

Ohio Department of Transportation Research Project Number TPF-5(193) Supplement #117

MASH TL-3 EVALUATION OF THE UNREINFORCED, SINGLE-SLOPE CONCRETE MEDIAN BARRIER

Submitted by

Robert W. Bielenberg, M.S.M.E., E.I.T. **Research Engineer**

Ronald K. Faller, Ph.D., P.E. **Research Professor MwRSF** Director

Kellon Ronspies Undergraduate Research Assistant

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Outdoor Test Site

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965

4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

Ohio Department of Transportation

Office of Roadway Engineering 1980 W. Broad Street, MailStop 1230 Columbus, Ohio 43223

MwRSF Research Report No. TRP-03-388-18

November 19, 2018

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-388-18	2.		3. Recipient's Accession No.
4. Title and Subtitle MASH TL-3 Evaluation of the Unreinforced, Single-Slope Concrete Median Barrier			5. Report Date
			November 19, 2018
			6.
7. Author(s)			8. Performing Organization Report No.
Bielenberg, R.W., Faller, R.K., R	onspies, K.B.		TRP-03-388-18
9. Performing Organization Name Midwest Roadside Safety Facility	e and Address (MwRSF)		10. Project/Task/Work Unit No.
Nebraska Transportation Center University of Nebraska-Lincoln			
Main Office: Prem S. Paul Research Center at V	Whittier School	Outdoor Test Site: 4630 N W 36th Street	11. Contract $©$ or Grant (G) No.
Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	1PF-5 (193) Supplement #117		
12. Sponsoring Organization Name and Address Ohio Department of Transportation			13. Type of Report and Period Covered Final Report: 2017 – 2018
Office of Roadway Engineering	14. Sponsoring Agency Code		
Columbus, Ohio 43223			TPF-5(193) Supplement #117
15. Supplementary Notes Prepared in cooperation with U.S	. Department of Tra	nsportation, Federal Highway	Administration.
 16. Abstract The Ohio Department of Transbarrier capable of satisfying Test <i>Second Edition</i> (MASH 2016). Thand top width of 12 in. (305 mm). pad. The barrier was cast in place joints were installed in 20-ft (6. installed on the milled surface us: traffic and back sides of the barrier Previous testing of similar s designation no. 3-11) was needed installation at a speed of 62.8 mpl kJ). The vehicle was safely cont designation no. 3-11 found in MA 	portation (ODOT) r Level 3 (TL-3) saf ne barrier was desig The tarmac surface using concrete wit 1-m) intervals to si ing a tack coat, fund er. ingle-slope concret to to satisfy TL-3 of h (101.0 km/h) and ained and redirected SH 2016.	requested an evaluation of an u fety requirements found in the ned with a height of 42 in. (1,0 was milled down 1 in. (25 mr h a minimum compressive stra mulate cracking and potentia ctioned as the barrier keyway e barriers indicated that only criteria. During the test, the 5 at an angle of 24.9 degrees for d, and the test satisfied safet	nreinforced, single-slope concrete median <i>Manual for Assessing Safety Hardware</i> , 067 mm), a base width of 28 in. (711 mm), n) to accommodate the barrier and asphalt ength of 4,000 psi (27.6 MPa). Expansion l barrier discontinuities. An asphalt pad, and extended 96 in. (2,438 mm) from the y one full-scale crash test (MASH test 5,001-lb (2,268-kg) pickup impacted the an impact severity of 116.3 kip-ft (157.7 y performance evaluation criteria of test

17. Document Analysis/Descripto Highway Safety, Crash Test, Roa Compliance Test, MASH 2016	ors dside Appurtenances,	18. Availability Statement No restrictions. Document available from: National Technical Information Services, Springfield, Virginia 22161		
19. Security Class (this report)	20. Security Class (this page)	21. No. of Pages	22. Price	

DISCLAIMER STATEMENT

This report was completed with funding from the Ohio Department of Transportation and the United States Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Ohio Department of Transportation nor the United States Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Dr. Jennifer Schmidt, Research Assistant Professor.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the following sources that made a contribution to this project: (1) the Ohio Department of Transportation for sponsoring this project and (2) MwRSF personnel for constructing the barrier and conducting the crash test.

Acknowledgement is also given to the following individuals who made a contribution to the completion of this research project.

Midwest Roadside Safety Facility

J.D. Reid, Ph.D., Professor J.C. Holloway, M.S.C.E., E.I.T., Assistant Director - Physical Testing Division K.A. Lechtenberg, M.S.M.E., E.I.T., Research Engineer S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Engineer J.D. Schmidt, Ph.D., P.E., Research Assistant Professor C.S. Stolle, Ph.D., Research Assistant Professor M. Asadollahi Pajouh, Ph.D., former Post-Doctoral Research Associate S.A. Ranjha, Ph.D., former Post-Doctoral Research Associate A.T. Russell, B.S.B.A., Testing and Maintenance Technician II E.W. Krier, B.S., Construction and Testing Technician II S.M. Tighe, Construction and Testing Technician I D.S. Charroin, Construction and Testing Technician I M.A. Rasmussen, Construction and Testing Technician I M.T. Ramel, B.S.C.M., former Construction and Testing Technician I R.M. Novak, Construction and Testing Technician I J.E. Kohtz, B.S.M.E., CAD Technician E.L. Urbank, B.A., Research Communication Specialist Undergraduate and Graduate Research Assistants

Ohio Department of Transportation

Don Fisher, P.E., Roadway Standards Engineer

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	V
LIST OF TABLES	vii
1 INTRODUCTION 1.1 Background 1.2 Objective 1.3 Scope	1 1 3 3
 2 TEST REQUIREMENTS AND EVALUATION CRITERIA 2.1 Test Requirements 2.2 Evaluation Criteria	4 4 5 7
4 TEST CONDITIONS 4.1 Test Facility 4.2 Vehicle Tow and Guidance System 4.3 Test Vehicles 4.4 Simulated Occupant 4.5 Data Acquisition Systems 4.5.1 Accelerometers 4.5.2 Rate Transducers 4.5.3 Retroreflective Optic Speed Trap 4.5.4 Digital Photography	
 5 FULL-SCALE CRASH TEST NO. OSSB-1	

NCLUSIONS
N53
aterial Specifications
chicle Center of Gravity Determination76
chicle Deformation Records78
ccelerometer and Rate Transducer Data Plots, Test No. OSSB-183
rpendicular Force Calculation, Test No. OSSB-1100

LIST OF FIGURES

Figure 1. Ontario Tall Wall [1]	2
Figure 2. TxDOT Type SSTR Bridge Rail	3
Figure 3. ODOT Single-Slope Median Barrier Details	9
Figure 4. ODOT Single-Slope Median Barrier Details	10
Figure 5. Test Installation Layout, Test No. OSSB-1	11
Figure 6. System Details, Test No. OSSB-1	12
Figure 7. Barrier Details, Test No. OSSB-1	13
Figure 8. Bill of Materials, Test No. OSSB-1	14
Figure 9. Test Article Construction Photographs, Test No. OSSB-1	15
Figure 10. Test Installation Photographs, Test No. OSSB-1	16
Figure 11. Barrier Imperfections, Test No. OSSB-1	17
Figure 12. Test Vehicle, Test No. OSSB-1	19
Figure 13. Test Vehicle's Interior Floorboards and Undercarriage, Test No. OSSB-1	20
Figure 14. Vehicle Dimensions, Test No. OSSB-1	21
Figure 15. Target Geometry, Test No. OSSB-1	22
Figure 16. Camera Locations, Speeds, and Lens Settings, Test No. OSSB-1	25
Figure 17. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No.	
OSSB-1	28
Figure 18. Summary of Test Results and Sequential Photographs, Test No. OSSB-1	32
Figure 19. Additional Sequential Photographs, Test No. OSSB-1	33
Figure 20. Additional Sequential Photographs, Test No. OSSB-1	34
Figure 21. Documentary Photographs, Test No. OSSB-1	35
Figure 22. Documentary Photographs, Test No. OSSB-1	36
Figure 23. Impact Location, Test No. OSSB-1	37
Figure 24. Vehicle Final Position and Trajectory Marks, Test No. OSSB-1	38
Figure 25. System Damage, Test No. OSSB-1	39
Figure 26. Front- and Back-Side Barrier Damage, Test No. OSSB-1	40
Figure 27. Barrier No. 2 Damage, Test No. OSSB-1	41
Figure 28. Barrier No. 3 Damage, Test No. OSSB-1	42
Figure 29. Vehicle Damage, Test No. OSSB-1	43
Figure 30. Additional Vehicle Damage, Test No. OSSB-1	44
Figure 31. Additional Vehicle Damage, Test No. OSSB-1	45
Figure 32. Vehicle Windshield Damage, Test No. OSSB-1	46
Figure 33. Occupant Compartment Damage, Test No. OSSB-1	47
Figure 34. Undercarriage Vehicle Damage, Test No. OSSB-1	48
Figure 35. ODOT Single-Slope Barrier Electrical Raceway Detail	52
Figure A-1. Concrete Compression Testing Data, Cylinder A, 28 Cure Days, Test No.	
OSSB-1	60
Figure A-2. Concrete Compression Testing Data, Cylinder B, 52 Cure Days, Test No.	
OSSB-1	61
Figure A-3. Concrete Compression Testing Data, Cylinders C and D, 35 Cure Days, Test	
No. OSSB-1	62
Figure A-4. Concrete Compression Testing Data, Cylinders E and F, 33 Cure Days, Test	
No. OSSB-1	63
Figure A-5. Concrete Compression Testing Data, Cylinder G, 48 Cure Days, Test No.	
OSSB-1	64

Figure A-6. Concrete Compression Testing Data, Cylinders H and I, 30 Cure Days, Test No. OSSB-1	5
Figure A-7. Concrete Compression Testing Data, Cylinder J, 45 Cure Days, Test No. OSSB-1	6
Figure A-8. Concrete Compression Testing Data, Cylinders K and L, 28 Cure Days, Test	7
Figure A-9. Concrete Compression Testing Data, Cylinder M, 43 Cure Days, Test No.	, 8
Figure A-10. Concrete Compression Testing Data, Cylinders N and O, 26 Cure Days, Test No. OSSB-1	9
Figure A-11. Concrete Compression Testing Data, Cylinder P, 41 Cure Days, Test No. OSSB-1	0
Figure A-12. Concrete Compression Testing Data, Cylinders D2 (62 Cure Days), G2 (60 Cure Days), and P2 (53 Cure Days), Test No. OSSB-1	1
Figure A-13. Asphalt Material Specifications, Test No. OSSB-1	2
Figure A-14. Asphalt Material Specifications, Test No. OSSB-1	3
Figure A-15. Asphalt Material Specifications, Test No. OSSB-1	4
Figure A-16. Asphalt Material Specifications, Test No. OSSB-1	5
Figure B-1. Vehicle Mass Distribution, Test No. OSSB-1	7
Figure C-1. Floor Pan Deformation Data – Set 1, Test No. OSSB-1	9
Figure C-2. Occupant Compartment Deformation Data – Set 1, Test No. OSSB-1	0
Figure C-3. Exterior Vehicle Crush (NASS) - Front, Test No. OSSB-1	1
Figure C-4. Exterior Vehicle Crush (NASS) - Side, Test No. OSSB-1	2
Figure D-1. 10-ms Average Longitudinal Acceleration (SLICE-2), Test No. OSSB-1	4
Figure D-2. Longitudinal Occupant Velocity (SLICE-2), Test No. OSSB-1	5
Figure D-3. Longitudinal Occupant Displacement (SLICE-2), Test No. OSSB-1	6
Figure D-4. 10-ms Average Lateral Acceleration (SLICE-2), Test No. OSSB-1	7
Figure D-5. Lateral Occupant Velocity (SLICE-2), Test No. OSSB-1	8
Figure D-6. Lateral Occupant Displacement (SLICE-2), Test No. OSSB-1	9
Figure D-7. Vehicle Angular Displacements (SLICE-2), Test No. OSSB-1	0
Figure D-8. Acceleration Severity Index (SLICE-2), Test No. OSSB-1	1
Figure D-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. OSSB-19	2
Figure D-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. OSSB-1	3
Figure D-11. Longitudinal Occupant Displacement (SLICE-1), Test No. OSSB-1	4
Figure D-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. OSSB-1	5
Figure D-13. Lateral Occupant Velocity (SLICE-1), Test No. OSSB-1	6
Figure D-14. Lateral Occupant Displacement (SLICE-1), Test No. OSSB-1	7
Figure D-15. Vehicle Angular Displacements (SLICE-1), Test No. OSSB-1	8
Figure D-16. Acceleration Severity Index (SLICE-1). Test No. OSSB-1	9
Figure E-1. Perpendicular Forces Imparted to the Barrier System (SLICE-2). Test No.	
OSSB-1	1

LIST OF TABLES

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers	4
Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barrier	6
Table 3. Weather Conditions, Test No. OSSB-1	26
Table 4. Sequential Description of Impact Events, Test No. OSSB-1	
Table 5. Maximum Occupant Compartment Deformations by Location	29
Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. OSSB-1	30
Table 7. Summary of Safety Performance Evaluation	51
Table A-1. Bill of Materials, Test No. OSSB-1	58
Table A-2. Concrete Compressive Strength Data, Test No. OSSB-1	59

1 INTRODUCTION

1.1 Background

The Ohio Department of Transportation (ODOT) employs an unreinforced, single-slope, concrete median barrier that is based on previously crash tested single-slope barrier geometries and the Ontario Tall Wall barrier [1]. However, this barrier design has not been evaluated to the updated crash safety standards found in the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) [2]. Additionally, the lack of reinforcement in the concrete median barrier may pose concerns with respect to the safety performance of the barrier system. Therefore, the ODOT unreinforced, single-slope, concrete barrier needed to be evaluated to the Test Level 3 (TL-3) criteria of MASH 2016.

The ODOT unreinforced, single-slope, concrete barrier consists of a 42-in. (1,067-mm) tall single-slope face geometry with a slope of 10.9 degrees from vertical. The top width of the barrier is 12 in. (305 mm) and the base width is 28 in. (711 mm). ODOT employs a variety of asphalt and concrete keyways, soil fill adjacent to the barrier, and dowel bar options for anchoring the base of the barrier. Reinforced and anchored end sections are used near barrier ends and/or expansion joints. ODOT also employs contraction joints at a minimum of every 20 ft (6.1 m) throughout the barrier.

ODOT's use of an unreinforced, single-slope, concrete barrier was based on the unreinforced Ontario Tall Wall [1]. The Ontario Tall Wall test installation consisted of a 328-ft (100-m) long, unreinforced, New Jersey shape, concrete median barrier embedded in 3 in. (76 mm) of Type "D" hot-mix, hot-laid asphaltic concrete, as shown in Figure 1. The total height of the barrier was 41.3 in. (1,050 mm) above the roadway surface. The base width of the barrier was 31.5 in. (800 mm) and the top width was 11.4 in. (290 mm). The barrier was slip-formed continuously without construction joints and was placed on a 29.5-in. (750-mm) thick granular base that extended from the front edge of the barrier to 3 ft (914 mm) beyond the back of the barrier. The layout of the as-tested Ontario Tall Wall is shown in Figure 1.

In the full-scale crash testing of the Ontario Tall Wall, an 80,000-lb (36,287-kg) tractor trailer impacted the barrier 87 ft (26.5 m) from the upstream end of the test installation at a speed of 49.6 mph (79.8 km/h) and an angle of 15.1 degrees. The tractor trailer was contained and redirected. However, the ballast used in the trailer of the test vehicle impacted and ruptured the side of the trailer as the tractor trailer rolled, resulting in some of the ballast exiting the trailer during impact. The Ontario Tall Wall barrier performed satisfactorily, meeting the guidelines set forth in NCHRP Report 230 [3] and the 1989 AASHTO *Guide Specifications for Bridge Railings* [4]. The results also demonstrated that the unreinforced, concrete Ontario Tall Wall barrier was structurally adequate to contain and redirect an 80,000-lb (36,287-kg) tractor trailer with the caveat that some of the ballast mass was lost during testing.

While the Ontario Tall Wall testing indicated that an unreinforced concrete barrier could redirect heavy vehicles, concerns about the performance of unreinforced concrete barriers remain. Unreinforced barriers may crack over time, even to the point where visual gaps may exist throughout the cross section. In this scenario, no rail continuity would exist and vehicle redirection would be dependent upon a combination of several factors, including the inertial resistance of the

thick concrete barrier, the bond between the barrier and support surface and/or asphalt keyway, and the limited structural capacity of the concrete cross section (shear, tension, torsion, bending, etc.) away from the gap location.

Figure 1. Ontario Tall Wall [1]

The geometry of the single-slope face concrete barrier was previously evaluated under MASH TL-3 using a shorter barrier, the TxDOT Type SSTR (Single-Slope Traffic Rail) bridge rail, as shown in Figure 2 [5]. The barrier had a 36-in. (914-mm) height and was impacted by a 2270P vehicle at 63.8 mph (102.7 km/h) and at an angle of 24.8 degrees. The vehicle was successfully contained and redirected, and performed acceptably to safety criteria established in MASH.

Figure 2. TxDOT Type SSTR Bridge Rail

1.2 Objective

The objective of this research effort was to evaluate ODOT's unreinforced, single-slope, concrete barrier according to the TL-3 criteria of MASH 2016.

1.3 Scope

The research objective was achieved through the completion of several tasks. One fullscale crash test was conducted on the unreinforced, single-slope, concrete median barrier according to MASH 2016 test designation no. 3-11. Next, the full-scale vehicle crash test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the unreinforced, single-slope, concrete median barrier.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Longitudinal barriers such as the unreinforced, single-slope, concrete median barrier must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [2]. Note that there is no difference between MASH 2009 [6] and MASH 2016 for longitudinal concrete barriers such as the system tested in this project, except that additional occupant compartment deformation measurements are required by MASH 2016.

According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 1. However, only test designation no. 3-11 was deemed critical for evaluation of the ODOT unreinforced, single-slope, concrete barrier. Test designation no. 3-10 with the 1100C vehicle is typically required to evaluate vehicle capture, vehicle stability, and occupant risk concerns for the small car. Previous testing was conducted according to MASH 2016 test designation no. 3-10 on the CALTRANS Type 60 single-slope concrete median barrier with a 36-in. (914-mm) height and 9.1-degree sloped face [7]. This test indicated that the capture, stability, and occupant risk values were acceptable for a TL-3 1100C vehicle impact on a single-slope concrete barrier with a sloped face only 1.7 degrees steeper than that of the ODOT unreinforced single-slope barrier. It was believed that the similar barrier geometry of the ODOT single-slope barrier would provide similar vehicle redirection and stability characteristics. Additionally, structural loading of the barrier in test designation no. 3-10 with the 1100C vehicle would be significantly less than that of test designation no. 3-11 with the 2270P vehicle. Thus, test designation no. 3-11 with the 2270P vehicle was considered the most critical test to evaluate vehicle capture, vehicle stability, vehicle snag, and maximal structural loading of the barrier. Thus, only test designation no. 3-11 was conducted and reported herein.

	Test		Vehicle	Impact C	onditions	
Test Article	Designation No.	Test Vehicle	Weight, lb (kg)	Speed, mph (km/h)	Angle, deg.	Evaluation Criteria ¹
Longitudinal	3-10	1100C	2,420 (1,100)	62 (100)	25	A,D,F,H,I
Barrier	3-11	2270P	5,000 (2,270)	62 (100)	25	A,D,F,H,I

Table 1.	MASH 2016	TL-3 Crash	Test Co	onditions fo	r Longitudinal	Barriers
I uoto I a		IL 5 Clubh	100000	onditions to	1 Longituania	Duritors

¹ Evaluation criteria explained in Table 2.

MASH and its predecessor, NCHRP Report No. 350 [8], have both operated under the philosophy to evaluate hardware under the "worst practical condition" and the "state of the possible." Under the "worst practical condition" and the "state of the possible" philosophies, hardware evaluation should make an effort to evaluate barriers in their worst or most critical conditions and in realistic scenarios. Due to concerns for the loss of continuity in an unreinforced

barrier resulting from temperature and shrinkage cracking, it was recommended that the ODOT unreinforced, single-slope, concrete barrier be tested with discontinuities in the barrier and that the barrier be impacted in critical locations near those discontinuities.

It should be noted that the test matrix detailed herein represents the researchers' best engineering judgement with respect to the MASH 2016 safety requirements and their internal evaluation of critical tests necessary to evaluate the crashworthiness of the barrier system. However, the recent switch to new vehicle types as part of the implementation of the MASH 2016 criteria and the lack of experience and knowledge regarding the performance of the new vehicle types with certain types of hardware could result in unanticipated barrier performance. Thus, any tests within the evaluation matrix deemed non-critical may eventually need to be evaluated based on additional knowledge gained over time or revisions to the MASH 2016 criteria.

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the unreinforced single-slope concrete barrier to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH 2016. The full-scale vehicle crash test documented herein was conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

|--|

Structural Adequacy	А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.			
	D.	Detached elements, fragment should not penetrate or show compartment, or present an un or personnel in a work zone. I occupant compartment should 5.2.2 and Appendix E of MAS	s or other debris from potential for penetra idue hazard to other t Deformations of, or is a not exceed limits s SH 2016.	om the test article ating the occupant raffic, pedestrians, intrusions into, the et forth in Section	
	F.	The vehicle should remain u maximum roll and pitch angle	pright during and a safe are not to exceed 7	fter collision. The 5 degrees.	
H. Occupant Impact Velocity (OIV) (see Appendix A, See MASH 2016 for calculation procedure) should satisfy limits:				, Section A5.2.2 of tisfy the following	
Risk		Occupant Impact Velocity Limits			
		Component	Preferred	Maximum	
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)	
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:			
	imits				
		Component	Preferred	Maximum	
		Longitudinal and Lateral	15.0 g's	20.49 g's	

3 DESIGN DETAILS

The ODOT unreinforced, single-slope, concrete barrier is used in various installation layouts, as shown in Figures 3 and 4. The Midwest Roadside Safety Facility (MwRSF) discussed the various barrier configurations with ODOT to select a critical barrier configuration for full-scale crash testing. The selected configuration was as follows.

- 1. The barrier consisted of the ODOT Type B, 42-in. (1,067-mm) tall, unreinforced, singleslope concrete barrier with a 12-in. (305-mm) wide top, a 28-in. (711-mm) wide base, and a 10.9-degree constant-slope face. A 119-ft 11³/₄-in. (36.6-m) long barrier section was constructed for the crash testing utilizing 4,000-psi (27.6-MPa) concrete, as specified in the ODOT standard plans.
- 2. In order to simulate cracking and potential barrier discontinuities in the unreinforced barrier, MwRSF placed ¼-in. (6-mm) wide separator plates, which spanned the entire barrier cross section, at 20-ft (6.1-m) intervals along the barrier when the system was constructed. This spacing matched the minimum spacing of the contraction joints in the ODOT standard plans. After forming, the separator plates were removed such that a simulated vertical crack through the barrier was created. MwRSF selected a critical impact point (CIP) upstream from one of these cracks to maximize the potential for barrier loading adjacent to the discontinuity and evaluate potential for vehicle snag at the discontinuity.
- 3. The as-tested barrier test installation did not include the ODOT end section details as the barrier was to be evaluated along the length of need and the discontinuities built into the barrier section noted above prevented loading of the ends of the barrier.
- 4. Various ODOT barrier anchorage methods were reviewed with the sponsor, and a critical installation design was selected for the full-scale crash testing. This installation used an asphalt keyway consisting of a continuous layer of 1-in. (25-mm) thick by 8-ft (2.4-m) wide asphalt on the front and back of the barrier. The barrier was installed on the concrete tarmac at the MwRSF Outdoor Test Site.
- 5. The asphalt used for the barrier keyway is specified in the ODOT standard as a Superpave, surface course, asphaltic concrete with a tack coat. Due to the difficulty in obtaining the exact asphalt mixes used by ODOT at MwRSF's test facility, ODOT agreed to use a similar Superpave mix available in Nebraska. A tack coat similar to that used by ODOT was installed beneath the asphalt.

The test installation consisted of an unreinforced, single-slope, concrete median barrier, as shown in Figures 5 through 8. Photographs of the test installation are shown in Figures 9 through 11. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A. The system design was based on the ODOT standard details for their barrier, as discussed previously. The tarmac surface around the system was milled down 1 in. (25 mm) to accommodate an asphalt pad on the front and back sides of the barrier. Following milling and prior to barrier casting, a thin coating of concrete grout was applied over the middle 40 ft (12.2 m) of concrete beneath the barrier to provide a smooth surface and prevent excessive bonding of the barrier to the milled surface. The barrier installation was 119 ft – 11³/₄ in. (36.6 m) long and 43 in. (1,092 mm) tall, and consisted of a 10.9-degree slope, which resulted in a base

thickness of 28³/₈ in. (721 mm) and top width of 12 in. (305 mm). A 1-in. (25-mm) deep asphalt keyway was installed on each side of the barrier that made the effective top height and base width of the of the barrier system 42 in. (1,067 mm) and 28 in. (711 mm), respectively. The top corners had a ³/₄-in. (19-mm) chamfer. A ¹/₄-in. (6-mm) gap was placed every 20 ft (6.1 m) along the barrier installation to simulate cracking at expansion joint locations, which created six barrier segments, denoted barrier no. 1 through barrier no. 6.

Construction photographs of the system are shown in Figure 9. Each barrier was cast using wooden forms and a ¹/₄-in. (6-mm) thick steel plate was used to maintain even gap spacing between barrier segments. Concrete cylinders from each segment were tested, as shown in Appendix A, and only barrier segment no. 4 failed to meet the required strength of 4,000 psi (27.6 MPa) prior to the date of the test. However, barrier segment no. 4 was downstream from the main impact region and was not considered critical to vehicle impact. Thus, the test was conducted with barrier segment no. 4 having a 45-day compressive strength of 3,680 psi (25.4 MPa).

Several imperfections in the barriers naturally occurred when removing the formwork. Thermal hairline cracks extended vertically through barriers nos. 1, 2, and 5, as shown in Figure 11. Several gouges resulting from removal of the forms can also be seen on the barrier segments. The gouges vary in size and are generally present along the vertical center of each of the barriers. Additionally, small and limited spalling on the edges of some of the gaps between barriers occurred when removing the steel plate due to the large amount of force needed to remove the plate.

Figure 3. ODOT Single-Slope Median Barrier Details

9

Figure 4. ODOT Single-Slope Median Barrier Details

10

Figure 5. Test Installation Layout, Test No. OSSB-1

Figure 6. System Details, Test No. OSSB-1

12

Figure 7. Barrier Details, Test No. OSSB-1

ltem No.	Quantity	Description	Material Specification
a1	1	42" [1,067] Tall, 1,439 3/4" [35.6 m] Long, Unreinforced Single Slope Concrete Barrier	Min. f'c = 4,000 psi [27.6 MPa] NE 47BD Mix
a2	-	Asphalt	NDOR Superpave SPH Mix Binder PG 64-34
a3		Tack Coat	NDOR SS-1, SS-1H, CSS-1, or CSS-1H

MIRST	ODOT Type B Unreinford Concrete Barrier Systen Test No. OSSB-1	ced n	SHEET: 4 of 4 DATE: 9/12/2018
Midwest Roadside Safety Facility	Bill of Materials		DRAWN BY: DTM/MES/ JEK
	DWG. NAME. SCALE: OSSB_OhioSingleSlope_R10 UNITS: i	None n.[mm]	REV. BY: JEK/RWB/ KAL/RKF

Figure 8. Bill of Materials, Test No. OSSB-1

Figure 9. Test Article Construction Photographs, Test No. OSSB-1

Figure 10. Test Installation Photographs, Test No. OSSB-1

Barrier No. 1 Thermal Hairline Crack

Barrier No. 5 Thermal Hairline Crack

Barrier No. 2 Thermal Hairline Crack

Figure 11. Barrier Imperfections, Test No. OSSB-1

Spalling of Barrier Gap

4 TEST CONDITIONS

4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [9] was used to steer the test vehicle. A guide flag, attached to the right-front wheel and the guide cable, was sheared off before impact with the barrier system. The $\frac{3}{8}$ -in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicles

For test no. OSSB-1, a 2011 Dodge Ram 1500 crew cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,122 lb (2,323 kg), 5,001 lb (2,268 kg), and 5,163 lb (2,342 kg), respectively. The test vehicle is shown in Figures 12 and 13, and vehicle dimensions are shown in Figure 14.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [10] was used to determine the vertical component of the c.g. for the pickup truck. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The location of the final c.g. is shown in Figures 14 and 15. Data used to calculate the location of the c.g. and ballast information are shown in Appendix B.

Square, black- and white-checkered targets were placed on the vehicle for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figure 15. Round, checkered targets were placed on the c.g. on the left-side door, the right-side door, and the roof of the vehicle.

The front wheels of the test vehicle were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted under the vehicle's left-side windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-

speed digital videos. A remote-controlled brake system was installed in the test vehicle so the vehicle could be brought safely to a stop after the test.

Figure 12. Test Vehicle, Test No. OSSB-1

Figure 13. Test Vehicle's Interior Floorboards and Undercarriage, Test No. OSSB-1

Date:	12/13/2017	Test Name:	OSSB-1	VIN No: 1D7RB1CP0BS685744
Year:	2011	Make: Dodge Ram 1500		Model: 1500 Crew Cab
Tire Size:	265/70 R17		40 Psi	Odometer:127742
t Wheel			Wheel a	Vehicle Geometry - in. (mm) Target Ranges listed below a: <u>73 (1854)</u> b: <u>74 3/8 (1889)</u> 78±2 (1950±50)
Irack				c: <u>229 3/4 (5836)</u> d: <u>47 1/2 (1207)</u>
Tes	t Inertial C.M.		<u>]]—</u>	e: <u>140 1/4 (3562)</u> f: <u>42 (1067)</u> <u>148±12 (3760±300)</u> 39±3 (1000±75)
6.505		\ - q -+	TIRE DIA	g: <u>28 5/16 (719)</u> h: <u>61 1/4 (1556)</u> min: 28 (710) h: <u>63+4 (1575+100)</u>
•			WHEEL DIA	i: <u>12 5/8 (321)</u> j: <u>25 (635)</u>
				k: <u>21 (533)</u> I: <u>29 3/4 (756)</u>
				m: <u>67 1/8 (1705)</u> n: <u>67 5/8 (1718)</u> 67±1.5 (1700±38) ⁶⁷ ±1.5 (1700±38)
		h		o: <u>44 (1118)</u> p: <u>4 1/2 (114)</u> 43±4 (1100±75)
-		e f f		q: <u>31 1/2 (800)</u> r: <u>18 1/4 (464)</u>
-	V "rear	c	-	s: <u>15 1/4 (387)</u> t: <u>76 1/2 (1943)</u>
Mass Distribut	ion Ib (kg)			Wheel Center Height (Front): 15 (381)
Gross Static L	.F <u>1503 (682)</u>	RF 1412 (640)		Height (Rear): <u>15 3/8 (391)</u>
L	.R <u>1091 (495)</u>	_RR_1157 (525)		Clearance (Front): 34 3/4 (883)
184-1-1-4-				Wheel Well Clearance (Rear): <u>38 (965)</u>
lb (kg)	Curb	Test Inertial	Gross Static	Bottom Frame Height (Front): <u>17 3/4 (451)</u>
W-front			2915 (1322)	Bottom Frame Height (Rear): <u>25 3/4 (654)</u>
W-rear	2237 (1015)		2248 (1020)	Engine Type:8cyl. Gas
W-total	5122 (2323)	5001 (2268)	5163 (2342)	Engine Size: 4.7L
		5000±110 (2270±50)	5165±110 (2343±50)	Transmission Type: Auto
G∨WR Ratings	lb	Dummy Data		Drive Type: RWD
Front	3700	Type:	Hybrid II	Cab Style: Crew Cab
Rear	3900	Mass:	162 lb	Bed Length: 67''
Total _	6800	Seat Position:	Left/Driver	
Note any	damage prior to test	Small dent right of center of	bumper. Right sic in to the b	le scrape/dent along lower center of rear door box side.

Figure 14. Vehicle Dimensions, Test No. OSSB-1

Figure 15. Target Geometry, Test No. OSSB-1

4.4 Simulated Occupant

For test no. OSSB-1, A Hybrid II 50th-Percentile, Adult Male Dummy, equipped with clothing and footwear was placed in the left-front seat of the test vehicle with the seat belt fastened. The dummy, which had a final weight of 162 lb (73 kg), was represented by model no. 572, and was manufactured by Android Systems of Carson, California. As recommended by MASH 2016, the dummy was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

4.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometer systems were mounted near the c.g. of the test vehicle. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [11].

The two accelerometer systems, the SLICE-1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-2 unit was designated as the primary system as it was closest to the vehicle c.g. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

4.5.2 Rate Transducers

Two identical angle rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicle before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

4.5.4 Digital Photography

Six AOS high-speed digital video cameras and twelve GoPro digital video cameras were utilized to film test no. OSSB-1. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 16.

The high-speed videos were analyzed using TEMA Motion and RedLake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A Nikon digital still camera was also used to document pre- and post-test conditions for the test.

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-2	AOS Vitcam	500	Kowa 16mm	-
AOS-5	AOS X-PRI	500	Telesar 135 mm Fixed	-
AOS-6	AOS X-PRI	500	Sigma 28-70 #2	35
AOS-7	AOS X-PRI	500	Fujinon 35mm	-
AOS-8	AOS S-VIT 1531	500	Sigma 28-70 #1	35
AOS-9	AOS TRI-VIT 2236	1000	Kowa 12mm Fixed	-
GP-3	GoPro Hero 3+ w/ Cosmicar 12.5mm	120		
GP-4	GoPro Hero 3+ w/ Computar 12.5mm	120		
GP-5	GoPro Hero 3+	120		
GP-6	GoPro Hero 3+	120		
GP-7	GoPro Hero 4	240		
GP-8	GoPro Hero 4	240		
GP-9	GoPro Hero 4	120		
GP-10	GoPro Hero 4	240		
GP-15	GoPro Hero 4	240		
GP-16	GoPro Hero 4	240		
GP-17	GoPro Hero 4	240		
GP-18	GoPro Hero 4	120		

Figure 16. Camera Locations, Speeds, and Lens Settings, Test No. OSSB-1

5 FULL-SCALE CRASH TEST NO. OSSB-1

5.1 Weather Conditions

Test no. OSSB-1 was conducted on December 17, 2017 at approximately 1:45 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 3.

Temperature 42° F Humidity 62% Wind Speed 8 mph Wind Direction 10° from True North Sky Conditions Scattered Cloud Coverage Visibility 8.0 Statute Miles Pavement Surface Dry Previous 3-Day Precipitation 0.1 in. Previous 7-Day Precipitation 0.1 in.

Table 3. Weather Conditions, Test No. OSSB-1

5.2 Test Description

The 5,001-lb (2,268-kg) crew cab pickup truck impacted the unreinforced, single-slope barrier system at a speed of 62.8 mph (101.0 km/h) and at an angle of 24.9 degrees. A summary of the test results and sequential photographs are shown in Figure 18. Additional sequential photographs are shown in Figure 19 through Figure 20. Documentary photographs of the crash test are shown in Figures 21 and 22.

Initial vehicle impact was to occur $51^{3}/_{16}$ in. (1,300 mm) upstream from the construction joint between barrier nos. 2 and 3, as shown in Figure 23, which was selected using Table 2.7 of MASH 2016 to maximize structural loading adjacent to the simulated joint and the probability of vehicle snag. The actual point of impact was 52.0 in. (1,322 mm) upstream from the construction joint between barrier nos. 2 and 3. A sequential description of the impact events is contained in Table 4. The vehicle came to rest 232 ft – 6 in. (70.9 m) downstream from the impact location and 14 ft – 5 in. (4.4 m) laterally away from the traffic side of the barrier system after the brakes were applied. The vehicle remained stable and upright throughout vehicle redirection, and the vehicle trajectory and final position are shown in Figures 18 and 24.

TIME	EVENT
(sec)	
0.000	Vehicle's left-front bumper impacted barrier no. 2 at a location 52 in. (1,322 mm)
	upstream from construction joint of barrier nos. 2 and 3.
0.004	Vehicle's left-front tire contacted barrier no. 2.
0.006	Vehicle's left fender and grille contacted barrier no. 2.

Table 4. Sequential Description of Impact Events, Test No. OSSB-1

0.010	Vehicle's left fender deformed. Vehicle's left headlight contacted barrier no. 2.
0.022	Vehicle's left-front tire rode up barrier no. 2.
0.040	Vehicle's left-front bumper and grille contacted barrier no. 3. Vehicle pitched
	upward.
0.044	Vehicle's left and right airbags deployed.
0.050	Vehicle's left-front door contacted barrier no. 2.
0.062	Barrier no. 2 rolled away from traffic-side of system.
0.066	Vehicle's grille disengaged and windshield cracked.
0.096	Vehicle's right-front tire became airborne.
0.098	Vehicle's left-front door contacted barrier no. 3.
0.134	Barrier no. 2 rolled toward traffic-side of system.
0.154	Vehicle's left-front tire became airborne.
0.168	Vehicle's left-rear quarter panel contacted barrier no. 2.
0.184	Vehicle's right headlight disengaged.
0.188	Vehicle was parallel to system at a speed of 47.8 mph (76.9 km/h).
0.199	Vehicle's rear bumper contacted barrier no. 2.
0.208	Vehicle rolled toward system.
0.210	Vehicle's left headlight disengaged.
0.212	Barrier no. 2 rolled away from traffic-side of system.
0.221	Vehicle's tailgate deformed.
0.228	Vehicle's right-rear tire became airborne.
0.248	Vehicle pitched downward.
0.254	Vehicle's rear bumper contacted barrier no. 3.
0.272	Barrier no. 2 rolled toward traffic-side of system.
0.367	Vehicle exited system at a speed of 46.6 mph (75.0 km/h) with a c.g. exit angle of
	-3.0 degrees and a vehicle orientation exit angle of 3.8 degrees.
0.562	Vehicle's left-front tire regained contact with ground.
0.680	Vehicle rolled away from system.
0.720	Vehicle's right-rear tire regained contact with ground.
0.724	Vehicle pitched upward.
0.740	Vehicle's right-front tire regained contact with ground.
0.942	Vehicle rolled toward system.
1.000	Vehicle was stable and traveling downstream on all four wheels.

5.3 Barrier Damage

Damage to the test installation was minimal, as shown in Figures 25 through 28. Barrier damage consisted of contact marks, gouging and spalling of the concrete, and minor concrete cracking. The length of vehicle contact along the barrier was approximately 11 ft – 6³/₈ in. (3.5 m), which spanned from 5 ft – 5⁷/₈ in. (1.7 m) upstream from the center of the joint between barrier nos. 2 and 3 to 6 ft – ¹/₂ in. (1.8 m) downstream from the center of the joint between barrier nos. 2 and 3.

A 59-in. (1,499-mm) long gouge was found on the downstream end of barrier no. 2. The downstream edge of barrier no. 2 and upstream edge of barrier no. 3 were spalled on the traffic side. Minor spider web cracks stemmed from the thermal crack that resulted during construction near the center of barrier no. 2. One such crack occurred on the top of barrier no. 2 for a length of 4 in. (102 mm). Additionally, a 3½-in. (89-mm) long crack was located on the front face of barrier no. 2, 3 in. (76 mm) below the top plane of the barrier.

The maximum lateral permanent set deflection of the system was negligible as no displacement of the base of the barrier was observed in the asphalt. The maximum lateral dynamic barrier deflection, including tipping of the barrier along the top surface, was 1.0 in. (25 mm) near the downstream end of barrier no. 2, as determined from high-speed digital video analysis. The working width of the system was found to be 28.0 in. (711 mm), also determined from the high-speed digital video analysis. A schematic demonstrating permanent set deflection, dynamic deflection, and working width is shown in Figure 17.

Figure 17. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. OSSB-1

5.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 29 through 34. The maximum occupant compartment deformations are listed in Table 5 along with the deformation limits established in MASH 2016 for various areas of the occupant compartment. None of the established MASH 2016 deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix C. Note that floor pan deformation and occupant compartment deformation data for reference set 2 have been omitted from Appendix C due to errors in data acquisition.

The majority of the vehicle damage was concentrated on the left-front corner and left side of the vehicle where the impact had occurred. Two buckles occurred on the left-front frame, one
in front of the wheel and the other just behind the wheel. The left frame horn buckled near the suspension and the left-front bumper mount plate was bent. The front cab mounts were slightly bent in a counter-clockwise direction. The left side of the bumper cover was bent in toward the engine compartment, and the crush extended to the height of the headlight. The grille and both headlights were disengaged from the vehicle. Additionally, the bottom of the front bumper was twisted in toward the engine from the centerline to the left side. The left-front quarter panel was crushed inward and buckled under the left-front door. The left-front door was scraped and deformed inward. The left-rear door was dented and scratched. The left-rear quarter panel was scratched and bent inward. The left-rear bumper was dented and shifted toward the right side of the vehicle as a result of impact deformation. The tailgate became disconnected on the right side of the vehicle, and both brake lights were shattered.

The front anti-roll bar was bent inward on the left-front side. Both links of the roll bar were bent forward. The front-left shock was bent forward, and the spring pushed off center. The left-rear brake line and caliper were bent and in slight contact with the rim. The left-rear side spring became dislodged and was wedged between the axle and the rim. The rear anti-roll bar was shifted to the passenger side. The lower control arm of the left-front suspension was folded back and disengaged off the frame mounts. The steering gear box was shattered, and the left-front tie rod was bent approximately 45 degrees forward. The transmission was shifted on its rear mounts, and the rear axle was shifted toward the right side about ½ in. (13 mm). The left-front engine mount had three bolts sheared off, and the right-front mount was undamaged.

The left-front tire was torn and in contact with the fender, but was not disengaged from the rim. The left-front tire rim and hubcap were crushed, and the hubcap was disengaged from the tire. No engine damage occurred, and the windshield was cracked extending from its bottom-left and right corners. The remaining windows were undamaged.

	MAXIMUM	MASH 2016 ALLOWABLE
LOCATION	DEFORMATION	DEFORMATION
	in. (mm)	in. (mm)
Wheel Well & Toe Pan	11/8 (48)	≤ 9 (229)
Floor Pan & Transmission Tunnel	1¼ (32)	≤ 12 (305)
A- and B-Pillars	1¼ (32)	<i>≤</i> 5 (127)
A- and B-Pillars (Lateral)	7/8 (22)	≤ 3 (76)
Side Front Panel (in Front of A-Pillar)	15/8 (41)	≤ 12 (305)
Side Door (Above Seat)	11/2 (38)	≤ 9 (229)
Side Door (Below Seat)	7/8 (22)	≤ 12 (305)
Roof	⁵ / ₈ (16)	≤ 4 (102)
Windshield	0 (0)	≤3 (76)
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	7/8 (22)	N/A

Table 5. Maximum Occupant Compartment Deformations by Location

N/A – Not applicable

5.5 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 6. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 6. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 18. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix D.

		Trans	sducer	MASH 2016
Evaluati	on Criteria	SLICE-1	SLICE-2 (primary)	Limits
OIV	Longitudinal	-21.29 (-6.49)	-19.26 (-5.87)	±40 (12.2)
ft/s (m/s)	Lateral	24.82 (7.56)	26.90 (8.20)	±40 (12.2)
ORA	Longitudinal	7.33	-9.35	±20.49
g's	Lateral	12.36	10.40	±20.49
g s MAX.	Roll	-24.2	-20.0	±75
ANGULAR DISPL.	Pitch	5.8	6.6	±75
deg.	Yaw	30.4	29.3	not required
T ft/s	HIV (m/s)	31.50 (9.60)	32.78 (9.99)	not required
P	PHD g's	12.49	12.21	not required
	ASI		1.81	not required

Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. OSSB-1

5.6 2270P Peak Force Calculation

The longitudinal and lateral vehicle accelerations, as measured at the vehicle's c.g., were also processed using a CFC 60, 50-msec moving average. The 50-msec moving average vehicle accelerations were then combined with the uncoupled yaw angle versus time data in order to estimate the vehicular loading applied to the barrier system. From the data analysis, the perpendicular impact force was determined for test no. OSSB-1, as shown in Appendix E. The maximum perpendicular, or lateral, load imparted to the barrier was estimated to be 84.5 kips (376.0 kN), and the maximum parallel, or longitudinal, load imparted to the barrier was estimated to be 20.0 kips (89.1 kN) as determined by SLICE-2.

5.7 Discussion

The analysis of the test results for test no. OSSB-1 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix D, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle c.g. was measured to exit the barrier at an angle of -3.0 degrees, and the vehicle orientation angle during exit measured 3.8 degrees. The difference in exit angle values can be attributed to the vehicle rolling toward the test article as it exited the system. As the vehicle exited the system, vehicle roll toward the barrier altered the c.g. target alignment relative to the orientation of the single-slope barrier, which resulted in a negative c.g. exit angle even though the vehicle was exiting the system at a low trajectory angle. The vehicle's exit trajectory did not violate the bounds of the exit box. Therefore, test no. OSSB-1 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

					5		
0.000 sec	0.050 sec	0.178 s	ec	0.272	sec - 12"	[305] - 0.3	67 sec
Exit Box 32'-10" [10.0 m	232'-6" [70.9	m]		14'-5" [4.4 m] CH4	F (19X19)		[1067]
Test Agency Test Number Date MASH 2016 Test Designation No Test Article Total Length	Longitudinal C 	MwRSF OSSB-1 		<u> </u>	1" [25]	[711]	
Key Component – Unreinforced Conc Length Height Width Number of Barrier Segments	rete Barrier	in. (6,090 mm) in. (1,067 mm) 8 in. (711 mm)	 Maximum Test Permanent Dynamic Working W Transducer Dat 	Article Deflection Set //idtha	ons		0 in 1.0 in. 28.0 in. (
Vehicle Make /Model Curb Test Inertial	2011 Dodge Ram 1500 Crew Cal	b Pickup Truck 22 lb (2,323 kg) 11 lb (2,268 kg)	Evaluatio	on Criteria	Trans SLICE-1	ducer SLICE-2 (primary)	MASH : Limi
Gross Static Impact Conditions Speed		53 lb (2,342 kg) h (101.0 km/h)	OIV ft/s (m/s)	Longitudinal Lateral	-21.29 (-6.49) 24.82 (7.56)	-19.26 (-5.87) 26.90 (8.20)	±40 (1)
Angle Impact Location Impact Severity116.3 kip-ft (157.	52 in. (1,321 mm) US 7 kJ) > 106 kip-ft (144 kJ) limit from	m MASH 2016	ORA o's	Longitudinal	7.33	-9.35	±20.4
Exit Conditions Speed C.G. Exit Angle		nph (75.0 km/h) 	MAX	Lateral Roll	-24.2	-20.0	±20.4 ±75
Exit Box Criterion		Pass Satisfactory	ANGULAR DISP.	Pitch	5.8	6.6	±75
Vehicle Stopping Distance		– 6 in. (70.9 m) aterally in front		Yaw	30.4	29.3	not requ
Vehicle Damage VDS [12] CDC [13]		Moderate 11-LFQ-4 11-LYEW-3	THIV – PHD	ft/s (m/s) - g's	31.50 (9.60) 12.49	32.78 (9.99) 12.21	not requ
Maximum Interior Deformation Test Article Damage		1% in. (48 mm) Minimal	А	SI	1.63	1.81	not requ

Figure 18. Summary of Test Results and Sequential Photographs, Test No. OSSB-1

0.000 sec

0.066 sec

0.148 sec

0.368 sec

0.740 sec

1.520 sec

1.520 sec

0.134 sec

0.188 sec

0.368 sec

Figure 19. Additional Sequential Photographs, Test No. OSSB-1

Figure 20. Additional Sequential Photographs, Test No. OSSB-1

Figure 21. Documentary Photographs, Test No. OSSB-1

Figure 22. Documentary Photographs, Test No. OSSB-1

Figure 23. Impact Location, Test No. OSSB-1

Figure 24. Vehicle Final Position and Trajectory Marks, Test No. OSSB-1

Figure 25. System Damage, Test No. OSSB-1

Front Barrier Segment No. 2

Front Barrier Segment No. 3

Back Barrier Segment No. 2

Back Barrier Segment No. 3

Figure 26. Front- and Back-Side Barrier Damage, Test No. OSSB-1

Figure 27. Barrier No. 2 Damage, Test No. OSSB-1

Figure 28. Barrier No. 3 Damage, Test No. OSSB-1

Figure 29. Vehicle Damage, Test No. OSSB-1

Figure 30. Additional Vehicle Damage, Test No. OSSB-1

Figure 31. Additional Vehicle Damage, Test No. OSSB-1

Figure 32. Vehicle Windshield Damage, Test No. OSSB-1

November 19, 2018 MwRSF Report No. TRP-03-388-18

46

Figure 33. Occupant Compartment Damage, Test No. OSSB-1

47

Figure 34. Undercarriage Vehicle Damage, Test No. OSSB-1

48

6 SUMMARY AND CONCLUSIONS

This research effort assessed the crashworthiness of the ODOT unreinforced, single-slope, median barrier system in accordance with MASH 2016 TL-3 evaluation criteria. The ODOT unreinforced, single-slope, median barrier had a height of 43 in. (1,092 in.), a top width of 12 in. (305 mm), and a bottom width of 28³/₈ in. (721 in.). The base of the barrier was surrounded by a 1-in. (25-mm) thick asphalt pad that extended 96 in. (2,438 mm) from the traffic and back sides of the system. The asphalt pad gave the barrier an effective height of 42 in. (1,067 mm) and base width of 28 in. (711 mm). The system was fabricated with ¹/₄-in. (6-mm) gaps in the barrier section every 20 ft (6.1 m) in order to simulate potential cracking that can form in unreinforced concrete barriers. MASH 2016 test designation no. 3-11 was conducted on the barrier in order to evaluate its performance.

During test no. OSSB-1, the 5,001-lb (2,268-kg) crew cab pickup truck impacted the unreinforced barrier system at a speed of 62.8 mph (101.0 km/h) and at an angle of 24.9 degrees, resulting in an impact severity of 116.3 kip-ft (157.7 kJ). The vehicle was successfully contained and redirected by the system. The vehicle exited the system at a speed of 46.6 mph (75.0 km/h) with a vehicle c.g. exit angle of -3.0 degrees. The vehicle's orientation as it exited the system was 3.8 degrees. The difference in exit angle values can be attributed to the vehicle rolling toward the test article as it exited the system. As the vehicle exited the system, vehicle roll toward the barrier altered the c.g. target alignment relative to the orientation of the single-slope barrier, which resulted in a negative c.g. exit angle. Thus, the vehicle orientation angle during exit is a more accurate measurement of the vehicle's exit angle as it was redirected by the system. Barrier nos. 2 and 3 experienced spalling and scraping near impact, and several cracks extended from the existing thermal hairline cracks in barrier no. 2 as a result of impact. A dynamic deflection of 1.0 in. (25 mm) and a working width of 28.0 in. (711 mm) were observed during the test. All occupant risk values were found to be within limits, and the occupant compartment deformations were also deemed acceptable. Subsequently, test no. OSSB-1 was determined to satisfy the safety performance criteria for MASH 2016 test designation no. 3-11. A summary of the test evaluation is shown in Table 7.

It should be noted that the ODOT unreinforced concrete barrier was evaluated with a 1-in. (25-mm) thick asphalt keyway that represented the lowest capacity anchorage system used by ODOT with this type of barrier. Therefore, it is believed that the other, more robust anchorage methods in the ODOT standard details would also provide adequate barrier anchorage under MASH 2016 TL-3 impact conditions. Additionally, ODOT has provisions for installation of the single-slope barrier tested herein on concrete paving, asphalt paving, and compacted aggregate bases. It is believed that the performance of the barrier system will not be affected by the base type as long as the asphalt keyway anchoring the barrier system is present. ODOT also uses a dowel bar anchorage for the single-slope barrier. This system is only intended for use with a concrete base.

ODOT also has provisions in their details for the single-slope barrier evaluated herein that allow for a 4-in. (102-mm) diameter electrical raceway in the middle of the barrier section. This minimal loss of section near the center of the barrier section would not be expected to have a significant effect on the overall barrier capacity. This fact combined with the minimal barrier

damage observed in test no. OSSB-1 would suggest that the use of the 4-in. (102-mm) diameter electrical raceway would be acceptable.

The performance and redirective capacity of the unreinforced concrete barrier evaluated herein were believed to be largely related to the size of the barrier cross-section and the mass of the barrier. Thus, it is not recommended to utilize unreinforced concrete barriers with a reduced cross-section geometry and/or mass without further research and evaluation.

Finally, it was noted previously that the ODOT unreinforced, single-slope, median barrier was evaluated with ¹/₄-in. (6-mm) gaps or through cracks every 20 ft (6.1 m) along the barrier length to represent a worst practical condition for evaluation of the barrier system. Evaluation of the barrier under MASH 2016 TL-3 impact conditions indicated that the barrier had sufficient capacity even with the presence of these through cracks. However, additional intermediate cracking could develop over the service life of the barrier due to thermal cycling and other factors that could create additional rail discontinuities. If these discontinuities form in close proximity to one another or other existing cracks, the barrier capacity could be reduced, and the performance of the barrier may become less effective than what was observed in the testing detailed in this report. Based on this concern, it is recommended that end users of the unreinforced barrier periodically inspect the barrier over time to ensure that closely-spaced through-cracking that could alter performance does not occur.

Evaluation Factors		Evaluation Criteria												
Structural Adequacy	А.	Test article should contain and re a controlled stop; the vehicle sho the installation although controlle acceptable.	direct the vehicle or bring uld not penetrate, underrid ed lateral deflection of the	the vehicle to e, or override test article is	S									
	D.	1. Detached elements, fragment should not penetrate or show p compartment, or present an undu personnel in a work zone.	ts or other debris from the potential for penetrating he hazard to other traffic, p	the test article the occupant edestrians, or	S									
		 2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016. The vehicle should remain upright during and after collision. The vehicle should remain upright during and after collision. 												
	F.	The vehicle should remain up maximum roll and pitch angles a	right during and after c re not to exceed 75 degree	ollision. The es.	S									
Occupant Risk	H.	Occupant Impact Velocity (OIV MASH 2016 for calculation pr limits:	<i>V</i>) (see Appendix A, Section cocedure) should satisfy t	on A5.2.2 of he following										
		Occupant Im	pact Velocity Limits		S									
		Component	Preferred	Maximum										
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)										
	I.	The Occupant Ridedown Acceler A5.2.2 of MASH 2016 for cal following limits:	ration (ORA) (see Append culation procedure) shou	lix A, Section	S									
		Occupant Rided	own Acceleration Limits		5									
Component Preferred Maximum														
		Longitudinal and Lateral	15.0 g's	20.49 g's										
		MASH 2016 Test Desig	gnation No.		3-11									
		Final Evaluation (Pas	s or Fail)		Pass									
S – S	Satisfa	actory U – Unsatisfactory	NA - Not Applicable	e										

Table 7. Summary of Safety Performance Evaluation

RACEWAY AND DOWEL BAR PLACEMENT Figure 35. ODOT Single-Slope Barrier Electrical Raceway Detail

7 MASH EVALUATION

The ODOT unreinforced, single-slope, concrete median barrier was evaluated to determine its compliance with MASH 2016 TL-3 evaluation criteria. This barrier system consisted of an unreinforced concrete barrier section with a 12-in. (305-mm) top width and a 28-in. (711-mm) bottom width that was anchored with a 1-in. (25-mm) thick asphalt keyway. The 1-in. (25-mm) thick asphalt keyway was considered the weakest, and therefore, most critical configuration for testing. The barrier system was evaluated with vertical asperities or through-cracks every 20 ft (6.1 m) along the barrier length to represent a worst practical condition for evaluation of the barrier system.

MASH 2016 currently requires two full-scale crash tests for evaluation of longitudinal barrier systems to TL-3. Only test designation no. 3-11 was deemed critical for evaluation of the ODOT unreinforced, single-slope, concrete median barrier. Test designation no. 3-10 with the 1100C vehicle is typically required to evaluate vehicle capture, vehicle stability, and occupant risk concerns for the small car vehicle. Previous testing was conducted according to MASH test designation no. 3-10 on the CALTRANS Type 60 single-slope concrete median barrier with a 36in. (914-mm) height and 9.1-degree sloped face [7]. This test indicated that the capture, stability, and occupant risk values were acceptable for a TL-3 1100C vehicle impact on a single-slope concrete barrier with a sloped face only 1.7 degrees steeper than that of the ODOT unreinforced single-slope barrier. It was believed that the similar barrier geometry of the ODOT single-slope barrier would provide for similar vehicle redirection and stability. Additionally, structural loading of the barrier in test designation no. 3-10 with the 1100C vehicle would be significantly less than that of test designation no. 3-11 with the 2270P vehicle. Thus, test designation no. 3-11 with the 2270P vehicle was considered the most critical test to evaluate vehicle capture, vehicle stability, vehicle snag, and maximize structural loading of the barrier, and only test designation no. 3-11 was deemed necessary to evaluate the barrier system.

Test no. OSSB-1 was conducted to evaluate the crashworthiness of the barrier system to MASH 2016 TL-3 evaluation criteria. During test no. OSSB-1, the 5,001-lb (2,268-kg) crew cab pickup truck impacted the unreinforced barrier system at a speed of 62.8 mph (101.0 km/h) and at an angle of 24.9 degrees, resulting in an impact severity of 116.3 kip-ft (157.7 kJ). The vehicle exited the system at a speed of 46.6 mph (75.0 km/h) with a vehicle c.g. exit angle of -3.0 degrees. The vehicle orientation as it exited the system was 3.8 degrees. The difference in exit angle values can be attributed to the vehicle rolling toward the test article as it exited the system. As the vehicle exited the system, vehicle roll toward the barrier altered the c.g. target alignment relative to the orientation of the single-slope barrier, which resulted in a negative c.g. exit angle. Thus, the vehicle orientation angle during exit is a more accurate measurement of the vehicle's exit angle as it was redirected by the system. The vehicle was successfully contained and redirected by the system. Barrier nos. 2 and 3 experienced spalling and scraping near impact, and several cracks extended from the thermal hairline cracks in barrier no. 2 as a result of impact. A dynamic deflection of 1.0 in. (25 mm) and a working width of 28.0 in. (711 mm) were observed during the test. All occupant risk values were found to be within limits, and the occupant compartment deformations were also deemed acceptable. Subsequently, test no. OSSB-1 was determined to satisfy the safety performance criteria for MASH 2016 test designation no. 3-11.

Based on the evaluation of the successful full-scale crash testing in test no. OSSB-1 and the review of previous MASH crash testing of single-slope barriers with a small car vehicle, it is believed that the ODOT unreinforced, single-slope concrete median barrier meets all of the requirements for compliance with MASH 2016 TL-3. The ODOT barrier configurations previously shown in Figures 3 and 4 would have similar performance to that of the unreinforced, single-slope concrete barrier and would also be crashworthy.

8 REFERENCES

- 1. Mak, K.K. and Campise, W.L. *Test and Evaluation of Ontario "Tall Wall" Barrier with an* 80,000-Pound Tractor-Trailer, RF 71620, Texas Transportation Institute, Texas A&M Research Foundation, College Station, Texas, September 1990, pages 2-5.
- 2. *Manual for Assessing Safety Hardware (MASH), Second Edition, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.*
- 3. Michie, J.D. National Cooperative Highway Research Program Report 230 Recommended Procedures for the Safety Performance Evaluation of Highway Appurtenances. Southwest Research Institute, San Antonio, Texas, March 1981.
- 4. *Guide Specifications for Bridge Railings*. American Association of State Highway and Transportation Officials, Washington D.C., 1989.
- 5. Williams, W.F., Bligh, R.P., and Menges, W.L. *Mash Test 3-11 of the TxDOT Single Slope Bridge Rail (Type SSTR) on Pan-Formed Bridge Deck*, Report 9-1002-3, Texas Transportation Institute, Texas A&M Research Foundation, College Station, Texas, September 1990.
- 6. *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 7. Whitesell, D., Jewell, J., and Meline, R., *Compliance Crash Testing of the Type 60 Median Barrier (TEST 140MASH3C16-04)*, Report No. FHWA/CA17-2654, Roadside Safety Research Group, California Department of Transportation, Sacramento, California, May 2018.
- 8. Ross, H.E., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *Recommended Procedures for the Safety Performance of Highway Features*, National Cooperative Research Program (NCHRP) Report No. 350, Transportation Research Board, Washington, D.C., 1993.
- 9. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 10. *Center of Gravity Test Code SAE J874 March 1981*, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 11. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, New York, July, 2007.
- 12. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

9 APPENDICES

Appendix A. Material Specifications

Item	Description	Material Specification	Reference
110.			
	42" [1,067] Tall, 1,439¾" [36.6	Min. $f'c = 4,000 \text{ psi}$	
a1	m] Long, Unreinforced, Single-	[27.6 MPa] NE 47BD	Cylinder Testing Matrix
	Slope, Concrete Barrier	Mix	
- 2	A archalt	NDOR Superpave SPH	Drois at #540624
az	Aspnan	Mix Binder PG 64-34	Project #540624
	Task Cast	NDOR SS-1, SS-1H,	NT/A
as	Tack Coat	CSS-1, or CSS-1H	IN/A

Table A-1. Bill of Materials, Test No. OSSB-1

N/A – Not Applicable

			OSSB-1 CONCRETE TE	ST SCHEDULE		
Cylinder Label	Cast Date	Breaking Date	Breaking Strength (psi)	Cure Days	Mix Design and Target f'c	Notes:
A	10/9/2017	11/6/2017	4710	28	47BD f'c = 4000psi	Barrier Segment 1
В	10/9/2017	11/30/2017	5100	52		Cyl B is partial size
С	10/11/2017	11/15/2017	3630	35	47BD f'c = 4000psi	Barrier Segment 2
D	10/11/2017	11/15/2017	3600	35		
D2	10/11/2017	12/5/2017	4554	62		U.S. Core
E	10/13/2017	11/15/2017	3750	33	47BD f'c = 4000psi	Barrier Segment 3
F	10/13/2017	11/15/2017	3720	33		Impact Barrier
G	10/13/2017	11/30/2017	4400	48		
G2	10/13/2017	12/5/2017	4586	60		D.S. Core
Н	10/16/2017	11/15/2017	3050	30	47BD f'c = 4000psi	Barrier Segment 4
1	10/16/2017	11/15/2017	2980	30		
J	10/16/2017	11/30/2017	3680	45		
К	10/18/2017	11/15/2017	4180	28	47BD f'c = 4000psi	Barrier Segment 5
L	10/18/2017	11/15/2017	3880	28		
Μ	10/18/2017	11/30/2017	5140	43		
N	10/20/2017	11/15/2017	2790	26	47BD f'c = 4000psi	Barrier Segment 6
0	10/20/2017	11/15/2017	2830	26		
Ρ	10/20/2017	11/30/2017	3870	41		
P2	10/20/2017	12/5/2017	4287	53		Practice Core

Table A-2. Concrete Compressive Strength Data, Test No. OSSB-1

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 6x12

ASTM Designation: C 39

Date 06-Nov-17

Client Name: Midwest Roadside Safety Facility Project Name: Miscellaneous Concrete Testing Placement Location: Project Ohio Single Slope Cylinder A

Mix Designation:

Required Strength:

							Laboratory	Test Data	a						
Laboratory Identification	Field Identification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Cured in Laboratary	Age of Test, Days	Length of Specimen, in.	Diometer of Specimen, in.	Cross-Sectional Area,sq.in.	Maximum Load, Ibf	Compressive Strength, psi.	Required Strength, psi.	Type of Fracture	ASTM Practice for Capping Specimen
URR- 29 1 cc: Ms. Karla Leo	A chtenberg	10/9/2017	11/6/2017	11/6/2017	28	0	28	12	5.98	28.06	132,053	4,710		5	C 1231

Midwest Roadside Safety Facility

Figure A-1. Concrete Compression Testing Data, Cylinder A, 28 Cure Days, Test No. OSSB-1

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 6x12

ASTM Designation: C 39

Date 30-Nov-17

Client Name: Midwest Roadside Safety Facility Project Name: Miscellaneous Concrete Testing Placement Location: Ohio Single Slope

Mix Designation:

Required Strength:

							L.	aboratory	Test Data	1							
	Laboratory Identification	Field I dentification	Dote Cost	Date Received	Date Tested	Days Cured in Field	Days Curved in Laboratory	Age of Test, Doys	Length of Specimen, in	Diamater d Specimen, in.	Cross-Sectional Area,sq.in.	Maximum Load, Ibf	Compressive Strength psi.	Required Strength, psi.	Type of Fracture	ASTM Practice for Capping Specimen	
-	URR- 41	B	10/9/2017	11/30/2017	11/30/2017	52	0	52	12	5.97	27.95	142,534	5,100		5	C 1231	

1 cc. Ms. Karla Lechtenberg

Midwest Roadside Safety Facility

Figure A-2. Concrete Compression Testing Data, Cylinder B, 52 Cure Days, Test No. OSSB-1

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 6x12

ASTM Designation: C 39

Date 20-Nov-17

Client Name: Midwest Roadside Safety Facility Project Name: Miscellaneous Concrete Testing Placement Location: Ohio Single Slope

Mix Designation:

Required Strength: 4000

						,	aboratory	Test Data	1							
Laboratory Identification	Field I dentification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Curved in Laboratory	Age of Test, Doys	Length of Specimen, in	Diamater al Specimen, in.	Cross-Sectional Area,sq.in.	Maximum Load, Ibf	Compressive Strength psi.	Required Strength, psi.	Type of Fracture	AST M Practice for Capping Specimen	
URR- 30	С	10/11/2017	11/15/2017	11/15/2017	35	0	35	12	5.99	28.15	102,277	3,630	4,000	6	C 1231	
URR- 31	D	10/11/2017	11/15/2017	11/15/2017	35	0	35	12	5.99	28.18	101,405	3,600	4,000	6	C 1231	

1 cc: Ms. Karla Lechtenberg

Midwest Roadside Safety Facility

Figure A-3. Concrete Compression Testing Data, Cylinders C and D, 35 Cure Days, Test No. OSSB-1

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 6x12

ASTM Designation: C 39

Date 20-Nov-17

Client Name: Midwest Roadside Safety Facility Project Name: Miscellaneous Concrete Testing Placement Location: Ohio Single Slope

Mix Designation:

Required Strength: 4000

						L.	aboratory	Test Data	í.							
Laboratory Identification	Field I dentification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Cured in Laboratory	Age of Test, Doys	Length of Specimen, in	Diamater d Specimen, in.	Cross-Sectional Area,sq.in.	Maximum Load, Ibf	Compressive Strength psi.	Required Strength, psi.	Type of Fracture	ASTM Practice for Cupping Specimen	
URR- 32	E	10/13/2017	11/15/2017	11/15/2017	33	0	33	12	5.99	28.13	105,566	3,750	4,000	6	C 1231	
URR- 33	F	10/13/2017	11/15/2017	11/15/2017	33	0	33	12	5.99	28.20	104,915	3,720	4,000	6	C 1231	

1 cc: Ms. Karla Lechtenberg

Midwest Roadside Safety Facility

Figure A-4. Concrete Compression Testing Data, Cylinders E and F, 33 Cure Days, Test No. OSSB-1

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 6x12

ASTM Designation: C 39

Date 30-Nov-17

Client Name: Midwest Roadside Safety Facility Project Name: Miscellaneous Concrete Testing Placement Location: Ohio Single Slope

	D 1	
MILV	Hoeimpation	
14110	Designation	

Required Strength:

						,	aboratory	Test Data	1							
Laboratory Identification	Field I dentification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Cured in Laboratory	Age of Test, Droys	Length of Specimen, in	Diemeter d Specimen, in.	Cress-Sectional Area,sq.in.	Maximum Load, Ibf	Compressive Strength psi.	Required Strength, psi.	Type of Fracture	ASTM Practice for Capping Specimen	
URR- 42	G	10/13/2017	11/30/2017	11/30/2017	48	0	48	12	5.99	28.13	124,997	4,440		5	C 1231	

1 cc: Ms. Karla Lechtenberg

Midwest Roadside Safety Facility

Figure A-5. Concrete Compression Testing Data, Cylinder G, 48 Cure Days, Test No. OSSB-1

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 6x12

ASTM Designation: C 39

Date 20-Nov-17

Client Name: Midwest Roadside Safety Facility Project Name: Miscellaneous Concrete Testing Placement Location: Ohio Single Slope

Mix Designation:

Required Strength: 4000

						,	aboratory	Test Data	a							
L aboratory Identification	Field I dentification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Curved in Laboratory	Age of Test, Doys	Length of Specimen, in	Diameter of Specimen, in.	Eros s-S ectional Area, sq.in.	Maximum Load, Ibf	Compressive Strength psi.	Required Strength, psi.	Type of Fracture	ASTM Practice for Capping Specimen	
URR- 34	Ĥ	10/16/2017	11/15/2017	11/15/2017	30	0	30	12	5.99	28.19	86,084	3,050	4,000	6	C 1231	
URR- 35	1	10/16/2017	11/15/2017	11/15/2017	30	0	30	12	6.01	28.37	84,432	2,980	4,000	6	C 1231	

1 cc: Ms. Karla Lechtenberg

Figure A-6. Concrete Compression Testing Data, Cylinders H and I, 30 Cure Days, Test No. OSSB-1

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 6x12

ASTM Designation: C 39

Date 30-Nov-17

Client Name: Midwest Roadside Safety Facility Project Name: Miscellaneous Concrete Testing Placement Location: Ohio Single Slope

	n .		
MIX	Desid	ination	

Required Strength:

						,	aboratory	Test Data	1							
L aboratory Identification	Field I dentification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Curved in Laboratory	Age of Test, Doys	Length of Specimen, in	Diamater d Specimen, in.	Cross-Sectional Area,sq.in.	Maximum Load, Ibf	Compressive Strength psi.	Required Strength, psi.	Type of Fracture	ASTM Practice tor Capping Specimen	
URR- 43	J	10/16/2017	11/30/2017	11/30/2017	45	0	45	12	5.99	28.18	103,771	3,680		5	C 1231	

1 cc: Ms. Karla Lechtenberg

Figure A-7. Concrete Compression Testing Data, Cylinder J, 45 Cure Days, Test No. OSSB-1

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 6x12

ASTM Designation: C 39

Date 20-Nov-17

Client Name: Midwest Roadside Safety Facility Project Name: Miscellaneous Concrete Testing Placement Location: Ohio Single Slope

Mix Designation:

Required Strength: 4000

						L	aboratory	Test Data	1							
Laboratory Identification	Field I dentification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Cured in Laboratory	Age of Test, Doys	Length of Specimen, in	Diamater d Specimen, in.	Cross-Sectional Area,sq.in.	Maximum Load, Ibf	Compressive Strength psi.	Required Strength, psi.	Type of Fracture	ASTAI Practice for Capping Specimen	
URR- 36	ĸ	10/18/2017	11/15/2017	11/15/2017	28	Ö	28	12	5.97	27.96	116,776	4,180	4,000	6	C 1231	
URR- 37	L	10/18/2017	11/15/2017	11/15/2017	28	0	28	12	5.99	28.20	109,326	3,880	4,000	6	C 1231	

1 cc: Ms. Karla Lechtenberg

Figure A-8. Concrete Compression Testing Data, Cylinders K and L, 28 Cure Days, Test No. OSSB-1

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 6x12

ASTM Designation: C 39

Date 30-Nov-17

Client Name: Midwest Roadside Safety Facility Project Name: Miscellaneous Concrete Testing Placement Location: Ohio Single Slope

Mix Designation:

Required Strength:

						L	.aboratory	Test Data	í.							
Laboratory Identification	Field I dentification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Curied in Laboratory	Age of Test, Doys	Length of Specimen, in,	Diamater d Specimen, in.	Cross-Sectional Area,sq.in.	Maximum Load, Ibf	Compressive Strength psi.	Required Strength, psi.	Type of Fracture	ASTM Practice for Capping Specimen	
URR- 44	М	10/18/2017	11/30/2017	11/30/2017	43	0	43	12	5.99	28.22	145,072	5,140		5	C 1231	

1 cc. Ms. Karla Lechtenberg

Midwest Roadside Safety Facility

Figure A-9. Concrete Compression Testing Data, Cylinder M, 43 Cure Days, Test No. OSSB-1

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 6x12

ASTM Designation: C 39

Date 20-Nov-17

Client Name: Midwest Roadside Safety Facility Project Name: Miscellaneous Concrete Testing Placement Location: Ohio Single Slope

Mix Designation:

Required Strength: 4000

						ļ	aboratory	Test Data	a							
Laboratory Identification	Field I dentification	Date Cast	Date Received	Dote Tested	Days Cured in Field	Days Cured in Laboratory	Age of Test, Doys	Length of Specimen, in	Diamater al Specimen, in.	Eros s-S ectional Area, sq.in.	Maximum Load, Ibf	Compressive Strength psi.	Required Strength, psi.	Type of Fracture	ASTM Practice for Capping Specimen	
URR- 38	N	10/20/2017	11/15/2017	11/15/2017	26	0	26	12	6.00	28.28	78,842	2,790	4,000	6	C 1231	
URR- 39	0	10/20/2017	11/15/2017	11/15/2017	26	0	26	12	5.98	28.10	79,528	2,830	4,000	6	C 1231	

1 cc: Ms. Karla Lechtenberg

Figure A-10. Concrete Compression Testing Data, Cylinders N and O, 26 Cure Days, Test No. OSSB-1

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 6x12

ASTM Designation: C 39

Date 30-Nov-17

Client Name: Midwest Roadside Safety Facility Project Name: Miscellaneous Concrete Testing Placement Location: Ohio Single Slope

Mix Designation:

Required Strength:

						L.	.aboratory	Test Data	1							
Laboratory Identification	Field I dentification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Cured in Laboratory	Age of Test, Doys	Length of Specimen, in	Diameter d Specimen, in.	Cress-Sectional Area,sq.in.	Maximum Load, Ibf	Compressive Strength psi.	Required Strength, psi.	Type of Fracture	ASTM Practice for Capping Specimen	
URR- 45	P	10/20/2017	11/30/2017	11/30/2017	41	0	41	12	5.98	28.11	108,883	3,870		5	C 1231	

1 cc: Ms. Karla Lechtenberg

Figure A-11. Concrete Compression Testing Data, Cylinder P, 41 Cure Days, Test No. OSSB-1

	825 M Street, Suite
hanasch	Lincoln, NE 68508
engineers , scientists , planners	(402) 479-2200
engineers · scientists · plaimers	www.benesch.com

M Street, Suite 100 COMPRESSION TEST OF coln, NE 68508 2) 479-2200

CONCRETE CORES

ASTM Designation: C39

Project: Midwes	st Roadside Safety	Cores		Proje	ct No.: 00110	546.00
Placement Location:					Date: 12/5/2	2017
Mix Type:			Cement Fact	or. Sks/Yd:		
Mix Number:			Water-Ceme	nt Ratio:		
Type of Forms:			Slump (in):			
Number of Units Used: N	/A		Unit Wt (lbs/	(ft ³):		
Admixture Type:			Air Content (%):		
Admixture Quantity:			Batch Volum	$e(vd^3)$		
Average Field Temp.:			Ticket Numb	er:		
Sample Identification	P2	D2	62			
Date Cast	12	02	02			
Date Beceived in Lab	12/1/2017	12/1/2017	12/1/2017			
Date Tested	12/5/2017	12/5/2017	12/5/2017			1
Days Cured in Field	12,0,201	12,0,201	12/0/201/			
Days Cured in Laboratory	5	5	5			
Age of Specimen (Days)			-			
Length (in)	7.726	7.293	7.278			
Average Diameter (in)	3.908	3.906	3.909			
Cross-Sectional Area (in ²)	12	12	12			
Maximum Load (lbf)	51424	54570	55042			
Compressive Strength (psi)	4290	4550	4590			
Length/Diameter Ratio	2	1.9	1.9			
Correction	1	1	1			
Corrected Comp. Strength (ps	si) 4290	4550	4590			
Type of Fracture	4	6	4			
Required Strength (Mpa)					8	
lim Holloway	Alfred	a Benesch & C Wells	ompany			
billi Holloway	brant					
Remarks:						
All concrete break data in this	s report was pro	duced by Bene	esch personne	el using ASTM	Standard	
Methods and Practices unless	s otherwise note	d. This report	shall not be r	eproduced, e	xcept in full,	
without the written approval	of Alfred Beneso	ch & Company				
			ALFRED BEN	NESCH & CON	ΜΡΑΝΥ	
			By: bwells@b	enesch.com	ally signed by bwells@benesch.co cn=bwells@benesch.com 2017.12.06.15.00-12nf/00'	om
			Brant Wells	Field/Lab Ond	erations Man	ager
			brant wens,	rielu/ Lab Ope		agei

Figure A-12. Concrete Compression Testing Data, Cylinders D2 (62 Cure Days), G2 (60 Cure Days), and P2 (53 Cure Days), Test No. OSSB-1

CITY OF LINCOLN MATERIALS TESTING LAB ASPHALT AGGREGATE WORKSHEET

CONTRACTOR SUPERPAVE LEVEL		Cather SF	Const. PR	Specific Gravity of Coarse Aggregate (AASHTO T 85)	GsbC	(Coarse)	
MIX T	YPF	NON-AF		Oven Dry Weight (A)	20	086 4	
JOB	MIX	201	7-01	SSD Weight (B)	2.	107.7	
DATE F	REC'D.	02/0	6/17	Weight in Water (C)	1:	315.3	
PROJECT	NUMBER	540	624	Bulk S.G. (A/(B-C))	2	.633	
Wt. of Sample (Wtt)	9995.0	Wt.	%	Absorption ((B-A)/A)*100	-	1.0	
Wt. of +#4 (Wtc)	%C (100(Wtc/Wtt))	2126.6	21.3	Date Ran	02	/15/17	
Wt. of -#4 (Wtf)	%F (100(Wtf/Wtt))	7868.4	78.7	Ran By		JEB	
Fine (Aggregate Angul AASHTO T 304)	arity		Specific Gravity of Fine Aggregate (AASHTO T 84)	FAA	GsbF(Fine)	
Volume of N	leasure (V)	10	0.0	SSD Weight (S)	500.0	500.0	
Mass of Empty	/ Measure (E)	19	0.0	Oven Dry Weight (A)	493.8	490.3	
RL	JN	1	2	Flask Number	1	1	
Gross N	lass (D)	334.5	334.4	Flask Weight+Water to Line (B)	672.8	672.8	
Net Mass,	(F=D-E)	144.5	144.4	Flask+SSD Weight+Water to Line (C)	982.8	981.2	
U=[(V-(F/C	G))/V]*100			Volume of Sample (S-(C-B))	190.0	191.6	
FINE AGG. AN	GULARITY (U)	44.4	44.4	Bulk S.G. (A/(B+S-C))	2.599	2.559	
FAA, Average	e of two runs	44	1.4	Absorption ((S-A)/A)*100	1.3	2.0	
	Date Ran	02/2	1/17	Date Ran	02/17/17	02/14/17	
	Ran By		EB	Ran By	AJR	AJR	
		A		GsB (100/((%C/GsbC)+(%F/GsbF)))	2	2.574	
	Coarse Aggre	egate Ar	igularity	(ASTM D 5821-95)			
		Total wei	ght of sam	ple (A)	5	600.0	
	Mass or cou	int of partic	cles with or	ne fractured face (B)		57.0	
	Mass or count of	particles \	with at leas	t two fractured faces (C)	4	22.0	
Mass or count c	of particles in the uncri	ushed cate	gory not m	neeting the fractured particle criteria (A-(B+C))	21.0		
	Percentage with	n one or mo	ore fracture	ed faces. ((B+C)/A*100)		96	
	Percentage of parti	cles with a	t least two	fractured faces ((C/A)*100)		84	
				Date Ran	02		
	FI	at and F	Iongate	d Particles (ASTM D 4791)		JEB	
Sieve	Size	Total W/t	Eail \A/t	% Elat and Elongated Particles	1		
1 0 in (2	5 0 mm)	TOTAL VVI.					
3/4 in (1	9.0 mm)			0.0%			
1/2 in (1	2.5 mm)	222.4	0.0	0.0%	-C		
3/8 in (9	9.5 mm)	187.2	0.0	0.0%	(1)		
	·····,			Total % Flat and Elongated Particles		0%	
				Date Ran	02	/21/17	
			Ran By		JEB		
		Sand	l Equiva	lent (AASHTO T 176)			
Soaking Start	Sedimentation Start	Clay	Sand	Sand Equivalent			
				0.0			
				0.0			
				0.0			
				Sand Equivalent Average		0	
				Date Ran			
				Ran By			

Figure A-13. Asphalt Material Specifications, Test No. OSSB-1

	CATHER CONST. TYPE 2 (SPR)				C	ONTR/	ACTOR	TEST	rs				
	2017-01					AGGRE	GATE	GRADA	TIONS				
%	MATERIAL	S.G.	1"	3/4	1/2	3/8	#4	#8	#16	#30	#50	#200	SOURCE
0	2A GRAVEL-LR												
0	QTZ. MAN SAND-EVERIST												
0	QTZ. 3/4" ROCK												
0	QTZ. 3/16" DOWN												
0	5/8" SPECIAL-KER.												
15	3/8" LS CHIPS-MM		100.0	100.0	100.0	99.0	33.0	3.0	2.0	1.0	1.0	1.0	02/06/17
0	SCREENINGS-KER.			10000000000	1000 and 1000 and	Chief Contractor						0.000	
5	3/4" LS-MM		100.0	100.0	40.0	12.0	6.0	5.0	4.0	3.0	2.0	1.0	02/06/17
0	1/4" LS CHIPS												
0	47B GRAVEL-LR												
0	WASH SAND-WSG												
15	LS MAN SAND-MM		100.0	100.0	100.0	100.0	94.0	64.0	32.0	12.0	3.0	1.5	02/06/17
25	3A CSG-VONTZ CONST.		100.0	100.0	100.0	100.0	93.0	56.0	34.0	20.0	12.0	5.5	02/06/17
5	RAS		100.0	100.0	100.0	100.0	99.0	95.0	79.0	61.0	53.0	32.0	02/06/17
35	RAP		100.0	100.0	97.0	94.0	83.0	64.0	47.0	34.0	22.0	9.0	02/06/17
100	BLEND		100.0	100.0	96.0	93.4	76.6	51.5	34.2	22.1	14.1	6.6	
								*				*	* INDEPENDENT ADJ.

CATHER CONST. TYPE 2 (SPR) 2017

GRADATION BAN	D % PASSING
SIEVE	"SPR" BAND
200	4.0 9.0
50	12.0 21.0
30	and the second
16	
8	46.0 56.0
4	
3/8"	81.0 96.0
1/2"	50.500 (Modelski) - 05.500 (13.575) (5.5
3/4"	
1"	

	TES	т сом	PARIS	ON			
	CAL. B	LEND	IGNI'	TION	F	OWER	2
		CITY	LAB			.45	
					0	0.000	
#200	6.6	5.9	7.9	7.0		0.312	
#50	14.1	13.1	14.9	14.7		0.582	
#30	22.1	20.8	23.6	23.2		0.795	
#16	34.2	32.4	35.5	35.6		1.077	
#8	51.5	51.0	56.0	53.6		1.472	
#4	76.6	77.4	80.3	76.2		2.016	
3/8"	93.4	94.5	95.1	92.7		2.754	
1/2"	96.0	96.8	97.2	94.4	100	3.116	
3/4"	100.0	99.9	100.0	100.0		3.762	
1"	100.0	100.0	100.0	100.0		4.257	

	CATHER CONST. TYPE 2 (SPR)		CITY LAB TESTS										
	2017-01		AGGREGATE GRADATIONS										
%	MATERIAL	S.G.	1"	3/4	1/2	3/8	#4	#8	#16	#30	#50	#200	SOURCE
0	2A GRAVEL-LR												
0	QTZ. MAN SAND-EVERIST												
0	QTZ. 3/4" ROCK												
0	QTZ. 3/16" DOWN												1
0	5/8" SPECIAL-KER.												1
15	3/8" LS CHIPS-MM		100.0	100.0	100.0	99.3	35.9	3.2	1.6	1.2	1.1	1.0	02/13/17
0	SCREENINGS-KER.												
5	3/4" LS-MM		100.0	98.9	43.0	12.6	6.3	4.6	3.1	2.2	1.7	1.4	02/13/17
0	1/4" LS CHIPS												
0	47B GRAVEL-LR												1
0	WASH SAND-WSG												1
15	LS MAN SAND-MM		100.0	100.0	100.0	100.0	92.1	59.3	27.0	9.8	2.8	1.2	02/13/17
25	3A CSG-VONTZ CONST.		100.0	100.0	100.0	100.0	92.0	53.1	29.6	16.7	9.6	3.8	02/13/17
5	RAS		100.0	100.0	100.0	100.0	98.2	94.3	76.3	59.0	50.2	29.4	02/13/17
35	RAP		100.0	100.0	98.9	97.1	85.5	66.9	47.8	34.0	21.4	8.8	02/13/17
100	BLEND		100.0	99.9	96.8	94.5	77.4	51.0	32.4	20.8	13.1	5.9	
								*				*	* INDEPENDENT ADJ.

Figure A-14. Asphalt Material Specifications, Test No. OSSB-1

Figure A-15. Asphalt Material Specifications, Test No. OSSB-1

03/13/17

SUPERPAVE TESTING RESULTS

SAMPLE NUM .:		2017-005	DAT	Е: [03/03/1	7	LOT :	TON :
PLANT:	CAT	HER CONST.	PROJECT NUM	A.:	540624	1	LANE :	LIFT :
MIX TYPE:	2 1	ON-ARTERIAL	LOCATIO	N:	20 [,]	17-01	MIX DESIG	SN VERIFY
PLACED BY:	CAT	HER CONST.	JOBMIX:	201	7-01	AC	SOURCE	MONARCH
TARG	ET Pb	5.20	35%-RAP		1144	AC	GRADE	64-34
Pb (Igr	nition)	5.39	25%-3A CSC	3		C	Gb @ 60 F	1.0370
	Pbe	3.95	15%-LS MAI	N SAI	ND	C	Gb @ 77 F	1.0309
Gmm ((Rice)	2.464	15%-3/8" LS	CHIF	PS			DESIGN
Gsb ((Agg.)	2.574	05%-3/4" LS	ROC	к		FAA	44.4
	Gse	2.676	05%-RAS				CAA	96/84

GYRATORY VOLUMETRICS

-			1		
Level	Nini	Ndes	Nmax		
Gyrations	7	65	100		
Gmb	2.201	2.393	2.416		
%Gmm	89.3	97.1	98.1		
Spec.	N/A	96.0-98.0	N/A		
	Va	2.9	3 +/- 1		
	VMA	12.0	12 Min.		
	VFA	76.1	70-80		
	Mix Adjusted to	3.0 % Air Voids			
	Pb (Est.)	5.35			

IGNITION COMBINES

BAND SPR								
1"	100.0							
3/4"	100.0							
5/8"								
1/2"	97.2							
3/8"	95.1	81/96						
#4	80.3							
#8	56.0	46/56						
#10								
#16	35.5							
#30	23.5							
#50	14.9	12/21						
#200	7.9	4/9						
DP	1.5	0.7-1.7						

DENSITY CORE RESULTS

CORE	THICKNESS	SG	COMPACTION	DATE (N		
NUM.	(in.)	CORE	(%)	RECD.	TESTED	DAYS
1					N/A	
2	2				N/A	
3				AVG. CO	VIPACT. (%)	

Figure A-16. Asphalt Material Specifications, Test No. OSSB-1

Appendix B. Vehicle Center of Gravity Determination

Dodge Kam Model: 1500 Crew Cab Vehicle CG Determination Velight Vertical CG Vertical M VEHICLE Equipment (b) (n,) (b-in) + Unbalasted Truck (Curb) 5122 28 1/4 144696.5 + Hub 19 15 285 + Hub citization cylinder & frame 7 26 182 + Pneumatic tank (Nitrogen) 22 27 594 + Brake activation cylinder & frame 7 26 156 + Brake activation cylinder & frame 7 26 157 - Battery 6 26 156 - Brake Receiver/Wires 6 51 306 - CG Plate including DAS 50 31 1/2 1554 - Interior -82 27 -2214 - Fuel -160 19 1/2 3120 - Coolant -11 35 -345 - Onboard Suppl	Date:	12/13/2017	Test Name:	OSSB-1	VIN:	1D7RB1CP0BS685744				
Vehicle CG Determination Weight (b) Vertical CG Vertical CS Vertical M VEHICLE Equipment (b) (c)	Year:	2011	Make:	Dodge Ram 1500	Model:	1:	500 Crew C	ab		
+ Unballasted Truck (Curb) 5122 28 1/4 144498.5 + Hub 19 15 285 + Brake activation cylinder & frame 7 26 182 + Pneumatic tank (Nitrogen) 22 27 594 + Strobe/Brake Battery 6 51 306 + Brake Receiver/Wires 6 51 306 + CG Plate including DAS 50 31 1/2 1575 - Battery -37 42 -1554 - Oll -9 16 1/2 -148.5 - Interior -82 27 -2214 - Fuel -160 19 1/2 -3120 - Coolant -11 35 -385 - Washer fluid -4 35 -140 + Washer fluid -4 35 -140 + Washer fluid -4 35 -140 + <t< th=""><th>Vehicle CG I</th><th>Determinatio Equipment</th><th>on</th><th></th><th>Weight (lb.)</th><th>Vertical CG (in.)</th><th>Vertical M (lbin.)</th><th>_</th></t<>	Vehicle CG I	Determinatio Equipment	on		Weight (lb.)	Vertical CG (in.)	Vertical M (lbin.)	_		
+ Hub 19 15 285 + Brake activation cylinder & frame 7 26 182 + Prneumatic tank (Nitrogen) 22 27 594 + Strobe/Brake Battery 6 26 156 + Brake Receiver/Wires 6 51 306 + CG Plate including DAS 50 31 1/2 1575 - Battery -37 42 -1554 - Oli -9 16 1/2 -148.5 - Interior -82 27 -2214 - Fuel -160 19 1/2 -3120 - Coolant -11 35 -385 - Washer fluid -4 35 -140 + Washer fluid -4 35 -140 + Onboard Supplemental Battery 13 26 338 - Onboard Supplemental Battery 13 26 338 -	+	Unballasted	Truck (Curb)		5122	28 1/4	144696.5			
+ Brake activation cylinder & frame 7 26 182 + Pneumatic tank (Nitrogen) 22 27 594 + Strobe/Brake Battery 6 26 156 + Brake Receiver/Wires 6 51 306 + CG Plate including DAS 50 31 1/2 1575 - Battery -37 42 -1554 - Oil -9 16 1/2 -148.5 - Interior -82 27 -214 - Fuel -160 19 1/2 -3120 - Coolant -11 35 -385 - Washer fluid -4 35 -140 + Water Ballast (In Fuel Tank) 64 17 1068 + Onboard Supplemental Battery 13 26 338 - 0 Strinated Total Weight (Ib.) 5006 1411659 Vetic: (+) is added equipment to vehicle. (-) is removed equipment from vehicle 141659	+	Hub	~ ~		19	15	285			
+ Pneumatic tank (Nitrogen) 22 27 594 * Strobe/Brake Battery 6 26 156 * Brake Receiver/Wires 6 51 306 * CG Plate including DAS 50 31 1/2 1575 - Battery -37 42 -1554 - Oil -9 16 1/2 -148.5 - Interior -82 27 -2214 - Fuel -160 19 1/2 -3120 - Coolant -11 35 -140 + Washer fluid -4 35 -140 + Water Ballast (In Fuel Tank) 64 17 1088 * Onboard Supplemental Battery 13 26 338 - 0 Vate: (+) is added equipment to vehicle; (-) is removed equipment from vehicle 141659 Vehicle Dimensions for C.G. Calculations - - 0 - Wheel Base: 140 1/4 in.	+	Brake activa	tion cylinder 8	frame	7	26	182			
+ Strobe/Brake Battery 6 26 156 + Brake Receiver/Wires 6 51 306 + CG Plate including DAS 50 31 1/2 1575 - Battery -37 42 -1554 - Oil -9 16 1/2 -148.5 - Interior -82 27 -2214 - Fuel -160 19 1/2 -3120 - Coolant -11 35 -385 - Washer fluid -4 35 -140 + Water Ballast (In Fuel Tank) 64 17 1088 + Onboard Supplemental Battery 13 26 338 - - 0 - 141659 Estimated Total Weight (Ib.) 5006 Vetrical CG Location (In.) 28.2978 - 141659 Vehicle Dimensions for C.G. Calculations Wheel Base: 140 1/4 in. Rear Track Width: 6	Ŧ	Pneumatic t	ank (Nitrogen)	C	22	27	594			
+ Brake Receiver/Wrires 6 51 306 + CG Plate including DAS 50 31 1/2 1575 - Battery -37 42 -1554 - Oil -9 16 1/2 -148.5 - Interior -82 27 -2214 - Fuel -160 19 1/2 -3120 - Coolant -11 35 -385 - Washer fluid -4 35 -140 + Water Ballast (In Fuel Tank) 64 17 1088 - Onboard Supplemental Battery 13 26 338 - Onboard Supplemental Battery 13 26 338 - Onboard Supplemental Battery 13 26 338 - Differen 1411659 - 141659 Vetical CG Location (in.) 5006 - 175/8 in. Center of Gravity 2270P MASH Targets Test Inertial Differen	+	Strobe/Brak	e Battery		6	26	156			
+ CG Plate including DAS 50 31 1/2 1575 - Battery -37 42 -1554 - Oil -9 16 1/2 -148.5 - Interior -82 27 -2214 - Fuel -160 19 1/2 -3120 - Coolant -11 35 -140 + Washer fluid -4 35 -140 + Onboard Supplemental Battery 13 26 338 - 0 -141659 -141659 -141659 Vetical CG Location (in.) 28.2978 -1411659 -1411659 Vehicle Dimensions for C.G. Calculations	+	Brake Recei	ver/Wires		6	51	306			
Battery -37 42 -1554 Oil -9 16 1/2 -148.5 Interior -82 27 -2214 Coolant -111 35 -385 Washer fluid -4 35 -140 Washer fluid -4 35 -140 Washer fluid -4 35 -385 Onboard Supplemental Battery 13 26 338 Onboard Supplemental Battery 13 26 338 Wate: (+) is added equipment to vehicle. (-) is removed equipment from vehicle 141659 Estimated Total Weight (lb.) 5006 28.2978 Vehicle Dimensions for C.G. Calculations	Ŧ	CG Plate ind	cluding DAS		50	31 1/2	1575			
Oil -9 16 1/2 -148.5 Interior -82 27 -2214 Fuel -160 19 1/2 -3120 Coolant -11 35 -385 Washer fluid -4 35 -140 + Washer fluid -4 35 -140 + Washer fluid -4 35 -140 + Onboard Supplemental Battery 13 26 338 + Onboard Supplemental Battery 13 26 338 + Onboard Supplemental Battery 13 26 338 - - 0 141659 0 Veticel Dimensions for C.G. Calculations - 0 141659 Wheel Base: 140 1/4 in. Rear Track Width: 67 1/8 in. Center of Gravity 2270P MASH Targets Test Inertial Differen Test Inertial Weight (lb.) 5000 ± 110 5001 1 Longitudinal CG (in.) 63 ± 4 61.220906	-	Battery			-37	42	-1554			
Interior -82 27 -2214 - Fuel -160 19 1/2 -3120 - Coolant -11 35 -385 - Washer fluid -4 35 -140 + Washer fluid -4 35 -140 + Washer fluid -4 35 -140 + Onboard Supplemental Battery 13 26 338 - Oboard Supplemental Battery 13 26 338 - Estimated Total Weight (lb.) 5006 28.2978 Vehicle Dimensions for C.G. Calculations - 141659 Wheel Base: 140 1/4 in. Rear Track Width: 67 1/8 in.	<u> </u>	Oil			-9	16 1/2	-148.5			
Fuel -160 19 1/2 -3120 - Coolant -11 35 -385 - Washer fluid -4 35 -140 + Washer Ballast (In Fuel Tank) 64 17 1088 + Onboard Supplemental Battery 13 26 338 - 0 0 0 Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 141659 Estimated Total Weight (lb.) Vehicle Dimensions for C.G. Calculations Wheel Base: 140 1/4 in. Rear Track Width: 67 1/8 in. Center of Gravity 2270P MASH Targets Test Inertial Differen Test Inertial Weight (lb.) 5000 ± 110 5001 1 Longitudinal CG (in.) 63 ± 4 61.220906 -1.779 Lateral CG (in.) 28 or greater 28.30 0.297 Vote: Long. CG is measured from conterline - positive to vehicle right (passenger) side 421 1397 Front 1514 1371 1049 <td>1.0</td> <td>Interior</td> <td></td> <td></td> <td>-82</td> <td>27</td> <td>-2214</td> <td></td>	1.0	Interior			-82	27	-2214			
Coolant -11 35 -385 Washer fluid -4 35 -140 Washer fluid 64 17 1088 Conboard Supplemental Battery 13 26 338 Onboard Supplemental Battery 13 26 338 Washer fluid 0 0 0 Vetice Unimensions for C.G. Calculations 141659 141659 Wheel Base: 140 1/4 in. Front Track Width: 67 1/8 in. Rear Track Width: 67 5/8 in. 67 5/8 in. Center of Gravity 2270P MASH Targets Test Inertial Differen Test Inertial Weight (lb.) 5000 ± 110 5001 1 1 Longitudinal CG (in.) 63 ± 4 61.220906 -1.779 Lateral CG (in.) NA 0.4109053 N	-	Fuel			-160	19 1/2	-3120			
- Washer fluid -4 35 -140 + Washer Ballast (In Fuel Tank) 64 17 1088 + Onboard Supplemental Battery 13 26 338 0 0 141659 Estimated Total Weight (Ib.) 5006 141659 Vehicle Dimensions for C.G. Calculations Vertical CG Location (in.) 28.2978 Vehicle Dimensions for C.G. Calculations Front Track Width: 67.1/8 in. Rear Track Width: 67.5/8 in. in. Center of Gravity 2270P MASH Targets Test Inertial Differen Test Inertial Weight (Ib.) 5000 ± 110 5001 1 Longitudinal CG (in.) 63 ± 4 61.220906 -1.779 Lateral CG (in.) NA 0.4109053 N Vertical CG (in.) 28 or greater 28.30 0.297 vote: Lateral CG measured from centerline - positive to vehicle right (passenger) side TEST INERTIAL WEIGHT (Ib.) Image: Construct the construct of the c	-)	Coolant			-11	35	-385			
+ Water Ballast (In Fuel Tank) 64 17 1088 + Onboard Supplemental Battery 13 26 338 0 Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 141659 0 1411659 Estimated Total Weight (lb.) 5006 0 Vehicle Dimensions for C.G. Calculations Wheel Base: 140 1/4 in. Front Track Width: 67 1/8 in. Center of Gravity 2270P MASH Targets Test Inertial Differen Test Inertial 0 5001 1 1 Longitudinal CG (in.) 63 ± 4 61.220906 -1.779 Lateral CG (in.) NA 0.4109053 N Vertical CG (in.) 28 or greater 28.30 0.297 Vote: Long. CG is measured from centerline - positive to vehicle right (passenger) side Test INERTIAL WEIGHT (lb.) Kear 1085 1152 Front 1421 1397 Rear 1085 1152 Front 1421 1397	_)	Washer fluid	1		-4	35	-140			
+ Onboard Supplemental Battery 13 26 338 0 Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 141659 1411659 Estimated Total Weight (lb.) 5006 Vehicle Dimensions for C.G. Calculations 28.2978 Wheel Base: 140.1/4 in. Front Track Width: 67.1/8 in. Rear Track Width: 67.5/8 in. 67.5/8 in. Center of Gravity 2270P MASH Targets Test Inertial Differen Test Inertial Weight (lb.) 5000 ± 110 5001 1 1 Longitudinal CG (in.) 63 ± 4 61.220906 -1.779 Lateral CG (in.) 28 or greater 28.30 0.297 Vote: Lateral CG measured from centerline - positive to vehicle right (passenger) side Test INERTIAL WEIGHT (lb.) Front 1514 1371 Rear 1049 1134 Front 1514 1371 Rear 1049 1134 FRONT 2885 Ib. REAR 2183 Ib.<	+	Water Ballas	st (In Fuel Tan	k)	64	17	1088			
Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 0 Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle Estimated Total Weight (lb.) S006 Vehicle Dimensions for C.G. Calculations Wheel Base: 140 1/4 in. Front Track Width: 67 1/8 Rear Track Width: Of 141659 Vehicle Dimensions for C.G. Calculations Wheel Base: 140 1/4 in. Front Track Width: 67 1/8 Of Gravity 2270P MASH Targets Test Inertial Differen	÷	Onboard Su	pplemental Ba	attery	13	26	338	1		
Note: (+) is added equipment to vehicle, (-) is removed equipment from vehicle 141659 Estimated Total Weight (lb.) 5006 Vertical CG Location (in.) 28.2978 Vehicle Dimensions for C.G. Calculations Front Track Width: 67 1/8 in. Wheel Base: 140 1/4 in. Front Track Width: 67 5/8 in. Center of Gravity 2270P MASH Targets Test Inertial Differen Test Inertial Weight (lb.) 5000 ± 110 5001 1 Longitudinal CG (in.) 63 ± 4 61.220906 -1.779 Lateral CG (in.) NA 0.4109053 N Vertical CG (in.) 28 or greater 28.30 0.297 Note: Lateral CG measured from front axle of test vehicle store to vehicle right (passenger) side CURB WEIGHT (lb.) Image: Left Right Front 1514 1371 Rear 1049 1134 FRONT 2885 lb. REAR 2183 lb. TOTAL 5011 lb							0			
Profit Prack Width:67 1/8III. Rear Track Width:67 5/8III. Rear Track Width:67 5/8III. Rear Track Width:67 5/8III. Rear Track Width:67 5/8III. Rear Track Width:Good TotalDifferen TotalTest Inertial Weight (lb.)5000 ± 11050011Longitudinal CG (in.)63 ± 461.220906-1.779Lateral CG (in.)NA0.41090533NVertical CG (in.)28 or greater28.300.297Note:Long. CG is measured from front axle of test vehicle Note:Lateral CG measured from centerline - positive to vehicle right (passenger) sideCURB WEIGHT (Ib.)Front15141371Rear10851152FRONT2885lb.REAR2237lb.LOTAL5001lb.REAR2183lb.TOTAL5001lb	Vehicle Dime	ensions for C	C.G. Calculati	ons		67.1/0	in	-		
Center of Gravity 2270P MASH Targets Test Inertial Differen Test Inertial Weight (lb.) 5000 ± 110 5001 1 Longitudinal CG (in.) 63 ± 4 61.220906 -1.779 Lateral CG (in.) NA 0.4109053 N Vertical CG (in.) 28 or greater 28.30 0.297 Note: Long. CG is measured from front axle of test vehicle Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side TEST INERTIAL WEIGHT (lb.) Front 1514 1371 Rear 1085 1152 FRONT 2885 lb. FRONT 2818 lb. REAR 2237 lb. TOTAL 5001 Ib	vineer base.	140 174		Rear Tra	ick Width:	67 5/8	in.			
Longitudinal CG (in.) 63 ± 4 61.220906 -1.779 Lateral CG (in.) NA 0.4109053 N Vertical CG (in.) 28 or greater 28.30 0.297 Note: Long. CG is measured from front axle of test vehicle 0.4109053 N Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side TEST INERTIAL WEIGHT (Ib.) Front 1514 1371 Rear 1085 1152 FRONT 2885 Ib. REAR 2237 Ib. IOTAL 5102 Ib	Center of Gra	avity Voight (Ib.)	2270P MA	SH Targets		Test Inertia		Differenc		
Lotinitudinal CG (in.) NA 0.1220900 -1.179 Lateral CG (in.) NA 0.4109053 N Vertical CG (in.) 28 or greater 28.30 0.297 Note: Long. CG is measured from front axle of test vehicle Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side TEST INERTIAL WEIGHT (Ib.) Front 1514 1371 Rear 1085 1152 FRONT 2885 Ib. REAR 2237 Ib. IOTAL 5122 Ib			 	± 110 ± 4		61 220006		1 7700		
Vertical CG (in.) 28 or greater 28.30 0.297 Note: Long. CG is measured from front axle of test vehicle Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side TEST INERTIAL WEIGHT (Ib.) Left Right Front 1514 1371 Rear 1085 1152 FRONT 2885 lb. REAR 2237 lb. IOTAL 5102 lb	Longituumai C	<u>, , , , , , , , , , , , , , , , , , , </u>		I 4		01.220900		-1.7790 NL		
Left Right Left Right Front 1514 1371 1085 1152 FRONT 2885 lb. Rear 1049 1134 FRONT 2885 lb. REAR 2137 lb. Ib. TOTAL 5122 lb 1085 1152 Ib. Ib.	Vortical CC (I	(1.) in)	11/2	or groater		28.20		0 2079		
Note: Long. CG is measured from ront axie of test vehicle Note: Lateral CG measured from centerline - positive to vehicle right (passenger) side CURB WEIGHT (lb.) Left Right Front 1514 1371 Rear 1085 1152 FRONT 2885 lb. REAR 2237 lb. LOTAL 5102 lb		<u>III.)</u>	20			20.30		0.2970		
CURB WEIGHT (lb.) Left Right Front 1514 1371 Rear 1085 1152 FRONT 2885 lb. REAR 2237 lb. IOTAL 5122 lb	Note: Long. CG I Note: Lateral CG	s measured from	centerline - posit	ive to vehicle right	(passenger) side				
Left Right Left Right Front 1514 1371 Front 1421 1397 Rear 1085 1152 Rear 1049 1134 FRONT 2885 lb. FRONT 2818 lb. REAR 2237 lb. Ib. TOTAL 5001 lb.	CURB WEIGI	HT (lb.)				TEST INER	TIAL WEIGI	HT (lb.)		
Front 1514 1371 Rear 1085 1152 FRONT 2885 lb. REAR 2237 lb. TOTAL 5122 lb		Left	Riaht				Left	Riaht		
Rear 1085 1152 Rear 1049 1134 FRONT 2885 lb. FRONT 2818 lb. REAR 2237 lb. REAR 2183 lb. TOTAL 5122 lb. TOTAL 5001 lb.	Front	1514	1371			Front	1421	1397		
FRONT 2885 lb. REAR 2237 lb. TOTAL 5122 lb.	Rear	1085	1152			Rear	1049	1134		
REAR <u>2237</u> lb. REAR <u>2183</u> lb. TOTAL 5001 lb.	FRONT	2885	lb.			FRONT	2818	lb.		
	REAR	2237	lb.			REAR	2183	lb.		
		5122	lh			ΤΟΤΑΙ	5001	= lh		

Figure B-1. Vehicle Mass Distribution, Test No. OSSB-1

Appendix C. Vehicle Deformation Records

Figure C-1. Floor Pan Deformation Data – Set 1, Test No. OSSB-1

	Year: 2011 Make: Dodge Ram 1500 Model: 1500 Crew Cab VEHICLE PRE/POST CRUSH INTERIOR CRUSH - SET 1										
	POINT	X (in.)	Y (in.)	Z (in.)	X' (in.)	Y' (in.)	Z' (in.)	ΔX (in.)	ΔY (in.)	ΔΖ (in.)	Total ∆ (in.)
	1	50.384	-36,835	27,177	49,971	-37.030	27.624	-0.413	-0.194	0.447	0.638
	2	47.353	-26.117	30.087	47.162	-26.312	30,450	-0.192	-0.195	0.363	0.454
SH	3	49.664	-8.345	28.073	49.459	-8.619	27.990	-0.205	-0.274	-0.083	0.352
NA.	4	45.571	-36.069	16.440	44.979	-36.246	17.062	-0.592	-0.177	0.622	0.877
-	5	44.459	-25.889	23.799	bad data						
	6	43.349	-7.355	15.459	43.074	-7.632	15.550	-0.275	-0.277	0.092	0.401
шЦ	7	57.209	-39.772	4.959	56.305	-38.797	5.446	-0.904	0.975	0.487	1.416
	8	54.262	-39.596	6.062	53.398	-38.357	6.528	-0.863	1.239	0.466	1.580
0 Z	9	54.214	-39.585	3.008	53.394	-38.223	3.431	-0.820	1.362	0.423	1.645
Щ	10	22.724	-41.728	16.599	21.871	-42.920	16.693	-0.853	-1.192	0.094	1.469
	11	30.874	-41.642	17.124	29.979	-42.767	17.357	-0.895	-1.125	0.233	1.457
ËĞ	12	41.904	-41.610	15.551	41.030	-42.256	15.866	-0.875	-0.646	0.315	1.132
8 Q	13	24.713	-41.162	1.466	24.063	-41.613	1.589	-0.650	-0.451	0.123	0.801
Ч×	14	32.004	-41.802	0.719	31.297	-42.217	0.921	-0.707	-0.415	0.202	0.844
=	15	39.946	-42.306	1.304	39.237	-42.650	1.656	-0.709	-0.344	0.352	0.863
	16	38.385	-29.202	42.608	38.109	-29.539	42.983	-0.277	-0.337	0.375	0.575
	17	39.455	-25.589	42.793	39.221	-25.949	43.114	-0.234	-0.359	0.321	0.536
	18	40.758	-20.532	42.873	40.608	-20.826	43.124	-0.150	-0.294	0.251	0.415
	19	41.562	-15.171	43.004	41.388	-15.518	43.205	-0.174	-0.347	0.201	0.437
	20	42.021	-8.291	43.107	41.914	-8.622	43.208	-0.107	-0.331	0.101	0.362
	21	32.284	-27.264	45.515	32.077	-27.560	45.766	-0.206	-0.296	0.251	0.440
Ь	22	33.443	-22.758	45.713	33.204	-23.087	45.942	-0.239	-0.329	0.229	0.467
õ	23	34.497	-17.190	45.871	34.354	-17.469	46.043	-0.143	-0.279	0.172	0.358
ш	24	35.002	-12.108	45.972	34.853	-12.424	46.073	-0.149	-0.316	0.102	0.364
	25	35.330	-7.440	45.984	35.231	-7.082	46.062	-0.100	-0.243	0.079	0.274
	20	20.945	-20.573	40.114	20.757	-20.001	40.335	-0.109	-0.276	0.221	0.402
	21	29.732	16 888	40.302	29.313	-22.495	40.302	-0.220	-0.300	0.200	0.427
	20	30.765	-11 941	46.501	30.527	-12 186	46.794	-0.105	-0.202	0.141	0.317
	30	30,860	-7.158	46,719	30,793	-7.395	46,793	-0.067	-0.236	0.074	0.257
10.000	31	52 351	-37 935	29.446	52 795	-38 823	28 765	0.443	-0.888	-0.682	1 204
AR	32	50,137	-37.447	31.098	49,807	-37,990	31,432	-0.330	-0.543	0.334	0.718
Γ	33	46 669	-35 706	32 884	46,390	-36 115	33 298	-0.280	-0.409	0.414	0.646
Ē	34	42.678	-35,236	36.017	42.372	-35.601	36,468	-0.307	-0.365	0.452	0.657
	35	10.918	-38,414	20.342	10.673	-38.629	20.561	-0.245	-0.215	0.219	0.393
	36	14,835	-38,487	20,466	14,581	-38,767	20,676	-0.254	-0.280	0.210	0.433
~AF	37	10.742	-37.496	30.036	10.483	-37.729	30.193	-0.259	-0.234	0.156	0.382
ШŢ	38	13.915	-37.507	30.167	13.620	-37.751	30.350	-0.295	-0.243	0.183	0.424
<u>۵</u>	39	9.841	-33.507	41.676	9.560	-33.669	41.845	-0.280	-0.163	0.169	0.366
	40	12.951	-33.629	41.446	12.757	-33.840	41.562	-0.194	-0.211	0.116	0.309

Figure C-2. Occupant Compartment Deformation Data – Set 1, Test No. OSSB-1

Figure C-3. Exterior Vehicle Crush (NASS) - Front, Test No. OSSB-1

Figure C-4. Exterior Vehicle Crush (NASS) - Side, Test No. OSSB-1

Appendix D. Accelerometer and Rate Transducer Data Plots, Test No. OSSB-1

Figure D-1. 10-ms Average Longitudinal Acceleration (SLICE-2), Test No. OSSB-1

Figure D-2. Longitudinal Occupant Velocity (SLICE-2), Test No. OSSB-1

Figure D-3. Longitudinal Occupant Displacement (SLICE-2), Test No. OSSB-1

Figure D-4. 10-ms Average Lateral Acceleration (SLICE-2), Test No. OSSB-1

Figure D-5. Lateral Occupant Velocity (SLICE-2), Test No. OSSB-1

Figure D-6. Lateral Occupant Displacement (SLICE-2), Test No. OSSB-1

Figure D-7. Vehicle Angular Displacements (SLICE-2), Test No. OSSB-1

November 19, 2018 MwRSF Report No. TRP-03-388-18

90

Figure D-8. Acceleration Severity Index (SLICE-2), Test No. OSSB-1

Figure D-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. OSSB-1

Figure D-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. OSSB-1

93

Figure D-11. Longitudinal Occupant Displacement (SLICE-1), Test No. OSSB-1

Figure D-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. OSSB-1

Figure D-13. Lateral Occupant Velocity (SLICE-1), Test No. OSSB-1

Figure D-14. Lateral Occupant Displacement (SLICE-1), Test No. OSSB-1

Figure D-15. Vehicle Angular Displacements (SLICE-1), Test No. OSSB-1

November 19, 2018 MwRSF Report No. TRP-03-388-18

86

Figure D-16. Acceleration Severity Index (SLICE-1), Test No. OSSB-1

Appendix E. Perpendicular Force Calculation, Test No. OSSB-1

Figure E-1. Perpendicular Forces Imparted to the Barrier System (SLICE-2), Test No. OSSB-1

END OF DOCUMENT