Thrie/W-Beam/Tubular Barrier Gap Rail for MASH TL-3

Problem

- Sometimes manholes and other features in the alignment of barriers
- Need to provide 8-foot maximum wide gap to access manhole/features
- Need to provide structural barrier that is removable for access
- Removable barrier needs to meet crash requirements of MASH TL-3

Thrie/W-Beam/Tubular Barrier Gap Rail for MASH TL-3

- Work Plan
 - Task 1 Engineering Analyses & Detailing
 - Option 1 W-beams with brace frames
 - Option 2 Steel Tubes with Slotted Plates
 - Task 2 Construction & Drafting
 - Task 3 Perform Full Scale Crash Test
 - Perform Mash Test 3-10 (1100C, 25 degs., 100km/hr.)
 - Perform Mash Test 3-11 (2270P, 25 degs., 100 km/hr.)

insutute

i ooica i aii

See next sheet for Section Views

5a. All rebar is grade 60, and epoxy coated.

5b. Chamfer exposed edges, 3/4" each way.

5c. All rebar dimensions are to center of bar unless otherwise indicated by "cvr" (cover).

Roadside Safety and Physical Security Division -Proving Ground

Project #610461 Barrier Gap

Drawn by GES

Scale 1:20 Sheet 5 of 6 Concrete and Rebar Details

Photos of Completed Test Installation

Thrie/W-Beam/Tubular Barrier Gap Rail for MASH TL-3

- Test 3-10 Scheduled for October 9, 2019,
 CIP = 3.6 ft. upstream of end of tapered edge of rail connection
- Test 3-11 Scheduled for October 30, 2019,
 CIP = 4.3 ft. upstream of center of barrier gap

Professional Opinion Project

Problem

 Provide engineering support services and recommendations for roadside safety barrier hardware and barrier systems with respect to MASH performance criteria

2017 & 2018 Prioritized List & Assignments

Project No.	Project	Engineer	Posted
		Assigned	To Website?
17-1	MGS Median Barrier MASH TL-3	Nathan Schulz	
17-2	Does 32" F-Shape Cast-in-Place Barrier Meet MASH TL-3?	Sana Moran	Yes
17-3	18'-9" Thrie Beam Transition Design for MASH TL-3	Sana Moran	Yes
17-5	Michigan Temporary Concrete Barrier Limited Deflection	William Williams	
17-6	Concrete Barrier Shape Transitions	William Williams	
18-05	Thrie Beam System at Bridge Column	Nathan Schulz	Yes
18-23	In-Line Anchor (in Length of Need)	Sana Moran	Yes
18-08	Concrete Height Transitions	William Williams	
18-09	W-Beam to Concrete	Sana Moran	
18-30	42" 10.8 Degree Parapet	Sana Moran	
18-27	F-Shape Temporary Concrete Barrier for MASH TL-3	Sana Moran	
18-26	Omitted Post	Jim Kovar	Yes
18-28 & 29	Roadside Sign Supports Topics	Nathan Schulz	
18-02	MASH Compliant Bridge Rail Design (Colorado 2-Tube)	William Williams	Yes
18-04	Single Slope Embedded Barrier	Sana Moran	
18-03	A Field Varation on a Steeper F-Shape Barrier	William Williams	
18-22	Painted Guardrail	Maysim Kiana	
18-01	Mash Compliant Bridge Rail Design (Colorado Single SLope)	William Williams	Yes

- A new guardrail design to be evaluated under MASH TL-3 test conditions
- 31-inch w-beam system.
- Splices are in between posts with standard post spacing.
- 9-ft posts are installed on the slope so the face of the guardrail aligned with the slope break.

MASH Test 3-10

- The rail system seems to be stiffer than desired
- Two recommended ways for reducing the rail stiffness
 - Shortening rail embedment
 - Using weaker posts

- Using weak post system seems to be more practical
 - Easier and consistent in terms of installation (S3 x 5.7), especially given the mountainous rock formations
 - Less embedment depth
 - Reduced soil dependency
 - Closer the slope break

- Items left to complete the project
 - Request time extension
 - LS-DYNA analysis with pickup truck
 - Request additional funds to test the truck and potential the small car
 - The testing could be in an extension to the current project or a new testing project for the weak post system

Determination of Pedestrian Rail Offset Requirements to Eliminate Vehicle Interaction

Purpose

 Determine offset requirements for mounting pedestrian rails on concrete barriers

Status

Ongoing Project; nearing completion and finalizing report

Determination of Pedestrian Rail Offset Requirements to Eliminate Vehicle Interaction

- Review previous MASH 3-11 tests on concrete barriers
 - Vertical wall, single slope, and jersey shape
- Measuring extension of vehicle over the traffic side face of barrier
- Measuring both the side view mirror extension and the extension of a "structural component"

Purpose

- Test quarter-post spacing, half-post spacing, and a transition system to MASH compliance
- Because of failed tests, computer simulation and retesting of modified systems added to scope

Status

 Ongoing Project; computer simulation underway

Review and Investigation of W-Beam Guardrail Terminals with Curbs

Purpose

- Compile current literature and practices on w-beam guardrail terminals when located near a curb
- Complete a state survey reviewing current state practices regarding w-beam terminals near curbs
- Coordinate with MwRSF on their current study

Status

Ongoing Project; drafting of survey underway

Purpose

- Investigate performance of MGS system when installed with a flare
- Initially intended to investigate critical flare for MGS
- Purpose was modified to investigate most used MGS flare rate for high-speed

Status

Decision Point (on how to continue...)

Tests 3-10 & 3-11: 62 mph, 25 deg. (effective angle 33.1 deg.)

Test 3-10: 62 mph, 25 deg. (effective angle 33.1 deg.)

Test 3-10: 62 mph, 25 deg. (effective angle 33.1 deg.)

Tests 3-10 & 3-11: 62 mph, 25 deg.

Test 3-11: 62 mph, 25 deg.

Test 3-11: 62 mph, 25 deg.

MASH Coordination Effort

Purpose

- Maintain and Update Pooled Fund Website, MASH Testing and Needs Databases;
- Provide Support for Webinars Development /Conduction;
- Facilitate Communication among Members through Q&A, Listserv;
- Coordinate on MASH Activities;
- Support for Yearly Meeting Preparation.

Status

Continuous Project

MASH Coordination Effort

- Listserv
- Developed Webinars (as needed, ~ every other month)
- Developed Working Groups (preparation for yearly meeting);
 - a) Collect Individual Member's MASH testing needs
 - b) Prioritize Member's Needs
 - c) Draft Problem Statements for Priority Needs
 - d) Develop partnerships among DOT Members

MASH Coordination Effort

MASH database revision & input addition

Purpose

- Assessment of a Large Breakaway Sign support per MASH Test level 3 conditions on flat level ground and on sloped terrain.
- Determination of the most critical characteristics within this envelope of conditions.

Survey Results

Evaluation of Large sign support

Criteria for Large Sign Support Evaluation

Type of Ditch

FEM Validation

Florida Test Article

Base and Fuse Connections

Florida FEM Crash Analysis (Flat level)

1100C Vehicle

2270P Vehicle

Florida FEM Crash Analysis (Sloped terrain)

Impact Angle: 25°

Florida FEM Crash Analysis (Sloped terrain)

1100C Vehicle

2270P Vehicle

Purpose

Investigate and test critical flare for cast-in-place concrete system under MASH TL-4 criteria (full matrix).

Status

Investigating barrier performance (shape, height, critical flare rate) through FEA

simulations (full Test Level 4 matrix).

State Survey

- FEA
 - Pickup truck
 - 42" Single Slope
 - 5-ft length
 - 20:1 flare rate
 - Two 6-in diameter poles, 30 inches apart

• All maximum OIVs happened at approximately 0.08 sec.

All maximum ORAs happened at approximately 0.17-0.18 sec. -12-in-CIP +60-in-CIP -51-in-CIP 20 +9-in-CIP -60" -51" -48" -36" -24" 60" 20" 80

Next

- Finalizing parametric analysis to provide the CIPs.
- Full-scale crash tests (Tests 4-10, 4-11 and 4-12).

Anticipated Completion Date: Summer 2020

