Research Update

Roger Bligh, Ph.D., P.E.

Senior Engineer TTI - Roadside Safety & Physical Security Division Ph.: 979-845-4377 E-Mail: <u>R-Bligh@tti.tamu.edu</u>

ime and Resources

Roadside Safety Pooled Fund Program – Fall Meeting 2018 Denver, Colorado September 18th 2018

Recently Completed Projects

- Keyed-in Single Slope Barrier
- MASH Testing of F-shape TCB Pinned on Concrete
- 31" BIB Compatible with MGS Guardrail

TTI Researcher: Nauman Sheikh Technical Representative: Kurt Brauner (LADOTD)

- Need
 - TTI tested 75-ft segment of 42" tall SSB keyed into 1" asphalt (for TxDOT)
 - MASH TL-4, Test 4-11 was successful
 - Determine if the keyed-in barrier will perform acceptably with shorter segment length
- Objective
 - Using past installation, perform MASH Test 4-12
 with a 40-ft segment length

- Test Installation
 - 120-ft installation with impact on the 40-ft segment
 - No connections between adjacent segments

• Test Installation

- Results
 - The 40-ft keyed-in SSB successfully passed MASH Test 4-12
 - Max. dynamic deflection = 5.8 inches
 - Permanent deflection = 0.75 inch
 - MASH Tests 4-10 (small car) and 4-11 (pickup) were not performed due to successful past testing with SSB

- Conclusions
 - 40-ft segment keyed-in SSB is considered MASH TL-4 compliant
 - Greater than 40-ft segment lengths can also be used
 - Shorter than 40-ft segment lengths will need additional testing
- Future Tasks
 - Final report is currently under internal review and will be submitted shortly

MASH Testing of F-shape TCB Pinned on Concrete

TTI Researcher: Nauman Sheikh Technical Representative: Kurt Brauner (LADOTD)

- Need
 - Pinned-down anchored barrier system's original test with TCB pinned on concrete was performed under NCHRP Report 350
 - All subsequent transitions and applications were tested under MASH
 - Need to evaluate the TCB pinned on concrete under MASH
 - Last year's MASH Test 3-11 failed due to pavement concrete failing under impact, causing the barrier to topple

me and Resources

 Using some offset from the edge of pavement will be helpful in preventing concrete failure

- Objectives
 - Determine a suitable offset from the edge of the concrete pavement
 - Perform MASH Test 3-11 of the F-shape TCB pinned to concrete with the offset
- Test Installation
 - 100-ft installation with 12.5-ft segments
 - Pin-and-loop connection (2 sets of 3 loops)
 - 8-inch thick unreinforced concrete pavement
 - A 9-inch offset was determined to be suitable for the design to meet MASH TL-3 requirement

• Test Installation

- Conclusions
 - F-shape TCB with pin-and-loop connection successfully passed MASH Test 3-11
 - Barrier deflection
 - Dynamic = 22.1 inches
 - Permanent = 9.0 inches
 - Passed MASH Occupant Risk Criteria
- Final report is currently under internal review and will be submitted shortly

me and Resourc

31-INCH BURIED-IN-BACKSLOPE TERMINAL COMPATIBLE WITH MGS GUARDRAIL

TTI Researcher: Chiara Dobrovolny Technical Representative: Jeff Jeffers (AKDOT)

BIB Design

- Resemble 350 tested system
- > 31" BIB height to paved roadway
- Splices off posts (compatible with MGS)

V-Ditch Details

4:1 Foreslope2:1 Backslope13:1 Guardrail flare

Test Installation

es, Time and Resour Time and Resources

Test 3-35

3-35 Results

Occupant Risk Values

Longitudinal OIV	17.4 ft/s
Lateral OIV	16.4 ft/s
Longitudinal Ridedown	5.4 g
Lateral Ridedown	8.8 g

Vehicle Stability

Maximum Yaw Angle	36°
Maximum Pitch Angle	3°
Maximum Roll Angle	6°

Test Article Deflections

Dynamic	4.3	ft
Permanent	4.3	ft
Working Width	5.2	ft
Height of Working Width	4.6	ft

Test 3-34

Texas A&M Transportation Institute

3-34 Results

Occupant Risk Values

Longitudinal OIV	14.1 ft/s
Lateral OIV	20.3 ft/s
Longitudinal Ridedown	7.5 g
Lateral Ridedown	8.5 g

Vehicle Stability

Maximum Yaw Angle	44°
Maximum Pitch Angle	6°
Maximum Roll Angle	17°

Test Article Deflections

Dynamic	1.7	ft
Permanent	0.5	ft
Working Width	2.1	ft
Height of Working Width	2.7	ft

ime and Resources

Conclusions

- Designed and tested a 31" BIB w/ rubrail compatible with MGS per MASH TL-3 conditions
- System IS MASH compliant when installed on V-ditch on 4:1 or flatter foreslope and 2:1 backslope

Additional Investigations

- Investigate implementation of BIB system on different foreslope /backslope conditions – as well as flat bottom ditch rather then V-ditch
- Need for BIB on 6:1 foreslope WITHOUT rubrail?

