

Research Project Number TPF-5(193) Supplement #88

PERFORMANCE EVALUATION OF NEW JERSEY'S PORTABLE CONCRETE BARRIER WITH A BOX-BEAM STIFFENED CONFIGURATION AND GROUTED TOES –

TEST NO. NJPCB-5

Submitted by

Surajkumar K. Bhakta, M.S.M.E. Former Graduate Research Assistant Karla A. Lechtenberg, M.S.M.E., E.I.T. Research Engineer

Chen Fang, M.E. Graduate Research Assistant Ronald K. Faller, Ph.D., P.E Research Professor MwRSF Director

John. D. Reid, Ph.D. Professor Robert W. Bielenberg, M.S.M.E., E.I.T. Research Engineer

Erin L. Urbank, B.A. Research Communication Specialist

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 **Outdoor Test Site** 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

NEW JERSEY DEPARTMENT OF TRANSPORTATION

1035 Parkway Avenue, Trenton, New Jersey 08625

MwRSF Research Report No. TRP-03-372-18

December 13, 2018

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-372-18	2.	3. Recipient's Accession No.
4. Title and Subtitle Performance Evaluation of New Jer Beam Stiffened Configuration and C	rsey's Portable Concrete Barrier with a Box- Grouted Toes – Test No. NJPCB-5	5. Report DateDecember 13, 20186.
7. Author(s) Bhakta, S.K., Lechtenberg, K.A., Fa R.W., and Urbank, E.L.	ang, C., Faller, R.K., Reid, J.D., Bielenberg,	8. Performing Organization Report No. TRP-03-372-18
9. Performing Organization Name a Midwest Roadside Safety Facility (Nebraska Transportation Center University of Nebraska-Lincoln		10. Project/Task/Work Unit No.
Main Office: Prem S. Paul Research Center at Wi Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	hittier School Outdoor Test Site: 4630 N.W. 36th Street Lincoln, Nebraska 68524	11. Contract © or Grant (G) No. TPF-5(193) Supplement #88
12. Sponsoring Organization Name New Jersey Department of Transport		13. Type of Report and Period Covered Final Report: 2015 -2018
1035 Parkway Avenue Trenton, New Jersey 08625		14. Sponsoring Agency Code
15. Supplementary Notes Prepared in cooperation with U.S. I	Department of Transportation, Federal Highwa	y Administration.
16 Abstract		

16. Abstract

This report documents a full-scale crash test conducted in support of a study to investigate the performance of New Jersey Department of Transportation's (NJDOT's) Precast Concrete Curb, Construction Barrier, which will be referred as portable concrete barrier (PCB) in various configurations. This represents the fifth system as part of this study.

The primary objective of this research effort was to evaluate the safety performance of the NJDOT PCB, Type 4 (Alternative B) with a box-beam stiffened configuration and grouted toes, corresponding connection type B in the 2015 NJDOT *Roadway Design Manual*. The system utilized 6-in. \times 6-in. \times $^{3}/_{16}$ -in. (152-mm \times 152-mm \times 5-mm) box beam sections placed across all nine joints. Barrier nos. 1 and 10 were anchored to the concrete tarmac through the pin anchor recesses with nine 1-in. (25-mm) diameter by 15-in. (381-mm) long ASTM A36 steel pins inserted into 1¹/₄-in. (32-mm) diameter drilled holes in the concrete tarmac. Non-shrink grout wedges were placed at the toe of each barrier segment in every joint between adjacent barrier segments. The barrier was evaluated according to the Test Level 3 (TL-3) criteria set forth in the *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016). The research study included one full-scale vehicle crash test with a 2270P pickup truck. Following the successful redirection of the pickup truck, the safety performance of the system was determined to be acceptable according to the test designation no. 3-11 evaluation criteria specified in MASH 2016. The 1100C small car crash test was deemed unnecessary due to previous testing. The barrier successfully met MASH 2016 TL-3 criteria. This report is the fifth of nine documents in the nine-test series.

17. Document Analysis/Descriptors Highway Safety, Roadside Appurtenances, Crash Test, Compliance Test, MASH 2016, Longitudinal Barrier, Portable Concrete Barrier, PCB, Grout Wedges, Pinned, Barrier Curb, and Box-Beam Stiffeners		 Availability Statement No restrictions. Document available from: National Technical Information Services, Springfield, Virginia 22161 	
19. Security Class (this report) Unclassified20. Security Class (this page) Unclassified		21. No. of Pages 174	22. Price

DISCLAIMER STATEMENT

This report was completed with funding from the New Jersey Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the New Jersey Department of Transportation nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein Dr. Jennifer Schmidt, Research Assistant Professor.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) New Jersey Department of Transportation for sponsoring this project and (2) MwRSF personnel for constructing the barrier and conducting the crash test.

Acknowledgement is also given to the following individuals who made a contribution to the completion of this research project.

Midwest Roadside Safety Facility

J.C. Holloway, M.S.C.E., E.I.T., Assistant Director – Physical Testing Division
J.D. Schmidt, Ph.D., P.E., Research Assistant Professor
C.S. Stolle, Ph.D., Research Assistant Professor
S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Engineer
M. Asadollahi Pajouh, Ph.D., former Post-Doctoral Research Associate
S.A. Ranjha, Ph.D., former Post-Doctoral Research Associate
A.T. Russell, B.S.B.A., Testing and Maintenance Technician II
E.W. Krier, B.S., Construction and Testing Technician I
S.M. Tighe, Construction and Testing Technician I
D.S. Charroin, Construction and Testing Technician I
M.A. Rasmussen, Construction and Testing Technician I
M.T. Ramel, B.S.C.M., former Construction and Testing Technician I
J.E. Kohtz, B.S.M.E., CAD Technician
Undergraduate and Graduate Research Assistants

New Jersey Department of Transportation

Dave Bizuga, former Senior Executive Manager, Roadway Design Group 1 Giri Venkiteela, Research Project Manager, NJDOT Bureau of Research Hung Tang, Design Standards Bureau, Roadway Standards Unit Lee Steiner, Project Engineer, Bureau of Traffic Engineering

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vi
LIST OF TABLES	x
1 INTRODUCTION 1.1 Background 1.2 Objective 1.3 Scope	
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 2.1 Test Requirements 2.2 Evaluation Criteria	
3 DESIGN DETAILS	б
 4 TEST CONDITIONS	26 26 26 31 31 31 31 31 31 31 32
 5 FULL-SCALE CRASH TEST NO. NJPCB-5	34 34 36 37 38 39
6 SUMMARY AND CONCLUSIONS	

7 COMPARISON TO TEST NO. NYTCB-1	65
8 LS-DYNA MODEL OF NJDOT PCB SYSTEMS	
8.1 Introduction	
8.2 Free-Standing PCB Model (NJPCB-3)	
8.3 Box-Beam Stiffened PCB Model (NJPCB-5)	72
9 BASELINE AND REDUCED-LENGTH SIMULATIONS	
9.1 Simulation of Crash Test No. NJPCB-3	75
9.2 Simulation of Crash Test No. NJPCB-5	84
9.3 Model Limitations	92
9.4 Reduced-Length Analysis	92
10 MASH IMPLEMENTATION	. 104
11 REFERENCES	. 106
12 APPENDICES	. 108
Appendix A. NJDOT PCB Standard Plans	. 109
Appendix B. Material Specifications	. 115
Appendix C. Concrete Tarmac Strength	. 145
Appendix D. Vehicle Center of Gravity Determination	. 148
Appendix E. Vehicle Deformation Records	150
Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. NJPCB-5	. 157

LIST OF FIGURES

Figure 1. Test Installation Layout, Test No. NJPCB-5	7
Figure 2. PCB Pin Anchor Details, Test No. NJPCB-5	
Figure 3. PCB Box-Beam Stiffener Details, Test No. NJPCB-5	9
Figure 4. PCB Details, Test No. NJPCB-5	10
Figure 5. PCB Reinforcement Details, Test No. NJPCB-5	11
Figure 6. PCB Reinforcement Details – End View, Test No. NJPCB-5	12
Figure 7. PCB Bolt Holes for Box-Beam Stiffeners, Test No. NJPCB-5	
Figure 8. Box-Beam Stiffener Component Details, Test No. NJPCB-5	14
Figure 9. Connection Key Assembly Details, Test No. NJPCB-5	
Figure 10. Connection Key Component Details, Test No. NJPCB-5	16
Figure 11. PCB Connection Socket Details, Test No. NJPCB-5	
Figure 12. PCB Connection Socket Component Details, Test No. NJPCB-5	18
Figure 13. Connection Key Placement Details, Test No. NJPCB-5	19
Figure 14. PCB Reinforcement Details, Test No. NJPCB-5	20
Figure 15. General Notes, Test No. NJPCB-5	
Figure 16. Bill of Materials, Test No. NJPCB-5	22
Figure 17. NJDOT PCB with Box-Beam Stiffened Configuration and Grouted Toes Test	
Installation, Test No. NJPCB-5	23
Figure 18. PCB Box-Beam Stiffeners Across Barrier Joints, Test No. NJPCB-5	24
Figure 19. PCB Connection Key, Connection Socket, and Grout at Toes Between Barriers,	
Test No. NJPCB-5	
Figure 20. Test Vehicle, Test No. NJPCB-5	
Figure 21. Test Vehicle's Interior Floorboards, Test No. NJPCB-5	
Figure 22. Vehicle Dimensions, Test No. NJPCB-5	29
Figure 23. Target Geometry, Test No. NJPCB-5	
Figure 24. Camera Locations, Speeds, and Lens Settings, Test No. NJPCB-5	33
Figure 25. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No.	
NJPCB-5	
Figure 26. Summary of Test Results and Sequential Photographs, Test No. NJPCB-5	
Figure 27. Additional Sequential Photographs, Test No. NJPCB-5	
Figure 28. Additional Sequential Photographs, Test No. NJPCB-5	
Figure 29. Documentary Photographs, Test No. NJPCB-5	
Figure 30. Documentary Photographs, Test No. NJPCB-5	
Figure 31. Documentary Photographs, Test No. NJPCB-5	
Figure 32. Documentary Photographs, Test No. NJPCB-5	
Figure 33. Impact Location, Test No. NJPCB-5	
Figure 34. Vehicle Final Position and Trajectory Marks, Test No. NJPCB-5	48
Figure 35. System Damage - Front, Back, Upstream, and Downstream Views, Test No.	10
NJPCB-5	
Figure 36. System Damage at Impact Location, Front and Back Side, Test No. NJPCB-5	
Figure 37. Barrier No. 2 – Traffic and Back Side Damage, Test No. NJPCB-5	
Figure 38. Barrier No. 3 – Traffic and Back Side Damage, Test No. NJPCB-5	
Figure 39. Barrier No. 4 – Traffic and Back Side Damage, Test No. NJPCB-5	
Figure 40. Barrier No. 5 – Traffic and Back Side Damage, Test No. NJPCB-5	
Figure 41. Barrier No. 6 – Traffic and Back Side Damage, Test No. NJPCB-5	

Figure 42.	. Barrier No. 7 – Traffic and Back Side Damage, Test No. NJPCB-5	56
Figure 43.	. Barrier No. 8 – Traffic and Back Side Damage, Test No. NJPCB-5	57
	. Vehicle Damage, Test No. NJPCB-5	
Figure 45.	. Vehicle Damage on Impact Side, Test No. NJPCB-5	59
Figure 46.	. Vehicle Windshield Damage, Test No. NJPCB-5	60
Figure 47.	. Occupant Compartment Deformation, Test No. NJPCB-5	61
	. Undercarriage Damage, Test No. NJPCB-5	
Figure 49.	. Deflection Comparisons – (a) Test Nos. NJPCB-5 and (b) NYTCB-1	67
	Free-Standing PCB Baseline Model	
Figure 51.	. Steel Component Shell Elements Coinciding with Concrete Elements	71
Figure 52.	Pinned Locations and Point Constraints	72
Figure 53.	. Box-Beam Reduced-Deflection PCB Baseline Model	74
	. Model of Crash Test No. NJPCB-3 Impact Point	
Figure 55.	. Overhead Sequential Views, Test No. NJPCB-3 and Simulation	77
Figure 56.	. Downstream Sequential Views, Test No. NJPCB-3 and Simulation	78
Figure 57.	. Downstream Sequential Views, Test No. NJPCB-3 and Simulation (cont'd)	79
Figure 58.	. Barrier Segment Damage, Test No. NJPCB-3 and Simulation	80
Figure 59.	. Barrier Segment Damage, Test No. NJPCB-3 and Simulation (cont'd)	81
Figure 60.	. Barrier Segment Damage, Test No. NJPCB-3 and Simulation (cont'd)	82
Figure 61.	. Velocities and Euler Angular Displacements, Test No. NJPCB-3 and Simulation	83
Figure 62.	. Model of Crash Test No. NJPCB-5 Impact Point	84
Figure 63.	. Overhead Sequential Views, Test No. NJPCB-5 and Simulation	86
	. Downstream Sequential Views, Test No. NJPCB-5 and Simulation	
Figure 65.	. Barrier Segment Damage, Test No. NJPCB-5 and Simulation	88
Figure 66.	Barrier Segment Damage, Test No. NJPCB-5 and Simulation (cont'd)	89
Figure 67.	. Barrier Segment Damage, Test No. NJPCB-5 and Simulation (cont'd)	90
-	Velocites and Euler Angular Displacements, Test No. NJPCB-5 and Simulation	
	. Reduced-Length PCB Systems - Impact Points	93
	160-ft Length, Reduced-Deflection PCB Simulation, Overhead Sequential	
	ews	95
	160-ft Length, Reduced-Deflection PCB Simulation, Downstream Sequential	0.5
	ews	96
	120-ft Length, Reduced-Deflection PCB Simulation, Overhead Sequential	07
		97
-	120-ft Length, Reduced-Deflection PCB Simulation, Downstream Sequential	00
		98
-	100-ft Length, Reduced-Deflection PCB Simulation, Overhead Sequential	00
	ews	99
-	. 100-ft Length, Reduced-Deflection PCB Simulation, Downstream Sequential	100
	ews	
-	. 160-ft Length, Reduced-Deflection PCB Simulation, Barrier Damage	
	. 100-ft Length, Reduced-Deflection PCB Simulation, Barrier Damage	
	1. NJDOT PCB Standard Plans	
-	2. NJDOT PCB Standard Plans	
0	3. NJDOT PCB Standard Plans	
0	4. NJDOT PCB Standard Plans	
I Iguit A-		110

Figure A-5. NJDOT PCB Standard Plans	11/
Figure A-3. NJDOT FCB Standard Flans Figure B-2. Concrete Barrier Segment – Concrete Strength, Test No. NJPCB-5	
Figure B-2. Concrete Barrier Segment – Concrete Strength, Test No. NJPCB-5	
Figure B-4. Rebar No. 4 Material Certificate, Test No. NJPCB-5	
Figure B-5. Rebar No. 4 Material Certificate, Test No. NJPCB-5	
Figure B-6. Rebar No. 4 Material Certificate, Test No. NJPCB-5	
Figure B-0. Rebar No. 4 Material Certificate, Test No. NJPCB-5	
Figure B-8. Rebar No. 4 Material Certificate, Test No. NJPCB-5	
Figure B-9. Rebar No. 4 Material Certificate, Test No. NJPCB-5	
Figure B-9. Rebar No. 4 Material Certificate, Test No. NJPCB-5	
Figure B-10. Rebar No. 6 Material Certificate, Test No. NJPCB-5	
Figure B-12. Steel Tube Material Certificate, Test No. NJPCB-5	
Figure B-13. Steel Tube Material Certificate, Test No. NJPCB-5	
Figure B-14. Steel Tube Material Certificate, Test No. NJPCB-5	120
Figure B-15. Steel Tube Material Test Certificate, Test No. NJPCB-5	
Figure B-16. Steel Tube Material Certificate, Test No. NJPCB-5	
Figure B-17. Steel Tube Material Certificate, Test No. NJPCB-5	
Figure B-18. 2-in. \times ¹ / ₄ -in. (51-mm \times 6-mm) Bent Steel Plate Material Certificate, Test No.	132
NJPCB-5	133
Figure B-19. ¹ / ₂ -in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-5	
Figure B-20. ¹ / ₂ -in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-5	
Figure B-20. 72 million finite fractional contraction of the state of	
Figure B-22. Non-Shrink Grout Specifications, Test No. NJPCB-5	
Figure B-23. Non-shrink Grout Compressive Test Certificate, Test No. NJPCB-5	
Figure B-24. Non-shrink Grout Compressive Test Certificate, Test No. NJPCB-5	
Figure B-25. Non-shrink Grout Compressive Test Certificate, Test No. NJPCB-5	
Figure B-26. Box Beam Stiffener Material Certificate, Test No. NJPCB-5	
Figure B-27. Box Beam Steel Plates Material Certificate, Test No. NJPCB-5	
Figure B-28. Box Beam Mounting Bolts Material Certificate, Test No. NJPCB-5	
Figure B-29. Box Beam Mounting Nuts Material Certificate, Test No. NJPCB-5	
Figure C-1. Concrete Tarmac Strength Test, Test No. NJPCB-5	
Figure C-2. Concrete Tarmac Strength Test, Test No. NJPCB-5	
Figure D-1. Vehicle Mass Distribution, Test No. NJPCB-5	
Figure E-1. Floor Pan Deformation Data – Set 1, Test No. NJPCB-5	
Figure E-2. Floor Pan Deformation Data – Set 2, Test No. NJPCB-5	
Figure E-3. Occupant Compartment Deformation Data – Set 1, Test No. NJPCB-5	
Figure E-4. Occupant Compartment Deformation Data – Set 2, Test No. NJPCB-5	
Figure E-5. Exterior Vehicle Crush (NASS) - Front, Test No. NJPCB-5	
Figure E-6. Exterior Vehicle Crush (NASS) - Side, Test No. NJPCB-5	
Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. NJPCB-5	
Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. NJPCB-5	
Figure F-3. Longitudinal Occupant Displacement (SLICE-2), Test No. NJPCB-5	
Figure F-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. NJPCB-5	
Figure F-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. NJPCB-5	
Figure F-6. Lateral Occupant Displacement (SLICE-2), Test No. NJPCB-5	
Figure F-7. Vehicle Angular Displacements (SLICE-2), Test No. NJPCB-5	
Figure F-8. Acceleration Severity Index (SLICE-2), Test No. NJPCB-5	

Figure F-9. 10-ms Average Longitudinal Deceleration (DTS), Test No. NJPCB-5	166
Figure F-10. Longitudinal Occupant Impact Velocity (DTS), Test No. NJPCB-5	167
Figure F-11. Longitudinal Occupant Displacement (DTS), Test No. NJPCB-5	
Figure F-12. 10-ms Average Lateral Deceleration (DTS), Test No. NJPCB-5	169
Figure F-13. Lateral Occupant Impact Velocity (DTS), Test No. NJPCB-5	170
Figure F-14. Lateral Occupant Displacement (DTS), Test No. NJPCB-5	171
Figure F-15. Vehicle Angular Displacements (DTS), Test No. NJPCB-5	
Figure F-16. Acceleration Severity Index (DTS), Test No. NJPCB-5	

LIST OF TABLES

Table 1. 2013 NJDOT Roadway Design Manual PCB Guidance [1]	1
Table 2. Current 2015 NJDOT Roadway Design Manual PCB Guidance [2]	1
Table 3. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers	3
Table 4. MASH 2016 Evaluation Criteria for Longitudinal Barrier	5
Table 5. Weather Conditions, Test No. NJPCB-5	34
Table 6. Sequential Description of Impact Events, Test No. NJPCB-5	34
Table 7. Maximum Occupant Compartment Deformations by Location	38
Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NJPCB-5	39
Table 9. Summary of Safety Performance Evaluation	64
Table 10. Comparison of 6-in. x 6-in. x ³ / ₁₆ -in. (152-mm x 152-mm x 5-mm) Box-Beam	
Stiffened Systems	66
Table 11. List of Simulation Model Parts and LS-DYNA Parameters	71
Table 12. List of Simulation Model Parts and LS-DYNA Parameters	73
Table 13. Dynamic Deflection, Test No. NJPCB-3 and Simulation	84
Table 14. Dynamic Deflection, Test No. NJPCB-5 and Simulation	92
Table 15. Dynamic Deflection of Reduced-Length Barrier Systems, Actual Simulated	
Results	103
Table 16. Dynamic Deflection of Reduced-Length Barrier Systems, Adjusted Simulation	
Results	103
Table B-1. Bill of Materials, Test No. NJPCB-5	

1 INTRODUCTION

1.1 Background

The New Jersey Department of Transportation (NJDOT) currently uses a New Jersey shape, Precast Concrete Curb, Concrete Barrier, which will be referred to as portable concrete barrier (PCB), with a vertical, I-beam connection pin to attach barriers end to end within their work zones and construction areas. The 2013 NJDOT *Roadway Design Manual* [1] provided guidance on allowable barrier deflections for various classes of PCB joint treatments, as shown in Table 1. The current 2015 NJDOT *Roadway Design Manual* [2] provides guidance on allowable deflections for various connection types, as shown in Table 2.

Table 1. 2013 NJDOT	Roadway Design	Manual PCB	Guidance [1]
			[-]

Joint Class	Use	Joint Treatment
А	Allowable movement over 16 to 24 inches	Connection Key only
В	Allowable movement over 11 to 16 inches	Connection Key and grout in every joint
С	Allowable movement of 11 inches	Connection Key and grout in every joint and pin every other unit. In units to be anchored, pin should be required in every recess
D	No allowable movement (i.e., bridge parapet)	Connection Key and grout in every joint and bolt every anchor pocket hole in every unit

Table 2. Current 2015 NJDOT Roadway Design Manual PCB Guidance [2]

Connection Type	Use	Joint Treatment*
А	Maximum allowable deflection of 41 inches	Connection Key and barrier end sections fully pinned
В	Maximum allowable deflection of 28 inches (Cannot be used with traffic on both sides of the barrier.)	Connection Key, 6" by 6" box beam, and barrier end sections fully pinned
С	Maximum allowable deflection of 11 inches	Connection Key, construction side of all sections pinned, and barrier end sections fully pinned

* Barrier end sections fully pinned – first and last barrier segments of the entire run regardless of connection type have pins in every anchor recess on both sides.

The guidance provided in both the 2013 and 2015 *Roadway Design Manual* was based on test data obtained from previous testing standards, which needs to be updated to be consistent with current crash testing standards and a changing vehicle fleet. Crash testing of other PCB systems under the Test Level 3 (TL-3) criteria of the *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) [3] has indicated that dynamic barrier deflections can increase significantly when compared to dynamic deflections based on older crash test data. Thus, a need exists to

investigate the performance of the NJDOT PCB system in various configurations in order to provide updated design guidance. The NJDOT PCB standard plans are shown in Appendix A.

1.2 Objective

The objective of this research effort was to evaluate the safety performance of NJDOT's PCB, Type 4 (Alternative B) system with a box-beam stiffened, free-standing configuration and grouted toes, corresponding to connection type B in the 2015 NJDOT *Roadway Design Manual*. The system was to be evaluated according to the Test Level 3 (TL-3) criteria set forth in the *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) [3].

1.3 Scope

The research objective was achieved through completion of several tasks. One full-scale crash test was conducted on the PCB system according to MASH 2016 test designation no. 3-11. Next, the full-scale vehicle crash test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the PCB system.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Longitudinal barriers, such as PCBs, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [3]. Note that there is no difference between MASH 2009 [4] and MASH 2016 for most longitudinal barriers, such as the PCB system tested in this project, except that additional occupant compartment deformation measurements are required by MASH 2016. According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 3. However, only the 2270P crash test was deemed necessary as other prior small car tests were used to support a decision to deem the 1100C crash test not critical.

Test Article	Test Designation No.	Test Vehicle	Vehicle	Impact Conditions		
			Weight, lb (kg)	Speed, mph (km/h)	Angle, deg.	Evaluation Criteria ¹
Longitudinal	3-10	1100C	2,420 (1,100)	62 (100)	25	A,D,F,H,I
Barrier	3-11	2270P	5,000 (2,268)	62 (100)	25	A,D,F,H,I

Table 3. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 4.

In test no. 7069-3, a rigid, F-shape, concrete bridge rail was successfully impacted by a small car weighing 1,800 lb (816 kg) at 60.1 mph (96.7 km/h) and 21.4 degrees according to the American Association of State Highway and Transportation Officials (AASHTO) *Guide Specifications for Bridge Railings* [5-6]. In the same manner, test nos. CMB-5 through CMB-10, CMB-13, and 4798-1 showed that rigid, New Jersey, concrete safety shape barriers struck by small cars have been shown to meet safety performance standards [7-8]. In addition, in test no. 2214NJ-1, a rigid, New Jersey, ¹/₂-section, concrete safety shape barrier was impacted by a passenger car weighing 2,579 lb (1,170 kg) at 60.8 mph (97.8 km/h) and 26.1 degrees according to the TL-3 standards set forth in MASH 2009 [9]. Furthermore, temporary, New Jersey safety shape, concrete median barriers have experienced only slight barrier deflections when impacted by small cars and behave similarly to rigid barriers as seen in test no. 47 [10]. As such, the 1100C passenger car test was deemed not critical for testing and evaluating this PCB system.

It should be noted that the test matrix detailed herein represents the researchers' best engineering judgement with respect to the MASH 2016 safety requirements and their internal evaluation of critical tests necessary to evaluate the crashworthiness of the barrier system. However, the recent switch to new vehicle types as part of the implementation of the MASH 2016 criteria and the lack of experience and knowledge regarding the performance of the new vehicle types with certain types of hardware could result in unanticipated barrier performance. Thus, any

tests within the evaluation matrix deemed non-critical may eventually need to be evaluated based on additional knowledge gained over time or revisions to the MASH 2016 criteria.

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the PCB system to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 4 and defined in greater detail in MASH 2016. The full-scale vehicle crash test documented herein was conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

Table 4. MASH 2016 Evaluation Criteria for Longitudinal Barrier

Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.				
Occupant Risk	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.				
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.				
	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				
		Occupant Impact Velocity Limits				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)		
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				
		Occupant Ridedown Acceleration Limits				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		

3 DESIGN DETAILS

The test installation consisted of ten 20-ft (6.1-m) long NJDOT PCBs with a box-beam stiffened configuration and grouted toes, as shown in Figures 1 through 16. This system uses NJDOT barriers, Type 4 (Alternative B) with connection type B, as specified in the 2015 NJDOT *Roadway Design Manual*. Photographs of the test installation are shown in Figures 17 through 19. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

The concrete mix for the barrier sections required a minimum 28-day compressive strength of 3,700 psi (25.5 MPa). A minimum concrete cover of 1½ in. (38 mm) was used along all rebar in the barrier. All of the steel reinforcement in the barrier was ASTM A615 Grade 60 rebar and consisted of four No. 6 longitudinal bars, eight No. 4 bars for the vertical stirrups, four No. 6 lateral bars, and nine No. 4 bars for the anchor hole reinforcement loops. The section reinforcement details are shown in Figures 5 and 6.

The barrier sections used a connection key, as shown in Figures 9 through 13, 18, and 19. The connection key assembly consisted of ½-in. (13-mm) thick ASTM A36 steel plates welded together to form the key shape. A connection socket was configured at each end of the barrier section, as shown in Figures 2, 18, and 19. The connection socket consisted of three ASTM A36 steel plates welded on the sides of ASTM A500 Grade B or C steel tube, as shown in Figures 9 and 10. The connection key was inserted into the steel tubes of two adjoining PCBs to form the connection, as shown in Figure 13.

Barrier nos. 1 and 10 were anchored to the concrete tarmac through the pin anchor recesses with nine 1-in. (25-mm) diameter by 15-in. (381-mm) long, ASTM A36 steel pins inserted into 1¼-in. (32-mm) diameter drilled holes in the concrete tarmac, as shown in Figures 1 and 14. The steel pins were embedded to a depth of 5 in. (127 mm), as shown in Figure 1. During installation, the barrier segments were pulled in a direction parallel to their longitudinal axes, and slack was removed from all joints. After slack was removed from all the joints, 1¼-in. (32-mm) diameter holes were drilled for pin anchors at pin recess locations. Five samples of concrete tarmac were tested from five different locations of MwRSF's Outdoor Test Site. The concrete tarmac had a compressive strength between 5,970 and 7,040 psi (41.2 and 48.5 MPa), as shown in Appendix C. Non-shrink grout wedges were placed at the toe of each barrier segment in every joint between adjacent barrier segments on both traffic and back sides, as shown in Figures 1, 2, and 19. The grout wedges consisted of a grout mix with a minimum 1-day compressive strength of 1,000 psi (6.9 MPa).

The nine joints between barrier nos. 1 through 10 were stiffened with a box-beam section, as shown in Figures 3, 7, 8, 17, and 18. Each box-beam stiffener was a 12-ft (3.7-mm) long, 6-in. \times 6-in. \times ³/₁₆-in. (152-mm \times 152-mm \times 5-mm) ASTM A500 Grade C box beam. Two ⁷/₈-in. (22-mm) diameter holes were drilled through each barrier near the ends, as shown in Figure 7. The box-beam stiffeners were connected to the barriers with ³/₄-in. (19-mm) diameter by 17-in. (432-mm) long ASTM A307 Grade A bolts without square necks and ³/₄-in. (19-mm) diameter ASTM A563A nuts, as shown in Figure 8. A ³/₄-in. (19-mm) diameter ASTM F844 fender washer was placed between the barrier and the bolt head on the traffic side. An 8-in. \times 8-in. \times ¹/₂-in. (203-mm \times 203-mm \times 13-mm) ASTM A36 steel plate was placed between the nut and the box-beam section on the back side, as shown in Figure 8.

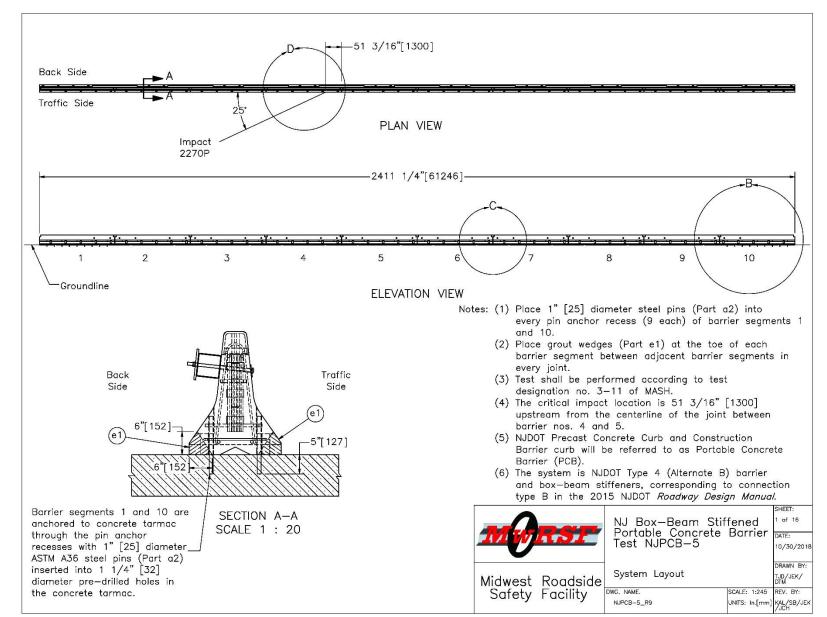


Figure 1. Test Installation Layout, Test No. NJPCB-5

 \neg

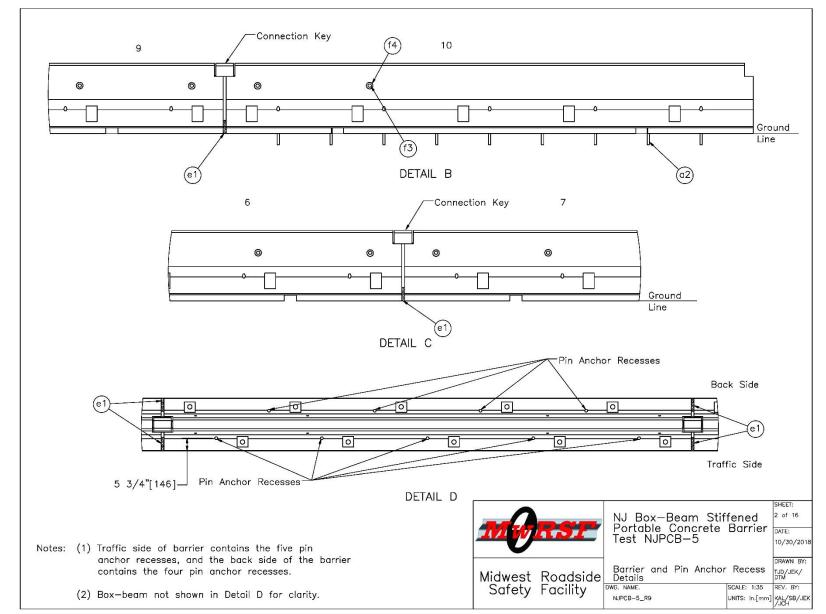


Figure 2. PCB Pin Anchor Details, Test No. NJPCB-5

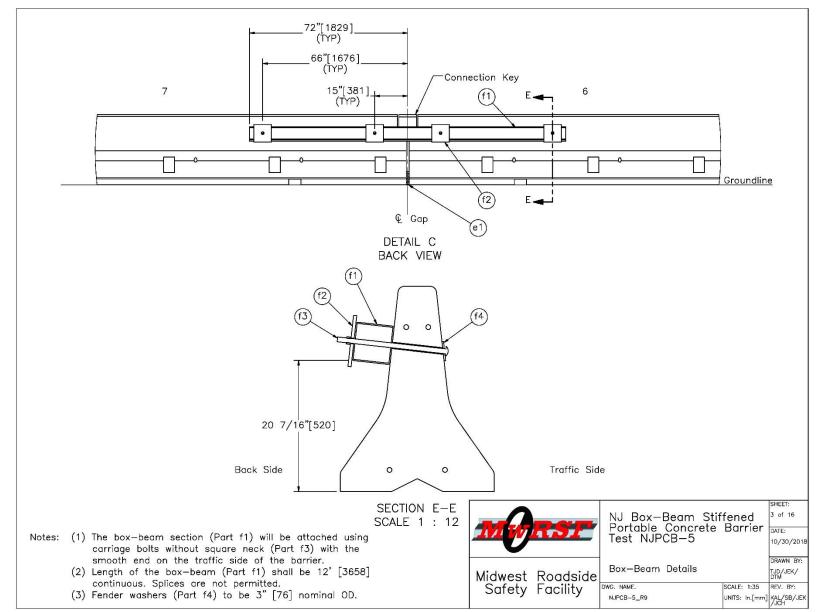


Figure 3. PCB Box-Beam Stiffener Details, Test No. NJPCB-5

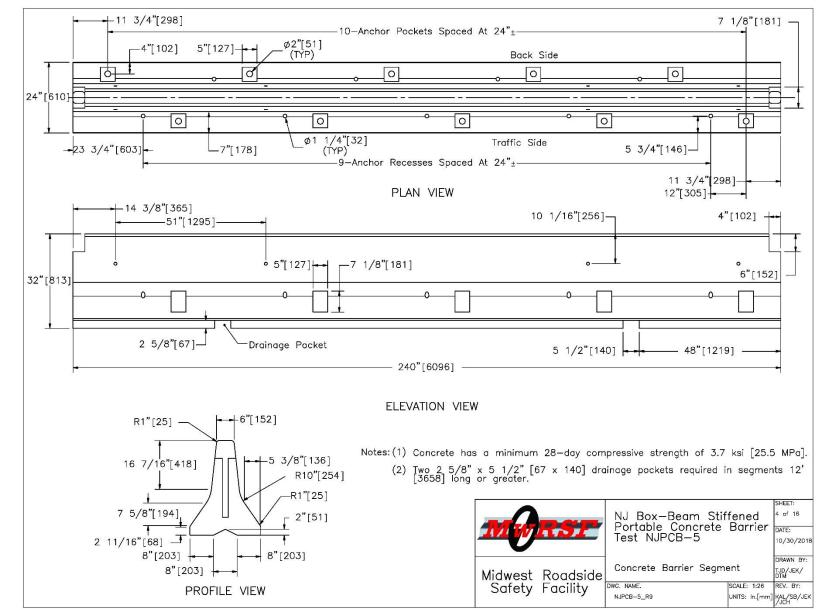


Figure 4. PCB Details, Test No. NJPCB-5

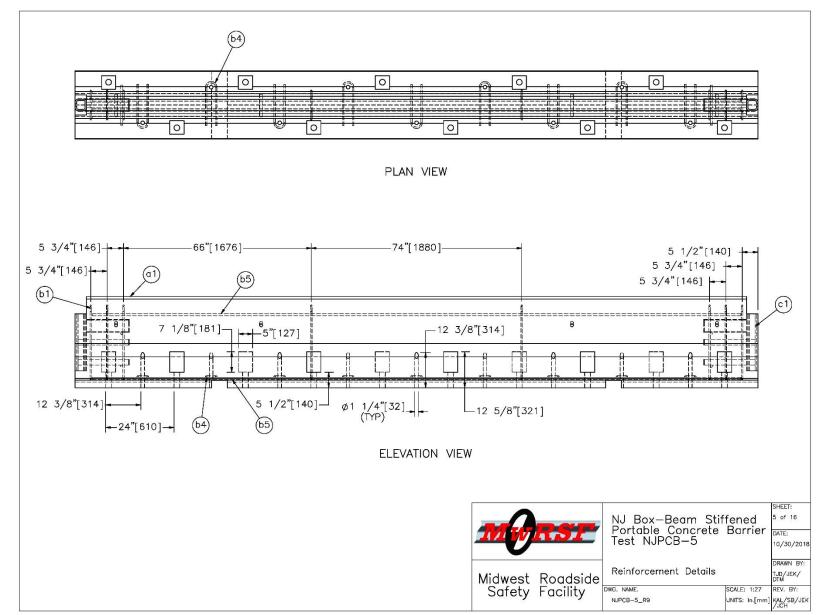


Figure 5. PCB Reinforcement Details, Test No. NJPCB-5



Figure 6. PCB Reinforcement Details - End View, Test No. NJPCB-5

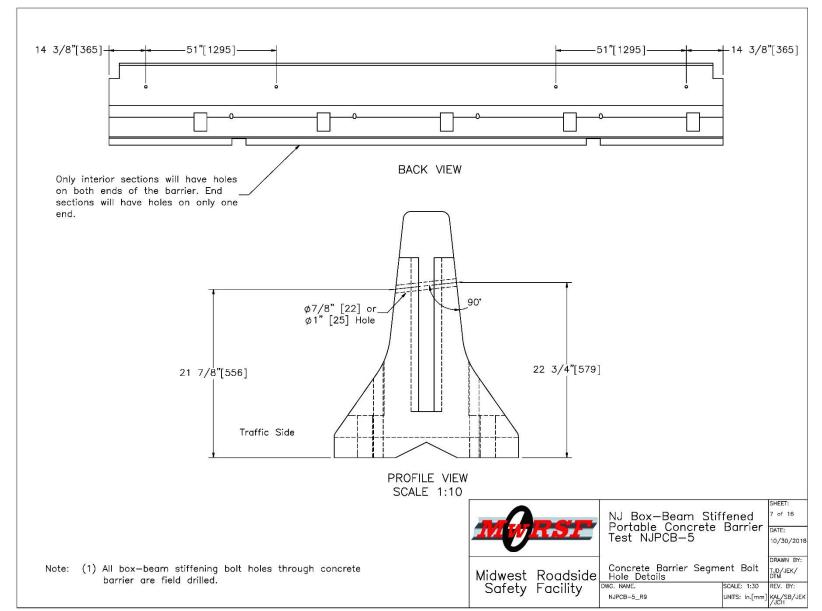


Figure 7. PCB Bolt Holes for Box-Beam Stiffeners, Test No. NJPCB-5

13

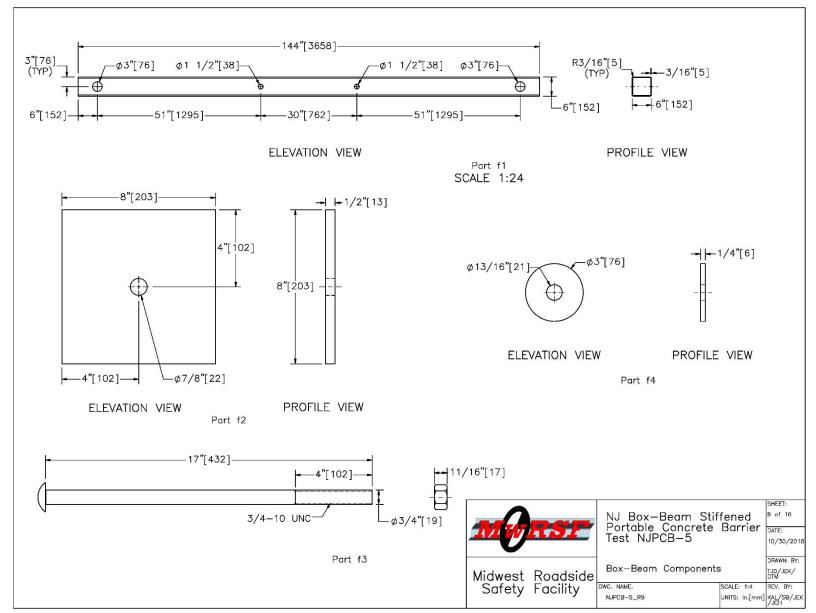


Figure 8. Box-Beam Stiffener Component Details, Test No. NJPCB-5

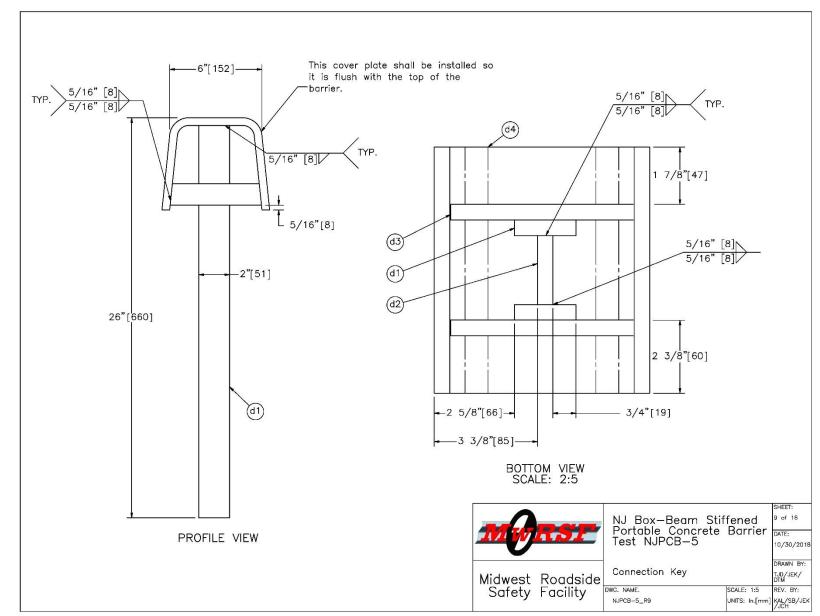


Figure 9. Connection Key Assembly Details, Test No. NJPCB-5

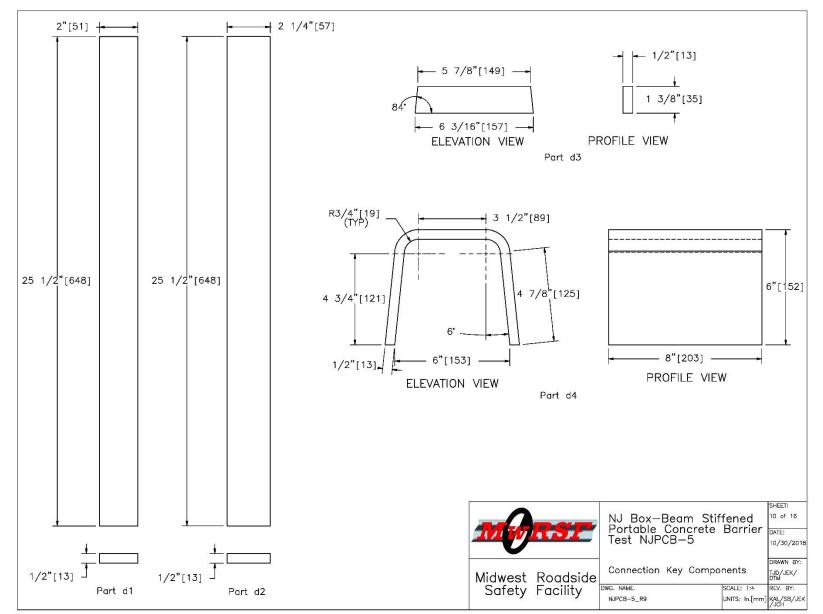


Figure 10. Connection Key Component Details, Test No. NJPCB-5

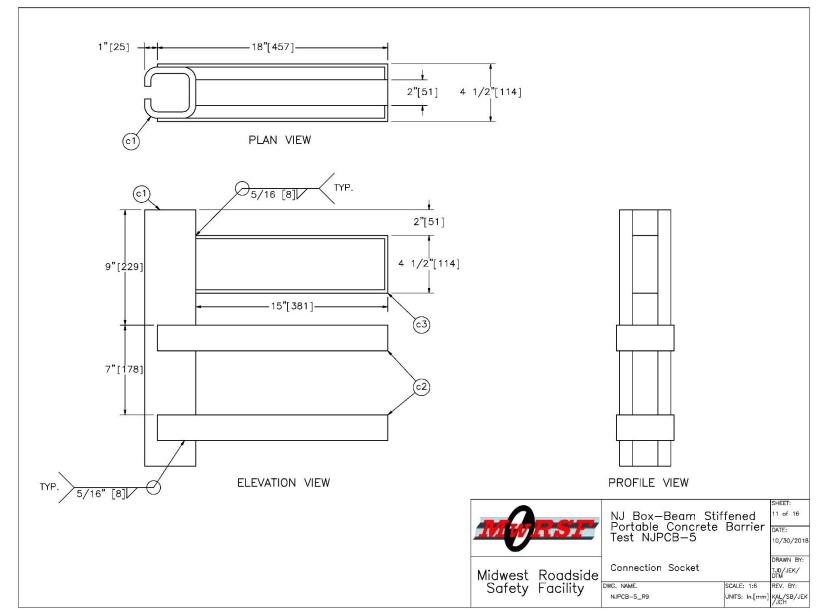


Figure 11. PCB Connection Socket Details, Test No. NJPCB-5

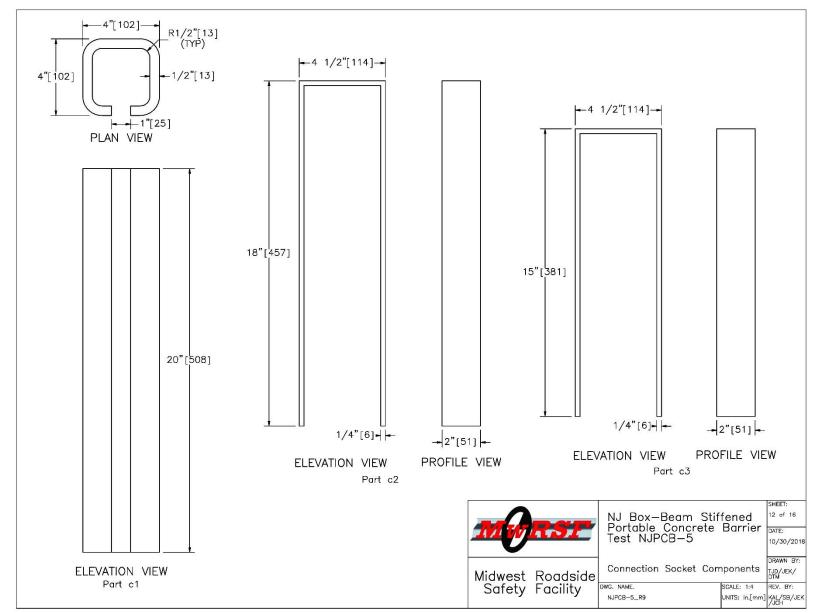


Figure 12. PCB Connection Socket Component Details, Test No. NJPCB-5

18

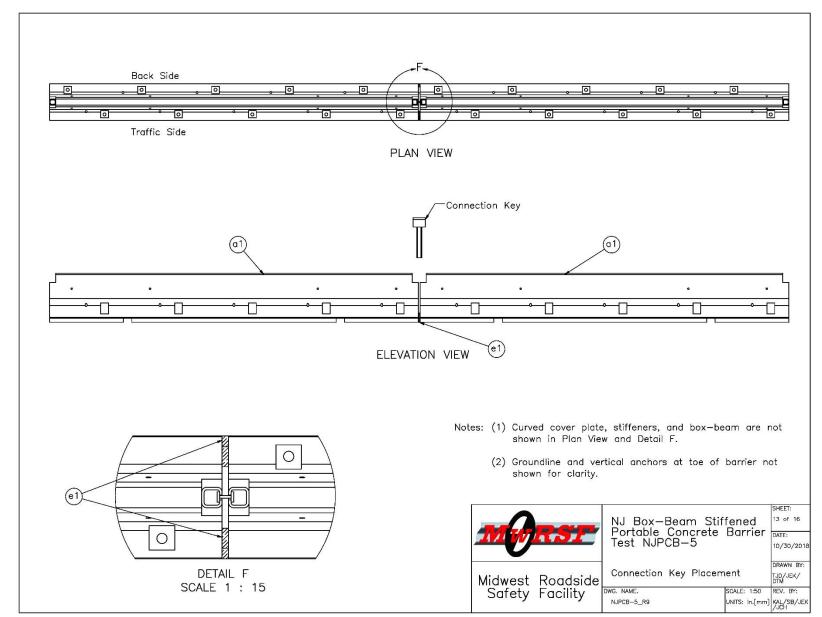


Figure 13. Connection Key Placement Details, Test No. NJPCB-5

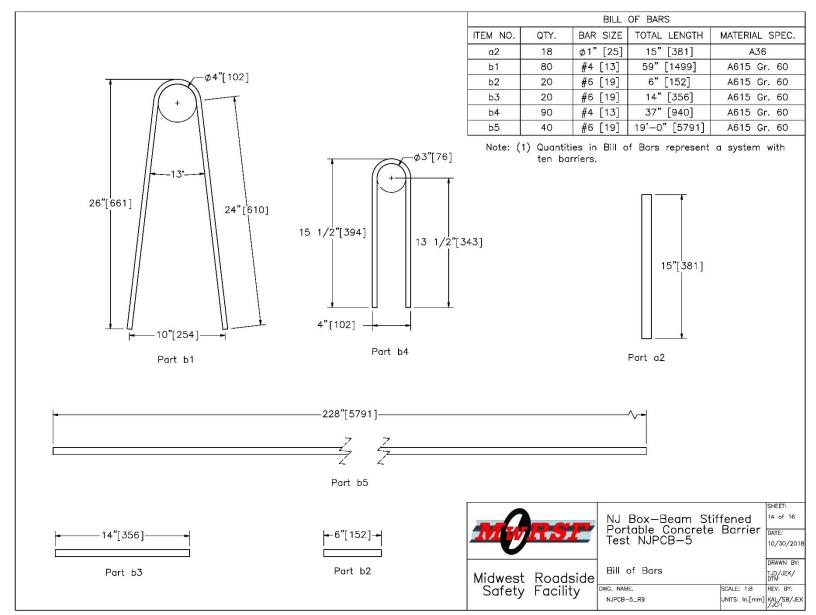


Figure 14. PCB Reinforcement Details, Test No. NJPCB-5

- (1) Minimum concrete clear cover for reinforcement steel shall be 1 1/2" [38 mm].
- (2) All end segments shall be pinned.
- (3) After a segment has been placed and the connection key inserted, pull the unit in a direction parallel to its longitudinal axis to remove any slack in the joint.
- (4) The portable concrete barrier shall be cast in steel forms.
- (5) The portable concrete barrier shall be barrier segments of 20 feet [6,096 mm]. However, other lengths may be used to meet field conditions. The number and placement of the b2 and b3 reinforcement steel will vary with the length of the barrier segment as shown on the table of variable reinforcement steel. The b5 reinforcement steel shall be 10" [254 mm] shorter than the nominal length of the barrier segments.
- (6) Reinforcing shown is the minimum required. Additional reinforcing necessary for handling shall be the option and responsibility of the contractor.
- (7) Welding and fabrication of steel structures shall be in accordance with sections 1 thru 6 of the ANSI/AASHTO/AWS D1.5 bridge welding code and section 10 of the ANSI/AWS D1 structural welding code. Surfaces to be welded shall be free of scale, slag, rust, moisture, grease or any other material that will prevent proper welding or produce objectional furnes. Welding shall be shielded metal arc welding using properly dried 5/32" [4 mm] dia. E7018 electrodes.
- (8) The length of the pins shall be such that a minimum embedment length of 5" [127 mm] is obtained when embedded into concrete pavement. When anchor pins are in place, they shall not project above the plane of the concrete surface of the barrier. Holes in bridge decks shall be 1 1/4" [32 mm] diameter maximum and made with a core drill or any other approved rotary drilling device that does not impart an impact force.
- (9) Use non-shrink grout of a plastic consistency that is listed on the QPL and conforms to ASTM C 1107 with the following amendments: 1. Ensure that the grout has a working time of at least 30 minutes from the time the water is added.
 - 2. Match the color of the hardened grout, where visible, to the color of the adjacent hardened concrete.
 - 3. Include 1-day strength tests as part of the performance requirements of ASTM C 1107.
 - 4. Ensure that the grout contains no more than 0.05 percent chlorides or 5.0 percent sulfates by weight.
 - 5. Minimum 1-day compressive strength of 1,000 psi [6.9 MPa].
- (10) Use connection key in every joint. Pin end segments with pins in every anchor pin recess.
- (11) The box-beam is to be in accordance with the requirements of the standard specifications.
- (12) The shimming consists of 8"x8"x1/2" [203x203x13 mm] square plate and fender washers as needed to snug the box-beam stiffener to the portable concrete barrier.
- (13) The presence of normal holes drilled per this sheet will not affect the reusability of the concrete segments.
- (14) Drill holes in the portable concrete barrier for purpose of box-beam attachment using a core drill or any other approved rotary drilling device that does not impart an impact force.

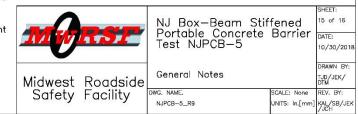
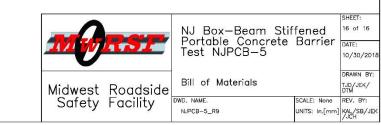



Figure 15. General Notes, Test No. NJPCB-5

ltem No.	QTY.	Description	Material Spec	Galvanization Spec
a1	10	Concrete Barrier Segment – NJDOT Type 4 Barrier (Alternate B)	Min. f'c = 3,700 psi [25.5 MPa]	-
a2	18	1" [25] Dia., 15" [381] Long Steel Anchor Pin	ASTM A36	* ASTM A123
b1	80	1/2" [13] Dia., 59" [1,499] Long Bent Rebar	ASTM A615 Gr. 60	-
b2	20	3/4" [19] Dia., 6" [152] Long Rebar	ASTM A615 Gr. 60	-
b3	20	3/4" [19] Dia., 14" [356] Long Rebar	ASTM A615 Gr. 60	
b4	90	1/2" [13] Dia., 37" [940] Long Bent Rebar	ASTM A615 Gr. 60	<u></u>
b5	40	3/4" [19] Dia., 228" [5,791] Long Rebar	ASTM A615 Gr. 60	
c1	20	4"x4"x1/2" [102x102x13] x 20" [508] Long Tube	ASTM A500 Gr. B or C	-
c2	40	40 1/2"x2"x1/4" [1,029x51x6] Bent Steel Plate	ASTM A36	_
cЗ	20	34 1/2"x2"x1/4" [876x51x6] Bent Steel Plate	ASTM A36	-
d1	18	25 1/2"x2"x1/2" [648x51x13] Steel Plate	ASTM A36	-
d2	9	25 1/2"x2 1/4"x1/2" [648x57x13] Steel Plate	ASTM A36	-
d3	18	6 3/16"x1 3/8"x1/2" [157x35x13] Steel Plate - Stiffener	ASTM A36	_
d4	9	17"x8"x1/2" [432x203x13] Bent Steel Plate - Top Plate	ASTM A36	-
e1	1	Non-Shrink Grout	Min. 1-day Compressive Strength 1,000 psi [6.9 MPa]	-
f1	9	6"x6"x3/16" [152x152x5] x 144" [3,658] Long Box Beam	ASTM A500 Gr. C	* ASTM A123
f2	36	8"x8"x1/2" [203x203x13] Steel Plate	ASTM A36	* ASTM A123
f3	36	3/4" [19] Dia., 17" [432] Long Carriage Bolt without Square Neck and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	* ASTM A153 or B695 Class 55 or F2329
f4	36	3/4" [19] Dia. Fender Washer	ASTM F844	* ASTM A123 or A153 or F2329

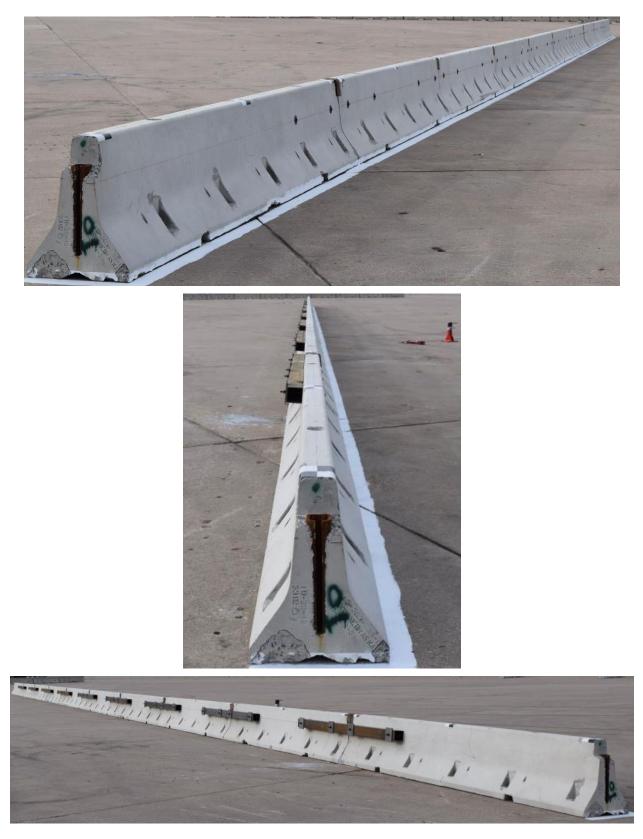


Figure 17. NJDOT PCB with Box-Beam Stiffened Configuration and Grouted Toes Test Installation, Test No. NJPCB-5

Figure 18. PCB Box-Beam Stiffeners Across Barrier Joints, Test No. NJPCB-5

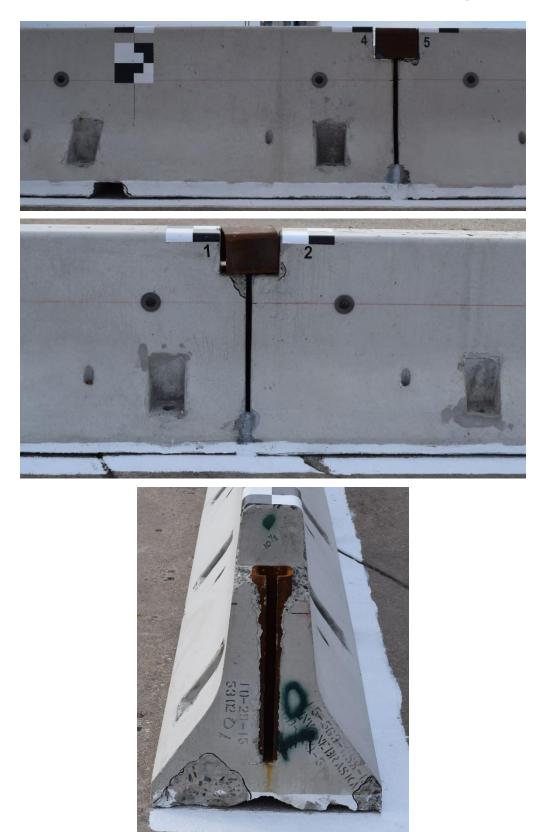


Figure 19. PCB Connection Key, Connection Socket, and Grout at Toes Between Barriers, Test No. NJPCB-5

4 TEST CONDITIONS

4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [11] was used to steer the test vehicle. A guide flag, attached to the right-front wheel and the guide cable, was sheared off before impact with the barrier system. The $\frac{3}{8}$ -in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicle

For test no. NJPCB-5, a 2009 Dodge Ram 1500 quad cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,084 lb (2,306 kg), 5,001 lb (2,268 kg), and 5,162 lb (2,341 kg), respectively. The test vehicle is shown in Figures 20 and 21, and vehicle dimensions are shown in Figure 22. Note that pre-test photographs of the vehicle's undercarriage are not available.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [12] was used to determine the vertical component of the c.g. for the pickup truck. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The location of the final c.g. is shown in Figures 22 and 23. Data used to calculate the location of the c.g. and ballast information are shown in Appendix D.

Square, black- and white-checkered targets were placed on the vehicle for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figure 23. Round, checkered targets were placed on the c.g. on the left-side door, the right-side door, and the roof of the vehicle.

The front wheels of the test vehicle were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicle would track properly along the guide cable. A 5B flash bulb was mounted under the vehicle's left-side windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial

impact with the test article to create a visual indicator of the precise time of impact on the highspeed digital videos. A remote-controlled brake system was installed in the test vehicle so the vehicle could be brought safely to a stop after the test.

Figure 20. Test Vehicle, Test No. NJPCB-5

Figure 21. Test Vehicle's Interior Floorboards, Test No. NJPCB-5

December 13, 2018 MwRSF Report No. TRP-03-372-18

Date:	1/31/2	017	_	Test Name:	NJP	CB-5	VIN No:	1D3H	B18P19S779	9289
Year:	200	9	_	Make:	Doo	dge	Model:		Ram	
Tire Size:	275/60	R20	Tire Infla	tion Pressure:	35	Psi	Odometer:		156834	
					<u>]</u>	+		eometry - in Isted below	n. (mm)	
t Wheel Track			•		M Wheel Track	a 	a: <u>76 7/8</u> 78±2 (1 c: <u>229 1/4</u> 237±13 (6	950±50) (5823)	b: <u>74 1/2</u> d: <u>49 1/4</u>	(1892) (1251)
<u> </u>			/ 3L				e: <u>139 7/8</u> 148±12 (3	(3553) 3760±300)	f: <u>39 7/8</u> 39±3 (1	(1013) 000±75)
	est Inertial	С.м.	`	a	-TIRE DIA		g: 28 7/8		h: 61 5/8	(1564)
1				+ r +			i: 81/8	(206)	j: 27	575±100) (686)
 						_	k: <u>21</u>	(533)	l: <u>30 1/2</u>	(775)
)) s		= (p)=		_	m: <u>68 1/4</u> 67±1.5 ((1734) 1700±38)	n: <u>68 3/8</u> 67±1.5 ((1737) 1700±38)
			H	n			o: 45 3/4 43±4 (1	(1162) 100±75)	p: <u>4</u>	(102)
-	d	- 7W _{rear}	—— е ———	Wfront f	-		q: <u>33 1/4</u>	(845)	r: 21 5/8	(549)
-		/ "rear	— c ———	"front	-		s: <u>14</u>	(356)	t: 78 5/8	(1997)
Mass Distrib	ution lb (kg))						Wheel Cent Height (Fron		(391)
Gross Static	LF <u>1488</u>	(675)	RF 1409	(639)				Wheel Cent Height (Rea		(397)
	LR <u>1136</u>	(515)	RR 1129	(512)			Cle	Wheel Wearance (Fron		(892)
							C	Wheel W learance (Rea		(968)
Weights Ib (kg)	с	urb	Test I	nertial	Gross	Static		Bottom Fran Height (Fron	nt): <u>13 3/4</u>	(349)
W-front	2859	(1297)	2799	(1270)	2897	(1314)		Bottom Fran Height (Rea	-	(664)
W-rear	2225	(1009)	2202	(999)	2265	(1027)		Engine Typ	e: Gas	oline
W-total	5084	(2306)	5001	(2268)	5162 5165±110	(2341)		Engine Siz	e: 4.7	L V8
			3000110	(2270130)	51051110	(2040100)	Transı	mission Typ	e: Auto	matic
GVWR Rating	gs Ib		Dummy [Data				Drive Typ	e: <u>R\</u>	ND
Front	3700	_		Туре:	Hybrid	II		Cab Styl	e: Quad	d Cab
Rear	3900	_		Mass:	161 ll)		Bed Lengt	h: <u>7</u>	6"
Total	6700	_	Seat	Position:	Drive	r				
Note a	ny damage pr	ior to test:			Some de	ents on ot	h sides of the	bed		

Figure 22. Vehicle Dimensions, Test No. NJPCB-5

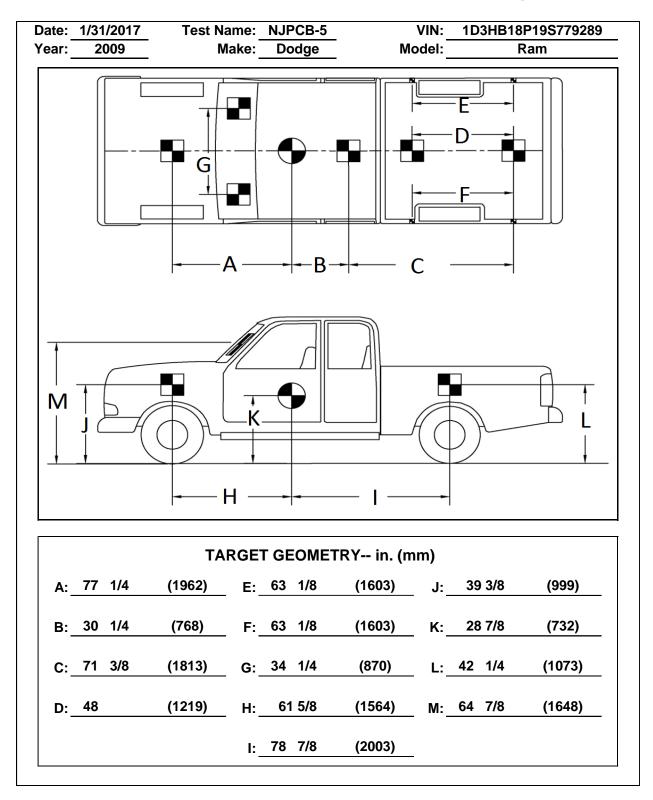


Figure 23. Target Geometry, Test No. NJPCB-5

4.4 Simulated Occupant

For test no. NJPCB-5, A Hybrid II 50th-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the left-front seat of the test vehicle with the seat belt fastened. The dummy, which had a final weight of 161 lb (73 kg), was represented by model no. 572, serial no. 451, and was manufactured by Android Systems of Carson, California. As recommended by MASH 2016, the dummy was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

4.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. All of the accelerometers were mounted near the c.g. of the test vehicle. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [13].

The first accelerometer system, the SLICE-2 unit, was a modular data acquisition system manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-2 unit was designated as the primary system. The acceleration sensors were mounted inside the body of custom-built, SLICE 6DX event data recorder and recorded data at 10,000 Hz to the onboard microprocessor. The SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

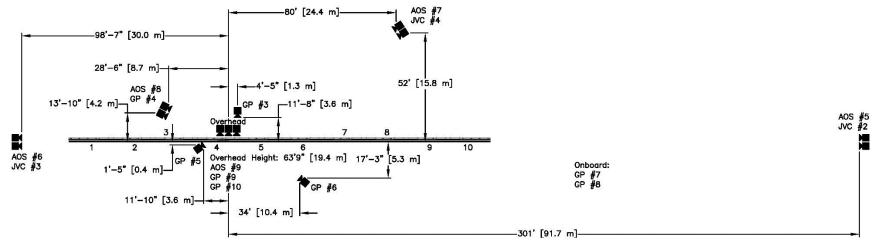
The second accelerometer system was a two-arm piezoresistive accelerometer system manufactured by Endevco of San Juan Capistrano, California. Three accelerometers were used to measure each of the longitudinal, lateral, and vertical accelerations independently at a sample rate of 10,000 Hz. The accelerometers were configured and controlled using a system developed and manufactured by DTS of Seal Beach, California. More specifically, data was collected using a DTS Sensor Input Module (SIM), Model TDAS3-SIM-16M. The SIM was configured with 16 MB SRAM and 8 sensor input channels with 250 kB SRAM/channel. The SIM was mounted on a TDAS3-R4 module The module rack configured rack. was with isolated power/event/communications, 10BaseT Ethernet and RS232 communication, and an internal backup battery. Both the SIM and module rack were crashworthy. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

4.5.2 Rate Transducers

The first angular rate sensor system, which was mounted inside the body of the SLICE-2 event data recorder, measured the rates of rotation of the test vehicle. The SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare"

computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

The second angular rate sensor, the ARS-1500, with a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) was used to measure the rates of rotation of the test vehicle. The angular rate sensor was mounted on an aluminum block inside the test vehicle near the c.g. and recorded data at 10,000 Hz to the DTS SIM. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.


4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicle before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

4.5.4 Digital Photography

Five AOS high-speed digital video cameras, eight GoPro digital video cameras, and three JVC digital video cameras were utilized to film test no. NJPCB-5. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 24.

The high-speed digital videos were analyzed using TEMA Motion and RedLake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed digital videos. A Nikon digital still camera was also used to document pre- and post-test conditions for the test.

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting	
AOS-5	AOS X-PRI Gigabit	500	Vivitar 135mm		
AOS-6	AOS X-PRI Gigabit	500	Fujinon 35mm	-	
AOS-7	AOS X-PRI Gigabit	500	Fujinon 50mm	-	
AOS-8	AOS S-VIT 1531	500	Kowa 16mm	-	
AOS-9	AOS TRI-VIT	1000	Kowa 12mm	-	
GP-3	GoPro Hero 3+	120			
GP-4	GoPro Hero 3+	120			
GP-5	GoPro Hero 3+	120			
GP-6	GoPro Hero 3+	120			
GP-7	GoPro Hero 4	120			
GP-8	GoPro Hero 4	120			
GP-9	GoPro Hero 4	240			
GP-10	GoPro Hero 4	120			
JVC-2	JVC – GZ-MG27u (Everio)	29.97			
JVC-3	JVC – GZ-MG27u (Everio)	29.97			
JVC-4	JVC – GZ-MG27u (Everio)	29.97			

Figure 24. Camera Locations, Speeds, and Lens Settings, Test No. NJPCB-5

5 FULL-SCALE CRASH TEST NO. NJPCB-5

5.1 Weather Conditions

Test no. NJPCB-5 was conducted on January 31, 2017 at approximately 2:40 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 5.

Table 5. Weather Conditions, Test No. NJPCB-5

Temperature	27° F
Humidity	51%
Wind Speed	7 mph
Wind Direction	350° from True North
Sky Conditions	Overcast
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.10 in.

5.2 Test Description

The 5,001-lb (2,268-kg) pickup truck impacted the NJDOT PCB, Type 4 (Alternative B) with a box-beam stiffened configuration and grouted toes, corresponding to connection type B in the 2015 NJDOT *Roadway Design Manual*, at a speed of 62.7 mph (100.8 km/h) and at an angle of 24.9 degrees. A summary of the test results and sequential photographs are shown in Figure 26. Additional sequential photographs are shown in Figures 27 and 28. Documentary photographs of the crash test are shown in Figures 29 through 32.

Initial vehicle impact was to occur 4 ft $- 3^{3}/_{16}$ in. (1.3 m) upstream from the centerline of the joint between barrier nos. 4 and 5, as shown in Figure 33, which was selected using Table 2.7 of MASH 2016. The actual point of impact was $1^{3}/_{4}$ in. (45 mm) downstream of the target location. A sequential description of the impact events is contained in Table 6. The vehicle came to rest 234 ft - 11 in. (71.6 m) downstream from the impact point and 48 ft - 10 in. (14.9 m) laterally away from the traffic side of the system after brakes were applied. The vehicle trajectory and final position are shown in Figures 26 and 34.

TIME	EVENT					
(sec)						
0.000	Vehicle's left-front tire impacted barrier no. 4 at 4 ft $- \frac{17}{16}$ in. (1.3 m) upstream					
0.000	from centerline of joint between barrier nos. 4 and 5.					
0.006	Vehicle's left-front bumper contacted barrier no. 4 and deformed.					
0.010	Vehicle's left headlight contacted top of barrier no. 4 and deformed.					
0.014	Vehicle's left fender contacted barrier no. 4 and deformed.					

Table 6. Sequential Description of Impact Events, Test No. NJPCB-5

0.022	Vehicle's hood and grille contacted barrier no. 4 and deformed.
0.030	Downstream end of barrier no. 4 deflected backward.
0.034	Vehicle's right-front fender deformed.
0.037	Vehicle yawed away from barrier. Vehicle's left headlight contacted barrier no. 5.
0.044	Vehicle pitched upward.
0.046	Upstream end of barrier no. 5 deflected backward. Upstream end of barrier no. 4 spalled.
0.056	Vehicle's left-rear door deformed.
0.058	Downstream end of barrier no. 5 spalled.
0.064	Vehicle's left fender contacted barrier no. 5.
0.076	Vehicle rolled toward system.
0.082	Vehicle's left-front door contacted barrier no. 5.
0.092	Vehicle's right-front tire became airborne.
0.118	Barrier no. 5 fractured between midspan and upstream end.
0.100	Downstream end of barrier no. 3 deflected backward. Barrier nos. 4 and 5
0.122	continued to deflect backward. Upstream end of barrier no. 6 deflected backward.
0.197	Vehicle was parallel to system at a speed of 52.4 mph (84.3 km/h).
0.200	Vehicle's left-rear door contacted barrier no. 5.
0.205	Upstream end of barrier no. 7 spalled. Vehicle's left-rear quarter panel contacted barrier no. 5.
0.210	Vehicle's left-rear tire contacted barrier no. 5.
0.216	Vehicle's left taillight contacted barrier no. 4 and deformed.
0.226	Vehicle pitched downward.
0.234	Traffic-side downstream end of barrier no. 4 spalled.
0.238	Vehicle's right-rear tire became airborne.
0.262	Barrier no. 3 deflected backward.
0.268	Traffic-side upstream end of barrier no. 5 spalled.
0.304	Barrier no. 6 deflected backward.
0.324	Upstream end of barrier no. 7 deflected backward.
0.400	Vehicle's left-front tire regained contact with ground.
0.506	Vehicle's right-front tire regained contact with ground.
0.516	Vehicle rolled away from system.
0.522	Vehicle's front bumper contacted ground.
0.558	Vehicle exited system at a speed of 48.9 mph (78.7 km/h) and at an angle of 4.9 degrees.
0.642	Vehicle pitched upward.
0.676	Vehicle rolled toward system.
0.848	Vehicle rolled away from system.
1.008	Vehicle's right-rear tire regained contact with ground.
1.152	Vehicle pitched downward.
1.168	Vehicle rolled toward system.
1.518	Vehicle pitched upward.
1.658	Vehicle's left-rear tire disengaged.

5.3 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 35 through 43. Barrier damage consisted of contact marks on the front face of the concrete segments, spalling of the concrete, and concrete cracking. The length of vehicle contact along the barrier was approximately 24 ft – $7\frac{1}{2}$ in. (7.5 m), which spanned from 5 ft – 7 in. (1.7 m) upstream from the center of the joint between barrier nos. 4 and 5 to 19 ft – $\frac{1}{2}$ in. (5.8 m) downstream from the center of the joint between barrier nos. 4 and 5.

Tire marks were visible on the front face of barrier nos. 4 and 5. Scrape marks were found on the front and top faces of barrier nos. 4 and 5. Grout between barrier nos. 4 and 5 crumbled. Cracks extended from the front, across the top, and onto the back face of barrier no. 2 at 60 in. (1,524 mm), 84 in. (2,134 mm), and 108 in. (2,743 mm) upstream from the downstream end of the barrier. A crack was found the on front, top, and back faces of barrier no. 3 and was located 58 in. (1,473 mm) downstream from the center of the barrier. A crack was found on the front, top, and back faces of barrier no. 4 and was located 6 in. (152 mm) upstream from the downstream edge of the barrier. A crack was found on the front, top, and back faces of barrier no. 5 and was located 83 in. (2,108 mm) downstream from the upstream edge of the barrier. Minor cracks were also found on the front and back faces of barrier nos. 3, 6, 7, and 8.

Minimal concrete spalling occurred on the back face of barrier no. 2 at the upstream and downstream ends. A 7-in. \times 5-in. \times ½-in. (178-mm \times 127-mm \times 13-mm) piece of concrete disengaged from barrier no. 3 at the lower-downstream corner on the back face. A 21-in. \times 7-in. \times 4-in. (533-mm \times 178-mm \times 102-mm) piece of concrete was removed from the lower-downstream end of the front face of barrier no. 4. A 33-in. \times 9-in. \times 3½-in. (838-mm \times 229-mm \times 89-mm) piece of concrete disengaged from the back face of barrier no. 4 at the lower-upstream corner. Concrete spalling, measuring 28 in. \times 8½ in. \times 6 in. (711 mm \times 216 mm \times 152 mm), occurred on the front face of barrier no. 5 at the upstream end. The back face of barrier no. 5 experienced 52-in. \times 10-in. \times 3½-in. (1,321-mm \times 254-mm \times 89-mm) concrete spalling at the lower-downstream corner. Concrete spalling, measuring 3 in. \times 6 in. \times 1½ in. (76 mm \times 152 mm \times 38 mm), occurred on the back face of barrier no. 6 at the downstream end. A 20-in. \times 8½-in. \times 2½-in. (508-mm \times 216-mm \times 64-mm) piece of concrete disengaged from the back face of barrier no. 7 at the lower-downstream edge. Concrete spalling, measuring 11½ in. \times 6 in. \times 2 in. (292 mm \times 152 mm \times 51 mm), occurred on the back face of barrier no. 7 at the downstream end.

The maximum permanent set deflection of the barrier system was $32\frac{1}{2}$ in. (826 mm) at the upstream end of barrier no. 5, as measured in the field. The maximum lateral dynamic barrier deflection, including tipping of the barrier along the top surface, was 33.0 in. (838 mm) at the upstream end of barrier no. 5, as determined from high-speed digital video analysis. The working width of the system was found to be 57.0 in. (1,448 mm), also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 25. In addition, NJDOT identifies the clear space behind the barrier, which is defined as the maximum deflection of the back of the barrier from its original position. For this test, the clear space behind the barrier was 33.0 in. (838 mm).

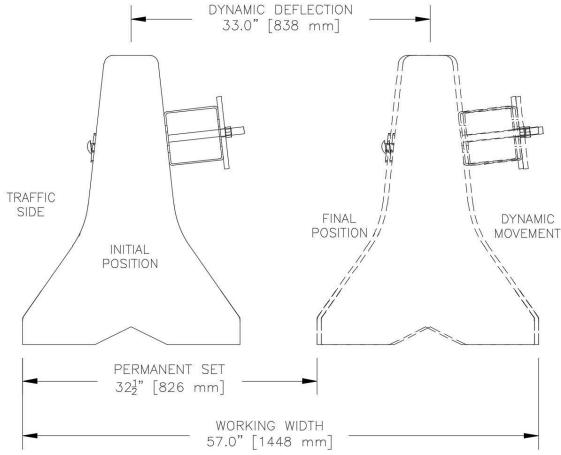


Figure 25. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. NJPCB-5

5.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 44 through 48. The maximum occupant compartment deformations are listed in Table 7 along with the deformation limits established in MASH 2016 for various areas of the occupant compartment. Note that none of the established MASH 2016 deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix E.

The majority of damage was concentrated on the left-front corner and left side of the vehicle where the impact had occurred. The left side of the bumper was crushed inward and back. The left-front fender was deformed upward near the door panel and was dented and torn behind the left-front wheel. The left-side and right-side headlights disengaged. The left-front tire partially disengaged with the front portion of the brake rotor and the spindle shaft still attached to the wheel. The left corner of the front bumper was bent inward approximately 30 in. (762 mm) from the left side. The left-front corner of the frame rail buckled inward. The left side of the lower plastic fascia was partially disengaged. A 1-in (25-mm) gap occurred between the fender and the front bumper. The left-side front bottom corner of the fender buckled 6 in. (152 mm) inward. The left-front door was ajar with a gap of 1 in. (25 mm) at the top. Denting and scraping were observed on the entire left side. A 16-in. × 9-in. (406-mm × 229-mm) dent was found at the rear of the left-front door. Dents and scraping were found on the left side of the quarter panel. The left-rear tire disengaged.

The joint of the left-front sway bar was scuffed. The left-front lower control arm deflected 1/2 in. (13 mm) rearward. The left-front control arm deformed. A 33-in. (838-mm) diameter spider web crack was found in the lower-right corner of the windshield. The left-front and right-front airbags and left-side and right-side curtain airbags deployed. The roof and remaining window glass remained undamaged.

LOCATION	MAXIMUM DEFORMATION in. (mm)	MASH 2016 ALLOWABLE DEFORMATION in. (mm)		
Wheel Well & Toe Pan	1¾ (44)	≤9 (229)		
Floor Pan & Transmission Tunnel	³ / ₈ (10)	≤ 12 (305)		
A-Pillar	1/2 (13)	≤5 (127)		
A-Pillar (Lateral)	1⁄4 (6)	≤ 3 (76)		
B-Pillar	³ / ₈ (10)	≤ 5 (127)		
B-Pillar (Lateral)	³ / ₈ (10)	≤ 3 (76)		
Side Front Panel (in Front of A-Pillar)	³ / ₈ (10)	≤12 (305)		
Side Door (Above Seat)	-1 (-25)	≤9 (229)		
Side Door (Below Seat)	1⁄4 (6)	≤12 (305)		
Roof	1/8 (3)	≤4 (102)		
Windshield	0 (0)	≤ 3 (76)		
Side Window	Intact	No shattering resulting from contact with structural member of test article		
Dash	¹ / ₂ (13)	N/A		

Table 7 Marinesses	Oserverse Com	nontres and Dafama	ations by Leasting
Table 7. Maximum	Occupant Com	ipartiment Derorn	ations by Location

Note: Negative values denote outward deformation N/A - Not applicable

5.5 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 8. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 8. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 26. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix F.

Evaluation Criteria		Trans	MASH 2016		
		SLICE-2 (primary)	DTS	Limits	
OIV	Longitudinal	-13.61 (-4.15)	-13.17 (-4.02)	±40 (12.2)	
ft/s (m/s)	Lateral	21.62 (6.59)	18.33 (5.59)	±40 (12.2)	
ORA	Longitudinal	-7.65	-7.13	±20.49	
g's	Lateral	9.62	11.15	±20.49	
MAX.	Roll	-7.9	-8.2	±75	
ANGULAR DISPL.	Pitch	-12.5	-12.2	±75	
deg. Yaw		42.4	45.0	not required	
THIV ft/s (m/s)		26.44 (8.06)	21.75 (6.63)	not required	
PHD g's		9.72	11.21	not required	
ASI		1.41	1.25	not required	

Table 8. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. NJPCB-5

5.6 Discussion

The analysis of the test results for test no. NJPCB-5 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 4.9 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. NJPCB-5 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

							<u> </u>
0.000 sec	0.058 sec	0.120 se	ec	0.216	sec	0.558	sec
24.9° 16'-10° 32'-10°	17777777777777777777777777777777777777		48'-10" [14	.9 m] Craul 1* [23] Diameter A 3.6 Steel Pins	Wedge	32"813] 6]152	
		14 5 6 5			6" 152 - 24",610]	5"[127]	
			Exit Conditions				$nh(79.7 lm)^{1}$
			1				1 \
ę	iffened NJDOT PCB with Grout, Connect						
		21 1 2		•			
		200 ft (61.0 m)					
Key Component – NJDOT PCB		20 ft (6.1 m)	veniere Stoppi	ig Distance		z = 10 in. (14.9 m) l	
			Vehicle Damag	A		· · · · · ·	2
		· · · · · · · · · · · · · · · · · · ·	Ű				
Key Component – Anchor Pins		2 III. (013 IIIII)					•
	25-mm) diameter × 15-in. (381-mm) long u	inthreaded rod			on		
e .				Article Deflection			
							¹ /2 in. (826 m)
1		(/					
Key Component – Box-Beam Stiff		internet and 10					
		$2 \text{ mm} \times 5 \text{ mm}$)	Transducer Dat	a			
Box Beam Length		n. (3,658 mm)			Transd	ucer	MASH 20
			Evaluation	on Criteria	SLICE-2	DTS	Limit
	³ / ₄ -in. (19-mm) diameter × 17-in. (432-	mm) long bolt			(primary)	015	Linnt
Key Component – Grout			OIV	Longitudinal	-13.61 (-4.15)	-13.17 (-4.02)	±40 (12.2
	Min. 1-day compressive strength 1,000		ft/s	Lateral	21.62 (6.59)	18.33 (5.59)	± 40 (12.2
	joints between barrier nos. 1-10 on traffic		(m/s)		. ,	, , ,	`
	Co		ORA	Longitudinal	-7.65	-7.13	± 20.49
			g's MAX	Lateral	9.62	11.15	± 20.49
		(, U)	MAX .ANGULA	Roll	-7.9	-8.2	± 75
		· · · ·	R DISP.	Pitch	-12.5	-12.2	± 75
Impact Conditions		2 10 (2,371 Kg)	deg.	Yaw	42.4	45.0	Not require
		n (100 8 km/h)	U	ft/s (m/s)	26.44 (8.06)	21.75 (6.63)	Not require
				$\mathbf{D} - \mathbf{g's}$	9.72	11.21	Not require
			1111	SI	1.41	1.25	1.00 require

Impact Severity 116.3 kip-ft (157.7 kJ) > 105.6 kip-ft (143.1 kJ) limit in MASH 2016
 Figure 26. Summary of Test Results and Sequential Photographs, Test No. NJPCB-5

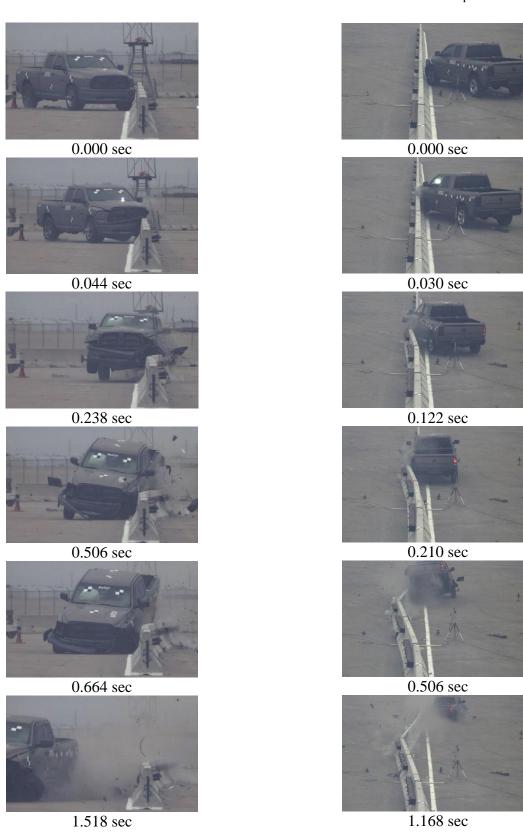


Figure 27. Additional Sequential Photographs, Test No. NJPCB-5

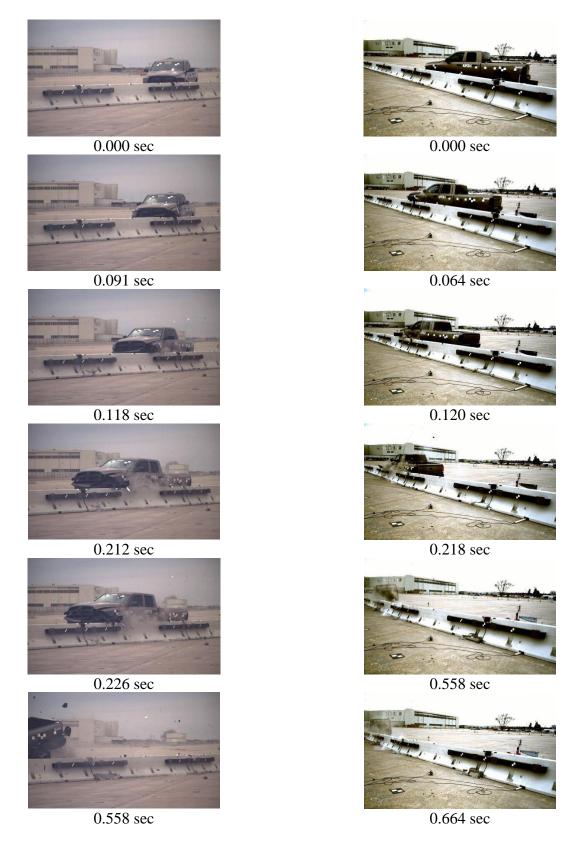


Figure 28. Additional Sequential Photographs, Test No. NJPCB-5

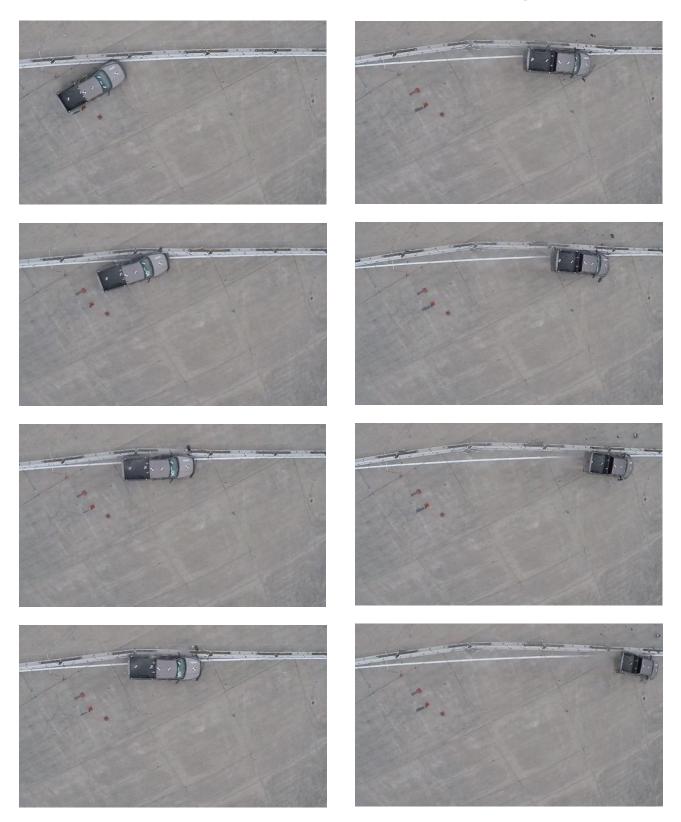


Figure 29. Documentary Photographs, Test No. NJPCB-5

Figure 30. Documentary Photographs, Test No. NJPCB-5

Figure 31. Documentary Photographs, Test No. NJPCB-5

Figure 32. Documentary Photographs, Test No. NJPCB-5

Figure 33. Impact Location, Test No. NJPCB-5

Figure 34. Vehicle Final Position and Trajectory Marks, Test No. NJPCB-5

Figure 35. System Damage - Front, Back, Upstream, and Downstream Views, Test No. NJPCB-5

Figure 36. System Damage at Impact Location, Front and Back Side, Test No. NJPCB-5

50

Figure 37. Barrier No. 2 – Traffic and Back Side Damage, Test No. NJPCB-5

Figure 38. Barrier No. 3 – Traffic and Back Side Damage, Test No. NJPCB-5

Figure 39. Barrier No. 4 – Traffic and Back Side Damage, Test No. NJPCB-5

Figure 40. Barrier No. 5 – Traffic and Back Side Damage, Test No. NJPCB-5

Figure 41. Barrier No. 6 – Traffic and Back Side Damage, Test No. NJPCB-5

Figure 42. Barrier No. 7 – Traffic and Back Side Damage, Test No. NJPCB-5

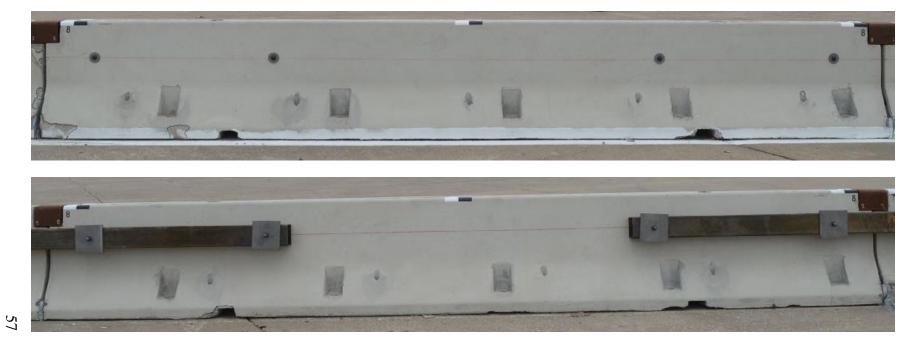


Figure 43. Barrier No. 8 – Traffic and Back Side Damage, Test No. NJPCB-5

Figure 44. Vehicle Damage, Test No. NJPCB-5

Figure 45. Vehicle Damage on Impact Side, Test No. NJPCB-5

Figure 46. Vehicle Windshield Damage, Test No. NJPCB-5

Figure 47. Occupant Compartment Deformation, Test No. NJPCB-5

Figure 48. Undercarriage Damage, Test No. NJPCB-5

6 SUMMARY AND CONCLUSIONS

Test no. NJPCB-5 was conducted on the NJDOT PCB system with a box-beam stiffened configuration and grouted toes according to MASH 2016 test designation no. 3-11. This system uses NJDOT barriers, Type 4 (Alternative B) with connection type B, as specified in the 2015 NJDOT *Roadway Design Manual*. Barrier nos. 1 and 10 were anchored to the concrete tarmac through nine pin anchor recesses with 1-in. (25-mm) diameter by 15-in. (381-mm) long ASTM A36 steel pins. The nine joints between barrier nos. 1 through 10 were stiffened with box beam rails. Each box-beam stiffener was a 12-ft (3.7-m) long, 6-in. × 6-in. × $^{3}/_{16}$ -in. (152-mm × 152-mm × 5-mm) ASTM A500 Grade C box beam. The box-beam stiffeners were connected to the barriers with 3 -in. (19-mm) diameter by 17-in. (432-mm) long ASTM A307 Grade A bolts without square necks and 3 -in. (19-mm) diameter ASTM A563A nuts. Non-shrink grout wedges were placed at the toe of each barrier segment in every joint between adjacent barrier segments on both the traffic and back sides.

During test no. NJPCB-5, the 5,001-lb (2,268 kg) pickup truck impacted the NJDOT PCB system at a speed of 62.7 mph (100.8 km/h) and at an angle of 24.9 degrees, resulting in an impact severity of 116.3 kip-ft (157.7 kJ). After impacting the barrier system, the vehicle exited the system at a speed of 48.9 mph (78.7 km/h) and at an angle of 4.9 degrees. The vehicle was successfully contained and smoothly redirected with moderate damage to both the barrier and the vehicle. Barrier nos. 4 and 5 experienced concrete spalling and cracking. A dynamic deflection of 33.0 in. (838 mm) and a working width of 57.0 in. (1,448 mm) were observed during the test, as shown in Figure 25. All occupant risk values were found to be within limits, and the occupant compartment deformations were also deemed acceptable. Subsequently, test no. NJPCB-5 was determined to satisfy the safety performance criteria for MASH 2016 test designation no. 3-11. A summary of the test evaluation is shown in Table 9.

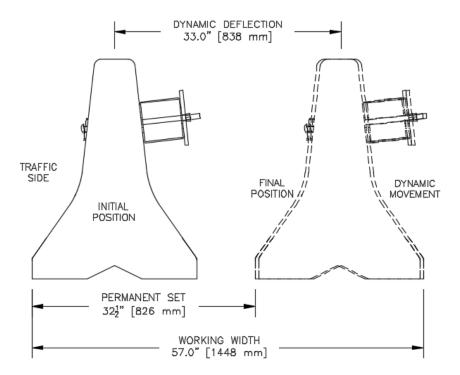
Evaluation Factors		Evaluatio	on Criteria		Test No. NJPCB-5			
Structural Adequacy	А.	. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.						
	D.	1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.						
		rtment should E of MASH	S					
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.						
Occupant Risk								
11011		Occupant Im	pact Velocity Limits		S			
		Component	Preferred	Maximum				
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)				
	I.	lix A, Section ld satisfy the						
			S					
		Component	Preferred	Maximum				
		Longitudinal and Lateral	15.0 g's	20.49 g's				
MASH 2016 Test Designation No.								
Final Evaluation (Pass or Fail)								
S – Satisfactory U – Unsatisfactory NA - Not Applicable								

Table 9. Summary of Safety Performance Evaluation

S – Satisfactory U – Unsatisfactory NA - Not Applicable

7 COMPARISON TO TEST NO. NYTCB-1

A summary of full-scale crash testing on one NJ PCB system (test no. NJPCB-5) and one New York PCB system (test no. NYTCB-1) [16], which used 6-in. x 6-in. x ${}^{3}/_{16}$ -in. (152-mm x 152-mm x 5-mm) box beam bolted across the back side of barrier segment joints to increase barrier stiffness and reduce PCB deflections, is shown in Table 10. The only difference between the two crash-tested systems was that the New York system had box-beam only bolted across the barrier joints from barrier nos. 4 through 7, while the New Jersey system had box-beam bolted across all barrier joints. Results from these tests included the actual impact conditions and impact severity as well as dynamic barrier deflection, permanent set barrier deflection, working width (as measured from the original front face of the barrier), and the clear space behind the barrier. The clear space behind the barrier is used by NJDOT to define the maximum deflection of the back of the barrier from its original position. In addition, the schematic diagrams shown in Figure 49 indicate how the dynamic deflection, permanent set deflection, and working width for each crash test was defined.


A review of the results from test nos. NJPCB-5 and NYTCB-1 revealed little to no benefit in terms of barrier deflection and clear space requirements for box-beam stiffened PCBs due to removal of joint slack and/or the use of grouted barrier toes. This finding was evidenced in the slight increase in barrier deflections and clear space observed in the New Jersey crash test with removal of joint slack and use of grouted toes. The smaller observed benefit for the modified PCB joints was correlated with limited barrier reinforcement in the toes of both the New York and New Jersey PCB segments. The lack of reinforcement led to fracture of the barrier toes when they were loaded by adjacent barrier segments, which caused increased rotation and motion of the barrier joints. This concrete toe disengagement reduced the expected benefit that would have been provided by the removal of joint slack and use of grouted toes. Instead, similar joint rotation and displacement was observed for both the New Jersey and New York PCB crash tests. Secondly, the PCB segments used in these tests have a relatively small gap between adjacent barrier segments. Thus, improvement of the joint response through removal of joint slack and use of grouted toes provided less benefit than would be expected for other PCB systems, which utilize joint spacings up to 4 inches. Finally, barrier system behavior and associated barrier deflections can vary from test to test due to the natural variability of a wide variety of factors involved in full-scale crash testing. These factors would include slight differences in impact conditions (e.g., slight increased impact severity value in test no. NJPCB-5), differing test vehicle model years, slight variations in steel and concrete strengths, and variation of the cracking and damage observed on the barrier segment, among others. Thus, some variability would be expected in barrier performance even for basically identical systems.

Smaller reductions in PCB deflections and clear space behind the barrier were observed with the removal of joint slack and use of grouted toes. This finding was primarily due to the fracture and disengagement of the barrier toes. If larger reductions in PCB deflections and clear space are desired, PCB redesign or modification would be required, including the reinforcement of the barrier toes, which may improve the effectiveness of joint slack removal and the use of grouted toes.

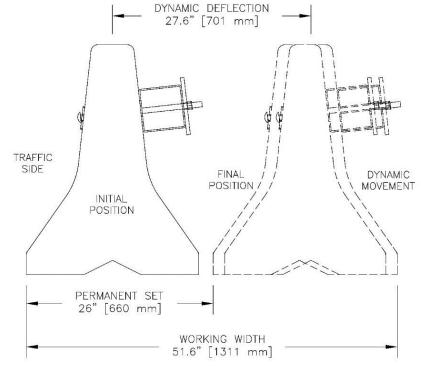

Test No.	Connection Type [2]	System Details	Permanent Set	Dynamic Deflection (DD)	Working Width (WW)	Clear Space Behind Barrier	Vehicle Roll (deg)	Vehicle Pitch (deg)	Vehicle Mass lb (kg)	Impact Speed mph (km/h)	Impact Angle (deg)	Impact Severity kip-ft (kJ)
NJPCB-5	В	Free-standing system, barriers 1 and 10 pinned, box-beam stiffened all joints (8 joints), remove slack, grouted toes	32½ in. (826 mm)	33.0 in. (838 mm)	57.0 in. (1,448 mm)	33.0 in. (838 mm)	-7.9	-12.5	5,001 (2,268)	62.7 (100.8)	24.9	116.3 (157.7)
NYTCB-1 [16]	N/A	Free-standing system, barriers 1 and 10 pinned, box-beam stiffened 3 joints (4-7), slack not removed, no grouted toes	26 in. (660 mm)	27.6 in. (700 mm)	51.6 in. (1,311 mm)	27.6 in. (700 mm)	-10.5	-11.4	5,016 (2,275)	61.9 (99.5)	24.6	111.3 (151.0)

Table 10. Comparison of 6-in. x 6-in. x ³/₁₆-in. (152-mm x 152-mm x 5-mm) Box-Beam Stiffened Systems

N/A = Not Applicable

(a) NJPCB-5 – Free-Standing, Joint Slack Removed, Grouted Toes, Box-Beam Stiffened All Joints

(b) NYTCB-1 – Free-Standing, Joint Slack Not Removed, No Grouted Toes, Box-Beam Stiffened 3 Joints

Figure 49. Deflection Comparisons – (a) Test Nos. NJPCB-5 and (b) NYTCB-1

8 LS-DYNA MODEL OF NJDOT PCB SYSTEMS

8.1 Introduction

NJDOT desired to further evaluate shorter system lengths for the PCB with a box-beam stiffened configuration, corresponding to connection type B in the 2015 NJDOT *Roadway Design Manual*. Finite element modeling is a useful method to evaluate and analyze roadside safety hardware and was utilized for this effort. LS-DYNA is a nonlinear, transient, dynamic, finite element analysis code and has been widely used to evaluate vehicle and roadside safety hardware impacts [17]. Two finite element barrier models were developed using LS-DYNA: a free-standing configuration similar to crash test no. NJPCB-3 [18] and a box-beam stiffened configuration similar to crash test no. NJPCB-3 [18] and a box-beam stiffened configuration similar to crash test no. NJPCB-5.

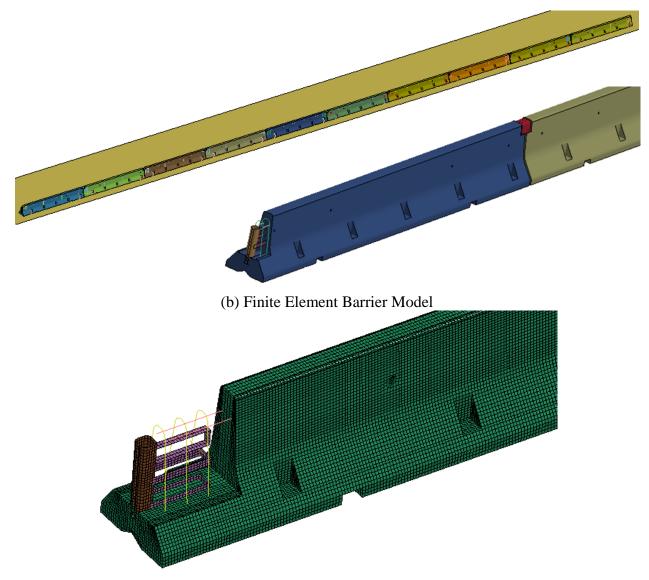
The methodology for evaluating the performance of the PCBs is based on a baseline simulation model of the New Jersey-shaped PCB system in the 200-ft (61.0-m) long, free-standing configuration, which corresponds to the system tested in full-scale crash test no. NJPCB-3 according to MASH 2009 test designation no. 3-11. Next, a simulation model of the box-beam stiffened PCB system was developed and validated with full-scale crash test no. NJPCB-5. In both of these crash tests, the end barrier segments (barrier nos. 1 and 10) had nine pins constraining the barrier to the concrete foundation. The reduced-deflection system incorporated 12-ft (3.7-m) long, box-beam stiffeners spanning all barrier system joints on the 200-ft (61.0-m) long system with non-shrink grout at the toes of the barriers. The computer simulation results were compared with the physical crash test results obtained from test nos. NJPCB-3 and NJPCB-5 to ensure the feasibility of this model to provide reasonable estimates of barrier deflections and safety performance. Several results were compared, including damage, deflections, velocities, angular displacements, and overall behavior. After the barrier models produced reasonable results, additional simulations were conducted with 160-ft (48.8-m), 120-ft (36.6-m), and 100-ft (30.5-m) long, box-beam stiffened, PCB systems to estimate barrier deflections and safety performance at reduced system lengths.

8.2 Free-Standing PCB Model (NJPCB-3)

The finite element model of the New Jersey-shape PCB was based on the NJDOT PCB in a free-standing configuration that was crash tested and evaluated to MASH 2009 TL-3. The concrete barrier system was comprised of ten 20-ft (6.1-m) long PCB sections with a total system length of 200 ft (61.0 m). The model consisted of reinforced concrete barriers, connection key sockets, and connection keys, as shown in Figure 50.

In order to represent the real behavior of a dynamic impact on a concrete barrier, the barrier was developed with three primary components – concrete, steel reinforcement, and end connection hardware. The concrete component of the barrier was created using eight-node constant stress solid brick elements. The concrete was modeled using the MAT_CSCM_CONCRETE material model, which is a smooth continuous surface cap model developed and validated by the Federal Highway Administration to predict the dynamic behaviors of the concrete in roadside safety hardware under vehicle collision. According to NJDOT standards, the minimum compressive strength of concrete was specified as 3,700 psi (25.5 MPa). However, the concrete barriers provided an average compressive strength around 7,300 psi (50 MPa) according to the supplied material certifications. In the material model, the concrete compressive strength was specified as 7,300 psi (50 MPa). A

value of 10 was specified for the Recov parameter. The Recov parameter defines the recovery stiffness modulus when switching between compression and tension within an element and attempts to model crack closing in concrete. When Recov is 10 or greater, a flag is internally set to base stiffness recovery on volumetric strain as well as pressure. According to the prior research [19-20] and many computation trials, a value of 10 produced reasonably accurate results for a vehicle impacting a PCB.


The two-node Hughes-Liu beam element was utilized for the reinforcement due to its simple and efficient computation and compatibility with the solid brick element. In the reinforcement beam element, the outer diameter corresponded to the diameter of the reinforcement bar, while an inner diameter of zero was defined. The steel reinforcing bars that were embedded into the concrete were modeled with the MAT_PIECEWISE_LINEAR_PLASTICITY material in LS-DYNA with properties for ASTM A615 Grade 60 steel.

The CONSTRAINED_LAGRANGE_IN_SOLID keyword in LS-DYNA was used to embed the reinforcement beam elements into the concrete brick elements. The slave set (reinforcement) is coupled to the master set (concrete). The keyword constrains the slave beam set (reinforcement) to move with master Lagrangian solids (concrete). This keyword has been utilized previously and has demonstrated accuracy and efficiency in embedding reinforcement beam elements into the concrete brick elements [19, 21].

Four-noded Hughes-Liu type shell elements were used to create the connection key sockets and the connection keys. The shell elements of connection key sockets were merged with the concrete brick elements. Therefore, the contact between the connection key socket and the concrete was assumed as a perfect bond. The shell elements are coincident with the concrete elements, as shown in Figure 51. The steel connection key socket was modeled using the MAT_PIECEWISE_LINEAR_PLASTICITY material with properties of ASTM A500 Grade B steel. The material properties for ASTM A36 steel were utilized to model the connection key. Strain rate effects for the steel material model were considered with the Cowper Symonds model by defining strain rate parameters C and P with the value of 40 and 5, respectively. All required parameters, including the yield strength, modulus of elasticity, and plastic strain-yield stress values, were determined based on the material certifications from test no. NJPCB-3. The simulation model parts and associated LS-DYNA modeling parameters are shown in Table 6.

(a) As-Tested Barrier System (Test No. NJPCB-3)

(c) Barrier and Reinforcement Mesh (Concrete Section Hidden)

Figure 50. Free-Standing PCB Baseline Model

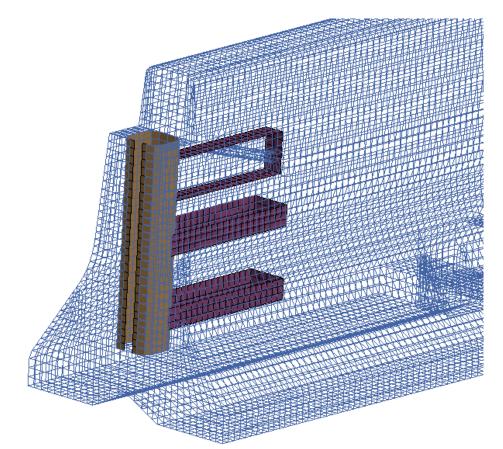


Figure 51. Steel Component Shell Elements Coinciding with Concrete Elements

Part Name	Element Type	Element Formulation	Material Type	Material Formulation
Concrete Barrier	Solid	Constant stress	7,300 psi (50 MPa) Concrete	CSCM Concrete
Reinforcement	Beam	Hughes-Liu	ASTM A615 Steel	Piecewise, Linear Plasticity
Connection Key Socket Tube	Shell	Belytschko-Tsay	ASTM A500 Steel	Piecewise, Linear Plasticity
Connection Key Socket Plate	Shell	Belytschko-Tsay	ASTM A36 Steel	Piecewise, Linear Plasticity
Connection Key	Shell	Belytschko-Tsay	ASTM A36 Steel	Piecewise, Linear Plasticity

Table 11.	List of Simulation	Model Parts and	d LS-DYNA Parameters
-----------	--------------------	-----------------	----------------------

The two end barriers in the model were constrained similarly to the pinned condition in the full-scale crash tests. In test no. NJPCB-3, barrier no. 1 deflected 0 in. (0 mm) laterally and $\frac{3}{8}$ in. (9.5 mm) longitudinally, and barrier no. 10 deflected 0 in. (0 mm) laterally and 0 in. (0 mm) longitudinally. In test no. NJPCB-3, barrier nos. 1 and 10 had negligible deflection in the lateral and longitudinal directions. Since the end barriers moved minimally in the crash tests, the pins

were not explicitly modeled, and the pin hole locations in the model were prescribed single point constraints constraining motion in the x- and y- directions (lateral and longitudinal), as shown in Figure 52.

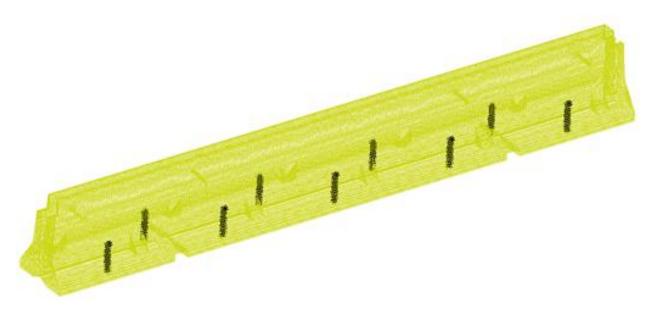


Figure 52. Pinned Locations and Point Constraints

The contact among the concrete barriers, the connection key sockets, and the connection keys were modeled as the segment-based contact using CONTACT_AUTOMATIC_SINGLE_SURFACE. The contact between the concrete barriers and the vehicle was defined using the segment-based contact with CONTACT_AUTOMATIC_SURFACE_TO_SURFACE in LS-DYNA. A static and dynamic coefficient of friction of 0.1 was utilized for the vehicle and barrier contact, which has been commonly used in prior concrete barrier models.

For the model of the free-standing PCBs, the longitudinal tension is a critical component to be considered. The PCBs redirect impacting vehicles based on a combination of inertial resistance and longitudinal tension. In order to accurately model barrier deflection and damage, the barrier-to-ground friction needs to be accurate. Many computation trials were conducted, and a kinematic friction coefficient between the PCB segments and the ground of 0.2 was applied to predict the realistic behavior of the barriers obtained in the test. Damping was defined initially to allow the barriers in the finite element model to reach a steady normal force on the ground, but was terminated before vehicle impact.

8.3 Box-Beam Stiffened PCB Model (NJPCB-5)

A finite element model of crash test no. NJPCB-5 with box-beam stiffeners and grouted toes was developed to provide further verification of the PCB model, as shown in Figure 53. The model of crash test no. NJPCB-5 was developed based on the same PCB model created to serve as a baseline model for crash test no. NJPCB-3, described previously.

The tubes on the back side of the barrier and the back washer were added using Belytschko-Tsay shell elements. The bolts, nuts, and front washers were modeled using constant stress solid brick elements. The steel material properties of all steel components were defined using the MAT_PIECEWISE_LINEAR_PLASTICITY material model. The bolts, nuts, and washers had properties similar to ASTM A307 steel, and the tube had properties similar to ASTM A500 Gr. B steel. The tubes were connected to the barriers using several bolts, similar to the system in crash test no. NJPCB-5. Bolt preload was achieved using the keyword INITIAL_STRESS_SECTION.

Grout was utilized in the as-tested PCB system for crash test no. NJPCB-5 and was modeled with constant stress solid elements and a MAT_ELASTIC material model. Grout placed at the toes between the barrier segments had similar compressive properties and geometry as that utilized in crash test no. NJPCB-5. However, the modelled grout was not bonded to the concrete barrier models, and could disengage when in tension. In the full-scale crash test, the grout typically remained attached to one barrier end and fractured off of the adjacent barrier end.

A list of simulation model parts and associated LS-DYNA modeling parameters are shown in Table 12. The contact in the components of the connection hardware, including the barriers, bolts, nuts, washers, and grout, was defined as a segment-based contact using CONTACT_AUTOMATIC_SINGLE_SURFACE.

Part Name	Element Type	Element Formulation	Material Type	Material Formulation
Concrete Barrier	Solid	Constant stress	7,300 psi (50 MPa) Concrete	CSCM Concrete
Reinforcement	Beam	Hughes-Liu	ASTM A615	Piecewise, Linear Plasticity
Connection Key Socket	Shell	Belytschko-Tsay	ASTM A500	Piecewise, Linear Plasticity
Connection Key	Shell	Belytschko-Tsay	ASTM A36	Piecewise, Linear Plasticity
Bolts	Solid	Constant stress	ASTM A307	Piecewise, Linear Plasticity
Nuts	Solid	Constant stress	ASTM A307	Piecewise, Linear Plasticity
Front Washer	Solid	Constant stress	ASTM A307	Piecewise, Linear Plasticity
Back Washer Plate	Shell	Belytschko-Tsay	ASTM A36	Piecewise, Linear Plasticity
Tube	Shell	Belytschko-Tsay	ASTM A500	Piecewise, Linear Plasticity
Grout	Solid	Constant stress	Non-shrink grout	Elastic

Table 12. List of Simulation Model Parts and LS-DYNA Parameters

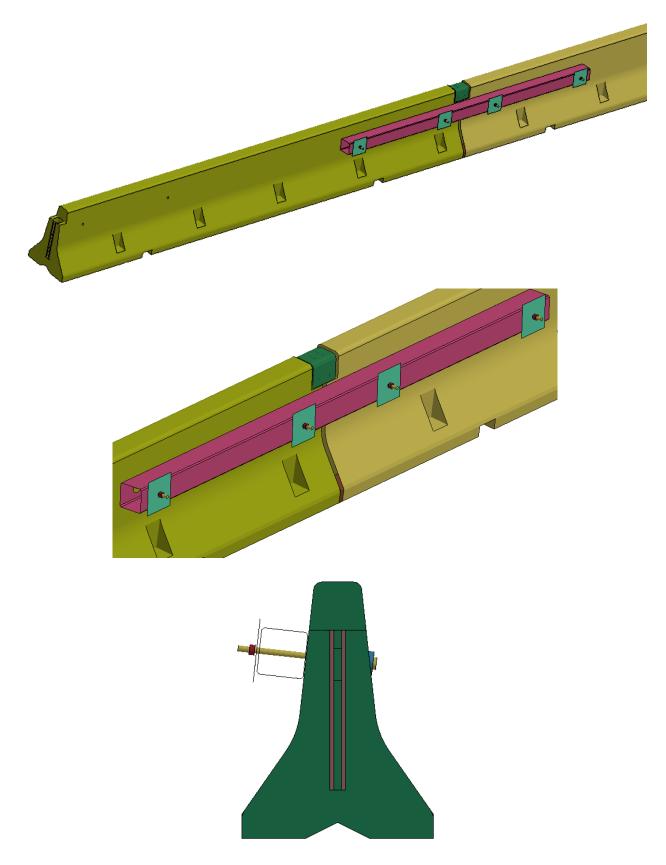
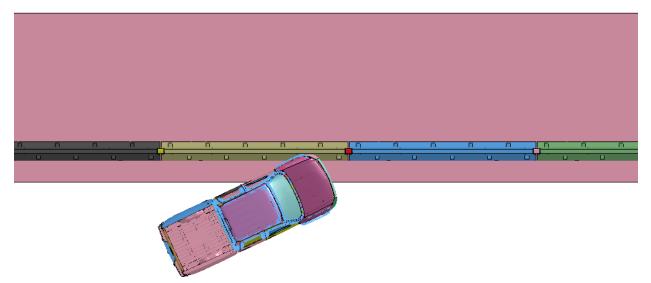


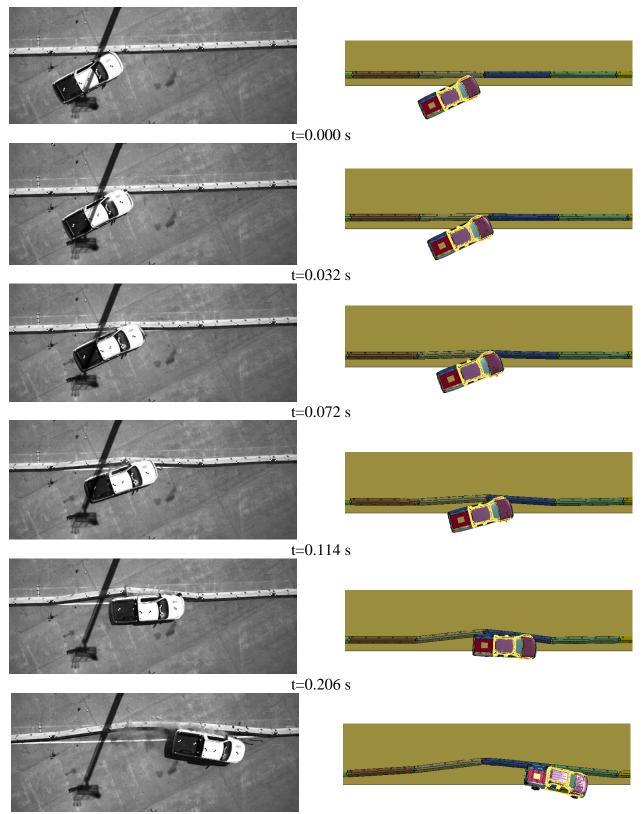
Figure 53. Box-Beam Reduced-Deflection PCB Baseline Model

9 BASELINE AND REDUCED-LENGTH SIMULATIONS

9.1 Simulation of Crash Test No. NJPCB-3

The vehicle model used for the simulation was the Version 3, reduced-element, Chevrolet Silverado model developed at the National Crash Analysis Center (NCAC), and modified by MwRSF researchers for roadside safety applications [22]. In crash test no. NJPCB-3, a Dodge Ram pickup truck impacted the free-standing PCB system at a speed of 62.3 mph (100.2 km/h) and at an angle of 25.8 degrees. In the simulation of crash test no. NJPCB-3, the Chevy Silverado pickup truck model impacted the PCB model at a speed of 62.1 mph (100.0 km/h) and at an angle of 25 degrees. Initial vehicle impact was to occur $51^3/_{16}$ in. (1.3 m) upstream from the centerline of the joint between barrier nos. 4 and 5, as shown in Figure 54, which was modeled. The actual impact point in crash test no. NJPCB-3 was $46^3/_{16}$ in. (1.2 m) upstream from the centerline of the joint between barrier nos. 4 and 5.




Figure 54. Model of Crash Test No. NJPCB-3 Impact Point

Graphical comparisons of the results from both the simulation and crash test no. NJPCB-3, as shown in Figures 55 through 60, showed that the behavior of the vehicle and the barrier in the simulation matched reasonably well with the full-scale crash test. However, there was a noticeable difference in vehicle roll after 70 ms and pitch after 250 ms, as shown in Figures 56, 57, and 61. These differences are believed to be due to inaccuracies in vehicle tire, suspension, and steering models, as well as friction. The selected vehicle model does not have failure in the suspension or steering components, and the tires are much stiffer than observed in an actual vehicle. Further, refinement of these components would require a significant research effort, which was outside the scope of this project. As shown in Figures 56 and 57, the right-front tire in the simulation turns toward the right (passenger side) very shortly after impact, which does not happen in the actual test. This behavior is believed to be due to the tire's stiffness and lack of suspension failure and steering in the vehicle model. This behavior likely also leads to differences in the vehicle roll and pitch later in the impact event. However, these differences did not affect the redirection of the vehicle and are believed to minimally affect the loading and displacement of the barriers. Comparison of barrier damage between the simulation and crash test no. NJPCB-3, as shown in Figures 58 through 60, demonstrated that the barrier damage in the baseline model agreed well with full-scale test no. NJPCB-3. Stress plots are shown for some of the simulation photos. Areas of blue indicated no stress and areas of red indicated high stress areas where a crack formed or was about to form. Minor cracking occurred on barrier nos. 3, 6, 7, and 8. More significant vertical cracks were found on the front and back faces of barrier nos. 4 and 5. Concrete spalling occurred on barrier nos. 3 through 8. Several pieces of concrete were disengaged from the front and back faces of barrier nos. 4 and 5.

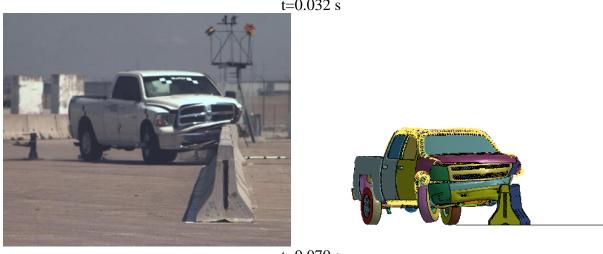
A comparison of the dynamic deflection between crash test no. NJPCB-3 and the simulation is shown in Table 13. In both crash test no. NJPCB-3 and the simulation, the impacted barrier segments rotated slightly backward. The maximum dynamic deflection of the simulated barrier was determined to be 42.5 in. (1,080 mm) at the downstream end of the fourth barrier segment, as compared to the dynamic deflection of crash test no. NJPCB-3, which was measured to be 38.1 in. (968 mm) at the downstream end of the fourth barrier segment was 10 percent higher than the displacement observed in the full-scale crash test. Differences of up to 20 percent are usually considered acceptable when comparing displacements from simulations and full-scale crash tests.

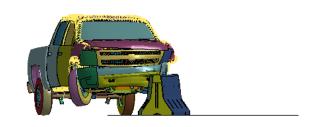
Comparisons between longitudinal and lateral changes in velocity and Euler angular displacements of the simulation and crash test no. NJPCB-3 are shown in Figure 61. The differences in the longitudinal change in velocity and roll were greatest, which is partially due to the behavior of the impact-side front tire, as described previously, as well as frictions between the sheet metal, rubber, and barriers. Also, the rear axle of the Chevrolet Silverado model is stiffer than observed for actual pickup truck axle behavior. Thus, the lateral tail slap event in simulations always produces a greater impact force due to the way it is modelled, which also explains the greater variation in the changes in velocity and Euler angular displacements after 200 ms.

Based on the comparison, the simulation provided reasonable estimates of barrier deflection and damage under MASH TL-3 impact conditions. While some differences existed between the simulation and the crash test, the research team felt that accurate deflections and safety performance could still be estimated from the simulations. The differences were considered throughout the analysis, and the model limitations are further discussed in Section 9.3.

t=0.418 s

Figure 55. Overhead Sequential Views, Test No. NJPCB-3 and Simulation

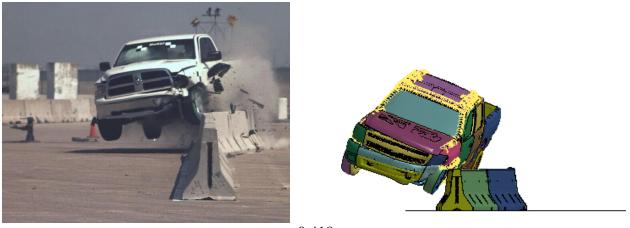
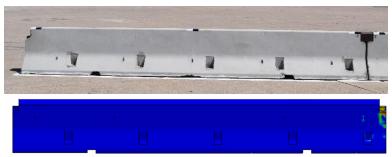
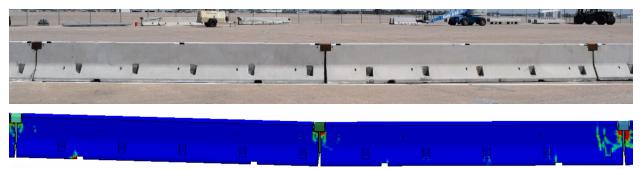


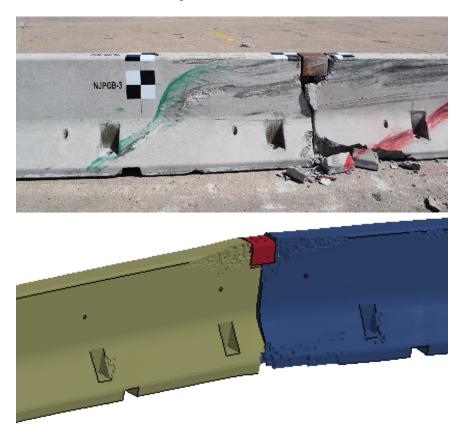

t=0.032 s

t=0.070 s

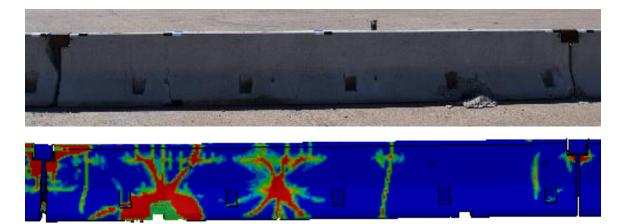
Figure 56. Downstream Sequential Views, Test No. NJPCB-3 and Simulation

t=0.206 s

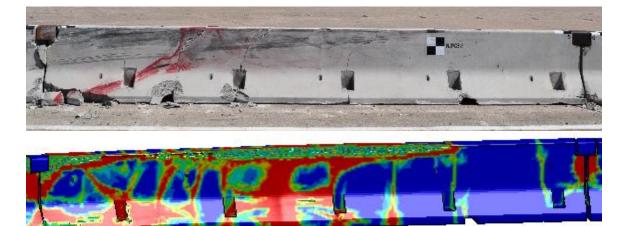





Figure 57. Downstream Sequential Views, Test No. NJPCB-3 and Simulation (cont'd)

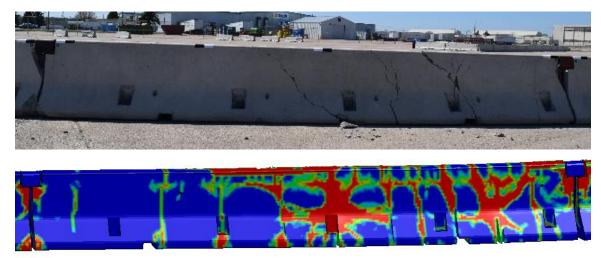
(a) Damage on 1st barrier



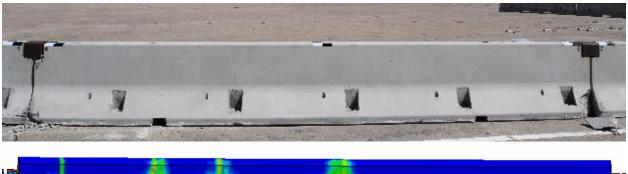
(b) Damage on 2nd and 3rd barriers

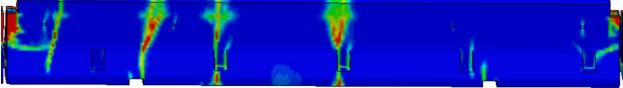


(c) Damage on 4th and 5th barriers


Figure 58. Barrier Segment Damage, Test No. NJPCB-3 and Simulation

(a) Cracks on the back face of 4th barrier




(b) Cracks on the front face of 5th barrier

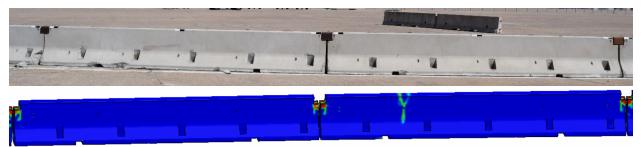
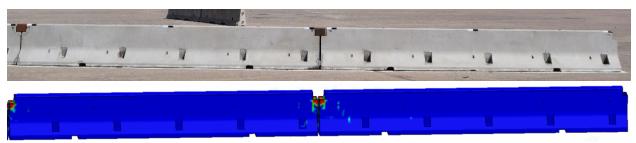

(c) Cracks on the back face of 5th barrier

Figure 59. Barrier Segment Damage, Test No. NJPCB-3 and Simulation (cont'd)



(a) Damage on 6th barrier

(b) Damage on 7th and 8th barrier

(c) Damage on 9th and 10th barrier

Figure 60. Barrier Segment Damage, Test No. NJPCB-3 and Simulation (cont'd)

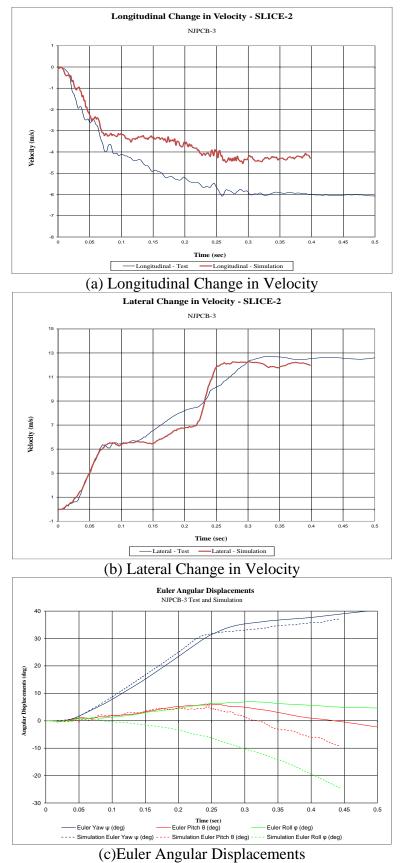


Figure 61. Velocities and Euler Angular Displacements, Test No. NJPCB-3 and Simulation

_				
	Evaluation Parameter	Test No. NJPCB-3	Simulation Model	Difference
	Dynamic Deflection	38.1 in. (968 mm)	42.5 in. (1,080 mm)	+10%

Table 13. Dynamic Deflection, Test No. NJPCB-3 and Simulation

9.2 Simulation of Crash Test No. NJPCB-5

The vehicle model used for the simulation was the Version 3, reduced-element, Chevrolet Silverado model developed at NCAC, and modified by MwRSF researchers for roadside safety applications [22]. In crash test no. NJPCB-5, a Dodge Ram pickup truck impacted the box-beam stiffened PCB system at a speed of 62.7 mph (100.8 km/h) and at an angle of 24.9 degrees. In the simulation of crash test no. NJPCB-5, the Chevrolet Silverado pickup truck model impacted the PCB model at a speed of 62.1 mph (100.0 km/h) and at an angle of 25 degrees. Initial vehicle impact was to occur $51^{3}/_{16}$ in. (1.3 m) upstream from the centerline of the joint between barrier nos. 4 and 5, as shown in Figure 62, which was modeled. The actual impact point in crash test no. NJPCB-5 was $49^{7}/_{16}$ in. (1.3 m) upstream from the centerline of the joint between barrier nos. 4 and 5.

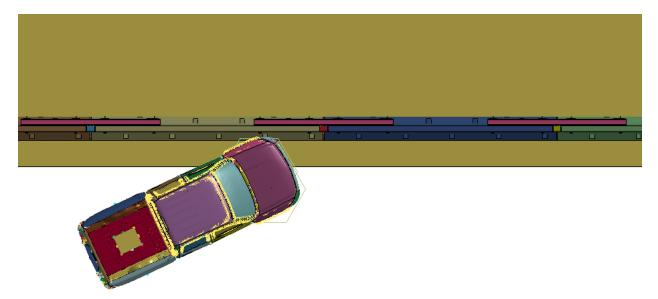


Figure 62. Model of Crash Test No. NJPCB-5 Impact Point

Graphical comparisons of the results from both the simulation and crash test no. NJPCB-5, as shown in Figures 63 through 67, showed that the behavior of the vehicle and the barrier in the simulation matched reasonably well with the full-scale crash test, and the vehicle was redirected by the PCB system. However, there was a noticeable difference in vehicle roll after 200 ms, as shown in Figures 64 and 68. These differences are believed to be due to inaccuracies in vehicle tire, suspension, and steering models, as well as friction, similar to the simulation of crash test no. NJPCB-3. However, these differences did not affect the redirection of the vehicle and are believed to minimally affect the loading of the barriers.

Comparison of barrier damage between the baseline model and crash test no. NJPCB-5, as shown in Figures 65 through 67, demonstrated that the barrier damage in the baseline model agreed well with full-scale test no. NJPCB-5. Cracking was discovered on barrier nos. 3, 4, 5, 6, 7, and 8.

The most cracks were found on the front, top, and back faces of barrier nos. 3, 4, and 5. Concrete spalling occurred on barrier nos. 3 through 8. Several pieces of concrete were disengaged from the front and back faces of barrier nos. 4 and 5. Grout between barrier nos. 4 and 5 disengaged.

The comparison of the dynamic deflection between crash test no. NJPCB-5 and the simulation is shown in Table 14. The dynamic deflection of the simulated barrier was determined to be 37.7 in. (957 mm) at the downstream end of the fourth barrier segment, as compared to the dynamic deflection of crash test no. NJPCB-5, which was measured to be 33.0 in. (838 mm) at the downstream end of the fourth barrier segment, as determined from high-speed digital video analysis. The simulated barrier displacement was 12 percent higher than the displacement observed in the full-scale crash test. Differences of up to 20 percent are usually considered acceptable when comparing displacements from simulations and full-scale crash tests.

Comparisons between longitudinal and lateral changes in velocity and Euler angular displacements of the simulation and crash test no. NJPBC-5 are shown in Figure 68. The differences in the longitudinal change in velocity and roll were greatest, which is partially due to the behavior of the impact-side front tire, frictions between the sheet metal, rubber, and barriers, and accentuated tail slap event, as described previously.

Based on the comparison, the simulation provided reasonable estimates of barrier deflection and damage under MASH TL-3 impact conditions. While some differences existed between the simulation and the crash test, the research team felt that accurate deflections and safety performance could still be estimated from the simulations. The differences were considered throughout the analysis, and the model limitations are further discussed in Section 9.3. The vehicle and barrier models were acceptable to evaluate the performance of the PCB system with shorter system lengths and to estimate barrier deflections.

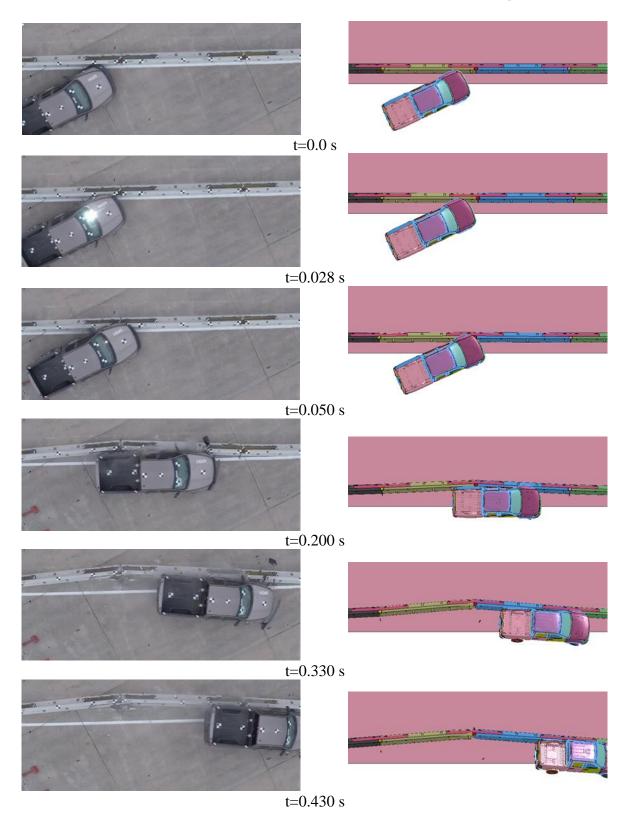
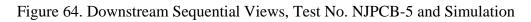


Figure 63. Overhead Sequential Views, Test No. NJPCB-5 and Simulation

t=0.0 s

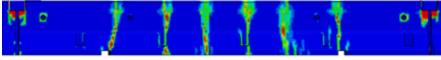
t=0.033 s

t=0.067 s

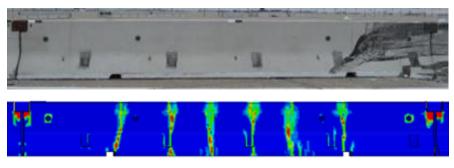

t=0.100 s

t=0.200 s

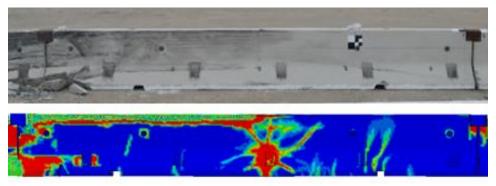
t=0.430 s



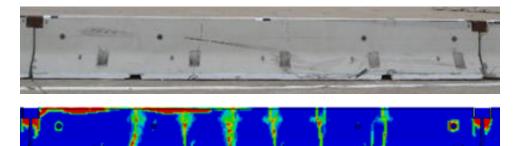
(a) 1st barrier



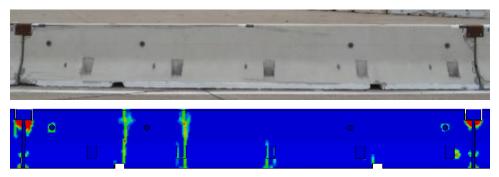
(b) 2nd barrier

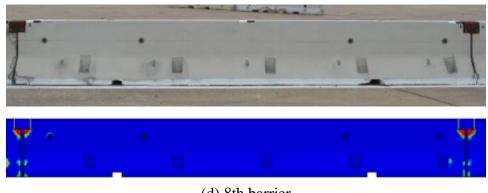


(c) 3rd barrier



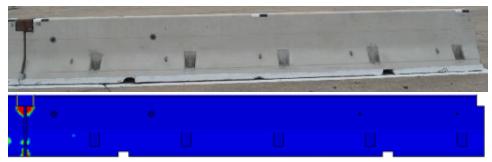
(d) 4th barrier


Figure 65. Barrier Segment Damage, Test No. NJPCB-5 and Simulation

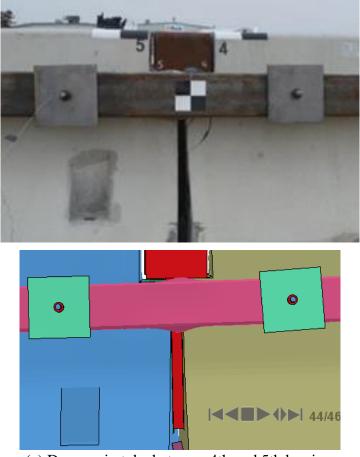

(a) 5th barrier

(b) 6th barrier

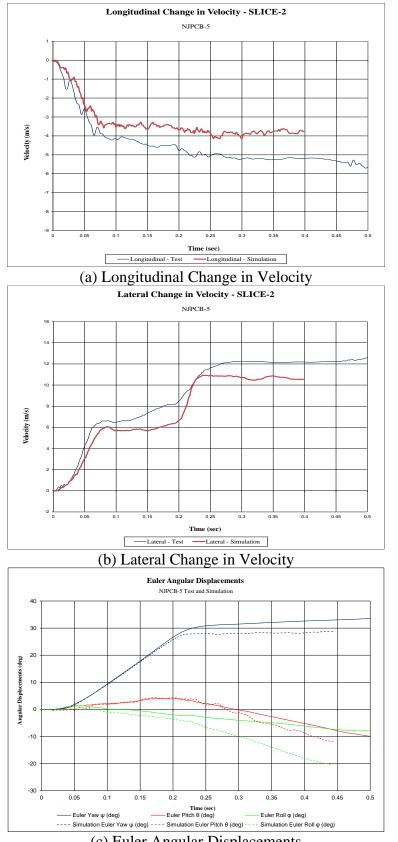
(c) 7th barrier



(d) 8th barrier


Figure 66. Barrier Segment Damage, Test No. NJPCB-5 and Simulation (cont'd)

(a) 9th barrier



(b) 10th barrier

(c) Damage in tube between 4th and 5th barriers

Figure 67. Barrier Segment Damage, Test No. NJPCB-5 and Simulation (cont'd)

(c) Euler Angular Displacements

Figure 68. Velocites and Euler Angular Displacements, Test No. NJPCB-5 and Simulation

Evaluation Parameter	Test No. NJPCB-5	Simulation Model	Difference
Dynamic Deflection	33.0 in. (838 mm)	37.7 in. (957 mm)	+12%

Table 14. Dynamic Deflection, Test No. NJPCB-5 and Simulation

9.3 Model Limitations

The primary objective of the simulation effort was to estimate the safety performance and barrier deflections of reduced-length barrier systems. All computer simulations have limitations. For this particular simulation effort, the representative pickup truck vehicle model was developed by NCAC and modified by MwRSF researchers. The selected vehicle model does not have failure in the suspension or steering components, and the tires are much stiffer than actual vehicle tires. Further, refinement of these components would require a significant research effort, which was outside the scope of this project. As shown in the simulation and test sequential image comparison for test nos. NJPCB-3 and NJPCB-5 (Figures 56, 57, and 64), the right-front tire in the simulation turns toward the right (passenger side) very shortly after impact, which does not happen in the actual tests. This behavior is believed to be due to the tire's stiffness and lack of suspension failure and steering in the vehicle model. This behavior likely also leads to differences in the vehicle motion (roll and pitch) later in the impact event. Similar truck behavior has been noted in other similar simulations, and the differences in vehicle motion and trajectory were considered throughout the simulation effort. Also, the rear axle of the Chevrolet Silverado model is stiffer than observed for actual pickup truck axle behavior. Thus, the tail slap event in simulations always produces a greater impact force due to the way it is modelled, and also shows greater variations in accelerations, velocities, and Euler angular displacements after tail slap occurs.

Even though the overall simulated truck motion and trajectory differs from those behaviors observed in the crash tests, the barrier deflections and damage that occurred in the simulations were very close to what occurred in actual tests, which led researchers to believe that models were adequate for evaluating barrier deflections. The simulated barrier deflections were slightly overpredicted, which will be accounted for and will produce conservative results when looking at the reduced-length barrier systems. The safety performance measures from the simulation effort were more subjective due to the aforementioned differences in vehicle motion.

9.4 Reduced-Length Analysis

The baseline simulation of the NJDOT box-beam stiffened PCB system, corresponding to crash test no. NJPCB-5, was modified with reduced system lengths to estimate safety performance and maximum barrier deflections. The reduced-length barrier models had total system lengths of 160 ft (48.8 m), 120 ft (36.6 m), and 100 ft (30.5 m). The end barrier segments were pinned in each system.

All of the simulations on reduced-length systems were conducted with the Chevrolet Silverado model impacting upstream from the impact point used in the baseline model. An evaluation of numerous impact points was outside the scope of this study. However, the impact points for the reduced-length systems were selected to maintain consistency with the baseline model and were anticipated to produce the maximum barrier deflection. The impact points for the pickup trucks in the simulations were 4 ft $-3^{3}/_{16}$ in. (1.3 m) upstream from the centerline of the

joint between barrier nos. 4 and 5, barrier nos. 3 and 4, and barrier nos. 2 and 3, respectively, for the 160-ft (48.8-m), 120-ft (36.6-m), and 100-ft (30.5-m) long systems, as shown in Figure 69. All the models were simulated with the Chevrolet Silverado pickup truck model impacting the PCB system at a speed of 62.1 mph (100.0 km/h) and at an angle of 25 degrees.

The barrier models with shorter installation lengths appeared to smoothly redirect the vehicle with moderate damage to both the barrier and the vehicle, as shown in Figures 70 through 78.

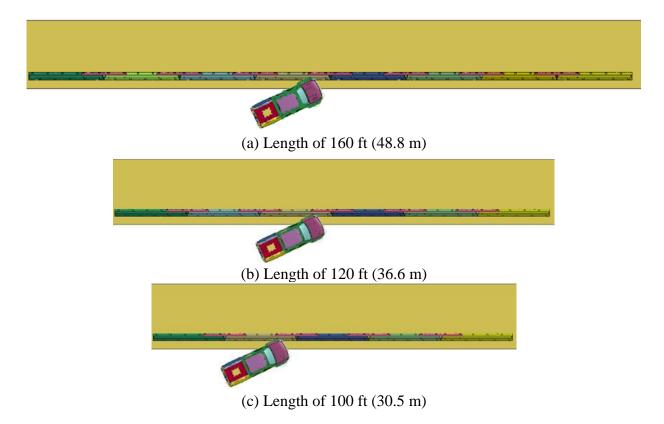


Figure 69. Reduced-Length PCB Systems - Impact Points

Barrier damage of shorter installation lengths was moderate, as shown in Figures 76 through 78. In the 160-ft (48.8-m) model, concrete spalling occurred on the front, back, and top face of barrier nos. 4 and 5. Cracking was found on barrier nos. 3, 4, 5 and 6. Several pieces of concrete disengaged from barrier nos. 4 and 5. In the 120-ft (36.6-m) model, cracking occurred on barrier nos. 1, 2, 3, 4, and 5. Concrete spalling occurred on the faces of barrier nos. 3 and 4. Some pieces of concrete disengaged from barrier nos. 3 and 4. In the 100-ft (30.5-m) model, cracking occurred on the faces of barrier nos. 1, 2, 3, 4, 5, and 6. Concrete spalling occurred on the front and back faces of barrier nos. 2 and 3. Some pieces of concrete disengaged from the barrier nos. 2 and 3.

A reduction in the total system length was anticipated to provide decreased dynamic deflection during impact with the barrier system, as the ends of each system were pinned. Maximum dynamic deflections of 37.4 in. (950 mm), 35.8 in. (909 mm), and 28.7 in. (729 mm) were measured for the 160-ft (48.8-m), 120-ft (36.6-m), and 100-ft (30.5-m) long barrier models,

respectively, as shown in Table 15. The maximum dynamic deflections occurred at the upstream end of barrier nos. 5, 4, and 3 for the 160-ft (48.8-m), 120-ft (36.6-m), and 100-ft (30.5-m) long barrier models, respectively. As mentioned previously, the baseline simulation deflection was 12 percent greater than the deflection observed in crash test no. NJPCB-5. Thus, the results from the reduced-deflection analysis are likely higher than what may occur in physical crash tests. To account for the model deflection discrepancies, the simulated barrier deflections were reduced by 12 percent so that crash test no. NJPCB-5 and its corresponding simulation had the same dynamic deflection (33.0 in. (838 mm)), as shown in Table 16. Additionally, the simulated deflections for the reduced-length PCB systems (Table 15) were reduced by 12 percent to account for the model deflection discrepancies and are shown in Table 16. The adjusted dynamic deflections shown in Table 16 may correlate better with physical crash tests.

For shorter system lengths, the end constraints will have a greater effect on the system behavior. With the 200-ft (61.0-m) long system, five barriers displaced laterally and the end barriers displaced minimally longitudinally, which indicated the pinned end did not significantly control system behavior. With the 160-ft (48.8-m), 120-ft (36.6-m), and 100-ft (30.5-m) system lengths, five, four, and three barriers displaced laterally, respectively. Especially for the 120-ft (36.6-m) and 100-ft (30.5-m) long systems, all unrestrained barriers displaced laterally and the end pinned barriers could not displace. Thus, the end constraints significantly affected deflections. It should be noted that the capacity of the pins were not evaluated during this simulation effort, as it was outside the scope of the original project. The end barriers had constraints to simulate pinned segments. However, especially at the short barrier length, the end barriers would experience higher loads, and it is unknown if the pins would permanently deform or fracture. If significant deformation or fracture of the pins occurred, the barrier deflections would likely increase from those found in the simulations.

The reduced-length systems, especially those at 100 ft (30.5 m) and 120 ft (36.6 m) long, experienced much more concrete damage than observed in the 200-ft (61.0-m) long system. The spalling of the concrete in the model may not be entirely accurate. However, if significant concrete fracture and spalling does occur to the concrete, the impact side tires may interact with the spalled concrete barrier differently than when the barriers remain intact. As mentioned previously, the behavior of the tire and tire-to-barrier contact is difficult to accurately predict without verification through full-scale crash testing. Thus, the behavior of the vehicle should be used cautiously.

Overall, the reduced-length systems appeared to have acceptable safety performance according to the MASH test designation no. 3-11 safety performance criteria. However, occupant impact velocities and occupant ridedown accelerations were not calculated, and the vehicle model tends to over-predict lateral occupant ridedown acceleration due to the overly stiff tail slap event. Additionally, due to the model limitations noted previously, all possible failure modes that could occur are not being modeled. Occupant compartment damage due to the impact-side tire pushing up into the floorboard is likely inaccurate due to the lack of steering and tire and suspension failure mentioned previously. Wheel climb on the barrier, which could lead to override or vehicle rollover, may also not be accurate if tire or suspension failure would otherwise occur, which is unknown without conducting further physical testing. The main objective of the simulation was to estimate barrier deflections, and the deflections found should be conservative and reasonably accurate. The overall safety performance of the barrier system, as determined from computer simulation, should be used cautiously.

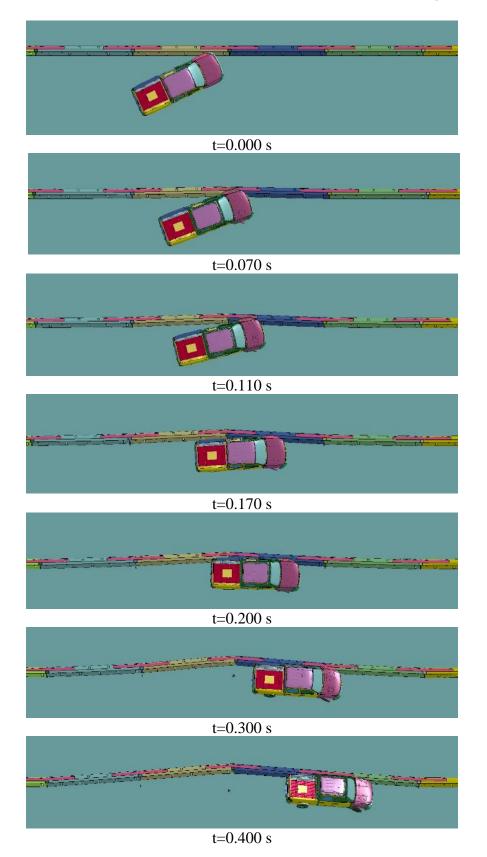


Figure 70. 160-ft Length, Reduced-Deflection PCB Simulation, Overhead Sequential Views

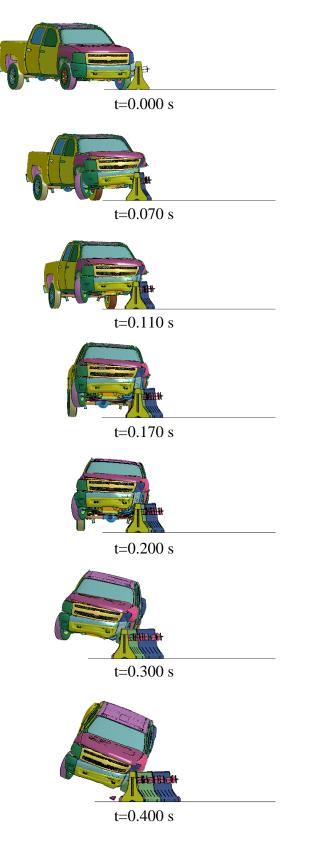


Figure 71. 160-ft Length, Reduced-Deflection PCB Simulation, Downstream Sequential Views

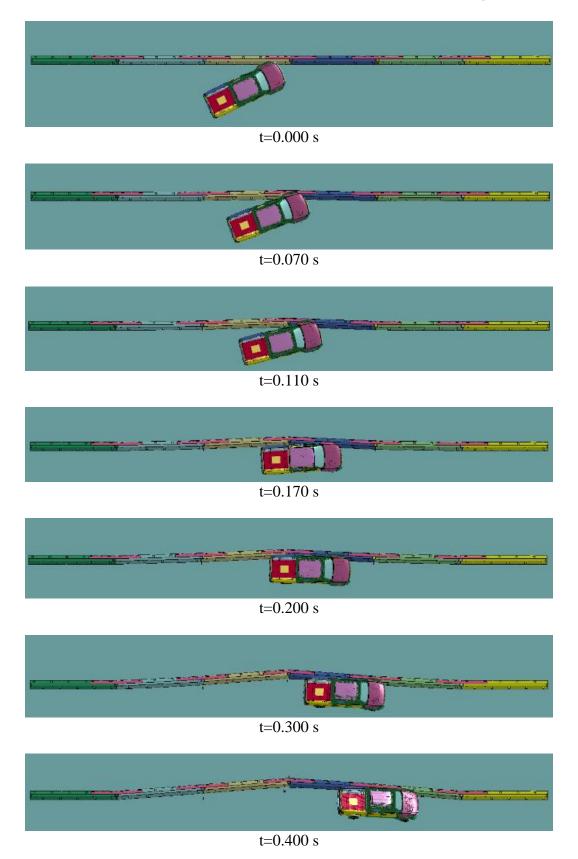


Figure 72. 120-ft Length, Reduced-Deflection PCB Simulation, Overhead Sequential Views

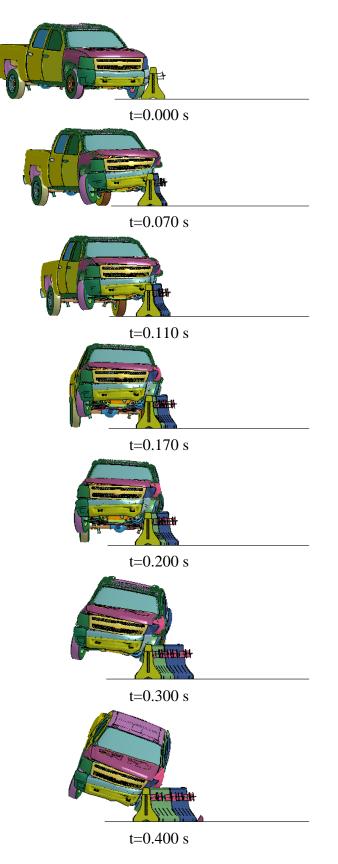
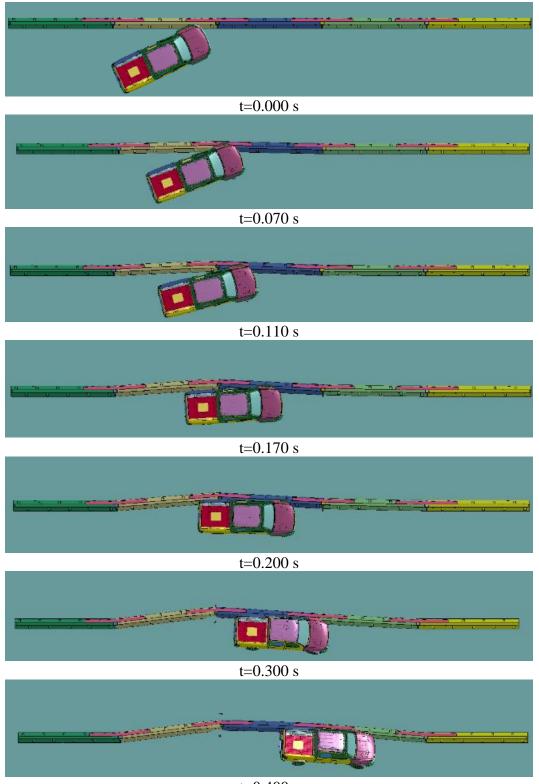



Figure 73. 120-ft Length, Reduced-Deflection PCB Simulation, Downstream Sequential Views

t=0.400 s

Figure 74. 100-ft Length, Reduced-Deflection PCB Simulation, Overhead Sequential Views

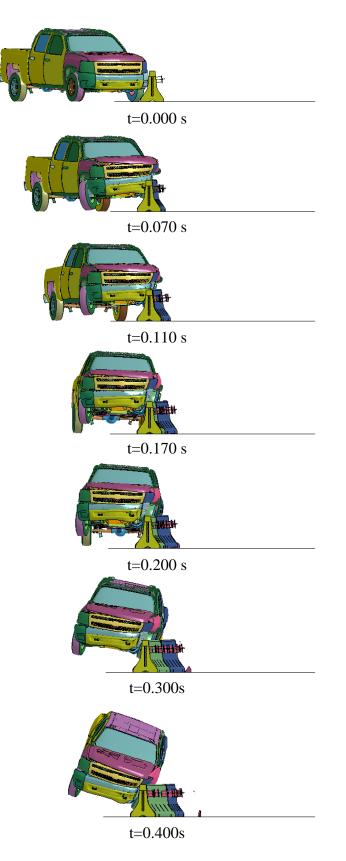
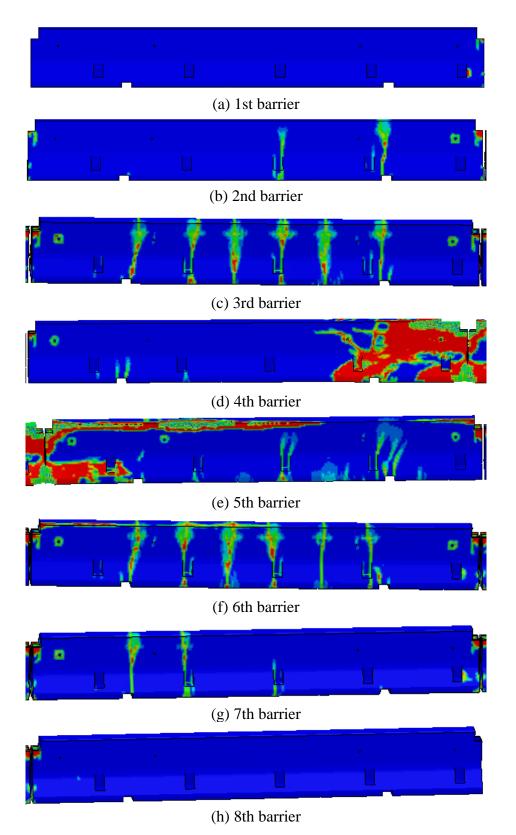
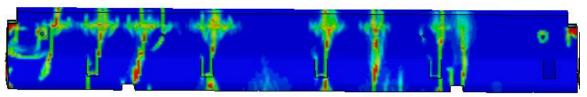
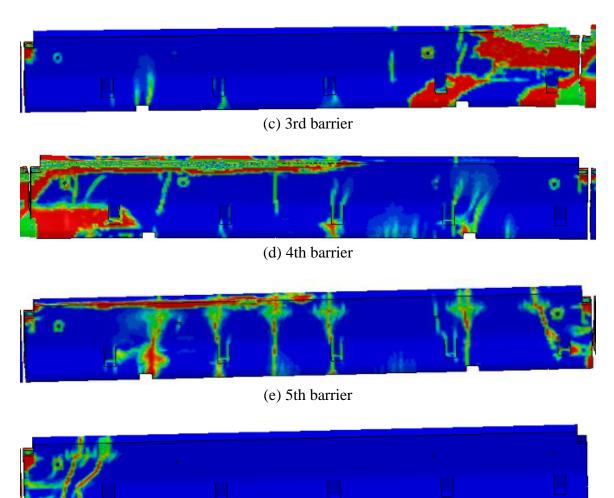
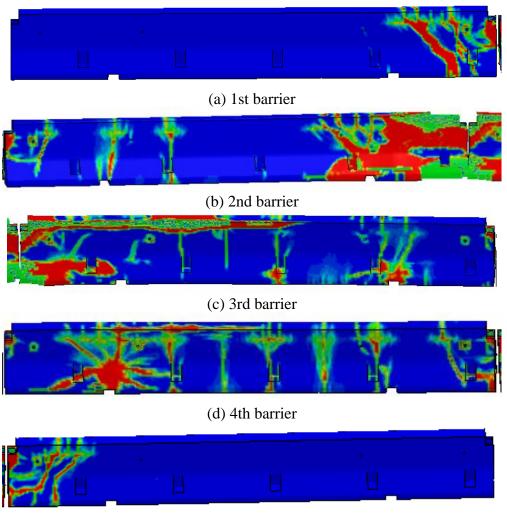


Figure 75. 100-ft Length, Reduced-Deflection PCB Simulation, Downstream Sequential Views


Figure 76. 160-ft Length, Reduced-Deflection PCB Simulation, Barrier Damage

(a) 1st barrier



(b) 2nd barrier

(f) 6th barrier

Figure 77. 120-ft Length, Reduced-Deflection PCB Simulation, Barrier Damage

(e) 5th barrier

Figure 78. 100-ft Length, Reduced-Deflection PCB Simulation, Barrier Damage

Table 15. Dynamic Deflection of Reduced-Length Barrier Systems, Actual Simulated Results

Evaluation		Dynamic Deflection By System Length										
Parameter	200 ft (61.0 m)	160 ft (48.8 m)	120 ft (36.6 m)	100 ft (30.5 m)								
Dynamic	37.5 in.	37.6 in.	35.8 in.	28.7 in.								
Deflection	(957 mm)											

Table 16. Dynamic Deflection of Reduced-Length Barrier Systems, Adjusted Simulation Results

Evaluation	Adjusted Dyn	Adjusted Dynamic Deflection By System Length (12% Reduction)										
Parameter	200 ft (61.0 m)	160 ft (48.8 m)	120 ft (36.6 m)	100 ft (30.5 m)								
Dynamic	33.0 in.	32.9 in.	31.5 in.	25.3 in.								
Deflection	(838 mm)											

10 MASH IMPLEMENTATION

The objective of this research was to evaluate the safety performance of NJDOT's PCB, Type 4 (Alternative B) system with a box-beam stiffened, free-standing configuration and grouted toes, corresponding to connection type B in the 2015 NJDOT *Roadway Design Manual*. The NJDOT barriers consisted of NJDOT PCBs joined with a connection key. Barrier nos. 1 and 10 were anchored to the concrete roadway surface through the nine pin anchor recesses with 1-in. (25-mm) diameter by 15-in. (381-mm) long, ASTM A36 steel pins. The nine joints between barrier nos. 1 through 10 were stiffened with a 12-ft (3.7-m) long, 6-in. × 6-in. × 3 /₁₆-in. (152-mm × 152-mm × 5-mm) ASTM A500 Grade C box beam rail. The barrier segments were pulled in a direction parallel to their longitudinal axes, and slack was removed from all joints prior to installation of the steel anchor pins. A wedge of grout was placed at the toe of each joint on both the traffic side and back side of the system.

According to TL-3 evaluation criteria in MASH 2016, two tests are required for evaluation of longitudinal barrier systems: (1) test designation no. 3-10 - an 1100C small car and (2) test designation no. 3-11 - a 2270P pickup truck. However, only the 2270P crash test was deemed necessary as other prior small car tests were used to support a decision to deem the 1100C crash test not critical.

In test no. 7069-3, a rigid, F-shape bridge rail was successfully impacted by a small car weighing 1,800 lb (816 kg) at 60.1 mph (96.7 km/h) and 21.4 degrees according to the American Association of State Highway and Transportation Officials (AASHTO) *Guide Specifications for Bridge Railings* [5-6]. In the same manner, test nos. CMB-5 through CMB-10, CMB-13, and 4798-1 showed that rigid, New Jersey, concrete safety shape barriers struck by small cars have been shown to meet safety performance standards [7-9]. In addition, in test no. 2214NJ-1, a rigid, New Jersey, ¹/₂-section, concrete safety shape barrier was impacted by a passenger car weighing 2,579 lb (1,170 kg) at 60.8 mph (97.8 km/h) and 26.1 degrees according to the TL-3 standards set forth in MASH 2009 [9]. Furthermore, temporary, New Jersey safety shape, concrete median barriers have experienced only slight barrier deflections when impacted by small cars and behave similarly to rigid concrete barriers as seen in test no. 47 [10]. Therefore, the 1100C passenger car test was deemed not critical for testing and evaluating this PCB system. It should be noted that any tests within the evaluation matrix deemed not critical may eventually need to be evaluated based on additional knowledge gained over time or additional FHWA eligibility letter requirements.

During test no. NJPCB-5, a 5,001-lb (2,268 kg) pickup truck with a simulated occupant seated in the left-front seat impacted the box-beam stiffened NJDOT PCB system, corresponding to connection type B in the 2015 NJDOT *Roadway Design Manual*, at a speed of 62.7 mph (100.8 km/h) and at an angle of 24.9 degrees, resulting in an impact severity of 116.3 kip-ft (157.7 kJ). At 0.197 sec after impact, the vehicle became parallel to the system with a speed of 52.4 mph (84.3 km/h). At 0.558 sec, the vehicle exited the system at a speed of 48.9 mph (78.7 km/h) and at an angle of 4.9 degrees. The vehicle was successfully contained and smoothly redirected.

Exterior vehicle damage was moderate. Interior occupant compartment deformations were minimal with a maximum of 1³/₄ in. (44 mm), which did not violate the limits established in MASH 2016. Damage to the barrier was also moderate, consisting of contact marks on the front face of the PCB segments, concrete spalling, and concrete cracking on barrier nos. 4 and 5. The maximum dynamic barrier deflection was 33.0 in. (838 mm), which included minor tipping of the barrier at

the top surface. The working width of the PCB system was 57.0 in. (1,448 mm). All occupant risk measures were within the recommended limits, and the occupant compartment deformations were also deemed acceptable. Therefore, the box-beam stiffened, NJDOT barriers, Type 4 (Alternative B), corresponding to connection type B in the 2015 NJDOT *Roadway Design Manual*, successfully met all the safety performance criteria of MASH 2016 test designation no. 3-11.

The box-beam stiffened, NJDOT PCB, Type 4 (Alternative B), joined with a connection key, joint slack removed, grouted toes, barrier nos. 1 and 10 pinned on both the traffic side and back side, and box beam section installed across all joints, corresponding to connection type B in the 2015 NJDOT *Roadway Design Manual*, was successfully crash tested and evaluated according to the AASHTO MASH 2016 TL-3 criteria. This barrier successfully met all the requirements of MASH 2016 test designation no. 3-11. In addition, the researchers consider the system MASH 2016 compliant based on the successful test designation no. 3-11 test and the previous justification for test designation no. 3-10 being deemed not critical.

A comparison of similar box-beam stiffened systems included two systems: (1) a NJ PCB system with box beam bolted across all barrier joints, joint slack removed, and grouted toes (test no. NJPCB-5)] and (2) a New York PCB system with box beam bolted across only barrier joints from barrier nos. 4 through 7 and without removal of joint slack or grouted toes (test no. NYTCB-1) [16]. A review of these test results (test nos. NJPCB-5 and NYTCB-1) revealed little to no benefit would be observed in reduced barrier deflections and clear space requirements for boxbeam stiffened, free-standing PCBs due to joint slack removal and/or use of grouted toes as dynamic deflections and the clear space behind barrier for both tests are very similar. The finding is primarily due to no barrier reinforcement in the toes of both the New York and New Jersey PCB segments. The lack of steel reinforcement led to concrete fracture near the barrier toes when they were loaded by adjacent barrier segments, which caused increased rotation of the barrier joints. This concrete toe disengagement reduced the expected benefit that would have been provided by the removal of joint slack and use of grouted toes. Second, the PCB segments used in these tests have a relatively small gap between adjacent barrier segments. Thus, improvement of the joint response through removal of joint slack and use of grouted toes provided less benefit than would be expected for other PCB systems, which utilize joint spacings up to 4 in. (102 mm). Finally, barrier system behavior and associated barrier deflections can vary from test to test due to the natural variability of a wide variety of factors involved in full-scale crash testing. These factors would include slight differences in impact conditions, differing test vehicle model years, slight variations in steel and concrete strengths, and variation of the cracking and damage observed on the barrier segments, among others. Thus, some variability would be expected in barrier performance even for basically identical systems.

In both the 2013 and 2015 NJDOT *Roadway Design Manual*, the allowable deflection is determined by the clear space behind the barrier, which is defined as the maximum deflection of the back of the barrier from its original position. For connection type B, as specified in the 2015 NJDOT *Roadway Design Manual* and utilized in this system, the NJDOT allowable deflection guidance is 28 in. (711 mm). For this test, the clear space behind the barrier was 33.0 in. (838 mm). Limited reductions in PCB deflections and clear space behind the barrier were observed with joint slack removal and use of grouted toes. Again, this finding is primarily due to the fracture and disengagement of the barrier toes. If larger reductions in PCB deflections and clear space are desired, PCB redesign or modification would be required, including reinforcement of the barrier toes.

11 REFERENCES

- 1. New Jersey Department of Transportation, *Roadway Design Manual*, Revised May 10, 2013.
- 2. New Jersey Department of Transportation, *Roadway Design Manual*, Revised 2015.
- 3. *Manual for Assessing Safety Hardware (MASH), Second Edition*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- 4. *Manual for Assessing Safety Hardware (MASH),* American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 5. Buth, C. E., Hirsch, T. J., and McDevitt, C. F., *Performance Level 2 Bridge Railings*, Transportation Research Record No. 1258, Transportation Research Board, National Research Council, Washington, D.C., 1990.
- 6. *Guide Specifications for Bridge Railings*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 1989
- 7. Bronstad, M. E., Calcote, L. R., and Kimball Jr, C. E., *Concrete Median Barrier Research-Vol.2 Research Report*, Report No. FHWA-RD-77-4, Submitted to the Office of Research and Development, Federal Highway Administration, Performed by Southwest Research Institute, San Antonio, TX, March 1976.
- Buth, C. E., Campise, W. L., Griffin III, L. I., Love, M. L., and Sicking, D. L., *Performance Limits of Longitudinal Barrier Systems-Volume I: Summary Report*, FHWA/RD-86/153, Final Report to the Federal Highway Administration, Office of Safety and Traffic Operations R&D, Performed by Texas Transportation Institute, Texas A&M University, College Station, TX, May 1986.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, B.W., Reid, J.D., and Coon, B.A., *Performance Evaluation of the Permanent New Jersey Safety Shape Barrier – Update to NCHRP 350 Test No. 3-10 (2214NJ-1)*, Report No. TRP-03-177-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 13, 2006.
- 10. Fortuniewicz, J. S., Bryden, J. E., and Phillips, R. G., *Crash Tests of Portable Concrete Median Barrier for Maintenance Zones*, Report No. FHWA/NY/RR-82/102, Final Report to the Office of Research, Development, and Technology, Federal Highway Administration, Performed by the Engineering Research and Development Bureau, New York State Department of Transportation, December 1982.
- 11. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 12. *Center of Gravity Test Code SAE J874 March 1981*, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.

- 13. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July, 2007.
- 14. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 15. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.
- Stolle, C.J., Polivka, K.A., Faller, R.K., Sicking, D.L., Bielenberg, R.W., Reid, J.D., Rohde, J.R., Allison, E.M., and Terpsma, R.J., *Evaluation of Box Beam Stiffening of Unanchored Temporary Concrete Barriers*, Research Report No. TRP-03-202-08, Project No. C-06-17, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, March 14, 2008.
- 17. Hallquist, J.O., *LS-DYNA Keyword User's Manual*, LS-DYNA R7.1, Livermore Software Technology Corporation, Livermore, California, 2014.
- Bhakta, S.K., Lechtenberg, K.A., Faller, R.K., Reid, J.D., Bielenberg, R.W., and Urbank, E.L., *Performance Evaluation of New Jersey's Portable Concrete Barrier with a Free-Standing Configuration and Grouted Toes – Test No. NJPCB-3*, Report No. TRP-03-355-18, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, December 2018.
- 19. Murray, Y.D., Abu-Odeh, A.Y. and Bligh, R.P., *Evaluation of LS-DYNA Concrete Material Model 159*, Publication No. FHWA-HRT-05-063, U.S. Department of Transportation, McLean, VA, May 2007.
- 20. Winkelbauer, B.J., Faller, R.K., Bielenberg, R.W., Rosenbaugh, S.K., Reid, J.D. and Schmidt, J.D., *Phase I Evaluation of Selected Concrete Material in LS-DYNA*, Report No. TRP-03-330-16, Midwest Roadside Safety Facility, Lincoln, Nebraska, April 29, 2016.
- 21. Schwer, L., *Modeling Rebar: The Forgotten Sister in Reinforced Concrete Modeling*, In 13th International LS-DYNA® Users Conference, June 2014.
- 22. National Crash Analysis Center, 2007 Chevrolet Silverado Finite Element Model Validation Coarse Mesh, Obtained: March 2012.

12 APPENDICES

Appendix A. NJDOT PCB Standard Plans

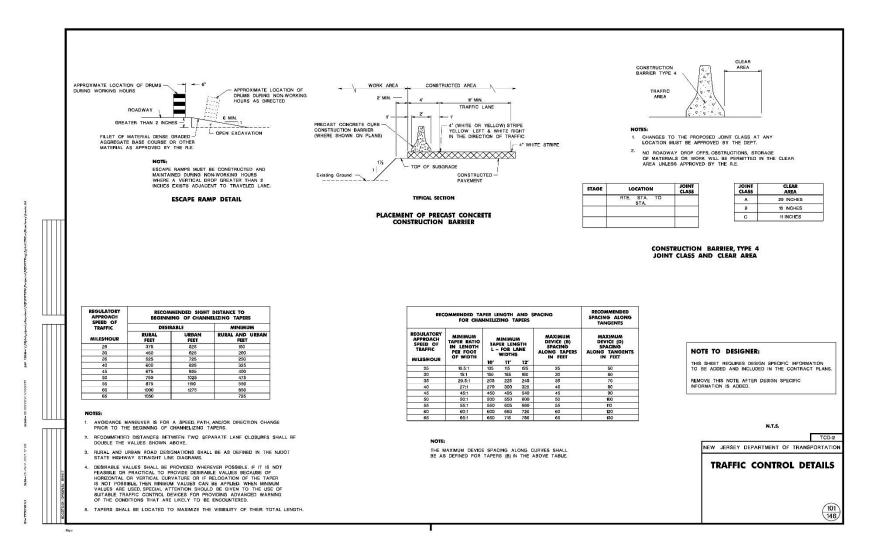


Figure A-1. NJDOT PCB Standard Plans

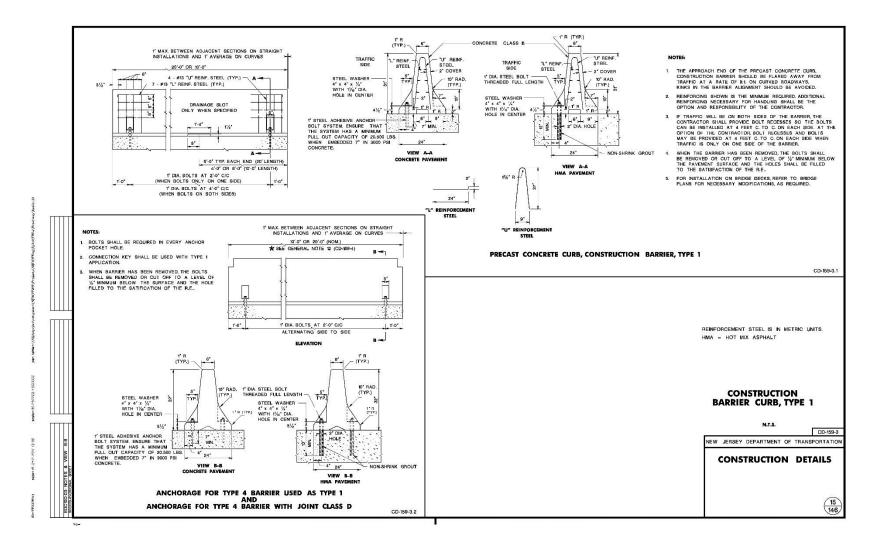


Figure A-2. NJDOT PCB Standard Plans

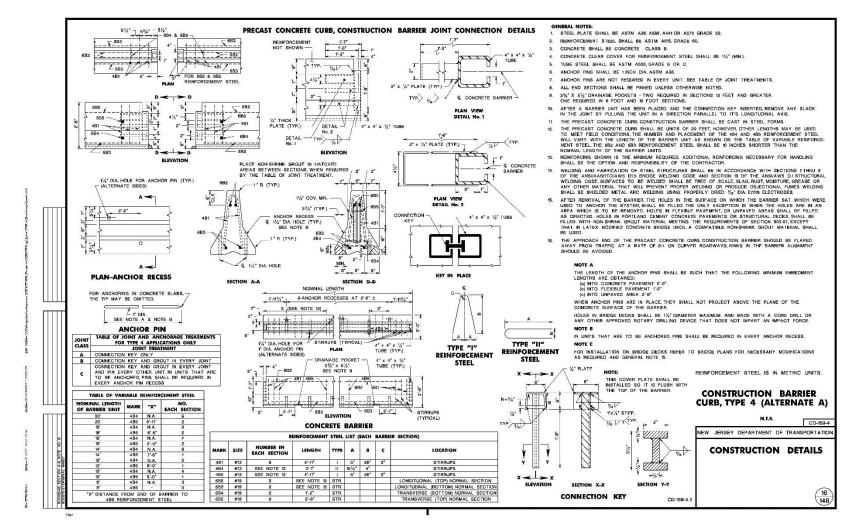


Figure A-3. NJDOT PCB Standard Plans

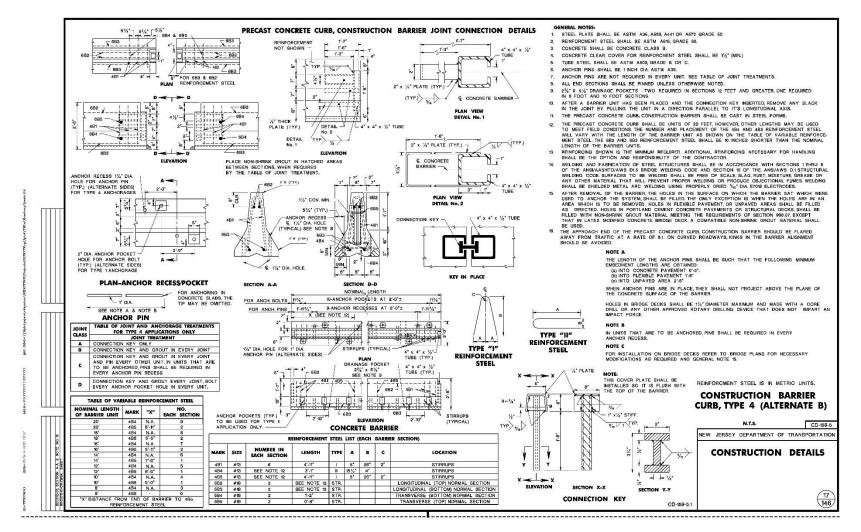


Figure A-4. NJDOT PCB Standard Plans

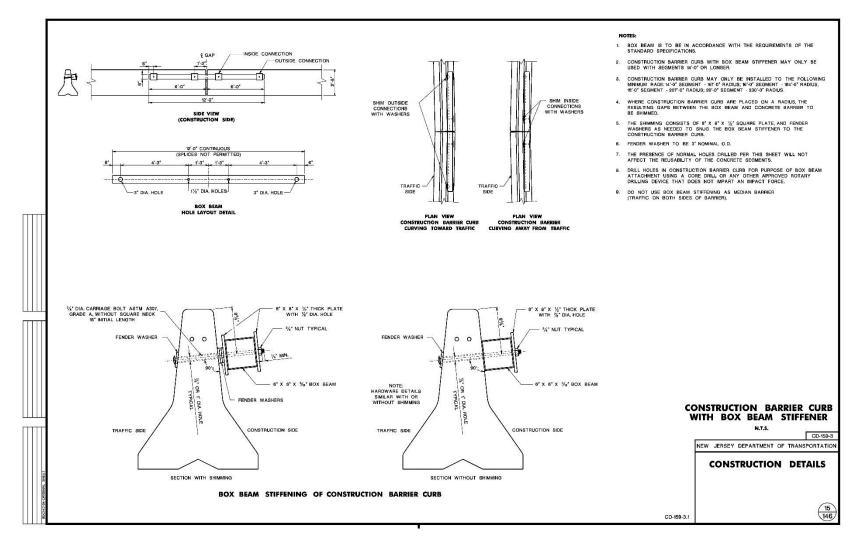


Figure A-5. NJDOT PCB Standard Plans

Appendix B. Material Specifications

Item No.	Description	Material Specification	Reference
a1	Concrete Barrier Segment	Min. f 'c = 3,700 psi (25.5 MPa)	University of Nebraska 15-563
a2	Anchor Steel Pins	ASTM A36	Heat #54141812
b1	Rebar - #4 Vertical Stirrup	ASTM A615 Gr. 60	Heat #61101274, 61101493, 61101510, 61101492, 61101499, 61101772
b2, b3	Rebar - #6 Longitudinal Bar	ASTM A615 Gr. 60	Heat #6115448, 61105472
b4	Rebar - #4 Horizontal Anchor Recess, Reinforcement Stirrup	ASTM A615 Gr. 60	Heat #61101274, 61101493, 61101510, 61101492, 61101499, 61101772
b5	Rebar - #6 Top & Bottom Cross Bar	ASTM A615 Gr. 60	Heat #6115448, 61105472
c1	Steel Tube – 4"×4"×½" (102×102×12.7) thick × 20" (508) long	ASTM A500 Gr. B and C	Heat #821597, 1422428, M04495_1, T83539, SD5020
c2	Bent Steel Plate 1, 2"×1/4" (51×6)	ASTM A36	Heat #1129849
c3	Bent Steel Plate 2, 2"×1/4" (51×6)	ASTM A36	Heat #1129849
d1	Steel Plate 1, 2"×1/2" (51×13)	ASTM A36	Heat #L99837
d2	Steel Plate 2, 2 ¹ / ₄ "× ¹ / ₂ " (57×13)	ASTM A36	Heat #54144612
d3	1/2" (13) Steel Plate – Stiffener	ASTM A36	Heat #54144612, L99837
d4	¹ / ₂ " (13) Steel Plate – Top Plate	ASTM A36	Heat #54144612, L99837
el	Non-Shrink Grout	Min. 1-day Compressive Strength 1,000 psi (6.9 MPa)	Advantage Grout ASTM C1107 Product Code: 67435 Report No. 2147369001
f1	Box Beam Stiffener, $6"\times 6"\times 3/_{16}"$ (152×152×5) × 144" (3,658) long	ASTM A500 Gr. C	Heat #B38461
f2	Steel Plate, 8"×8"×½" (203×203×13)	ASTM A36	Heat #T3079
f3	Bolts and Nuts, ³ / ₄ " (19) dia. × 17" (432) long carriage bolt without square neck	Bolts – ASTM A307 Gr. A, Nuts – ASTM A563A	Heat #529615 Heat #G420007618
f4	Fender Washer, ³ / ₄ " (19) dia.	ASTM F844	-

Table B-1. Bill of Materials, Test No. NJPCB-5

116

December 13, 2018 MwRSF Report No. TRP-03-372-18

							1	5-563									
Cast Date	Age (days)	Cylinder 1	Cylinder 2	Average	Age (days)	Cylinder 1	Cylinder 2	Average	Age (days)	Cylinder 1	Cylinder 2	Average	Air	Slump	Concrete Temp.	Ambient Temp	EMAIL, Mailed, etc
10/26/2015	1	4171	3869	4020	7	7805	7800	7803	28			0	5.5	6 3/4	60	58	
10/27/2015	1	3539	3883	3711	7	7343	7624	7484	28			0	6.8	5 3/4	62	60	
10/28/2015	1	4116	4311	4214	7	6223	6340	6282	28			0	6.0	6 1/2	64	64	
10/29/2015	1	3831	3544	3688	7	7046	6998	7022	28			0	5.8	6 1/2	67	68	
10/30/2015	3	4571	4608	4590	7	6337	6235	6286	28			0	6.0	6 1/2	64	63	- Alexandra and a second
11/2/2015	1	3125	3062	3094	7	6887	6748	6818	28			0	6.2	5 3/4	64	62	
	1			0	7	C		0	28	1. All 1.		0					
	1			0	7			0	28			0					
	1			0	7		Lange and the second	0	28			0				IC.	
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7	Reason Charles		0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28		here and the second second	0					
	1			0	7		in road in	0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28		1	0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0	1	(
	1			0	7		and a manufacture of the	0	28			0					
	1			0	7	(C		0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7			0	28			0					
	1			0	7		· · · · · · · · · · · · · · · · · · ·	0	28			0					
	1			0	7			0	28			0	1111				
	1			0	7			0	28			0					
	1			0	7			0	28			0		Contraction of the second			
	1			0	7			0	28			0					
	1			0	7	3.0000000000000		0	28			0					
	1			0	7			0	28			0					1.000
	1			0	7			0	28			0				The second s	
	1			0	7			0	28			0		(PCC, Westernet)			
	1			0	7			0	28			0					
	i			0	7			0	28			0					
	1			0	7			0	28			0					
	i			0	7			0	28			0					
	1			0	7			0	28			0					-

		CEI	RTIFIED M	ATERIAL TES	ST REPOR	T						Page	1/1
GO GERDAU	CUSTOMER SH	IIP TO E SUPPLY CO INC	CUSTOMER				GRADE A36/44W	1		SHAPE / SI Round Bar			
US-ML-CHARLOTTE	JONESBURG JONESBURG, USA		MANHATT USA	TAN,KS 66505-	1688		LENGTH 20'00"				GHT 68 LB	HEAT / BATC 54141812/02	
6601 LAKEVIEW ROAD CHARLOTTE, NC 28269 USA	SALES ORDE 1384530/00004			MER MATERIA	AL N°		I-ASTM A	CATION / DA 6/A6M-11, A36					
CUSTOMER PURCHASE ORDER NUMBER 4500233654	-1	BILL OF LADING 1321-0000027245		DATE 12/18/2014		4		0.21-04(R2009)	44W				
CHEMICAL COMPOSITION C Mn P % % % 0.17 0.69 0.018	\$ 0.031	Şi Çu 0.19 0.41	1 0	Ni 0.13	бт 0.11	Mc % 0.03		% 0.001	Nb 0.001	1	\$n 0.014		
MECHANICAL PROPERTIES Elong. 6 23.20 8	G/L nch .000	UTS PSI 77428		UTS MPa 534			YS PS1 54195			YS MPa 374			
GEOMETRIC CHARACTERISTICS R:R 32.00											2.4		
COMMENTS / NOTES													
R#16-0230 ASTM A3								*				л. ц.	
New Jersey TCB Ba	arrer A	Anchor Do	wel I	Pins									
H#54141812 R#16-0)230 De	ecember 2	015			,				2	÷		
	•			a.		ь. 1		•				×.	
8 3.		an ann an Anna Anna Anna Anna Anna						2					
											*		
													4
	This material, inclu BHAS	nd physical test records as counting the billets, was melted SKAR YALAMANCHILI LITY DIRECTOR							at 10	ORDAN FOST			

Figure B-3. Anchor Pins Material Certificate, Test No. NJPCB-5

					CERTIF	TED MAT	ERIAL TH	EST REPORT							Page 1/1
GÐ	GER	DAU	CUSTOMER SHI RESTEEL SUI 2000 EDDYST	PLY CO INC	RE UAL PARK200	0 EDDYST	PPLY CO	USTRIAL PAL	RK	GRADI 60 (420			PE / SIZE r / #4 (13MM)		
US-ML-SAYR NORTH CROS	SMAN ROAD		EDDYSTONE, USA		EDI US/		,PA 19022-	-1588		LENG1 40'00"	H		WEIGHT 5,050 LB	HEAT/ 611012	
SAYREVILLE USA			SALES ORDEI 1785955/00001		(CUSTOME	ER MATER	UAL Nº			FICATION / DA	TE or REVIS	ION		
CUSTOMER P BB 22777	URCHASE ORD	ER NUMBER		BILL OF LA 1331-000002			DATE 31/23/2015								
CHEMICAL CON C % 0.43	MPOSITION Mn 90 0.66	P% 0.012	\$ 0.048	8i 0.23	Си % 0.43	Ni 0.16		57 0.05	M % 4).0		Şn 0.019	¥ % 0.017	CEqyA706 0.56		
66	PROPERTIES YS SI 850 400	M 40 40	51	93	TS SI 950 100		UTS MPa 648 656			G/L Inch 8.000 8.000	2	20	3/L ana 00.0 20.0		
13	PROPERTIES ppg. .50 .50	Bend O O	ĸ												
GEOMETRIC CF %Light % 4.10 3.20	JARACTERISTICS Def Hgt Inch 0.030 8,030	Def Gap Inch 0.099 0.099	DelSpace Inch 0.320 0.320												
COMMENTS / NO This grade meets to		the following grades													
	The aboy	e figures are perti	fied chemical and	physical text as											
		harke	BHAS	CAR YALAMANCE	mas meried and	ea in me pe manufactur	ed in the US	SA. CMTR co	mplies v	with EN 1	0204 3.1.	1	i compliance with		
			QUAL	TY DIRECTOR					1	tongth.	7 Am	OUALC	TY ASSURANCE MOR		

Figure B-4. Rebar No. 4 Material Certificate, Test No. NJPCB-5

December 13, 2018 MwRSF Report No. TRP-03-372-18

1. A 1. 11 1 1 1		CE	RTIFIED MA	TERIAL TES	T REPORT					Page 1/1
GÐ GERDAU	CUSTOMER SHI			UPPLY CO IN		GRA 60 (4			PB/SIZE /#4(13MM)	
US-ML-SAYREVILLE	EDDYSTONE,I USA			IE,PA 19022-1		LEN 40'00	GTH 3'		WEIGHT 5,023 LB	HEAT/BATCH 61101493/04
NORTH CROSSMAN ROAD SAYREVILLE, NJ 08872 USA	SALES ORDER 1785955/00001		CUSTON	IER MATERL	AL Nº		CIFICATION / DATE M A615/A615M-14	or REVISI	ON	
CUSTOMER PURCHASE ORDER NUMBER BB 22777	· · · ·	BILL OF LADING 1331-0000029243		DATE 01/23/2015						
СНЕМІСАІ. СОМРОЗІТІОН С. Міп Р. 0.42 0.65 0.012	\$ 0.058	Şi Çu 0.19 0.43	1 0.	Vi % 15		Mo 0.056	Տր 0.020	V % 0.009	CEqyA706 0.56	
71350 4	YS 19a 192 191	UTS PSI 104900 105600		UTS MPa 723 728		8	G/L nch .000 .000	20	G/L nat 20.0 20.0	
%	udTest DK. DK									
GEOMETRIC CHARACTERISTICS %Light Def Flgt Def Gap % Inch Inch 2.70 0.032 0.098 1.40 0.034 0.039	DefSpace Inch 0.321 0.321									
COMMENTS / NOTES This grade masts the requirements for the following grad	85.									
specified requirements.	This material, inclu	d physical test records as ding the billets, was melt	contained in th ed and manufa	e permanent re ctured in the U	cords of company SA. CMTR compi	We cert ies with	tify that these data are o EN 10204 3.1,	correct and	in compliance with	
Mask	DIA QUA	SKAR YALAMANCHILI LITY DIRECTOR				As	A TRomis	JOSEI	PH T HOMOC .ITY ASSURANCE MGR.	
L										

Figure B-5. Rebar No. 4 Material Certificate, Test No. NJPCB-5

		CE	RTIFIED MATERIAL TE	ST REPORT			Page 1/1
GÐ GERDAU	CUSTOMER SHI RE STEEL SUP 2000 EDDYSTO	PLY CO INC	CUSTOMER BILL TO RE STEEL SUPPLY CO I \$2000 EDDYSTONE INDI		GRADE 60 (420)	SHAPE / SIZE Rebar / #4 (13M	M)
US-MI-SAYREVILLE NORTH CROSSMAN ROAD	EDDYSTONE,I USA	A 19022	EDDYSTONE,PA 19022- USA	1588	LENGTH 40'00*	WEIGHT 5,050 LB	
SAYREVILLE, NJ 08872 USA	SALES ORDER 1785955/00001		CUSTOMER MATER	IAL Nº	SPECIFICATION / DAT ASTM A615/A615M-14	E or REVISION	
CUSTOMER PURCHASE ORDER NUMBER BB 22777		BILL OF LADING 1331-0000029243	DATE 01/23/2015				
СНЕМІСАL СОМРОЗІТІОN С Мп Р 9 % % 0.42 0.66 0.018	\$ 0.046	Si Cu 0.21 0.30	Ni 0.11	Sr N 0.06 0.4	Ma Su % % 035 0.018	V CEqv 0.015 0.5	A706 5
73400 5	(S Pa 06 21	UTS PSI 107150 110500	UTS MPa 739 762		G/L Inch 8.000 8.000	G/L 200.0 200.0	
12.00 (dTest DK DK						
GEOMETRIC CHARACTERISTICS %Light Def Flgt Def Gap % Inch Inch 2.40 0.032 0.080 2.30 0.032 0.080	DefSpace Inch 0.322 0.322						
COMMENTS / NOTES Tais grade meets the requirements for the following grad	:s:						
specified requirements.	This material, inclu	d physical test records as a ding the billets, was melte	contained in the permanent of and manufactured in the	records of company, V USA. CMTR complie	We certify that these data are s with EN 10204 3.1.	e correct and in complian	nce with
Mack	QUA	SKAR YALAMANCHILI LITY DIRECTOR		ć	Jona 7 Bonne	2 IOSEPH T HOMIC QUALITY ASSURA	INCE MOR

Figure B-6. Rebar No. 4 Material Certificate, Test No. NJPCB-5

		CL	RTIFIED MAT	ERIAL TEST	REPORT					Page 1/1
GÐ GERDAU	CUSTOMER SHIL RE STEEL SUP 2000 EDDYSTO		CUSTOMER B RE STEEL SU RE2000 EDDYS	JPPLY CO IN		GRAD) 60 (420			PE / SIZE /#4 (131/18/1)	
US-ML-SAYREVILLE NORTH CROSSMAN ROAD	EDDYSTONEJ USA		EDDYSTONI USA			LENG1 40'00"	ГН		WEIGHT 10,020 LB	HEAT / BATCH 61101492/02
SAYREVILLE, NJ 08872 USA	SALES ORDER 1785955/000010		CUSTOM	ER MATERIA	IL N°		FICATION / DATE A615/A615M-14	or REVISI	ON	
CUSTOMER PURCHASE ORDER NUMBER BB 22777		BILL OF LADING 1331-0000029243		DATE 01/23/2015						
Снемисал сомрозатом С. Мт. Р. 0.43 0.67 0.014	\$ 0.054	Si Cu 0.20 0.43	3 0.2	i 1	Çr N 0.10 0.	/10 % 064	Sn 0.018	¥ % 0.017	CEqyA706 0.57	
65150 4	S Pa 19 72	UTS PSI 96100 99600		UTS MPa 663 687		G/I Incl 8.00 8.00	0	20	G/L man 00.0 00.0	
15.00 C	ITest K K					-				
GEOMETRIC CHARACTERISTICS %Light Def Hgt Def Gap % Ioch Inch 3.60 0.031 0.078 1.70 0.029 0.090	DefSpace Inch 0.322 0.322									
COMMENTS / NOTES This grade meets the requirements for the following grade	2.									
- When we	a.									
									-	
r		· .								
The above figures arc cer specified requirements. T Mackk	his material, inclu	l physical test records as ding the billets, was melt KAR YALAMANCHILI JIY DIRECTOR	contained in the ted and manufact	permanent rec ured in the US	A. CMTR complie	s with EN	Ibat these data are a 10204 3.1.		n compliance with H T HOMIC ITY ASSURANCE MGR.	

Figure B-7. Rebar No. 4 Material Certificate, Test No. NJPCB-5

······································					CERTIFIED M	ATERIAL TI	EST REPORT				Page [/]
GD	GERI	DAU	CUSTOMER SHI	PLY CO INC	CUSTOME RE STEEL PARK2000 EDD	SUPPLY CO		GRADE 60 (420)		PE/SIZE /#4(33MM)	
US-ML-SAYRE	VILLE		EDDYSTONE,I USA			NE, PA 19022		LENGTH 40'00'		WEIGHT 5,050 LB	HEAT/BATCH 61101499/04
NORTH CROSS SAYREVILLE, 1 USA			SALES ORDER 1785955/00001		CUSTO	MER MATER	RIAL Nº	SPECIFICATION / I ASTM A615/A625M-10		ON	<u>_</u>
CUSTOMER PU BB 22777	RCHASE ORDER	RNUMBER		BILL OF LADIN 1331-000002924		DATE 01/23/2015	i				
CHEMICAL COM	POSETION Min % ().68	P 0.026	\$ 0.064	Si 0.21	Ср 0.33	Ni 0.21	Gr N 0.19 0.1	40 Sn 066 0.016	% 0.012	CEqyA706 0.58	
MECHANICAL PY PS 709 689	S	M 48 47	39	UTS PSI 105500 103200	}	UTS MPa 727 712		G/L Iach 8.000 8.000	20	H/L 1m 100.0	
MECHANICAL PI Elog 11.1 11.1	ng. 00		fTest K K								
GEOMETRIC CHA Milight 3% 1.90 1.90	ARACTERISTICS Def Hgt Inch 0,032 0,032	Def Gap Inch 0.088 0.086	DefSpace Inch 0.321 0.321								
COMMENTS / NO This grade meets the	TES e requirements for th	e following grade	•:								
								·····			
	The above specified	e figures are cer requirements. T	tified chemical an bis material, inclu	d physical test record ding the billets, wa	rds as contained in s melted and manuf	the permanent factured in the	records of company. V USA. CMTR complie	Ve certify that these data s with EN 10204 3.1.	are correct and i	n compliance with	
	K	hack	Dut	KAR YALAMANCHILI ITY DIRECTOR			6	for 7 kg	JOSEP QUAL	H T HOMIC TY ASSURANCE MGR.	

Figure B-8. Rebar No. 4 Material Certificate, Test No. NJPCB-5

		CER	TIFIED MATERIAL TEST REPORT					Page 1/1
GÐ GERDAU	CUSTOMER SHIP RE STEEL SUPE	LY CO INC	CUSTOMER BILL TO RE STEEL SUPPLY CO INC 2000 EDDYSTONE INDUSTRIAL PA	GRA 60 (4			PE / SIZE - / #4 (13MM)	
US-ML-SAYREVILLE NORTH CROSSMAN ROAD	EDDYSTONE, P. USA	A 19022	EDDYSTONE, PA 19022-1588 USA		GTH D"		WEIGHT 4,008 LB	HEAT/BATCH 61101772/04
SAYREVILLE, NJ 08872 USA	SALES ORDER 1785955/000010		CUSTOMER MATERIAL Nº		CIFICATION / DATE M A615/A615M-14	or REVIS	ON	
CUSTOMER PURCHASE ORDER NUMBER BB 22777		BILL OF LADING 1331-0000029243	DATE 01/23/2015			2		
CHEMICAL COMPOSITION C Mn P % % % 0.44 0.67 0.019	\$ 0.059	Si Çu % %	Ni Çr % % 0.16 0.06	Mo % 0.047	Sn % 0.017	¥ 0.016	CEqvA706 0.57	
66400 4	75 1Pa 58 54	UTS PSI 96900 97700	UTS MPa 668 674	8.	G/L nch .000 .004)	2	3/L DM 00.0 00.0	
16.00	dTest DK DK							
GEOMETRIC CHARACTERISTICS %Light Def Hst Def Gap % fnukh Inch 1.10 0.025 0.099 0.80 0.029 0.115	DedSpace Inde 0.320 0.320							
COMMENTS / NOTES This grade meets the requirements for the following grad	BK.'							- Na
L								-
specified requirements.	This material, includ	ting the billets, was melted	ontained in the permanent records of con I and manufactured in the USA. CMTR	omplies with	EN 10204 3.1.			
Mack	QUAL	KAR YALAMANCHILI ITY DIRECTOR	1	A	the Theformi	QUA	PH T HOMIC LITY ASSURANCE MGR.	

Figure B-9. Rebar No. 4 Material Certificate, Test No. NJPCB-5

					CEL	TIFIFD MA	TERIAL T	EST REPORT						Page 1/1
			CUSTOMER SHI	ето	CLI	CUSTOMER B				GRADE			PE / SIZE	
00	CEDE	NALL	RE STEEL SUP			RE STEEL S) INC		60 (420)		Reba	r /#6 (19MM)	
GP	GER	JAU	2000 EDDYSTC		IAL	2000 EDDYS	STONE INE	DUSTRIAL PARK		LENGTH			WEIGHT	HEAT / BATCH
			PARK EDDYSTONE,F	10022		EDDYSTON USA	E,PA 19022	2-1588		40'00"			30,282 LB	61105448 /03
US-ML-SAYRE			USA	A 19022		USA								
NORTH CROSS SAYREVILLE,			SALES ORDER	R		CUSTON	IER MATE	RIAL Nº			ATION / DAT	E or REVIS	SION	
USA	NJ 08872		2886827/00002	0						ASTM A61	5/A615M-15			
	IRCHASE ORDER	NUMBER	1	BILL OF LA	DING		DATE			1				
BB-23635	KCHASE OKDER	KNUMBER		1331-000003			10/08/201	5						
			10											
CHEMICAL COM	APOSITION												CE 4 706	
Contraction of the contraction o	Mn %	P %	S%	Si %	Çu %	ľ	Ni %	Çr	M		Sn %	¥%	CEqvA706	
0.48	0.75	0.010	0.064	0.23	0.33	0.	.18	0.09	0.0	036	0.028	0.018	0.65	
MECHANICAL P			10		TO		LITC			G/I			G/L	
P:	'S SI 159	N	(S 1Pa	P	TS		UTS	1		G/L Inch 8.000			G/L mm 200.0	
70	159 590		84 87	10	7318 8364		740 747			8.000			200.0	
MECHANICAL F											-			
Elg	ong.	Ben	dTest											
14	.00	(DK DK											
13	.00	(JK											
	HARACTERISTICS Def Hgt	Def Gap	DefSpace											
%Light % 5.80	Inch 0.040	Inch 0.090	DefSpace Inch 0.477											
5.80	0.040	0.090	0.477											
COMMENTS / NO	OTES													
	The abov	e figures are co	ertified chemical a	nd physical test	records as	contained in t	he permane	ent records of comp ne USA. CMTR co	any.	We certify the with EN 1	hat these data a 0204 3.1.	re correct ar	nd in compliance with	1
						and manufa	actureu in u	ie oon. conneo	m	1	/ /	105	SEPH T HOMIC	
	19	hack	ory BHA	ASKAR YALAMAN	CHILI					forga.	1 1	QU	ALITY ASSURANCE MG	R.
		-	00	LAT I DIRECTOR					6					

Figure B-10. Rebar No. 6 Material Certificate, Test No. NJPCB-5

							TEDIAL T	EST REPORT						Page 1/1
			CUSTOMER SHIP	TO	CER	CUSTOMER B		EST KLIORI	T	GRADE			PE / SIZE	
	Sam Rad Ra					RE STEEL S		INC		60 (420)		Rebar	/ #6 (19MM)	
	GERC	JAU	RE STEEL SUP	NE INDUSTRI	IAL			OUSTRIAL PARK					WEIGHT	HEAT / BATCH
			PARK			EDDYSTON	E,PA 19022	2-1588		LENGTH 40'00"			4,987 LB	61105472/03
US-ML-SAYREV	ILLE		EDDYSTONE,F	A 19022		USA				40 00				
NORTH CROSS	IAN ROAD		USA SALES ORDER			CUSTON	IER MATE	RIAL Nº		SPECIFIC	ATION / DA	TE or REVIS	ION	
SAYREVILLE, N	J 08872		2886827/000020			000101				ASTM A61	5/A615M-15			
USA									_					
CUSTOMER PUR	CHASE ORDER	NUMBER		BILL OF LAI			DATE	£						
BB-23635				1331-0000038	3904		10/08/201	5						
CHEMICAL COMP	OSITION			0.	C	,	Ni	Cr	M	0	Sn %	¥%	CEqvA706	
C ₆	Mn %	P % 0.019	S‰	Si %	Cu % 0.38	1	Ni % .15	Cr % 0.14	0.0		% 0.017	0.022	0.63	
0.46	0.72	0.019	0.048	0.21	0.38	0.	.15	0.14	0.0	50	0.017			
MECHANICAL PR	OPERTIES				TC		UTS	2		G/L			G/L mm	
YS PSI 7329		N	(S IPa	P	si		UTS MPa	a		G/L Inch 8.000		2	mm 200.0	
7329	6	5	05	106	TS SI 5977 7455		738 741	5		8.000		2	200.0	
MECHANICAL PR Elon	OPERTIES g.	Ber	dTest											
13.0			ок											
15.0	0	(ОК											
GEOMETRIC CHA	RACTERISTICS													
%Light %	Def Hgt Inch	Def Gap Inch	DefSpace Inch											
4.20	0.058	0.072 0.072	0.481 0.481											
4.50	0.058	0.072	0.461											
COMMENTS / NO	FES													
[m 1	E	antified of aminal	nd physical test	recorde o	s contained in	the perman	ent records of com	bany	We certify	hat these data	are correct a	nd in compliance wit	th
	The abo specified	t requirements.	This material, inc	luding the billet	s, was me	Ited and manu	factured in t	the USA. CMTR co	mpn	es willi Liv	10204			
				ASKAR YALAMAN						1	1 Khom		SEPH T HOMIC	
	/	hack	ne	ALITY DIRECTOR						Jangh	1 je for	QL	ALITY ASSURANCE MO	GR.
		-												

Figure B-11. Rebar No. 6 Material Certificate, Test No. NJPCB-5

tomer Name	Customer PO#	Shipper No Heat Number
el Modern Mfg.	Leon	273924 821597
Atlas Tube Canada ULC 200 Clark St. Harrow, Ontario, Canada NOR 1G0 Tal: 519-738-3541 Fax: 519-738-3537 Sold to Triad Metals Internationa 1 Village Road HORSHAM PA 19044-3 USA		oustenior, 1457
Material: 3.0x3.0x125x24'0"0(7x7). Sales order: 989576	Material No: 300301252400	Made In: Canada Melted in: Canada
Heat No C Mn P	Purchase Order: 75461 S Si Al Cu Cb	
821195 0.190 0.810 0.009		Mo Ni Cr V Ti B N 006 0.026 0.045 0.002 0.002 0.000 0.00
Bundle No PCs Yield Te	nsile Elo.2in	Certification CE: 0.34
	7160 Psi 26.6 %	ASTM A500-13 GRADE B&C
Material Note: Sales Or.Note:		
Bundle No PCs Yield Tel	0.010 0.015 0.031 0.032 0.006 0.0 Isile Eln.2in	Malted in: Canada 10 Ni Cr V Ti B N 10 02 0.011 0.032 0.002 0.002 0.000 0.003 Cartification CE: 0.35 ASTM A500-13 GRADE B&C
Material: 4.0x4.0x500x40'0"0(4x2). Sales order: 995107	Material No: 400405004000 Purchase Order: 76312	Made in: Canada Melted in: Canada
Heat No C Mn P	S SI AI CU Ch	o Ni Cr V Ti B N
821597 0.210 0.780 0.011 Bundle No PCs Yield Ten	0.009 0.013 0.040 0.026 0.006 0.00 sile Eln.2in	

Figure B-12. Steel Tube Material Certificate, Test No. NJPCB-5

omer Name	Customer PO#	Shipper No Heat Number
el Modern Mfg.	Leon	273924 821597
Atlas Tube Canada ULC 200 Clark St. Harrow, Ontario, Canada NOR 1GO Tel: 519-738-3541 Fax: 519-738-3537 Sold_to	MATERIAL TEST REPO	Tube Ref.B/L: 80664351 Date: 05.08.2015 Customer: 1497
Triad Metals Internationa 1 Village Road HORSHAM PA 19044- USA		<u>Shipped to</u> Triad Metals International 3507 Grand Avenue PITTSBURGH PA 15225 USA
Material: 4.0x4.0x500x40'0"0(4x2). Sales order: 995107	Material No: 400405004000 Purchase Order: 76312	Made in: Canada Melted In: Canada
Heat No C Min P		Mo Ni Cr V Ti B N
Bundle No PCs Yield	Tensilo Eln.2in	004 0.013 0.031 0.002 0.002 0.000 0.00 Cartification CE: 0.35 ASTM A500-13 GRADE B&C
Material: 6.0x2.0x188x24'0"0(3x9). Sales order: 995107	Material No: 600201882400 Purchase Order: 76312	Made in: Canada Melted in: Canada
Bundle No PCs Yield	0 0.008 0.015 0.040 0.047 0.002 0. Fensile Eln.2in	Mo Ni Cr V Ti B N 005 0.023 0.038 0.002 0.002 0.000 0.004 Certification CE: 0.33 CE: 0.33 ASTM A500-13 GRADE B&C
Material: 6.0x6.0x188x40'0''0{3x3}.	Material No: 600601884000	Made in: Canada Melted in: Canada
Sales order: 1001173	Purchase Order: 77498	
Bundle No PCs Yield T	3 0.006 0.017 0.059 0.051 0.005 0.0 ansile Eln.2in	Mo Ni Cr V Ti B N 004 0.015 0.036 0.002 0.002 0.000 0.004 Certification CE: 0.34 ASTM A500-13 GRADE B&C
H4.	ren Elitis	
Authorized by Quality Assurance: The results reported on this report rep specification and contract requirements specification and contract requirements using the specification of the specification of the specification and contract requirements by Specification of the specification of the specification of the specification of the specification	•	hed and indicate full compliance with all applicable Metals Service Center Institute

Figure B-13. Steel Tube Material Certificate, Test No. NJPCB-5

Customer Name	Customer PO#	Shipper No Heat	Number
Seibel Modern Mfg.	Leon	273924 1422	2428
Atlas ABC Corp (Atlas Tu 1855 East 122nd Street Chicago, Illinols, USA 60633 Tel: 773-646-4500 Fax: 773-646-6128			.B/L: 80660765 e: 04.15.2015 tomer: 1497
Sold to	MATERIAL TEST RE	PORT	
Triad Metals Internat	ional 44-3812		pped to d Metals International J7 Grand Avenue TSBURGH PA 15225 A
Material: 4.0x4.0x500x40°0"0(4: Sales order: 989623	x2]. Material No: 400405004 Purchase Order: 75462	000	Made in: USA Melted in: Russian Fed.
Heat No C Mrs	P S Si Al Cu Cb	Mo Ni Cr	V Ti B N
1422428 0.200 0.930	0.007 0.007	0.000 0.020 0.030	V Ti B N 0.000 0.000 0.000 0.006
Bundle No PCa Yield M800549020 3 070619 Pr Material Note:		Certification ASTM A500-13 GRADE B&	CE: 0.37
Sales Or.Noto:			
Material: 4.0x4.0x500x40'0"0{4x Sales order: 989623 Heat No C Min	Purchase Order: 75462		Mado in: USA Melted in: Russian Fed.
		Mo Ni Cr 0.000 0.020 0.030	V TI B N
Bundle No PCs Yield M800549017 8 070619 Ps Material Note:	Tensile Ein.2in	O 0.000 0.020 0.030 Certification ASTM A500-13 GRADE B&	
Sales Or.Note:			
Material: 20.0x4.0x313x48'0"0(1	x4). Material No: 2000403134	1800	Made in: USA Melted in: USA
Sales order: 994677	Purchase Order: 75051-re	placement	
Heat No C Min A73575 0.200 0.490 0	P S Si Al Cu Cb	Mo Ni Cr	V TI B N
A73575 0.200 0.490 0 Bundle No PCs Yield M900754317 4 057121 Psi Material Note: Sales Or.Note:	0.009 0.002 0.030 0.034 0.120 0.000 Tensite Ein.2in 074148 Psi 30 %	0.020 0.060 0.050 Certification \\$TM A500-13 GRADE B&	
Authorized by Quality Assurance: The results reported on this repor specification and contract requiren	Marria Addin t represent the actual attributes of the matarial f nonts. 1 method. Page : 3 Of 3	•	compliance with all applicable ice Center Institute

Figure B-14. Steel Tube Material Certificate, Test No. NJPCB-5

Customer Na	ime			Cu	stomer	PO#				Shippe	er No	Heat	Numb	er		
Seibel Moderr	n Mfg.			Leo	on					27392	.4	M044	195_1			
						9 (m) (m)		-								
	1855 E Chicago 60633 Tel:	ast 122	6-4500	ube Chic	C			STEEL			ube	P Ref. Date Cus	.B/L: e: tomer:	80669 05.18 1497	5303 .2015	
					N	IATE	RIAL	TEST	r Ref	PORT						
	<u>Sold</u> Triad 1 Villa HORS USA	Metal	s Interna bad PA 19	ational 044-38	12							Tria	7 Gran	ls Inter d Aven 3H PA	nation ue 1522	al .5
	rial: 4.0x order:		0x48'0"0(3x2).				o: 4004 Order: 7		DO			Made in Melted	n: USA in: USA		
Heat	No	С	Mn	Р	S	SI	Al	Cu	5462 Cb	Mo	Ni	Cr	v	TI	В	N
M044 Bundt	e No	0.190 PCs	0.750 Yield		0.010 nsile	0.019 Eln.:		0.050	0.004		0.010	0.040	0.001	0.001 C	0.000 E: 0.3	0.005
Mater	ial Note: Or.Note:		072918		2550 Psi	35 %			A		00-13 GR					

The rest specifica	ation and contract requirements		the materia	l furnished and indicate full compliance with all applical
6	Steel Tube D1.1 mc	Page : 4 Of	4	S Metals Service Center lastitute
	OF NORTH AMERICA			

Figure B-15. Steel Tube Material Test Certificate, Test No. NJPCB-5

tomer Name	Customer PO#	Shipper No	Heat Number
el Modern Mfg.	Leon	273924	T83539
Atlas ABC Corp (Atlas Tube (1855 East 122nd Street Chicago, Illinois, USA 60633 Tel: 773-646-4500 Fax: 773-646-6128		Tube	Ref.B/L: 80619794 Date: 08.22.2014 Customer: 1497
<u>Sold_to</u> Triad Metals Internation 1 Village Road HORSHAM PA 19044- USA		ORT	<u>Shipped to</u> Triad Metals International 3500 Neville Road NEVILLE ISLAND PA 1522 USA
Materiel: 4.0x4.0x375x48'0"0(4x2). Salos order: 934921	Material No: 400403754 Purchase Order: 67358	800	Made in: USA Metted in: USA
Heat No C Mri P	S SI AI Cu Ch	Mo Ni	Cr V Tì B N
E84203 0.190 0.800 0.015			.040 0.001 0.001 0.000 0.004
	ensile Ein.2in	Cartification	CE: 0.34
		ASTM A500-13 GRAD	
Material Noto: Sales Or.Note;			
Material: 4.0x4.0x500x40'0"0(4x2).	Material No: 4004050044	000	Made in: USA Melted in: USA
Sales order: 934921	Purchase Order: 67358		
Heat No C Mri P	S SI Al Cu Cb	Mo Ni	Cr V TI B N
T83539 0.200 0.820 0.012	0.007 0.015 0.054 0.020 0.007	7 0.004 0.010 0.	.040 0.001 0.001 0.000 0.005
		Certification ASTM A500-13 GRAD	
Material Note: Sales Or.Note:			
Matorial: 12.0x12.0x250x40'0"0(2x2).	Material No: 1201202504	1000	Mado In: USA Molted in: USA
Sales order: 933979	Purchase Order: 67228		
Heat No C Mn P	S Si Al Cu Cb		Cr V Ti B N
T84047 0.180 0.800 0.008			.040 0.001 0.001 0.000 0.007
	nsila Ein.2in		CE: 0.33
M900697115 4 055286 Psi 07 Material Note: Sales Or.Note:	3956 Psi 28 %	ASTM A500-13 GRAD	
Mauria Flattin			
My deren Inargen			
Marvin Phillips			
Marvin Phillps Authorized by Quality Assurance: The results reported on this report rej specification and contract requirement	present the actual attributes of the material s. sthod.	furnished and indicate	a full compliance with all applicable
Marvin Phillips Authorized by Quality Assurance: The results reported on this report rej	s.	•	a full compliance with all applicable Service Center Institute

Figure B-16. Steel Tube Material Certificate, Test No. NJPCB-5

tomer Name	Customer PO#	Shipper N	lo <u>Heat Number</u>
el Modern Mfg.	Leon	273924	SD5020
Independence Tube	9	6226 W. 74lh St Chicago, IL 60638 708-496-0380 Fax: 708-563-1950	independencetube.co itctube.co Certificate Number: DCR 2509
Sold By: INDEPENDENCE TUBE COR/ 6226 W. 74th St. Chicago, IL 60638 Tel: 708-496-0380 Fax: 708-563-1950	PORATION	Purchase Order No: 70783 Sales Order No: DCR 64130 - 5 Bill of Lading No: DCR 43787 - 94 Invoice No:	Shipped: 1/16/2015 Invoiced:
Sold To: 2103 - TRIAD METALS 1 VILLAGE ROAD HORSHAM, PA 19044-3812		Ship To: 39 - TRIAD METALS BARGE MILE MARKER 7.3 OHIO RIVER NEVILLE ISLAND, PA 15225	
CERTIFICATE of ANAI	YSIS and TESTS		Certificate No: DCR 250913 Test Date: 1/14/2015
TUBING A500 GRADE B(C) 4" SQ X 1/2" X 48'			Total Pieces Total Weight 36 37,376
Bundle Tag Mill Heat 844458 40 SD5020 844459 40 SD5020 844459 40 SD5020 844460 40 SD5020 844461 40 SD5020	9	Weight 9,344 9,344 9,344 9,344 9,344	
0.1002	1: 72,300 psi Tensile: 78	3,800 psi Elongation: 28.50 % Y/T	Ratio: 0.9175 Carbon Eq:
C Mn P 0.0500 0.3900 0.0090 0.	S, Si Al 0040 0.2240 0.0260	Cu Cr Mo N 0.0900 0.0400 0.0200 0.00	11 110
Certification:			
I certify that the above results are Corporation. Sworn this day, 1/14	a true and correct copy 1/2015	of records prepared and maintained	by Independence Tube
WE PROUDLY MANUFACTURE INDEPENDENCE TUBE PRODU AND INSPECTED IN ACCORDA	CT IS MANUFACTURE	HE USA. D, TESTED, DARDS.	Marting
CURRENT STANDARDS: 	1 1 2		0
			Jose Martinez, QMS Manager
MATERIAL IDENTIFIED AS A500 ASTM A500 GRADE B AND A500	GRADE B(C) MEETS E	BOTH	

Figure B-17. Steel Tube Material Certificate, Test No. NJPCB-5

MID-AMERICA STEEL CORPORATION TEST REPORT

No. F33822

TO:	SEIBEL MODERN MFG & WELDING	DATE:	02/19/13
		P.O. #:	SBJ-40
ATTN:			

TAG#	1	SIZE	SPEC
K78419	1/4 x	48.000 x 144.000	A-36
K78420	1/4 x	48.000 x 144.000	A-36
K78421	1/4 x	48.000 x 144.000	A-36
K78422	1/4 x	48.000×144.000	A-36

CHEMICAL ANALYSIS

TA	.G#	HEAT#	C	Mn	P	S
K78	419	1129849	0.063	0.760	0.012	0.004
K78	420	1129849	0.063	0.760	0.012	0.004
K78	421	1129849	0.063	0.760	0.012	0.004
K78	422	1129849	0.063	0.760	0.012	0.004

PHYSICAL ANALYSIS

TAG#	HEAT#	TENSILE	YIELD	ELONGATION
K78419	1129849	75,102	58,422	26%
K78420	1129849	75,102	58,422	26%
K78421	1129849	75,102	58,422	26%
K78422	1129849	75,102	58,422	26%

All material made and melted in the U.S.

.

Thank you,

JOHN RATICA MID-AMERICA STEEL CORPORATION

Figure B-18. 2-in. \times ¹/₄-in. (51-mm \times 6-mm) Bent Steel Plate Material Certificate, Test No. NJPCB-5

rcelorMitta	2404 S. ROANE S HARRIMAN, TENNE Telephone (865)	SSEE 37748 ET/	RSHAM PA 19 ATS-UNIS	044	PI US	TTSBURGH PA A	15225
sted in Accord th: ASTM A6	р Н С	eat NO. L99 ust.Mat.	t bars	Date 09/09/2 Cust 4000888 Grade A365295 Length 20' 00"	2 Ref 0 Pie		
CHEMICAL	MECHANICAL	TES	ST 1		ST 2	and the second se	EST 3
ANALYSIS	PROPERTIES	IMPERIAL	METRIC	IMPERIAL	METRIC	IMPERIAL	METRIC
C 0.13	YIELD STRENGTH	52710 PSI	363 MPa	53770 PSI	371 MPa 514 MPa		
Mn 0.88 P 0.007	TENSILE STRENGTH ELONGATION	72220 PSI	498 MPa 25 %	74560 PSI 25 %	25 %		
S 0.018	GAUGE LENGTH	8 IN	203 mm	8 IN	203 mm		
Si 0.19	BEND TEST DIAMETER		100 1111				
Cu 0.24	BEND TEST RESULTS						
Ni 0.17	SPECIMEN AREA						
Cr 0.14	REDUCTION OF AREA						
Mo 0.065	IMPACT STRENGTH						
СЪ 0.020	L			tit			·J
V O	IMPACT STRENGTH IMP	ERIAL MET	CRIC IN	TERNAL CLEANLIN	ESS GRAIN S	TZE	
Al	AVERAGE	1		RITY	HARDNES		
Sn 0.012	TEST TEMP			UENCY	GRAIN P	RACTICE	
N	ORIENTATION		RATI	NG	REDUCTI	ON RATIO	
Гi	This heat makes the fo	allowing grade	21 235-08 25	2950-05 640 21-	CSNSON CSN44	N 270935-092	DSME 5036-201
	A57250-07, A70950-10,						
Ci							
CE							
r.							
	that the material tes						
	rdance to the specifi						
ufactured, pro	cessed, tested in the	U.S.A with sat	tisfactory r	esults. No weld	l repair was	performed on	this heat.
-					y - Th	P. 1	
arized upon re				Signed	Aquito Do	Saucen	JITY ASSURANCE
rn to and subs AGER	cribed before me on 9	th day of Septe	ember, 2015		KEITH D.	LIMBURG, QUAL	ITY ASSURANCE

Figure B-19. ¹/₂-in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-5

				CERTI	FIED MATERIA	L TEST REPORT		a set in a set of the terms of the		and the second	Page I
GÐ GE	RDAU	CUSTOMER SH TRIAD META 3507 GRAND	LS			TERNATIONAL		RADE GMULTI		APE / SIZE / 1/2 X 2 1/4	
S-ML-CHARLOTTE		PITTSBURGH USA		1 V	ILLAGE RD RSHAM,PA 190	44-3800		ENGTH '00"		WEIGHT 4,979 LB	HEAT/BATCH 54144612/03
HARLOTTE, NC 28269 JSA		SALES ORDE 2819476/0000			CUSTOMER M	TERIAL N"	A6-	PECIFICATION / DA 6-13A,A36-12, ASME S. STM A529-05(2009), A5	436-13	ION	
CUSTOMER PURCHASE Q 83055W	RDER NUMBER		BILL OF LAD 1321-0000034		DATH 09/24		AS	STM A709-13A, AASHT SA G40-20-13/G40.21-13	TO M270-12		
CHEMICAL COMPOSITION C Mn % 0.17 0.71	P % 0.011	\$ 0.033	\$i 0.20	Çu % 0.47	Ni % 0.14	Ст % 0.17	Mo %	v % 0.015	Nb % 0.002	Sn % 0.013	ι Π
MECHANICAL PROPERTIES Elong. 29.40	G/ Inc 8.0	L 5h 60	41 741	[\$ 74		TS fPa 11		YS PSI 51422	1	ХŞ ИРа 355	
GEOMETRIC CHARACTERIST R:R	ICS										
22.60 COMMENTS - NOTES This grade meets the requirements ASTM Grades: A36, A529-50; A5 CSA Grades: 44W; 50W AASHTO Grades: M270-36; M27 ASHTO Grades: M270-36; M27	72-50; A709-36; A709-5	50									
COMMENTS + NOTES This grade meets the requirements ASTM Grades: A36, A529-50; A5 73A Grades: 44W; 50W VASHTO Grades: M270-36; M270	72-50; A709-36; A709-5	50									
OMMENTS + NOTES (his grade meets the requirements) NTM Grades: A36, A529-50; A5 SA Grades: 44W; 50W ASHTO Grades: M270-36; M270	72-50; A709-36; A709-5										
COMMENTS + NOTES This grade meets the requirements ASTM Grades: A36, A529-50; A5 73A Grades: 44W; 50W VASHTO Grades: M270-36; M270	72-50; A709-36; A709-5	50									
COMMENTS - NOTES This grade meets the requirements ASTM Grades: A36, A529-50; A5 CSA Grades; 44W; 50W AASHTO Grades; M270-36; M270	72-50; A709-36; A709-5	50									
OMMENTS - NOTES This grade meets the requirements ASTM Grades: A36, A329-50; A5 25A Grades; 44W; 50W AASITO Grades: M270-36; M27 ASME Grades: SA36	72-50; A 709-36, A 7(19-5	.0						Lify that these data are			

Figure B-20. ¹/₂-in. (13-mm) Thick Steel Plate Material Certificate, Test No. NJPCB-5

1107 Advantage Grout

Cement Based Grout

TECHNICAL DATA SHEET

DESCRIPTION

The 1107 Advantage Grout is a non-shrink, nonmetallic, non-corrosive, cementitious grout that is designed to provide a controlled, positive expansion to ensure an excellent bearing area. The 1107 Advantage Grout can be mixed from a fluid to a dry pack consistency.

USE

Exterior grouting of structural column base plates, pump and machinery bases, anchoring bolts, dowels, bearing pads and keyway joints. It finds applications in paper mills, oil refineries, food plants, chemical plants, sewage and water treatment plants etc.

FEATURES

- Controlled, net positive expansion
- Non shrink
- Non metallic/non corrosive
- Pourable, pumpable or dry pack consistency
- Interior/exterior applications

PROPERTIES

Corps of Engineers Specification for non-shrink grout: CRD-C 621 Grades A, B, C ASTM C-1107 Grades A, B, C ASTM C-827 - 1107 Advantage Grout yielded a controlled positive expansion

Expansion - ASTM C-1090:

1 day: 0-0.3 3 days: 0-0.3 14 days: 0-0.3 28 days: 0-0.3

Test Results

	@1	Day	63	Days	@ 7	Days	@ 28	Days
Fluidity	PSI	MPa	PSI	MPa	PSI	MPa	PSI	MPa
Dry-Pack	5000	34.5	7000	48.2	9000	62.0	10000	68.9
Flowable	2500	17.2	5000	34.5	6000	41.4	8000	55.1
Fluid	2000	13.8	4000	27.6	5000	34.5	7500	51.7

Note:

The data shown is typical for controlled laboratory conditions. Reasonable variation from these results can be expected due to interlaboratory precision and bias. When testing the field mixed material, other factors such as variations in mixing, water content, temperature and curing conditions should be considered.

Estimating Guide

Yield (Flowable Consistency): 0.43 cu, ft./50 lbs. (0.0122 cu, M/22.67 kg) bag 0.59 cu, ft./50 lbs. (0.017 cu, M/22.67 kg) bag extended with 25 lbs. (11.34 kg) of washed 3/8 in. (1cm) pea gravel

Packaging

PRODUCT		S	ZE
CODE	PACKAGE	lbs	kg
67435	Bag	50	22.67
67437	Supersack	3,000	1,360.78

STORAGE

Store in a cool, dry area free from direct sunlight. Shelf life of unopened bags, when stored in a dry facility, is 12 months. Excessive temperature differential and /or high humidity can shorten the shelf life expectancy.

APPLICATION

Surface Preparation:

Thoroughly clean all contact surfaces. Existing concrete should be strong and sound. Surface should be roughened to insure bond. Metal base plates should be clean and free of oil and other contaminants. Maintain contact areas between $45^{\circ}F$ ($7^{\circ}C$) and $90^{\circ}F$ ($32^{\circ}C$) before grouting and during curing period.

Thoroughly wet concrete contact area 24 hours prior to grouting, keep wet and remove all surface water just prior to placement. If 24 hours is not possible, then saturate with water for at least 4 hours. Seal forms to prevent water or grout loss. On the placement side, provide an angle in the form high enough to assist in grouting and to maintain head pressure on the grout during the entire grouting process. Forms should be at least 1 in. (2.5 cm) higher than the bottom of the base plate.

Water Regulrements:

Desired Mix Water / 50 lbs. (22.67 kg) Bag Dry Pack: 5 pints (2.4 L) Flowable: 8 pints (3.8 L) Fluid: 9 pints (4.2 L)

Mixing:

A mechanical mixer with rotating blades like a mortar mixer is best. Small quantities can be mixed with a drill and paddle. When mixing less than a full bag, always first agitate the bag thoroughly so that a representative sample is obtained.

Visit www.daytonsuperior.com for the most up to date technical information Page 1 of 3

File Date: 3/27/2015

Figure B-21. Non-Shrink Grout Specifications, Test No. NJPCB-5

1107 Advantage Grout

Cement Based Grout

TECHNICAL DATA SHEET

Place approximately 3/4 of the anticipated mix water into the mixer and add the grout mix, adding the minimum additional water necessary to achieve desired consistency.

Mix for a total of five minutes ensuring uniform consistency. For placements greater in depth than 3 in. (7.6 cm), up to 25 lbs. (11.34 kg) of washed 3/8 in. (1 cm) pea gravel must be added to each 50 lbs. (22.67 kg) bag of grout. The approximate working time (pot life) is 30 minutes but will vary somewhat with ambient conditions.

For hot weather conditions, greater than 85°F (29°C), mix with cold water approximately 40°F (4°C). For cold weather conditions, less than 50°F (10°C), mix with warm water, approximately 90°F (29°C). For additional hot and cold weather applications, contact Dayton Superior.

Placement:

Grout should be placed preferably from one side using a grout box to avoid entrapping air. Grout should not be over-worked or over-watered causing segregation or bleeding. Vent holes should be provided where necessary.

When possible, grout bolt holes first. Placement and consolidation should be continuous for any one section of the grout. When nearby equipment causes vibration of the grout, such equipment should be shut down for a period of 24 hours. Forms may be removed when grout is completely self-supporting. For best results, grout should extend downward at a 45 degree angle from the lower edge of the steel base plates or similar structures.

CLEAN UP

DEC

16

Use clean water. Hardened material will require mechanical removal methods.

CURING

Exposed grout surfaces must be cured. Dayton Superior recommends using a Dayton Superior curing compound, cure & seal or a wet cure for 3 days. Maintain the temperature of the grout and contact area at 45°F (7°C) to 90°F (32°C) for a minimum of 24 hours.

LIMITATIONS

FOR PROFESSIONAL USE ONLY

Do not re-temper after initial mixing Do not add other cements or additives

Setting time for the 1107 Advantage Grout will slow during cooler weather, less than 50°F (10°C) and speed up during hot weather, greater than 80°F (27°C) Prepackaged material segregates while in the bag, thus when mixing less than a full bag it is recommended to first agitate the bag to assure it is blended prior to sampling.

PRECAUTIONS

READ SDS PRIOR TO USING PRODUCT

- Product contains Crystalline Silica and Portland Cement Avoid breathing dust Silica may cause serious lung problems
- Use with adequate ventilation n Wear protective clothing, gloves and eye protection (goggles, safety glasses and/or face shield)
- Keep out of the reach of children
- Do not take internally
- In case of ingestion, seek medical help immediately
- May cause skin irritation upon contact, especially prolonged or repeated. If skin contact occurs, wash immediately with soap and water and seek medical help as needed.
- If eye contact occurs, flush immediately with clean water and seek medical he/p as needed
- Dispose of waste material in accordanc

MANUFACTURER

Dayton Superior Corporation 1125 Byers Road Miamisburg, OH 45342 Customer Service: 888-977-9600 Technical Services: 877-266-7732 Website: www.daytonsuperior.com

WARRANTY

Dayton Superior Corporation ("Dayton") warrants for 12 months from the date of manufacture or for the duration of the published product shelf life, whichever is less, that at the time of shipment by Dayton, the product is free of manufacturing defects and conforms to Dayton's product properties in force on the date of acceptance by Dayton of the order. Dayton shall only be liable under this warranty if the product has been applied, used, and stored in accordance with Dayton's instructions, especially surface preparation and installation, in force on the date of acceptance by Dayton of the order. The purchaser must examine the product when received and promptly notify Dayton in writing of any non-conformity before the product is used and no later than 30 days after such non-conformity is first discovered. If Dayton, in its sole discretion, determines that the product breached the above warranty, it will, in its sole discretion, replace the non-conforming product, refund the purchase price or issue a credit in the amount of the purchase price. This is the sole and exclusive remedy for breach of this warranty. Only a Dayton officer is authorized to modify this warranty. The information in this data sheet supersedes all other sales information received by the customer during the sales process. THE FOREGOING WARRANTY SHALL BE EXCLUSIVE AND IN LIEU OF ANY OTHER WARRANTY SHALL BE EXCLUSIVE AND IN LIEU OF ANY OTHER WARRANTY SHALL BE EXCLUSIVE AND IN LIEU OF ANY OTHER WARRANTY SHALL BE EXCLUSIVE AND IN LIEU OF PREATION OF LAW, COURSE OF DEALING, OTHERWISE ARISING BY OPERATION OF LAW, COURSE OF DEALING, CUSTOM, TRADE OR OTHERWISE.

Visit www.daytonsuperior.com for the most up to date technical information Page 2 of 3

File Date: 3/27/2015

Figure B-22. Non-Shrink Grout Specifications, Test No. NJPCB-5

LINCOLN OFFICE 825 "M" Street, Suite 100 Lincoln, NE 68508 Phone: (402) 479-2200 Fax: (402) 479-2276

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 4x8

ASTM Designation: C 39

Date

20-Jan-17

Client Name: Midwest Roadside Safety Facility Project Name: New Jersey PCB Placement Location: 4' Grout cylinder A

Mix De	esignatio	on: Grou	t						Require	ed Streng	th: 1000					
								Laboratory	Test Data	a						
	Laboratory dentification	Field Identification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Cured in Laboratory	Age of Test, Days	Length of Specimen, in.	Diameter of Specimen, in.	Cross-Sectional Area,sq.in.	Maximum Load, Ibf	Compressive Strength, psi.	Required Strength, psi.	Type of Fracture	ASTM Practice for Capping Specimen
F	PCB- 2	A	1/19/2017	1/20/2017	1/20/2017	1	0	1	8	4.00	12.57	10,740	850	1,000	6	C 1231
1 cc: Sha	aun Tighe															

Midwest Roadside Safety Facility

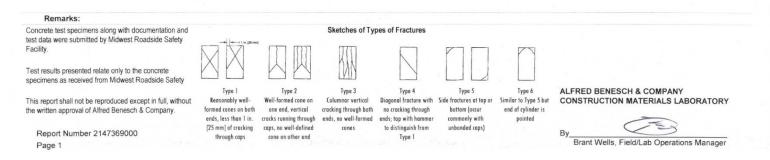


Figure B-23. Non-shrink Grout Compressive Test Certificate, Test No. NJPCB-5

LINCOLN OFFICE 825 "M" Street, Suite 100 Lincoln, NE 68508 Phone: (402) 479-2200 Fax: (402) 479-2276

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 4x8

ASTM Designation: C 39

Client Name: Midwest Roadside Safety Facility Project Name: New Jersey PCB Placement Location: New Jersey PCB-5 Cylinder A

Date 27-Jan-17

lix Designation	on: grout							Require	ed Streng	th: 1000					
							Laboratory	Test Data	a						
Laboratory Identification	Field Identification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Cured in Laboratory	Age of Test, Days	Length of Specimen,	Diameter of Specimen,	Cross-Sectional Area,sq.in.	Maximum Load,	Compressive Strength,	Required Strength,	Type of	ASTM Practic for Capping
PCB- 3	A	1/24/2017	1/27/2017	1/27/2017	2		-				lbf	psi.	psi.	Fracture	Specimen
cc: Shaun Tighe		112412011	112/12011	1/2/1/2017	3	0	3	8	4.01	12.63	40,563	3,210	1,000	5	C 123

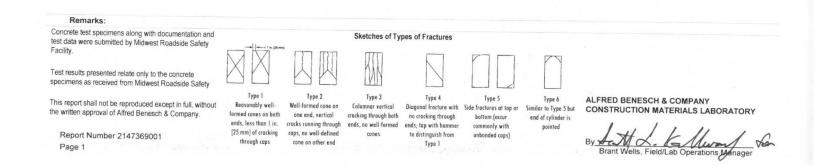


Figure B-24. Non-shrink Grout Compressive Test Certificate, Test No. NJPCB-5

LINCOLN OFFICE 825 "M" Street, Suite 100 Lincoln, NE 68508 Phone: (402) 479-2200 Fax: (402) 479-2276

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 4x8

ASTM Designation: C 39

Client Name: Midwest Roadside Safety Facility Project Name: New Jersey PCB Placement Location: New Jersey PCB-5 Cylinder B

Date 27-Jan-17

Mix Designation	on: grout							Require	ed Streng	th: 1000					
						1	Laboratory	Test Data	a						
Laboratory Identification	Field Identification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Cured in Laboratory	Age of Test, Days	Length of Specimen, in.	Diameter of Specimen, in.	Cross-Sectional Area,sq.in.	Maximum Load, Ibf	Compressive Strength, psi.	Required Strength,	Type of	ASTM Practice for Capping Specimen
PCB- 4	В	1/24/2017	1/27/2017	1/27/2017	3	0	2	0	1.00	10.55			psi.	Fracture	specimen
cc: Shaun Tighe					5	0	3	8	4.00	12.57	37,983	3,020	1,000	6	C 123

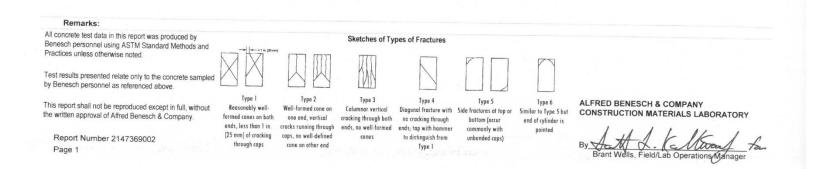


Figure B-25. Non-shrink Grout Compressive Test Certificate, Test No. NJPCB-5

December 13, 2018 MwRSF Report No. TRP-03-372-18

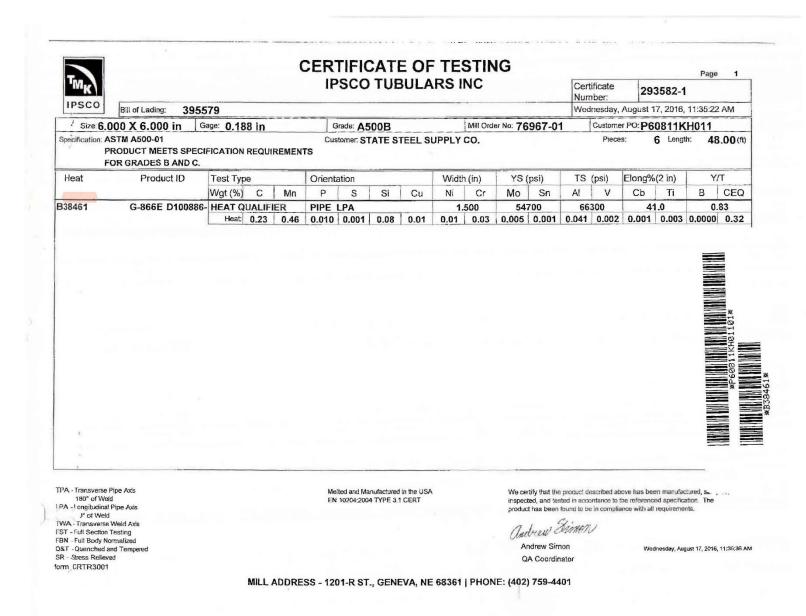


Figure B-26. Box Beam Stiffener Material Certificate, Test No. NJPCB-5

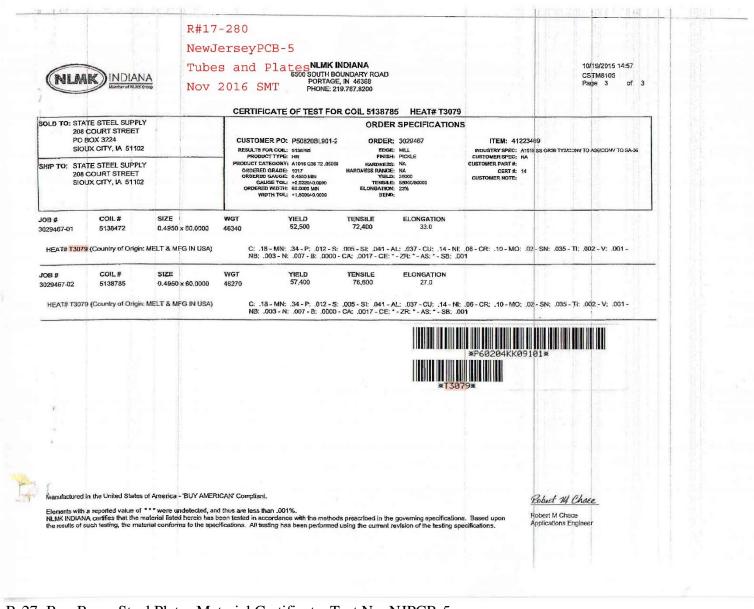


Figure B-27. Box Beam Steel Plates Material Certificate, Test No. NJPCB-5

December 13, 2018 MwRSF Report No. TRP-03-372-18

Web: www.portlandbolt.com | Email: sales@portlandbolt.com

Phone: 800-547-6758 | Fax: 503-227-4634

3441 NW Guam Street, Portland, OR 97210

| CERTIFICATE OF CONFORMANCE |

 For: CASH SALE

 PB Invoice#: 94836

 Cust PO#:
 MIDWEST ROADSIDE

 Date:
 12/01/2016

 Shipped:
 12/05/2016

We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.

Desc	ription:	3/4	X 17 BLK	ASTM	A307A	ROUND HEAD	BOLT			
He	at #: 5296	15	Ī	Base S	teel:	A36	Diam:	3/4		
Sour	ce: CASC	ADE S	TEEL RLG	MILL		Proof 1	Load:	0		
с:	.180	Mn:	.670	Ρ:	.018	Hardnes	ss: 0			
S :	.026	Si:	.230	Ni:	.090	Tensile	e: 71,000	PSI	RA:	53.00%
Cr:	.160	Mo:	.030	Cu:	.220	Yield:	47,700	PSI	Elon:	25.00%
Pb:	.000	V :	.003	Cb:	.000	Sample	Length:	8 INC	Н	
N:	.000			CE:	.316	7 Charpy	:		CVN Tem	ip:

Nuts:

ASTM A563DH HVY HX

By: Certification Department Quality Assurance Dane McKinnon

NJPCB-5 Dome Head Bolts and Nuts R#17-289 December 2016

Figure B-28. Box Beam Mounting Bolts Material Certificate, Test No. NJPCB-5

King Socket Screw Co., Ltd

NO. 231 Jixing Road Wuyuan Industrial Park Haiyan, Zhejiang China TEL: +86-573-8605-9549 FAX: +86-573-8605-9349 Company Web : http://www.lwfasteners.com.tw Company E-mail : king-lin@lwfasteners.com.tw

REPORT OF TESTING **COUNTRY OF ORIGIN : CHINA** CUSTOMERS : BRIGHTON-BEST INTERNATIONAL (TAIWAN) INC. CLOSE DATE : AUG.05,2016 CUSTOMERS ORDER NO. : U34726 SIZE: 3/4 - 10 DESCRIPTION : A563 GRADE DH, HEAVY HEX NUT PLAIN ASME B18.2.2, LIGHT PROTECTIVE OIL INV. NO. : KS160804-TB-LAC PART NO. : 228074 LOT NO. : U34726-228074 u LOT SIZE : 4,750 PCS SAMPLE SIZE : ASME B18,18-11 H MANUFACTURER : KH11 DIMENSIONS OF SPEC : PER ASME B18.2.2-2010 (MEASUREMENT BY INCHES) **INSPECTION ITEMS** RESULT STANDARD AC. RE. VISUAL APPEARANCE ASTM F812/F812M 22 OK 0 THREAD GO GAGE 2B ASME B1.1 OK 15 0 2B ASME B1.1 THREAD NO GO GAGE OK 15 0 4 WIDTH ACROSS FLATS (S) 1.212 - 1.2501.219 - 1.244 0 WIDTH ACROSS CORNERS (E) 1.382 - 1.443 4 1.407 - 1.4350 HEIGHT (H) 0.710 - 0.758 0.715 - 0.7264 0 HEAD MAKRED JS+DH OK 22 0 MECHANICAL PROPERTIES : PER ASTM A563-2007a(R2014) INSPECTION ITEMS TEST METHOD STANDARD RESULT RE. AC. HARDNESS ASTM F606 HRC 24 - 38 HRC 24 - 28 4 0 PROOFLOAD ASTM E606 MIN 175 KSI 175 - 176 KSI 3 0

THOUT LOND		1 101	1411 0000			i cor	110	110110		
CHEMICAL ANALYS	SIS (%):					SP	ECIFIC	ATION	:SWR	CH35
HEAT NO.&	DIA (mm)	C X10 ²	Si X10 ²	Mn X10 ²	P X10 ³	S X10 ³	N X10 ⁴	Cr X10 ²	Ni X10 ²	Cu X10 ²
G420007618	24.00 mm	36	16	73	15	3	75	2	2	4

STEEL MAKER. : JIANGSU SHAGANG GROUP CO., LTD

CERTIFICATE NO. : M832188637X4CA005600171

REMARKS :

THIS REPORT MUST NOT BE REPRODUCED EXCEPT IN FULL AND THE TEST REPORT RELATES ONLY TO THE ITEM TESTED.
 THE REPORT IS ISSUED ACCORDING TO EN10204, 3.1
 THE QMS IS APPROVED TO ISO 9001 BY BSI. NO.: FS 503874.
 Tr: TRACE ELEMENT WITH ITS CONTENT CONFORMING TO THE SPECIFICATION.

YANJUAN CHEN **INSPECTOR**

VERIFICATION

King Lin AUTHORIZATION

28329

١

N

Figure B-29. Box Beam Mounting Nuts Material Certificate, Test No. NJPCB-5

Appendix C. Concrete Tarmac Strength

LINCOLN OFFICE

Client:	UNL			Date:	December 10,	2010
Project:	MwRSF					
Placement Location:	WI - East 1, 2,	3				
Mix Type:	Class:			Mix No.:		
Type of Forms		. In the second second	Cement Facto	r, Sks/Yd	ſ	na
			Water-Cement	t Ratio	r	na
Admixture Quantity	r	a	Slump Inches		r	na
Admixture Type	r	na	Unit Wt, Ibs/cu	J. Ft.	r	na
Admixture Quantity	r	ia	Air Content, %	b	r	na
Average Field Temperature	r	na	Batch Volume	, Cu. Yds.	r	na
Temperature of Concrete F		na	Ticket No.		r	na
dentification Laboratory	East 1	East 2	East 3			
Date Cast						
Date Received in Laboratory	11/30/2010	11/30/2010	11/30/2010	1920	C. 1000 (11)	
Date Tested						
Days Cured in Field	1949 					
Days Cured in Laboratory				1.52 - 20 - 20 - 20		
Age of Test, Days						1. 1. <u>1</u> . 1
Length, in.	7.78	7.81	7.75		and the second	
Average Width (1), in.	3.72	3.72	3.72			-
Cross-Sectional Area, sq. in.	10.874	10.869	10.874			
Maximum Load, Ibf	71,030	76,470	73,310			
Compressive Stength, psi	6,530	7,040	6,740			
Length/Diameter Ratio	2.091	2.099	2.083			
Correction						
Corrected Compressive Strength,psi	0	0	0			
Type of Fracture	4	4	4	1	Contraction and a series	and the state
Required Strength,psi						
Remarks: All concrete break data in this report was pro unless otherwise noted.						
This report shall not be reproduced except in	n full, without the v	written approva	I of Alfred Benes			

Figure C-1. Concrete Tarmac Strength Test, Test No. NJPCB-5

benesch engineers - scientists - planners LINCOLN OFFICE 825 J Street Lincoln, NE 68508 402/479-2200

COMPRESSION TEST OF Cylindrical CONCRETE SPECIMENS ASTM Designation: C39-03

Client: UNL Project: MwRSF Placement Location: WI - Epo Mix Type: Class: Type of Forms	na na na na na na na na	Cer Wa Siu Uni Air Bat	ment Factor Iter-Cement Imp Inches it Wt, Ibs/cu. Content, % tch Volume,	Ratio Ft.	n n n	a a a a a
Placement Location: WI - Epo Mix Type: Class: Type of Forms	na na na na na	Cer Wa Siu Uni Air Bat	ment Factor iter-Cement imp Inches it Wt, Ibs/cu. Content, % tch Volume,	, Sks/Yd Ratio Ft.	n n n	a a a
Mix Type: Class: Type of Forms Admixture Quantity Admixture Type Admixture Quantity Average Field Temperature Temperature of Concrete F	na na na na na	Cer Wa Siu Uni Air Bat	ment Factor iter-Cement imp Inches it Wt, Ibs/cu. Content, % tch Volume,	, Sks/Yd Ratio Ft.	n n n	a a a
Type of Forms Admixture Quantity Admixture Type Admixture Quantity Average Field Temperature Temperature of Concrete F	na na na na	Wa Slu Uni Air Bat	ment Factor iter-Cement imp Inches it Wt, Ibs/cu. Content, % tch Volume,	, Sks/Yd Ratio Ft.	n n n	a a a
Admixture Quantity Admixture Type Admixture Quantity Average Field Temperature Temperature of Concrete F	na na na na	Wa Slu Uni Air Bat	ter-Cement imp inches it Wt, Ibs/cu. Content, % tch Volume,	Ratio Ft.	n n	a a
Admixture Type Admixture Quantity Average Field Temperature Temperature of Concrete F	na na na na	Slu Uni Air Bat	imp Inches it Wt, Ibs/cu. Content, % tch Volume,	Ft.	n n	а
Admixture Type Admixture Quantity Average Field Temperature Temperature of Concrete F	na na na na	Uni Air Bat	it Wt, Ibs/cu. Content, % tch Volume,		n n	а
Admixture Quantity Average Field Temperature Temperature of Concrete F	na na	Air Bat	Content, % tch Volume,			a
Average Field Temperature Temperature of Concrete F	na na	Bat	tch Volume,	Cu. Yds.		94.).
Temperature of Concrete F	na					а
			ket No.		n	а
denuncation Laboratory		5 1				
Date Cast				a series and the series		
Date Received in Laboratory 12/13/2	010 12/1:	3/2010				
Date Tested						
Days Cured in Field	_					
Days Cured in Laboratory						
Age of Test, Days na		na				
Length, in. 8.05		.06				
Average Width (1), in. 3.9	A HOUSE AND A REAL PROPERTY AND	.90				
Cross-Sectional Area, sq. in. 11.97	the second s	.952				
Maximum Load, Ibf 71,50		630				
Compressive Stength, psi 5,97		990				
Length/Diameter Ratio 2.06		065				
Correction	-					
Corrected Compressive Strength,psi 0		0				-
Type of Fracture 3		3				
Required Strength,psi						
Required Strength,psi						

Figure C-2. Concrete Tarmac Strength Test, Test No. NJPCB-5

Appendix D. Vehicle Center of Gravity Determination

Veen	1/31/2017	-		VIN:		B18P19S7	19209
Year:	2009	Make:	Dodge	_ Model:		Ram	
Vehicle CG D	eterminati	ion		W.oight	Vertical CG	Vartical M	
VEHICLE	Equipmont			•			
	Equipment	d Truck (Curb)		(lb.) 5084	(in.) 28 4/5	(lbin.) 146482.75	Т
	Hub						-
		votion ordindor 9	fromo	19 7	15 3/8	292.125 199.5	-
		vation cylinder &			28 1/2		-
	Strobe/Bra	tank (Nitrogen)		27 5	26 1/2 25 1/2	715.5	-
				5		127.5	-
		eiver/Wires		42	52	260	-
		ncluding DAS			30	1260	-
	Battery			-48	39	-1872	_
	Oil			-7	27	-189	-
	Interior			-96	28	-2688	-
	Fuel			-174	17 1/2	-3045	4
	Coolant			-15	31	-465	4
-	Washer flu	-		-1	35	-35	_
		ast (In Fuel Tan		124	17 1/2	2170	4
		upplemental Ba	ittery	12	25	300	_
	DTS TDAS	vehicle, (-) is remo		17	27	459 143972.38	1
		Estimated Tota Vertical CG	al Weight (lb.) Location (in.)				
		Vertical CG C.G. Calculatio	Location (in.)	28.7887	00.1/4		_
Vehicle Dimer Wheel Base:		Vertical CG C.G. Calculatio	Location (in.) ons Front Tr	28.7887 ack Width:		in.	-
		Vertical CG C.G. Calculatio	Location (in.) ons Front Tr	28.7887		in. in.	-
Wheel Base:	139 7/8	Vertical CG C.G. Calculatio _in.	Location (in.) ons Front Tr Rear Tr	28.7887 ack Width: ack Width:	68 3/8	in.	-
Wheel Base: _	139 7/8 vity	Vertical CG C.G. Calculatio in. 2270P MAS	Location (in.) ons Front Tr Rear Tr GH Targets	28.7887 ack Width: ack Width:	68 3/8 Test Inertial	in.	
Wheel Base: Center of Gra Test Inertial W	139 7/8 vity eight (lb.)	Vertical CG <u>C.G. Calculatio</u> in. 2270P MAS 5000	Location (in.) ons Front Tr Rear Tr SH Targets ± 110	28.7887 ack Width: ack Width:	68 3/8 Test Inertial 5001	in.	1.
Wheel Base: Center of Gra Test Inertial W Longitudinal C	139 7/8 vity eight (lb.) G (in.)	Vertical CG <u>C.G. Calculatio</u> in. <u>2270P MAS</u> 5000 63	Location (in.) ons Front Tr Rear Tr SH Targets ± 110	28.7887 ack Width: ack Width:	68 3/8 Test Inertial 5001 61.588632	in.	1. -1.4113
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in	139 7/8 vity eight (lb.) G (in.) .)	Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4	28.7887 ack Width: ack Width:	68 3/8 Test Inertial 5001 61.588632 0.0068299	in.	1. -1.4113 N
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (ir	139 7/8 vity eight (lb.) G (in.) .) n.)	Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater	28.7887 ack Width: ack Width:	68 3/8 Test Inertial 5001 61.588632	in.	1. -1.4113 N
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (ir Note: Long. CG is	139 7/8 eight (lb.) G (in.) .) n.) s measured fr	Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28 om front axle of test	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	28.7887 ack Width: ack Width:	68 3/8 Test Inertial 5001 61.588632 0.0068299 28.79	in.	1. -1.4113 N
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (ir Note: Long. CG is	139 7/8 eight (lb.) G (in.) .) n.) s measured fr	Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	28.7887 ack Width: ack Width:	68 3/8 Test Inertial 5001 61.588632 0.0068299 28.79	in.	1. -1.4113 N
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (ir Note: Long. CG is	139 7/8 vity eight (lb.) G (in.) .) n.) s measured from measured from	Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28 om front axle of test	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	28.7887 ack Width: ack Width:	68 3/8 Test Inertial 5001 61.588632 0.0068299 28.79	in.	1. -1.4113
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG	139 7/8 vity eight (lb.) G (in.) .) n.) s measured fro measured fro IT (lb.)	Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28 om front axle of test m centerline - posit	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	28.7887 ack Width: ack Width:	68 3/8 Test Inertial 5001 61.588632 0.0068299 28.79) side	in.	1. -1.4113 N. 0.7887 HT (Ib.)
Wheel Base: Center of Gra Test Inertial W Longitudinal Cd Lateral CG (in Vertical CG (ir Note: Long. CG is Note: Lateral CG CURB WEIGH	139 7/8 vity eight (lb.) G (in.) .) n.) s measured fro measured fro IT (lb.) Left	Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28 om front axle of test m centerline - posit Right	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	28.7887 ack Width: ack Width:	68 3/8 Test Inertial 5001 61.588632 0.0068299 28.79) side TEST INER	in. TIAL WEIGI	1. -1.4113 N. 0.7887 HT (Ib.) Right
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (ir Note: Long. CG is Note: Lateral CG CURB WEIGH Front	139 7/8 vity eight (lb.) G (in.) .) c.) s measured fro measured fro IT (lb.) Left 1480	Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28 om front axle of tes m centerline - posit Right 1379	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	28.7887 ack Width: ack Width:	68 3/8 Test Inertial 5001 61.588632 0.0068299 28.79 side TEST INER	in. TIAL WEIGI Left 1403	1. -1.4113 N, 0.7887 HT (Ib.) HT (Ib.) Right 1396
Wheel Base: Center of Gra Test Inertial W Longitudinal Cd Lateral CG (in Vertical CG (ir Note: Long. CG is Note: Lateral CG CURB WEIGH	139 7/8 vity eight (lb.) G (in.) .) n.) s measured fro measured fro IT (lb.) Left	Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28 om front axle of test m centerline - posit Right	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	28.7887 ack Width: ack Width:	68 3/8 Test Inertial 5001 61.588632 0.0068299 28.79) side TEST INER	in. TIAL WEIGI	1. -1.4113 N. 0.7887 HT (Ib.) Right
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (ir Note: Long. CG is Note: Lateral CG CURB WEIGH Front	139 7/8 vity eight (lb.) G (in.) .) c.) s measured fro measured fro IT (lb.) Left 1480	Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28 om front axle of tes m centerline - posit Right 1379	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	28.7887 ack Width: ack Width:	68 3/8 Test Inertial 5001 61.588632 0.0068299 28.79 side TEST INER	in. TIAL WEIGI Left 1403	Right 1396
Wheel Base: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG CURB WEIGH Front Rear	139 7/8 vity eight (lb.) G (in.) .) n.) s measured from measured from IT (lb.) Left 1480 1118	Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28 om front axle of test m centerline - posit Right 1379 1107	Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	28.7887 ack Width: ack Width:	68 3/8 Test Inertial 5001 61.588632 0.0068299 28.79) side TEST INER Front Rear	in. TIAL WEIGI Left 1403 1097	1. -1.4113 N/ 0.7887 HT (Ib.) Right 1396 1105

Figure D-1. Vehicle Mass Distribution, Test No. NJPCB-5

Appendix E. Vehicle Deformation Records

Date: Year:	2/27/2018 2009	. ¹	Fest Name: Make:	NJP Do	CB-5 dae	VIN: Model:		IB18P19S7 Ram			
				VEHICLE	PRE/POST DRPAN - SE	CRUSH					
POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔZ (in.)	Total ∆ (in.)	Crush (in.)
1	28.635	-28.450	3.080	27.488	-28.040	3.841	-1.147	0.411	0.761	1.437	1.377
2	29.968	-25.247	1.730	28.668	-24.553	2.912	-1.300	0.694	1.182	1.889	1.757
3	30.700	-19.757	0.010	29.989	-19.340	1.221	-0.711	0.416	1.210	1.464	1.404
4	28.670	-12.982	0.286	28.669	-12.654	0.287	-0.001	0.328	0.002	0.328	0.002
5	26.212	-29.480	-0.811	25.874	-28.989	-0.456	-0.338	0.491	0.355	0.693	0.490
6	26.300	-25.081	-1.341	25.954	-24.671	-0.786	-0.346	0.410	0.555	0.772	0.654
7	26.230	-18.867	-1.986	25.740	-18.400	-1.173	-0.490	0.467	0.813	1.058	0.949
8	26.040 22.573	-13.239 -29.739	-2.575 -2.924	26.070 22.407	-12.934 -29.382	-2.484 -2.760	0.030	0.305	0.091	0.319	0.096
10	22.573	-25.030	-3.406	22.274	-29.302	-3.034	-0.266	0.297	0.104	0.427	0.372
11	22.474	-19.101	-4.061	22.274	-18.758	-3.776	-0.196	0.343	0.372	0.486	0.284
12	22.467	-13.619	-4.614	22.348	-13.276	-4.563	-0.120	0.342	0.050	0.366	0.050
13	18.473	-29.761	-4.215	18.500	-29.342	-4.285	0.027	0.419	-0.070	0.426	-0.070
14	18.481	-25.117	-4.593	18.464	-24.837	-4.597	-0.017	0.280	-0.005	0.281	-0.005
15	18.574	-19.386	-5.188	18.697	-19.134	-5.200	0.123	0.251	-0.012	0.280	-0.012
16	18.626	-13.730	-5.801	18.612	-13.371	-5.833	-0.015	0.358	-0.032	0.360	-0.032
17	15.223	-29.612	-4.117	15.251	-29.289	-4.329	0.029	0.323	-0.213	0.388	-0.213
18	15.198	-25.026	-4.522	15.212	-24.711	-4.618	0.014	0.314	-0.096	0.329	-0.096
19 20	14.912	-19.075 -13.342	-5.117	14.974	-18.720	-5.141	0.063	0.355	-0.024 -0.031	0.361	-0.024
20	14.893 10.329	-13.342	-5.731 -3.765	14.861	-13.036 -28.936	-5.762 -4.019	-0.031 0.017	0.306	-0.031	0.310	-0.031 -0.253
22	10.209	-24.413	-4.180	10.253	-24.067	-4.377	0.044	0.346	-0.198	0.401	-0.198
23	10.103	-18.124	-4.821	10.117	-17.843	-4.855	0.014	0.281	-0.034	0.284	-0.034
24	10.146	-13.375	-5.337	10.149	-13.058	-5.374	0.003	0.317	-0.038	0.319	-0.038
25	0.171	-26.853	0.123	0.241	-26.561	0.142	0.070	0.292	0.019	0.301	0.019
26	0.196	-21.762	-0.389	0.264	-21.444	-0.387	0.068	0.318	0.001	0.325	0.001
27	0.108	-16.361	-0.964	0.112	-16.032	-0.978	0.004	0.328	-0.014	0.329	-0.014
28	0.030	-12.358	-1.406	0.101	-12.083	-1.422	0.071	0.275	-0.016	0.284	-0.016
DOOR-		1 5 9	2 3 6 7 10 11 14 15 18 19	2 4 8 12 16							IOR
			25 26	27 28	X	Y					

Figure E-1. Floor Pan Deformation Data – Set 1, Test No. NJPCB-5

and the second se	2/27/2018		Test Name:			VIN:	1D3H	IB18P19S7	79289		
Year:	2009	•	Make:	Do	dge	Model:		Ram		-	
					PRE/POST	CDUSH					
					ORPAN - SE						
				120		-12					
	Х	Y	Z	Χ'	Y'	Z	ΔX	ΔΥ	ΔZ	Total ∆	Crush
POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
1	50.472	-29.123	2.450	49.198	-29.137	3.087	-1.274	-0.015	0.637	1.425	1.425
2	51.934	-25.861	1.534	50.513	-25.546	2.515	-1.421	0.316	0.981	1.756	1.727
3	52.773	-20.218	0.289	51.935	-20.251	1.446	-0.837	-0.033	1.157	1.429	1.429
4	50.868	-13.379	1.170	50.865	-13.484	1.224	-0.003	-0.105	0.054	0.118	0.054
5	48.139	-29.646	-1.625	47.679	-29.599	-1.247	-0.460	0.047	0.378	0.597	0.595
6	48.332	-25.189	-1.698	47.875	-25.207	-1.198	-0.457	-0.018	0.500	0.678	0.678
7	48.412	-18.923	-1.731	47.831	-18.936	-0.939	-0.581	-0.013	0.792	0.982	0.982
8	48.333	-13.363	-1.791	48.329	-13.405	-1.664	-0.003	-0.042	0.127	0.134	0.127
9	44.572	-29.658	-3.833	44.348	-29.562	-3.709	-0.223	0.096	0.124	0.273	0.124
10	44.656	-25.005	-3.843	44.339	-24.886	-3.510	-0.317	0.120	0.333	0.475	0.333
11	44.710	-18.939	-3.925	44.425	-18.910	-3.680	-0.285	0.029	0.245	0.377	0.245
12	44.776	-13.408	-3.968	44.647	-13.445	-3.888	-0.129	-0.037	0.080	0.156	0.080
13	40.574	-29.465	-5.233	40.482	-29.365	-5.373	-0.092	0.100	-0.141	0.196	-0.141
14	40.566	-24.798	-5.152	40.556	-24.817	-5.217	-0.010	-0.019 0.064	-0.066	0.069	-0.066
15 16	40.901 41.054	-19.096 -13.340	-5.178 -5.233	40.843	-19.032 -13.353	-5.228 -5.257	-0.059	-0.064	-0.050	0.100	-0.050 -0.024
10	37.266	-13.340	-5.233	37.203	-13.353	-5.257	-0.040	0.012	-0.024	0.049	-0.024
17	37.363	-29.246	-5.213 -5.166	37.203	-29.190	-5.325	-0.062	0.056	-0.301	0.313	-0.301
10	37.284	-18.634	-5.185	37.204	-18.601	-5.229	-0.083	0.027	-0.044	0.099	-0.044
20	37.252	-12.889	-5.232	37.241	-12.848	-5.262	-0.000	0.033	-0.030	0.052	-0.030
20	32.361	-28.861	-4.971	32.266	-28.826	-5.312	-0.095	0.035	-0.342	0.356	-0.342
22	32.365	-23.929	-4.908	32.335	-23.881	-5.166	-0.030	0.047	-0.258	0.264	-0.258
23	32.374	-17.631	-4.933	32.385	-17.572	-5.001	0.011	0.059	-0.067	0.090	-0.067
24	32.526	-12.829	-4.978	32.525	-12.799	-5.003	-0.001	0.031	-0.025	0.040	-0.025
	22.140	-26.579	-1.155	22.175	-26.553	-1.231	0.035	0.026	-0.076	0.088	-0.076
1 25											
25 26			-1.164	22.315	-21.410	-1.227	0.011	0.116	-0.063	0.132	-0.063
26	22.305	-21.526	-1.164 -1.208	22.315 22.300	-21.410 -15.958	-1.227 -1.257	0.011 -0.063	0.116 0.065	-0.063 -0.049	0.132 0.102	-0.063 -0.049
			-1.164 -1.208 -1.255	22.315 22.300 22.351	-21.410 -15.958 -12.026	-1.227 -1.257 -1.290	0.011 -0.063 -0.041	0.116 0.065 -0.002	-0.063 -0.049 -0.035	0.132 0.102 0.054	-0.063 -0.049 -0.035
26 27	22.305 22.362	-21.526 -16.022	-1.208	22.300	-15.958	-1.257	-0.063	0.065	-0.049	0.102	-0.049
26 27	22.305 22.362 22.391	-21.526 -16.022 -12.024	-1.208 -1.255	22.300 22.351	-15.958 -12.026	-1.257 -1.290	-0.063	0.065	-0.049	0.102	-0.049
26 27 28	22.305 22.362 22.391	-21.526 -16.022 -12.024	-1.208 -1.255	22.300 22.351	-15.958 -12.026	-1.257 -1.290	-0.063	0.065	-0.049	0.102	-0.049
26 27 28	22.305 22.362 22.391	-21.526 -16.022 -12.024	-1.208 -1.255	22.300 22.351 alar to the pl	-15.958 -12.026	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049
26 27 28	22.305 22.362 22.391	-21.526 -16.022 -12.024	-1.208 -1.255	22.300 22.351 Ilar to the p	-15.958 -12.026 lane area of	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049
26 27 28	22.305 22.362 22.391	-21.526 -16.022 -12.024	-1.208 -1.255	22.300 22.351 alar to the pl	-15.958 -12.026 lane area of	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049
26 27 28	22.305 22.362 22.391	-21.526 -16.022 -12.024 deformation	-1.208 -1.255	22.300 22.351	-15.958 -12.026 lane area of	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049
26 27 28	22.305 22.362 22.391	-21.526 -16.022 -12.024 deformation	-1.208 -1.255 a perpendicu 2 3 6 7 10 14	22.300 22.351 Ilar to the pl D 4 8 12	-15.958 -12.026 lane area of	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049
26 27 28	22.305 22.362 22.391	-21.526 -16.022 -12.024 deformation	-1.208 -1.255 a perpendicu 2 3 6 7 10 14 14 15	22.300 22.351 Ilar to the pl D 4 8 12 16	-15.958 -12.026 lane area of	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049
26 27 28	22.305 22.362 22.391	-21.526 -16.022 -12.024 deformation	-1.208 -1.255 a perpendicu 2 3 6 7 10 14	22.300 22.351 Ilar to the pl D 4 8 12 16	-15.958 -12.026 lane area of	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049
26 27 28	22.305 22.362 22.391	-21.526 -16.022 -12.024 deformation 1 5 9 13 17	-1.208 -1.255 a perpendicu 2 3 6 7 10 14 15 18 18	22.300 22.351 ilar to the p 4 8 12 5 16 20	-15.958 -12.026 lane area of	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049
26 27 28	22.305 22.362 22.391	-21.526 -16.022 -12.024 deformation	-1.208 -1.255 a perpendicu 2 3 6 7 10 14 15 18 18	22.300 22.351 Ilar to the pl D 4 8 12 16	-15.958 -12.026 lane area of	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049
26 27 28 Note: Crus	22.305 22.362 22.391	-21.526 -16.022 -12.024 deformation 1 5 9 13 17	-1.208 -1.255 a perpendicu 2 3 6 7 10 14 15 18 18	22.300 22.351 ilar to the p 4 8 12 5 16 20	-15.958 -12.026 lane area of	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049 -0.035
26 27 28	22.305 22.362 22.391	-21.526 -16.022 -12.024 deformation 1 5 9 13 17 21	-1.208 -1.255 a perpendicu 2 3 6 7 10 14 14 15 18 19 22 2	22.300 22.351 ilar to the p 0 4 8 12 16 9 20 23 24	-15.958 -12.026 lane area of	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049
26 27 28 Note: Crus	22.305 22.362 22.391	-21.526 -16.022 -12.024 deformation 1 5 9 13 17 21	-1.208 -1.255 a perpendicu 2 3 6 7 10 14 15 18 18	22.300 22.351 ilar to the p 0 4 8 12 16 9 20 23 24	-15.958 -12.026 lane area of	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049 -0.035
26 27 28 Note: Crus	22.305 22.362 22.391	-21.526 -16.022 -12.024 deformation 1 5 9 13 17 21	-1.208 -1.255 a perpendicu 2 3 6 7 10 14 14 15 18 19 22 2	22.300 22.351 ilar to the p 0 4 8 12 16 9 20 23 24	-15.958 -12.026 lane area of	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049 -0.035
26 27 28 Note: Crus	22.305 22.362 22.391	-21.526 -16.022 -12.024 deformation 1 5 9 13 17 21	-1.208 -1.255 a perpendicu 2 3 6 7 10 14 14 15 18 19 22 2	22.300 22.351 ilar to the p 0 4 8 12 16 9 20 23 24	-15.958 -12.026 lane area of	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049 -0.035
26 27 28 Note: Crus	22.305 22.362 22.391	-21.526 -16.022 -12.024 deformation 1 5 9 13 17 21	-1.208 -1.255 a perpendicu 2 3 6 7 10 14 14 15 18 19 22 2	22.300 22.351 ilar to the p 0 4 8 12 16 9 20 23 24	-15.958 -12.026 lane area of	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049 -0.035
26 27 28 Note: Crus	22.305 22.362 22.391	-21.526 -16.022 -12.024 deformation 1 5 9 13 17 21	-1.208 -1.255 a perpendicu 2 3 6 7 10 14 14 15 18 19 22 2	22.300 22.351 ilar to the p 0 4 8 12 16 9 20 23 24	-15.958 -12.026 lane area of	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049 -0.035
26 27 28 Note: Crus	22.305 22.362 22.391	-21.526 -16.022 -12.024 deformation 1 5 9 13 17 21	-1.208 -1.255 a perpendicu 2 3 6 7 10 14 14 15 18 19 22 2	22.300 22.351 ilar to the p 0 4 8 12 16 9 20 23 24	-15.958 -12.026	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049 -0.035
26 27 28 Note: Crus	22.305 22.362 22.391	-21.526 -16.022 -12.024 deformation 1 5 9 13 17 21	-1.208 -1.255 a perpendicu 2 3 6 7 10 14 14 15 18 19 22 2	22.300 22.351 ilar to the p 0 4 8 12 16 9 20 23 24	-15.958 -12.026 lane area of	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049 -0.035
26 27 28 Note: Crus	22.305 22.362 22.391	-21.526 -16.022 -12.024 deformation 1 5 9 13 17 21	-1.208 -1.255 a perpendicu 2 3 6 7 10 14 14 15 18 19 22 2	22.300 22.351 ilar to the p 0 4 8 12 16 9 20 23 24	-15.958 -12.026	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049 -0.035
26 27 28 Note: Crus	22.305 22.362 22.391	-21.526 -16.022 -12.024 deformation 1 5 9 13 17 21	-1.208 -1.255 a perpendicu 2 3 6 7 10 14 14 15 18 19 22 2	22.300 22.351 ilar to the p 0 4 8 12 16 9 20 23 24	-15.958 -12.026	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049 -0.035
26 27 28 Note: Crus	22.305 22.362 22.391	-21.526 -16.022 -12.024 deformation 1 5 9 13 17 21	-1.208 -1.255 a perpendicu 2 3 6 7 10 14 14 15 18 19 22 2	22.300 22.351 ilar to the p 0 4 8 12 16 9 20 23 24	-15.958 -12.026	-1.257 -1.290 interest	-0.063	0.065	-0.049	0.102	-0.049 -0.035

Figure E-2. Floor Pan Deformation Data – Set 2, Test No. NJPCB-5

						RUSH - SET						
	POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔΖ (in.)	Total ∆ (in.)	Crush (in.)
	1	15.620	-27.892	26.717	15.481	-27.667	26.871	-0.139	0.225	0.154	0.306	0.306
T	2	13.552	-15.681	29.304	13.402	-15.538	29.383	-0.151	0.143	0.079	0.222	0.222
DASH	3	12.109	2.556	24.670	12.041	2.664	24.728	-0.068	0.109	0.058	0.140	0.140
à	4	12.745	-28.166	15.799	12.682	-27.967	15.947	-0.063	0.199	0.148	0.256	0.256
	5	10.412 9.209	-17.488 1.194	15.195 12.976	10.345 9.135	-17.398 1.450	15.289 12.929	-0.067 -0.074	0.090	0.094	0.146	0.146
	7	21.155	-31.936	6.429	21.128	-31.621	6.662	-0.074	0.315	0.232	0.392	0.270
빙핃	8	21.155	-32.083	5.744	24.549	-31.766	5.964	-0.027	0.315	0.232	0.392	0.315
SIDE PANEL	9	22.800	-32.277	2.674	22.819	-31.953	2.833	0.019	0.324	0.159	0.362	0.324
	10	-13.411	-31.955	25.632	-13.502	-32.558	25.768	-0.091	-0.602	0.136	0.624	-0.602
IMPACT SIDE DOOR	11	-2.482	-31.787	25.082	-2.590	-32.154	25.322	-0.108	-0.367	0.241	0.452	-0.367
DR S	12	10.509	-31.569	24.308	10.353	-31.685	24.522	-0.156	-0.116	0.214	0.290	-0.116
0 Q	13	-10.945	-33.954	12.914	-10.940	-34.106	13.080	0.006	-0.152	0.166	0.225	-0.152
AP,	14	0.897	-34.770	11.849	0.781	-34.758	11.954	-0.116	0.012	0.105	0.157	0.012
2	15	11.970	-33.152	10.879	11.856	-32.925	11.055	-0.115	0.227	0.176	0.309	0.227
	16	4.320	-21.853	42.983	4.231	-21.641	43.097	-0.089	0.212	0.114	0.257	0.114
	17	6.344	-15.711	42.605	6.232	-15.441	42.735	-0.111	0.270	0.130	0.320	0.130
	18	7.692	-10.107	42.095	7.504	-9.880	42.258	-0.188	0.227	0.163	0.337	0.163
	19	8.337	-3.591	41.644	8.224	-3.418	41.759	-0.112	0.173	0.115	0.236	0.115
	20	8.784	3.992	40.830	8.647	4.197	40.958	-0.137	0.206	0.128	0.279	0.128
	21 22	-2.043 -0.991	-19.282 -14.094	46.022 45.809	-2.170 -1.151	-19.127 -13.858	46.137 45.929	-0.127	0.154	0.115	0.231	0.115
ROOF	22	-0.991	-14.094	45.809	-0.571	-13.858	45.929	-0.160 -0.136	0.237	0.120	0.310	0.120
ß	23	0.262	-3.139	45.023	0.084	-2.920	45.138	-0.178	0.200	0.112	0.305	0.112
	25	0.263	3.681	44.420	0.168	3.901	44.509	-0.095	0.220	0.090	0.256	0.090
	26	-6.658	-18.757	46.763	-6.823	-18.561	46.877	-0.165	0.196	0.114	0.281	0.114
	27	-6.061	-13.833	46.603	-6.127	-13.643	46.702	-0.066	0.190	0.099	0.224	0.099
	28	-5.288	-8.715	46.277	-5.484	-8.538	46.392	-0.196	0.177	0.115	0.288	0.115
	29	-4.004	-2.994	45.727	-4.066	-2.825	45.823	-0.061	0.169	0.096	0.204	0.096
	30	-3.267	3.419	45.047	-3.461	3.761	45.141	-0.194	0.342	0.093	0.404	0.093
с	31	4.740	-23.474	41.642	4.647	-23.263	41.818	-0.093	0.211	0.176	0.290	0.211
A PILLAR	32	8.585	-24.583	39.607	8.508	-24.383	39.748	-0.078	0.200	0.140	0.256	0.200
E	33	15.012	-26.431	35.392	14.957	-26.251	35.623	-0.055	0.180	0.231	0.298	0.180
	34	19.721	-27.831	31.684	19.683	-27.658	31.853	-0.038	0.173	0.168	0.245	0.173
	35 36	-21.493 -17.880	-32.021	9.660	-21.459 -17.873	-31.648	9.620	0.034	0.373	-0.039	0.377	0.373
B PILLAR	36	-17.880	-31.974 -31.063	9.779 18.022	-17.873	-31.665 -30.721	9.759 18.090	0.006	0.310	-0.020	0.310	0.310
ВIJ	38	-18.103	-31.003	18.080	-18.132	-30.721	18.170	-0.075	0.342	0.009	0.322	0.342
ā	39	-22.014	-29.764	27.024	-22.133	-29.460	27.162	-0.119	0.304	0.138	0.354	0.304
	40	-18.476	-29.635	27.322	-18.534	-29.351	27.429	-0.058	0.285	0.107	0.309	0.285
ote: Cru	sh column i	s deformatio	n perpendic	ular to the p	olane area	of interest						

Figure E-3. Occupant Compartment Deformation Data – Set 1, Test No. NJPCB-5

						POST CRU RUSH - SET						
	POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔZ (in.)	Total ∆ (in.)	Crush (in.)
	1	36.733	-30.465	25.628	36.475	-30.839	25.705	-0.258	-0.373	0.076	0.460	0.460
-	2	34.822	-18.586	29.299	34.557	-18.915	29.361	-0.265	-0.330	0.062	0.428	0.428
DASH	3	33.962	0.019	26.539	33.717	-0.272	26.524	-0.245	-0.290	-0.015	0.380	0.380
DA	4	34.188	-29.627	14.698	34.001	-29.941	14.740	-0.187	-0.314	0.042	0.368	0.368
	5	32.086	-18.961	15.082	31.959	-19.237	15.043	-0.126	-0.276	-0.039	0.306	0.306
	6	31.308	-0.061	14.701	31.239	-0.227	14.659	-0.068	-0.167	-0.042	0.185	0.185
SIDE PANEL	7	42.783	-32.709	5.252	42.669	-32.807	5.367	-0.114	-0.098	0.116	0.190	-0.098
AN	8	46.299	-32.869	4.607	46.135	-32.969	4.768	-0.164	-0.099	0.162	0.251	-0.099
	9	44.489	-32.721	1.466	44.510	-32.787	1.611	0.021	-0.066	0.145	0.161	-0.066
IMPACT SIDE DOOR	10	7.662	-33.832	23.233	7.454	-34.814	23.141	-0.208	-0.982	-0.092	1.007	-0.982
LIN R	11	18.717	-33.839	23.083	18.476	-34.644	23.078	-0.241	-0.805	-0.005	0.840	-0.805
50	12	31.573	-33.839	22.721	31.358	-34.426	22.764	-0.215	-0.588	0.043	0.627	-0.588
DAC	13	10.553	-34.620	10.527	10.318	-35.097	10.521	-0.235 -0.223	-0.477	-0.006	0.532	-0.477
M	14 15	22.332	-35.599 -34.149	9.713 9.259	22.109 33.252	-35.936	9.660	-0.223	-0.338	-0.053	0.408	-0.338
_		33.534				-34.309	9.327		-0.160	0.069		-0.160
	16	25.088	-25.826	42.113	24.769	-26.218	42.123	-0.319	-0.392	0.010	0.506	0.010
	17 18	27.248 28.623	-19.652 -14.081	42.405 42.523	26.976 28.403	-20.088	42.431 42.575	-0.272 -0.220	-0.436 -0.410	0.026	0.514 0.469	0.026
	10	29.501	-14.081	42.523	28.403	-14.491 -8.032	42.803	-0.220	-0.410	0.052	0.469	0.052
	20	30.097	-0.023	42.639	29.240	-0.371	42.803	-0.280	-0.347	0.174	0.453	0.131
	20	18.701	-23.524	45.180	18.376	-23.840	45.190	-0.325	-0.316	0.010	0.453	0.010
TC.	22	19.816	-18.215	45.534	19.522	-18.590	45.564	-0.294	-0.375	0.031	0.478	0.010
ROOF	23	20.553	-13.102	45.751	20.249	-13.499	45.813	-0.305	-0.397	0.062	0.504	0.062
RO	24	21.389	-7.386	45.842	21.070	-7.663	45.946	-0.319	-0.277	0.104	0.435	0.104
	25	21.558	-0.468	45.909	21.296	-0.837	46.036	-0.262	-0.369	0.128	0.470	0.128
	26	13.981	-22.905	45.862	13.706	-23.207	45.847	-0.275	-0.301	-0.015	0.408	-0.015
	27	14.798	-17.971	46.197	14.493	-18.326	46.208	-0.305	-0.355	0.011	0.469	0.011
	28	15.605	-12.941	46.399	15.381	-13.250	46.435	-0.224	-0.310	0.035	0.384	0.035
	29	17.090	-7.181	46.442	16.807	-7 538	46.518	-0.283	-0.357	0.075	0.461	0.075
	30	17.881	-0.691	46.427	17.652	-0.971	46.534	-0.229	-0.280	0.107	0.377	0.107
<u></u>	31	25.549	-27.353	40.653	25.280	-27.702	40.630	-0.269	-0.350	-0.023	0.442	-0.350
A PILLAR	32	29.409	-28.335	38.595	29.140	-28.689	38.623	-0.269	-0.354	0.028	0.445	-0.354
	33	35.935	-29.920	34.438	35.672	-30.275	34.430	-0.262	-0.355	-0.008	0.441	-0.355
	34	40.722	-31.050	30.710	40.440	-31.408	30.764	-0.282	-0.357	0.054	0.458	-0.357
	35	0.080	-32.149	7.173	-0.026	-32.023	7.106	-0.107	0.126	-0.067	0.178	0.126
2	36	3.678	-32.194	7.419	3.583	-32.149	7.242	-0.095	0.045	-0.177	0.207	0.045
m ₹	37	-0.817	-31.988	15.653	-0.944	-31.957	15.482	-0.127	0.031	-0.171	0.215	0.031
B PILLAR	38	3.187	-32.041	15.780	3.044	-32.057	15.659	-0.143	-0.016	-0.121	0.188	-0.016
1	39	-0.980	-31.562	24.787	-1.162	-31.640	24.609	-0.183	-0.077	-0.177	0.266	-0.077
	40	2.604	-31.541	25.207	2.398	-31.648	25.022	-0.206	-0.107	-0.185	0.297	-0.107
	an coiumn i	s deformatio	n perpendic	uiar to trie	viane alea	or meres(

Figure E-4. Occupant Compartment Deformation Data – Set 2, Test No. NJPCB-5

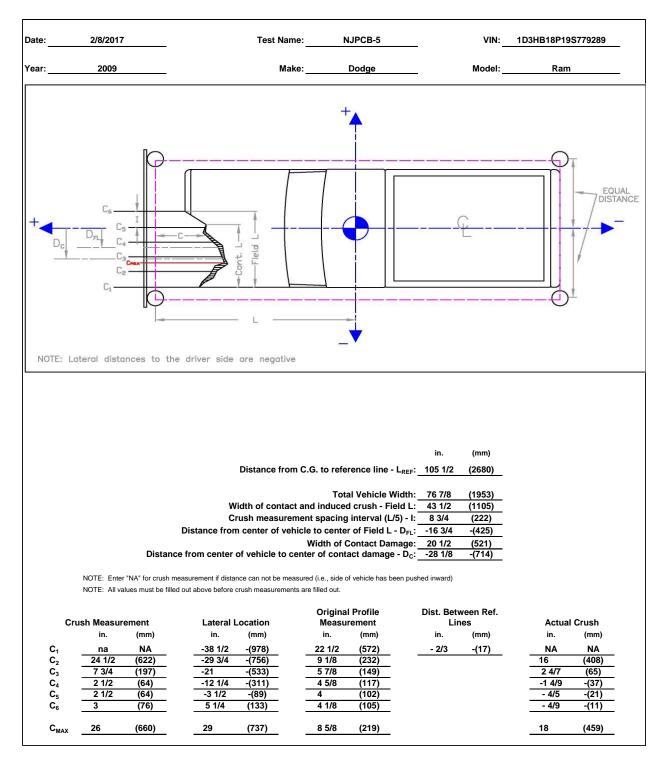


Figure E-5. Exterior Vehicle Crush (NASS) - Front, Test No. NJPCB-5

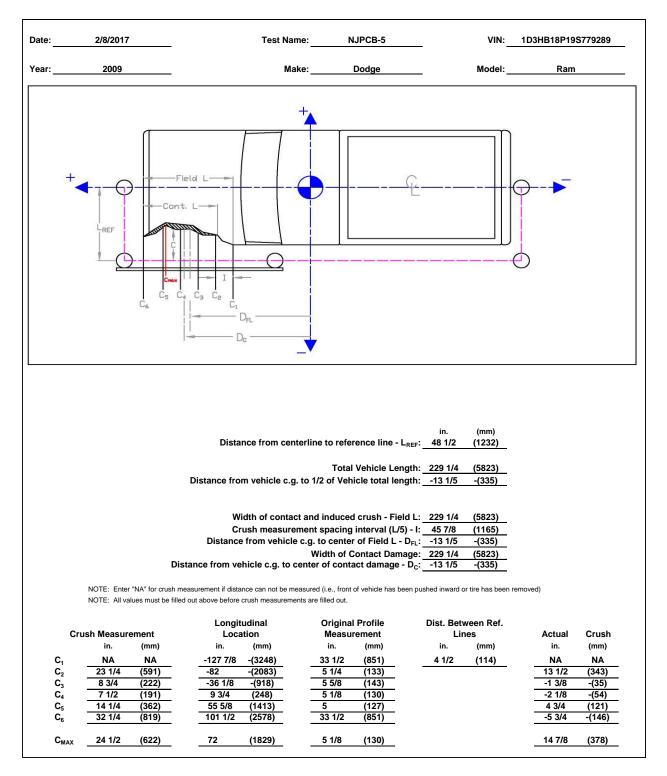


Figure E-6. Exterior Vehicle Crush (NASS) - Side, Test No. NJPCB-5

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. NJPCB-5

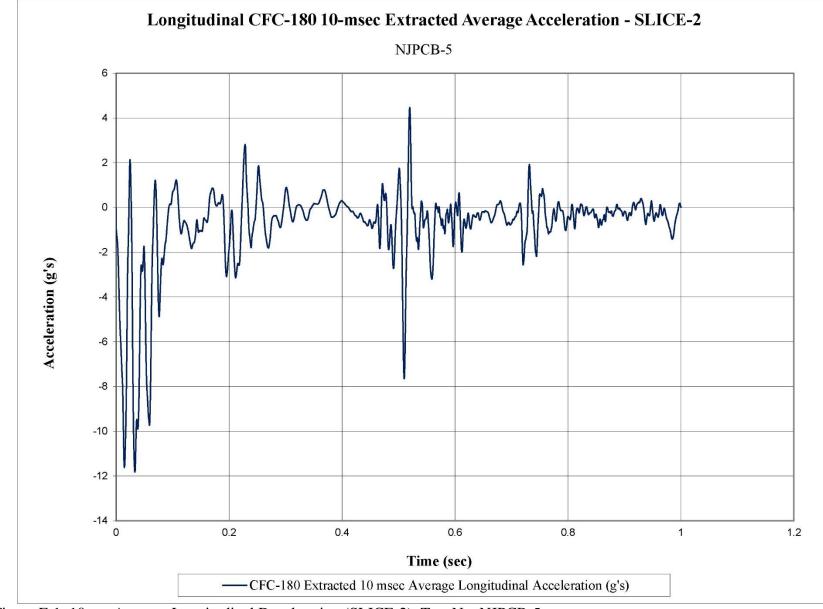


Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. NJPCB-5

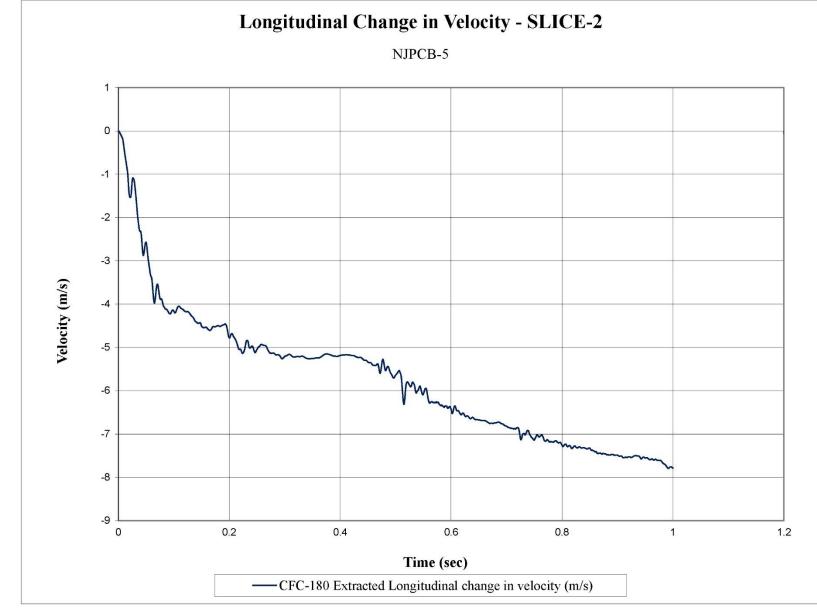


Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. NJPCB-5

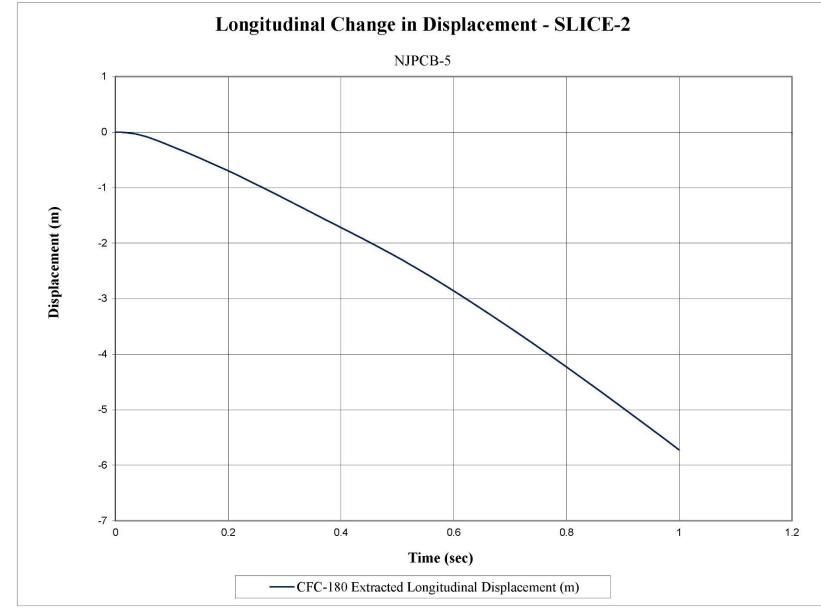


Figure F-3. Longitudinal Occupant Displacement (SLICE-2), Test No. NJPCB-5

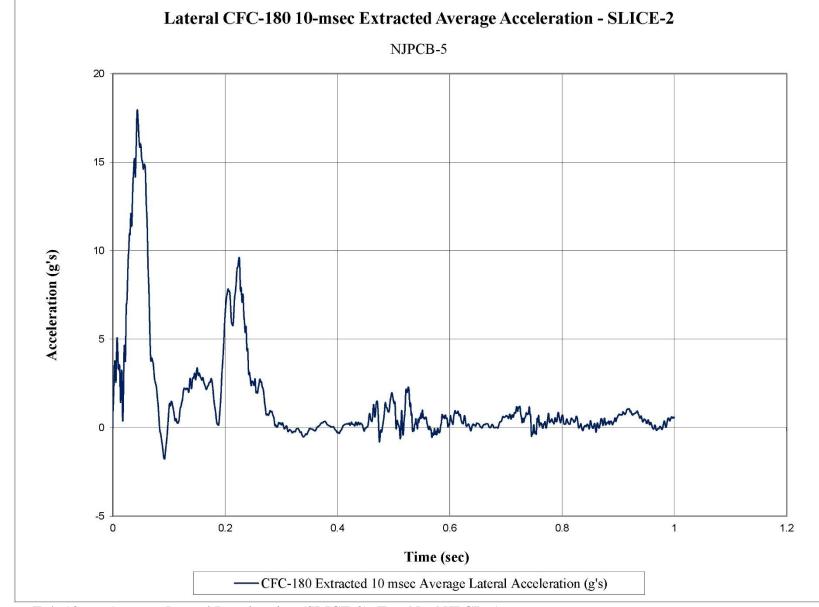


Figure F-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. NJPCB-5

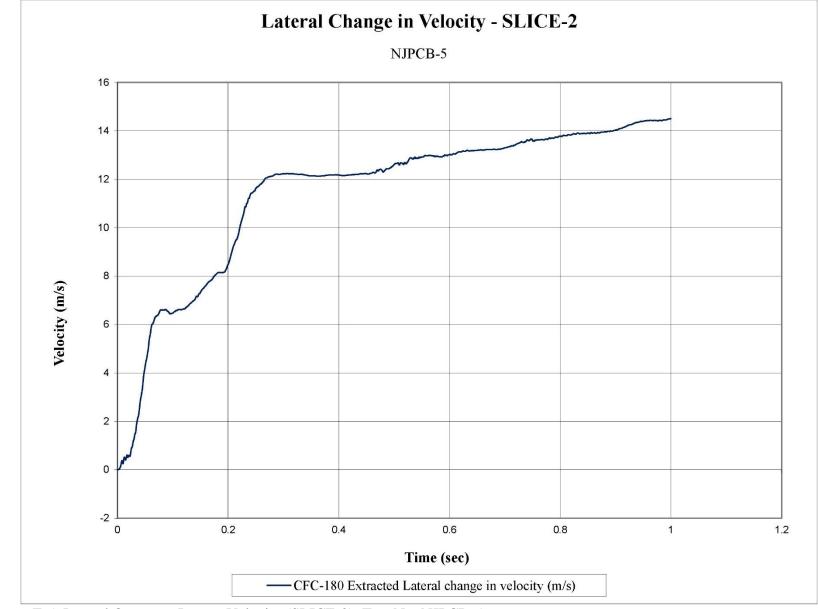


Figure F-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. NJPCB-5

Figure F-6. Lateral Occupant Displacement (SLICE-2), Test No. NJPCB-5

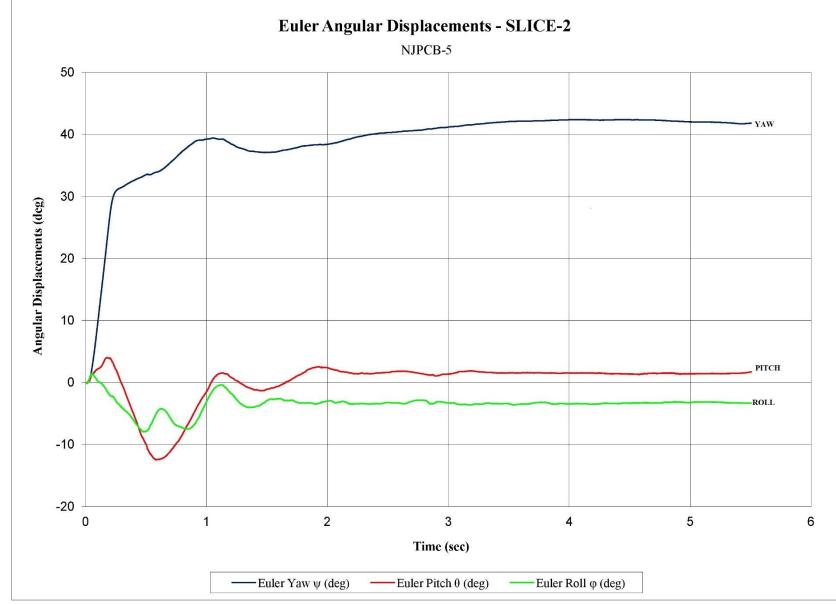


Figure F-7. Vehicle Angular Displacements (SLICE-2), Test No. NJPCB-5

December 13, 2018 MwRSF Report No. TRP-03-372-18

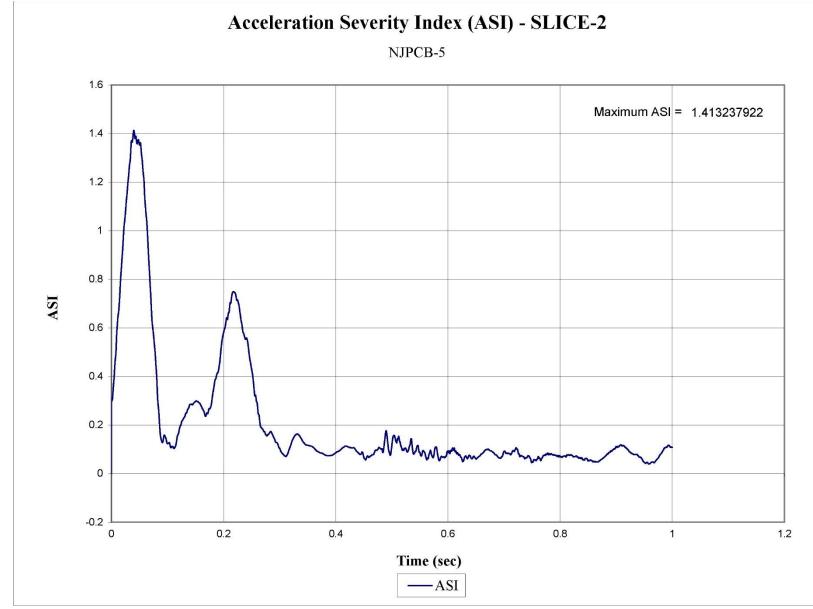


Figure F-8. Acceleration Severity Index (SLICE-2), Test No. NJPCB-5

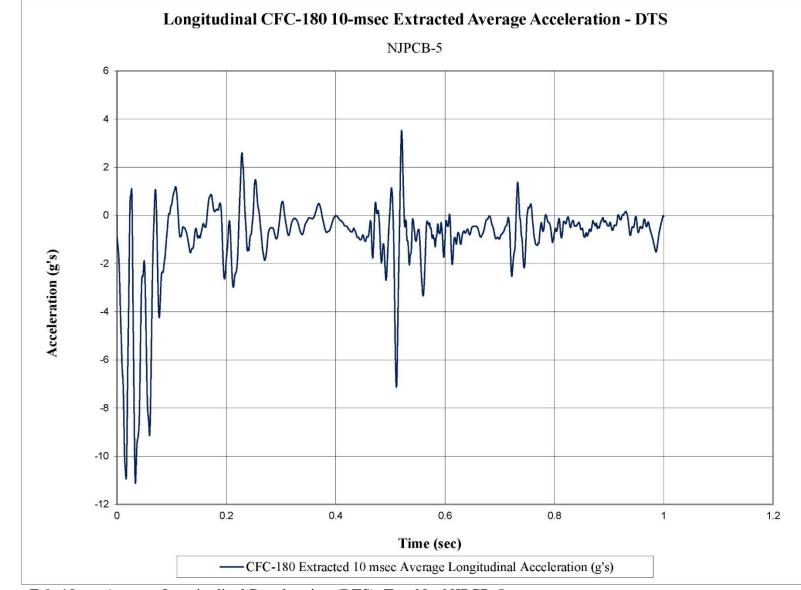


Figure F-9. 10-ms Average Longitudinal Deceleration (DTS), Test No. NJPCB-5

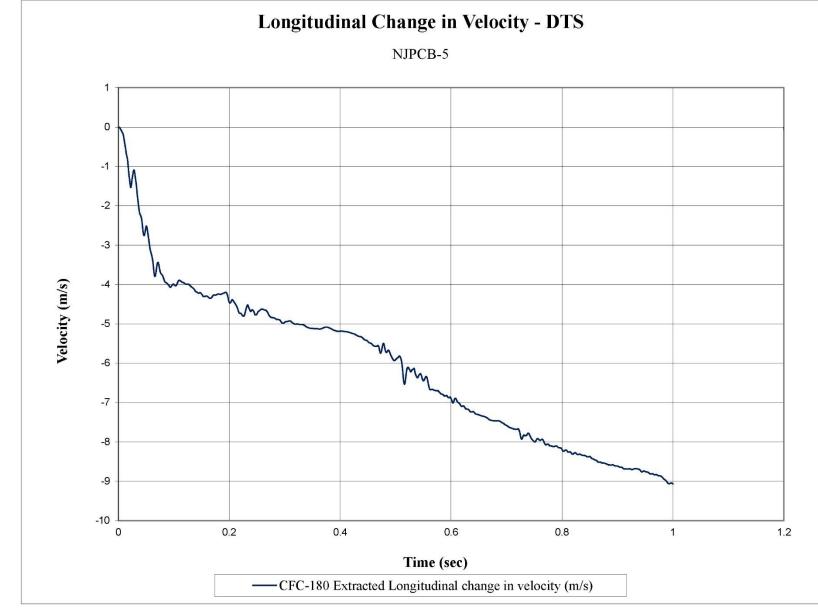


Figure F-10. Longitudinal Occupant Impact Velocity (DTS), Test No. NJPCB-5

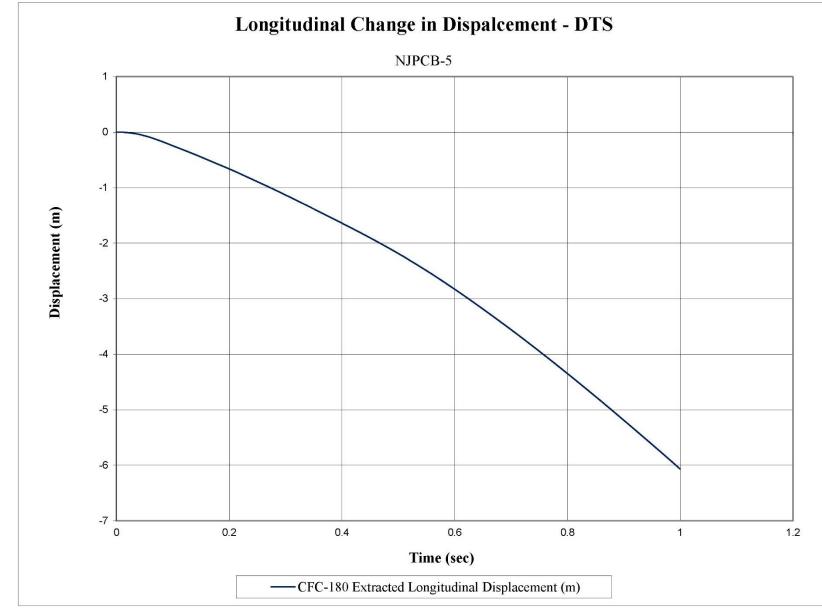


Figure F-11. Longitudinal Occupant Displacement (DTS), Test No. NJPCB-5

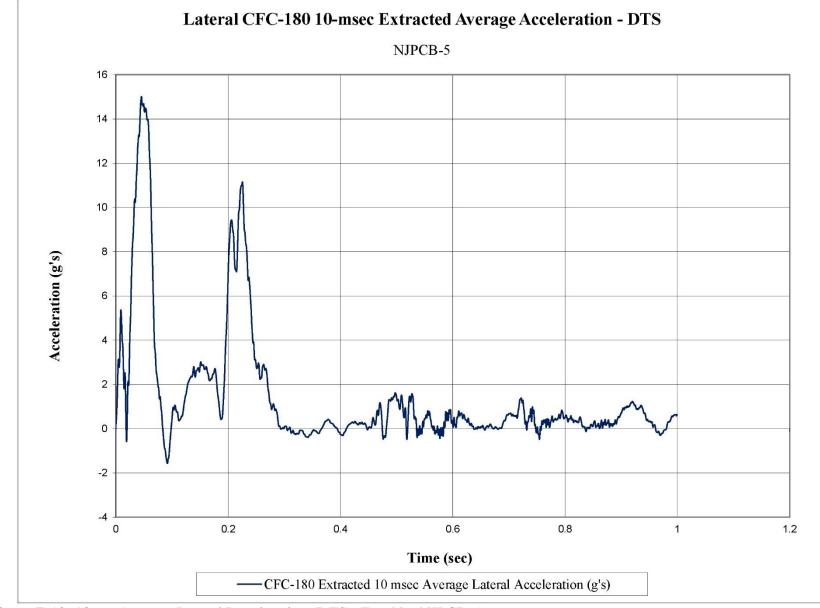


Figure F-12. 10-ms Average Lateral Deceleration (DTS), Test No. NJPCB-5

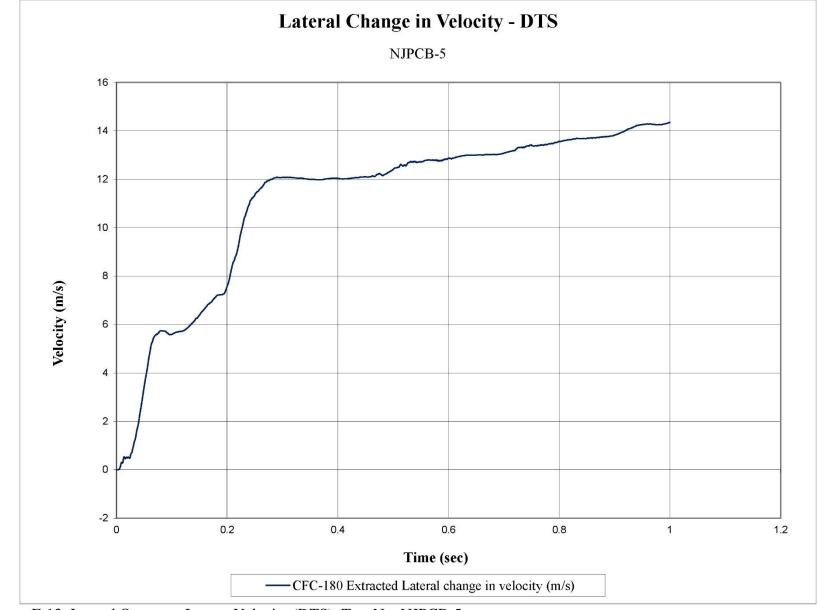


Figure F-13. Lateral Occupant Impact Velocity (DTS), Test No. NJPCB-5

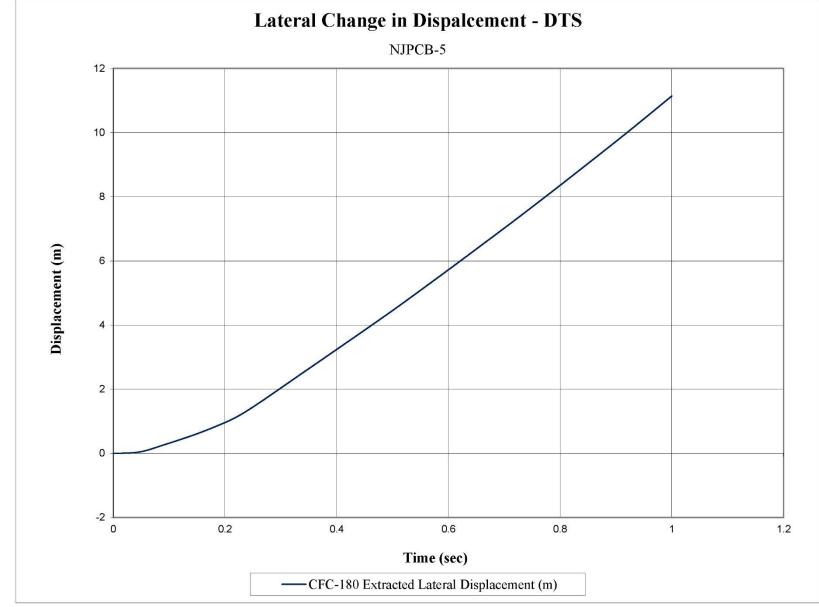


Figure F-14. Lateral Occupant Displacement (DTS), Test No. NJPCB-5

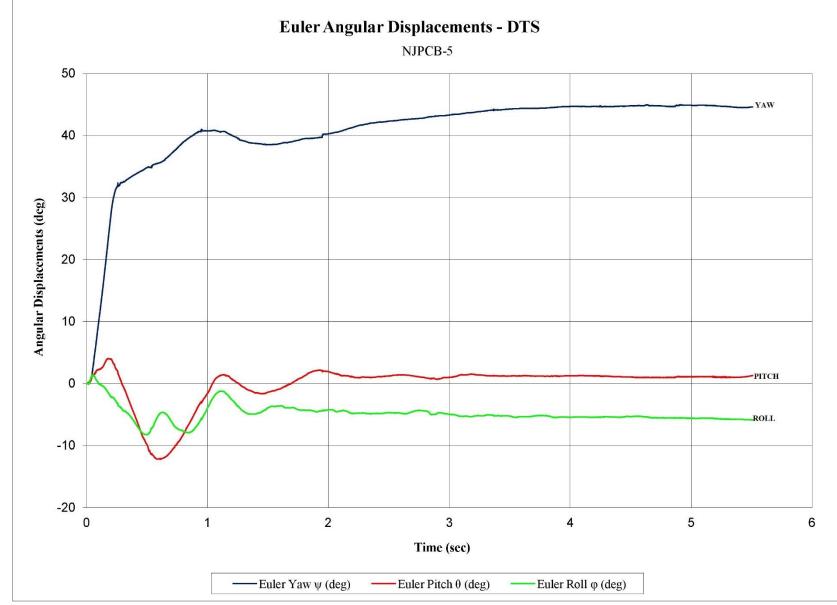


Figure F-15. Vehicle Angular Displacements (DTS), Test No. NJPCB-5

December 13, 2018 MwRSF Report No. TRP-03-372-18

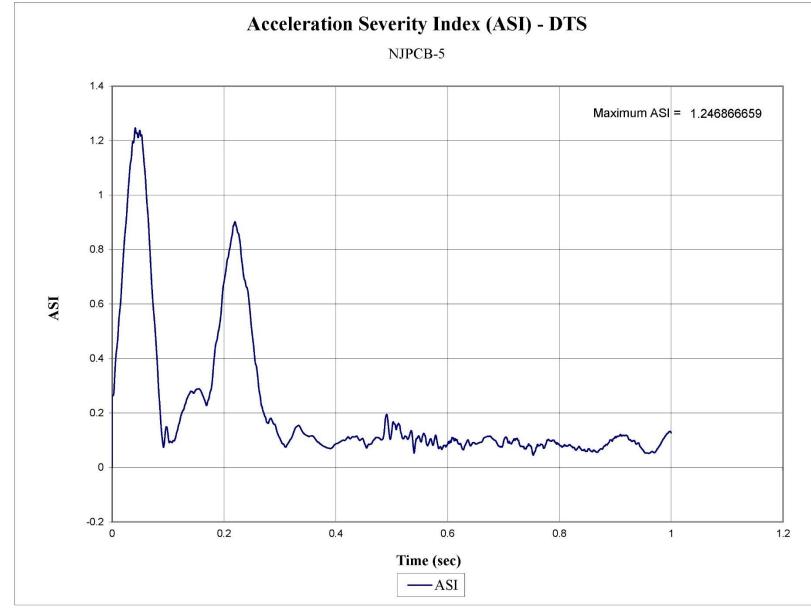


Figure F-16. Acceleration Severity Index (DTS), Test No. NJPCB-5

December 13, 2018 MwRSF Report No. TRP-03-372-18

END OF DOCUMENT