ASTM A36 Galvanized	-	
a6	4	Slip Impact Base	ASTM A36 Galvanized	-	
a7	2	4"x5" 28 Gauge Keeper Plate	ASTM A36 Galvanized	-	
a8	8	ø1/2" x2 1/2" Long Bolt and Nut	Grade 2 Galvanized	FBX14a	
a9	24	ø1/2" Narrow Washer-OD 1"	Grade 2 Galvanized	FWC12a	
a10	2	3/4" Anchor Post Support Plate	A707 Grade 36 Galvanized	-	
a11	2	Anchor Post Base	A709 Grade 36 Galvanized	-	
Ь1	2	Anchor Bracket Plate	ASTM A709 Grade 36 Galvanized		
b2	4	1/2" Thick External Stiffener ASTM A709 Grade 36 Galvanized		-	
b3	2	Ø1/4"x15" Brass Rod Brass		-	
b4	4	1/4" Thick Internal Stiffener ASTM A709 Grade 36 Galvanized		-	
b5	2	Anchor Angle Middle Plate	ASTM A709 Grade 36 Galvanized	-	
b6	2	Cable Plate	ASTM A709 Grade 36 Galvanized	-	
c2	6	ø3/4" Plain Round Washer-OD 2"	Grade 2 Galvanized	FWC20a	
c3	3	Compensating Cable End Assembly	ASTM A27 Galvanized	RCE01 & RCE03	
c4	38	S3x5.7 63 in. long Line Post	ASTM A36 Galvanized	-	
c5	114	Cable Hook Bolt and Nuts	ASTM F568 Class 4.6 and Grade A307 Galvanized	FBH04	
c6	1	Ø3/4" Cable Approx. 392'	AASHTO M30 Type 1 Class A Galvanized	RCM01	
c7	38	2'x8"x0.25" Soil Plate	ASTM A36 Galvanized	-	
d1	2	Concrete Anchor Block	3000 psi Compressive Strength	-	
d2	12	#3 Rebar 32.5" long	Grade 60		
d3	12	#3 Rebar 44.5" long	Grade 60	-	
d4	16	#3 Rebar 33" long	Grade 60	-	
e1	12	Cable Wedge	ASTM A47 Grade 32510	FMM01	
e2	3	50,000-lb Load Cell	N/A	-	

	RSP	NY Curved Cable 440' Radius—29 Bill of Materials	SHEET: 13 of 14 DATE: 1/31/2013	
Midwest	Roadside			DRAWN BY: MDM/CWP/ JGP
Safety Facility		DWG. NAME. NY curved cable-440-29in-R3	SCALE: None UNITS: Inches	REV. BY: KAL/CLM/ TH

Figure 93. Bill of Materials, Test No. NYCC-3

(1)	All posts shall sixth post start section, or whe	be s3x5.7 ing with then used as	rolled stee ne first sho a median	l section. Il be refle barrier.	The ancho ectorized. [er post stu Do not ref	ub shall be lectorize po	s3x7.5. W osts in the	here the intermed	rail is paral liate anchora	lel to the Ige sectio	edge of t n, typical o	he pavem approach	ent, every and terminal
(2)	Reflectors shall traffic and fluo	be alumin rescent ye	llow when	1/16" thic on the lef	k with refle t.	ective she	eting. The r	reflective s	heeting s	hall be white	when in	stalled on	the right	side of
(3)	3/4" round wir	e cable sh	all consist	of three	strands (7	wires per	strand) a	nd have a	minimum	tensile stre	ngth of 2	25,000 lbf.		
(4)	Cable ends sho ductile.	II be fabri	cated from	malleable	iron or c	ast steel.	The cable	splice and	wedge s	hall be fabri	cated from	m malleabl	e iron or	ASTM A536
(5)	All cable ends (25000 lbs.). T not be galvaniz	and splices he cables, ed.	s shall be ends, and	designed t splices sl	to use the hall be hot	wedge st dipped g	nown on sh Jalvanized a	eet 15 and is indicated	d shall di in mate	evelop the fu erial specifico	ull strengt ition for a	h of the 3 cable guide	3/4" round rail. The	d cable wedge shall
(6)	Stagger cable	splices, pro	ovide a mir	nimum of	20' betwee	en any pai	ir. Provide	a minimum	n of 100'	between ca	ble splice	s on the s	same cabl	e.
(7)	Alternate design	ns for the	steel turnt	uckle cab	le end ass	embly or	spring cabl	e end asse	embly sho	all be submit	ted for a	pproval.		
(8)	For arrangemer –Length cable. –Length –Length	of cable ri of cable ri of cable ri of cable ri	g cable en uns up to uns 1000' uns over 2	d assembl 1000'-use to 2000'- 000'-start	ies (compe e compense use compe a new st	ensating d ating devic ensating d retch by i	evice) and ce (RCE01) evice (RCE0 interlacing o	turnbuckle on one ei 01) on the at last par	cable en nd, and t ends of allel post	d assemblies urnbuckle (R each individ (see typical	s, the foll CE03) on lual cable intermed	owing crite the other iate ancho	ria shall end of e rage deta	apply: each individua ils).
	Prior to of adjust	final accep ment.	tance by t	he state,	the followin	ng values	shall be us	sed to tigh	ten the t	turnbuckles,	depending	on the te	emperature	at the time
						Temp	erature (de	grees Fare	nheit)					
	120	109	99	89	79	69	59	49	39	29	19	9	-1	-20
	to	to	to	to	to	to	to	to	to	to	to	to	to	to
	110	100	90	80	70	60	50	40	30	20	10	0	-19	-29
				Spring C	ompressio	n from Un	loaded Pos	ition in Ea	ch Spring-	-Measured in	n Inches			
1	1	11/4	11/2	13/4	2	2 1/4	2 1/2	23/4	3	3 1/4	3 1/2	3 3/4	4	4 1/2
(9) (10) (11) (12) (13)) Do not install () Do not install () Curbs greater f measured from () Lifting devices, and two tons f () At all locations base of the we	inchor shall be back cable guide than 3" hic pavement if embedd for each of where the adge to ho	filled in a filled in a gh are not if offset t ed in conc f the halve cable is ld it firmly	to the exc coordance to be ret between po crete, shall s of the f connected in place.	with the r with a central ained or p overnent ar be rated two piece	erline radi laced if d nd curb is by their r anchor un e socket v	ne bottor its of 203- us of less less than manufacture it. with a wedg	than 440'. ed, or ope or equal t er as havin ge type co	and back and back or 9" and og a "safe nnection,	eed exceeds fill at struc from grour e working loo one wire of	35 mph. d beneatl ad" of for the wire	Rail mour n rail if of ur tons for rope shall	ting heigh fset > 9" the one be crimp	the state of the s
								M	idwest Safety	Roadside Facility	440' Note	Radius- s	-29 in	DATE: 1/31/2013 DRAWN BY: MDM/CWP/ JGP E: None REV. BY:

Figure 94. System Notes, Test No. NYCC-3

Figure 95. Test Installation Photographs, Test No. NYCC-3

Figure 96. Post Photographs, Test No. NYCC-3

Figure 97. End Anchorage Photographs, Test No. NYCC-3

Figure 98. Cable Splices and Load Cells, Test No. NYCC-3

9 FULL-SCALE CRASH TEST NO. NYCC-3

9.1 Dynamic Soil Test

Before full-scale crash test no. NYCC-3 was conducted, the strength of the foundation soil was evaluated with a dynamic test, as described in MASH. The dynamic test results demonstrated a soil resistance above the minimum force limits described in MASH, as shown in Appendix C. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

9.2 Test No. NYCC-3

The 4,998-lb (2,267-kg) pickup truck impacted the curved, three-cable barrier system at a speed of 63.1 mph (101.6 km/h), and at an angle of 21.6 degrees. A summary of the test results and sequential photographs are shown in Figure 99. Additional sequential photographs are shown in Figures 100 through 104.

9.3 Weather Conditions

Test no. NYCC-3 was conducted on April 26, 2012 at approximately 1:50 pm. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were recorded and are shown in Table 13.

Table 13. Weather Conditions, Test No. NYCC-3

Temperature	75° F
Humidity	34%
Wind Speed	11 mph
Wind Direction	70° from True North
Sky Conditions	Clear
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0 in.
Previous 7-Day Precipitation	0.1 in.

9.4 Test Description

Initial vehicle impact occurred at the targeted impact point 2 ft (0.6 m) upstream of post no. 17, as shown in Figure 105, which was selected by NYSDOT personnel. A sequential description of the impact events is contained in Table 14. The vehicle came to rest 310 ft – 7 in. (94.7 m) downstream of impact and 78 ft – 11 in. (24.0 m) laterally from the original impact point. The vehicle trajectory and final position are shown in Figures 99 and 106.

Table 14. Sequential Description of Impact Events, Test No. NYCC-3

TIME	EVENT
(sec)	
0.000	Vehicle impacted the system.
0.002	Top cable between post nos. 16 and 17 began to deflect downstream.
0.006	Right-front bumper contacted post no. 17.
0.008	Post no. 17 deflected backward.
0.010	Post no. 17 bent downstream.
0.022	Post no. 16 deflected backward and downstream.
0.030	Top cable released from post no. 17.
0.036	Vehicle right-front tire contacted post no. 17.
0.040	Post no. 18 deflected downstream.
0.052	Post no. 18 deflected backward.
0.056	Middle cable released from post no. 17.
0.062	Vehicle right-front tire rose off of the ground.
0.064	Posts between post nos. 17 and 37 began to deflect upstream.
0.080	Front-right tire overrode post no. 17 as well as bottom and middle cables.
0.082	Front bumper contacted post no. 18 and pushed it back and downstream.
0.102	Top cable released from post no. 18.
0.114	Vehicle bumper overrode post no. 18.
0.136	Post no. 20 deflected upstream.
0.146	Post no. 39 deflected upstream.
0.152	Top cable released from post no. 19.
0.170	Right-rear tire overrode post no.17.
0.172	Post no. 20 deflected backward.
0.178	Vehicle contacted post no. 19, bending it downstream.
0.186	Post nos. 21 deflected upstream.
0.188	Top cable released from post no. 20.
0.192	Left-front tire overrode bottom cable.
0.206	Vehicle bumper overrode post no. 19.
0.208	Right-rear tire lifted off ground.
0.246	Top cable released from post no. 21.
0.278	Left-front tired overrode bottom cable.
-------	--
0.290	Right-front tire lifted off ground.
0.302	Left-front tire overrode middle cable.
0.304	Guidance hub on left-front tire contacted post no. 20. Post no. 24 deflected upstream.
0.316	Top cable released from post no. 22.
0.386	Top cable released from post no. 23.
0.398	Right-front tire contacted ground.
0.412	Post no. 24 deflected backward.
0.482	Top cable released from post no. 24.
0.500	Post no. 25 deflected backward.
0.518	Top cable released from post no. 25.
0.536	Post no. 26 deflected backward.
0.660	Top cable released from post no. 26.
0.666	Post no. 27 deflected backward.
0.810	Top cable released from post no. 27.
0.928	Vehicle contacted post no. 26, and it deflected downstream.
0.980	Post no. 28 deflected backward.
1.004	Vehicle contacted post no. 27, and it deflected downstream.
1.044	Vehicle contacted post no. 28, and it deflected downstream.
1.052	Top cable released from post no. 28.
1.074	Post no. 30 deflected upstream.
1.220	Top cable released from post no. 29.
1.212	Vehicle contacted post no. 29, and it deflected downstream.
1.258	Post no. 31 deflected upstream.
1.310	Vehicle contacted post no. 30, and it deflected downstream.
1.442	Post no. 32 deflected upstream.
1.538	Vehicle exited system.

9.5 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 107 through 116. Barrier damage consisted of bent posts and disengaged cables. The length of vehicle contact along the barrier was approximately 130 ft (39.6 m), which spanned from 2 ft (0.6 m) upstream from post no. 17 through post no. 31.

Post no. 1 was bent downstream at the slip base. All cables remained engaged with the upstream end anchorage as shown in Figure 108. No damage occurred to the system between post nos. 2 and 15.

The top cable disengaged from post nos. 16 through 30. The middle cable disengaged from post nos. 16 through 20 and 27 through 31. The bottom cable disengaged from post nos. 17 through 20 and 27 through 31. The cable-to-post attachment J-bolts were bent at varying magnitudes and directions between post nos. 16 and 32. Additionally, the middle cable J-bolt on post no. 27 was fractured.

Post no. 16 was bent and rotated downstream. Post nos. 17 through 20 were severely bent backward and twisted downstream with contact marks observed on the front flanges. Post nos. 21 through 25 were bent and rotated backward and downstream. Post nos. 26 through 30 were bent and twisted downstream with contact marks on the upstream edges of the flanges. Additionally, post no. 30 had gouges in the front and back flanges. The brass keeper rod for the bottom cable on post no. 40 was disengaged and the post was bent upstream with weld failure under the slip base as shown in Figure 116.

The permanent set of the system was 24 in. (610 mm) which occurred at post no. 17, as measured in the field. The maximum lateral dynamic barrier deflection was 14 ft - 4 in. (3,564 mm) which occurred near post no. 22, as determined from high-speed digital video analysis. The working width of the system was found to be 14 ft – 5 in. (4.4 m) and is shown in Figure 117.

9.6 Vehicle Damage

The damage to the vehicle was minimal, as shown in Figures 118 and 119. The maximum occupant compartment deformations are listed in Table 15 along with the deformation limits established in MASH for various areas of the occupant compartment. Note that none of the MASH established deformation limits were exceeded. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D.

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH ALLOWABLE DEFORMATION in. (mm)
Wheel Well & Toe Pan	¹ / ₂ (13)	≤ 9 (229)
Floor Pan & Transmission Tunnel	1/4 (6)	≤ 12 (305)
Side Front Panel (in Front of A-Pillar)	0 (0)	≤12 (305)
Side Door (Above Seat)	1/4 (6)	≤ 9 (229)
Side Door (Below Seat)	1/4 (6)	≤12 (305)
Roof	0 (0)	≤4 (102)
Windshield	0 (0)	≤ 3 (76)

Table 15. Maximum Occupant Compartment Deformations by Location, Test No. NYCC-3

The majority of the damage was concentrated on the right-front corner and right side of the vehicle where the impact occurred. Cable contact marks were found along the entire right side of the vehicle as well as on both right-side tires and on the right-rear rim. All tires remained inflated. Contact marks were located on the right-front bumper that resulted in buckling. The right headlight was partially disengaged. The right side of the grill was cracked. The left side of the vehicle and all window glass remained undamaged.

9.7 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 16. Note that the OIVs and ORAs were within the suggested limits provided in MASH. The calculated THIV, PHD, and ASI values are also shown in Table 16. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 99. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix E.

Evaluation Criteria			MASH Limits		
		EDR-3	DTS SLICE	DTS	(Absolute Value)
OIV	Longitudinal	-10.20 (-3.11)	-8.36 (-2.55)	-8.49 (-2.59)	≤ 40 (12.2)
(m/s)	Lateral	-7.55 (-2.30)	-7.04 (-2.14)	-6.88 (-2.10)	≤40 (12.2)
ORA g's	Longitudinal	-4.26	-2.24	-2.74	≤ 20.49
	Lateral	-2.71	-3.69	-3.03	≤ 20.49
THIV ft/s (m/s)		NA	10.27 (3.13)	10.89 (3.32)	not required
PHD g's		NA	3.72	3.08	not required
ASI		0.25	0.23	0.23	not required

Table 16. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NYCC-3

9.8 Load Cell Results

As previously discussed, tension load cells were installed in line with the cables at the upstream end of the barrier system in order to monitor the total load transferred to the end anchor system with respect to time. The load cell results are summarized in Table 17. The individual cable loads and the total combined cable load imparted to the upstream end anchor are shown graphically in Figures 120 and 121, respectively. The pre-tension in each cable was 914 lb (4.07 kN) as measured from the displacement in the spring compensators near the upstream anchorage. After the crash test, the tension in the top, middle, and bottom cables was 99.8 lb (0.44 kN), 378 lb (1.68 kN), and 883 lb (3.93 kN), respectively.

Cable Legation	Sansar Logation	Maximum	Time [*]	
Cable Location	Sensor Location	kips	kN	(sec)
Combined Cables	Upstream End	17.34	77.13	0.308
Top Cable	Upstream End	14.73	65.55	0.241
Middle Cable	Upstream End	8.37	37.23	0.293
Bottom Cable	Upstream End	2.54	11.30	0.063

Table 17. Summary of Load Cell Results, Test No. NYCC-3

- Time determined from initial vehicle impact with the barrier system.

9.9 Discussion

The analysis of the test results for test no. NYCC-3 showed that the generic, three-cable barrier with a 440 ft (134.1 m) curved radius and a 29 in. (734 mm) top mounting height adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. There were no detached elements nor fragments which showed potential for penetrating the occupant compartment nor presented undue hazard to other traffic. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix G, were deemed acceptable because they did not adversely influence occupant risk safety criteria nor cause rollover. Therefore, test no. NYCC-3 was determined to be acceptable according to the MASH safety performance criteria for modified test designation no. 3-11.

Real P		0.000 gap	0.180.500	ALL ALL	0.204					0.624 sage	
	0.000 sec	0.090 sec	0.180 sec		0.304	sec 🖍	0.4	-04 sec		0.634 sec	
		10 192021222324252627	310'-7" [94.7 m] -32'-10" 16'-9" [5.1 -54 Bex 32'-33' -54 Bex -37 -54 Bex -37 -54 Bex -37	[10.0 m] 3839 40 ₽		78'-11" [24.0	m]			Z ¹ -	6".
	218 218 218	5 ¹⁶¹⁷ RR THRE		•	Vehicle VD CD	Damage S ^[5] C ^[6]					
	5 0				Max Test Art	timum Interior De	formation			½ in. (13 mm) Moderate	
2 3	4			•	Exit Co	nditions	••••••			Widderate	
	Test Agency		MwRSF		Spe	ed			50	mph (80.5 km/h)	
•	Test Number		NYCC-3		Ang	gle	а			18 deg.	
•	MASH Test Designation			•	Maximu	im Test Article De	effections			2 ft (0.6 m)	
	Test Article	440 ft (134.1 m) radius cur	ved three cable barrier		Dvr	namic				ft - 4 in (4 37 m)	
•	Total Length		389 ft 4 in (118.7 m)		Wo	rking Width				ft = 5 in. (4.39 m)	
•	Key Component - Rail		509 It 4 III. (110.7 III)	•	Maximu	m Angular Displa	cements				
	Diameter		³ / ₄ in. (19 mm)		Rol	l				5.6° < 75°	
	Size				Pitc	h				4.1° < 75°	
	Top Cable Height				Yav	v				24.4°	
	Middle Cable Height			•	Impact S	Severity (IS)			83.5	kip-ft (113.2 kJ)	
	Bottom Cable Height			• -	Transdu	cer Data					-
•	Key Component - Post		63 in (1.600 mm)		Evolu	ation Critoria		Iransducer	-	MASH Limit	
	Shape	••••••	S3x5 7 (S76x8 5)		Evalu		EDR-3	SLICE	DTS	(Absolute Value)	
	Spacing - Curved Sec	tion		F			-10.20	-8.36	-8 49	< 40	-
	Spacing - Tangent En	d Sections			OIV	Longitudinal	(-3.11)	(-2.55)	(-2.59)	(12.2)	
•	Soil Type	Grade B of AAS	HTO M147-65 (1990)		ft/s	Lataral	-7.55	-7.04	-6.88	≤ 40 [°]	
•	Vehicle Make /Model	2005 Dodge	e Ram 1500 Quad Cab		(m/s)	Lateral	(-2.30)	(-2.14)	(-2.10)	(12.2)	[w]
	Curb		5,134 lb (2,329 kg)	ſ	ORA	Longitudinal	-4.26	-2.24	-2.74	≤ 20.49	RS
	Test Inertial		4,994 lb (2,265 kg)		g's	Lateral	-2.71	-3.69	-3.03	≤20.49	R
-	Gross Static		5,100 ID (2,343 Kg)	┝	-			10.27	10.89		- ep
•	Speed	(53.1 mph (101.6 km/h)		THIV	/ – ft/s (m/s)	NA	(3.13)	(3.32)	Not required	ort
	Angle			F	р	HD – σ's	NA	3 72	3.08	Not required	
	Impact Location		n) upstream of post 17	Ļ	1	110 - g s	11/1	5.12	5.00	not required). T
•	Vehicle Stability	·····	Satisfactory			ASI	0.25	0.23	0.23	Not required	rua 'RP
•	Vehicle Stopping Distance		. (94.7 m) downstream 1 in. (24.0 m) laterally	L							ry 19 -03-:

Figure 99. Summary of Test Results and Sequential Photographs, Test No. NYCC-3

9, 2013 ·263-12

137

0.192 sec

0.228 sec

0.308 sec

0.402 sec

0.000 sec

0.058 sec

0.114 sec

0.160 sec

Figure 102. Additional Sequential Photographs, Test No. NYCC-3

0.000 sec

0.064 sec

0.206 sec

0.304 sec

0.504 sec

0.804 sec

1.004 sec

1.398 sec

Figure 103. Additional Sequential Photographs, Test No. NYCC-3

0.000 sec

0.108 sec

0.224 sec

0.304 sec

0.672 sec

0.900 sec

1.004 sec

1.258 sec

1.442 sec

2.042 sec

Figure 105. Impact Location, Test No. NYCC-3

Figure 106. Vehicle Final Position and Trajectory Marks, Test No. NYCC-3

Figure 107. System Damage, Test No. NYCC-3

Figure 108. System Damage: Post No. 1, Test No. NYCC-3

Figure 109. System Damage: Post Nos. 16 through 18, Test No. NYCC-3

Post No. 19

Figure 110. System Damage: Post Nos. 19 and 20, Test No. NYCC-3

Post No. 23

Post No. 22

Post No. 21

149

Post No. 24

Figure 112. System Damage: Post Nos. 24 and 25, Test No. NYCC-3

Figure 113. System Damage: Post Nos. 26 and 27, Test No. NYCC-3

Post No. 28

Figure 114. System Damage: Post Nos. 28 and 29, Test No. NYCC-3

Post No. 31

Post No. 30

Figure 115. System Damage: Post Nos. 30 and 31, Test No. NYCC-3

Figure 116. System Damage: Post No. 40, Test No. NYCC-3

Figure 117. Working Width, Test No. NYCC-3

THE

Figure 118. Vehicle Damage, Test No. NYCC-3

Figure 119. Vehicle Damage, Test No. NYCC-3

Figure 120. Individual Cable Tension vs. Time, Test No. NYCC-3

158

Figure 121. Total Cable Tension vs. Time, Test No. NYCC-3

10 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The goal of this study was to evaluate the safety performance and dynamic barrier deflections of the New York State DOT generic, low-tension, three-cable barrier system when installed in curved configurations. During the evaluation process, the cable barrier was subjected to three full-scale crash tests and evaluated according to the TL-3 impact safety standards provided in MASH using a modified test designation no. 3-11. The deviations from a standard MASH test designation no. 3-11 were: (1) the impact angle was 20 degrees instead of 25 degrees and (2) the impact point was targeted as 70 ft (21.3 m) downstream from the end tangent segment or 2 ft (0.6 m) upstream from a post, as specified by NYSDOT personnel.

The system installation for test no. NYCC-1 consisted of a top cable height of 27 in. (686 mm) and a curve radius of 360 ft (110 m). In test no. NYCC-1, the 2270P vehicle impacted the system at an angle of 19.9 degrees relative to the tangent of the curve and at a speed of 61.6 mph (99.1 km/h). The vehicle was satisfactorily contained and redirected. No excessive deformations or penetrations to the occupant compartment occurred, and the recorded vehicle accelerations did not violate the OIV or ORA limits established in MASH. Therefore, test no. NYCC-1 was deemed a successful test according to the modified MASH test designation no. 3-11 safety evaluation criteria.

The radius of the barrier system for test no. NYCC-2 was increased to 440 ft (134 m), but all other components and dimensions remained the same. In test no. NYCC-2, the 2270P vehicle impacted the system at an angle of 22.1 degrees relative to the tangent of the curve and at a speed of 61.7 mph (99.3 km/h). The vehicle overrode the barrier system as the top cable did not release quick enough to capture the bumper of the vehicle. The vehicle was free-wheeling behind the system for approximately 150 ft (45 m) before striking an embankment, which caused it to roll over. Thus, the rollover was not considered a result of the vehicle to barrier interaction.

However, test no. NYCC-2 was deemed unsuccessful according to the modified MASH test designation no. 3-11 safety evaluation criteria because the vehicle was not contained by the barrier.

Following the results of test no. NYCC-2, it was thought that the barrier mounting height was too low to capture taller vehicles (e.g., 2270P vehicle). Thus, it was decided to raise the entire system 2 in. (51 mm) to achieve a top cable height of 29 in. (737 mm). In test no. NYCC-3, the 2270P vehicle impacted the system at an angle of 21.6 degrees relative to the tangent of the curve and at a speed of 63.1 mph (101.6 km/h). The vehicle was satisfactorily contained and redirected. No excessive deformations or penetrations to the occupant compartment occurred, and the recorded vehicle accelerations did not violate the OIV or ORA limits established in MASH. Therefore, test no. NYCC-1 was deemed a successful test according to the modified MASH test designation no. 3-11 safety evaluation criteria. Summaries of the safety performance evaluations conducted for all three tests are shown in Table 18.

Based on the results of these tests, the standard top cable height of 27 in. (686 mm) for New York State DOT cable barrier was deemed acceptable for use on curves with radius of 360 ft (110 m). Unfortunately, a similar test with a larger radius of 440 ft (134 m) resulted in barrier override. Following the crash test failure of a barrier with a 27-in. (686-mm) top cable height in combination with a 440 ft (134 m) curve, a 29-in. (737-mm) top cable height was crash tested and provided acceptable results. Of course, it would seem reasonable to consider using a consistent top mounting height for all curved cable guardrail installations regardless of radii. Table 18. Summary of Safety Performance Evaluation Results

Evaluation Factors		Eva	luation Criteria		Test No. NYCC-1	Test No. NYCC-2	Test No. NYCC-3
Structural Adequacy	А.	. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.				U	S
	 D. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.3 and Appendix E of MASH. 					S	S
	F.	The vehicle should remain uprig and pitch angles are not to exceed	S	S	S		
Occupant	Н.	Occupant Impact Velocity (OIV calculation procedure) should sat	S	S	S		
Risk		Occupant Impact Velocity Limits					
		Component	Preferred	Maximum	_		
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)			
	I.	The Occupant Ridedown Accele MASH for calculation procedure	eration (ORA) (see Appen) should satisfy the follow	dix A, Section A5.3 of ng limits:			
		Occupant F	Ridedown Acceleration Lin	nits	S	S	S
		Component	Preferred	Maximum			
		Longitudinal and Lateral	15.0 g's	20.49 g's			
MASH Test Designation No.					Modified 3-11	Modified 3-11	Modified 3-11
	Pass/Fail						Pass
S – Sa	tisfac	tory U – Unsatisfactory	NA - Not Applicable			1	ــــــ ا

February 19, 2013 MwRSF Report No. TRP-03-263-12

REFERENCES

- 1. *Manual for Assessing Safety Hardware (MASH)*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 2. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 3. *Center of Gravity Test Code SAE J874 March 1981,* SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 4. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July, 2007.
- 5. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 6. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

11 APPENDICES

Appendix A. Vehicle Center of Gravity Determination

Test: NYCC-1	Vehicle:	2270P		
	Vehicle Co	G Determin	ation	
		Weight	Vert CG	Vert M
VEHICLE	Equipment	(lb)	(in.)	(lb-in.)
+	Unbalasted Truck (Curb)	5094	28.87094	147068.6
+	Brake receivers/wires	6	52	312
+	Brake Frame	5	25	125
+	Brake Cylinder (Nitrogen)	27	27	729
+	Strobe/Brake Battery	6	31	186
+	Hub	26	14.875	386.75
+	CG Plate (EDRs)	7.5	32	240
-	Battery	-42	40	-1680
-	Oil	-7	18	-126
-	Interior	-62	23	-1426
-	Fuel	-161	21	-3381
-	Coolant	-13	37	-481
-	Washer fluid	0	0	0
BALLAST	Water	120	21	2520
	DTS	17	30	510
	Misc.			0
				144983.3

Estimated Total Weight (lb) 5023.5 Vertical CG Location (in.) 28.86102

wheel base (in.)	140.25		
MASH Targets	Targets	Test Inertial	Difference
Test Inertial Weight (Ib)	5000 <u>+</u> 110	5023.5	23.5
Long CG (in.)	63 <u>+</u> 4	63.06	0.06249
Lat CG (in.)	NA	0.102232	NA
Vert CG (in.)	≥ 28	28.86	0.86102

Note: Long. CG is measured from front axle of test vehicle

Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side

CURB WEIGHT (Ib)			
	Left		Right
Front		1433	1386
Rear		1133	1142
FRONT		2819	lb
REAR		2275	lb
TOTAL		5094	lb

TEST INERTIAL WEIGHT (Ib)						
(from scales)						
	Left		Right	:		
Front		1481		1288		
Rear		1085		1166		
FRONT		2769	lb			
REAR		2251	lb			
TOTAL		5020	lb			

Figure A-1. Vehicle Mass Distribution, Test No. NYCC-1

Vehicle:	2270P		
Vehicle C	G Determin	ation	
	Weight	Vert CG	Vert M
Equipment	(lb)	(in.)	(lb-in.)
Unbalasted Truck (Curb)	5001	28.17057	140881
Brake receivers/wires	5	52.5	262.5
Brake Frame	5	26	130
Brake Cylinder (Nitrogen)	22	28	616
Strobe/Brake Battery	6	31	186
Hub	26	14.6875	381.875
CG Plate (EDRs)	7.5	31.5	236.25
Battery	-36	40	-1440
Oil	-8	19	-152
Interior	-60	23	-1380
Fuel	-149	19	-2831
Coolant	-20	35	-700
Washer fluid	-4	40.5	-162
Water	180	19	3420
DTS	17	29.5	501.5
Misc.			0
			139950.2
	Vehicle: Vehicle Co Equipment Unbalasted Truck (Curb) Brake receivers/wires Brake Frame Brake Cylinder (Nitrogen) Strobe/Brake Battery Hub CG Plate (EDRs) Battery Oil Interior Fuel Coolant Washer fluid Water DTS Misc.	Vehicle:2270PVehicle CG Determin WeightEquipment(lb)Unbalasted Truck (Curb)5001Brake receivers/wires5Brake Frame5Brake Cylinder (Nitrogen)22Strobe/Brake Battery6Hub26CG Plate (EDRs)7.5Battery-36Oil-8Interior-60Fuel-149Coolant-20Washer fluid-4Water180DTS17Misc.4000 5	Vehicle:2270PVehicle CG DeterminationEquipmentWeightVert CGUnbalasted Truck (Curb)500128.17057Brake receivers/wires552.5Brake Frame526Brake Cylinder (Nitrogen)2228Strobe/Brake Battery631Hub2614.6875CG Plate (EDRs)7.531.5Battery-3640Oil-819Interior-6023Fuel-14919Coolant-2035Washer fluid-440.5Water18019DTS1729.5Misc

Estimated Total Weight (lb) 4992.5 Vertical CG Location (in.) 28.03208

wheel base (in.)	140.25		
MASH Targets	Targets	Test Inertial	Difference
Test Inertial Weight (lb)	5000 <u>+</u> 110	4998	-2.0
Long CG (in.)	63 <u>+</u> 4	63.90	0.89541
Lat CG (in.)	NA	-1.01478	NA
Vert CG (in.) ≥	28	28.03	0.03208

Note: Long. CG is measured from front axle of test vehicle

Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side

CURB WEIGHT (Ib)				
	Left		Right	
Front		1407		1367
Rear		1154		1073
FRONT		2774	lb	
REAR	2227 lb			
TOTAL		5001	lb	

TEST INERTIAL WEIGHT (Ib)						
(from scales)						
	Left		Right			
Front		1423	1298			
Rear		1151	1126			
FRONT		2721	lb			
REAR	2277 lb					
TOTAL		4998	lb			

Figure A-2. Vehicle Mass Distribution, Test No. NYCC-2
Test: NYCC-3	Vehicle:	2270P										
	Vehicle CO	G Determin	ation									
		Weight	Vert CG	Vert M								
VEHICLE	Equipment	(lb)	(in.)	(lb-in.)								
+	Unbalasted Truck (Curb)	5134	28.90134	148379.5								
+	Brake receivers/wires	6	52.5	315								
+	Brake Frame	6	26	156								
+	Brake Cylinder (Nitrogen)	22	30	660								
+	Strobe/Brake Battery	6	32	192								
+	Hub	27	14.875	401.625								
+	CG Plate (EDRs)	8	32.5	260								
-	Battery	-46	39	-1794								
-	Oil	-11	16.5	-181.5								
-	Interior	-78	24	-1872								
-	Fuel	-154	17.5	-2695								
-	Coolant	-16	36	-576								
-	Washer fluid	-7	38	-266								
BALLAST	Water	86	15.5	1333								
	DTS	17	30	510								
	Misc.			0								
				144822.6								
			•									

Estimated Total Weight (lb) 5000 Vertical CG Location (in.) 28.96453

wheel base (in.)	140.5		
MASH Targets	Targets	Test Inertial	D
Test less tist \A/sight (lb)	- F000 440	4004	

MASH Targets	Targets	Test Inertial	Difference
Test Inertial Weight (lb)	5000 <u>+</u> 110	4994	-6.0
Long CG (in.)	63 <u>+</u> 4	61.95	-1.04946
Lat CG (in.)	NA	-0.04074	NA
Vert CG (in.)	≥ 28	28.96	0.96452

Note: Long. CG is measured from front axle of test vehicle

Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side

CURB WEIGHT (Ib)				
	Left		Right	
Front		1454		1430
Rear		1129		1121
FRONT		2884	lb	
REAR		2250	lb	
TOTAL		5134	lb	

TEST INERTIAL WEIGHT (Ib)											
(from scales)											
	Left	ft Right									
Front		1397	1395								
Rear		1103	1099								
FRONT		2792	lb								
REAR		2202	lb								
TOTAL		4994	lb								

Figure A-3. Vehicle Mass Distribution, Test No. NYCC-3

Appendix B. Material Specifications

	-	New York Curved Cable Syst	em, Test No. NYCC-1	-
ltem No.	QTY.	Description	Material Spec	Reference
a1	2	S3x5.7 27 3/16" long Anchor Post	A36 Galvanized Steel	11-0341
a2	24	Hooked Anchor Stud and Nut	AASHTO M314	110305-3
a3	6	ø 3/16" 5 1/4" Long Brass Rod	Brass	N/A
a4	36	ø 3/4" Plain Round Washer-OD 1.5"	Grade 2 Steel	10-0259-2
a5	2	S3x7.5 Anchor Post Stub	A36 Galvanized Steel	N/A
a6	4	Slip Impact Base	ASTM A36 Steel	11-0341
a7	2	4"x5" 28 Gauge Keeper Plate	Galvanized ASTM A36 Steel	11-0341
۵8	8	ø 1/2" x2 1/2" Long Bolt and Nut	AASHTO M291	(00026-2824-401)
a9	24	ø1/2" Narrow Washer-OD 1"	ASTM A153	H01476653
a10	2	3/4" Anchor Post Support Plate	_	11-0341
a11	2	Anchor Post Base	_	11-0341
b1	2	Anchor Bracket Plate	ASTM A709M Grade 250	11-0341
b2	4	1/2" Thick External Stiffener	ASTM A709M Grade 250	11-0341
b3	2	ø 1/4"x15" Brass Rod	Brass	N/A
b4	4	1/4" Thick Internal Stiffener	ASTM A709M Grade 250	11-0341
b5	2	Anchor Angle Middle Plate	ASTM A709M Grade 250	11-0341
b6	2	Cable Plate	ASTM A709M Grade 250	11-0341
c1	6	Cable End Fitting	ASTM A27	110305-2
c2	6	ø 3/4" Plain Round Washer-OD 2"	Grade 2	110305-3
c3	3	Compensating Cable End Assembly	ASTM A27	110305-1
c4	38	S3x5.7 63 in. long Line Post	A36 Galvanized Steel	Blue Paint
c5	114	Cable Hook Bolt	Grade A307	Black Paint
c6	3	ø 3/4" Cable Approx. 392'	AASHTO M30 Type 1 Class A	C4
c7	38	2'x8"x0.25" Soil Plate	A36 Galvanized Steel	11-0314
d1	2	Concrete Anchor Block	3000 psi Compressive Strength	NYCC-1_anchor
d2	12	#3 Rebar 32.5" long	Grade 60	10-0151-4
d3	12	#3 Rebar 44.5" long	Grade 60	10-0151-4
d4	16	#3 Rebar 33" long	Grade 60	10-0151-4

Figure B-1. Bill of Materials, Test No. NYCC-1

New York Curved Cable System, Test No. NYCC-2

Item	οτγ	Description	Material Spec	Reference
	2	$53x5.7.27.3/16^{\circ}$ long	ASTM A36 Galvanized	12.002(()55)
a?	24	Hooked Anchor J-Bolt and	ASTM A36 and ASTM A=563 DH	12-0036(RED)
a3	6	$\sigma 3/16" 5 1/4" long$	Brass	110305-3 (BLUE PAINT)
- 40		Ø 3/4" Plain Round		12-0036 (RED SHARPIE)
a4	36	Washer-OD 1.5"	Grade 2 Galvanized	110305-2(NO PAINT, BLUE)/ 12- 0034(RED)
a5	2	S3x7.5 Anchor Post Stub	ASTM A36 Galvanized	12-0038
a6	4	Slip Impact Base	ASTM A36 Galvanized	12-0036/12-0038
a7	2	4"x5" 28 Gauge Keeper	ASTM A36 Galvanized	12-0036
a8	8	ø 1/2" x2 1/2" Long Bolt	Grade 2 Galvanized	12-0036
a9	24	ø 1/2" Narrow Washer-OD	Grade 2 Galvanized	12-0036
a10	2	3/4" Anchor Post Support Plate	A707 Grade 36 Galvanized	12-0038
a11	2	Anchor Post Base	A709 Grade 36 Galvanized	12-0038
b1	2	Anchor Bracket Plate	ASTM A709 Grade 36 Galvanized	11-0341
b2	4	1/2" Thick External Stiffener	ASTM A709 Grade 36 Galvanized	11-0341
b3	2	ø 1/4"x15" Brass Rod	Brass	BLACK SHARPIE
b4	4	1/4" Thick Internal Stiffener	ASTM A709 Grade 36 Galvanized	11-0341
b5	2	Anchor Angle Middle Plate	ASTM A709 Grade 36 Galvanized	11-0341
b6	2	Cable Plate	ASTM A709 Grade 36 Galvanized	11-0341
c1	6	Cable End Fitting	ASTM A27 Galvanized	11-0305(BLUE)/12-0034 (RED)
c2	6	ø 3/4" Plain Round	Grade 2 Galvanized	11-0305(BLUE)/12-0034 (RED)
c3	3	Compensating Cable End Assembly	ASTM A27 Galvanized	11-0305(BLUE)/12-0034 (RED)
c4	38	S3x5.7 63 in. long Line	ASTM A36 Galvanized	11-0341(BLUE)/12-0036 (RED)
- 5	114	Cable Healt Balt and Nuta	ASTM F568 Class 4.6 and Grade A307	
65	114	Cable Hook Bolt and Nuts	Galvanized	BLACK PAINT
c6	1	ø 3/4" Cable Approx. 392'	AASHTO M30 Type 1 Class A	
-7	70			C4-RED/ C5-YELLOW, BLACK
	50	Caparata Anahar Plack	ASTM ASO Galvarizea	11-0341(BLUE)/12-0036 (RED)
	2 10	UZ Dahar ZO 5" Lang	Successive Strength	N/A
	12	#3 Rebar 44.5" long		N/A
	12	#J Rebar 44.5 long		N/A
a4	10	#3 Rebar 33 long		N/A
	1Z 7			12-0034
e∠	3		IN/A	
_		SUL	350	6222011

Figure B-2. Bill of Materials, Test No. NYCC-2

New	York	Curved	Cable	Svstem.	Test	No.	NYCC-3

14		Deceriation	Matarial Saca	Defenses
Item			Material Spec	Reference
<u>a1</u>	2	53x5.7 27 3/16 long	ASIM A36 Galvanized	12-0240 (sticker labeled)
a2	24	Hooked Anchor J-Bolt	ASIM A36 and ASIM A-563 DH	BLUE PAINT
a3	6	Ø 3/16" 5 1/4" Long	Brass	RED SHARPIE
a4	36	ø 3/4" Plain Round	Grade 2 Galvanized	H#8270027(NO PAINT,
		Washer-OD 1.5"		BLUE)/12-0034(RED)
a5	2	S3x7.5 Anchor Post Stub	ASTM A36 Galvanized	12-0038
a6	4	Slip Impact Base	ASTM A36 Galvanized	12-0240/12-0038
a7	2	4"x5" 28 Gauge Keeper	ASTM A36 Galvanized	12-0036
a8	8	ø 1/2" x2 1/2" Long	Grade 2 Galvanized	12-0036
a9	24	ø 1/2" Narrow Washer—	Grade 2 Galvanized	12-0036
~10	0	3/4" Anchor Post Support	AZOZ Crada 36 Calvanizad	
	2	Plate	A707 Grade 58 Galvalized	12-0240
a11	2	Anchor Post Base	A709 Grade 36 Galvanized	12-0038
b1	2	Anchor Bracket Plate	ASTM A709 Grade 36 Galvanized	11-0341
		1/2" Thick External		
b2	4	Stiffener	ASIM A709 Grade 36 Galvanized	11-0341
b3	2	ø 1/4"x15" Brass Rod	Brass	RI ACK SHARPIE
		1/4" Thick Internal		
b4	4	Stiffener	ASTM A709 Grade 36 Galvanized	11 0241
				11-0341
b5	2	Anchor Angle Middle Plate	ASTM A709 Grade 36 Galvanized	11 0241
b6	2	Cable Plate	ASTM A709 Grade 36 Galvanized	11-0341
 	6	Cable End Fitting	ASTM A27 Galvanized	11-0341
c2	6	$\sigma 3/4$ " Plain Round	Grade 2 Galvanized	11-0305(BLUE)/12-0034 (RED)
		Compensating Cable End		11-0305(BLUE)/12-0034 (RED)
cЗ	3	Assombly	ASTM A27 Galvanized	
	70	Assembly	ASTM A36 Calvanized	11-0305(BLUE)/12-0034 (RED)
64	50	SSXS:7 85 III: Iong Eine	ASTM ASO GUIVAIIIZEd	11-0341(BLUE)/12-0036 (RED)
c5	114	Cable Hook Bolt and Nuts	ASIM F368 Class 4.6 and Grade	
				BLACK PAINT
c6	1	Ø 3/4 Cable Approx.	AASHTO MOU Type T Class A	
		392	Galvanized	C4-RED/ C5-YELLOW, BLACK
c7	38	2'x8"x0.25" Soil Plate	ASTM A36 Galvanized	11-0341(BLUE)/12-0036 (RED)
d1	2	Concrete Anchor Block	3000 psi Compressive Strength	N/A
d2	12	#3 Rebar 32.5" long	Grade 60	N/A
d3	12	#3 Rebar 44.5" long	Grade 60	N/A
d4	16	#3 Rebar 33" long	Grade 60	N/A
e1	12	Cable Wedge	ASTM A47 Grade 32510	12-0034
e2	3	50,000-lb Load Cell	N/A	N/A
	1	SOIL	350	6222011

Figure B-3. Bill of Materials, Test No. NYCC-3

BEK 1881 1 VAN B TEL (4 TELEX	AERT COI BEKAERT DRIV UREN, AR 729 79)474-5211 537439	RPORATION ¹² ¹⁵⁶ FAX (479) 474-	Van Bur	en,Arka	DATE: 06/01/2011
Custo Our O Produc Custo	mer Mi rder No 40 ct 3/ mer Part No	dwest Machinery 60170474 003 4" 3X7 GUIDERAII	& Supply Com LO L 2,000'RLS	Customer 6	Customer Order No 11-0519-3 Qty 16 Carriers
Finished Tag#	Breaking Strength	Lay Length	Adherence	Steel Ductility	Spec NO ASIM A-741 - 98
95814119	(1bs.) 44495	(in.) 7.2	Pass	Pass	
95814180	44495	7.2	Pass	Pass	
95814191	44528	6.3	Pass	Pass	
95814208	44528	6.3	Pass	Pass	
95814225	44528	6.3	Pass	Pass	
95814277	44545	- 5.94	Pass	Pass	
95814285	44545	5.94	Pass	Pass	
95814330	44545	5.94	Pass	Pass	
95814602	44490	6.2	Pass	Pass	
95814605	44490	6.2	Pagg	Page	
95814606	44490	6.2	Pagg	Page	Tanta menut
95814637	44352	6.2	Daed	Page	×.
95814896	44352	5.2	Page	Page	
05014000	44332	6.2	Pass	Pass	
35014097	44310	6.74	Pass	Pass	
95814901	44318	6.74	Pass	Pass	
95814913	44318	6.74	Pass	Pass	
		States and			
		Sin 1 mg			
				-	
Material W The unders as contain	was melted and signed certifined in the real	d made in the U. ies that the res cords of this Co	S.A. sults are actua prporation.	l results a	nd conform to the specification indicated
14	v/.				
IN TH	E //-1	1-11			×
Illand	new 1 m	your			
Quality Er	ngineer	•	Notary	Public	Commission Expires

Figure B-4. Cable, Test Nos. NYCC-1 through NYCC-3

		-		
סדד		Cer	Van Bur	of Quality
1881 E 1881 E N BU	EKAERT DRIVE	6 FDX (479) 474-	9075	DATE: 06/01/2011
TELEX	537439	FAA(4/5)4/4-	3075	
Custom Our Or Produc	ner Midw der No 4060	vest Machinery 0170474 001 3X7 GUIDERAII	& Supply Com LO 2.000'RLS	Customer Order No 11-0519-3 Qty 16 Carriers
Custon MFG SM	ner Part No MP No AST	043SE10S02000		Customer Spec No ASTM A-741 - 98
Finished	Breaking	Lay	Adherence	Steel
Tag#	Strength	Length	Appearance	Ductility
95814119	44495	7.2	Pass	Pass
95814180	44495	7.2	Pass	Pass
95814191	44528	6.3	Pass	Pass
95814208	44528	6.3	Pass	Pass
95814225	44528	6.3	Pass	Pass
95814277	44545	5.94	Pass	Pass
95814285	44545	5.94	Pass	Pass
95814330	44545	5.94	Pass	Pass
95814602	44490	6.2	Pass	Pass
95814605	44490	6.2	Pass	Pass
95814637	44490	6.2	Page	Page
95814896	44352	6.2	Pass	Pass
95814897	44318	6.74	Pass	Pass
95814901>	44318	6.74	Pass	Pass
95814913	44318	6.74	Pass	Pass
Material w The unders as contain	vas melted and signed certifie med in the reco	made in the U. es that the resords of this Co	S.A. sults are actua prporation.	al results and conform to the specification indicated
A4	17.			
ttall	Frenc Phil	Atta		
Quality En	igineer		Notary	Y Public Commission Expires
		2		
<u></u>				

Figure B-5. Cable, Test Nos. NYCC-2 and NYCC-3

2/ 6

VETT BOLT WORKS, INC.

12 Elbridge Street P.O. Box 922 Jordan, New York 13080

PH 315-689-3981 FX 315-689-3999

CERTIFICATION OF COMPLIANCE

MIDWEST MACHINERY & SUPPLY Customer:

PO BOX 703 MILFORD, NE 68405

We certify that our system and procedures for the control of quality assures that all items furnished on the order will meet applicable tests, process requirements, and inspection requirements as required by the purchase order and applicable specifications.

Customer PO No.: · 2376

Date Shipped: . 10/4/10

Invoice No.: . 5019565

Purchase Date: . 9/23/10

QUANTITY DESCRIPTION

1800 - 5/16 X 2 HOOK BOLT W/ HVY HEX NUT MG (MFG- RIVES MFG #1001360/10043190, GALV.- MECH GALV PLATING, TELEFAST IND #019317-1-76883, GALV.- MECH GALV PLATING) 84 - CG184N-H (SEE ATTACHED) 39 - CG197-H (SEE ATTACHED) 45 - CG177N-H (SEE ATTACHED) 14 - CG1241-H (SEE ATTACHED)

All products were melted and manufactured in the U.S.A. This material is in compliance with domesticity requirements, and conforms to ASTM & AASHTO specifications for standardized highway parrier rail and hardware.

generilcourse SUPERVISOR QUALITY ASSURANCE DATE : 10/5/10

Figure B-6. Compensating Cable Assembly, Test Nos. NYCC-1 through NYCC-3

3/ 6

BENNETT BOLT WORKS, INC.

12 Elbridge Street P.O. Box 922 Jordan, New York 13080

PH 315-689-3981 FX 315-689-3999

CG184N-H NEW CABLE END ASSEMBLY W/ 11" STUD MEETS 25,000# TEST

- 1 EA 3/4"OD X 11" FLATTENED STUD HDG A153 CLASS C THD 2 1/4"RH X 6 1/2"RH - MATERIAL - AISI 1045 MADE BY NUCOR STEEL #AU0810878A GALVANIZED BY UNIVERSAL GALV.
- 1 EA 3/4 X 5 3/4 CASTING PART # BBW-T HDG A153 CLASS A MATERIAL - ASTM A220 GRADE 500005 MALLEABLE IRON MADE BY BUCK CO. #8X1 GALVANIZED BY V & S GALV.
- 1 EA 7/8 X 1 7/8 X 9/32 WEDGE PART # W 1 MATERIAL - ASTM A47 GRADE 32510 MALLEABLE IRON MADE BY BUCK CO #5W6
- 1 EA 3/4-10 A563 GR DH HVY HEX NUT HDG A153 CLASS C MADE BY UNYTITE #NT421 GALVANIZED BY ROGERS BROTHERS GALV.
- 1 EA 3/4 X 2 1/2 X 3/16 ROUND WASHER HDG A153 CLASS C MATERIAL - ASTM A36 MADE BY ALLOWAY STAMPING #64474 GALVANIZED BY V & S GALV.
- 2 EA 3/4 F844 USS FW HDG A153 CLASS C MADE BY PRESTIGE STAMPING #C1952 GALVANIZED BY ROGERS BROTHERS GALV.

ALL PRODUCTS WERE MELTED AND MANUFACTURED IN THE U.S.A.

intance ames de MANAGER QUALITY ASSURANCE

Figure B-7. Compensating Cable Assembly Cont., Test Nos. NYCC-1 through NYCC-3

4/ 6

BENNETT BOLT WORKS, INC.

12 Elbridge Street .P.O. Box 922 Jordan, New York 13080

PH 315-689-3981 FX 315-689-3999

CG197-H ASSEMBLY BRIDGE ANCHOR MEETS - 25,000# TEST

- 1 EA 3/4"OD X 18" FLATTENED STUD HDG A153 CLASS C THD 7 1/2"RH X 7"RH - MATERIAL - AISI 1045 MADE BY NUCOR STEEL #AU08108178A GALVANIZED BY UNIVERSAL GALV.
- 1 EA 3/4"OD X 11" FLATTENED STUD HDG A153 CLASS C THD 2 1/4"RH X 6 1/2"LH - MATERIAL - AISI 1045 MADE BY NUCOR STEEL #AU08108178A GALVANIZED BY UNIVERSAL GALV, & V & S GALV.
- 1 EA 7/8 X 1 7/8 X 9/32 WEDGE PART # W 1 MATERIAL - ASTM A47 GRADE 32510 MALLEABLE IRON MADE BY BUCK CO #5W6
- 2 EA 3/4-10 A563 GR DH HVY HEX NUT HDG A153 CLASS C MADE BY UNYTITE # NT421 GALVANIZED BY ROGERS BROTHERS GALV.
- 1 EA 3/4-10 X 12 TURNBUCKLE BODY ONLY HDG A153 CLASS C MATERIAL - ASTM F1145/AASHTO M269-96(2000) FF-T 79 LBS MADE BY EDWARD DANIELS #907863 GALVANIZED BY ART GALV.

ALL PRODUCTS WERE MELTED AND MANUFACTURED IN THE U.S.A.

MANAGER QUALITY ASSURANCE

Figure B-8. Compensating Cable Assembly Cont., Test Nos. NYCC-1 through NYCC-3

5/ 6

BENNETT BOLT WORKS, INC.

12 Elbridge Street P.O. Box 922 PH 315-689-3981 Jordan, New York 13080 FX 315-689-3999 CG177N-H NEW SPRING COMPENSATOR W/ 11" STUD MEETS 25,000# TEST 1 EA 3/4"OD X 11" FLATTENED STUD HDG A153 CLASS C THD 2 1/4"RH X 6 1/2"RH - MATERIAL -AISI 1045 MADE BY NUCOR STEEL #AU08108178A GALVANIZED BY V & S GALV. 3/4"OD X 25" FLATTENED STUD HDG A153 CLASS C 1 EA THD 2 1/4"RH X 6 1/2"LH - MATERIAL AISI 1045 MADE BY NUCOR STEEL #AU08108178A GALVANIZED BY V & S GALV. 2 EA 7/8 X 1 7/8 ¥ 9/32 WEDGE PART # W 1 MATERIAL - ASTM A47 GRADE 32510 MALLEABLE IRON MADE BY BUCK CO. #5W6 2 5/16 X 23 3/4 CASTING PART # BBW-9 HDG A153 CLASS A 1 EA MATERIAL - ASTHA47 GRADE 32510 MALLEABLE IRON MADE BY BUCK CO #9X1/9X2 GALVANIZED BY V & S GALV. 3/4-10 X 12 TURNBUCKLE BODY ONLY HDG A153 CLASS C 1 EA MATERIAL - ASTM F1144/AASHTO -M269-96(2000) FF-T 79 LBS MADE BY EDWARD DANIELS #907683 GALVANIZED BY ART GALV. 1 EA 1 X 1 1/4 X 4 1/2 SPRING BLOCK FOR CABLE END HDG A153 CLASS C MATERIAL - ASTM A36 / MADE BY RYERSON STEEL #5020523 GALVANIZED BY V & S GALV. 2 5/16 X 14 SPRING FOR CABLE END HDG A153 CLASS C 1 EA MATERIAL - ASTM A304-02/ASTM A689-97 MADE BY DUER CAROLINA COIL #AU0910008201 GALVANIZED BY V & S GALV. 3/4 F844 USS FW HDG A153 CLASS C 1 EA MADE BY PRESTIGE STAMPING #C1952 GALVANIZED BY ROGERS BROTHERS GALV. 3/4 X 5 3/4 CASTING PART #BBW-T HDG A153 CLASS A 1 EA MATERIAL - ASTM A220 GRADE 5000005 MALLEABLE IRON MADE BY BUCK CO #8X1 / GALVANIZED BY V & S GALV. ALL PRODUCTS WERE MELTED AND MANUFACTURED IN THE U.S.A. James dimenteaning MANAGER QUALITY ASSURANCE

Figure B-9. Compensating Cable Assembly Cont., Test Nos. NYCC-1 through NYCC-3

Chemical and Physical Test Report Made and Melted In USA

G-160885

Page 4 of 5

SHIP TO SIOUX CITY FOUNDRY INC 801 DIVISION STREET 800-831-0874 SIOUX CITY, IA 51102							.4	INVOICE TO SHI SIOUX CITY FOUNDRY INC 09/1 ACCTS PAYABLE 09/1 PO BOX 3067 CU: SIOUX CITY, IA 51102 600									SHIP 09/10 CUS 6004	HIP DATE 9/16/10 :UST. ACCOUNT NO 0044062										
	RODUCED	IN: CAI	RTER	SVILL	E																							
1	SHAPE + SIZE			GRAD	E	SPEC	FICATH	NIC													SA	LES OF	IDER		CUST P.	O: NUN	BER	
1	W3 X 5.7# S-BE	AM		A5725	0/992	ASTM	A572 G	R50-07	ASTM	A992 -0	AA, AS	TM A709	GR50-	-09A							009	0096209-01			127098W-01			
Ì	HEAT I.D.		C	Mn	Ρ	S	SI	Cu	Ni	Cr	Mo	V	Nb	B	N	Sn	AI	TI	Ca	Zn	C Eqv		10			12		
1	G104601		.15	.92	.012	.020	20	.30	.09	.03	.022	.016	.002	.0002	.0088	.011	.001	.00100	00070	.00630	.38					-		
	Mechanical Test Customer Requir Comment NO V	Yie rements (WELD RE	CASTIN	00 PSI, NG: STF	370.25 RAND C	MPA AST MED. S	Tensile: TEEL N	72400 I	OSED 1	O MER	N %EI	: 19.9/8	in, 19.9	/200MM												_		
1	PRODUÇED	IN: CAI	RTER	SVILL	.E							_														_		
[SHAPE + SIZE			GRAD	Ë	SPEC	FICATI	NC													SA	SALES ORDER LOUST P.O. NUMBER						
1	W10 X 19#			A5725	0/992	ASTM	A572 G	R50-07	ASTM	A992 -0	06A, AS	TM A709	GR50-	09A	-						009	0096209~08 (127098W-08)						
-[HEAT I.D.	-	C	Mn	P	S	Si	Cu	Ni	Cr	Mo	V	Nb	8	N	Sn	AI	Ti	Ca	Zn	C Eqv				-	V		
1	G105180		.08	1.10	.014	.021	.27	.29	.10	.05	.021	.026	.002	.0003	,0100	009	001	.00200	00140	,00480	.355				_			
	Mechanical Test: Customer Requir Comment NO V Mechanical Test: Customer Requir Comment NO V	Vie NELD RE Vie rements (NELD RE	CASTIN PAIRN NO 574 CASTIN PAIRN	NG: STF IENT PE 00 PSI. NG: STF IENT PE	395.21 SAND C SRFORI 395.76 SAND C SRFORI	MPA MED. S MPA AST MED. S	TEEL N Tensile: TEEL N	71900 I 71900 I 201 EXP	DSED 1 DSED 1 DSI, 495 DSED 1	O MERI	CURY. A %EI CURY.	25.2/8	in, 21.0	200MM														
	Customer Not NO WELD R All manufacturing comples with EN Maga Seller warrants th	tes EPAIRME process 110204 3.	ENT PE es inclu 1B	REORM	AED. S elt and d Br Qi Gi shall co	TEEL N aast, occ aaskar Y aality Dir ardau Ar amply w	DT EXP urred in alamance ector neristee th speci	DSED T USA. M chili	O MER TR subject	CURY.	ard pub	lished m	THE AS C		FIGURE NED IN T	IS ARE HE PEP		IED EXTR	RACTS RDS C	FROM 1 F COMP Metallu CARTE	HE OR ANY. Ingical S RSVILL	IGINAL ervices LE STEI	CHEM Manag EL MILL ARE N	ICAL er	AND PHY BY THE	SICAL	TEST RECO	

Sected, and SPECIFICALLY EXCLUDED ARE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. In no event shall seller be liable for indirect, consequential or punitive damages arising out of or related to the materials furnished by seller. Any claim for damages for materials that do not conform to specifications must be made from buyer to seller immediately after delivery of same in order to allow the seller the opportunity to inspect the material in guestion.

Figure B-10. Line Post, Test Nos. NYCC-1 through NYCC-3

April 7, 2011

Midwest Roadside Safe / UNL 4800 NW 35th St Lincoln, NE 68524

Re: Galvanized Structural Steel Mil Certification

The following information is the criteria for determining the mil certification in accordance with ASTM 123-89a. Reference tables 1 and 2.

Steel Category:StructuralSize:¼" or overThickness Grade:100Mils Required:3.9

PO-Load 4-4-11

Mil ReadingsEnd4.2Middle4.4End4.7AVERAGE4.4

Should you have questions concerning the mil certifications or other matters please contact me at 1-800-345-6825, ext. 6885.

Sincerely,

adam M. Mara

Adam Brovont Operations Manager

> Coatings Division Valmont Industries, Inc. 7002 North 288th Street P.O. Box 358 Valley, Nebraska 68064-0358 USA 402-359-2201 www.valmont.com

Figure B-11. Line Post Galvanization, Test No. NYCC-1

Page 4 of 6

G-167153

Chemical and Physical Test Report Made and Melted In USA

SHIP TO	INVOICE TO	SHIP DATE	
SIOUX CITY FOUNDRY INC	SIOUX CITY FOUNDRY INC	01/08/11	
800-831-0874	PO BOX 3067	CUST. ACCOUNT NO	
SIOUX CITY, IA 51102	SIOUX CITY, IA 51102	60044062	

PRODUCED IN: CARTERSVILLE

SHAPE + SIZE		GRAD	E	SPEC	FICATIO	N													SAL	LESOF	RDER	CL	IST P.O	NUMBE	ER .
F1/2 X 8		A36		ASTM	A36-08	. ASTM	A529 G1	950-05	SA-36	08,AST	M A709	GR36-0	9A						108	8504-0	03	13	0767W-	03	
HEAT I.D.	C	Mri	P	S	Si	Cu	Ni	Cr	Mo	V	No	В	N	Sn	AI	Ti	Ca	Zn	C Eqv						
G107094	16	88	014	.027	19	.28	10	.06	.024	.016	.001	0003	.0090	.011	.000	.00100	.00020	.00320	.38						

Mechanical Test: Yield 52200 PSI, 359.91 MPA Tensile, 73400 PSI, 506 08 MPA *eEI; 22.5/8in, 22.5/200MM

Customer Requirements CASTING, STRAND CAST

Comment NO WELD REPAIRMENT PERFORMED STEEL NOT EXPOSED TO MERCURY.

Machanical Test. Yield 51000 PSI. 351.63 MPA Tensile: 71900 PSI. 495.73 MPA %EI. 22.0/8in, 22.0/200MM

Customer Requirements CASTING: STRAND CAST

Comment NO WELD REPAIRMENT PERFORMED. STEEL NOT EXPOSED TO MERCURY.

PRODUCED IN: CARTERSVILLE

SHAPE + SIZE		GRAD	E	SPEC	FICATI	ON											-		SA	LES OF	RDER	CU	JST P.C). NUMBE	R
F1/4 X 8		ABE		ASTM	A36-08	ASTM	A529 G	R50-05	. SA-36	08,AST	M A709	GR36-0	AP						10	88504-	01	13/	0767W	-01	
HEATT.D.	C	Mo	P	S	SI	Cu	Ni	Cr	Mo	V	No	B	N	Sn	AI	Ti	Ca	Zn	C Eqv	1					
G107118	14	.95	014	.030	.23	.33	.09	.07	.030	016	< 008	.0002	.0119	.012	.001	.00100	00070	.00360	.38						

Mechanical Test: Yield 54800 PSI. 377.83 MPA Tensile. 74900 PSI. 516.42 MPA %EI: 22.4/8in. 22.4/200MM

Customer Requirements CASTING, STRAND CAST

Comment NO WELD REPAIRMENT PERFORMED. STEEL NOT EXPOSED TO MERCURY.

Mechanical Test: Yield 54500 PSI. 375 76 MPA Tensile: 75300 PSI, 519.18 MPA %EI. 21.6/8in, 21.6/200MM

Customer Requirements CASTING: STRAND CAST

hackon

Comment NO WELD REPAIRMENT PERFORMED. STEEL NOT EXPOSED TO MERCURY.

Customer Notes

18

NO WELD REPAIRMENT PERFORMED. STEEL NOT EXPOSED TO MERCURY.

All manufacturing processes including melt and cast, occurred in USA, MTR complies with EN10204.3.18

Bhaskar Yalamanchili

Ouality Director Gercau Ameristee:

4 shas

PERMANENT RECORDS OF COMPANY.

Metallurgical Services Manager CARTERSVILLE STEEL MILL

THE ABOVE FIGURES ARE CERTIFIED CHEMICAL AND PHYSICAL TEST RECORDS AS CONTAINED IN THE

Seller warrants in at all marenal turnished shall comply with specifications subject to standard published manufacturing variations. NO OTHER WARRANTIES, EXPRESSED OR IMPLIED, ARE MADE BY THE SELLER, AND SPECIFICALLY EXCLUDED ARE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

In no event shall selier be liable to indirect, consequential or punitive damages arising out of or related to the materials furnished by seller

Any claim to: pamages to: materials that do not conform to specifications must be made from buyer to seller immediately after delivery of same in order to allow the seller the opportunity to inspect the material in question

Figure B-12. Line Post Soil Plate, Test Nos. NYCC-1 through NYCC-3

Ő6-	13-11;02:42PM;Bennett-Bolt-Works	Midwest Machinery	;3156893999	# 13/ 28
•	Rives Manufacturing, Ind 4000 Rives Eaton Road • RO. Box 98 Telephone (\$17)569-3380 - Facsimile (\$17 Cold Headed Wire Parts	C. • Rives Junction, MI 49277-0098 7/969-2103	NYCE System 12-0019 11-0019 11-2111	Painck Spray
	3/10/10		M PR KOES	
	To whom it may concern; Please consider this letter verification that produced for Bennett Bolt PO #6006477, <u>h</u> of the manufacturing process. If you have any questions, please feel free quality@rivesmfg.com.	production for Bennett Bolt # as been manufactured in the to contact me at 517-569-338	#15250 (RM1 #050250), <u>Upited States at all levels</u> 30 ext 215 or via email at	
	Respectfully;			
	Multurel Still Richard Stahl President-RMI			
•	9001 9001			
-				

asto	MER		CUSTOMER PART NUMBER	Dim	RMI MUMBER	ts L
BEI	NNETT BOLT WORKS, I	NC.	DADE HANNE	15250	#0	50250
RIV	ES MANUFACTURING, I	NC.	PARI MARE	HOOP	BOLT	
TEM	DIMENSION/SPEC	FICATION	SUPPL	ER MEASUREMENT RESULTS		OK
1.	500 Lb. Min. Pull Test		1) 725	2) 705		
	MATERIAL PO No .:	#19726 - #20110	0 - #20121			
	MATERIAL HEAT No .:	10001360 & 1004	3190		· · · · · · · · · · · · · · · · · · ·	
			NOTES			
			OLIANTITY:	461 731		
	· · · · ·		DATE SHIPPED:	3/5/2010		
			TEST DATE:	3/5/2010		
1. http://www.com	n second a train	· · · · ·		-,-,		
-						
-	122-				ene anne annest an	
						-
	1				· · · · · · · · · · · · · · · · · · ·	
	1					
	19845					
-						
						-
					<u>>.</u>	
						_
_						
-		l				DATE
		BIONATURE	11	QA Mar.		

Figure B-14. Cable Hook Bolt Cont., Test Nos. NYCC-1 through NYCC-3

Page 5 of 9

SHIP T SIOUX 801 DI 800-83 SIOUX	CITY FOUND VISION STRE 31-0874 CCITY, IA 51	DRY INC	0			INVOID SIOUX ACCTS PO BO SIOUX	CE TO CITY F S PAYAE X 3067 CITY, I/	OUNDE BLE A 5110	RY INC						SHIP 11/08 CUS1 60044	DATE /10 7. ACCO	TNUC	NO						
PROD	UCED IN: C	ARTER	SVILLE	Lepecieica	TICAL			_		_	NUN -						Tex	100	DED.	Leur	TRO			_
WAXE	- SIZE	-	A57250/992	ASTM A57	0960-07 4	STM A992	-054 4	STM A7	09 G850	ARO				-		-	012	Dagen_	IDEN 15	120	309W_0	S S	HH I	_
HEAT	D	1 0	Mo P	IS S	Cu I	NIC	I Mo	IV	Nb	B	N	Sn	AI	TI	Ca	Zo	CEgy		1	1.2.6	1	-	-	-
G10450	28	14	91 012	020 2	30	09 0	5 .022	016	6 002	0003	.0100	010	.002	.00100	.00030	00710	374	-			-			-
ROD	UCED IN: C	ARTER	SVILLE	SPECIFICA	TION	CO FO ME								-	_	-	SAL	ESO	CER	Leus	TPO	NUMP	R	_
W3 X 5	+ SIZE		A57250/992	ASTM AST	GR50-07. A	STM A992	-064. 45	STM A7	09 GR50	APO				_	_		012	13380-1	UEH 16	129	309W-0	NUMBI 5	EH	_
HEATI	0	C	Mn P	8 5	Cu	NI CI	Mo	V	Nb	9	N	Sn	Al	n	Ca	Zn	CEqv	_				-		-
Custome Comme Mechan Custome	er Requirement int NO WELD lical Test: er Requirement int NO WELD	S CASTI REPAIRS Yield 530 S CASTI REPAIRS	NG: STRAND C IENT PERFOR 500 PSI, 370.94 NG: STRAND C IENT PERFOR	AST MED. STEEL MPA Tons AST MED. STEFL	NOT EXPOS	ED TO ME 508.14 M	RCURY	El: 21.3/	Vðin, 21.3	3/200MM	i.													
Custor NO All man complie	mer Notes WELD REPAIR Liscouring proces s with EN10204	MENT PA Stes Incl 3.18	ERFORMED. S uding meti and Bi	TEEL NOT ED cast, occurred hasker Yalam uality Director ordau Amensi	KPOSED TO Lin USA MTF anchal est	VERCURY	t.		THE	ABOVE CONTAR	FIGURE NED IN TI	s ARE O HE PER		IED EXTI	RACTS RDS OF	FROM T COMP Metallu CARTE	HE ORI ANY rgicat Si RSVILL	IGINAL DIVICES E STE	CHEMIC Manager EL MILL	CAL AND	PHYSIC	AL TE	STREC	ORD
Seller w SELLEP In no ev Any class	arranis that all n P. AND SPECIFI rent shall seller t m for damages	naterial fr ICALLY E be liable I for mater	umished shall o EXCLUDED ARI for indirect, cons rais lihat do not i	omply with spi E WARRANTI sequential or p conform to spi	ecilications su ES OF MERC unifive dama ecilications m	bject to sta HANTABI es arising st be mad	Indard pul LITY AND out of or i e from bu	blished (FITNE) related t	manufact SS FOR to the ma setter imm	turing val A PARTI tenato lu eciately	iations. N CULAR P mished b after deliv	O OTH URPOS y sellor ery of si	ER WAS IE. ame in d	RRANTIE	S, EXP	RESSED	OR IM	PLIED,	ARE MA	DE BY T	HE rial in			

Chemical and Physical Test Report Made and Melted In USA

Figure B-15. Cable Anchor Assembly, Test Nos. NYCC-1 through NYCC-3

Page 3 of 4

Chemical and Physical Test Report MADE IN UNITED STATES

V-688543

SHIP TO SIGUX CITY FOUNDRY IN 801 DIVISION STREET 800–831–0874 SIGUX CITY, IA 51102	IC.				IN SK AC PC SK	VOICE DUX CI CTS PA DOX S DUX CI	TO TY FOU AYABLI 1067 TY, IA 5	UNDRY E	INC						SHIP 01/19 CUST 60044	DATE /11 . ACC	DUNT	NO					
RODUCED IN: JACKS	ON TN																						-
SHAPE + GIZE	GRADE		SPECIFICAT	ON	-	112											SA	ES OF	ADER	C	JST P.O.	NUMBER	
2X2X3/6	138		ASTM A36-0	8; ASME	SA-36-	09 ASI	M A709	-36-08				-	-	-			012	7748-	01	12	9665W-(1	
IEAT I.D. C	Mn	PV	S Si	Cu	M	Gr	ma	V	Nb	0	N	Sn	AI	Ti	Zr	Ca	C Eqv						
/910076 .14	60	022	1034 .19	35	12	18	.034	.005	001	0006	0098	.011	.002	09160	.000	00000	342		1				
techanical Test. Yield 5 techanical Test: Yield 4	0870 PSI, 3 9500 PSI, 3	50.74 M	APA Tensile MPA Tensile	70460 F	PSI, 485 PSI, 479	B MPA 53 MPA	%E):	2.0/811, 34.5/8in	34.5	MMC05	Def HT Def H	0, 0MM	A %3/ M %	n ol un ol	Red R 3 Red R	37.75 37.75				1	·		
RODUCED IN: JACKS	ON TN																						
SHAPE + SIZE	GRADE		SPECIFICAT	ION		_						-					SA	ES OF	IDER	CL	JST P.O.	NUMBER.	
F3/8 X-2	A36		ASTM A38-0	8, ASME	SA-36-	08; AST	M A709-	36-08, 1	C.S.A	G40.21-	98 44W		_				100	3457-4	01	13	0970W-0	1	
HEATID. C	Mo	P	S Si	Cu	Ni	Gr	Mo	V	Nb	в	N	Sn	Al	Π	Zr	Ca	CEqv						
/910160 13	.73	.016	.033 25	.31	12	.10	.031	.004	.002	0000	.0112	.011	1005	,00100	.000	00000	.347	-					
Aechanical Test Yield 4 Mechanical Test Yield 4	8670 PSI, 3 6850 PSI, 3	35.57 23.02	APA Tensile APA Tensile	67370 F	PSI, 464 PSI, 467	.5 MPA .53 MPA	%EE 2 %EE	28.0/8n, 29.0/8in	28.0/2	200MM	Del Hi Del H	0, 0MA 1: 0, 0M	M %	n ol. Un ol.	Red R 3 Red R	36.24 36.24	_	_					_
RODUCED IN: JACKS	ON TN					_	_			_	_	_		_			_						
SHAPE + SIZE	GRADE		SPECIFICATI	ON					0.0.1	C 10 D1	25	_		_	_	-	SA	ES OF	IDER	CL	JST P.O.	NUMBER	
1/2 X 3	A36	-	ASTM A36-G	3; ASME	50-35-	08, AST	M A709-	-36-08; (C.S.A.	640.21-	-98 44W	-		-	-		100	3457-4	38	13	03/0W-0	2	
EATID C	M0	P 017	S SI	Cu	10	Ci	MO 032	010	ND	0006	0005	012	001	11	000	Ca	CEqV			-		-+-	_
13	1 11	01/1	031 23	LL.	.10	- an	1032	019	.001	0006	0095	.012	001	.00100	,000	.00000	344	-	-		_		
the second s	1370 051 3	54.18	APA Tensile	c 71440 F	PSI, 492 PSI, 483	25 MPA	%EI:	27.5/8in 26.5/8in	27.5	500WW	DetH	0, 0N	M %	Wh OL	Red R Red R	18.12							
Vechanical Test. Yield 5 Vechanical Test. Yield 5	0180 PSI, 3	45.98 1	APA Tensile		-				-	200 111						10.12	-	_		-	_		-

Figure B-16. Cable Anchor Assembly, Test Nos. NYCC-1 through NYCC-3

STATE:

Page 6 of 7

Chemical and Physical Test Report MADE IN UNITED STATES

1-265598

SHIP TO INVOICE TO SHIP DATE SIOUX CITY FOUNDRY INC SIOUX CITY FOUNDRY INC 07/22/10 801 DIVISION STREET ACCTS PAYABLE 800-831-0874 CUST. ACCOUNT NO PO BOX 3067 SIOUX CITY, IA 51102 SIOUX CITY, (A 51102 60044062 PRODUCED IN: WILTON HAPE + SIZE GRADE SPECIFICATION SALES ORDER CUST P.O. NUMBER

F3/8 X 5	* (A36		ASTM	A36-08	ASME	SA36, /	STM A7	09 GR 3	6-08			-		-				009	2822-04	-	126826	W-04	
HEAT I.D.	C	Mn	P	S	SI	Cu	Ni	Cr	Ma	V	Nb	B	Sn	AJ	n	C Equ	a strange of the	-				1		
W36609	.19	60	012	036	.18	29	.12	.12	.029	.001	001	0003	014	.000	00038	376			-	1			+	
Mechanical Test	Yield -	16100 25	1 317.85	MPA	Tensio	70300 F	SI. 468	15 MPA	SEL	31.3/8	in. 31	3/203 2mm	n Re	d R 16	Std Do	v:0 ldi	Diam: .5	18	-					

Customer Requirements: SOURCE: IOWA BILLETS: CASTING: STRAND CAST Mechanical Test: Yield 47900 PSI, 330-26 MPA Tonsile: 71400 PSI, 492-29 MPA %EI: 31-3/8/n, 31-3/203.2mm Rod R 16 Std Dev/8 Idl Diam: 548 Customer Regiansments: SOURCE: IOWA BILLETS: CASTING: STRAND CAST

APE + SIZE	GRADE	SPECIFIC	ATION ASME	SANK ASTM	709 GR	36-08	1.00							SA	LES ORDER 92822-07	12	ST P.O.	NUMBER	1
ATID	No P	5 5	i Ca	Ni Cr	Mo	v	Nb	8	So	A	TI	CEav			1	1.00		in the second se	
16623 18	60 009	037 .1	7 22	08 10	021	001	013	0002	011	000	.000291	351	1	-	-	-			

Customer Notes

NO WELD REPAIRMENT PERFORMED. STEEL NOT EXPOSED TO MERCURY. This material, including the billets, was motiod and manufactured in the United

Customer Requirements SOURCE IOWA BILLETS CASTING: STRAND CAST

ar

8haskar Yalamanchli Guality Director Gordau Ameristeel

Figure B-17. Cable Anchor Assembly, Test Nos. NYCC-1 through NYCC-3

THE ABOVE FIGURES ARE CERTIFIED EXTRACTS FROM THE ORIGINAL CHEMICAL AND PHYSICAL TEST RECORDS AS CONTAINED IN THE PERMANENT RECORDS OF COMPANY.

tello

Motallurgical Services Manager WILTON STEEL MILL

Seller warrants that all material furnished shall comply with specifications subject to standard published manufacturing variations. NO OTHER WARRANTIES, EXPRESSED OR IMPLIED, ARE MADE BY THE SELLER, AND SPECIFICALLY EXCLUDED ARE WARRANTIES OF MERCHWARRABILITY AND FIRMEDS FOR A PARTICULAR PURPOSE. In no event shall solar the balls for indired, consequential or pulletive damaged arising out of or material to the material by selev.

Any claim for damages for materials that do not conform to specifications must be made from buyer to selfer immediately after dolivery of same in order to allow the selfer the opportunity to import the material in guestion.

Tested in Accordance Nith: ASTM A6 Invoice NO. Date 12/07/2010 PO: 12961W With: ASTM A6 Product Flat bars Heat NO. UX4445 20'00" Cust 40006577 Ref. 80258523 CHENICAL ANALYSIS MSCHANICAL TEST 1 Grade A3644W Pieces 65 C 0.13 MSCHANICAL TEST 1 TEST 1 METRIC Min 0.89 YIELD STRENGTH 46,200 PSI 319 MPa 49,800 PSI 343 MPa S 0.037 GLOGE LENGTH 69,400 PSI 478 MPa 69,400 PSI 478 MPa S 0.037 GLOGE LENGTH 8 IN 203 mm 8 IN 203 mm S 0.032 SPECIMEN ARGA METRIC INFERIAL METRIC No 0.002 V 0.000 A18 N 203 mm A1 0.012 IMPACT STRENGTH IMPERIAL METRIC INTERNAL CLEANLINESS GRAIN SIZE N0 0.020 IMPACT STRENGTH IMPERIAL METRIC INTERNAL CLEANLINESS GRAIN SIZE N0 0.020 IMPACT STRENGTH IMPERIAL METRIC INTERNAL CLEANLINESS GRAIN SIZE N0 0.020 IMPACT STRENGTH METRIC INTERNAL CLEANLINESS GRAIN SIZE <t< th=""><th></th><th></th><th></th><th></th><th>51 51</th><th>OUX CITY PC</th><th>UNDRY OUX City</th><th>Y</th><th></th><th>SI SI 80 51</th><th>OUX CITY OUX CITY 1 DIVIS 105 Sice</th><th>Y FOUNE Y, IA ION STR JX CICY</th><th>ery EET</th></t<>					51 51	OUX CITY PC	UNDRY OUX City	Y		SI SI 80 51	OUX CITY OUX CITY 1 DIVIS 105 Sice	Y FOUNE Y, IA ION STR JX CICY	ery EET
CHEMICAL ANALYSIS MECHANICAL PROPERTIES TEST 1 IMPERIAL TEST 1 METRIC TEST 2 IMPERIAL TEST 3 IMPERIAL C 0.13 YIELD STRENGTH 46,200 PSI 319 MPa 49,800 PSI 343 MPa MD 0.89 TENSILE STRENGTH 69,400 PSI 478 MPa 69,400 PSI 478 MPa P 0.017 BLONGATION 32 % 32 % 31 % 31 % S 0.037 GAUGE LENGTH 8 IN 203 mm 8 IN 203 mm Cu 0.26 BEND TEST DIAMETER 8 IN 203 mm 8 IN 203 mm Ni 0.15 SECULEN AREA N 0 mm 1 MPACT STRENGTH METRIC V 0.300 IMPACT STRENGTH IMPERIAL METRIC INTERNAL CLEANLINESS GRAIN SIZE A1 ANG 0.012 IMPACT STRENGTH IMPERIAL METRIC INTERNAL CLEANLINESS GRAIN SIZE N 0.012 IMPACT STRENGTH IMPERIAL METRIC INTERNAL CLEANLINESS GRAIN SIZE A1 ANG 0.012 IMPACT STRENGTH IMPERIAL METRIC INTERNAL CLEANLINESS GRAIN PRACTICE N 0.15 SEVERITY HARDNESS GRAIN PRACTICE REDUCTION RATIO A3	Tested With:	in Acco ASTM A6	rdance	Invoice M Product Heat NO. Length	Flat 1744 20'	bars 145 00" 7	Date Cust Grade Size	12/07/20 40006577 A3644W 3" X3/8'	010 7 " X3.8	PO: Ref Pie	129 . 802 ces 65	661W 58523	
CONDISIS PROPARIDE INFERINCE INFERINCE INFERINCE INFERINCE C 0.13 YIELD STRENGTH 46,200 PSI 319 MPa 49,800 PSI 343 MPa P 0.027 BLONGATION 32 % 32 % 31 % 32 % 31 % S 0.037 GAUGE LENGTH 69,400 PSI 478 MPa 69,400 PSI 31 % MPa S 0.037 BLONGATION 32 % 32 % 31 % 31 % Si 0.19 BEND TEST DIAMETER 8 IN 203 mm 8 IN 203 mm Si 0.19 BEND TEST RESULTS Ni 0.26 BEND TEST RESULTS Ni 0.15 SPECIMEN AREA 203 mm 8 IN 203 mm Cr 0.16 REDUCTION OF AREA METRIC INTERNAL CLEANLINESS GRAIN SIZE Mo 0.000 IMPACT STRENGTH IMPERIAL METRIC INTERNAL CLEANLINESS GRAIN SIZE A1 A1 AVERAGE SEVERITY FREQUENCY GRAIN SIZE INARONESS N 0.12 TEST TEMP RATING RATING RATING REDUCTION RATIO 71 A36-08,44W A36-08,44W A36-08,44W A36-08,44W	CHE	AICAL	MECHANICAL	TMDOD	TE	ST 1	TMD	TE	9T 2	TRIC	TNDEP	TES	T 3
V 0.000 B A1 A1 0.012 SD 0.012 TI TEST TEMP ORIENTATION A36-08,44W	C Mn P Si Cu Ni Cr Mo	0.13 0.89 0.017 0.037 0.19 0.26 0.15 0.16 0.032	YIELD STRENGTH TENSILE STRENGTH SLONGATION GAUGE LENGTH BEND TEST DIAMETER BEND TEST RESULTS SPECIMEN AREA REDUCTION OF AREA IMPACT STRENGTH	46,200 69,400	9 PSI 9 PSI 32 % 8 IN	319 MPa 478 MPa 32 % 203 mm	49,8 69,4	00 PSI 00 PSI 31 % 8 IN	3	43 MPa 78 MPa 31 % 203 mm			
Al AL SEVERITY HARDNESS SEVERITY HARDNESS C.012 TEST TEMP ORIENTATION A36-08,44W C1 5.5 CF 0.36	v	0.000	IMPACT STRENGTH	IMPERTAL.	ME	TRIC I	TERNAL	CLEANLT	NESS	GRATN S	IZE		
T1 A36-08,44W	al Sn N	0.012	AVERAGE TEST TEMP ORIENTATION			SEV FRE RAT	ERITY QUENCY ING			HARDNES GRAIN P REDUCTI	S RACTICE ON RATIO		
	Ci CE	5.5 0.34	A36-08,44W										
In CARDA L'ANDELL TERRORE OU	in Rear	e county	, rennessee by	1000		-	Direct this r	any que eport to	stion the	s or nec Sales De	essary (partmen)	clarifi t.	cations

Figure B-18. Cable Anchor Assembly, Test Nos. NYCC-1 through NYCC-3

	1			MA SIC	TERIAL CE DUX CITY FOL	RTIFICAT NNDRY NUX City	ION R	EPORT SIG SIG 802 512	DUX CITY P DUX CITY, 1 DIVISION LDS SIGUX (DONDRY IA STREET City
Teste With:	d in Acco ASTM A6	rdance	Invoice) Product Heat NO. Length	Flat L744	bars 64	Date 12/ Cust 400 Grade A36 Size 2"	07/201 06577 44W X3/4"	0 PO: Ref Pie	129661 . 802585 ces 48	W 23
CHE	MICAL	MECHANICAL	T	TES	T 1		TEST	2	100	TEST 3
AN	ALYSIS	PROPERTIES	IMPER	IAL	METRIC	IMPERI	AL	METRIC	IMPERIAL	METRIC
MR P Si Cu N1 Cr	0.14 0.87 0.017 0.033 0.17 0.28 0.15 0.15 0.029 0.000	TENSILE STRENGTH ELONGATION GAUGE LENGTH BEND TEST DIAMETER BEND TEST RESULTS SPECIMEN AREA REDUCTION OF AREA IMPACT STRENGTH	66,70	9 PSI 29 % 8 IN	460 MPa 29 % 203 mm	66,700 3	PSI 0 % IN	303 mea 460 M9a 30 % 203 mm		
v	0.000	THOSOT CORPORATION T	MOUNTEL	A1270	07C TN	TODAL OLI	TANT THE		an I	
9 Al Sn N Ti	0.009	AVERAGE TEST TEMP ORIENTATION	MPERIAL	MET	RIC IN SEVE FREC RATI	RITY UENCY NG	SANDING	GRAIN S. HARDNES: GRAIN PI REDUCTIO	RACTICE	
Ci	5.6	A36-08,44W								
I here perfor and te Notari Sworn In Roa	by certif med in ac sted in t zed upon to and su ne County	y that the material to cordance to the speci he U.S.A with satisfa- request: bscribed before me on , Tennessee by	est result fication r ctory resu 7th day o	s prese eportec lts, ar f Decem	nted here a d above. All nd is free c sber, 2010	re from t steel is of Mercury ligned Direct an	he repo electr contam ROBERT y quest	inted heat and in furnace st ination in the Port of the L. MOWAN, (inons or nece	nd are cor: melted, mar the process for the pr	SURANCE MANAGER
						this repo 1-800-535	-7692 (he Sales Deg USA)	bartment.	

	1			MA	TERIAL CE DUX CITY FOI 02-3067 Sid	RTIFIC NDRY DUX Cit	Y	REPORT S 8 5	100X CITY POU 100X CITY, 17 01 DIVISION S 1105 Sioux Ci	UNDRY A STREFT ity
Tested With: 2	in Acco ASTM A6	rdance	Invoice) Froduct Heat NO. Length	VO. Flat L756 20'0	bars 13 o"X	Date Cust Grade Size	12/07/20 40006577 A3652950 6" X1/4"	10 PC Re P1 X5.106): 129561W f. 8025852 eces 48	3
CHEM	ICAL	MECHANICAL		TES	T 1		TES	5T 2		TEST 3
C Mn P S S L Cu Ni Cr Mo	0.14 0.92 0.015 0.038 0.22 0.23 0.19 0.17 0.054	YIELD STRENGTH TENSILE STRENGTH ELONGATION GAUGE LENGTH BEND TEST DIAMETER BEND TEST RESULTS SPECIMEN AREA REDUCTION OF AREA IMPACT STRENGTH	54,70	0 PSI 0 PSI 34 % 8 IN	377 MPa 525 MPa 34 \$ 203 mm	54,2	00 PSI 00 PSI 34 % 8 IN	374 MFa 539 MFa 34 \$ 203 mm		
v	0.000			-						
B Al Sn N Ti	0.005	AVERAGE TEST TEMP ORIENTATION A36-08,A52950-05,CS	A50W, 44W, A	70936-0	RIC IN SEVE PREC RATI	RITY UENCY NG	CLEANLIN	HARDNE GRAIN REDUCT	SIZE SS PRACTICE ION RATIO	
Ci CE	5.3 0.37]								
Derforme oerforme ind test Notarize Sworn to Parish o	<pre>/ certif id in ac- ed in th id upon > and sub >n this</pre>	y that the material t cordance to the speci he U.S.A with satisfa request: bscribed before me ir 7th day of December,	est result fication r actory resu and for S 2010	s pres eporte lts, a T. Joh	anted here a i above. All nd is free c n Direct	ire from steel of Mercu Signed any g	n the rep is elect ury conta MARK E uestions	orted heat mination in Mark 2 DWARDS, QUA or necessar	and are corre melted, manu the process.	ect. All test ufactured, pr

Figure B-20. Cable Anchor Assembly, Test Nos. NYCC-1 through NYCC-3

INSPECTION CERTIFICATE

	Body and concrete sh tains alkali	CAU SH Con or eye con nould be av and is cau	TION DNCRE tact with fre voided becaustic.	ETE esh (moist) use it con-			Ready Conci 6200 Com Lincoln, Ne Telephone	y Mixed rete Com husker Highway, abraska 68529 402-434-1844	P.O. Box 29288
PLANT I	MIX CODE	YARDS	TRUCK	DRIVER	DESTINATION	CLASS	TIME	DATE	TICKET
CUSTOMER	JOB	CUSTOME	ER NAME		1911 C.	TAX CODE	PARTIAL	NIGHT R.	LOADS
00003 DELIVERY ADDR	RESS	CIA	MURS	SPECIAL IN	STRUCTIONS		L	P.O. NUMBER	1
4800 N	₩ ЗБТН			NORTH	I OF GOODYS	AR HANGE	25	402-770-	-9121 KE
LOAD QUANTITY	QUANTITY	VE O	RDERED	PRODUCT	PRO	DUCT DESCRIPTIO	N	UNIT PRICE	AMOUNT
WATER ADDED	ON JOB S REQUEST		R	ECEIVED BY	June	An	2	SUBTOTAL TAX TOTAL	486.05 486.05 486.05
TRUCK 0107 S 5:00 MATERI G47B CEM3 CEM3 CEM3 CEM3 CEM3 CATERS WATERS WATERS WATERS WATERS WATERS WATERS WATERS WATERS WATERS WATERS	USE USE USE USE 2303 2303 2303 DESI 05 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	R LOGIN R 2000 GN QTY 173 15 931 15 517 15 517 16 517 17 517 16 517 16 517 16 517 16 517 16 517 16 517 16 517 17 517 16 517 16 5	<u>REGUIR</u> 11062 4678 25.00 142.6 * 0.0 142.6 * 0.0 142.6 * 0.0 142.6 * 0.0 142.6 * 0.0	TICKET N 11402 ED BAT 15 11 16 2 01 14 91 14 91 1 NENT: 0.541A WATER: 0.	LUM TICKET 135 161 0050 0 05595 0 0.00 0 0.00 0 0.00 0 0.00 0 DESIGN WATER: 1 0 0 gl /load TRIM	NUM TICK 944 TICK -18	ET ID 12695 0 02% 1 38% 0 39% 00% 49% 00% 100% L WATER: 166 1 /yd	IME I 9:38 05 SEQ 1 WISTURE AI	0ATE 230/2011 12712 TUAL WAT 23.57 gl 2.78 gl +1.88 gl 0.0 gl
						NPCur	vel ouble		

Figure B-22. Concrete Anchor, Test No. NYCC-1

Figure B-23. Post Nos. 1 and 40 Bolt Assembly, Test Nos. NYCC-1 through NYCC-3

Figure B-24. Cable End Washer, Test Nos. NYCC-1 through NYCC-3

NUCOR STEEL - BERKELEY P.O. Box 2259 Mt. Pleasant, S.C. 29464 Phone: (843) 336-6000

CERTIFIED MILL TEST REPORT

4/07/08 17:36:09 100% MELTED AND MANUFACTURED IN THE USA All beams produced by Nucor-Berkeley are cast and rolled to a fully killed and fine grain practice.

Customer #.: 472 - 3

Customer PO: 4500104078 B.O.L. #...: 683949

Sold To: STEEL & PIPE SUPPLY CO., INC. PO BOX 1688

MANHATTAN, KS 66505

Ship To: STEEL & PIPE SUPPLY CO., INC. 310 SOUTH SMITH RD JONESBURG, MO 63351

SPECIFICATIONS: Tested in accordance with ASTM specification A6/A6M and A370. AASHTO : M270-36-05/M270-50-05 ASME : SA-36 07a

ASTM : A992-06a://A36-05/A572-06-50/A709-06a36/A709-07 50/A709-345M CSA : CSA-44W/G40.21-50W

Heat# Grade(s)	Yield/	Yield	Tongilo				-	1				
Grade(s)			ACHOLIC		C	Mn	P	S	Si	Cu	Ni	CE1
	Tensile	(PSI)	(PSI)	Blong	Cr	Mo	Sn	Al	v	Nb	******	CE2
rest	Ratio	(MPa)	(MPa)	\$	Pb	Ti	Ca	B	N	Zr	CI	Pcm
110506												
/10536	.81	56700	10000	25/. 89	.0590	. 7900	.0066	.0243	.2020	.1100	.0450	.2106
992-06a	1	391	483		.0270	.0180	.0067	.0017	.0031	.0266		.2496
	.81	56900	70100	2468	.0013	.0013	.0000	.0009	.0058	.0000	3.0403	.1187
	1	392	483		35 Pi	.ece(s)					Inv#:	0
804528	.84	56800	68000	29.36	0660	8250 1	0083	0276	2000 1	1380	0430 1	2272
992-06a		392	459		. 0360	0190	0063	0017	0032	0264	.0150	2659
JE COU	83	56500	67800	28 74 -	0019	0019	0000		0054	0000	2 5595	1220
	.05	390	467	20. 14		0010 1	.0000	1		.0000	3.3303	.1320
		390	401		0 P1	eceisi					104:	0
804637	.83	56100	68000	24.91	.0650	.8530	.0080	1 2.0278	. 2070-	.0880	.0340	. 2279
992-06a		387	469	2501 6		.0160	.0067	.30015	.0031:	.0254	1.1.1	.2675
	.83	56200	67800	220.66 7	0017	.0016	.0003	0014	.0052	.00007	2.6374	.1300.
		387	467	18 1	8 Pi	ece(s)		·	11-14-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-9-		Inv#:	0
804632	78	52800	67400	04 55	0670 1	. ROSO	0111	1 5: 0285	2210: 1	0970	1 . 0330 1	2200 1
001-060	. /0	364	465	0.01	0740	0210	0001	0023	0022	0070.	.0310	2620
992-00a	70	53300	67100	21. 11	.0340	.0210	.0081	- 0032	.0033	.0258	2 6605	.2028
	. /9	53300	6/100	21.51	.0004	.0020	.0005	1 .0000 1	.0058 1	.0000	2.0095	.1229
		368	463	••	8 21	ece(s)					Inv#:	0
300626	.82	55900	67800	27.74	.0670	.8470	.0099	.0232	.2250	.1210	.0390	.2291
992-06a		385	467	023592227-511	.0290	.0190	.0059	.0021	.0032	.0252	Contraction of the	.2716
0.2022/07/2020/20	.82	55200	67400	28.24	.0025	.0018	.0000	.0024	.0048	.0000	3.3129	.1385
		381	465	100000000000000000000000000000000000000	8 Pi	ece(s)					Inv#:	0
	10536 992-06a 104528 992-06a 104637 192-06a 104632 192-06a 100626 192-06a	10536 992-06a .81 .04528 .83 .04637 .83 .04637 .83 .92-06a .83 .04632 .78 .92-06a .79 .00626 .82 .92-06a .82	100536 .81 56700 992-06a .81 56900 .81 56900 391 .81 56900 392 104528 .84 56800 992-06a .83 56500 992-06a .83 56500 104637 .83 56100 192-06a .83 56200 104632 .78 52800 192-06a .79 53300 100626 .82 55900 192-06a .82 55200 .82 55200 .82	10536 .81 56700 70000 992-06a .81 56900 70100 .81 56900 702100 392 483 104528 .84 56800 68000 392 469 104528 .84 56500 67800 390 467 104637 .83 56100 68000 387 469 104637 .83 56100 68000 387 469 104637 .83 56200 67800 387 469 104632 .78 52800 67400 387 467 104632 .78 52800 67400 364 465 192-06a .79 53300 67100 368 463 100626 .82 55900 67800 385 467 192-06a .82 55200 67400 381 465	$ \begin{array}{c} 10536\\ 992-06a\\ 992-06a\\ .81\\ .81\\ .56900\\ .83\\ .92\\ .62\\ .92-06a\\ .83\\ .84\\ .56800\\ .92\\ .63\\ .92\\ .63\\ .92\\ .63\\ .92\\ .63\\ .83\\ .55500\\ .83\\ .55500\\ .83\\ .55500\\ .83\\ .55500\\ .83\\ .55500\\ .83\\ .56100\\ .83\\ .56200\\ .67800\\ .221.31\\ .387\\ .467\\ .83\\ .56200\\ .67800\\ .220.56\\ .79\\ .387\\ .467\\ .12\\ .79\\ .387\\ .467\\ .12\\ .79\\ .387\\ .467\\ .12\\ .79\\ .368\\ .465\\ .12\\ .74\\ .350\\ .79\\ .368\\ .465\\ .12\\ .74\\ .385\\ .467\\ .82\\ .55200\\ .67800\\ .27.74\\ .385\\ .467\\ .82\\ .55200\\ .67800\\ .27.74\\ .385\\ .467\\ .28.2\\ .24\\ .381\\ .465 \end{array} $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10536 992-06a .81 56700 70000 25/.89 .0590 .7900 .0066 .0243 .2020 .1100 .0450 .81 56900 70100 24.468 .0013 .0013 .0067 .0017 .0031 .0266 .0430 .81 56900 70100 24.468 .0013 .0013 .0000 .0009 .0058 .0000 3.0403 .004528 .84 56800 68000 29.36 .0660 .8250 .0083 .0276 .2000 .1380 .0430 .092-06a .392 469 .0360 .0190 .0063 .0017 .0032 .0264 .0430 .83 56500 67800 28.71 .0018 .0018 .0000 2.0016 .00544 .0000 3.585 .04637 .83 56100 68000 .220.401 .0160 .0067 .0015 .0031 .0254 .0340 .992-06a .83 56200 67400

Elongation based on 8" (20.32cm) gauge length. 'No Weld Repair' was peformed. CI = 26.01Cu+3.88Ni+1.20Cr+1.49Si+17.28P-(7.29Cu*Ni)-(9.10Ni*P)-33.39(Cu*Cu) Pcm = C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B Hg free and no contact with Hg during manufacture. CE1 = C + (Mn/6) + ((Cr+Mo+V)/5) + ((Ni+Cu)/15)CE2 = C+((Mn+Si)/6)+((Cr+Mo+V+Cb)/5)+((Ni+Cu)/15)

I hereby certify that the contents of this report are accurate and correct. All test results and operations performed by the material manufacturer are in compliance with material specifications, and when designated by the Purchaser, meet applicable specifications.

Bruce A. Work Metallurgist

(State of South Carolina (County of Berkeley Sworn and subscribed before me

day of _

PS Co 275 Bi Port of	il Processir ird Creek / Catoosa, C	ng Tulsa Ave. DK 74015			5	STEEL & PIPE SUPPLY COMPANY INC.	MET	ALLU F RE	JRGIO PORT	CAL F		PA DA TIN US	GE 1 of TE 06/13 ME 10:53 ER WILL	1 3/2011 3:30 IAMR	
								SH 13 H Wi P 10 T CA	713 arehouse (50 Fort (TOOSA (0020 Bibson Rd DK 7401	5				
Order 10163208	Mate 3-0010 721	erial No. 696240A2	Descript	ion 96 X 24	0 A572G	R50 MILL	PLATE	antity 2	Weight 6,534.400	Custome	r Part	c	ustomer PO	SI 00	hip Date 6/13/2011
	-			_			Chemical A	nalysis							
leat No.	B1R6591	Vendor	NUCOR STE	EL TUSCA	LOOSA ING		DOMESTIC	Mill NUC	OR STEEL	TUSCALOOS	A INC	Melted and	Manufactured	in the USA	1. T.
arbon).0600	Manganese 1.2800	Phosphorus 0.0060	Sulphur 0.0050	Silicon 0.0300	Nickel 0.0800	Chromlum 0.0600	Molybdenum 0.0260	Boron 0.0001	Copper 0.2100	Aluminum 0.0290	Titanium 0.0010	Vanadium 0.0020	Columbium 0.0280	Nitrogen 0.0080	Tin 0.0080
						Mech	anical/ Physic	al Prope	rties						
Aill Coil 1 7 69300 69500	No. 1E0804 ensile 0.000 0.000	6130	Yield 0.000 00.000	Ek 35 32	.00 .50	Rckwl O O	Gra 0.00 0.00	in 00	Charp	9 9 0 0	Charpy Dr NA NA		Charpy Sz		Olsen
							Chemical A	nalysis							
Heat No. Batch OO	B1R6591 01046836	Vendor	NUCOR STE	EL TUSCA	LOOSA ING	0	DOMESTIC	MIII NUC	OR STEEL	TUSCALOOS	A INC	Melted and	Manufactured	in the USA	i.
Carbon 0.0600	Manganese 1.2800	Phosphorus 0.0060	Sulphur 0.0050	Silicon 0.0300	Nickel 0.0800	Chromium 0.0600	Molybdenum 0.0260	Boron 0.0001	Copper 0.2100	Aluminum 0.0290	Titanium 0.0010	Vanadium 0.0020	Columbium 0.0280	Nitrogen 0.0080	Tin 0.0080
						Mech	anical/ Physic	al Prope	rties						
Vill Coil I	No. 1E0804		Maria			Baland	0	1	C1	-	-				
69300	0.000	6130	0.000	35	.00	O	0.00	00	Charp	O	Charpy Dr		charpy Sz		Olsen
69500	0.000	6180	000.000	32	.50	0	0.0	00		0	NA				

Figure B-26. Concrete Anchor Cont., Test No. NYCC-2

Figure B-27. Concrete Anchor Cont., Test Nos. NYCC-2 and NYCC-3

rom: Steve Fisher 3046988230 To: Elderlee	Date: 8/17/2011 Time: 9:52:08	01 1
STEEL OF WEST VIRGI	AINIA	
HUNTINGTON, WEST VIRGINI	A 25726-2547	
DATE: June 17, 2011		
SOLD TO: Elderlee Inc. 729 Cross Road	SHIP TO: Same	
Oaks Corner, NY 14518	-	
CUSTOMER ORDER: P003617 S	SWV ORDER: 50104	
MATERIAL SPECI 3" X 5.7 lb/ft I-Beam. LENGTH: 42'. GF All manufacturing processes for these	IFICATION SWV Section 2658. RADE: ASTM A36-08. materials occurred in the U.S.A.	
Yield Tensile Elon Heat psi psi % 8" C Mn P	S Si Cu Cr Ni Mo V Cb	_
18064 46000 67000 22.7 .12 0.67 .016	.028 .24 .24 .13 .08 .03 .001 .001	
18064 46000 67000 22.9 .12 0.67 .016	.028 .24 .24 .13 .08 .03 .001 .001	
18674 45000 65000 23.4 .12 0.59 .015	.034 .21 .30 .10 .09 .02 .001 .001	
18674 45000 65000 24.4 .12 0.59 .015	.034 .21 .30 .10 .09 .02 .001 .001	<u> </u>
20853 44000 67000 22.8 .12 0.60 .012	.026 .21 .26 .10 .09 .02 .004 .001	l.
20853 44000 67000 23.9 .12 0.60 .012	.026 .21 .26 .10 .09 .02 .004 .001	l
57034 43000 64000 23.6 .13 0.59 .009	1.0271.231.231.061.081.021.0031.001	1
57034 42000 63000 23.0 .13 0.59 .009	1.027 .23 .23 .06 .08 .02 .003 .001	1
57036 44000 62000 25.2 .12 0.58 .010	.023 .18 .23 .06 .09 .02 .002 .001	
57036 44000 64000 24.7 .12 0.58 .010	1.023 .18 .23 .06 .09 .02 .002 .001	<u> </u>
This is to certify that the abov	e is	
a true and correct report as conta in the records of this company.	ined Steve Fisher Metallurgist 304-696-8200	
ELDERLEE, INC.		
CERT RECEIVED: <u>6//7///</u> PURCHASE ORDER # //2//7		
SALES ORDER # 50/04		
SHIPPED FROM: SWYA		

Figure B-28. Galvanized Wire, Test No. NYCC-2

m: Stove Ficher 3046068230 To: DI

Dato: 5/11/2011 Timo: 12:37:16-

Page 1 of 1-----

STEEL OF WEST VIRGINIA HUNTINGTON, WEST VIRGINIA 25726-2547

DATE: May 11, 2011

SOLD TO	: D I P.O. New	Hwy Si Box 1 York M	gn Corp 23 ills, N) IY 134:	17	SH	IP TO:	DI- 40 New	Highw Green York	ay Sig man Av Mills	n Co: re. s, NY	rp.
CUSTOME.	R ORDE	R: 268	67			SWV (DRDER:	3118	8	1		
All max	LEN nufact	3" X 5 GTH: 6 uring]	M 7 1b/f 3″ & 42 process	ATERIA t I-Bea '. ses for	L SPEC am. GR these	SIFICA SI ADE: mate	ATION W Sec ASTM erials	tion A36- occu	2658. 08. rred	in the	U.S.	.A.
Y: Heat]	ield T psi	ensile psi	Elon % 8"	C Mn	P	5	Si	Cu	Cr N	i Mo	v	Cb
16444 4	60001	65000	25.4].	12 0.50	5 .018	1.025	5 .20]	.231.	12].0	8 .02	.005	.001
L6444 40	60001	65000	24.9 .	12 0.56	5 .018	1.025	5 .20	. 23 .	12 .0	8 .02	.005	.001
7611 48	80001	69000	22.81.	13 0.61	.018	.044	1.23	.37 .	18 .1	0 .02	.001	.001
7611 4	7000	69000	23.5 .	13 0.61	.018	1.044	.23	.37 .	18 .1	01.021	.001	.001
20246 45	50001	67000	24.21.	11 0.61		1.030	0.23	.301.	14 .1	01.031	.001	.001
20246 45	50001	66000	24.3 .	11 0.61		1.030	01.231	.30 .	 14 .1	01.031	.001	.001
This i	is to a	correctify	that	the abc	ve is	ined			Ste	ve Fis		

in the records of this company.

Steve Fisher Metallurgist 304-696-8200

Figure B-29. Galvanized Wire Cont., Test No. NYCC-2

STEEL OF WEST VIRGINIA HUNTINGTON, WEST VIRGINIA 25726-2547

DATE: October 9, 2007

SOLD TO: D I Hwy Sign Corp P.O. Box 123 New York Mills, NY 1341	SHIP TO: DI-Highway Sign Corp. 40 Greenman Ave. 7 New York Mills, NY
CUSTOMER ORDER: 24159	SWV ORDER: 82951
MATERIAI 3" X 7.5 lb/ft I-Bea LENGTH: 41'6". All manufacturing processes for	SPECIFICATION am. SWV Section 2663. GRADE: ASTM A36-05. these materials occurred in the U.S.A.
Yield Tensile Elon Heat psi psi % 8" C Mn	P S Si Cu Cr Ni Mo V Cb
12237 48000 78000 20.6 .19 0.78	3 .025 .029 .27 .28 .17 .09 .02 .011 .001
12237 48000 78000 21.6 .19 0.7	3 .025 .029 .27 .28 .17 .09 .02 .011 .001
This is to certify that the ab a true and correct report as in the records of this compar	ove is contained ny. Steve Fisher Metallurgist

Figure B-30. Galvanized Wire Cont., Test No. NYCC-2

BENNETT BOLT WORKS, INC.

12 Elbridge Street P.O. Box 922 Jordan, New York 13080

PH 315-689-3981 FX 315-689-3999

CG 1241 -H CABLE SPLICE - MEETS 25,000# TEST

3 PIECE CASTING #1W482/1W483/1W484 HDG A153 CLASS A MATERIAL - ASTM A536-72 DUCTILE IRON #64-45-12 MADE BY VICTAULIC CO OF AMERICA #963352-001 GALVANIZED BY KORNS GALV.

2 WEDGES PART # W 1 MATERIAL - ASTM A47 GRADE 32510 MALLEABLE IRON MADE BY BUCK CO. # 1S7

ALL PRODUCTS WERE MELTED AND MANUFACTURED IN THE U.S.A.

MANAGER QUALITY ASSORANCE

Figure B-31. Cable Wedge, Test No. NYCC-2

INSPECTION CERTIFICATE

Figure B-32. Cable Hook Nuts, Test Nos. NYCC-2 and NYCC-3

NUCOR STEEL - P.O. Box 2259	BERKELEY				CERTIFI	ED MILL TE	ST REPORT	ž.	100%	MELTED AN	D MANUFAC	4/07	08 17:36:0 THE USA
Phone: (843) 3	336-6000								rolled to	a fully k	illed and	fine grai	n practice
Sold To: 5	STEEL & PIPE PO BOX 1688	SUPPLY CO	D., INC		Shi	<u>p To:</u> STEE 310	CL & PIPE SCUTH SMI	SUPPLY TH RD	CO., INC.		Customer Customer	#.: 472 PO: 45001	2 - 3 04078
•	ANHATTAN, KS	66505				JONE	SBURG, MO	6335	1		D.01.01		
SPECIFICATIONS AASHTO : M2 ASME : SA-3 ASTM : A992 CSA : CSA-4	5: Tested in 270-36-05/M2 86 07a 2-06a://A36-0 14W/G40.21-50	accordanc 70-50-05 05/A572-06 0W	ce with 5-50/A70	ASTM s 09-06a3	pecifica 6/A709-0	tion A6/A6 7 50/A709-	M and A37 345M	0.					
	Heat#	Yield/	Yield	Tensil			Mn I	P	l s	l Si		Ni l	CE1 (
	Grade(s)	Tensile	(PSI)	(PSI)	Elong	Cr	Mo	Sn	Al	v	Nb	******	CE2
Description	Test	Ratio	(MPa)	(MPa)	\$	Pb	Ti	Ca	В	N	Zr	CI	Pcm
\$3\$7.5	2710536	. 81	56700	70000	25.89	.0590	.7900	.0066	1 0243	1 .2020	1 .1100	1 .0450	2106
040' 00.00"	A992-06a		391	483	5 e .	.0270	.0180	.0067	.0017	.0031	.0266		.2496
S75X11.2		.81	56900	70100	24.,68	.0013	.0013	.0000	.0009	.0058	.0000	3.0403	.1187
012.1920m			392	483	100.74	35 Pi	ece(s)		+	003		Inv#:	0
S8X18.4	2804528	.84	56800	68000	29.36	.0660	.8250	.0083	1 0276	1 .2000	.1380	1 .0430	.2272
040' 00:00"	A992-06a	1122342	392	469	40.00	.0360	.0190	.0063	.0017	.0032	.0264	1020221	.2658
S200X27.4		.83	56500	67800	28.71		.0018	.0000		.00545.	.0000	3.5585	.1328
012.1920m			390	467	12.13	8 Pi	ece(s)		7.	1	1.5	Inv#:	0
S8X18.4	2804637	.83	56100	68000	-24_91	.0650	.8530	.0080	1	.2070	.0880	.0340	.2279-1
050' 00.00"	A992-06a		387	469	1451 C		.0160	.0067	.:0015	.0031:	.0254	10.200	.2675
S200X27.4		.83	56200	67800	27.66 7	.0017	.0016	.0003	14:0014	.00527	.0000	2.6374	.1300.
015.2400m			387	467	18	8 Pi	ece(s)					Inv#:	0
S8X23	1804632	.78	52800	67400	24:55	.0670	- 8060 I	.0111	1 5.0285	1 . 2210-	SE . 0870	.0310.	.2209.1
040' 00.00"	A992-06a		364	465	9×2 1	.0340	.0210	.0081	0032	.0033	.0256		.2628
S200X34		.79	53300	67100	21.51	.0064	.0020	.0005	.0000	.0058	.0000	2.6695	.1229
012.1920m			368	463	4 - 4 - 4 4 - 4	8 Pi	ece(s)					Inv#:	0
W10x19	1800626	. 82	55900	67800	27.74	.0670	.8470	.0099	0232	.2250	.1210	.0390	.2291
040' 00.00"	A992-06a		385	467	C. C	.0290	0190	.0059	.0021	.0032	.0252		.2716
W250X28.4		. 82	55200	67400	28.24	.0025	.0018	.0000	.0024	.0048	.0000	3.3129	.1385
012 1020m		1	3.81	465	0.000.000	8 Pi	ece(s)	1.11.11.11.11.11.11.11.11.11.11.11.11.1		•	1.000.00	Tny#.	0

Elongation based on 8" (20.32cm) gauge length. 'No Weld Repair' was peformed. CI = 26.01Cu+3.88Ni+1.20Cr+1.49Si+17.28P-(7.29Cu*Ni)-(9.10Ni*P)-33.39(Cu*Cu) Pcm = C+(Si/30)+(Mn/20)+(Cu/20)+(Ni/60)+(Cr/20)+(Mo/15)+(V/10)+5B

Hg free and no contact with Hg during manufacture. CE1= C+(Mn/6)+((Cr+Mo+V)/5)+((Ni+Cu)/15) CE2 = C+((Mn+Si)/6)+((Cr+Mo+V+Cb)/5)+((Ni+Cu)/15)

I hereby certify that the contents of this report are accurate and correct. All test results and operations performed by the material manufacturer are in compliance with material specifications, and when designated by the Purchaser, meet applicable specifications.

Bruce A. Work Metallurgist

(State of South Carolina (County of Berkeley Sworn and subscribed before me

_ day of _

and a second sec																										Page
JACKSON STEEL M 801 AMERISTEEL R JACKSON TN 3830 (731) 424–5600	UAME NILL ROAD 5 USÀ	RIST	EEL						Che M/	emica ADE IN	i and i UNITI	Physic ED STA	al Tes TES	st Re	epor										1	-69
SHIP TO STEEL AND PIPE SI 4750 WEST MARSH 785–587–5119 LONGVIEW, TX 756	UPPLY CO. I IALL AVENUI 504	NC.				INVO STE PO I	OICE T EL AN BOX 16	O D PIP 388 AN, K	E SUP	PPLY C	CO. INC				÷		SHIF 02/20 CUS 4013	DATE 5/11 T. ACC 0833	OUNT	NO	-					
PRODUCED IN: JA	ACKSON T	1	12								1	1		2			5								1	
SHAPE + SIZE	GRA	DE	SPECIFI	ATION			-		_					14		_	1.5		S/	LES	ORDER	3	CŲ	ST P.O	NUME	ER
F1/2 X 5 1/2	A36	1	ASTM AS	6-08; A	SME SA	1-36-04	8; ASTN	A709	-36-08	S; C.S.A	G40.2	-98 44V	1.0	i.		*	-	1.0	110	1316	5-01	-	450	0015489	1-01	_
HEAT LD.	C Mn	,P	5	3 0	20	NI	ur	No	V	Nb	B	N	Sn	1 /	NI I	11	21	Ca	CEqu	-		-+		-	-	-
Aa0a51a	.16 .78	.013	.033	20 1 .	35	.09	31	026	.020	.001	.0005	.0120	1.012	0.1	01 1.0	00100	,000	00000	38					-	·	1.1
F3/4 X 2	0104		ASTM AS	6-08; A	SME SA	-36-0		1 5 200	20.00		040.0			-		_			00	acco	CHULI	1	100	0010.00	4.01	cn .
	100			1			8 ASIN	Alla	-30-08	3, C.S.A	. 1340.2	1-98 44V	/				_		10	12/3	7-01	_	450	001548	4-01	
HEAT I.D.	C Mn	Р	S	Si	2u	Ni	Cr	Ma	V	Nb	8	N	Sn	A		Ti	Zr	Ca	C Equ	12/3	17-01		450	01548		
HEAT I.D. V910172 Mechanical Test: Y	C Mn .15 .70 Yield 47050 PS	P .011 1, 324.47	S .030 MPA Te	Si (22 .	2u 36 570 PSI	Ni ,10	Cr	Mo .027 %EI:	003	Nb .001 Sin, 29.5	8 .0005	N 5 .0090 A Def H	Sn .012 fT: 0, 0	A .00.	Al 01 .0 %J/	Ti 00100 1 OL	Zr .000 Red F	Ca .00000	C Eqv .353	12/3	17-01	-	450	01548		
HEATID. V910172 Mechanical Test: 1 Comment ASTM A36- Mechanical Test: Y Comment ASTM A36-	C Mn .15 .70 Yield 47060 PS .05 & ASTM A7 Yield 45743 PS .05 & ASTM A7	P .011 I, 324.47 09 GR36 I, 315.39 09 GR36	S .030 MPA Te MPA Te	Si (22 . nsile: 71: nsile: 70-	2u 36 570 PSI 180 PSI	Ni 10 , 493.4	Cr .06 6 MPA 4 MPA	Mo .027 %EI:	29.5/8	Nb 001 3in, 29.3	8 0005 5/200MM	N 5 .0090 A Def H A Def H	5n .012 fT: 0, 0	A .or MMo MMO	Al 01 . %J/ %J/	Ti 00100 1 OL 1 OL	Zr .000 Red F Red F	Ca .00000 18.12 18.12	10 C Eqv .353	12/3		i i	450			
HEATID. V910172 Mechanical Test: Comment ASTM A36- Mechanical Test: Commont ASTM A36- Customer Notes NO WELD REPAIRN This material, including I States of America	C Mn 1.15 .70 Yield 47060 PS 05 & ASTM AT WENT PERFOR the billets, was	P .011 I, 324,47 09 GR36 I, 315,39 09 GR36 MED. S melled at BP G	S .030 MPA Te MPA Te MPA Te rEEL NOT d manufac askar Yala askar Yala	Si (22 nsile: 71 nsile: 70 EXPOSE ured in t manchili or steel	20 36 570 PSI 480 PSI 180 PSI 180 PSI	Ni ,10 1,493.41 1,485.94 MERCU	G MPA	Ma .027 %EI:	29.5/8	THE PEF	5/200MM		Sn 012 fT: 0, 0 fT: 0 fT: 0, 0 fT: 0, 0 fT: 0 fT: 0, 0 fT: 0, 0 fT: 0 fT: 0 fT: 0, 0 fT: 0 fT: 0, 0 fT: 0	CER CER CER	NI 01 II %J// %J// %J// %J//	TI DOTOD TOL TOL TOL	Zr .000 Red F Red F	Ca .00000 18.12 18.12 AND Pi	IN C Equ C Equ .353	L TE	ST REC	ORDS	450 5 AS C	ONTAI	NED IN	THE

Figure B-34. Anchor Post Assembly Cont., Test No. NYCC-3
Page 3 of 5

JACKSON TN 38305 USA (731) 424-5600 Chemical and Physical Test Report MADE IN UNITED STATES

V-704512

SHIP TO STEEL AND PIPE SUPPY CO INC 401 NEW CENTURY PARKWAY 785-587-5185 NEW CENTURY, KS 66031					II S P N	INVOICE TO STEEL AND PIPE SUPPLY CO. INC. PO BOX 1688 MANHATTAN, KS 66505–1688							SHIP DATE 10/13/11 CUST. ACCOUNT NO 40130833												
RODUCED IN: JA	ACKSO	N TN															n								
HAPE + SIZE		GRAD		SPECI	FICATIO	NC						-			_				SA	LES OF	RDER	0	CUST P.	O. NUM	BER
5/16 X 3		A36		ASTM	A36-08	, A709	-10-36,	ASME S	A-36;CS	SA G40.	21-44V	V-04.							10	76250-0	01	4	500166	902-01	
EAT I.D.	C	Мп	Р	S	Si	Cu	Ni	Cr	Mo	V	Nb	В	Sn	Al	Ті	Zr	Ca	CEqv							
912683	.12	75	.017	.028	24	.25	.09	.12	.028	.018	.001	.0004	.010	.001	.00100	.000	.00000	.343			-				14
chanical Test: Y stomer Requirements	Yield 527 s CASTIN	GO PSI	363.77 AND C/	MPA AST	Tensile:	70730	PSI, 48	7.67 MP#	4 %EI:	27.0/8	lin, 27.1	0/200MN	6									_		-	_
HADE + SIZE	101100	0010	_	SPECI	FICATIO	2N													ISA	IFS OF	OFR	10	UST P	O NUM	RER
CHARGE # ONCE		GHAU	•												_							1.2		0.110.11	Den
3/8 X 4		A36		ASTM	A36-08	A709	-10-36.	ASME SA	4-36:CS	A G40.2	21-44	V-04.							26	39163-2	24	0	\$450007	728	
3/8 X 4 EAT LD.	I C	A36 Mn	P	ASTM	A36-08 Si	, A709-	-10-36, Ni	ASME SA	A-36;CS Mo	A G40.2	21-44V	V-04,	Sn	A	T	C Equ		- 1	26	39163-2	24	0	6450007	728	
EAT ID. 973909 echanical Test: Y ustomer Requirements echanical Test: Y istomer Requirements IST ITEM NI IMPER-	C .15 Yield 511 s CASTIN Yield 539 s CASTIN	A36 Mn .76 73 PSI, NG: STF 51 PSI, NG: STF 001012	P .014 352.83 AND C/ 371.98 AND C/	ASTM S .024 MPA AST MPA AST	A36-08 Si .24 Tensile: Tensile:	A709 Cu .30 73130 74200	-10-36, Ni 09 PSI, 50 PSI, 51	ASME S/ Cr .11 4.21 MPA 1.59 MPA	A-36;CS Mo .030 A %EI: A %EI:	A G40.2 V .015 28.0/8 28.0/8	21-44V Nb .001 Sin, 28.0	V-04, B 0004 0/200MM 0/200MM	Sn 010 Red I Red I	Al .001 7 23.18 7 23.18	Ti .00100	C Eqv .377	-		26	39163-2	24		\$450007	728	L
Value of the source of the sou	C .15 Yield 511 s CASTIN Yield 539 s CASTIN 0000000	GHAD A36 Mn .76 73 PSI, NG: STF 51 PSI, NG: STF 001012	P .014 352 83 AND C/ 371.98 AND C/ 10020	ASTM S .024 MPA AST MPA AST	A36-08 Si .24 Tensile: Tensile:	, A709 Cu .30 73130 74200	-10-36, Ni 09 PSI, 50 PSI, 51	ASME S/ Cr .11 4.21 MPA	A-36;CS Mo .030 A %EI:	A G40.2 V .015 28.0/8	21-44V Nb .001 In, 28.0	V-04, B .0004 0/200MM	Sn 010 Red I Red I	Ai .001 3 23.18 3 23.18	Tī .00100	C Eqv .377			26	39163-2	24		3450007	728	E
UST ITEM NUMBER: USTOMER Notes NO WELD REPAIRA is material, including 1	C .15 Yield 511 s CASTIN S CASTIN 0000000 MENT PE the billets	A36 Mn .76 73 PSI, NG: STF 51 PSI, NG: STF 001012	P .014 352.83 AND C/ 371.98 AND C/ 40020	ASTM S .024 MPA AST MPA AST EEL NC	A36-08 Si .24 Tensile: Tensile: DT EXPC actured	A709 Cu 30 73130 74200	-10-36, Ni .09 PSI, 50 PSI, 51	ASME S/ Cr 1.11 4.21 MPA 1.59 MPA	A-36;CS Mo .030 A %EI:	A G40.2 V .015 28.0/8	21-44V Nb .001 lin, 28.0 lin, 28.0	V-04, B .0004 0/200MM 0/200MM	Sn 010 Red I Red I	Al .001 3 23.18 3 23.18 3 23.18	Ti .00100	C Eqv .377		AND PH	/SICAL	_TEST	RECOP	DS AS	CONTA	1728	N THE
38 X 4 IEAT I.D. 913909 lechanical Test: ustomer Requirements UST ITEM NUMBER: UST ITEM NUMBER: NO WELD REPAIRA NO WELD REPAIRA No WELD REPAIRA	C .15 Yield 511 s CASTIN Yield 539 s CASTIN 00000000 MENT PE the billets	GHAD A36 Mn .76 73 PSI, NG: STF 51 PSI, NG: STF 001012 RFORM , was m	P .014 352.83 AND C/ 371.98 AND C/ 10020	ASTM S .024 MPA AST MPA AST TEEL NC	A36-08 Si .24 Tensile: Tensile: DT EXPO actured	A709 Cu 30 73130 74200 DSED 1 in the I	-10-36, Ni .09 PSI, 50 PSI, 51	ASME S/ Cr 4.21 MPA 1.59 MPA	A-36;CS Mo 030 A %EI:	A G40.2 V .015 28.0/8	21-44V Nb .001 lin, 28.0 lin, 28.0	V-04, B .0004 0/200MM 0/200MM	Sn 010 Red I Red I	AI .001 3 23.18 3 23.18 3 23.18 5 ARE RDS OF	CERTIFI COMPA	C Eqv .377	EMICAL	AND PHY	/SICAL	_TEST	RECOP	DS AS	CONTA	VINED IN	N THE
38 X 4 IEAT I.D. 913309 lechanical Test: ustomer Requirements lechanical Test: UST ITEM NUMBER: UST ITEM NUMBER: NO WELD REPAIRA his material, including I ales of America	C .15 Yield 511 s CASTIN Yield 539 s CASTIN 0000000	GHAD A36 Mn .76 73 PSI, NG: STF 51 PSI, NG: STF 001012 REORM	P .014 352.83 371.98 AND C/ 371.98 AND C/ 10020	ASTM S .024 MPA AST MPA AST TEEL NC d manuf askar Ya	A36-08 Si .24 Tensile: Tensile: Tensile: DT EXPC actured	A709 Cu 30 73130 74200 OSED 1 in the l	-10-36, Ni 09 PSI, 50 PSI, 51	ASME S/ Cr 1.11 4.21 MPA 1.59 MPA	A-36;CS Mo 030 A %EI:	A G40.2 V 015 28.0/8	21-44V Nb .001 iin, 28.0 iin, 28.0	V-04, B .0004 0/200MM 0/200MM 0/200MM	Sn 010 Red I Red I	AI .001 3 23.18 3 23.18 3 23.18 5 ARE RDS OF	Ti .00100	C Eqv .377	EMICAL	AND PH	26	_TEST	RECOF	IDS AS	CONTA	INED IN	N THE
38 X 4 IEAT I.D. 913909 lechanical Test: ustomer Requirements ustomer Requirements UST ITEM NUMBER: UST ITEM NUMBER: NO WELD REPAIRA his material, including t lates of America	C .15 Yield 511 s CASTIN Yield 539 s CASTIN 0000000	GHADI A36 Mn .76 73 PSI, VG: STF 51 PSI, VG: STF 001012	P .014 352.83 371.98 371.98 371.98 30020	ASTM S .024 MPA AST MPA AST EEL NC d manuf askar Ya ality Dire	A36-08 Si .24 Tensile: Tensile: Tensile: DT EXPO actured	, A709 Cu 30 73130 74200 OSED 1 DSED 1 bill	-10-36, Ni 09 PSI, 50 PSI, 51	ASME S/ Cr 1.11 4.21 MPA 1.59 MPA	A-36;CS Mo .030 A %EI:	A G40.2 V 015 28.0/8	21-44V No 001 iin, 28.0 iin, 28.0	V-04, B .0004 0/200MM 0/200MM	Sn 010 Red I Red I	AI .001 3 23.18 3 23.18 5 ARE RDS OF	Ti .00100 CERTIFI COMPA	C Eqv .377 ED CHI	EMICAL	AND PH1	263	_TEST	RECOR	EDS AS	CONTA	VINED IN	N THE
J38 X 4 IEAT I.D. 9r3909 lechanical Test:) ustomer Requirements lechanical Test:) ustomer Requirements UST ITEM NUMBER: NO WELD REPAIRM	C .15 Yield 511 s CASTIN Yield 539 s CASTIN 0000000	GHAD A36 Mn .76 73 PSI, NG: STF 51 PSI, NG: STF 001012	P .014 352.83 AND C/ 371.98 AND C/ 10020	ASTM S .024 MPA AST MPA AST	A36-08 Si .24 Tensile: Tensile:	, A709. Cu 30 73130 74200	-10-36, Ni .09 PSI, 50 PSI, 51	ASME S/ Cr .11 4.21 MPA 1.59 MPA	A-36;CS Mo .030 A %E:	A G40.2 V 015 28.0/8	21-44V Nb .001 lin, 28.0	V-04, 8 .0004 0/200MM	Sn 010 Red I	Al .001 3 23.18 3 23.18	Tī .00100	C Eqv .377			26	391632	24		3450007	7728	

Figure B-35. Anchor Post Assembly Cont., Test No. NYCC-3

CALVERT CITY STEEL MILL 1035 SHAR-CAL ROAD CALVERT CITY KY 42029 USA (270) 395-3100					Chemical and Physical Test Report MADE IN UNITED STATES										Y-0574			7407	
SHIP TO STEEL AND PIPE 401 NEW CENTU 785-587-5185 NEW CENTURY,	E SUPPY C IRY PARKI KS 68031	O INC WAY			INV STI PO MA	OICE TO EEL AND F BOX 1698 NHATTAN	PIPE SU	UPPLY CO. 1	₩C.			SHIP D 01/08/1 CUST. 401308	ATE 0 ACCOU	NT NO					
RODUCED IN:	CALVER	TCITY									_								
SHAPE + SIZE		GRADE	SPECIFICA	TION					×					SALES O	RDER	CUS	TP.O.N	UMBER	-
F3/8 X 8	-	A35	ASTM A38-	-08, ASTA	M A709 GP	136								9177198-	03	4500	125002-	-03	
HEATLO.	C	Mo P	SS	Cu	Ni	Cr M	o V	V Nb	BN	Sn	Ti CEqv								_
Comment: ASTM A Vechanical Tast: Customer Requirem Comment: ASTM A	Vield 510 ents CASTI 135-05 & AS	000 PSI, 351.63 NG: STRAND C TM A709 GR36	MPA Tens AST	ile: 71000	9 PSI, 489.	53 MPA 9	6E): 243	.0/9in, 24.0/203	2mm Cont	sion ingex:								_	
Comment: ASTM A Mechanical Tast: Customer Requirem Somment: ASTM A SHAPE + SIZE F1/2 X 12 HEAT I.D. V013672 V013672 Customer Requirem Costomer Requirem Costomer Requirem Costomer Requirem Domment: ASTM A	Vield 510 bents CASTI 135–05 & AS CALVEF C	000 PSI, 351,63 NG: STRAND C TM AZ09 GR36 XT CITY GRADE A36 Mn P A36 Mn P O 010 000 PSI, 337,84 NG: STRAND C TM A709 GR32 NG: STRAND C TM A709 GR32	MPA Tens AST SPECIFICA ASTM A38 S S 027 2 MPA Tens AST MPA Tens AST	TION -05, A709 -05, A709 -	9 GR36, A1 0 GR36, A1 08 0 PSI, 482	53 MPA 9 5ME SA36 Cr M .04 00 74 MPA 1 83 MPA 1	6E1: 243 0 1 0 23 .00 6E1: 243	V Nb 01 <008 0 .0/8in, 24.0/200 .0/8in, 24.0/200	B N 002 .0073 .2mm Com	Sn .010 .00 scion Index:	Ti C Eqv 0100 34 5.35 5.35			SALES OI 9177198-	17 17	CUS 4500	T P.O. K	UMBER	
Comment: ASIM Mechanical Tast: Customer Requirer PRODUCED IN: SHAPE + SIZE FIZ X 12 HEAT I.D. Y013572 Mechanical Tost: Customer Requirer Costomer Requirer Costomer Requirer Costomer Requirer Costomer Requirer Costomer ASTM /	Vield 510 006-08 A/S CAST CALVER CALVER CALVER Vield 49 Vield 49 Although 40 Although 40 CAST Although 40 Although 40 Alth	000 PSI, 351.63 000 PSI, 351.63 010 PSI, 574.040 GPADE GPADE GPADE GPADE GPADE GPADE GPADE GPADE GPADE GPADE COLO	MPA Tens AST SFECIFICA ASTM A36 S S 022 2 MPA Tent AST MPA Tent AST MPA Tent AST ind manufactu haskar Yalam wality Directo eredau America	TION -05, A709 -05, A709 -0, A70	9 PSI, 489.	SME SA36 Cr M .04 00 74 MPA 1 83 MPA 1	0 V 23 00 %EF 24J	Utilin, 24 0/202 V Nb 01 <008 .0 0/8/n, 24.0/202 0/8/n, 24.0/202 THE AB AS CON	B N DO2 .0073 .2mm Com .2mm Com	Sn 010 00 sion Index sion Index sion Index	TI C Equ 100 34 5 35 5 35 5 35 5 35 5 35 5 35	HACTS F DADS OF	ROM THE COMPAN Metallurgi CallVER1	E ORIGINAL CALES OF	CHEMIC Manego	CUS 4500	T P.O. h	UMBER	

Figure B-36. Galvanized Wire, Test No. NYCC-3

Appendix C. Soil and Calibration Tests

Figure C-1. Soil Strength, Initial Calibration Tests, Test No. NYCC-1

Figure C-2. Static Soil Test, Test No. NYCC-1

Figure C-3. Soil Strength, Initial Calibration Tests, Test No. NYCC-2

Figure C-4. Static Soil Test, Test No. NYCC-2

Figure C-5. Dynamic Soil Strength Test, Test No. NYCC-3

Appendix D. Vehicle Deformation Records

Figure D-1. Floor Pan Deformation Data – Set 1, Test No. NYCC-1

Figure D-2. Floor Pan Deformation Data – Set 2, Test No. NYCC-1

Figure D-3. Occupant Compartment Deformation Data – Set 1, Test No. NYCC-1

Figure D-4. Occupant Compartment Deformation Data – Set 2, Test No. NYCC-1

Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. NYCC-1

Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. NYCC-1

VEHICLE PRE/POST CRUSH FLOORPAN - SET 1 Note: If impact is on driver side need to TEST: NYCC-2 VEHICLE: 2270P enter negative number for Y X Y 7 X Y 7 ٨X ٨Z ΔY POINT (in.) (in.) (in.) (in.) (in.) (in.) (in.) (m.) (in.) 1 24 1/2 12 1/2 0 24 1/4 13 1/2 0 - 1/4 1 0 2 26 1/2 18 1/2 -5 26 1/2 19 1/4 -4 3/4 0 3/4 1/4 -5 1/4 3 26 1/2 24 26 1/4 24 1/2 -5 1/4 - 1/4 1/2 0 4 25 3/4 29 1/2 -6 25 3/4 29 3/4 -6 0 1/4 0 18 9 1/2 -1 3/4 18 10 -2 0 1/2 - 1/4 5 19 1/4 14 1/2 -5 1/4 19 1/4 15 1/4 -5 1/2 3/4 - 1/4 6 0 7 20 1/2 21 3/4 -8 1/2 20 1/2 22 1/2 -8 1/2 0 3/4 0 8 20 1/4 28 3/4 -9 20 1/4 29 3/4 -8 3/4 0 1/4 1 9 13 1/4 4 1/4 -1 1/4 13 1/4 4 1/4 -1 1/4 0 0 0 10 15 10 -3 3/4 15 10 -4 0 0 - 1/4 16 3/4 11 14 -8 16 3/4 14 3/4 -8 1/4 0 3/4 - 1/4 1/4 16 3/4 20 1/4 -8 1/2 16 3/4 20 1/2 - 1/4 12 -8 3/4 0 13 16 3/4 25 1/4 -8 3/4 16 3/4 25 1/2 -9 0 1/4 - 1/4 16 1/2 -9 1/4 -9 1/4 0 1/4 14 29 1/2 16 1/2 29 3/4 0 - 1/4 8 1/2 15 7 -1 3/4 8 1/2 7 -2 0 0 16 11 11 1/2 -8 11 1/4 12 -8 1/4 1/4 1/2 - 1/4 17 11 17 1/4 -8 1/4 11 1/4 17 1/2 -8 1/2 1/4 1/4 - 1/4 11 23 1/4 -8 1/2 23 1/4 -8 3/4 1/4 0 - 1/4 18 11 1/4 19 11 29 1/2 -9 11 29 3/4 -9 0 1/4 0 20 5 3 1 3/4 5 2 3/4 -1 3/4 0 1/4 -3 1/2 5 3/4 7 3/4 -2 1/2 5 3/4 -2 1/2 21 0 1/4 8 0 22 6 1/4 15 -8 1/2 6 1/4 15 3/4 -8 1/2 0 3/4 0 6 1/2 20 3/4 6 1/2 0 1/4 -8 3/4 -8 3/4 23 21 0 24 28 6 1/2 -9 6 1/2 28 1/4 -9 0 1/4 0 25 1 1/2 6 1/4 -1 1/2 1 1/2 6 1/4 -1 1/2 0 0 0 13 1/4 13 1/4 0 - 1/4 3/4 -4 1/4 3/4 -4 1/2 0 26 1/4 - 1/4 27 1/2 21 -4 1/2 3/4 21 4 3/4 0 28 1/2 27 1/2 -4 3/4 1/2 27 1/4 -5 0 - 1/4 - 1/4 0 0 29 0 30 0 0 0 31 0 0 0 DASHBOARD 2 3 1 7 8 6 12 13 14 11 10 DOOR-DOOR 9 19 16 17 18 15 24 22 20 X 26 27 28

Figure D-7. Floor Pan Deformation Data – Set 1, Test No. NYCC-2

Ž

Figure D-8. Floor Pan Deformation Data – Set 2, Test No. NYCC-2

Figure D-9. Occupant Compartment Deformation Data – Set 1, Test No. NYCC-2

Figure D-10. Occupant Compartment Deformation Data – Set 2, Test No. NYCC-2

Figure D-11. Exterior Vehicle Crush (NASS) - Front, Test No. NYCC-2

Figure D-12. Exterior Vehicle Crush (NASS) - Side, Test No. NYCC-2

Figure D-13. Floor Pan Deformation Data – Set 1, Test No. NYCC-3

Figure D-14. Floor Pan Deformation Data – Set 2, Test No. NYCC-3

Figure D-15. Occupant Compartment Deformation Data – Set 1, Test No. NYCC-3

Figure D-16. Occupant Compartment Deformation Data – Set 2, Test No. NYCC-3

Figure D-17. Exterior Vehicle Crush (NASS) - Front, Test No. NYCC-3

Figure D-18. Exterior Vehicle Crush (NASS) - Side, Test No. NYCC-3

Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. NYCC-1

Figure E-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. NYCC-1

Figure E-2. Longitudinal Occupant Impact Velocity (DTS), Test No. NYCC-1

Figure E-3. Longitudinal Occupant Displacement (DTS), Test No. NYCC-1

February 19, 2013 MwRSF Report No. TRP-03-263-12

Figure E-4. 10-ms Average Lateral Deceleration (DTS), Test No. NYCC-1

Figure E-5. Lateral Occupant Impact Velocity (DTS), Test No. NYCC-1

February 19, 2013 MwRSF Report No. TRP-03-263-12

Figure E-6. Lateral Occupant Displacement (DTS), Test No. NYCC-1

Figure E-7. Acceleration Severity Index (DTS), Test No. NYCC-1

Figure E-8. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. NYCC-1

Figure E-9. Longitudinal Occupant Impact Velocity (EDR-3), Test No. NYCC-1

Figure E-10. Longitudinal Occupant Displacement (EDR-3), Test No. NYCC-1

Figure E-11. 10-ms Average Lateral Deceleration (EDR-3), Test No. NYCC-1

Figure E-12. Lateral Occupant Impact Velocity (EDR-3), Test No. NYCC-1

Figure E-13. Lateral Occupant Displacement (EDR-3), Test No. NYCC-1

Figure E-14. Acceleration Severity Index (EDR-3), Test No. NYCC-1

Figure E-15. Vehicle Angular Displacements (EDR-4), Test No. NYCC-1

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. NYCC-2

Figure F-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. NYCC-2

Figure F-2. Longitudinal Occupant Impact Velocity (DTS), Test No. NYCC-2

Figure F-3. Longitudinal Occupant Displacement (DTS), Test No. NYCC-2

Figure F-4. 10-ms Average Lateral Deceleration (DTS), Test No. NYCC-2

Figure F-5. Lateral Occupant Impact Velocity (DTS), Test No. NYCC-2

Figure F-6. Lateral Occupant Displacement (DTS), Test No. NYCC-2

Figure F-7. Vehicle Angular Displacements (DTS), Test No. NYCC-2

Figure F-8. Acceleration Severity Index (DTS), Test No. NYCC-2

Figure F-9. 10-ms Average Lateral Deceleration (EDR-3), Test No. NYCC-2

Figure F-10. Longitudinal Occupant Impact Velocity (EDR-3), Test No. NYCC-2

Figure F-11. Longitudinal Occupant Displacement (EDR-3), Test No. NYCC-2

Figure F-12. 10-ms Average Lateral Deceleration (EDR-3), Test No. NYCC-2

Figure F-13. Lateral Occupant Impact Velocity (EDR-3), Test No. NYCC-2

Figure F-14. Lateral Occupant Displacement (EDR-3), Test No. NYCC-2

Figure F-15. Acceleration Severity Index (EDR-3), Test No. NYCC-2

Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. NYCC-3

Figure G-1. 10-ms Average Longitudinal Deceleration (DTS), Test No. NYCC-3

Figure G-2. Longitudinal Occupant Impact Velocity (DTS), Test No. NYCC-3

Figure G-3. Longitudinal Occupant Displacement (DTS), Test No. NYCC-3

Figure G-4. 10-ms Average Lateral Deceleration (DTS), Test No. NYCC-3

Figure G-5. Lateral Occupant Impact Velocity (DTS), Test No. NYCC-3

Figure G-6. Lateral Occupant Displacement (DTS), Test No. NYCC-3

Figure G-7. Vehicle Angular Displacements (DTS), Test No. NYCC-3

Figure G-8. Acceleration Severity Index (DTS), Test No. NYCC-3

Figure G-9. 10-ms Average Longitudinal Deceleration (DTS SLICE), Test No. NYCC-3

Figure G-10. Longitudinal Occupant Impact Velocity (DTS SLICE), Test No. NYCC-3

Figure G-11. Longitudinal Occupant Displacement (DTS SLICE), Test No. NYCC-3

Figure G-12. 10-ms Average Lateral Deceleration (DTS SLICE), Test No. NYCC-3

Figure G-13. Lateral Occupant Impact Velocity (DTS SLICE), Test No. NYCC-3

Figure G-14. Lateral Occupant Displacement (DTS SLICE), Test No. NYCC-3

Figure G-15. Vehicle Angular Displacements (DTS SLICE), Test No. NYCC-3

Figure G-16. Acceleration Severity Index (DTS SLICE), Test No. NYCC-3

Figure G-17. 10-ms Average Longitudinal Deceleration (EDR-3), Test No. NYCC-3

280

Figure G-18. Longitudinal Occupant Impact Velocity (EDR-3), Test No. NYCC-3

Figure G-19. Longitudinal Occupant Displacement (EDR-3), Test No. NYCC-3

282

Figure G-20. 10-ms Average Lateral Deceleration (EDR-3), Test No. NYCC-3

Figure G-21. Lateral Occupant Impact Velocity (EDR-3), Test No. NYCC-3

Figure G-22. Lateral Occupant Displacement (EDR-3), Test No. NYCC-3

Figure G-23. Acceleration Severity Index (EDR-3), Test No. NYCC-3

END OF DOCUMENT