

Research Project Number TPF-5(193) Supplement #88

PERFORMANCE EVALUATION OF NEW JERSEY'S PORTABLE CONCRETE BARRIER WITH A FREE-STANDING CONFIGURATION AND GROUTED TOES – TEST NO. NJPCB-4

Submitted by

Surajkumar K. Bhakta, M.S.M.E. Former Graduate Research Assistant

Ronald K. Faller, Ph.D., P.E. Research Professor MwRSF Director

Robert W. Bielenberg, M.S.M.E., E.I.T. Research Engineer

Karla A. Lechtenberg, M.S.M.E., E.I.T. Research Engineer

John D. Reid, Ph.D. Professor

Erin L. Urbank, B.A. Research Communication Specialist

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 Outdoor Test Site 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

NEW JERSEY DEPARTMENT OF TRANSPORTATION

1035 Parkway Avenue, Trenton, New Jersey 08625

MwRSF Research Report No. TRP-03-371-18

December 12, 2018

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-371-18	2.		3. Recipient's Accession No.	
4. Title and Subtitle Performance Evaluation of New Jersey's Portable Concrete Barrier with a Free-			5. Report Date December 12, 2018	
Standing Configuration and Grouted Toes – Test No. NJPCB-4			6.	
7. Author(s)			8. Performing Organization Report No.	
Bhakta, S.K., Lechtenberg, K.A., Faller, R.K., Reid, J.D., Bielenberg, R.W., and Urbank, E.L.			TRP-03-371-18	
9. Performing Organization Name Midwest Roadside Safety Facility Nebraska Transportation Center University of Nebraska-Lincoln			10. Project/Task/Work Unit No.	
Main Office: Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 Outdoor Test Site: 4630 N.W. 36th Street Lincoln, Nebraska 68524		11. Contract © or Grant (G) No. TPF-5(193) Supplement #88		
12. Sponsoring Organization Name and Address New Jersey Department of Transportation			13. Type of Report and Period Covered Final Report: 2015 -2018	
1035 Parkway Avenue Trenton, New Jersey 08625			14. Sponsoring Agency Code	

15. Supplementary Notes

Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration.

16. Abstract

This report documents a full-scale crash test conducted in support of a study to investigate the performance of New Jersey Department of Transportation's (NJDOT's) Precast Concrete Curb, Construction Barrier, which will be referred as portable concrete barrier (PCB) in various configurations. This represents the fourth system as part of this study.

The primary objective of this research effort was to evaluate the safety performance of the NJDOT PCB, Type 4 (Alternative B) with a free-standing configuration and grouted toes, corresponding to joint class B in the 2013 NJDOT *Roadway Design Manual*. Barrier nos. 1 and 10 were anchored to a concrete tarmac through the pin anchor recesses with nine 1-in. (25-mm) diameter by 15-in. (381-mm) long ASTM A36 steel pins inserted into 1½-in. (32-mm) diameter drilled holes in the concrete tarmac. Non-shrink grout wedges were placed at the toe of each barrier segment in every joint between adjacent barrier segments. The barrier was evaluated according to the Test Level 3 (TL-3) criteria set forth in the *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016). The research study included one full-scale vehicle crash test with a 2270P pickup truck. Following the successful redirection of the pickup truck, the safety performance of the system was determined to be acceptable according to the test designation no. 3-11 evaluation criteria specified in MASH 2016. The 1100C small car crash test was deemed unnecessary due to previous testing. The barrier successfully met MASH 2016 TL-3 criteria. This report is the fourth of nine documents in the nine-test series.

	17. Document Analysis/Descripto	ors	18. Availability Statement		
Highway Safety, Roadside Appurtenances, Crash Test,					
Compliance Test, MASH 2016, Longitudinal Barrier, Portable			No restrictions. Document available from: National		
ı	Concrete Barrier, PCB, Free-stand	ding, Grout Wedges, Pinned,	Technical Information Services, Springfield, Virginia		
and Barrier Curb			22161		
	19. Security Class (this report) 20. Security Class (this page)		21. No. of Pages	22. Price	
L	Unclassified	Unclassified	125		

DISCLAIMER STATEMENT

This report was completed with funding from the New Jersey Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the New Jersey Department of Transportation nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Dr. Jennifer Schmidt, Research Assistant Professor.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) New Jersey Department of Transportation for sponsoring this project and (2) MwRSF personnel for constructing the barrier and conducting the crash test.

Acknowledgement is also given to the following individuals who made a contribution to the completion of this research project.

Midwest Roadside Safety Facility

- J.C. Holloway, M.S.C.E., E.I.T., Assistant Director Physical Testing Division
- J.D. Schmidt, Ph.D., P.E., Research Assistant Professor
- C.S. Stolle, Ph.D., Research Assistant Professor
- S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Engineer
- M. Asadollahi Pajouh, Ph.D., former Post-Doctoral Research Associate
- S.A. Ranjha, Ph.D., former Post-Doctoral Research Associate
- A.T. Russell, B.S.B.A., Testing and Maintenance Technician II
- E.W. Krier, B.S., Construction and Testing Technician II
- S.M. Tighe, Construction and Testing Technician I
- D.S. Charroin, Construction and Testing Technician I
- M.A. Rasmussen, Construction and Testing Technician I
- M.T. Ramel, B.S.C.M., former Construction and Testing Technician I
- R.M. Novak, Construction and Testing Technician I
- J.E. Kohtz, B.S.M.E., CAD Technician

Undergraduate and Graduate Research Assistants

New Jersey Department of Transportation

Dave Bizuga, former Senior Executive Manager, Roadway Design Group 1 Giri Venkiteela, Research Project Manager, NJDOT Bureau of Research Hung Tang, Design Standards Bureau, Roadway Standards Unit Lee Steiner, Project Engineer, Bureau of Traffic Engineering

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vi
LIST OF TABLES	ix
1 INTRODUCTION	
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 2.1 Test Requirements 2.2 Evaluation Criteria	3
3 DESIGN DETAILS	6
4 TEST CONDITIONS	
5 FULL-SCALE CRASH TEST NO. NJPCB-4	

7 COMPARISON TO	TEST NO. NYTCB-2	58
8 MASH IMPLEME	NTATION	61
9 REFERENCES		63
10 APPENDICES		65
Appendix A.	NJDOT PCB Standard Plans	66
Appendix B.	Material Specifications	72
Appendix C.	Concrete Tarmac Strength	96
Appendix D.	Vehicle Center of Gravity Determination	99
Appendix E.	Vehicle Deformation Records	101
Appendix F.	Accelerometer and Rate Transducer Data Plots, Test No. NJPCB-4	108

LIST OF FIGURES

Figure 1. Test Installation Layout, Test No. NJPCB-4	7
Figure 2. PCB Pin Anchor Details, Test No. NJPCB-4	
Figure 3. PCB Pin Anchor Recess Locations, Test No. NJPCB-4	9
Figure 4. PCB Details, Test No. NJPCB-4	10
Figure 5. PCB Reinforcement Details, Test No. NJPCB-4	11
Figure 6. PCB Reinforcement Details – End View, Test No. NJPCB-4	12
Figure 7. Connection Key Assembly Details, Test No. NJPCB-4	
Figure 8. Connection Key Component Details, Test No. NJPCB-4	14
Figure 9. PCB Connection Socket Details, Test No. NJPCB-4	15
Figure 10. PCB Connection Socket Component Details, Test No. NJPCB-4	16
Figure 11. Connection Key Placement Details, Test No. NJPCB-4	17
Figure 12. PCB Reinforcement Details, Test No. NJPCB-4	
Figure 13. General Notes, Test No. NJPCB-4	
Figure 14. Bill of Materials, Test No. NJPCB-4	20
Figure 15. NJDOT PCB with Free-Standing Configuration and Grouted Toes Test	
Installation, Test No. NJPCB-4	21
Figure 16. PCB Connection Key, Connection Socket, and Grout at Toes Between Barriers,	
Test No. NJPCB-4	
Figure 17. PCB Pin Anchor Recesses – Barrier Nos. 1 and 10, Test No. NJPCB-4	
Figure 18. Test Vehicle, Test No. NJPCB-4	
Figure 19. Test Vehicle's Interior Floorboards, Test No. NJPCB-4	
Figure 20. Vehicle Dimensions, Test No. NJPCB-4	
Figure 21. Target Geometry, Test No. NJPCB-4	
Figure 22. Camera Locations, Speeds, and Lens Settings, Test No. NJPCB-4	31
Figure 23. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No.	2.5
NJPCB-4	
Figure 24. Summary of Test Results and Sequential Photographs, Test No. NJPCB-4	
Figure 25. Additional Sequential Photographs, Test No. NJPCB-4	
Figure 26. Additional Sequential Photographs, Test No. NJPCB-4	
Figure 27. Documentary Photographs, Test No. NJPCB-4	
Figure 28. Impact Location, Test No. NJPCB-4	
Figure 29. Vehicle Final Position and Trajectory Marks, Test No. NJPCB-4	43
Figure 30. System Damage – Front, Back, Upstream, and Downstream End, Test No.	4.4
NJPCB-4	
Figure 31. Barrier Nos. 2 and 3 – Traffic and Back Side Damage, Test No. NJPCB-4	
Figure 32. Barrier Nos. 4 and 5 Damage, Test No. NJPCB-4	
Figure 33. Barrier No. 4 – Traffic and Back Side Damage, Test No. NJPCB-4	
Figure 34. Barrier No. 5 – Traffic and Back Side Damage, Test No. NJPCB-4	
Figure 35. Barrier No. 6 - Traffic and Back Side Damage, Test No. NJPCB-4	
Figure 36. Barrier Nos. 7 and 8 – Back Side Damage, Test No. NJPCB-4	
Figure 37. Vehicle Damage, Test No. NJPCB-4	
Figure 38. Vehicle Damage, Test No. NJPCB-4 Figure 39. Vehicle Windshield, Quarter Panel, and Tailgate Damage, Test No. NJPCB-4	
Figure 40. Occupant Compartment Deformation, Test No. NJPCB-4Figure 41. Undercarriage Damage, Test No. NJPCB-4	
1 iguic +1. Onucicailiage Dailiage, 1 est ivo. ivil CD-4	

Figure 42. Deflection Comparisons – Test Nos. NJPCB-3, NJPCB-4, and NYTCB-2	
Figure A-1. NJDOT PCB Standard Plans	
Figure A-2. NJDOT PCB Standard Plans	
Figure A-3. NJDOT PCB Standard Plans	69
Figure A-4. NJDOT PCB Standard Plans	70
Figure A-5. NJDOT PCB Standard Plans	71
Figure B-2. Concrete Barrier Segment – Concrete Strength, Test No. NJPCB-4	74
Figure B-3. Anchor Pins Material Certificate, Test No. NJPCB-4	75
Figure B-4. Rebar No. 4 Material Certificate, Test No. NJPCB-4	
Figure B-5. Rebar No. 4 Material Certificate, Test No. NJPCB-4	77
Figure B-6. Rebar No. 4 Material Certificate, Test No. NJPCB-4	78
Figure B-7. Rebar No. 4 Material Certificate, Test No. NJPCB-4	
Figure B-8. Rebar No. 4 Material Certificate, Test No. NJPCB-4	
Figure B-9. Rebar No. 4 Material Certificate, Test No. NJPCB-4	
Figure B-10. Rebar No. 6 Material Certificate, Test No. NJPCB-4	
Figure B-11. Rebar No. 6 Material Certificate, Test No. NJPCB-4	
Figure B-12. Steel Tube Material Certificate, Test No. NJPCB-4	
Figure B-13. Steel Tube Material Certificate, Test No. NJPCB-4	
Figure B-14. Steel Tube Material Certificate, Test No. NJPCB-4	
Figure B-15. Steel Tube Material Test Certificate, Test No. NJPCB-4	
Figure B-16. Steel Tube Material Certificate, Test No. NJPCB-4	
Figure B-17. Steel Tube Material Certificate, Test No. NJPCB-4	
Figure B-18. 2-in. × ¹ / ₄ -in. (51-mm × 6-mm) Bent Steel Plate, Test No. NJPCB-4	
Figure B-19. ½-in. (13-mm) Thick Steel Plate Material Certificate	
Figure B-20. 1/2-in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-4	92
Figure B-21. Non-Shrink Grout Specifications, Test No. NJPCB-4	
Figure B-22. Non-Shrink Grout Specifications, Test No. NJPCB-4	94
Figure B-23. Non-shrink Grout Compressive Test Certificate, Test No. NJPCB-4	
Figure C-1. Concrete Tarmac Strength Test, Test No. NJPCB-4	
Figure C-2. Concrete Tarmac Strength Test, Test No. NJPCB-4	98
Figure D-1. Vehicle Mass Distribution, Test No. NJPCB-4	
Figure E-1. Floor Pan Deformation Data – Set 1, Test No. NJPCB-4	102
Figure E-2. Floor Pan Deformation Data – Set 2, Test No. NJPCB-4	
Figure E-3. Occupant Compartment Deformation Data – Set 1, Test No. NJPCB-4	
Figure E-4. Occupant Compartment Deformation Data – Set 2, Test No. NJPCB-4	105
Figure E-5. Exterior Vehicle Crush (NASS) - Front, Test No. NJPCB-4	106
Figure E-6. Exterior Vehicle Crush (NASS) - Side, Test No. NJPCB-4	
Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. NJPCB-4	
Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. NJPCB-4	110
Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. NJPCB-4	111
Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. NJPCB-4	112
Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. NJPCB-4	
Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. NJPCB-4	
Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. NJPCB-4	115
Figure F-8. Acceleration Severity Index (SLICE-1), Test No. NJPCB-4	116
Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. NJPCB-4	117
Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. NJPCB-4	118

Figure F-11. Longitudinal Occupant Displacement (SLICE-2), Test No. NJPCB-4	119
Figure F-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. NJPCB-4	120
Figure F-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. NJPCB-4	121
Figure F-14. Lateral Occupant Displacement (SLICE-2), Test No. NJPCB-4	122
Figure F-15. Vehicle Angular Displacements (SLICE-2), Test No. NJPCB-4	123
Figure F-16. Acceleration Severity Index (SLICE-2), Test No. NJPCB-4	124

LIST OF TABLES

Table 1. 2013 NJDOT Roadway Design Manual PCB Guidance [1]	1
Table 2. Current 2015 NJDOT Roadway Design Manual PCB Guidance [2]	1
Table 3. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers	
Table 4. MASH 2016 Evaluation Criteria for Longitudinal Barrier	
Table 5. Weather Conditions, Test No. NJPCB-4	
Table 6. Sequential Description of Impact Events, Test No. NJPCB-4	
Table 7. Maximum Occupant Compartment Deformations by Location	
Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NJPCB-4	
Table 9. Summary of Safety Performance Evaluation	
Table 10. Comparison of Free-Standing Systems	
Table B-1. Bill of Materials, Test No. NJPCB-4	

1 INTRODUCTION

1.1 Background

The New Jersey Department of Transportation (NJDOT) currently uses a New Jersey shape, Precast Concrete Curb, Concrete Barrier, which will be referred to as portable concrete barrier (PCB), with a vertical, I-beam connection pin to attach barriers end to end within their work zones and construction areas. The 2013 NJDOT *Roadway Design Manual* [1] provided guidance on allowable barrier deflections for various classes of PCB joint treatments, as shown in Table 1. The current 2015 NJDOT *Roadway Design Manual* [2] provides guidance on allowable deflections for various connection types, as shown in Table 2.

Table 1. 2013 NJDOT Roadway Design Manual PCB Guidance [1]

Joint Class	Use	Joint Treatment
A	Allowable movement over 16 to 24 inches	Connection Key only
В	Allowable movement over 11 to 16 inches	Connection Key and grout in every joint
С	Allowable movement of 11 inches	Connection Key and grout in every joint and pin every other unit. In units to be anchored, pin should be required in every recess
D	No allowable movement (i.e., bridge parapet)	Connection Key and grout in every joint and bolt every anchor pocket hole in every unit

Table 2. Current 2015 NJDOT Roadway Design Manual PCB Guidance [2]

Connection Type	Use	Joint Treatment*
A	Maximum allowable deflection of 41 inches	Connection Key and barrier end sections fully pinned
В	Maximum allowable deflection of 28 inches (Cannot be used with traffic on both sides of the barrier.)	Connection Key, 6" by 6" box beam, and barrier end sections fully pinned
С	Maximum allowable deflection of 11 inches	Connection Key, construction side of all sections pinned, and barrier end sections fully pinned

^{*} Barrier end sections fully pinned – first and last barrier segments of the entire run regardless of connection type have pins in every anchor recess on both sides.

The guidance provided in both the 2013 and 2015 Roadway Design Manual was based on test data obtained from previous testing standards, which needs to be updated to be consistent with current crash testing standards and a changing vehicle fleet. Crash testing of other PCB systems under the Test Level 3 (TL-3) criteria of the Manual for Assessing Safety Hardware, Second Edition (MASH 2016) [3] has indicated that dynamic barrier deflections can increase significantly when compared to dynamic deflections based on older crash test data. Thus, a need exists to

investigate the performance of the NJDOT PCB system in various configurations in order to provide updated design guidance. The NJDOT PCB standard plans are shown in Appendix A.

1.2 Objective

The objective of this research effort was to evaluate the safety performance of NJDOT's PCB, Type 4 (Alternative B) system with a free-standing configuration and grouted toes, corresponding to joint class B in the 2013 NJDOT *Roadway Design Manual* [1]. The system was to be evaluated according to the Test Level 3 (TL-3) criteria of the *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) [3].

1.3 Scope

The research objective was achieved through completion of several tasks. One full-scale crash test was conducted on the PCB system according to MASH 2016 test designation no. 3-11. Next, the full-scale vehicle crash test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the PCB system.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Longitudinal barriers, such as PCBs, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [3]. Note that there is no difference between MASH 2009 [4] and MASH 2016 for most longitudinal barriers, such as the PCB system tested in this project, except that additional occupant compartment deformation measurements are required by MASH 2016. According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 3. However, only the 2270P crash test was deemed necessary as other prior small car tests were used to support a decision to deem the 1100C crash test not critical.

	Test		Vehicle	Impact C	onditions	
Test Article	Designation No.	Test Vehicle	Weight, lb (kg)	Speed, mph (km/h)	Angle, deg.	Evaluation Criteria ¹
Longitudinal	3-10	1100C	2,420 (1,100)	62 (100)	25	A,D,F,H,I
Barrier	3-11	2270P	5,000 (2,268)	62 (100)	25	A,D,F,H,I

¹ Evaluation criteria explained in Table 4.

In test no. 7069-3, a rigid, F-shape, concrete bridge rail was successfully impacted by a small car weighing 1,800 lb (816 kg) at 60.1 mph (96.7 km/h) and 21.4 degrees according to the American Association of State Highway and Transportation Officials (AASHTO) *Guide Specifications for Bridge Railings* [5-6]. In the same manner, test nos. CMB-5 through CMB-10, CMB-13, and 4798-1 showed that rigid, New Jersey, concrete safety shape barriers struck by small cars have been shown to meet safety performance standards [7-8]. In addition, in test no. 2214NJ-1, a rigid, New Jersey, ½-section, concrete safety shape barrier was impacted by a passenger car weighing 2,579 lb (1,170 kg) at 60.8 mph (97.8 km/h) and 26.1 degrees according to the TL-3 standards set forth in MASH 2009 [9]. Furthermore, temporary, New Jersey safety shape, concrete median barriers have experienced only slight barrier deflections when impacted by small cars and behave similarly to rigid barriers as seen in test no. 47 [10]. As such, the 1100C passenger car test was deemed not critical for testing and evaluating this PCB system.

It should be noted that the test matrix detailed herein represents the researchers' best engineering judgement with respect to the MASH 2016 safety requirements and their internal evaluation of critical tests necessary to evaluate the crashworthiness of the barrier system. However, the recent switch to new vehicle types as part of the implementation of the MASH 2016 criteria and the lack of experience and knowledge regarding the performance of the new vehicle types with certain types of hardware could result in unanticipated barrier performance. Thus, any

tests within the evaluation matrix deemed non-critical may eventually need to be evaluated based on additional knowledge gained over time or revisions to the MASH 2016 criteria.

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the PCB system to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 4 and defined in greater detail in MASH 2016. The full-scale vehicle crash test documented herein was conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

Table 4. MASH 2016 Evaluation Criteria for Longitudinal Barrier

Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.				
Occupant Risk	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.				
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.				
	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				
		Occupant Impact Velocity Limits				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)		
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits: Occupant Ridedown Acceleration Limits				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		

3 DESIGN DETAILS

The test installation consisted of ten 20-ft (6.1-m) long NJDOT PCBs with a free-standing configuration and grouted toes, as shown in Figures 1 through 14. This system uses NJDOT barriers, Type 4 (Alternative B) with joint class B, as specified in the 2013 NJDOT *Roadway Design Manual*. Photographs of the test installation are shown in Figures 15 through 17. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

The concrete mix for the barrier sections required a minimum 28-day compressive strength of 3,700 psi (25.5 MPa). A minimum concrete cover of 1½ in. (38 mm) was used along all rebar in the barrier. All of the steel reinforcement in the barrier was ASTM A615 Grade 60 rebar and consisted of four No. 6 longitudinal bars, eight No. 4 bars for the vertical stirrups, four No. 6 lateral bars, and nine No. 4 bars for the anchor hole reinforcement loops. The section reinforcement details are shown in Figures 5 and 6.

The barrier sections used a connection key, as shown in Figures 7 through 11, and 16. The connection key assembly consisted of ½-in. (13-mm) thick ASTM A36 steel plates welded together to form the key shape. A connection socket was configured at each end of the barrier section, as shown in Figures 2, 16, and 17. The connection socket consisted of three ASTM A36 steel plates welded on the sides of ASTM A500 Grade B or C steel tube, as shown in Figures 9 and 10. The connection key was inserted into the steel tubes of two adjoining PCBs to form the connection, as shown in Figure 10.

Barrier nos. 1 and 10 were anchored to the concrete tarmac through the pin anchor recesses with nine 1-in. (25-mm) diameter by 15-in. (381-mm) long, ASTM A36 steel pins inserted into 1½-in. (32-mm) diameter drilled holes in the concrete tarmac, as shown in Figures 1 and 17. The steel pins were embedded to a depth of 5 in. (127 mm), as shown in Figure 1. During installation, the barrier segments were pulled in a direction parallel to their longitudinal axes, and slack was removed from all joints. After slack was removed from all the joints, 1½-in. (32-mm) diameter holes were drilled for pin anchors at pin recess locations. Five samples of concrete tarmac were tested from five different locations of MwRSF's Outdoor Test Site. The concrete tarmac had a compressive strength between 5,970 and 7,040 psi (41.2 and 48.5 MPa), as shown in Appendix C. Non-shrink grout wedges were placed at the toe of each barrier segment in every joint between adjacent barrier segments on both traffic and back sides, as shown in Figures 1, 2, and 16. The grout wedges consisted of a grout mix with a minimum 1-day compressive strength of 1,000 psi (6.9 MPa).

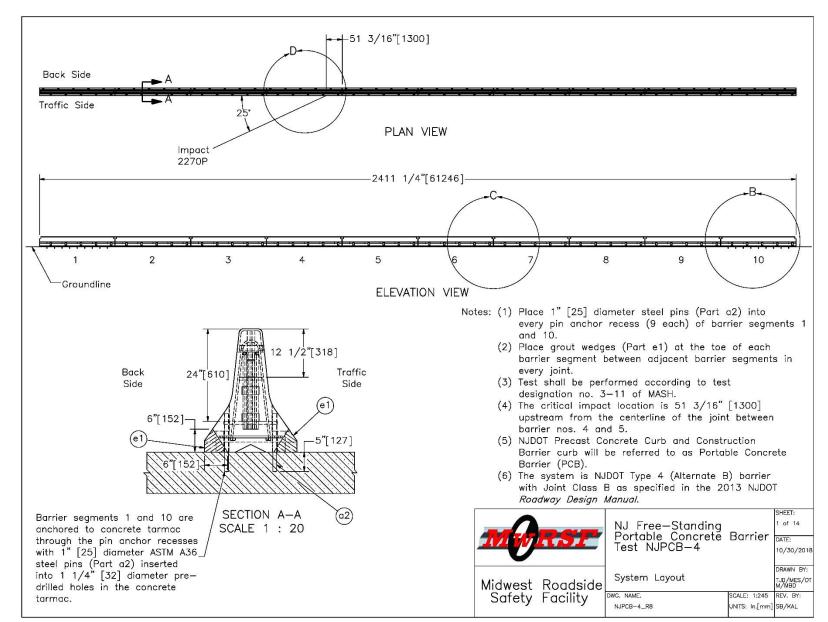


Figure 1. Test Installation Layout, Test No. NJPCB-4

7

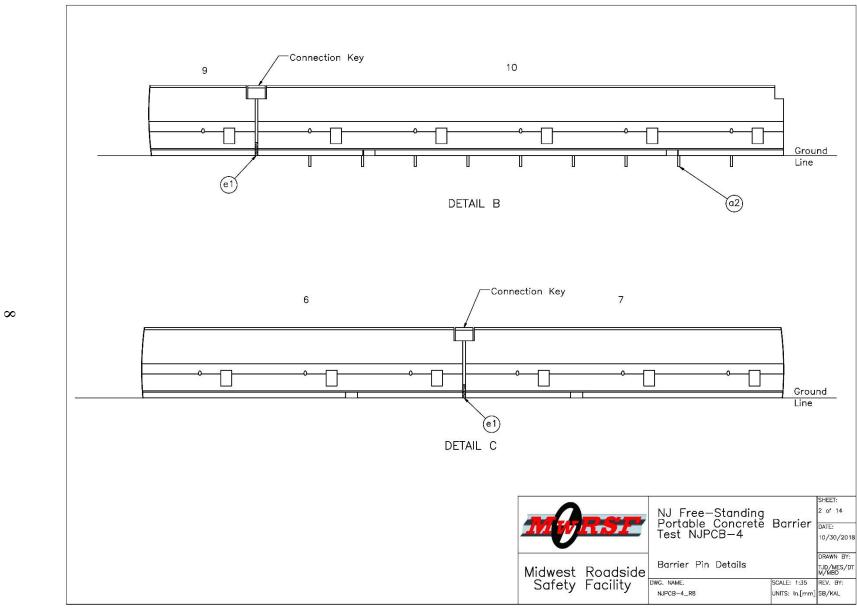


Figure 2. PCB Pin Anchor Details, Test No. NJPCB-4

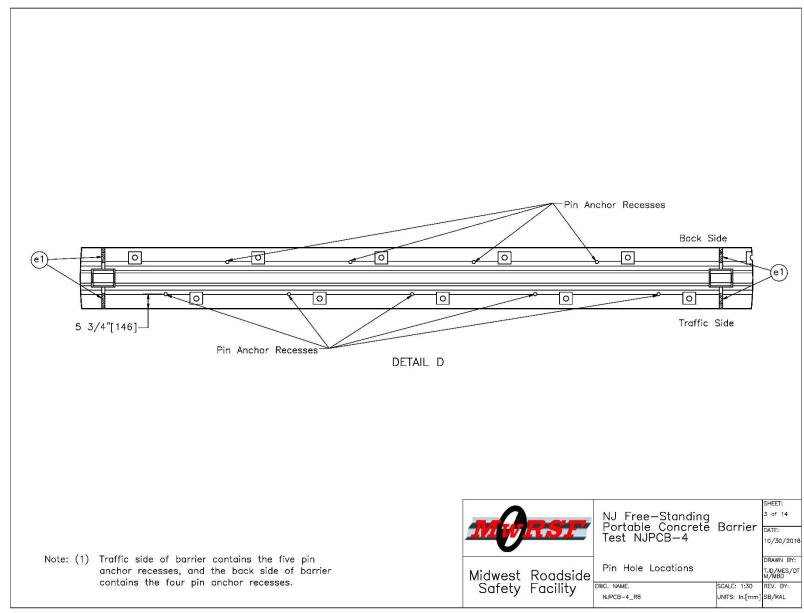


Figure 3. PCB Pin Anchor Recess Locations, Test No. NJPCB-4

9

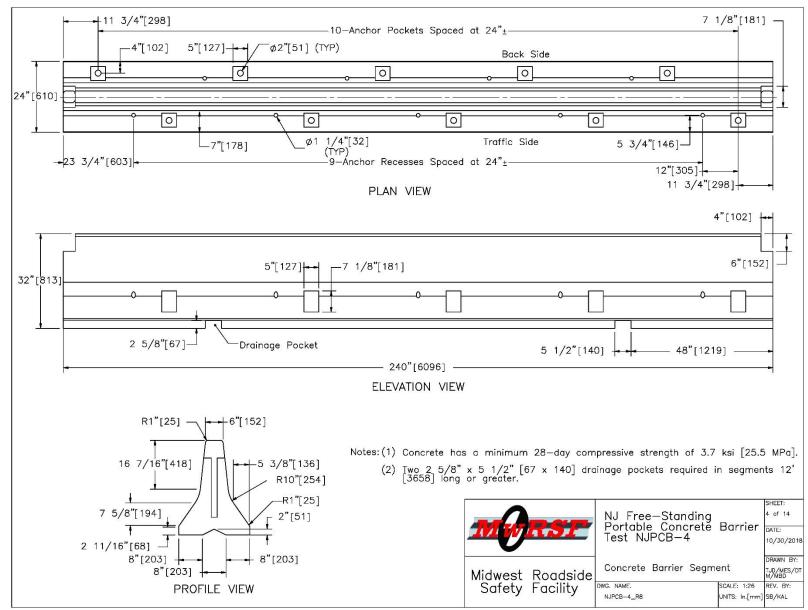


Figure 4. PCB Details, Test No. NJPCB-4

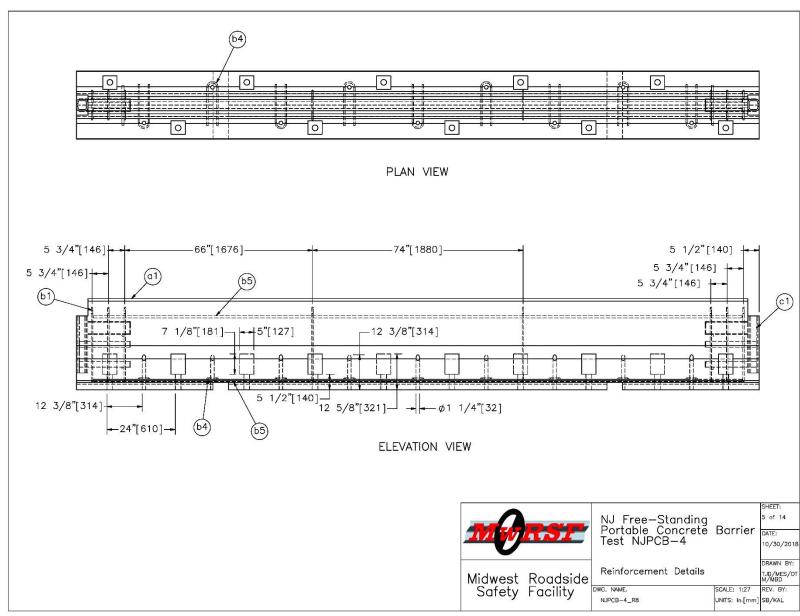


Figure 5. PCB Reinforcement Details, Test No. NJPCB-4

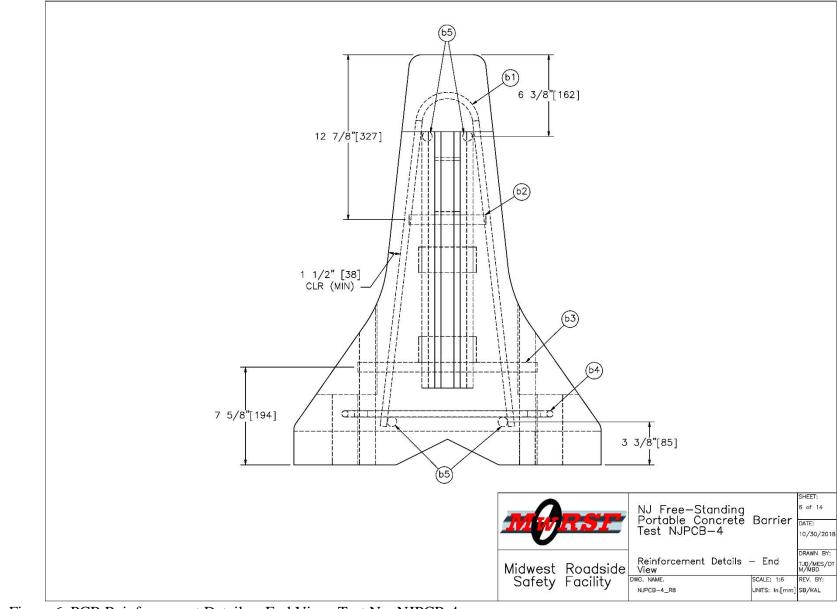


Figure 6. PCB Reinforcement Details – End View, Test No. NJPCB-4

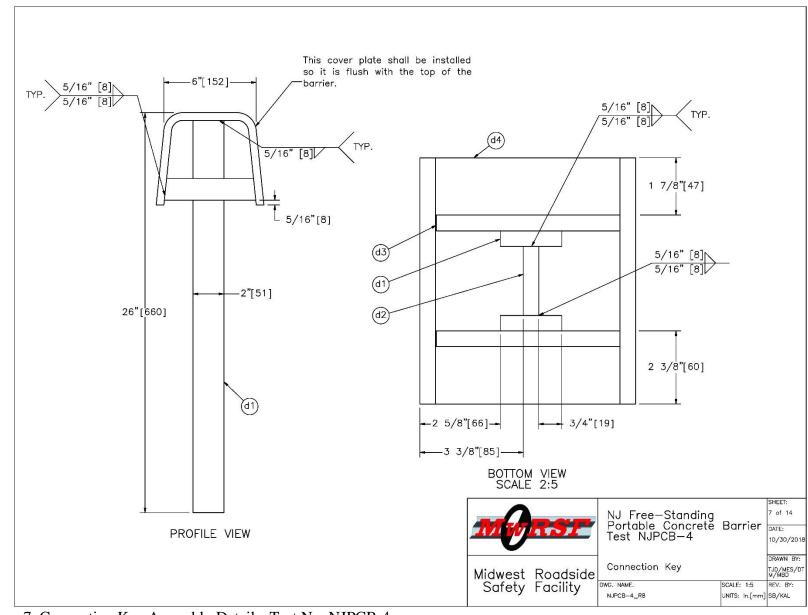


Figure 7. Connection Key Assembly Details, Test No. NJPCB-4

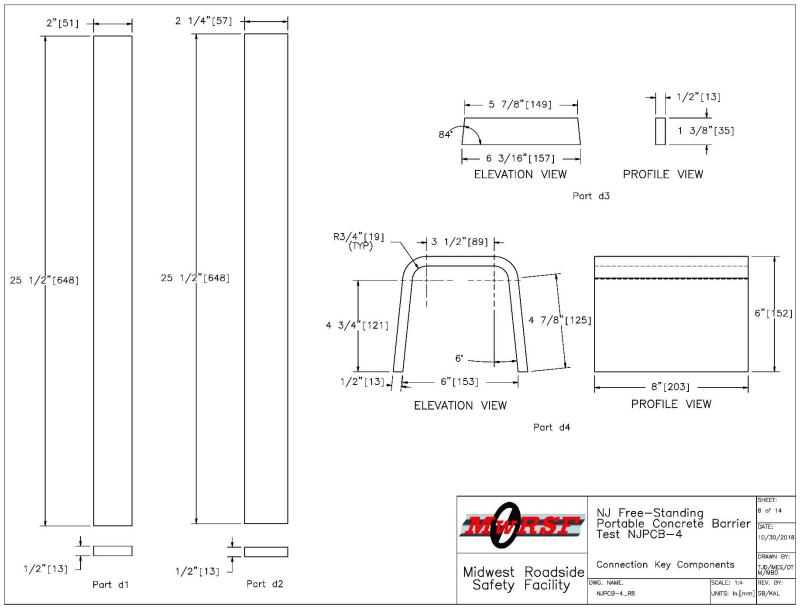


Figure 8. Connection Key Component Details, Test No. NJPCB-4

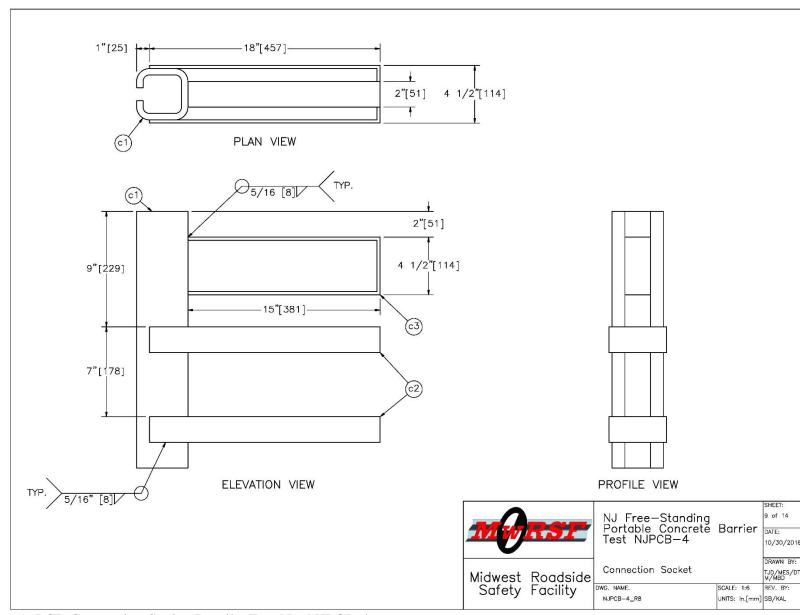


Figure 9. PCB Connection Socket Details, Test No. NJPCB-4

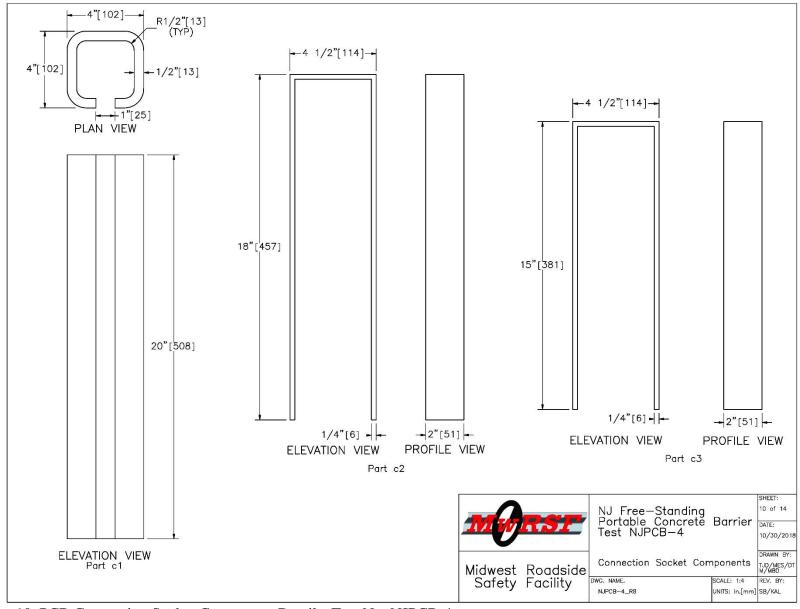


Figure 10. PCB Connection Socket Component Details, Test No. NJPCB-4

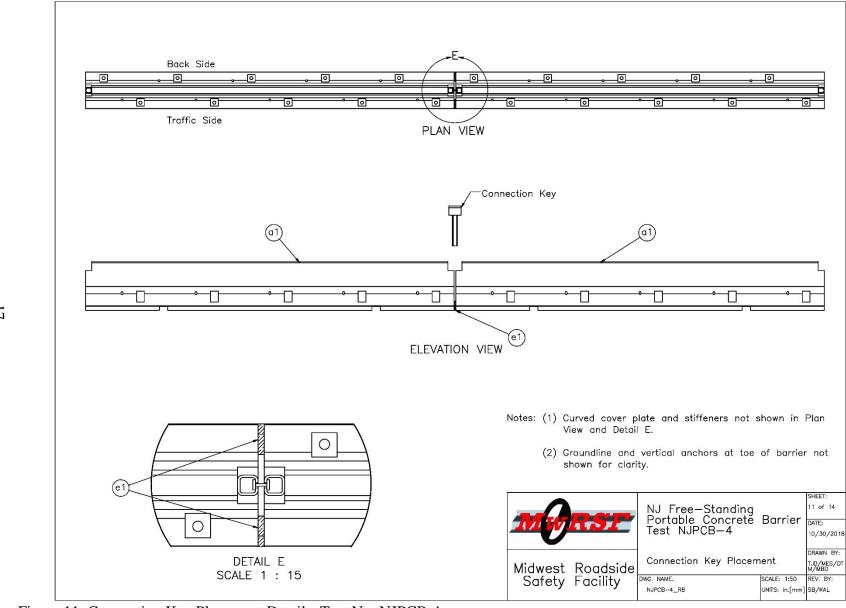


Figure 11. Connection Key Placement Details, Test No. NJPCB-4

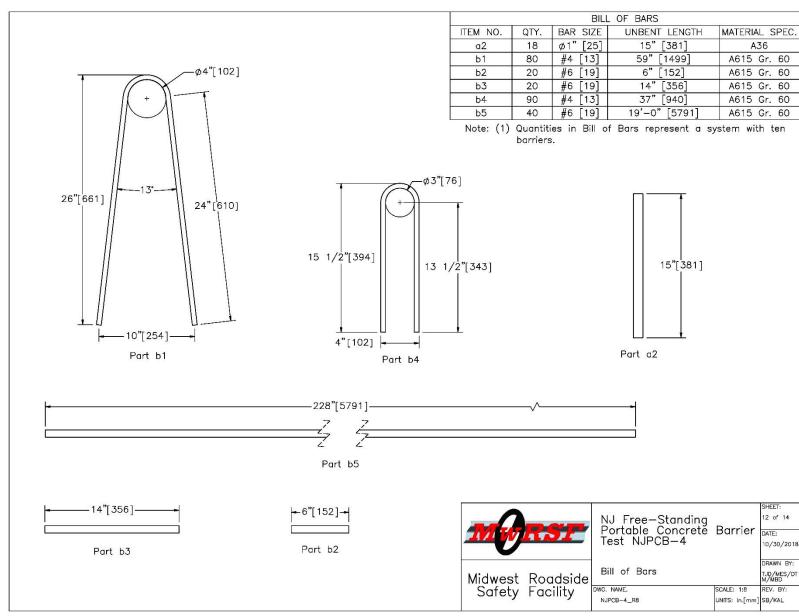


Figure 12. PCB Reinforcement Details, Test No. NJPCB-4

December 12, 2018 MwRSF Report No. TRP-03-371-18

- (1) Minimum concrete clear cover for reinforcement steel shall be 1 1/2" [38 mm].
- (2) All end segments shall be pinned.
- (3) After a segment has been placed and the connection key inserted, pull the unit in a direction parallel to its longitudinal axis to remove any slack in the joint.
- (4) The portable concrete barrier shall be cast in steel forms.
- (5) The portable concrete barrier shall be barrier segments of 20 feet [6,096 mm]. However, other lengths may be used to meet field conditions. The number and placement of the b2 and b3 reinforcement steel will vary with the length of the barrier segment as shown on the table of variable reinforcement steel. The b5 reinforcement steel shall be 10" [254 mm] shorter than the nominal length of the barrier segments.
- (6) Reinforcing shown is the minimum required. Additional reinforcing necessary for handling shall be the option and responsibility of the contractor.
- (7) Welding and fabrication of steel structures shall be in accordance with sections 1 thru 6 of the ANSI/AASHTO/AWS D1.5 bridge welding code and section 10 of the ANSI/AWS D1 structural welding code. Surfaces to be welded shall be free of scale, slag, rust, moisture, grease or any other material that will prevent proper welding or produce objectional fumes. Welding shall be shielded metal arc welding using properly dried 5/32"

 [4 mm] dia. E7018 electrodes.
- (8) The length of the pins shall be such that a minimum embedment length of 5" [127 mm] is obtained when embedded into concrete pavement. When anchor pins are in place, they shall not project above the plane of the concrete surface of the barrier. Holes in bridge decks shall be 1 1/4" [32 mm] diameter maximum and made with a core drill or any other approved rotary drilling device that does not impart an impact force.
- (9) Use non-shrink grout of a plastic consistency that is listed on the QPL and conforms to ASTM C 1107 with the following amendments:
 - 1. Ensure that the grout has a working time of at least 30 minutes from the time the water is added.
 - 2. Match the color of the hardened grout, where visible, to the color of the adjacent hardened concrete.
 - 3. Include 1-day strength tests as part of the performance requirements of ASTM C 1107.
 - 4. Ensure that the grout contains no more than 0.05 percent chlorides or 5.0 percent sulfates by weight.
 - 5. Minimum 1-day compressive strength of 1,000 psi [6.9 MPa]
- (10) Use connection key in every joint. Pin end segments with pins in every anchor pin recess.

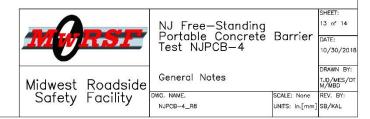


Figure 13. General Notes, Test No. NJPCB-4

ltem No.	QTY.	Description	Material Spec	Galvanization Spec
a1	10	Concrete Barrier Segment — NJDOT Type 4 Barrier (Alternate B)	Min. f'c = 3,700 psi [25.5 MPa]	_
a2	18	1" [25] Dia., 15" [381] Long Anchor Steel Pin	ASTM A36	ASTM A123*
b1	80	1/2" [13] Dia., 59" [1,499] Long Bent Rebar	ASTM A615 Gr. 60	- -a
b2	20	3/4" [19] Dia., 6" [152] Long Rebar	ASTM A615 Gr. 60	
b3	20	3/4" [19] Dia., 14" [356] Long Rebar	ASTM A615 Gr. 60	
b4	90	1/2" [13] Dia., 37" [940] Long Bent Rebar	ASTM A615 Gr. 60	- 1
b5	40	3/4" [19] Dia., 228" [5,791] Long Rebar	ASTM A615 Gr. 60	=
с1	20	4"x4"x1/2" [102x102x13] x 20" [508] Long Tube	ASTM A500 Gr. B or C	=
c2	40	40 1/2"x2"x1/4" [1,029x51x6] Bent Steel Plate	ASTM A36	— ::
сЗ	20	34 1/2"x2"x1/4" [876x51x6] Bent Steel Plate	ASTM A36	2.0
d1	18	25 1/2"x2"x1/2" [648x51x13] Steel Plate	ASTM A36	=
d2	9	25 1/2"x2 1/4"x1/2" [648x57x13] Steel Plate	ASTM A36	=1
d3	18	6 3/16"x1 3/8"x1/2" [157x35x13] Steel Plate - Stiffener	ASTM A36	
d4	9	17"x8"x1/2" [432x203x13] Bent Steel Plate - Top Plate	ASTM A36	
e1	18	Non-Shrink Grout	Min. 1—day Compressive Strength 1,000 psi [6.9 MPa]	

*Component does not need to be galvanized for testing purposes.

Figure 14. Bill of Materials, Test No. NJPCB-4

Figure 15. NJDOT PCB with Free-Standing Configuration and Grouted Toes Test Installation, Test No. NJPCB-4

Figure 16. PCB Connection Key, Connection Socket, and Grout at Toes Between Barriers, Test No. NJPCB-4

Figure 17. PCB Pin Anchor Recesses – Barrier Nos. 1 and 10, Test No. NJPCB-4

4 TEST CONDITIONS

4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [11] was used to steer the test vehicle. A guide flag, attached to the right-front wheel and the guide cable, was sheared off before impact with the barrier system. The 3/8-in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicle

For test no. NJPCB-4, a 2011 Dodge Ram 1500 quad cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,029 lb (2,281 kg), 5,000 lb (2,268 kg), and 5,156 lb (2,339 kg), respectively. The test vehicle is shown in Figures 18 and 19, and vehicle dimensions are shown in Figure 20. Note that pre-test photographs of the vehicle's undercarriage are not available.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [12] was used to determine the vertical component of the c.g. for the pickup truck. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The location of the final c.g. is shown in Figures 20 and 21. Data used to calculate the location of the c.g. and ballast information are shown in Appendix D.

Square, black- and white-checkered targets were placed on the vehicle for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figure 21. Round, checkered targets were placed on the c.g. on the left-side door, the right-side door, and the roof of the vehicle.

The front wheels of the test vehicle were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicle would track properly along the guide cable. A 5B flash bulb was mounted under the vehicle's left-side windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial

impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A remote-controlled brake system was installed in the test vehicle so the vehicle could be brought safely to a stop after the test.

Figure 18. Test Vehicle, Test No. NJPCB-4

Figure 19. Test Vehicle's Interior Floorboards, Test No. NJPCB-4

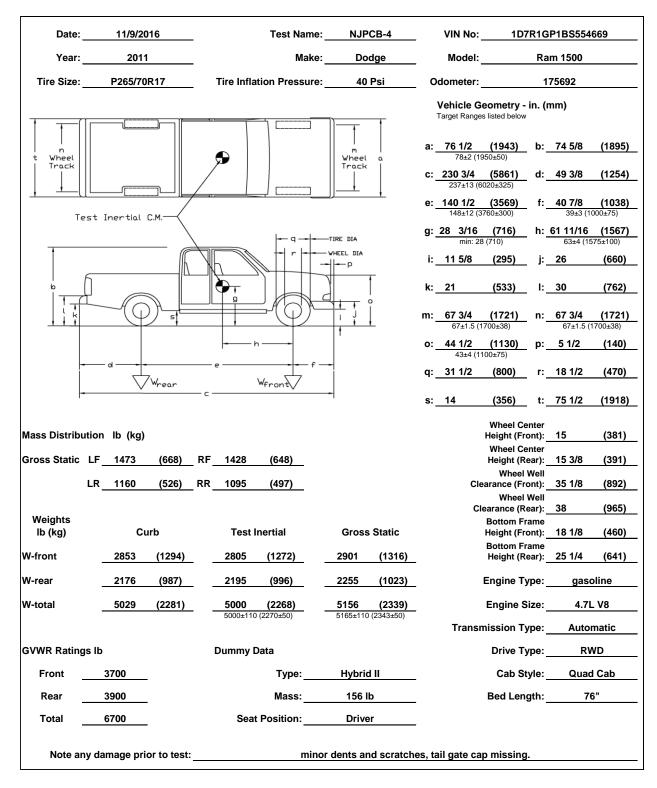


Figure 20. Vehicle Dimensions, Test No. NJPCB-4

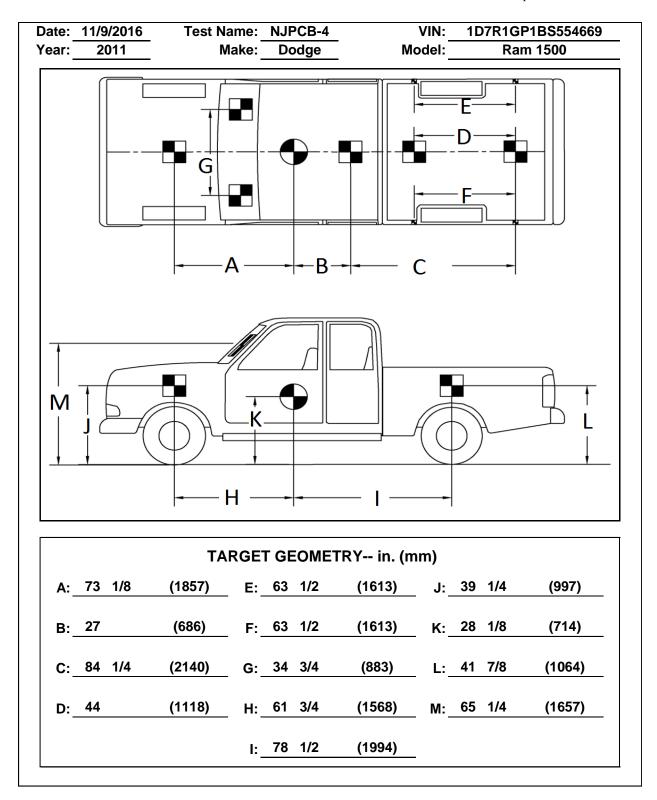


Figure 21. Target Geometry, Test No. NJPCB-4

4.4 Simulated Occupant

For test no. NJPCB-4, A Hybrid II 50th-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the left-front seat of the test vehicle with the seat belt fastened. The dummy, which had a final weight of 156 lb (71 kg), was represented by model no. 572, serial no. 451, and was manufactured by Android Systems of Carson, California. As recommended by MASH 2016, the dummy was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

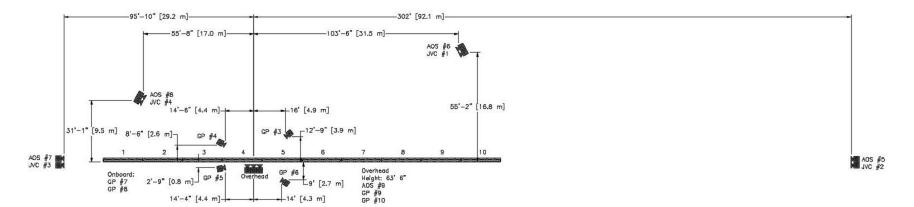
4.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometers were mounted near the c.g. of the test vehicle. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [13].

The two systems, the SLICE-1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-2 unit was designated as the primary system. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

4.5.2 Rate Transducers

Two identical angular rate sensor systems, which were mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders, measured the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.


4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicle before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

4.5.4 Digital Photography

Five AOS high-speed digital video cameras, eight GoPro digital video cameras, and four JVC digital video cameras were utilized to film test no. NJPCB-4. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 22.

The high-speed digital videos were analyzed using ImageExpress MotionPlus and RedLake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed digital videos. A Nikon digital still camera was also used to document pre- and post-test conditions for the test.

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-5	AOS X-PRI Gigabit	500	Telesar 135 mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	Sigma 28-70 DG	50
AOS-7	AOS X-PRI Gigabit	500	Sigma 28-70	50
AOS-8	AOS S-VIT 1531	500	Fujinon 35 mm Fixed	-
AOS-9	AOS TRI-VIT 2236	1000	KOWA 12 mm Fixed	-
GP-3	GoPro Hero 3+	120		
GP-4	GoPro Hero 3+	120		
GP-5	GoPro Hero 3+	120		
GP-6	GoPro Hero 3+	120		
GP-7	GoPro Hero 4	120		
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	240		
GP-10	GoPro Hero 4	120		
JVC-1	JVC – GZ-MC500 (Everio)	29.97		
JVC-2	JVC – GZ-MG27u (Everio)	29.97		
JVC-3	JVC – GZ-MG27u (Everio)	29.97		
JVC-4	JVC – GZ-MG27u (Everio)	29.97		

Figure 22. Camera Locations, Speeds, and Lens Settings, Test No. NJPCB-4

5 FULL-SCALE CRASH TEST NO. NJPCB-4

5.1 Weather Conditions

Test no. NJPCB-4 was conducted on November 9, 2016 at approximately 2:15 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 5.

Table 5. Weather Conditions, Test No. NJPCB-4

Temperature	60° F
Humidity	41%
Wind Speed	11 mph
Wind Direction	230° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.05 in.
Previous 7-Day Precipitation	0.05 in.

5.2 Test Description

The 5,000-lb (2,268-kg) pickup truck impacted the NJDOT PCB, Type 4 (Alternative B) with a free-standing configuration and grouted toes, corresponding to joint class B in the 2013 NJDOT *Roadway Design Manual*, at a speed of 62.8 mph (101.1 km/h) and at an angle of 24.5 degrees. A sequential description of the impact events is contained in Table 6. A summary of the test results and sequential photographs are shown in Figure 24. Additional sequential photographs are shown in Figures 25 and 26. Documentary photographs of the crash test are shown in Figure 27.

Initial vehicle impact was to occur 4 ft $-3^3/_{16}$ in. (1.3 m) upstream from the centerline of the joint between barrier nos. 4 and 5, as shown in Figure 28, which was selected using Table 2.7 of MASH 2016. The actual point of impact was $5^{11}/_{16}$ in. (145 mm) downstream from the target location. The vehicle came to rest 187 ft -5 in. (57.1 m) downstream from impact point and 15 ft (4.6 m) laterally away from the traffic side of the system after brakes were applied. The vehicle trajectory and final position are shown in Figures 24 and 29.

Table 6. Sequential Description of Impact Events, Test No. NJPCB-4

TIME	EVENT
(sec)	
0.000	Vehicle's left-front tire impacted barrier no. 4 at 3 ft $-9\frac{1}{2}$ in. (1.2 m) upstream
0.000	from centerline of joint between barrier nos. 4 and 5.
0.002	Vehicle's left-front bumper contacted barrier no. 4.
0.004	Vehicle's left-front bumper deformed.
0.008	Vehicle's left fender contacted barrier no. 4 and plastic fascia deformed.

0.010	Vehicle's left headlight contacted downstream end of barrier no. 4.
0.012	Vehicle's left headlight and left fender deformed.
0.020	Vehicle's hood and grille deformed.
0.024	Downstream end of barrier no. 4 deflected backward.
0.030	Upstream end of barrier no. 5 deflected backward.
0.034	Vehicle pitched upward and rolled away from system.
0.039	Vehicle yawed away from system.
0.042	Upstream end of barrier no. 4 cracked, and vehicle's left-front airbag deployed.
0.046	Vehicle's right-front airbag deployed.
0.058	Vehicle's left-front door deformed.
0.062	Vehicle rolled toward system.
0.066	Downstream end of barrier no. 5 cracked, and upstream end of barrier no. 4 spalled.
0.084	Downstream end of barrier no. 5 spalled.
0.090	Vehicle's right-front tire became airborne.
0.160	Barrier no. 5 fractured between upstream end and midspan.
0.189	Barrier no. 5 deflected backward andupstream end of barrier no. 6 deflected backward.
0.207	Vehicle was parallel to system at a speed of 52.8 mph (84.9 km/h).
0.218	Vehicle's left-front door contacted barrier no. 5.
0.226	Vehicle's left taillight contacted barrier no. 4.
0.232	Vehicle's left quarter panel deformed.
0.234	Vehicle pitched downward.
0.240	Vehicle's left taillight deformed.
0.248	Vehicle's left-rear door contacted barrier no. 5.
0.276	Vehicle's left-rear tire became airborne.
0.278	Vehicle's right-rear tire became airborne.
0.310	Vehicle exited system at a speed of 51.3 mph (82.6 km/h) and angle of 8.4
	degrees.
0.348	Downstream end of barrier no. 6 cracked.
0.352	Downstream end of barrier no. 6 spalled.
0.361	Downstream end of barrier no. 7 cracked.
0.364	Upstream end of barrier no. 7 spalled.
0.474	Vehicle's left-front tire regained contact with ground.
0.562	Vehicle's bumper contacted ground.
0.622	Vehicle's right-front tire regained contact with ground and mud flap disengaged.
0.638	Vehicle's left headlight cover contacted ground.
0.648	Vehicle pitched upward.
0.876	System came to rest.
0.920	Vehicle's left-rear tire regained contact with ground.
0.968	Vehicle's right-rear tire regained contact with ground.
1.008	Vehicle yawed toward system.
1.066	Vehicle rolled toward system.
1.094	Vehicle pitched downward.

5.3 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 30 through 36. Barrier damage consisted of contact marks on the front face of the PCB segments, spalling of the concrete, and concrete cracking. The length of vehicle contact along the barrier was approximately 25 ft (7.6 m), which spanned from 5 ft $-9\frac{1}{4}$ in. (1.76 m) upstream from the centerline of the joint between barrier nos. 4 and 5 to 19 ft $-2\frac{3}{4}$ in. (5.86 m) downstream from the centerline of the joint between barrier nos. 4 and 5.

Tire marks and scrape marks were visible on the front face of barrier nos. 4 and 5 with additional scrape marks on the top faces of the barriers. Grout between barrier nos. 4 and 5 crumbled. A 54½-in. (1,384-mm) long crack was found on the front face of barrier no. 3 that started at the upstream end toe. A vertical crack was found on the front, top, and back faces of barrier no. 3, located 35¾ in. (908 mm) downstream from center. A 14-in. (356-mm) long vertical crack was found on the front face of barrier no. 3, 7 in. (178 mm) upstream from the downstream end of the barrier. A 19-in. long by 7½-in. wide (483-mm by 191-mm) scrape mark was found at the downstream end of the front face of barrier no. 4. Minor cracks were also found on the front and back faces of barrier nos. 3, 6, and 7.

Concrete spalling occurred on the back face of barrier no. 2 at the downstream end. Concrete spalling also occurred on barrier nos. 3 through 8. A 19-in. \times 3-in. \times ½-in. (483-mm \times 76-mm \times 13-mm) piece of concrete disengaged from barrier no. 3 at the lower-downstream corner on the back face. A 57-in. \times 12-in. \times 6½-in. (1,448-mm \times 305-mm \times 165-mm) piece of concrete was removed from the lower-downstream end of the front face of barrier no. 4. Concrete spalling, measuring 22 in. \times 9 in. \times 2½ in. (559 mm \times 229 mm \times 64 mm), occurred on the back face of barrier no. 4 at the downstream end. The front face of barrier no. 5 experienced 20½ in. \times 10½ in. \times 5 in. (521 mm \times 267 mm \times 127 mm) concrete spalling at the lower-upstream corner. Concrete spalling, measuring 26½ in. \times 10 in. \times 5¾ in. (673 mm \times 254 mm \times 146 mm), occurred on the back face of the downstream end of barrier no. 5. A 4-in. \times 4½-in. (102-mm \times 114-mm) piece of concrete disengaged from the lower-upstream edge of the back face of barrier no. 6. An 8-in \times 4-in. (203-mm \times 102-mm) piece of concrete spalled from the back face of barrier no. 6 and was located approximately 46 in. (1,168 mm) downstream from the upstream edge.

The maximum permanent set deflection of the barrier system was 38 in. (965 mm) at the upstream end of barrier no. 5, as measured in the field. The maximum lateral dynamic barrier deflection, including tipping of the barrier along the top surface, was 40.7 in. (1,034 mm) at the upstream end of barrier no. 5, as determined from high-speed digital video analysis. The working width of the system was found to be 64.7 in. (1,644 mm), also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 23. In addition, NJDOT identifies the clear space behind the barrier, which is defined as the maximum deflection of the back of the barrier from its original position. For this test, the clear space behind the barrier was 40.7 in. (1,034 mm).

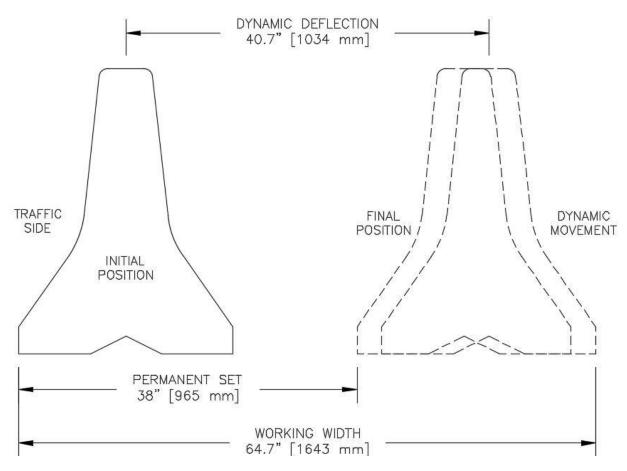


Figure 23. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. NJPCB-4

5.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 37 through 41. The maximum occupant compartment deformations are listed in Table 7 along with the deformation limits established in MASH 2016 for various areas of the occupant compartment. Note that none of the established MASH 2016 deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix E.

The majority of damage was concentrated on the left-front corner and left side of the vehicle where the impact had occurred. The left side of the bumper was crushed inward and back. The left-front fender was deformed upward near the door panel and was dented and torn behind the left-front wheel. The left headlight was partially disengaged. The left corner of the front bumper was bent inward approximately 30 in. (762 mm) from the left side. The left-front corner of the frame rail buckled inward. The left side of the lower plastic fascia was partially disengaged. A 1-in (25-mm) gap occurred between the grille and the front bumper. A 2-in. (51-mm) gap was found between the hood and the left-front fender. The left-front tire's steel rim was deformed and torn. Denting and scraping were observed on the entire left side. A 10-in. × 22-in. (254-mm × 559-mm) dent was found at the middle of left-front door. A 2½-in. (64-mm) tear was found on the outer metal sheet of the left-front door. Dents and scraping were found on the left-side of the quarter

panel. The tailgate disengaged from its connections, but remained attached to left-upper connection point.

The joint of the front sway bar disconnected from the end. The left-front lower control arm was dented ½ in. (13 mm). The left-front control arm deformed at the connection to the engine cross member. The steering rack fractured at the input shaft, and the left-front tie rod was bent. A 10-in. (254-mm) diameter spider web crack was found in the lower-right corner of the windshield. The spider web crack extended 40 in. (1,016 mm) toward the lower-left corner of the windshield. The left-front and right-front airbags deployed. The roof and remaining window glass remained undamaged.

Table 7. Maximum Occupant Compartment Deformations by Location

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH 2016 ALLOWABLE DEFORMATION in. (mm)			
Wheel Well & Toe Pan	³ / ₄ (19)	≤9 (229)			
Floor Pan & Transmission Tunnel	³ / ₄ (19)	≤ 12 (305)			
A-Pillar	7/8 (22)	≤5 (127)			
A-Pillar (Lateral)	1/8 (3)	≤3 (76)			
B-Pillar	5/8 (16)	≤5 (127)			
B-Pillar (Lateral)	³ / ₈ (10)	≤3 (76)			
Side Front Panel (in Front of A-Pillar)	1/4 (6)	≤ 12 (305)			
Side Door (Above Seat)	- ⁷ / ₈ (-22)	≤9 (229)			
Side Door (Below Seat)	³ / ₈ (10)	≤ 12 (305)			
Roof	-½ (-13)	≤4 (102)			
Windshield	0 (0)	≤3 (76)			
Side Window	Shattered due to contact with dummy's head	No shattering resulting from contact with structural member of test article			
Dash	³ ⁄ ₄ (19)	N/A			

Note: Negative values denote outward deformation

N/A – Not applicable

5.5 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 8. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 8. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 24. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix F.

Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NJPCB-4

		Trans	MASH 2016 Limits		
Evaluatio	on Criteria	SLICE-1 SLICE-2 (primary)			
OIV	Longitudinal	-12.11 (-3.69)	-12.10 (-3.68)	±40 (12.2)	
ft/s (m/s)	Lateral	16.07 (4.89)	18.66 (5.69)	±40 (12.2)	
ORA	Longitudinal	-3.95	-3.95	±20.49	
g's	Lateral	13.09	12.09	±20.49	
MAX.	Roll	-19.6	-16.2	±75	
ANGULAR DISPL.	Pitch	-13.1	-14.2	±75	
deg.	Yaw	-46.5	-47.4	not required	
THIV ft/s (m/s)		18.54 (5.65) 22.41 (6.83)		not required	
	HD ;'s	13.19	12.22	not required	
A	SI	1.11	1.26	not required	

5.6 Discussion

The analysis of the test results for test no. NJPCB-4 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 8.4 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. NJPCB-4 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

0.364 sec

15 ft (4.6 m) laterally in front

SLICE-2

(primary)

-12.10 (-3.68)

18.66 (5.69)

-3.95

12.09

-16.2

-14.2

-47.4

22.41 (6.83)

12.22

1.26

1.11

ASI

MASH 2016

Limit

±40 (12.2)

 ± 40 (12.2)

 ± 20.49

 ± 20.49

±75

±75

Not required

Not required

Not required

Not required

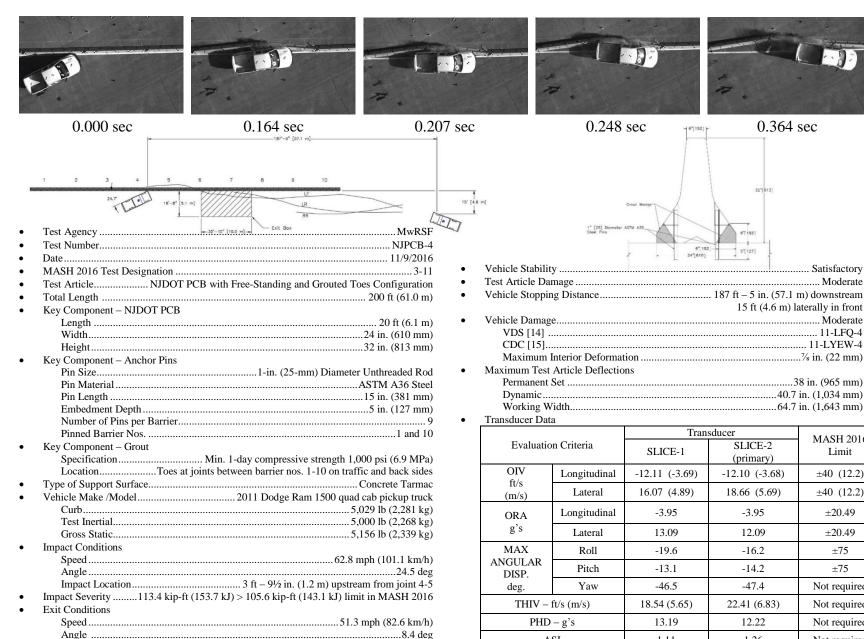


Figure 24. Summary of Test Results and Sequential Photographs, Test No. NJPCB-4

Exit Box Criterion Pass

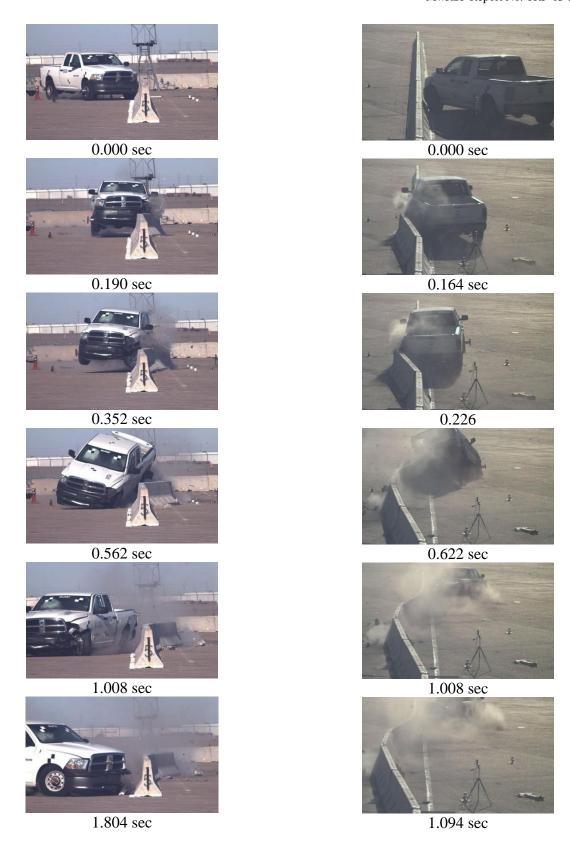


Figure 25. Additional Sequential Photographs, Test No. NJPCB-4

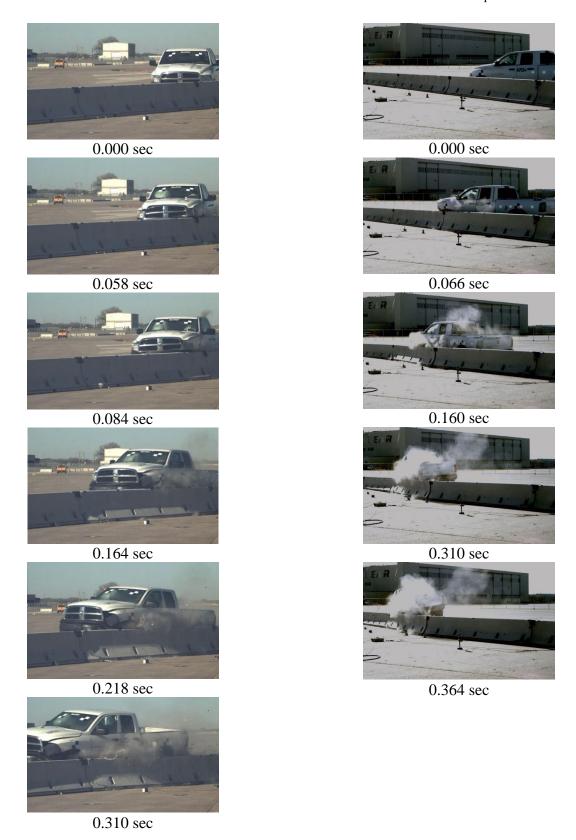


Figure 26. Additional Sequential Photographs, Test No. NJPCB-4

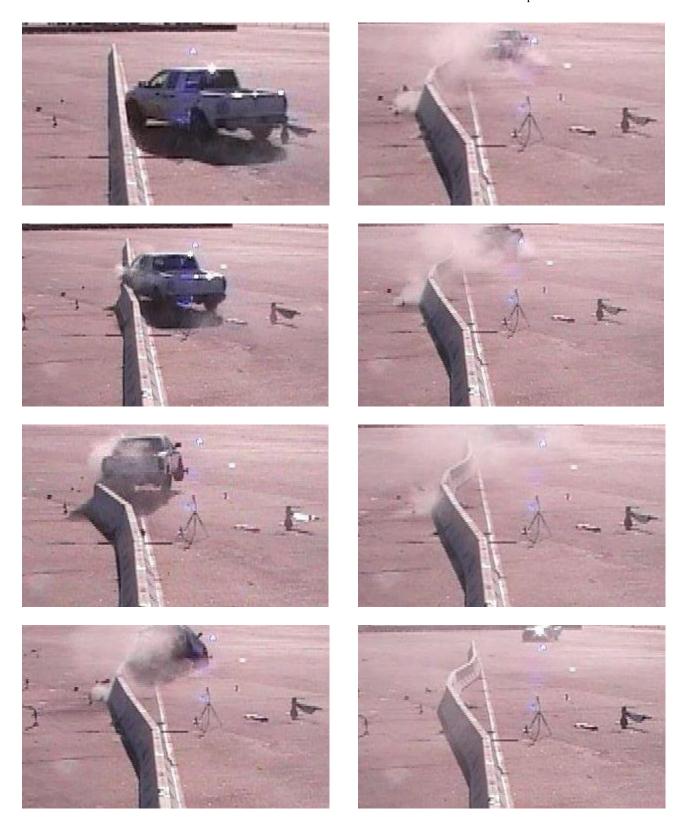
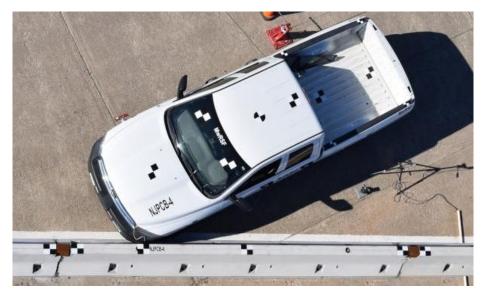



Figure 27. Documentary Photographs, Test No. NJPCB-4

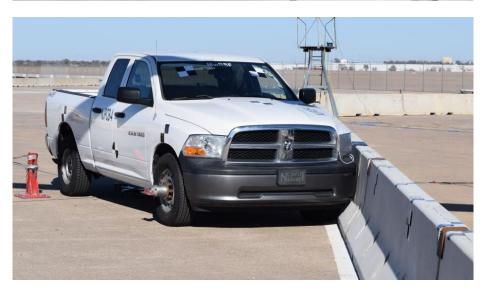


Figure 28. Impact Location, Test No. NJPCB-4

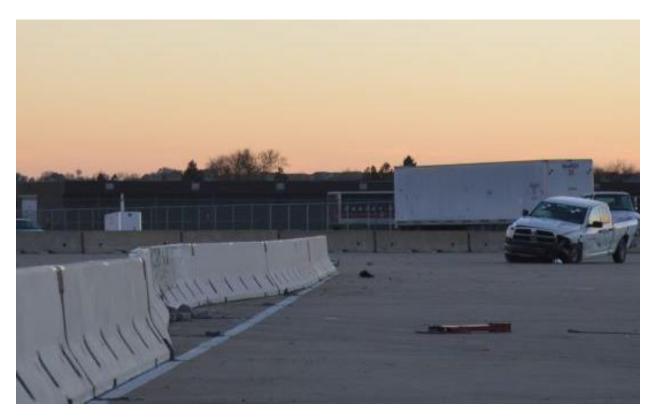
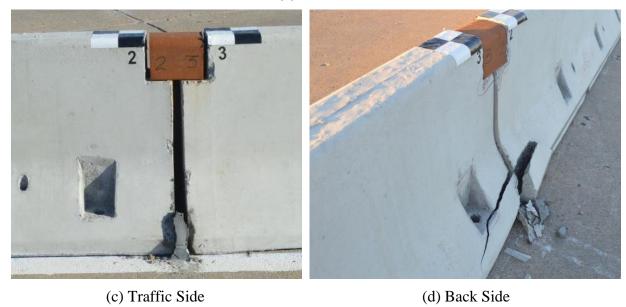


Figure 29. Vehicle Final Position and Trajectory Marks, Test No. NJPCB-4

Figure 30. System Damage – Front, Back, Upstream, and Downstream End, Test No. NJPCB-4

(a) Traffic Side

(b) Traffic Side



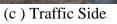
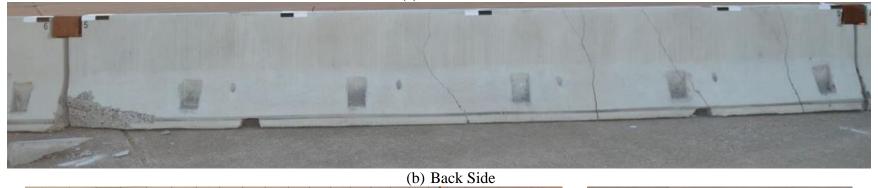

Figure 31. Barrier Nos. 2 and 3- Traffic and Back Side Damage, Test No. NJPCB-4

Figure 32. Barrier Nos. 4 and 5 Damage, Test No. NJPCB-4


NUPC54

(d) Back Side

Figure 33. Barrier No. 4 – Traffic and Back Side Damage, Test No. NJPCB-4

(a) Traffic Side

(o) Buck that

(c) Traffic Side

(d) Back Side

Figure 34. Barrier No. 5 – Traffic and Back Side Damage, Test No. NJPCB-4

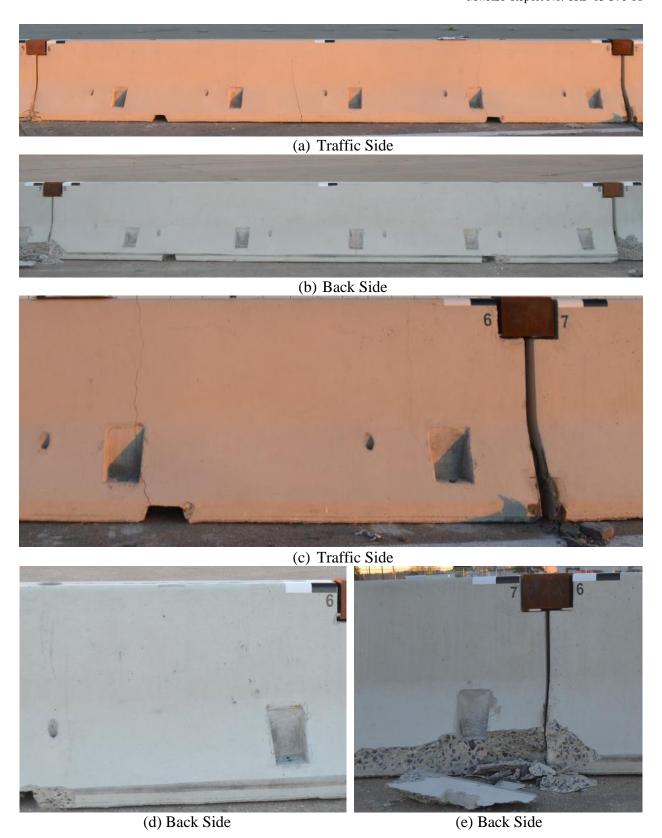


Figure 35. Barrier No. 6 - Traffic and Back Side Damage, Test No. NJPCB-4

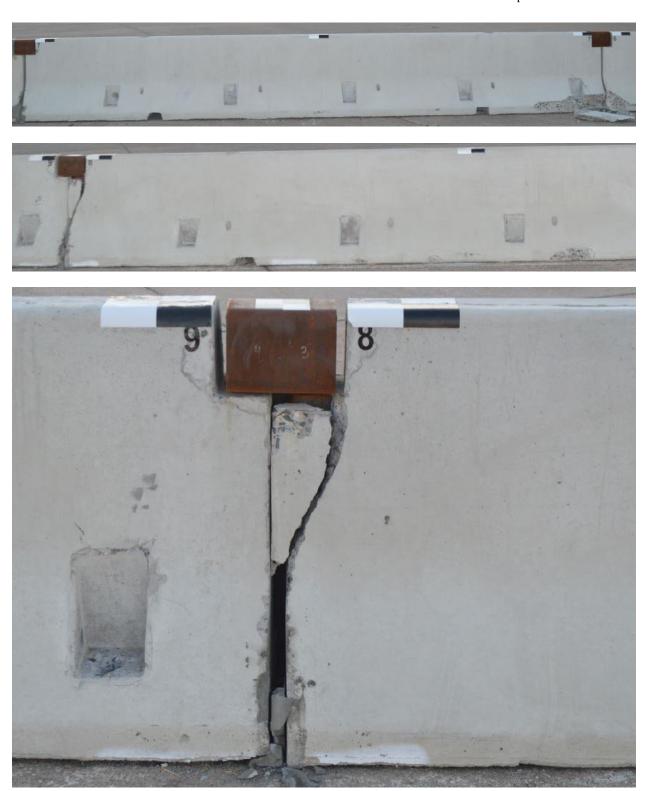


Figure 36. Barrier Nos. 7 and 8 – Back Side Damage, Test No. NJPCB-4

Figure 37. Vehicle Damage, Test No. NJPCB-4

Figure 38. Vehicle Damage, Test No. NJPCB-4

Figure 39. Vehicle Windshield, Quarter Panel, and Tailgate Damage, Test No. NJPCB-4

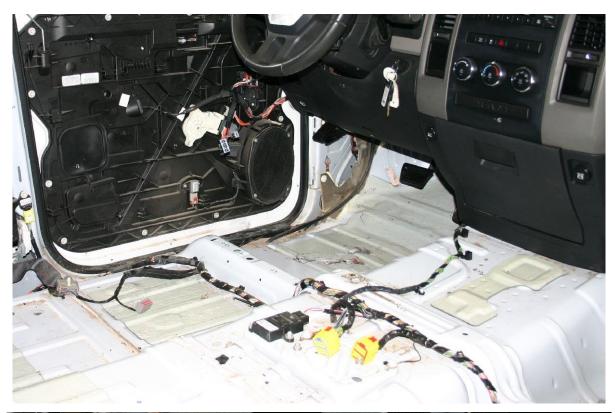


Figure 40. Occupant Compartment Deformation, Test No. NJPCB-4

Figure 41. Undercarriage Damage, Test No. NJPCB-4

6 SUMMARY AND CONCLUSIONS

Test no. NJPCB-4 was conducted on the NJDOT PCB system with a free-standing configuration and grouted toes according to MASH 2016 test designation no. 3-11. This system used NJDOT barriers, Type 4 (Alternative B) with joint class B, as specified in the 2013 NJDOT *Roadway Design Manual*. Barrier nos. 1 and 10 were anchored to the concrete tarmac through the nine pin anchor recesses with 1-in. (25-mm) diameter by 15-in. (381-mm) long ASTM A36 steel pins. Non-shrink grout wedges were placed at the toe of each barrier segment in every joint between adjacent barrier segments.

During test no. NJPCB-4, the 5,000-lb (2,268 kg) pickup truck impacted the NJDOT PCB system at a speed of 62.8 mph (101.0 km/h) and at an angle of 24.5 degrees, resulting in an impact severity of 113.4 kip-ft (153.7 kJ). After impacting the barrier system, the vehicle exited the system at a speed of 51.3 mph (82.6 km/h) and at an angle of 8.4 degrees. The vehicle was successfully contained and smoothly redirected with moderate damage to both the barrier and the vehicle. Barrier nos. 4 and 5 experienced concrete spalling and cracking. A dynamic deflection of 40.7 in. (1,034 mm) and a working width of 64.7 in. (1,643 mm) were observed during the test, as shown in Figure 23. All occupant risk values were found to be within limits, and the occupant compartment deformations were also deemed acceptable. Subsequently, test no. NJPCB-4 was determined to satisfy the safety performance criteria for MASH test designation no. 3-11. A summary of the test evaluation is shown in Table 9.

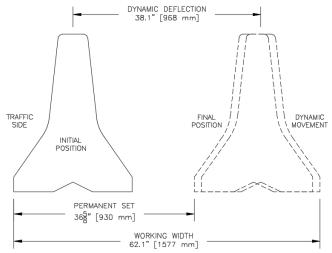
Table 9. Summary of Safety Performance Evaluation

Evaluation Evaluation Criteria								
	Evalua	NJPCB-4						
A.	to a controlled stop; the veh	S						
D.	should not penetrate or show	1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.						
		S						
F.		S						
H.	H. Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:							
	Occupant	S						
	Component	Preferred	Maximum					
	Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)					
I.			S					
Occupant Ridedown Acceleration Limits								
	Component	Preferred	Maximum					
	Longitudinal and Lateral	15.0 g's	20.49 g's					
MASH 2016 Test Designation No.								
Final Evaluation (Pass or Fail)								
	D.	A. Test article should contain an to a controlled stop; the ver override the installation alth test article is acceptable. D. 1. Detached elements, fragm should not penetrate or show compartment, or present an usor personnel in a work zone. 2. Deformations of, or introshould not exceed limits set in MASH 2016. F. The vehicle should remain maximum roll and pitch angle. H. Occupant Impact Velocity (Compant MASH 2016 for calculation limits: Occupant Component Longitudinal and Lateral I. The Occupant Ridedown A Section A5.2.2 of MASH 2016 satisfy the following limits: Occupant Ridedom A Section A5.2.2 of MASH 2016 Test Detaction of the very set of the v	to a controlled stop; the vehicle should not pene override the installation although controlled later test article is acceptable. D. 1. Detached elements, fragments or other debris for should not penetrate or show potential for penetric compartment, or present an undue hazard to other or personnel in a work zone. 2. Deformations of, or intrusions into, the occurs should not exceed limits set forth in Section 5.2.2 MASH 2016. F. The vehicle should remain upright during and a maximum roll and pitch angles are not to exceed 7. H. Occupant Impact Velocity (OIV) (see Appendix A MASH 2016 for calculation procedure) should salimits: Occupant Impact Velocity Limit Component Preferred Longitudinal and Lateral 30 ft/s (9.1 m/s) I. The Occupant Ridedown Acceleration (ORA) Section A5.2.2 of MASH 2016 for calculation satisfy the following limits: Occupant Ridedown Acceleration I Component Preferred Longitudinal and Lateral 15.0 g's MASH 2016 Test Designation No.	 A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable. D. 1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. 2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016. F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees. H. Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits: Occupant Impact Velocity Limits Component Preferred Maximum Longitudinal and Lateral 30 ft/s (9.1 m/s) 40 ft/s (12.2 m/s) I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits: Occupant Ridedown Acceleration Limits Component Preferred Maximum Longitudinal and Lateral 15.0 g's 20.49 g's MASH 2016 Test Designation No. 				

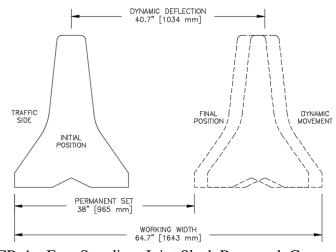
S – Satisfactory U – Unsatisfactory NA - Not Applicable

7 COMPARISON TO TEST NO. NYTCB-2

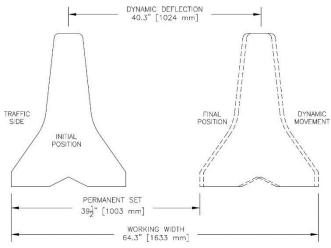
A summary of full-scale crash testing of the two free-standing configurations of the NJ PCB system is shown in Table 10. One system included removing the joint slack (test no. NJPCB-3) [16]. The other system consisted of removing joint slack and grouted toes (test no. NJPCB-4), as described herein. These tests were compared to the full-scale crash testing of a similar New York PCB system without removal of joint slack or grouted toes (test no. NYTCB-2) [17]. Results from these tests included the actual impact conditions and impact severity as well as dynamic barrier deflection, permanent set barrier deflection, working width (as measured from the original front face of the barrier), and the clear space behind the barrier. The clear space behind the barrier is used by NJDOT to define the maximum deflection of the back of the barrier from its original position. In addition, the schematic diagrams shown in Figure 42 indicate how the dynamic deflection, permanent set deflection, and working width for each crash test was defined.


A review of the results from test nos. NJPCB-3, NJPCB-4, and NYTCB-2 revealed little to no benefit in terms of barrier deflection and clear space requirements for free-standing PCBs due to the removal of joint slack and/or the use of grouted barrier toes. This finding can be seen in the fact that dynamic deflections and the clear space behind barrier for all three tests are very similar. The primary cause of the lack of observed benefit for the modified PCB joints was the absence of barrier reinforcement in the toes of both the New York and New Jersey PCB segments. The lack of reinforcement led to disengagement of the barrier toes when they were loaded by adjacent barrier segments, which caused increased rotation and motion of the barrier joints. This toe disengagement overcomes the expected benefit that would have been provided by the removal of joint slack and use of grouted toes, which resulted in similar joint rotation and displacement for both the New Jersey and New York PCB crash tests. Secondly, the PCB segments used in these tests have a relatively small gap between adjacent barrier segments. Thus, improvement of the joint response through removal of joint slack and use of grouted toes provided less benefit than would be expected for other PCB systems, which utilize joint spacings up to 4 inches. Finally, barrier system behavior and associated barrier deflections can vary from test to test due to the natural variability of a wide variety of factors involved in full-scale crash testing. These factors would include slight differences in impact conditions, differing test vehicle model years, slight variations in steel and concrete strengths, and variation of the cracking and damage observed on the barrier segment, among others. Thus, some variability would be expected in barrier performance even for basically identical systems.

Smaller reductions in PCB deflections and clear space behind the barrier were observed with the removal of joint slack and use of grouted toes. This finding was primarily due to the fracture and disengagement of the barrier toes. If larger reductions in PCB deflections and clear space are desired, PCB redesign or modification would be required, including reinforcement of the barrier toes, which may improve effectiveness of joint slack removal and the use of grouted toes.


Table 10. Comparison of Free-Standing Systems

Test No.	Joint Class [1]	Connection Type [2]	System Details	Permanent Set	Dynamic Deflection (DD)	Working Width (WW)	Clear Space Behind Barrier	Vehicle Roll (deg)	Vehicle Pitch (deg)	Vehicle Mass lb (kg)	Impact Speed mph (km/h)	Impact Angle (deg)	Impact Severity kip-ft (kJ)
NJPCB-3 [16]	A	A	Free-standing system, barriers 1 and 10 pinned, remove slack, no grouted toes	365/8 in. (930 mm)	38.1 in. (968 mm)	62.1 in. (1,577 mm)	38.1 in. (968 mm)	-17.2	-9.0	4,999 (2,268)	62.3 (100.2)	25.8	122.9 (166.6)
NJPCB-4	В	N/A	Free-standing system, barriers 1 and 10 pinned, remove slack, grouted toes	38 in. (962 mm)	40.7 in. (1,034 mm)	64.7 in. (1,643 mm)	40.7 in. (1,034 mm)	-16.2	-14.2	5,000 (2,268)	62.8 (101.3)	24.5	113.4 (153.7)
NYTCB-2 [17]	A	A	Free-standing system, barriers 1 and 10 pinned, slack not removed, no grouted toes	39½ in. (1,003 mm)	40.3 in. (1,023 mm)	64.3 in. (1,633 mm)	40.3 in. (1,023 mm)	-12.4	-10.6	5,024 (2,279)	61.2 (98.5)	25.8	119.2 (161.6)


N/A = Not Applicable

NJPCB-3 - Free-Standing, Joint Slack Removed, No Grouted Toes

NJPCB-4 - Free-Standing, Joint Slack Removed, Grouted Toes

NYTCB-2 - Free-Standing, Joint Slack Not Removed, No Grouted Toes

Figure 42. Deflection Comparisons – Test Nos. NJPCB-3, NJPCB-4, and NYTCB-2

8 MASH IMPLEMENTATION

The objective of this research was to evaluate the safety performance of NJDOT's PCB, Type 4 (Alternative B) system with a free-standing configuration and grouted toes, corresponding to joint class B in the 2013 NJDOT *Roadway Design Manual*. The NJDOT barriers consisted of NJDOT PCBs joined with a connection key. Barrier nos. 1 and 10 were anchored to the concrete roadway surface through the nine pin anchor recesses with 1-in. (25-mm) diameter by 15-in. (381-mm) long, ASTM A36 steel pins. The barrier segments were pulled in a direction parallel to their longitudinal axes, and slack was removed from all joints prior to installation of the steel anchor pins. A wedge of grout was placed at the toe of each joint on both the traffic side and back side of the system.

According to TL-3 evaluation criteria in MASH 2016, two tests are required for evaluation of longitudinal barrier systems: (1) test designation no. 3-10 – an 1100C small car and (2) test designation no. 3-11 – a 2270P pickup truck. However, only the 2270P crash test was deemed necessary as other prior small car tests were used to support a decision to deem the 1100C crash test not critical.

In test no. 7069-3, a rigid, F-shape bridge rail was successfully impacted by a small car weighing 1,800 lb (816 kg) at 60.1 mph (96.7 km/h) and 21.4 degrees according to the American Association of State Highway and Transportation Officials (AASHTO) *Guide Specifications for Bridge Railings* [5-6]. In the same manner, test nos. CMB-5 through CMB-10, CMB-13, and 4798-1 showed that rigid, New Jersey, concrete safety shape barriers struck by small cars have been shown to meet safety performance standards [7-9]. In addition, in test no. 2214NJ-1, a rigid, New Jersey, ½-section, concrete safety shape barrier was impacted by a passenger car weighing 2,579 lb (1,170 kg) at 60.8 mph (97.8 km/h) and 26.1 degrees according to the TL-3 standards set forth in MASH 2009 [9]. Furthermore, temporary, New Jersey safety shape, concrete median barriers have experienced only slight barrier deflections when impacted by small cars and behave similarly to rigid concrete barriers as seen in test no. 47 [10]. Therefore, the 1100C passenger car test was deemed not critical for testing and evaluating this PCB system. It should be noted that any tests within the evaluation matrix deemed not critical may eventually need to be evaluated based on additional knowledge gained over time or additional FHWA eligibility letter requirements.

During test no. NJPCB-4, a 5,000-lb (2,268 kg) pickup truck with a simulated occupant seated in the left-front seat impacted the NJDOT PCB system with joint class B, as specified in the 2013 NJDOT *Roadway Design Manual*, at a speed of 62.8 mph (101.0 km/h) and at an angle of 24.5 degrees, resulting in an impact severity of 113.4 kip-ft (153.7 kJ). At 0.207 sec after impact, the vehicle became parallel to the system with a speed of 52.8 mph (84.9 km/h). At 0.310 sec, the vehicle was airborne as it exited the system at a speed of 51.3 mph (82.6 km/h) and at an angle of 8.4 degrees. The vehicle was successfully contained and smoothly redirected.

Exterior vehicle damage was moderate. Interior occupant compartment deformations were minimal with a maximum of $\frac{7}{8}$ in. (22 mm), which did not violate the limits established in MASH 2016. Damage to the barrier was also moderate, consisting of contact marks on the front face of the PCB segments, concrete spalling, and concrete cracking on barrier nos. 4 and 5. The maximum dynamic barrier deflection was 40.7 in. (1,034 mm), which included minor tipping of the barrier at the top surface. The working width of the PCB system was 64.7 in. (1,643 mm). All occupant risk measures were within the recommended limits, and the occupant compartment deformations

were also deemed acceptable. Therefore, NJDOT barriers, Type 4 (Alternative B) with joint class B, as specified in the 2013 NJDOT *Roadway Design Manual*, successfully met all the safety performance criteria of MASH 2016 test designation no. 3-11.

The NJDOT barriers, Type 4 (Alternative B) with joint class B, as specified in the 2013 NJDOT *Roadway Design Manual*, consisting of NJDOT PCB barriers joined with a connection key, joint slack removed, grouted toes, and barrier nos. 1 and 10 pinned on both the traffic side and back side, was successfully crash tested and evaluated according to the AASHTO MASH 2016 TL-3 criteria. This barrier successfully met all the requirements of MASH 2016 test designation no. 3-11. In addition, the researchers consider the system MASH 2016 compliant based on the successful test designation no. 3-11 test and the previous justification for test designation no. 3-10 being deemed not critical.

A comparison of similar systems for the free-standing configuration included three systems: (1) a NJ PCB system with the joint slack removed (test no. NJPCB-3) [16]; (2) a NJ PCB system with the joint slack removed and grouted toes (test no. NJPCB-4); and (3) a New York PCB system without removal of joint slack or grouted toes (test no. NYTCB-2) [17]. A review of these test results (test nos. NJPCB-3, NJPCB-4, and NYTCB-2) revealed little to no benefit would be observed in reduced barrier deflections and clear space requirements for free-standing PCBs due to joint slack removal and/or use of grouted toes as dynamic deflections and the clear space behind barrier for all three tests are very similar. The finding is primarily due to no barrier reinforcement in the toes of both the New York and New Jersey PCB segments. The lack of steel reinforcement led to concrete fracture near the barrier toes when they were loaded by adjacent barrier segments, which caused increased rotation of the barrier joints. This concrete toe disengagement reduced the expected benefit that would have been provided by the removal of joint slack and use of grouted toes. Second, the PCB segments used in these tests have a relatively small gap between adjacent barrier segments. Thus, improvement of the joint response through removal of joint slack and use of grouted toes provided less benefit than would be expected for other PCB systems, which utilize joint spacings up to 4 in. (102 mm). Finally, barrier system behavior and associated barrier deflections can vary from test to test due to the natural variability of a wide variety of factors involved in full-scale crash testing. These factors would include slight differences in impact conditions, differing test vehicle model years, slight variations in steel and concrete strengths, and variation of the cracking and damage observed on the barrier segments, among other. Thus, some variability would be expected in barrier performance even for basically identical systems.

In both the 2013 and 2015 NJDOT *Roadway Design Manual*, the allowable deflection is determined by the clear space behind the barrier, which is defined as the maximum deflection of the back of the barrier from its original position. For joint class B, as specified in the 2013 NJDOT *Roadway Design Manual* and utilized in this system, the NJDOT allowable movement guidance is 11 to 16 in. (279 to 406 mm). For this test, the clear space behind the barrier was 40.7 in. (1,034 mm). Limited reductions in PCB deflections and clear space behind the barrier were observed with joint slack removal and use of grouted toes. Again, this finding is primarily due to the fracture and disengagement of the barrier toes. If larger reductions in PCB deflections and clear space are desired, PCB redesign or modification would be required, including reinforcement of the barrier toes, which may improve the effectiveness of joint slack removal and the use of grouted toes.

9 REFERENCES

- 1. New Jersey Department of Transportation, *Roadway Design Manual*, Revised May 10, 2013.
- 2. New Jersey Department of Transportation, *Roadway Design Manual*, Revised 2015.
- 3. *Manual for Assessing Safety Hardware, Second Edition*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- 4. *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 5. Buth, C. E., Hirsch, T. J., and McDevitt, C. F., *Performance Level 2 Bridge Railings*, Transportation Research Record No. 1258, Transportation Research Board, National Research Council, Washington, D.C., 1990.
- 6. *Guide Specifications for Bridge Railings*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 1989
- 7. Bronstad, M. E., Calcote, L. R., and Kimball Jr, C. E., *Concrete Median Barrier Research-Vol.2 Research Report*, Report No. FHWA-RD-77-4, Submitted to the Office of Research and Development, Federal Highway Administration, Performed by Southwest Research Institute, San Antonio, TX, March 1976.
- 8. Buth, C. E., Campise, W. L., Griffin III, L. I., Love, M. L., and Sicking, D. L., *Performance Limits of Longitudinal Barrier Systems-Volume I: Summary Report*, FHWA/RD-86/153, Final Report to the Federal Highway Administration, Office of Safety and Traffic Operations R&D, Performed by Texas Transportation Institute, Texas A&M University, College Station, TX, May 1986.
- 9. Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, B.W., Reid, J.D., and Coon, B.A., *Performance Evaluation of the Permanent New Jersey Safety Shape Barrier Update to NCHRP 350 Test No. 3-10 (2214NJ-1)*, Report No. TRP-03-177-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 13, 2006.
- 10. Fortuniewicz, J. S., Bryden, J. E., and Phillips, R. G., *Crash Tests of Portable Concrete Median Barrier for Maintenance Zones*, Report No. FHWA/NY/RR-82/102, Final Report to the Office of Research, Development, and Technology, Federal Highway Administration, Performed by the Engineering Research and Development Bureau, New York State Department of Transportation, December 1982.
- 11. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 12. Center of Gravity Test Code SAE J874 March 1981, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.

- 13. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, New York, July, 2007.
- 14. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.
- 16. Bhakta, S.K., Lechtenberg, K.A., Faller, R.K., Reid, J.D., Bielenberg, R.W., and Urbank, E.L., *Performance Evaluation of New Jersey's Portable Concrete Barrier with a Free-Standing Configuration and Grouted Toes Test No. NJPCB-3*, Report No. TRP-03-355-18, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, December 2018.
- 17. Stolle, C.J., Polivka, K.A., Faller, R.K., Sicking, D.L., Bielenberg, R.W., Reid, J.D., Rohde, J.R., Allison, E.M., and Terpsma, R.J., *Evaluation of Box Beam Stiffening of Unanchored Temporary Concrete Barriers*, Research Report No. TRP-03-202-08, Project No. C-06-17, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, March 14, 2008.

10 APPENDICES

Appendix A. NJDOT PCB Standard Plans

December 12, 2018 MwRSF Report No. TRP-03-371-18

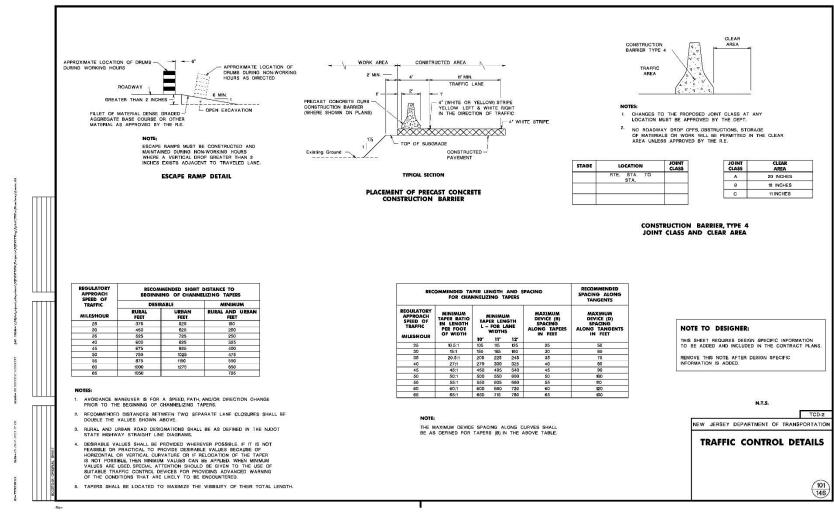


Figure A-1. NJDOT PCB Standard Plans

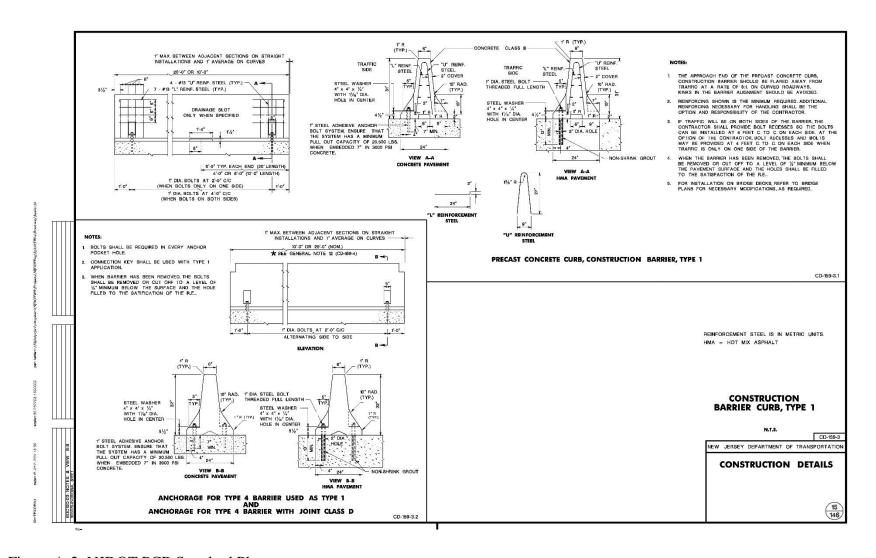


Figure A-2. NJDOT PCB Standard Plans

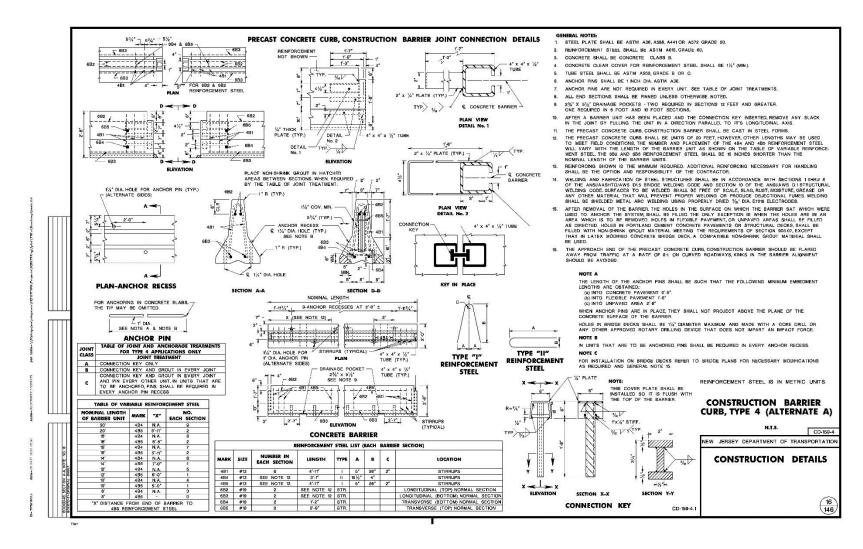


Figure A-3. NJDOT PCB Standard Plans

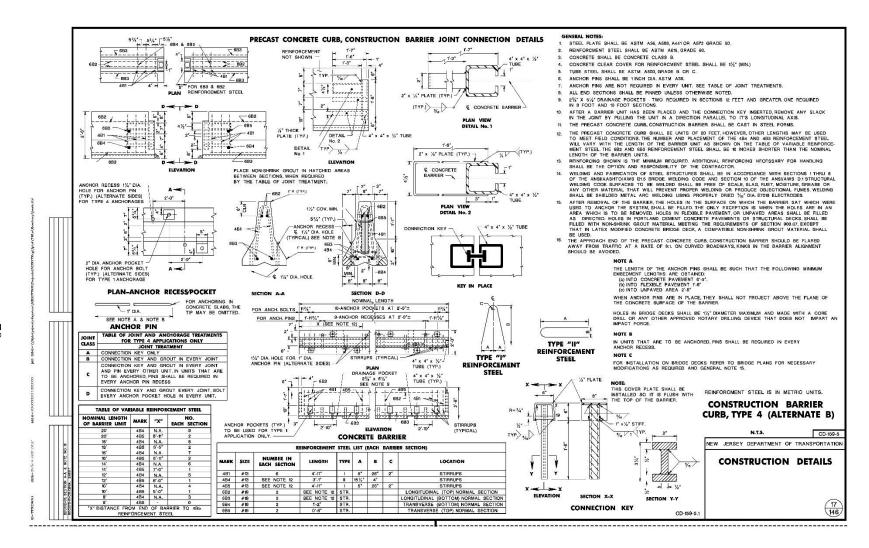


Figure A-4. NJDOT PCB Standard Plans

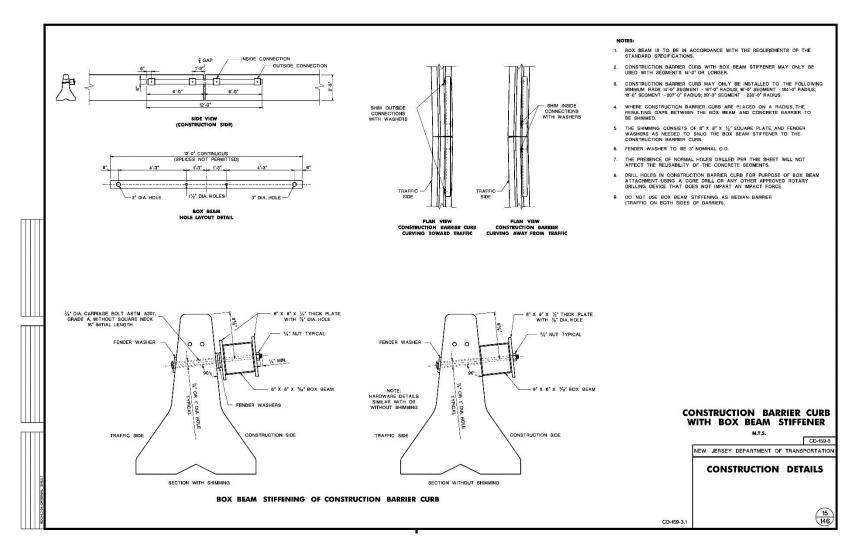


Figure A-5. NJDOT PCB Standard Plans

Appendix B. Material Specifications

Table B-1. Bill of Materials, Test No. NJPCB-4

Item No.	Description	Material Specification	Reference
A1	Concrete Barrier Segment	Min. f 'c = 3,700 psi (25.5 MPa)	University of Nebraska 15-563
A2	Anchor Steel Pins	ASTM A36	H #54141812
B1	Rebar - #4 Vertical Stirrup	ASTM A615 Gr. 60	Heat #61101274, 61101493, 61101510, 61101492, 61101499, 61101772
B2, B3	Rebar - #6 Longitudinal Bar	ASTM A615 Gr. 60	Heat #6115448, 61105472
B4	Rebar - #4 Horizontal Anchor Recess, Reinforcement Stirrup	ASTM A615 Gr. 60	Heat #61101274, 61101493, 61101510, 61101492, 61101499, 61101772
B5	Rebar - #6 Top and Bottom Cross Bar	ASTM A615 Gr. 60	Heat #6115448, 61105472
C1	Steel Tube – 4"×4"×½" (102×102×12.7) thick × 20" (508) long	ASTM A500 Gr. B and C	Heat #821597, 1422428, M04495_1, T83539, SD5020
C2	Bent Steel Plate 1, 2"×1/4" (51×6)	ASTM A36	Heat #1129849
C3	Bent Steel Plate 2, 2"×1/4" (51×6)	ASTM A36	Heat #1129849
D1	Steel Plate 1, 2"×½" (51×13)	ASTM A36	Heat #L99837
D2	Steel Plate 2, 21/4"×1/2" (57×13)	ASTM A36	Heat #54144612
D3	½" (13) Steel Plate – Stiffener	ASTM A36	Heat #54144612, L99837
D4	½" (13) Steel Plate – Top Plate	ASTM A36	Heat #54144612, L99837
E1	Non-Shrink Grout	Min. 1-day Compressive Strength 1,000 psi (6.9 MPa)	Advantage Grout ASTM C1107 Product Code: 67435

					UN	IVER	SITY	OF N	NEB	RAS	KA						
							1:	5-563									
Cast Date	Age (days)	Cylinder 1	Cylinder 2	Average	Age (days)	Cylinder 1	Cylinder 2	Average	Age (days)	Cylinder 1	Cylinder 2	Average	Air	Slump	Concrete Temp.	Ambient Temp	EMAIL, Mailed, etc
10/26/2015	1	4171	3869	4020	7	7805	7800	7803	28			0	5.5	6 3/4	60	58	
10/27/2015		3539	3883	3711	7	7343	7624	7484	28			0	6.8	5 3/4	62	60	
10/28/2015		4116	4311	4214	7	6223	6340	6282	28			0	6.0	6 1/2	64	64	
10/29/2015		3831	3544	3688	7	7046	6998	7022	28			0	5.8	6 1/2	67	68	
10/30/2015		4571	4608	4590	7	6337	6235	6286	28			0	6.0	6 1/2	64	63	
11/2/2015	1	3125	3062	3094	7	6887	6748	6818	28			0	6.2	5 3/4	64	62	
	1			0	7			0	28			0					
	1			0	7	1		0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0			1		
	1			0	7			0	28			0	-	1			
	1			0	7	-		0	28			0					
	1			0	7			0	28			0		-			1
	1	-		0	7	-		0	28			0					+
	1			0	7	-		0	28		-	0		-	-		
	1	-		0	7			0	28			0			-		-
	1		-	0	7	-		0	28			0	-		-		-
	1					-	-	0	28			0	-	-	-		-
	1			0	7			-						-	-		-
	1			0	7			0	28	-	-	0	-	-	-		-
	1			0	7			0	28	-		0	-	-	-		-
	1			0	7			0	28			0	-	-	-		-
	1			0	7			0	28			0	-	-	-		
	1			0	7	-		0	28			0	-	-			
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					1
	1			0	7			0	28			0					
	1	-		0	7	-		0	28		+	0			1		1

Figure B-2. Concrete Barrier Segment – Concrete Strength, Test No. NJPCB-4

			CERTIFIED MA	TERIAL TEST	REPORT					Page 1/1	1
GO GERDAU		P TO SUPPLY CO INC NDUSTRIAL PARK		BILL TO IPE SUPPLY CO	INC	GRADE A36/44W		7.000	APE/SIZE nd Bar / I"		٠
US-ML-CHARLOTTE 6601 LAKEVIEW ROAD	JONESBURG,I USA			AN,KS 66505-168	38	LENGTH 20'00"	Ř		WEIGHT 14,968 LB	T / BATCH 41812/02	
CHARLOTTE, NC 28269 USA	SALES ORDE 1384530/00004			MER MATERIAL 00009010020	N°	1-ASTM A	ATION / DAT 6/A6M-11, A36/ 19M-11 GR36		SION		
CUSTOMER PURCHASE ORDER NUMBER 4500233654		BILL OF LADING 1321-0000027245		DATE 12/18/2014		3-CSA G40	21-04(R2009) 4	ŧw			
CHEMICAL COMPOSITION C Mn P 6 % % 96 0.17 0.69 0.018	§ 0.031	\$j 0.19 0	Çu (Ni (0 6 30	% 0.001	Nb 0.001	\$n 0.014	Y	
MECHANICAL PROPERTIES Elogia. 1 23.20 8.	G/L nch 000	UTS PSI 77428		UTS MPa 534		YS PSI 54195			YS MPa 374		
GEOMETRIC CHARACTERISTICS R:R 32.00					***************************************						
COMMENTS / NOTES			1 -				÷				
R#16-0230 ASTM A3								-		7A -	
New Jersey TCB Ba	arrer A	Anchor D	owel I	Pins							
H#54141812 R#16-0	230 De	ecember	2015				4.				
). a						
8 .							9				

The above figures are certified chemical and physical test records as contained in the permanent records of company. We certify that these data are correct and in compliance with specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1.

Markay BHASKAR YALAMANCHILI
QUALITY DIRECTOR

Jordan FOSTER

QUALITY ASSURANCE MGR

Figure B-3. Anchor Pins Material Certificate, Test No. NJPCB-4

GO GERDAL US-ML-SAYREVILLE NORTH CROSSMAN ROAD SAYREVILLE, NJ 08872 JSA CUSTOMER PURCHASE ORDER NUMBER BB 22777	EDDYSTONE, USA SALES ORDEI 1785955/00001	PPLY CO INC I ONE INDUSTRIAL PARK2 PA 19022 I R	CUSTOMER MATERIAL TEST REPOR CUSTOMER BILL TO RE STEEL SUPPLY CO INC 2000 EDDYSTONE INDUSTRIAL PA EDDYSTONE, PA 19022-1588 USA CUSTOMER MATERIAL N°			CATION / DAT 15/A615M-14	Reba	PE/SIZE r/#4(13MM) WEIGHT 5,050 LB	Page 1/1 HEAT/BATCH 61101274/02
CHEMICAL COMPOSITION Mn	% 0.048	\$i Çu % 0.23 0.43	Nj Sr 0.16 0.05		10 %	\$n 0.019	y 0.017	CEqyA706 0.56	
MECHANICAL PROPERTIES VS PSI 66850 67400	YS MPa 461 465	UTS PSI 93950 95100	UTS MPa 648 656		G/L Inch 8.000 8.000		20	G/L nm 00.0	
MECHANICAL PROPERTIES Elopg. Bi 13.50 13.50	endTest OK OK								
GEOMETRIC CHARACTERISTICS **Light Def Hgt Def Gap ** Inch Inch 4.10 0.030 0.099 3.20 0.030 0.099	DelSpace Inch 0,320 0,320								
COMMENTS / NOTES This grade meets the requirements for the following gra	des:								
							×		
The above figures are o	ertified chemical and	physical test records as con-	tained in the permanent records of com	Tana Par					*
specified requirements. Ahack	BHASI	ing the billets, was melted at KAR YALAMANCHILI TY DIRECTOR	actives at the permanent records of common manufactured in the USA. CMTR of	mplies	with EN 102	these data are of	IOSEPI	o compliance with It i homic Ity assurance mgr	

Figure B-4. Rebar No. 4 Material Certificate, Test No. NJPCB-4

GÐ GERDAL	CUSTOMER SHI RE STEEL SUI 2000 EDDYST EDDYSTONE,	PTO C PPLY CO INC F ONE INDUSTRIAL PARK2	TFIED MATERIAL TEST REPORT CUSTOMER BILL TO RE STIELL SUPPLY CO INC COOO EDDYSTONE INDUSTRIAL PARK EDDYSTONE PA 19022-1588	GRADE 60 (420) LENGTH		PB/SIZE /#4(13MM) WEIGHT	Page l/J
IS-ML-SAYREVILLE IORTH CROSSMAN ROAD	USA		JSA	40'00"		5,023 LB	61101493/04
AYREVILLE, NJ 08872 JSA	SALES ORDE: 1785955/00001		CUSTOMER MATERIAL N°	SPECIFICA ASTM A615/	ITON / DATE of REVISI 06[5M-14	ON	
CUSTOMER PURCHASE ORDER NUMBER BB 22777		BILL OF LADING 1331-0000029243	DATE 01/23/2015				
CHEMICAL COMPOSITION C Min P 0.42 0.65 0.012	\$ 0.058	Si Cu % % 0.19 0.43	Ni Cr % % 0.15 0.09	Mo 0.056	\$n	CEqyA706 0.56	
MECHANICAL PROPERTIES YS PSI 71350 71250	YS MPa 492 491	UTS PSI 104900 105600	UTS MPa 723 728	G/L/ Inch 8.000 8.000	20	G/L nati 00.0 00.0	
MECHANICAL PROPERTIES Elong. F 13.00 11.50	endTest OK OK						
GEOMETRIC CHARACTERISTICS	Def3pace Inch 0.321 0.321						
COMMENTS / NOTES This grade meets the requirements for the following g	rades:	<u> </u>					
			4				
The above figures are	pertified chemical as	nd physical test people as co	ntained in the permanent records of compa	ur Wa partifu that t	hara dala are correct and	in compliance with	
specified requirements	s. This material, incl	uding the billets, was melted SKAR YALAMANCHILI	and manufactured in the USA. CMTR com	pries with EN 1020	14 3.1,	эн т номос	
, 1004	QUA	LITY DIRECTOR		Jones 1	QUAL	ITY ASSURANCE MGR.	

Figure B-5. Rebar No. 4 Material Certificate, Test No. NJPCB-4

GO GERDAU US-ML-SAYREVILLE NORTH CROSSMAN ROAD SAYREVILLE, NJ 08872 USA CUSTOMER PURCHASE ORDER NUMBER	CUSTOMER SHIP RE STBEL SUP 2000 EDDYSTO EDDYSTONE,P USA SALES ORDER 1785955/000010	TO PLY CO INC INE INDUSTRIAL PARK A 19022	CUSTOMER B. RE STEEL SU 2000 EDDYS EDDYSTONI USA	JPPLY CO INC				Rebai	PE / SIZE / #4 (13MM) WEIGHT 5,050 LB	Page 1/1 HEAT/BATCH 61101510/03
BB 22777 CHEMICAL COMPOSITION		1331-0000029243		01/23/2015		<u></u>				
C Mn P % % 0.42 0.66 0.018	§ 0.046	Si Cu % % 0.21 0.30	۲۸ 0.1			∕I₀ % 035	\$n 0.018	0.015	CEqvA706 0.55	~
73400	(S IPa 06 21	UTS PSI 107150 110500		UTS MPa 739 762		G/L Inch 8.000 8.000)	2	G/L mm 00.0 00.0	
12.00	dTest DK DK									
GEOMETRIC CHARACTERISTICS Wilight Def Figt Def Gap Inch Inch 2.41 9.032 0.080 2.30 0.032 0.080	DefSpace Inch 0,322 0,322									
COMMENTS / NOTES Tais grade meets the requirements for the following grade	es:			4			****			
*										
					1					
									A CONTRACTOR OF THE CONTRACTOR	
The above figures are conspecified requirements. Mack	This material, inclu	d physical test records as o ding the billets, was melto KAR YALAMANCHILL LIY DIRECTOR	ontained in the	e permanent records of co tured in the USA. CMTR	complie	s with EN	hat these data ar 10204 3.1.	,	IN COMPLIANCE WITH PHIT HOMIC LITY ASSURANCE MGR.	

Figure B-6. Rebar No. 4 Material Certificate, Test No. NJPCB-4

GÐ (BERI	DAU	CUSTOMER SHIP RE STEEL SUPI	PLY CO INC	CUST:	OMER BILL TO	L TEST REPORT CO INC INDUSTRIAL PARK		GRADE 60 (420)			PE / SIZE 1 / #4 (13MM)	Page 1/1
US-ML-SAYREVILLE NORTH CROSSMAN ROAD			EDDYSTONE,P USA	A 19022	EDD' USA	YSTONE,PA 19	022-1588	`	LENGTH 40'00"	i		WEIGHT 10,020 LB	HEAT/BATCH 61101492/02
YREVILLE, N A	J 08872		SALES ORDER 1785955/000010		C	JSTOMER MA	TERIAL N°			CATION / DA 515/A615M-14	TE or REVIS	ION	
JSTOMER PUR 3 22777	CHASE ORDE	RNUMBER		BILL OF LADI 1331-00000292		DATE 01/23/2	2015						
HEMICAL COMPO C U.43	08TT10N Mn % 0.67	P 0.014	\$ 0.054	Si % 0.20	Си 0.43	Ni % 0.21	Çr % 0.10	M % 0.0		\$n 0.018	% 0.017	CEqyA706 0.57	
ECHANICAL PRO YS PS1 65151 68451)	4	S Pa 49 72	UTS PSI 9610 9960	S 0 0	6	TS Pa 63 87		G/L Inch 8.000 8.000		2	G/L mmi .00.0	
ECHANICAL PRO Elong 15.00 15.50	:)	0	fTest K K										
EOMETRIC CHAI %Light % 3.60 1.70	RACTERISTICS Def Hgt Inch 0,831 0,829	Def Gap Inch 8,078 8,090	DefSpace Inch 0.322 0.322	•									
MMENTS / NOT		ne following grade	3:		****								
											-		
	The above	a forma and a	65-1-1-1-1-1										
	specified	requirements. T	hts material, includ	i physical test rec ling the billets, w Kar yalamanchi	ras melted and a	ed in the perman nanufactured in	ent records of compa the USA, CMTR con	nplies	with EN 1	0204 3.1.		in compliance with РКТ номис	
	/ /	hack	QUALITY QUALITY	TIY DIRECTOR				0	Jana	7 Fram	QUA	LITY ASSURANCE MGR.	

Figure B-7. Rebar No. 4 Material Certificate, Test No. NJPCB-4

MwRSF Report No. TRP-03-371-18	December 12, 2018

GO GERDAU US-ML-SAYREVILLE NORTH CROSSMAN ROAD SAYREVILLE, NJ 08872 USA CUSTOMER PURCHASE ORDER NUMBER BB 22777	CUSTOMER SHII RE STEEL SUP 2000 EDDYSTO EDDYSTONE,I USA SALES ORDER 1785955/00001	P TO PLY CO INC DNE INDUSTRIAL PARK PA 19022	CUSTOMER MATERIAL TEST REPORT CUSTOMER BILL TO RE STEEL SUPPLY CO INC 2000 EDDYSTONE INDUSTRIAL PARK EDDYSTONE,PA 19022-1588 USA CUSTOMER MATERIAL N° DATE 01/23/2015	GRADE 60 (420) LENGTH 40'00* SPECIFICATION / DATE ASTM A615/A615M-14	SHAPE / SIZE Rebar / #4 (13MM) WEIGHT 5,050 LB or REVISION	Page [/] HEAT/BATCH 61101499/04
CHEMICAL COMPOSITION \$\begin{pmatrix} \M_{11} & \mathbb{P} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\$ % 0.064	\$i Cn 0.21 0.33	Ni Çr % 0,21 0.19	Mo Sn 0.066 0.016	V CEqvA706 0.012 0.58	
70900	YS 1Pa 189 175	UTS PSI 105500 103200	UTS MPa 727 712	G/1. Inch 8.000 8.000	G/L mm 200.0 200.0	
11.00	dTest DK DK		*			
GEOMETRIC CHARACTERISTICS	DefSpace Juck 0.321 0.321					
COMMENTS / NOTES This grade mouts the requirements for the following grad	ca:					
The above figures are conspecified requirements.	This material, inclu	J physical test records as co ding the billets, was melted KAR YALAMANCHILI JTY DIRECTOR	outained in the permanent records of company I and manufactured in the USA. CMTR comp	T. We certify that these data are collies with EN 10204 3.1.		

Figure B-8. Rebar No. 4 Material Certificate, Test No. NJPCB-4

GO GERDAL	CUSTOMER SHIP TO RE STEEL SUPPLY CO II 2000 EDDYSTONE INDU	CUST C RES	ED MATERIAL TEST RE OMER BILL TO TEEL SUPPLY CO INC EDDYSTONE INDUSTRIA		GRADE 60 (420)		PE / SIZE r / #4 (13MM)	Page 1/1
-ML-SAYREVILLE ORTH CROSSMAN ROAD	EDDYSTONE,PA 19022 USA	EDD USA	YSTONE,PA 19022-[588		LENGTH 40'00"		WEIGHT 4,008 LB	HEAT/BATCH 61101772/04
YREVILLE, NJ 08872 A	SALES ORDER 1785955/000010	. c	USTOMER MATERIAL Nº		SPECIFICATION ASTM A615/A615N	/ DATE or REVIS	ION	
USTOMER PURCHASE ORDER NUMBER 3 22777	BILL OF 1331-000	LADING 0029243	DATE 01/23/2015					
HEMICAL COMPOSITION C Mn P % 0.44 0.67 0.019	\$ \$i 0.059 0.20	Си % 0.38	Ni Cr % % 0.16 0.06	0.6	10 Sn % % 047 0.017	V % 0.016	CEqyA706 0.57	
BECHANICAL PROPERTIES VS PSI 66400 65850	YS MPa 458 454	UTS PSI 96900 97700	UTS MPa 668 674		G/L Inch 8.000 8.000	2	G/L mm 100.0	
JECHANICAL PROPERTIES Flore, B 16,00 17,00	endTest OK OK							
### Def Hgt Def Gap Inch Inch	DefSpace Inch 0.320 0.320							
DMMENTS / NOTES is grade meets the requirements for the following gr	ades:		T.			•	•	
•								
The above figures are	certified chemical and physical	est records as contain	sed in the permanent records	of company. V	We certify that these	data are correct and	in compliance with	
specified requirements	s. This material, including the bi	llets, was melted and	manufactured in the USA. C		s with EN 10204 3.1			

Figure B-9. Rebar No. 4 Material Certificate, Test No. NJPCB-4

			DETERMINED MA	TEDIAL TI	CT DEDODT					Page 1/
GERDAU	CUSTOMER SHIP RE STEEL SUPI	TO PLY CO INC	CUSTOMER E RE STEEL S	BILL TO SUPPLY CO	INC	GRAD: 60 (420			PE / SIZE - / #6 (19MM)	
ML-SAYREVILLE	PARK EDDYSTONE,P	NE INDUSTRIAL A 19022	2000 EDDYS EDDYSTON USA		USTRIAL PARK -1588	LENG* 40'00"	ГН		WEIGHT 30,282 LB	HEAT / BATCH 61105448/03
RTH CROSSMAN ROAD YREVILLE, NJ 08872 A	USA SALES ORDER 2886827/000020		CUSTON	MER MATER	RIAL Nº		FICATION / DA' A615/A615M-15	TE or REVIS	ION	
STOMER PURCHASE ORDER NUMBER -23635		BILL OF LADING 1331-0000038904		DATE 10/08/2015						
EMICAL COMPOSITION C Mn P 0.48 0.75 0.010	\$ 0.064	Si C ₆ % 0.23 0.3		Ni % .18		Mo 0.036	Sn 0.028	V % 0.018	CEqvA706 0.65	
70159 4	(S IPa 84 87	UTS PSI 107318 108364		UTS MPa 740 747		G/ Inc 8.0 8.0	00	2	G/L mm .00.0	
14.00	dTest DK DK									
#Light Def Hgt Inch Inch 5.80 0.040 0.090	DefSpace Inch 0.477 0.477									
MMENTS / NOTES										
The above figures are co	ertified chemical an	nd physical test records :	as contained in	the permaner	t records of compan	y. We certi	fy that these data	are correct an	d in compliance with	
specified requirements. Mack	This material, inclu	iding the billets, was me SKAR YALAMANCHILI LITY DIRECTOR	elted and manuf	actured in the	USA. CMTR comp	olies with E	IN 10204 3.1.		EPH T HOMIC ALITY ASSURANCE MGR.	

Figure B-10. Rebar No. 6 Material Certificate, Test No. NJPCB-4

a	GERI	DAU	CUSTOMER SHII RE STEEL SUP	PPLY CO INC		CUSTOMER BILL RE STEEL SUP 2000 EDDYSTO	TO PLY CO INC	С	GRADE 60 (420			PE / SIZE r / #6 (19MM)	Page I/I	
ML-SAYREV			2000 EDDYSTO PARK EDDYSTONE,I			EDDYSTONE,PA 19022-1588 USA			LENGTH 40'00"			WEIGHT 4,987 LB	HEAT / BATCH 61105472/03	
RTH CROSSI YREVILLE, N A			USA SALES ORDEI 2886827/00002			CUSTOMER	R MATERIA	ıL Nº		FICATION / DA A615/A615M-15	TE or REVIS	SION		
	RCHASE ORDE	ER NUMBER		BILL OF LA 1331-000003			ATE 0/08/2015							
EMICAL COMF C % 0.46	POSITION Mn % 0.72	P % 0.019	S % 0.048	Si % 0.21	Cu % 0.38	Ni % 0.15		Çr 0.14	Mo % 0.036	Sn % 0.017	V 0.022	CEqvA706 0.63		
CHANICAL PR YS PSI 7329 7338	S I 96	5	(S IPa 05 06	10	TS PSI 6977 7455		UTS MPa 738 741		G// Inc 8.00 8.00	00		G/L mm 200.0 200.0		
ECHANICAL PR Elon 13.0 15.0	ng. 00	(ndTest OK OK	*										
%Light %Light 4.20 4.50	ARACTERISTICS Def Hgt Inch 0.058 0.058	Def Gap Inch 0.072 0.072	DefSpace Inch 0.481 0.481					×						
MMENTS / NO	YTES													
														_
	specific	ed requirements.	This material, inc	cluding the bille	ts, was me	s contained in the	permanent r tured in the U	records of compa USA. CMTR con	ubiles with r	214 10204		and in compliance wit	h	
	/	Mack	Out	IASKAR YALAMA JALITY DIRECTOR					Jan	a The	Q	UALITY ASSURANCE MC	R.	

Figure B-11. Rebar No. 6 Material Certificate, Test No. NJPCB-4

Customer Name Customer PO# Shipper No Heat Number Seibel Modern Mfg. Leon 273924 821597 Atlas Tube Canada ULC 200 Clark St. Harrow, Ontario, Canada NOR 1G0 Ref.B/L: 80664351 Date: 05.08.2015 Customer: 1497 JMC STEEL GROUP Tel: 519-738-3541 Fax: 519-738-3537 MATERIAL TEST REPORT Sold to Triad Metals International 1 Village Road HORSHAM PA 19044-3812 USA Shipped to Triad Metals International 3507 Grand Avenue PITTSBURGH PA 15225 USA Material: 3.0x3.0x125x24'0"0(7x7). Material No: 300301252400 Made In: Canada Melted in: Canada Sales order: 989576 Purchase Order: 75461 Heat No S Si Al Cu СЬ Mo Ni Cr V 821195 0.810 0.009 0.007 0.019 0.044 0.060 0.006 0.006 0.026 0.045 0.002 0.000 0.003 PCs Yield Tensile Eln.2in Certification CE: 0.34 M101451859 49 063780 Psi 077160 Psi 26.6 % ASTM A500-13 GRADE B&C Material: 4.0x4.0x500x40'0"0(4x2). Material No: 400405004000 Made in: Canada Malted in: Canada Sales order: 995107 Purchase Order: 76312 Heat No C S Si Cu Cb Mo Ni Cr 775533 0.200 0.810 0.012 0.010 0.015 0.031 0.032 0.006 0.002 0.011 0.032 0.002 0.002 0.000 0.003 Bundle No Yield Tensile Eln.2in Cartification M101454130 1 066980 Psi 075080 Psi 27.0 % ASTM A500-13 GRADE B&C Material Note: Sales Or Note: Material: 4.0x4.0x500x40'0"0(4x2). Material No: 400405004000 Made in: Canada Melted in: Canada Sales order: 995107 Purchase Order: 76312 Heat No C S Si Cu Cb Mo Ni Cr V Ti 821597 0.210 0.780 0.011 0.009 0.013 0.040 0.026 0.006 0.004 0.013 0.031 0.002 0.002 0.000 0.004 PCs Yield Tensile Eln.2in Certification 069700 Psi 078390 Psi 27.2 % M101454130 7 ASTM A500-13 GRADE B&C Material Note: Salos Or.Note: Marin Halfin Marvin Phillips Authorized by Quality Assurance:

The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable CE calculated using the AWS D1.1 method. Steel Tube Institute

Figure B-12. Steel Tube Material Certificate, Test No. NJPCB-4

Page : 1 Of 4

Customer PO#

Shipper No

Heat Number

Seibel Modern Mfg.

Leon

273924

821597

Atlas Tube Canada ULC 200 Clark St. Harrow, Ontario, Canada NOR 1G0 Tel: 519-738-3541 Fax: 519-738-3537

Atlas Tube Ref.B/L: 80664351 05.08.2015

MATERIAL TEST REPORT

Sold to

Triad Metals International 1 Village Road HORSHAM PA 19044-3812 USA

Shipped to

Triad Metals International 3507 Grand Avenue PITTSBURGH PA 15225 USA

Material: 4.0	x4.0x50	00x40'0"0	(4×2).		1	Naterial N	No: 400	4050040	000			Made i	n: Can	200000	
Sales order:	99510	7			P	urchase	Order:	76312				montod		uou	
Heat No	С	Mn	Р	s	Si	AI	Cu	Съ	Mo	Ni	Cr	V	Ti	В	N
821597	0.210	0.780	0.011	0.009	0.013	0.040	0.026	0.006	0.004	0.013	0.031	0.002	0.002	0.000	0.00
Bundle No	PCs	Yield		ensilo		.2in			Ce	rtification			(E: 0.3	5
M101454131	8	069700		78390 Psi		%				TM A500					
Material Note Sales Or.Note															
Material: 6.0x	2.0x18	8x24'0*0(3×9).		N	laterial N	o: 6002	2018824	00			Made in	n: Can		
Sales order:	99510	7			P	urchase (Order: 7	6312				Melted	in: Can	aua	
Heat No	С	Mn	Р	S	Si	AI	Cu	Сь	Мо	Ni	Cr	V	Ti	В	N
821679	0.180	0.790	0.010	800.0	0.015	0.040	0.047	0.002	0.005	0.023	0.038	0.002	0.002	0.000	0.004
Bundle No	PCs	Yield	Te	nsile	Eln.	2in			Cei	tification			c	E: 0.3	3
M101453723		058410	Psi 06	9080 Psi	33.3				AS	TM A500					
Material Note: Sales Or.Note															
Material: 6.0x	6.0x18	3×40'0"0(3×3).		M	aterial No	o: 6006	0188400	00			Made in			
Sales order:	100117	3			Pu	rchase C	Order: 7	7498							
leat No	С	Mn	P	s	Si	Al	Cu	Сь	Mo	Ni	Cr	V	Ti	В	N
321531	0.190	0.810	0.013	0.006	0.017	0.059	0.051	0.005	0.004	0.015	0.036	0.002	0.002	0.000	0.004
Bundle No	PCs	Yield	Ter	nsile	Eln.				Cer	tification			C	E: 0.3	4
M101456164	9	063160 6	Psi 078	B380 Psi	30.5			***	AS	M A500	-13 GRA	DE B&C			
Material Note: Sales Or.Note:															

Mauren Hiller

Authorized by Quality Assurance:
The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements.

Section 1.1 method.

Page: 2 Of 4

Metals Service Center Institute

Figure B-13. Steel Tube Material Certificate, Test No. NJPCB-4

Customer PO#

Shipper No

Heat Number

Seibel Modern Mfg.

Leon

273924

1422428

Atlas ABC Corp (Atlas Tube Chicago) 1855 East 122nd Street Chicago, Illinois, USA 60633 Tel: 773-646-4500 Fax: 773-646-6128

DDD JMC STEEL GROUP

MATERIAL TEST REPORT

Sold to

Triad Metals International 1 Village Road HORSHAM PA 19044-3812 USA

Shipped to

Triad Metals International 3507 Grand Avenue PITTSBURGH PA 15225 USA

Material: 4.0			(4×2).			laterial N		4050040 75462	00			Made in Melted	0 300		1.
Hoat No	Ç	Mn	P	s	Si	AI	Cu	Cb	Mo	Ni	Cr	V	Ti	В	N
1422428	0.200	0.930	0.007	0.010	0.013	0.043	0.040	0.000	0.000	0.020	0.030	0.000	0.000		
Bundle No	PCs	Yield		ensile	Eln.	2in			Ce	rtification				DE: 0.3	0.00
M800549020		070619		31004 Psi	36 %					00-13 GR				- 4.0	•
Material Note Sales Or.Note															
Material: 4.0x	4.0x50	0x40'0"0	(4×2).		М	aterial N	o: 4004	10500400	00	,		Made in	47		
Sales order:	989623	:			Pt	irchase (Order: 7	5462				Melted i	n: Rus	sian Fed	1,
Heat No	C	Min	Р	s	Si	AI	Cu	Сь	Mo	Ni	Ct	V	TI	В	N
1422428	0.200	0.930	0.007	0.010	0.013	0.043	0.040	0.000	0.000	0.020	0.030	0.000	0.000	0.000	
Bundle No	PCs	Yield		nsile	Eln.	2in			Cer	rtification				E: 0.3	0.000
M800549017	8	070619		1004 Psi	36 %			A	STM A50	00-13 GR	ADE B&G	C		·	
Material Note: Sales Or.Note															
Material: 20.0	x4.0x31	3×48'0°0)(1x4).		M	aterial No	2000	4031348	100			Made in			
Sales order:	994677				Pu	rchase C	order: 7	5051-rep	lacement			Melted i	n: USA		
Heat No	C	Min	P	S	Si	AI	Cu	Ср	Mo	Ni	Cr	V	Ti	В	N
A73575	0.200	0.490	0.009	0.002	0.030	0.034	0.120	0.000	0.020	0.060	0.050	0.001		0.000	
Bundle No	PCs	Yield	Ter	nsile	Eln.2	2in				tification				E: 0.3	
VI 300754817		057121	Psi 074	4148 Psi	30 %			A	*********		ADE B&			0.0	

Waven Frigin

Authorized by Quality Assurance:
The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements.

One of the material furnished and indicate full compliance with all applicable specification and contract requirements.

Figure B-14. Steel Tube Material Certificate, Test No. NJPCB-4

Customer PO#

Shipper No

Heat Number

Seibel Modern Mfg.

Leon

273924

M04495 1

Atlas ABC Corp (Atlas Tuba Chicago) 1855 East 122nd Street Chicago, Illinois, USA 60633

Tel: 773-646-4500 Fax: 773-646-6128

DDD JMCSTEEL GROUP

MATERIAL TEST REPORT

Sold to

Triad Metals International 1 Village Road HORSHAM PA 19044-3812 USA

Shipped to

Triad Metals International 3507 Grand Avenue PITTSBURGH PA 15225 USA

Material: 4.0x4.0x500x48'0"0(3x2).

0.190

Material No: 400405004800

Made in: USA

Sales order: 989623

Purchase Order: 75462

Melted in: USA

C

Al SI Cu 0.014 0.010 0.019 0.050 0.050 0.004 0.004

Ni Cr Ti 0.010 0.040 0.001 0.000 0.005

Bundle No M800554030 2

M04495_1

0.750 PCs Yield

Mn

Tensile 072918 Psi 082550 Psi 35 %

S

Eln.2in

Cartification ASTM A500-13 GRADE B&C

Material Note: Sales Or.Note:

Waren Flitter

Authorized by Quelity Assurance:
The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements.

Page : 4 Of 4

Customer PO#

Shipper No

Heat Number

Seibel Modern Mfg.

Leon

273924

T83539

Atlas ABC Corp (Atlas Tube Chicago 1855 East 122nd Street Chicago, Illinois, USA 60633 773-646-4500 Fax: 773-646-6128

DDD JMC STEEL GROUP

Ref.B/L: 80619794 Date: 08.22.2014 Customer: 1497

MATERIAL TEST REPORT

Sold to

Triad Metals International 1 Village Road HORSHAM PA 19044-3812 USA

Shipped to

Triad Metals International 3500 Neville Road NEVILLE ISLAND PA 15225 USA

Material: 4.0	x4.0x37	75×48'0"0(4x2).		ľ	Material N	No: 4004	4037548	00			Made i	n: USA		
Sales order:	93492	1			P	urchase	Order: 6	37358							
Heat No	C	Mrs	P	s	Si	AI	Cu	Сь	Mo	Ni	Cr	V	Ti	В	N
E84203	0.190	0.800	0.015	0.011	0.021	0.050	0.040	0.005	0.006	0.010	0.040	0.001	0.001	0.000	0.004
Bundle No	PCs	Yield		ensile		.2in				rtification			c	E: 0.3	4
M800504131		071476		31675 Psi		6				00-13 GF					
Material Note Sales Or.Note															
Material: 4.0x	4.0x50	0x40'0"0(4	4x2).		(V	laterial N	o: 4004	050040	00			Made in			
Sales order:	934921	1			P	urchase (Order: 6	7358				Mentea	in: USA	`	
Heat No	C	Mn	Р	s	Si	AI	Cu	Cb	Mo	Ni	Cr	v	TI	В	N
T83539	0.200	0.820	0.012	0.007	0.015	0.054	0.020	0.007	0.004	0.010	0.040	0.001	0.001	0.000	0.005
Bundle No	PCs	Yield	Ta	nsile	Eln.	2in			Cer	rtification			c	E: 0.3	5
M800500342	8	072654		5933 Psi	29 %					00-13 GR					
Material Note: Sales Or.Note															
Material: 12.0	×12.0×2	250x40'0"	0(2×2).		M	aterial No	o: 1201	2025040	000			Made II	n: USA		
Sales order:	933979				P	ırchase (Order: 6	7228							
leat No	C	Mn	Р	S	Si	AI	Cu	Cb	Mo	Ni	Cr	v	Ti	В	N
84047	0.180	0.800	0.008	0.007	0.015	0.045	0.020	0.003	0.003	0.010	0.040	0.001	0.001	0.000	0.007
lundle No	PCs	Yield		nsile	Ein.				Cat	tification			C	E: 0.3	3
1900697115	4	055286 P		3956 Psi	28 %			A	STM A50	00-13 GR					
Material Note: Sales Or.Note:															

Marin Halling

Marvin Phillips

Authorized by Quality Assurance:
The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements.
CE calculated using the AWS D1.1 method.

Steel Tube Institute

Page : 1 Of 4

Figure B-16. Steel Tube Material Certificate, Test No. NJPCB-4

Customer Name Customer PO# Shipper No Heat Number Seibel Modern Mfg. Leon 273924 SD5020 6226 W. 74th St Independence Tube independencetube.com Chicago, IL 60638 708-496-0380 itctube.com Certificate Number: DCR 250913 Fax: 708-563-1950 Purchase Order No: 70783 INDEPENDENCE TUBE CORPORATION 6226 W. 74th St. Sales Order No: DCR 64130 - 5 Bill of Lading No: DCR 43787 - 94 Shipped: 1/16/2015 Chicago, IL 60638 Invoice No: Invoiced: Tel: 708-496-0380 Fax: 708-563-1950 Sold To: Ship To: 2103 - TRIAD METALS 39 - TRIAD METALS BARGE 1 VILLAGE ROAD MILE MARKER 7.3 HORSHAM, PA 19044-3812 OHIO RIVER NEVILLE ISLAND, PA 15225 CERTIFICATE of ANALYSIS and TESTS Certificate No: DCR 250913 Customer Part No: Test Date: 1/14/2015 TUBING A500 GRADE B(C) Total Pieces Total Weight 4" SQ X 1/2" X 48' 36 37,376 Bundle Tag Heat Pieces Weight 844458 SD5020 9,344 844459 40 SD5020 9 9,344 844460 40 SD5020 9.344 844461 40 SD5020 9,344 Mill #: 40 Heat #: SD5020 Yield: 72,300 psi Tensile: 78,800 psi Elongation: 28.50 % Y/T Ratio: 0.9175 Carbon Eq: 0.1352 Mn Si Cu Cr Mo 0.0500 0.3900 0.0090 0.0040 0.2240 0.0260 0.0900 0.0400 0.0200 0.0010 0.0300 0.0080 Certification: I certify that the above results are a true and correct copy of records prepared and maintained by Independence Tube Corporation. Sworn this day, 1/14/2015 WE PROUDLY MANUFACTURE ALL OF OUR HSS IN THE USA. INDEPENDENCE TUBE PRODUCT IS MANUFACTURED, TESTED, AND INSPECTED IN ACCORDANCE WITH ASTM STANDARDS. CURRENT STANDARDS:A500/A500M-13A513-12 Jose Martinez, QMS ManagerA252-10A847/A847M-12 MATERIAL IDENTIFIED AS A500 GRADE B(C) MEETS BOTH ASTM A500 GRADE B AND A500 GRADE C SPECIFICATIONS.

Figure B-17. Steel Tube Material Certificate, Test No. NJPCB-4

MID-AMERICA STEEL CORPORATION TEST REPORT

No. F33822

TO:	SEIBEL	MODERN	MFG	&	WELDING	DATE:	02/19/13
						P.O. #:	SBJ-40

ATTN:

TAG#	SIZE	SPEC
K78419	1/4 x 48.000 x 144.000	A-36
K78420	1/4 x 48.000 x 144.000	A-36
K78421	1/4 x 48.000 x 144.000	A-36
K78422	1/4 x 48.000 x 144.000	A-36

CHEMICAL ANALYSIS

TAG#	HEAT#	C	Mn	P	S
K78419	1129849	0.063	0.760	0.012	0.004
K78420	1129849	0.063	0.760	0.012	0.004
K78421	1129849	0.063	0.760	0.012	0.004
K78422	1129849	0.063	0.760	0.012	0.004

PHYSICAL ANALYSIS

TAG#	HEAT#	TENSILE	YIELD	ELONGATION
K78419	1129849	75,102	58,422	26%
K78420	1129849	75,102	58,422	26%
K78421	1129849	75,102	58,422	26%
K78422	1129849	75,102	58,422	26%

All material made and melted in the U.S.

Thank you,

JOHN RATICA MID-AMERICA STEEL CORPORATION

Figure B-18. 2-in. $\times \frac{1}{4}$ -in. (51-mm \times 6-mm) Bent Steel Plate, Test No. NJPCB-4

ArcelorMittal

ArcelorMittal LaPlace (HARRIMAN) 2404 S. ROANE STREET MATERIAL CERTIFICATION REPORT METAL TRADER INC, (TRIAD METAL)

Date

1 Village Road HORSHAM PA 19044

HARRIMAN, TENNESSEE 37748 ETATS-UNIS

Telephone (865) 882-5100

TRIAD METALS INTERNATIONAL (WASSELL LAND) 3507 Grand Avenue PITTSBURGH PA 15225

USA

PO:

Tested in Accordance With: ASTM A6

CE

Sales Order 148953-4 Product Flat bars

Heat NO.

Cust.Mat.

Flat bars L99837

Cust 40008882 Grade A3652950 Length 20'00"

09/09/2015

Ref. 80833851 Pieces 288 Weight 19607.04

81536

Size 2" X1/2" X3.404

	MICAL	MECHANICAL	*******	TEST		TWODDEN	TEST 2	TRIC	IMPERIAL	TEST 3 METRIC
ANA	LYSIS	PROPERTIES	IMPERI		METRIC	IMPERIAL			INESKIAD	HOLKIC
C	0.13	YIELD STRENGTH	52710	PSI	363 MPa	53770 PS	SI	371 MPa		
Mn	0.88	TENSILE STRENGTH	72220	PSI	498 MPa	74560 P	SI	514 MPa		
P	0.007	ELONGATION	1 :	25 %	25 %	25	8	25 %		2
S	0.018	GAUGE LENGTH		BIN	203 mm	8	IN	203 mm		1
Si	0.19	BEND TEST DIAMETE	SR				i.			
Cu	0.24	BEND TEST RESULTS	5							
Ni	0.17	SPECIMEN AREA		1						1
Cr	0.14	REDUCTION OF AREA	A	1						
Mo	0.065	IMPACT STRENGTH					1			
СЪ	0.020	L				<u> </u>				
V	0									
В		IMPACT STRENGTH	IMPERIAL	METR	IC IN	ERNAL CLEA	NLINESS	GRAIN S	IZE	
Al		AVERAGE			SEVE	RITY		HARDNES	S	
Sn	0.012	TEST TEMP			FREQU	JENCY		GRAIN P	RACTICE	Comment Aria Arabana
N		ORIENTATION			RATII	ig		REDUCTI	ON RATIO	
								1		

I hereby certify that the material test results presented here are from the reported heat and are correct. All tests were performed in accordance to the specification reported above. All steel is electric arc furnace melted (billets), manufactured, processed, tested in the U.S.A with satisfactory results. No weld repair was performed on this heat.

Notarized upon request:	
Sworn to and subscribed before MANAGER	me on 9th day of September, 2015
Notary Public	County

Direct any questions or necessary clarifications concerning

this report to the Sales Department 1-800-535-7692(USA)

MWKSI Report No. 1181-05-5/1	May DCE Deport No TDD_03_371_18	0000minon 11, 1010
01-10	271_18	1010

Service .	1		CUSTOMER S	-IP TO		FIED MATERI	AL TEST REPORT		GRADE		SH	APE/SIZE	Page 1/1
(da) (BERD	DAU TRIA		TRIAD METALS 3507 GRAND AVE PITTSBURGH,PA 15225			TRIAD METALS INTERNATIONAL MET			.TI		/ 1/2 X 2 1/4	HEAT/BATCH
S-ML-CHARLO 601 LAKEVIEW	ROAD		USA		HO US				LENGT 20'00"			4,979 LB	54144612/03
HARLOTTE, NO SA			SALES ORDI 2819476/0000			CUSTOMER M	ATERIAL Nº		A6-13A ASTM A	ICATION / DA' 436-12, ASME S. 529-05(2009), AS	136-13 72-13A	SION	
CUSTOMER PURC 13055W	CHASE ORDER	NUMBER		BILL OF LA 1321-000003		DAT 09/24	E 1/2015			709-13A, AASHT 20-13/G40.21-13			
HEMICAL COMPO C 0.17	SITION Mn % 0.71	P 0.011	5 0.033	Şi % 0.20	Çu % 0.47	Ni % 0.14	Çτ 0.17	Me 9% 0.03		V % 0.015	Nb % 0.002	\$n 0.013	<u></u>
ECHANICAL PROI Elong. 29.40	PERTIES	G/ Inc 8.00	L h 00		T\$ 174	Annual Control of the Market Street, and the Market Street, and the Street, an	UTS MPa 511		YS I'SI 51423			ΎS МРа 355	
R:R 22:80	ACTERISTICS										(
SA Grades; 44W; 50V ASHTO Grades: M27 SME Grades: SA36													
111755													
	The shows fix				-		ent records of compan						

Figure B-20. ½-in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-4

1107 Advantage Grout

Cement Based Grout

TECHNICAL DATA SHEET

DESCRIPTION

The 1107 Advantage Grout is a non-shrink, nonmetallic, non-corrosive, cementitious grout that is designed to provide a controlled, positive expansion to ensure an excellent bearing area. The 1107 Advantage Grout can be mixed from a fluid to a dry pack consistency.

USE

Exterior grouting of structural column base plates, pump and machinery bases, anchoring bolts, dowels, bearing pads and keyway joints. It finds applications in paper mills, oil refineries, food plants, chemical plants, sewage and water treatment plants etc.

FEATURES

- Controlled, net positive expansion
- Non shrink
- Non metallic/non corrosive
- Pourable, pumpable or dry pack consistency
- Interior/exterior applications

PROPERTIES

Corps of Engineers Specification for non-shrink grout: CRD-C 621 Grades A, B, C ASTM C-1107 Grades A, B, C ASTM C-827 - 1107 Advantage Grout yielded a

controlled positive expansion Expansion - ASTM C-1090:

1 day: 0-0.3 3 days: 0-0.3 14 days: 0-0.3 28 days: 0-0.3

Test Results

Fluidity	@1	Day	@3	Days	@7	Days	@ 28 Days		
Fluidity	PSI	MPa	PSI	MPa	PSI	MPa	PSI	MPa	
Dry-Pack	5000	34.5	7000	48.2	9000	62.0	10000	68.9	
Flowable	2500	17.2	5000	34.5	6000	41.4	8000	55.1	
Fluid	2000	13.8	4000	27.6	5000	34.5	7500	51.7	

Note:

The data shown is typical for controlled laboratory conditions. Reasonable variation from these results can be expected due to interlaboratory precision and bias. When testing the field mixed material, other factors such as variations in mixing, water content, temperature and curing conditions should be considered.

Estimating Guide

Yield (Flowable Consistency): 0.43 cu. ft./50 lbs. (0.0122 cu. M/22.67 kg) bag 0.59 cu. ft./50 lbs. (0.017 cu. M/22.67 kg) bag extended with 25 lbs. (11.34 kg) of washed 3/8 in. (1cm) pea gravel

Packaging

PRODUCT		S	ZE
CODE	PACKAGE	ibs	kg
67435	Bag	50	22.67
67437	Supersack	3,000	1,360.78

STORAGE

Store in a cool, dry area free from direct sunlight. Shelf life of unopened bags, when stored in a dry facility, is 12 months. Excessive temperature differential and /or high humidity can shorten the shelf life expectancy.

APPLICATION

Surface Preparation:

Thoroughly clean all contact surfaces. Existing concrete should be strong and sound. Surface should be roughened to insure bond. Metal base plates should be clean and free of oil and other contaminants. Maintain contact areas between 45°F (7°C) and 90°F (32°C) before grouting and during curing period.

Thoroughly wet concrete contact area 24 hours prior to grouting, keep wet and remove all surface water just prior to placement. If 24 hours is not possible, then saturate with water for at least 4 hours. Seal forms to prevent water or grout loss. On the placement side, provide an angle in the form high enough to assist in grouting and to maintain head pressure on the grout during the entire grouting process. Forms should be at least 1 in. (2.5 cm) higher than the bottom of the base plate.

Water Requirements:

Desired Mix Water / 50 lbs. (22.67 kg) Bag

Dry Pack: 5 pints (2.4 L) Flowable: 8 pints (3.8 L) Fluid: 9 pints (4.2 L)

Mixing:

A mechanical mixer with rotating blades like a mortar mixer is best. Small quantities can be mixed with a drill and paddle. When mixing less than a full bag, always first agitate the bag thoroughly so that a representative sample is obtained.

Sec 16

1107 Advantage Grout

Cement Based Grout

TECHNICAL DATA SHEET

Place approximately 3/4 of the anticipated mix water into the mixer and add the grout mix, adding the minimum additional water necessary to achieve desired consistency.

Mix for a total of five minutes ensuring uniform consistency. For placements greater in depth than 3 in. (7.6 cm), up to 25 lbs. (11.34 kg) of washed 3/8 in. (1 cm) pea gravel must be added to each 50 lbs. (22.67 kg) bag of grout. The approximate working time (pot life) is 30 minutes but will vary somewhat with ambient conditions.

For hot weather conditions, greater than 85°F (29°C), mix with cold water approximately 40°F (4°C). For cold weather conditions, less than 50°F (10°C), mix with warm water, approximately 90°F (29°C). For additional hot and cold weather applications, contact Dayton Superior.

Placement:

Grout should be placed preferably from one side using a grout box to avoid entrapping air. Grout should not be over-worked or over-watered causing segregation or bleeding. Vent holes should be provided where necessary

When possible, grout bolt holes first. Placement and consolidation should be continuous for any one section of the grout. When nearby equipment causes vibration of the grout, such equipment should be shut down for a period of 24 hours. Forms may be removed when grout is completely self-supporting. For best results, grout should extend downward at a 45 degree angle from the lower edge of the steel base plates or similar structures.

CLEAN UP

Use clean water. Hardened material will require mechanical removal methods.

CURING

16

Exposed grout surfaces must be cured. Dayton Superior recommends using a Dayton Superior curing compound, cure & seal or a wet cure for 3 days. Maintain the temperature of the grout and contact area at 45°F (7°C) to 90°F (32°C) for a minimum of 24 hours.

LIMITATIONS

FOR PROFESSIONAL USE ONLY

Do not re-temper after initial mixing Do not add other cements or additives

Setting time for the 1107 Advantage Grout will slow during cooler weather, less than 50°F (10°C) and speed up during hot weather, greater than 80°F (27°C) Prepackaged material segregates while in the bag, thus when mixing less than a full bag it is recommended to first agitate the bag to assure it is blended prior to sampling.

PRECAUTIONS

READ SDS PRIOR TO USING PRODUCT

- Product contains Crystalline Silica and Portland Cement Avoid breathing dust Silica may cause serious lung problems
- Use with adequate ventilation n Wear protective clothing, gloves and eye protection (goggles, safety glasses and/or face shield)
- Keep out of the reach of children
- Do not take internally
- In case of ingestion, seek medical help immediately
- May cause skin irritation upon contact, especially prolonged or repeated. If skin contact occurs, wash immediately with soap and water and seek medical help as needed.
- If eye contact occurs, flush immediately with clean water and seek medical help as needed
- Dispose of waste material in accordanc

MANUFACTURER

Dayton Superior Corporation 1125 Byers Road Miamisburg, OH 45342 Customer Service: 888-977-9600 Technical Services: 877-266-7732 Website: www.daytonsuperior.com

WARRANTY

Dayton Superior Corporation ("Dayton") warrants for 12 months from the date of manufacture or for the duration of the published product shelf life, whichever is less, that at the time of shipment by Dayton, the product is free of manufacturing defects and conforms to Dayton's product properties in force on the date of acceptance by Dayton of the order. Dayton shall only be liable under this warranty if the product has been applied, used, and stored in accordance with Dayton's instructions, especially surface preparation and installation, in force on the date of acceptance by Dayton of the order. The purchaser must examine the product when received and promptly notify Dayton in writing of any non-conformity before the product is used and no later than 30 days after such non-conformity is first discovered. If Dayton, in its sole discretion, determines that the product heached the above warranty, it will, in its sole discretion, replace the non-conforming product, refund the purchase price or issue a credit in the amount of the purchase price. This is the sole and exclusive remedy for breach of this warranty. Only a Dayton officer is authorized to modify this warranty. The information in this data sheet supersedes all other sales information received by the customer during the sales process. THE FOREGOING WARRANTY SHALL BE EXCLUSIVE AND IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND ALL OTHER WARRANTIES OTHERWISE. ARSING BY OPERATION OF LAW, COURSE OF DEALING, CUSTOM, TRADE OR OTHERWISE.

Visit www.daytonsuperior.com for the most up to date technical information
Page 2 of 3

File Date: 3/27/2015

Figure B-22. Non-Shrink Grout Specifications, Test No. NJPCB-4

LINCOLN OFFICE

825 "M" Street Suite 100 Lincoln, NE 68508 Phone: (402) 479-2200 Fax: (402) 479-2276

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 6x12

ASTM Designation: C 39

Date 08-Nov-16

Client Name: Midwest Roadside Safety Facility

Project Name: NJPCB-4

Placement Location: None Given

Mix Designation: n/a

Required Strength: n/a

							Laboratory	Test Date	a						
 Laboratory Identification	Field Identification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Cured in Laboratory	Age of Test, Days	Length of Specimen, in.	Diameter of Specimen, in.	Cross-Sectional Area,sq.in.	Maximum Load, Ibf	Compressive Strength, psi.	Required Strength, psi.	Type of Fracture	ASTM Practice for Capping Specimen
NJP- 1	Α	11/8/2016	11/8/2016	11/8/2016	0	0	0	8	4.01	12.60	95,185	7,560	1,000	3	C 1231
NJP- 2	В	11/8/2016	11/8/2016	11/8/2016	0	0	0	8	4.00	12.59	85,934	6,830	1,000	5	C 1231
NJP- 3	С	11/8/2016	11/8/2016	11/8/2016	0	0	0	8	4.01	12.62	94,298	7,470	1,000	2	C 1231

1 cc: Shaun Tighe Midwest Roadside Safety Facility

Remarks: Cast date unknown

All concrete test data in this report was produced by Benesch personnel using ASTM Standard Methods and Practices unless otherwise noted.

Test results presented relate only to the concrete sampled by Benesch personnel as referenced above.

This report shall not be reproduced except in full, without the written approval of Alfred Benesch & Company.

Reasonably wellformed cones on both ends, less than 1 in. [25 mm] of cracking through caps

Type 2 Well-formed rone on one end, vertical cracks running through ends, no well-formed caps, no well-defined cone on other end

Type 3 Columnar vertical cracking through both

Sketches of Types of Fractures

Diagonal fracture with no cracking through ends; tap with hammer to distinguish from Type 1

Type 5 Side fractures of top or

Туре 6 Similar to Type 5 but end of cylinder is commonly with unbonded caps)

ALFRED BENESCH & COMPANY CONSTRUCTION MATERIALS LABORATORY

Brant Wells, Field/Lab Operations Manager

Report Number 2147368938

Figure B-23. Non-shrink Grout Compressive Test Certificate, Test No. NJPCB-4

Appendix C. Concrete Tarmac Strength

LINCOLN OFFICE 825 J Street Lincoln, NE 68508 402/479-2200

COMPRESSION TEST OF Cylindrical CONCRETE SPECIMENS ASTM Designation: C39-03

Client:	UNL			Date:	December 10	, 2010		
Project:	MwRSF							
Placement Location:	WI - East 1, 2	3						
Mix Type:	Class:	Class: Mix No.:						
Type of Forms		0.00	Cement Facto	r, Sks/Yd		na		
			Water-Cemen	t Ratio		na		
Admixture Quantity	1	na	Slump Inches			na		
Admixture Type	1	na	Unit Wt, Ibs/cu	ı. Ft.		na		
Admixture Quantity	1	na	Air Content, %)		na		
Average Field Temperature	1	na	Batch Volume	, Cu. Yds.		na		
Temperature of Concrete F	1	na	Ticket No.			na		
Identification Laboratory	East 1	East 2	East 3					
Date Cast		100000000000000000000000000000000000000						
Date Received in Laboratory	11/30/2010	11/30/2010	11/30/2010					
Date Tested								
Days Cured in Field	- Table							
Days Cured in Laboratory	1.200.00			11007=00000000	A succession and	Lancon		
Age of Test, Days								
Length, in.	7.78	7.81	7.75	100				
Average Width (1), in.	3.72	3.72	3.72					
Cross-Sectional Area, sq. in.	10.874	10.869	10.874	him him had been been been been been been been bee		C State of the contract of the		
Maximum Load, lbf	71,030	76,470	73,310					
Compressive Stength, psi	6,530	7,040	6,740					
Length/Diameter Ratio	2.091	2.099	2.083					
Correction								
Corrected Compressive Strength,psi	0	0	0					
Type of Fracture	4	4	4		S. Carlotte	100 mg (500)		
Required Strength,psi								

Remarks

All concrete break data in this report was produced by Benesch personnel using ASTM Standard Methods and Practices unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of Alfred Benesch & Company

ALFRED BENESCH & COMPANY CONSTRUCTION MATERIALS LABORATORY

Raymond E. Delka, Manager

Figure C-1. Concrete Tarmac Strength Test, Test No. NJPCB-4

LINCOLN OFFICE

825 J Street Lincoln, NE 68508 402/479-2200

COMPRESSION TEST OF Cylindrical CONCRETE SPECIMENS ASTM Designation: C39-03

Client:	UNL December 13, 2010								
Project:	MwRSF				and the second				
Placement Location:	WI - Epoxy We	est 4 &5							
Mix Type:	Class:			Mix No.:					
Type of Forms			Cement Facto	r, Sks/Yd	na				
			Water-Cemen	t Ratio		na			
Admixture Quantity	п	а	Slump Inches			na			
Admixture Type	n	a	Unit Wt, Ibs/cu			na			
Admixture Quantity	n	a	Air Content, %	0	1	na			
Average Field Temperature	n	а	Batch Volume	, Cu. Yds.		na			
Temperature of Concrete F	n	а	Ticket No.		na				
Identification Laboratory	4	5				0.000			
Date Cast			es table diens		a la casa de la	500000000000000000000000000000000000000			
Date Received in Laboratory	12/13/2010	12/13/2010			4 (5)				
Date Tested									
Days Cured in Field	9				Junion Company				
Days Cured in Laboratory	7								
Age of Test, Days	na na	na			I I I I was a second				
Length, in.	8.05	8.06							
Average Width (1), in.	3.91	3.90	land mount						
Cross-Sectional Area, sq. in.	11.977	11.952							
Maximum Load, lbf	71,500	71,630							
Compressive Stength, psi	5,970	5,990							
Length/Diameter Ratio	2.061	2.065							
Correction									
Corrected Compressive Strength,psi	0	0							
Type of Fracture	3	3							
Required Strength,psi	1								

Remarks:

All concrete break data in this report was produced by Benesch personnel using ASTM Standard Methods and Practices unless otherwise noted.

This report shall not be reproduced except in full, without the written approval of Alfred Benesch & Company

ALFRED BENESCH & COMPANY
CONSTRUCTION MATERIALS LABORATORY

Raymond E. Delka, Manager

Figure C-2. Concrete Tarmac Strength Test, Test No. NJPCB-4

Appendix D. Vehicle Center of Gravity Determination

		Test Name:		_ VIN:		R1GP1BS55	1000
Yea	ar: <u>2011</u>	Make: _	Dodge	_ Model:		Ram 1500	
Vehicle CO	3 Determination	on .					
				•	Vertical CG		
VEHICLE	Equipment			(lb)	(in.)	(lb-in.)	ı
+		Truck (Curb)		5029	28 1/3	142383.56	
+	Hub			19	15	285	
+		ation cylinder &	trame	7	26 3/4	187.25	
+		ank (Nitrogen)		27	26 1/2	715.5	
+	Strobe/Brak			5	24 5/8	123.125	
+	Brake Rece			5	51 7/8	259.375	
+		cluding DAS		43	30 1/4	1300.75	
-	Battery			-47	39 1/4	-1844.75	
-	Oil			-8	23 27 1/2	-184	
-	Interior			-86		-2365	
-	Fuel			-149	18	-2682	
-	Coolant Washer fluid			-11	31	-341	
-			-\	-6	34 1/2	-207	
+		st (In Fuel Tank		147	18	2646	
+	Onboard Su	pplemental Bat	ttery	12	24 5/8	295.5	
Note: (+) is ad	ded equipment to v	Estimated Total		4987]	0 140572.31	
Vehicle Dir	nensions for (Estimated Tota Vertical CG	al Weight (lb) Location (in.)	4987 28.1878]	_	
Vehicle Dir		Estimated Tota Vertical CG	al Weight (lb) Location (in.) ons Front Tr	4987 28.1878 ack Width:		_	
Vehicle Dir	nensions for (Estimated Tota Vertical CG C.G. Calculation	al Weight (lb) Location (in.) ons Front Tr	4987 28.1878		140572.31	
Vehicle Dir	nensions for (Estimated Tota Vertical CG C.G. Calculation	al Weight (lb) Location (in.) ons Front Tr	4987 28.1878 ack Width:		140572.31 in.	
Vehicle Dir Wheel Bas	mensions for 0 se: 140 1/2	Estimated Tota Vertical CG C.G. Calculation in.	al Weight (lb) Location (in.) ons Front Tra Rear Tra	4987 28.1878 ack Width:	67 3/4	140572.31 in. in.	Difference
Vehicle Dir Wheel Bas	mensions for Coe: 140 1/2	Estimated Total Vertical CG C.G. Calculation in.	al Weight (lb) Location (in.) ns Front Trans Rear Trans FH Targets	4987 28.1878 ack Width:	67 3/4 Test Inertial	140572.31 in. in.	
Vehicle Dir Wheel Bas Center of C	mensions for Coe: 140 1/2 Gravity I Weight (lb)	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS	al Weight (lb) Location (in.) ons Front Tra Rear Tra SH Targets ± 110	4987 28.1878 ack Width:	67 3/4 Test Inertial 5000	140572.31 in. in.	0.0
Vehicle Dir Wheel Bas Center of C Test Inertial Longitudina	mensions for Coe: 140 1/2 Gravity I Weight (lb) I CG (in.)	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 : 63 :	al Weight (lb) Location (in.) ons Front Tra Rear Tra SH Targets ± 110	4987 28.1878 ack Width:	67 3/4 Test Inertial 5000 61.6795	140572.31 in. in.	0.0 -1.32050
Vehicle Dir Wheel Bas Center of C Test Inertial Longitudina Lateral CG	mensions for Coe: 140 1/2 Gravity I Weight (Ib) II CG (in.) (in.)	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 = 63 = NA	al Weight (lb) Location (in.) ons Front Tra Rear Tra 6H Targets ± 110 ± 4	4987 28.1878 ack Width:	67 3/4 Test Inertial 5000 61.6795 -0.1084	140572.31 in. in.	0.0 -1.32050 NA
Vehicle Dir Wheel Bas Center of C Test Inertial Longitudina Lateral CG Vertical CG	Gravity I Weight (lb) I CG (in.) (in.)	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 : 63 : NA 28 0	al Weight (lb) Location (in.) ons Front Trans Rear Trans SH Targets ± 110 ± 4 or greater	4987 28.1878 ack Width:	67 3/4 Test Inertial 5000 61.6795	140572.31 in. in.	0.0 -1.32050 NA
Vehicle Dir Wheel Bas Center of Cen	mensions for Coe: 140 1/2 Gravity I Weight (Ib) II CG (in.) (in.)	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 = 63 = NA 28 or front axle of test	al Weight (lb) Location (in.) ons Front Trans Rear Trans 6H Targets ± 110 ± 4 or greater vehicle	4987 28.1878 ack Width: ack Width:	67 3/4 Test Inertial 5000 61.6795 -0.1084 28.19	140572.31 in. in.	0.0 -1.32050 NA
Vehicle Dir Wheel Bas Center of Contential Longitudina Lateral CG Vertical CG Note: Long. Contential Note: Lateral Contential	Gravity I Weight (lb) I CG (in.) (in.) G is measured from	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 = 63 = NA 28 or front axle of test	al Weight (lb) Location (in.) ons Front Trans Rear Trans 6H Targets ± 110 ± 4 or greater vehicle	4987 28.1878 ack Width: ack Width:	67 3/4 Test Inertial 5000 61.6795 -0.1084 28.19	in.	0.0 -1.32050 NA 0.18775
Vehicle Dir Wheel Bas Center of Contential Longitudina Lateral CG Vertical CG Note: Long. Contential Note: Lateral Contential	Gravity I Weight (lb) I CG (in.) (in.) G is measured from	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 = 63 = NA 28 or front axle of test	al Weight (lb) Location (in.) ons Front Trans Rear Trans 6H Targets ± 110 ± 4 or greater vehicle	4987 28.1878 ack Width: ack Width:	67 3/4 Test Inertial 5000 61.6795 -0.1084 28.19	in.	0.0 -1.32050 NA 0.18775
Vehicle Dir Wheel Bas Center of Contential Longitudina Lateral CG Vertical CG Note: Long. Contential Note: Lateral Contential	Gravity I Weight (Ib) I CG (in.) (in.) G is measured from	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 : 63 : NA 28 of m front axle of test in centerline - position	al Weight (lb) Location (in.) ons Front Trans Rear Trans 6H Targets ± 110 ± 4 or greater vehicle	4987 28.1878 ack Width: ack Width:	67 3/4 Test Inertial 5000 61.6795 -0.1084 28.19	in. in.	0.0 -1.32050 NA 0.18775
Vehicle Dir Wheel Bas Center of C Test Inertial Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral	mensions for Coe: 140 1/2 Gravity I Weight (Ib) I CG (in.) (in.) Gi is measured from GHT (Ib) Left	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 = 63 = NA 28 0 m front axle of test in centerline - position in the content in the conte	al Weight (lb) Location (in.) ons Front Trans Rear Trans 6H Targets ± 110 ± 4 or greater vehicle	4987 28.1878 ack Width: ack Width:	67 3/4 Test Inertial 5000 61.6795 -0.1084 28.19 TEST INER	in. in. Left	0.0 -1.32050 NA 0.18775 IT (Ib)
Vehicle Dir Wheel Bas Center of Cen	mensions for Coe: 140 1/2 Gravity I Weight (Ib) I CG (in.) (in.) CG measured from GHT (Ib) Left 1445	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 = 63 = NA 28 0 m front axle of test in centerline - position in the centerline - position - positio	al Weight (lb) Location (in.) ons Front Trans Rear Trans 6H Targets ± 110 ± 4 or greater vehicle	4987 28.1878 ack Width: ack Width:	67 3/4 Test Inertial 5000 61.6795 -0.1084 28.19 TEST INERT	in. in. Left 1390	0.0 -1.32050 NA 0.18775 IT (Ib) Right 1415
Vehicle Dir Wheel Bas Center of Cen	mensions for Coe: 140 1/2 Gravity I Weight (Ib) I CG (in.) (in.) Gi is measured from GHT (Ib) Left	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 = 63 = NA 28 0 m front axle of test in centerline - position in the content in the conte	al Weight (lb) Location (in.) ons Front Trans Rear Trans 6H Targets ± 110 ± 4 or greater vehicle	4987 28.1878 ack Width: ack Width:	67 3/4 Test Inertial 5000 61.6795 -0.1084 28.19 TEST INER	in. in. Left	Right
Center of Center	Gravity I Weight (lb) I CG (in.) (in.) G is measured from GHT (lb) Left 1445 1115	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 = 63 = NA 28 0 m front axle of test in centerline - position in centerline - position in centerline 1408 1408 1061	al Weight (lb) Location (in.) ons Front Trans Rear Trans 6H Targets ± 110 ± 4 or greater vehicle	4987 28.1878 ack Width: ack Width:	67 3/4 Test Inertial 5000 61.6795 -0.1084 28.19 TEST INERT	in. in. in. Left 1390 1118	0.0 -1.32050 NA 0.18775 IT (lb) Right 1415 1077
Vehicle Dir Wheel Bas Center of Cen	mensions for Coe: 140 1/2 Gravity I Weight (Ib) I CG (in.) (in.) CG measured from GHT (Ib) Left 1445	Estimated Total Vertical CG C.G. Calculation in. 2270P MAS 5000 = 63 = NA 28 0 m front axle of test in centerline - position in the centerline - position - positio	al Weight (lb) Location (in.) ons Front Trans Rear Trans 6H Targets ± 110 ± 4 or greater vehicle	4987 28.1878 ack Width: ack Width:	67 3/4 Test Inertial 5000 61.6795 -0.1084 28.19 TEST INERT	in. in. Left 1390	0.0 -1.32050 NA 0.18775 IT (Ib) Right 1415

Figure D-1. Vehicle Mass Distribution, Test No. NJPCB-4

Appendix E. Vehicle Deformation Records

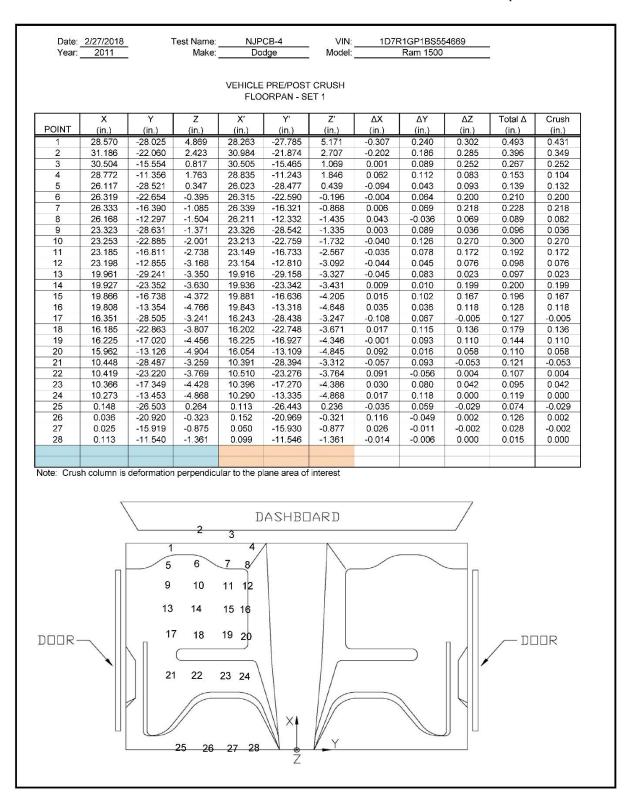


Figure E-1. Floor Pan Deformation Data – Set 1, Test No. NJPCB-4

Figure E-2. Floor Pan Deformation Data – Set 2, Test No. NJPCB-4

						POST CRU USH - SET						
	POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔZ (in.)	Total Δ (in.)	Crush (in.)
	1	14.357	-25.184	27.279	14.133	-25.023	27.301	-0.225	0.161	0.021	0.277	0.277
_	2	12.523	-14.642	29.895	12.207	-14.467	29.836	-0.315	0.176	-0.060	0.366	0.366
DASH	3	11.254	3.486	25.087	11.098	3.545	25.018	-0.156	0.059	-0.069	0.180	0.180
ă	4	11.983	-26.454	16.289	11.816	-26.385	16.330	-0.167	0.069	0.042	0.185	0.185
	5	9.931	-16.308	15.387	9.794	-16.293	15.355	-0.137	0.015	-0.032	0.141	0.141
	6	8.562	2.623	13.792	8.457	2.626	13.729	-0.105	0.002	-0.064	0.123	0.123
범	7 8	20.737 24.082	-30.958 -31.135	7.856 7.053	20.638	-30.667 -30.926	7.938 7.201	-0.098 -0.081	0.292 0.209	0.083 0.149	0.319 0.269	0.292
SIDE	9	22.362	-31.135	3.376	22.261	-30.926	3.492	-0.101	0.209	0.149	0.269	0.209
	10	-13.005	-31.632	23.395	-13.268	-32.207	23.361	-0.101	-0.575	-0.035	0.633	-0.575
IMPACT SIDE DOOR	11	-3.070	-31.275	23.300	-3.358	-31.678	23.358	-0.288	-0.403	0.058	0.499	-0.403
T.S.	12	8.545	-31.635	22.559	8.180	-31.828	22.694	-0.365	-0.193	0.135	0.434	-0.193
50	13	-10.715	-33.703	8.295	-10.983	-33.700	8.357	-0.267	0.003	0.062	0.275	0.003
MP, □	14	1.642	-34.049	8.331	1.308	-33.977	8.443	-0.333	0.072	0.112	0.359	0.072
=	15	12.760	-30.950	9.828	12.321	-30.576	9.886	-0.439	0.374	0.058	0.580	0.374
	16	3.083	-19.517	43.099	2.807	-19.337	43.098	-0.276	0.180	-0.001	0.329	-0.001
	17	5.246	-13.093	42.683	4.986	-12.881	42.666	-0.261	0.212	-0.017	0.336	-0.017
	18	6.515	-6.626	42.140	6.255	-6.347	42.103	-0.260	0.279	-0.037	0.383	-0.037
	19	7.095	-0.305	41.587	6.789	-0.213	41.555	-0.307	0.092	-0.032	0.322	-0.032
	20	7.296 -8.267	5.125 -15.678	40.996 46.543	6.975 -8.665	5.346 -15.622	40.938 46.482	-0.321 -0.398	0.221 0.057	-0.057 -0.062	0.394 0.407	-0.057 -0.062
i.	22	-0.207 -7.555	-8.526	46.121	-8.006	-8.401	46.462	-0.396	0.057	-0.062	0.407	-0.002
ROOF	23	-6.956	-3.548	45.749	-7.253	-3.326	45.604	-0.431	0.123	-0.090	0.398	-0.030
8	24	-6.549	1.268	45.369	-6.990	1.388	45.219	-0.441	0.121	-0.150	0.481	-0.150
	25	-6.749	5.603	44.936	-7.122	5.750	44.756	-0.372	0.147	-0.180	0.439	-0.180
	26	-13.862	-15.652	46.908	-14.032	-15.445	46.779	-0.170	0.207	-0.129	0.297	-0.129
	27	-13.636	-9.298	46.614	-13.936	-9.168	46.440	-0.300	0.130	-0.174	0.371	-0.174
	28	-13.242	-3.322	46.178	-13.522	-3.239	45.983	-0.280	0.083	-0.195	0.351	-0.195
	29	-13.447	1.513	45.761	-13.719	1.545	45.548	-0.272	0.032	-0.213	0.347	-0.213
	30	-13.371	6.007	45.283	-13.692	6.147	45.041	-0.321	0.139	-0.242	0.426	-0.242
Ř	31	3.532	-22.369	42.010	3.186	-22.191	42.039	-0.346	0.178	0.030	0.390	0.178
A PILLAR	32	9.271	-24.001 25.705	38.863	8.930	-23.836	38.793	-0.341	0.165	-0.070	0.385 0.307	0.165
	33 34	15.145 18.175	-25.705 -26.612	34.800 32.664	14.876 17.872	-25.582 -26.481	34.885 32.765	-0.268 -0.303	0.123 0.132	0.084	0.307	0.123 0.132
	35	-22.623	-30.174	15.425	-22.726	-20.461	15.163	-0.303	0.132	-0.262	0.501	0.132
5350	36	-18.458	-30.174	15.425	-18.590	-29.759	15.163	-0.104	0.415	-0.262	0.372	0.415
B PILLAR	37	-22.995	-29.197	22.776	-23.147	-28.853	22.684	-0.151	0.343	-0.092	0.372	0.343
_ ∃	38	-19.076	-29.122	23.042	-19.214	-28.858	22.900	-0.138	0.264	-0.142	0.330	0.264
₽.	39	-23.376	-25.829	35.196	-23.636	-25.614	35.014	-0.260	0.214	-0.181	0.383	0.214
	40	-20.446	-25.727	35.310	-20.638	-25.556	35.141	-0.192	0.171	-0.169	0.308	0.171
lote: Cru	sh column is	s deformatio	n perpendic	cular to the p	olane area	of interest						

Figure E-3. Occupant Compartment Deformation Data – Set 1, Test No. NJPCB-4

	Year:	2/27/2018 2011		est Name: Make:	Do	NJPCB-4 Dodge M		1D7F	R1GP1BS58 Ram 1500	=		
						POST CRU RUSH - SET						
	POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔZ (in.)	Total Δ (in.)	Cı (i
	1	37.685	-34.636	24.452	37.555	-34.950	23.741	-0.129	-0.314	-0.711	0.788	0.
	2	35.957	-24.334	28.116	35.914	-24.753	27.592	-0.043	-0.419	-0.524	0.672	0.
工	3	34.718	-5.881	25.441	34.748	-6.276	25.087	0.030	-0.395	-0.354	0.531	0.
DASH	4	34.772	-34.708	13.541	34.684	-34.894	12.842	-0.088	-0.186	-0.699	0.729	0.
	5	32.760	-24.537	13.785	32.689	-24.746	13.261	-0.071	-0.209	-0.525	0.569	0.
	6	31.448	-5.532	14.314	31.477	-5.801	13.880	0.029	-0.269	-0.433	0.511	0.
	7	43.106	-38.318	4.193	43.044	-38.178	3.436	-0.062	0.139	-0.758	0.773	0.
픱핖	8	46.346	-38.415	3.266	46.361	-38.362	2.591	0.015	0.053	-0.675	0.677	0.
SIDE PANEL	9	44.519	-38.298	-0.365	44.399	-38.162	-1.099	-0.120	0.136	-0.734	0.755	0.
	10	10.191	-40.535	21.133	9.941	-41.463	20.557	-0.250	-0.929	-0.576	1.121	-0
IMPACT SIDE DOOR	11	20.084	-40.191	20.660	19.782	-40.980	20.130	-0.302	-0.790	-0.530	0.998	-0
S X	12	31.634	-40.509	19.322	31.363	-41.076	18.635	-0.270	-0.567	-0.687	0.931	-0
29	13	11.685	-41.030	5.889	11.396	-41.134	5.318	-0.289	-0.104	-0.571	0.648	-0
A 0	14	24.103	-41.366	5.325	23.785	-41.461	4.707	-0.318	-0.095	-0.618	0.701	-0
≥	15	35.268	-38.482	6.579	34.797	-38.298	5.916	-0.471	0.184	-0.664	0.834	0.
	16	27.302	-30.594	41.240	27.253	-31.138	40.691	-0.049	-0.544	-0.548	0.774	-0
	17	29.497	-24.161	41.401	29.457	-24.708	40.925	-0.043	-0.547	-0.476	0.774	-0
	18	30.817	-17.541	41.477	30.732	-18.108	41.104	-0.085	-0.568	-0.373	0.684	-0.
	19	31.422	-11.301	41.548	31.497	-11.888	41.167	0.075	-0.587	-0.381	0.703	-0.
	20	31.479	-5.808	41.599	31.600	-6.317	41.268	0.121	-0.509	-0.330	0.619	-0.
	21	16.083	-27.130	45.633	16.183	-27.752	45.119	0.100	-0.623	-0.514	0.814	-0
LL:	22	16.738	-19.922	45.949	16.865	-20.429	45.512	0.126	-0.507	-0.437	0.681	-0.
ROOF	23	17.420	-14.925	46.045	17.511	-15.549	45.662	0.090	-0.624	-0.383	0.738	-0.
8	24	17.779	-10.192	46.156	17.960	-10.736	45.814	0.181	-0.544	-0.342	0.668	-0
	25	17.678	-5.841	46.172	17.787	-6.353	45.897	0.108	-0.513	-0.275	0.592	-0
	26	10.528	-27.134	46.251	10.696	-27.674	45.747	0.169	-0.540	-0.504	0.758	-0
	27	10.741	-20.749	46.602	10.888	-21.349	46.165	0.147	-0.600	-0.437	0.757	-0
	28	11.145	-14.849	46.775	11.271	-15.401	46.409	0.127	-0.552	-0.366	0.674	-0
	29	10.991	-10.005	46.873	11.058	-10.595	46.565	0.067	-0.589	-0.308	0.668	-0
	30	11.105	-5.459	46.868	11.202	-6.004	46.606	0.097	-0.546	-0.262	0.613	-0
~	31	27.570	-33.332	39.862	27.501	-33.824	39.300	-0.069	-0.492	-0.563	0.750	-0
A PILLAR	32	33.158	-34.627	36.241	33.064	-35.103	35.610	-0.094	-0.476	-0.631	0.796	-0
ı.	33	38.794	-35.929	31.868	38.743	-36.394	31.203	-0.051	-0.464	-0.665	0.813	-0
Δ.	34	41.784	-36.610	29.394	41.645	-37.042	28.774	-0.140	-0.432	-0.620	0.768	-0
	35	0.235	-38.233	13.828	0.088	-38.006	13.217	-0.148	0.227	-0.611	0.669	0.
~	36	4.346	-38.228	13.786	4.317	-38.155	13.154	-0.028	0.073	-0.632	0.637	0.
B PILLAR	37	0.195	-38.030	21.333	0.160	-38.015	20.803	-0.035	0.015	-0.530	0.531	0.
	38	4.158	-37.996	21.337	4.071	-38.062	20.713	-0.087	-0.066	-0.623	0.633	-0
<u>L</u>	39	0.394	-35.998	33.976	0.301	-36.291	33.417	-0.094	-0.293	-0.559	0.638	-0
	40	3.318	-35.916	33.960	3.376	-36.253	33.395	0.058	-0.337	-0.565	0.661	-0
Note: Cru	sh column is	s deformation	n perpendic	cular to the p	olane area	of interest						

Figure E-4. Occupant Compartment Deformation Data – Set 2, Test No. NJPCB-4

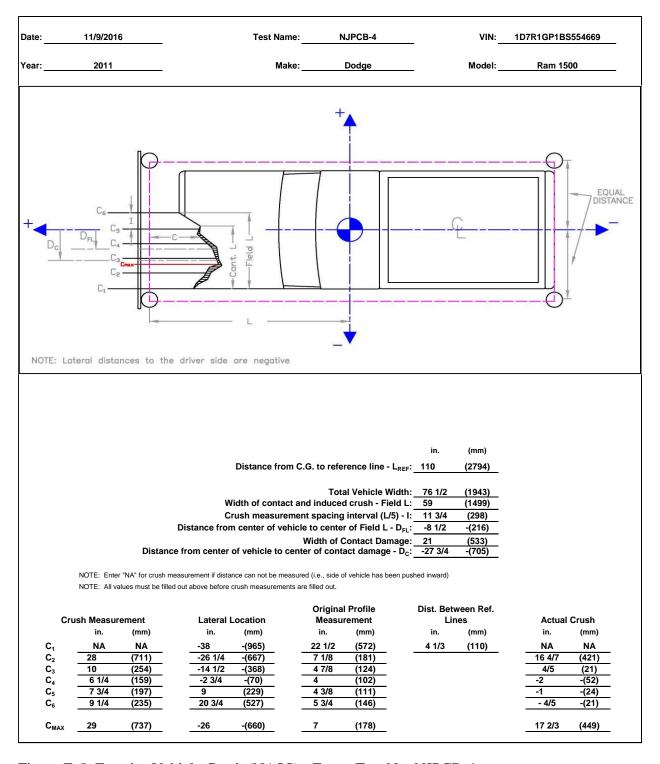


Figure E-5. Exterior Vehicle Crush (NASS) - Front, Test No. NJPCB-4

Figure E-6. Exterior Vehicle Crush (NASS) - Side, Test No. NJPCB-4

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. NJPCB-4

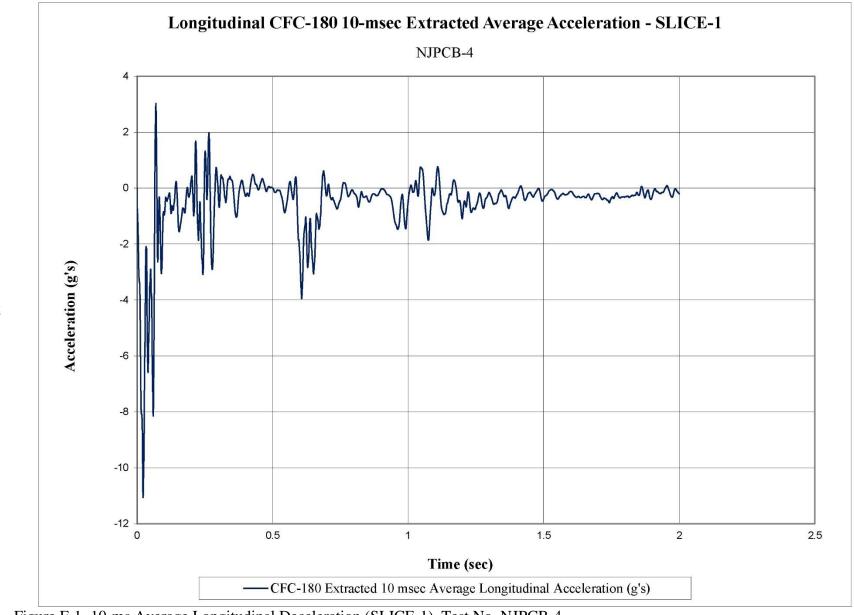


Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. NJPCB-4

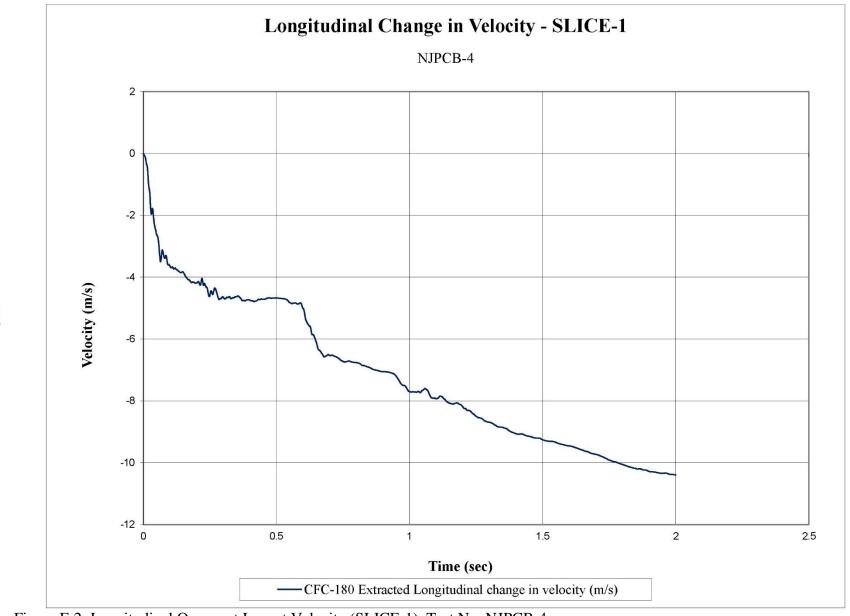


Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. NJPCB-4

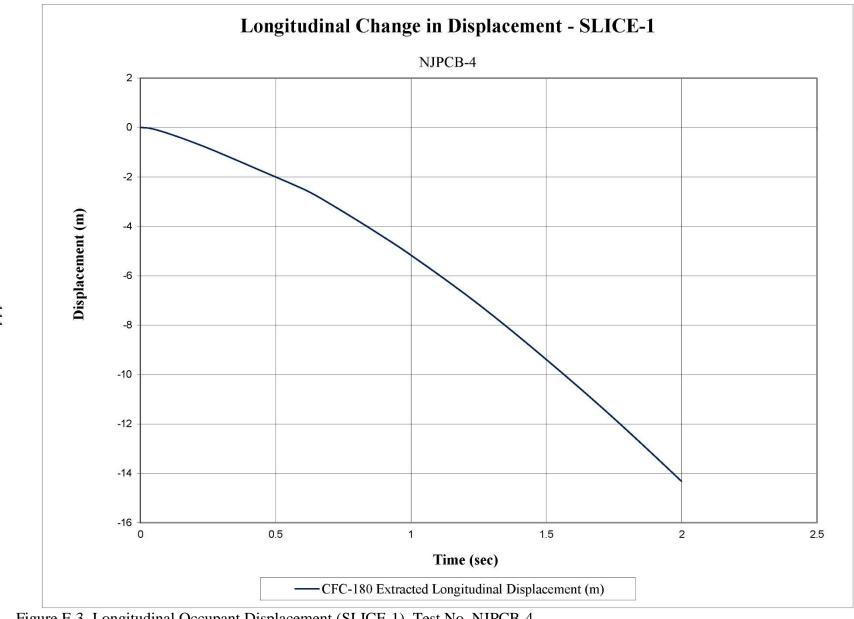


Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. NJPCB-4

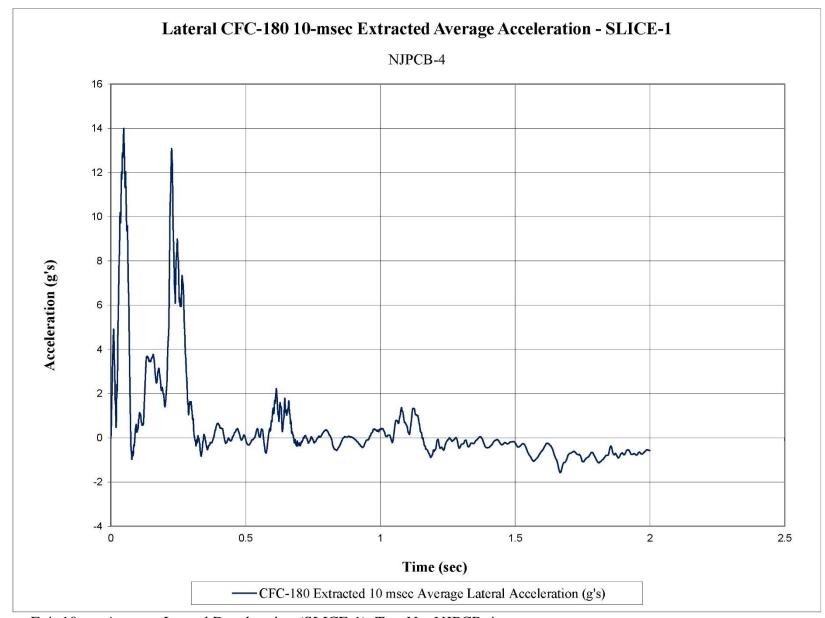


Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. NJPCB-4

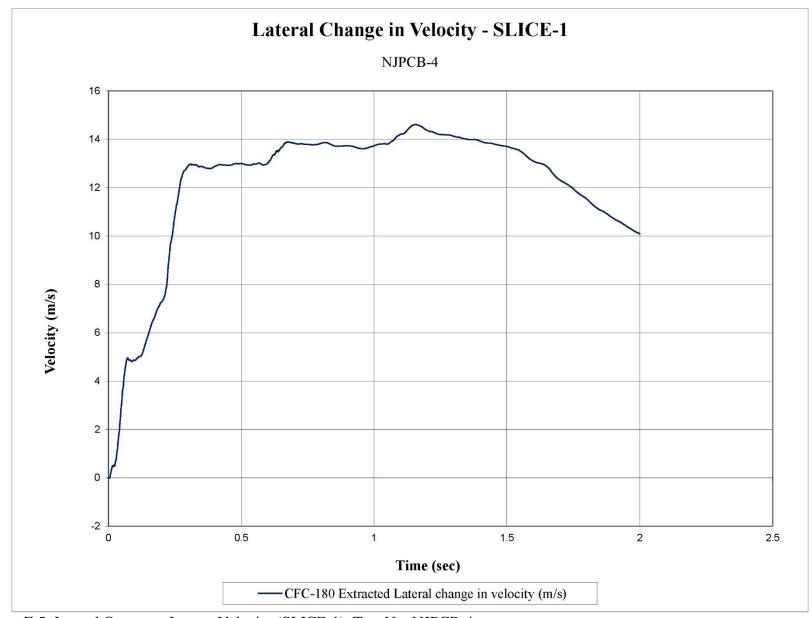


Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. NJPCB-4

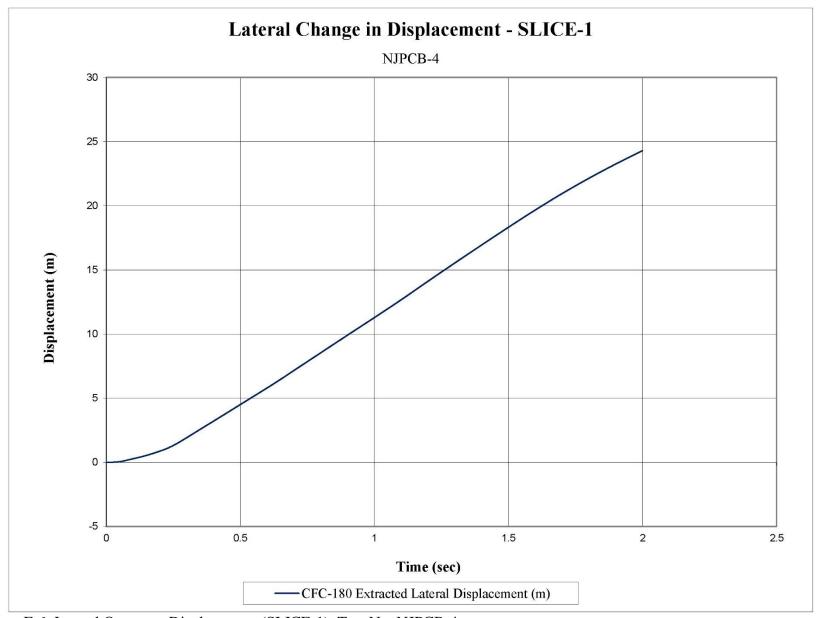


Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. NJPCB-4

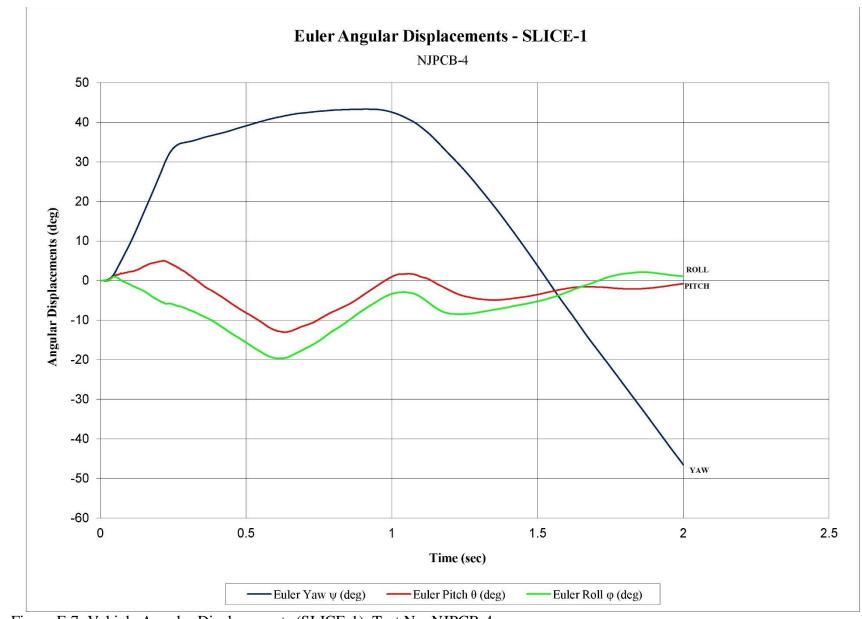


Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. NJPCB-4

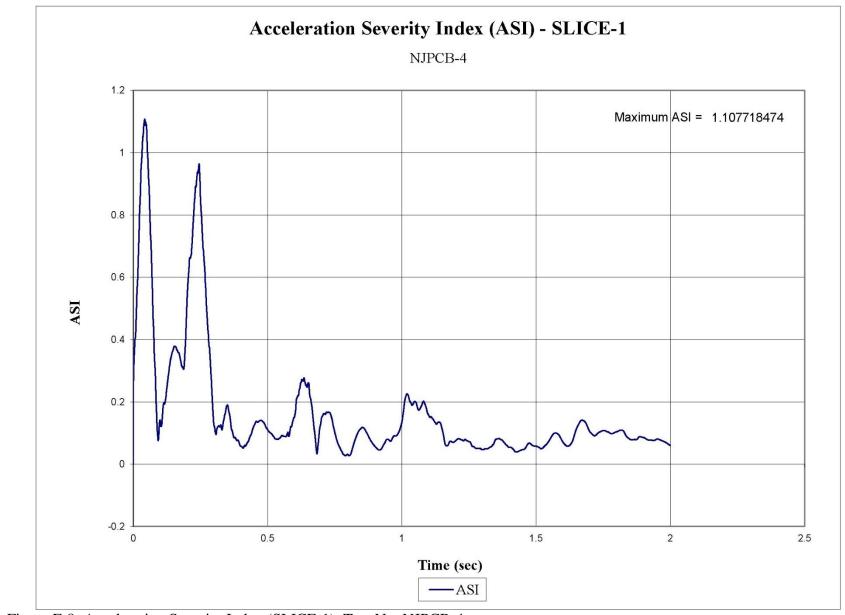


Figure F-8. Acceleration Severity Index (SLICE-1), Test No. NJPCB-4

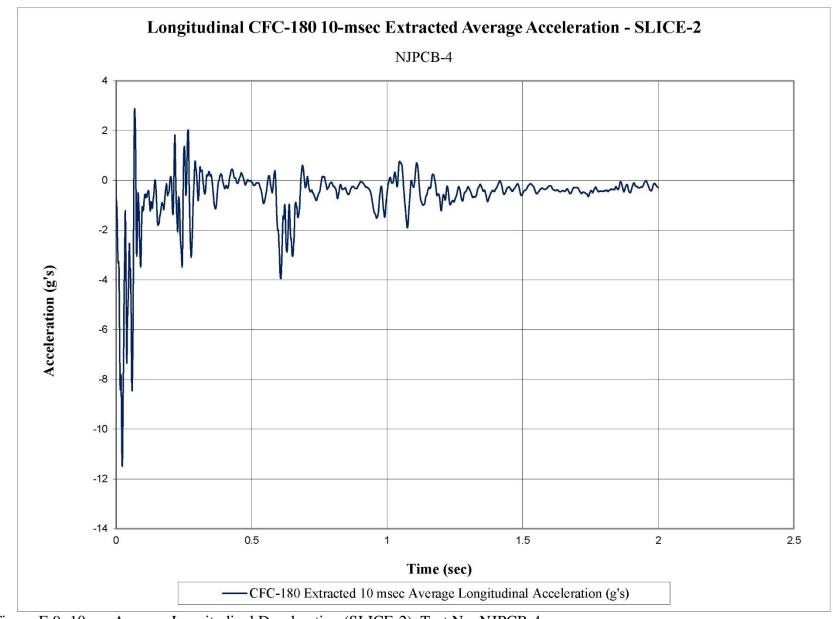


Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. NJPCB-4

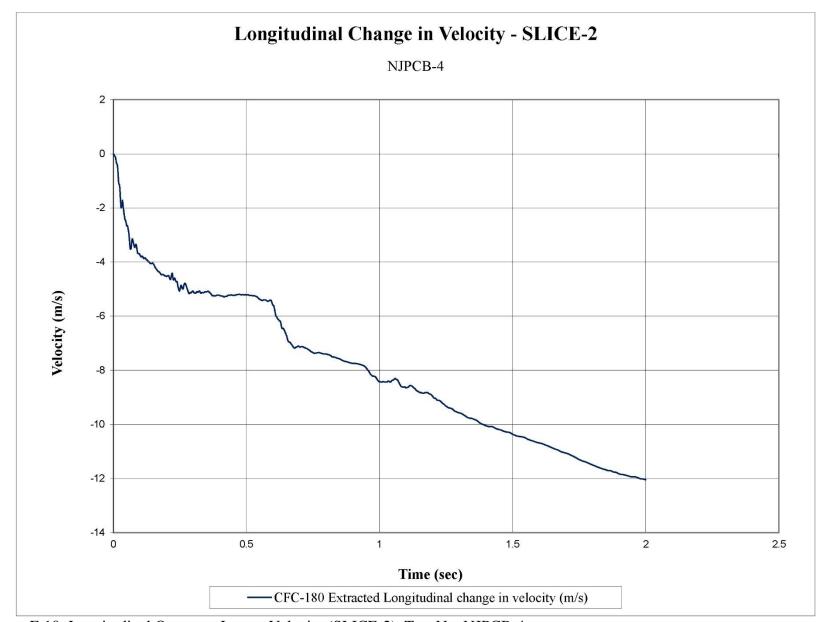


Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. NJPCB-4

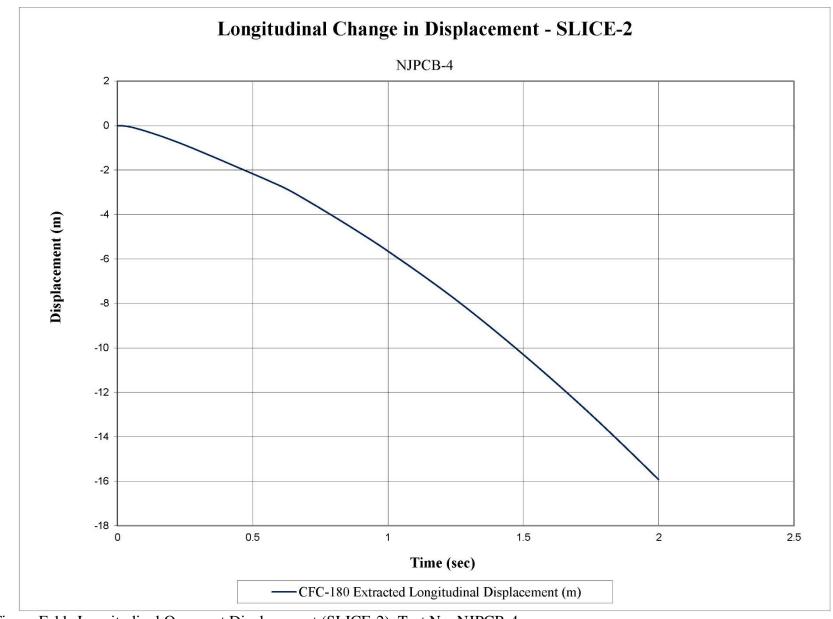


Figure F-11. Longitudinal Occupant Displacement (SLICE-2), Test No. NJPCB-4

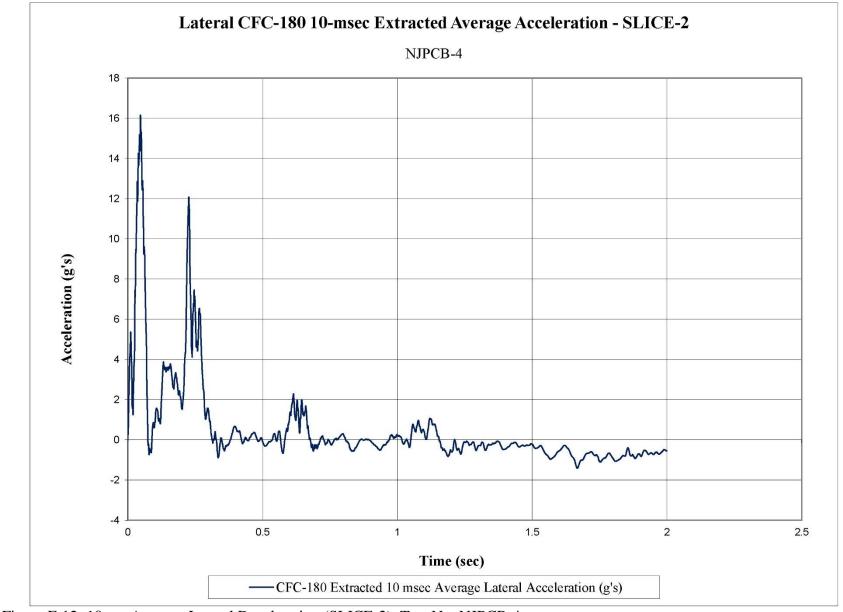


Figure F-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. NJPCB-4

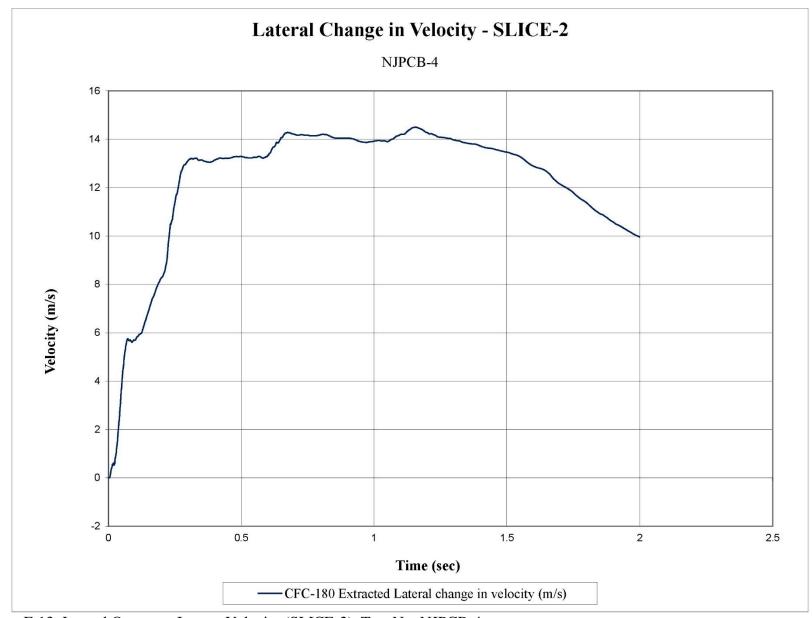


Figure F-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. NJPCB-4

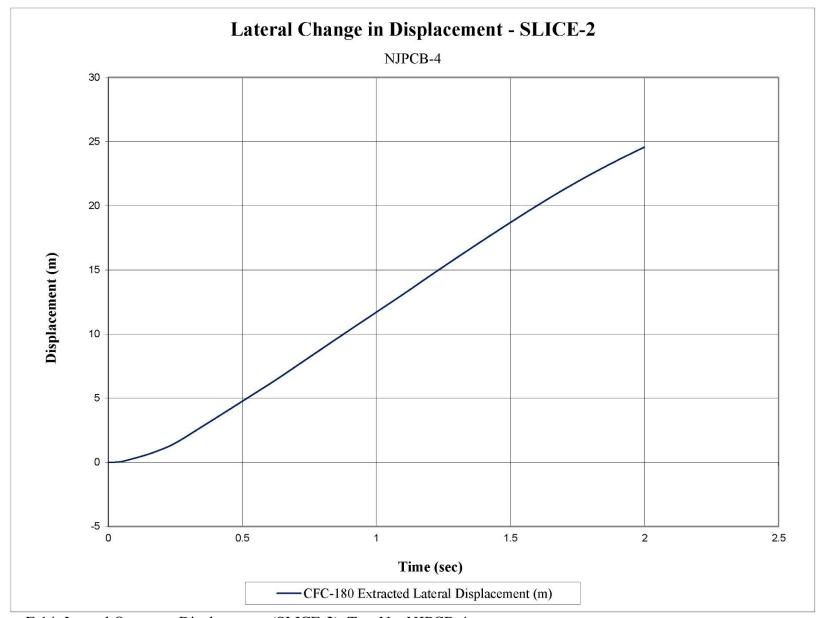


Figure F-14. Lateral Occupant Displacement (SLICE-2), Test No. NJPCB-4

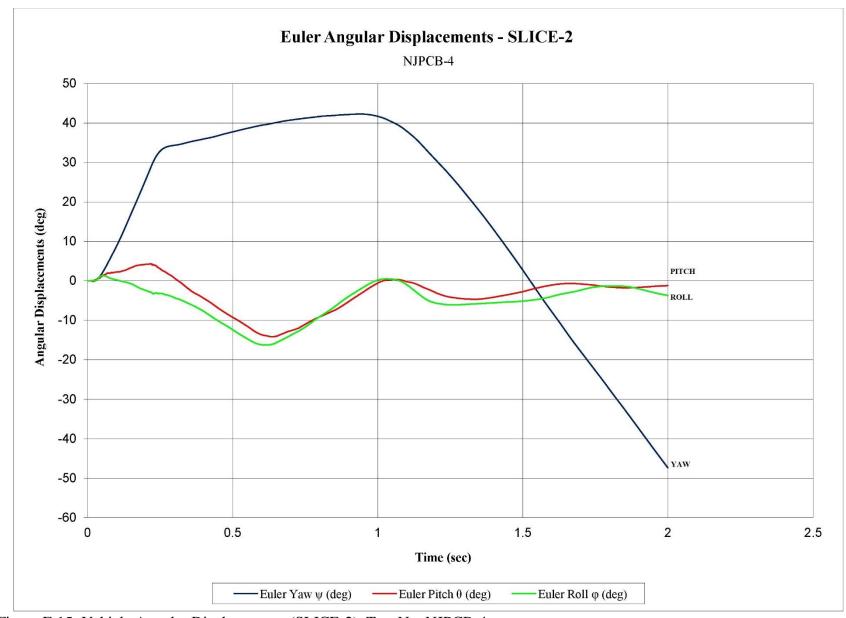


Figure F-15. Vehicle Angular Displacements (SLICE-2), Test No. NJPCB-4

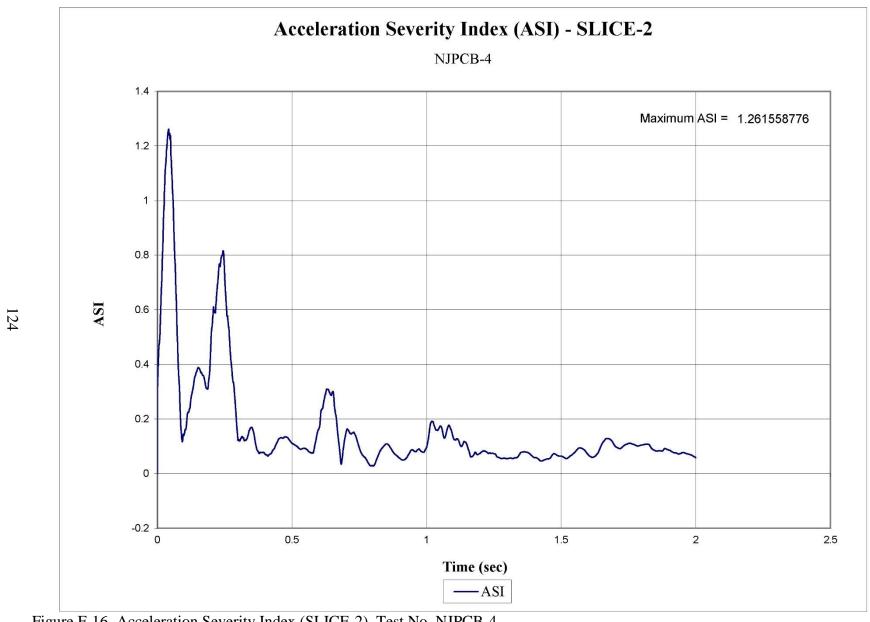


Figure F-16. Acceleration Severity Index (SLICE-2), Test No. NJPCB-4

END OF DOCUMENT