

November 19, 2019

1200 New Jersey Ave., SE Washington, D.C. 20590

In Reply Refer To: HSST-1/CC-156

Mr. Roberto Impero Industry AMS SRL Via Dante Giacosa SNC, Marciansie (CE), 81025 Italy

Dear Mr. Impero:

This letter is in response to your July 11, 2019 request for the Federal Highway Administration (FHWA) to review a roadside safety device, hardware, or system for eligibility for reimbursement under the Federal-aid highway program. This FHWA letter of eligibility is assigned FHWA control number CC-156 and is valid until a subsequent letter is issued by FHWA that expressly references this device.

Decision

The following device is eligible within the length-of-need, with details provided in the form which is attached as an integral part of this letter:

• Hercules Crash Cushion

Scope of this Letter

To be found eligible for Federal-aid funding, new roadside safety devices should meet the crash test and evaluation criteria contained in the American Association of State Highway and Transportation Officials' (AASHTO) Manual for Assessing Safety Hardware (MASH). However, the FHWA, the Department of Transportation, and the United States Government do not regulate the manufacture of roadside safety devices. Eligibility for reimbursement under the Federal-aid highway program does not establish approval, certification or endorsement of the device for any particular purpose or use.

This letter is not a determination by the FHWA, the Department of Transportation, or the United States Government that a vehicle crash involving the device will result in any particular outcome, nor is it a guarantee of the in-service performance of this device. Proper manufacturing, installation, and maintenance are required in order for this device to function as tested.

This finding of eligibility is limited to the crashworthiness of the system and does not cover other structural features, nor conformity with the Manual on Uniform Traffic Control Devices.

Eligibility for Reimbursement

Based solely on a review of crash test results and certifications submitted by the manufacturer, and the crash test laboratory, FHWA agrees that the device described herein meets the crash test and evaluation criteria of the AASHTO's MASH. Therefore, the device is eligible for reimbursement under the Federal-aid highway program if installed under the range of tested conditions.

Name of system: Hercules Crash Cushion Type of system: Crash Cushion Test Level: MASH Test Level 3 (TL3) Testing conducted by: CSI SpA Date of request: July 22, 2019

FHWA concurs with the recommendation of the accredited crash testing laboratory on the attached form

Full Description of the Eligible Device

The device and supporting documentation, including reports of the crash tests or other testing done, videos of any crash testing, and/or drawings of the device, are described in the attached form.

Notice

This eligibility letter is issued for the subject device as tested. Modifications made to the device are not covered by this letter. Any modifications to this device should be submitted to the user (i.e., state DOT) as per their requirements.

You are expected to supply potential users with sufficient information on design, installation and maintenance requirements to ensure proper performance.

You are expected to certify to potential users that the hardware furnished has the same chemistry, mechanical properties, and geometry as that submitted for review, and that it will meet the test and evaluation criteria of AASHTO's MASH.

Issuance of this letter does not convey property rights of any sort or any exclusive privilege. This letter is based on the premise that information and reports submitted by you are accurate and correct. We reserve the right to modify or revoke this letter if: (1) there are any inaccuracies in the information submitted in support of your request for this letter, (2) the qualification testing was flawed, (3) in-service performance or other information reveals safety problems, (4) the system is significantly different from the version that was crash tested, or (5) any other information indicates that the letter was issued in error or otherwise does not reflect full and complete information about the crashworthiness of the system.

Standard Provisions

- To prevent misunderstanding by others, this letter of eligibility designated as FHWA control number CC-156 shall not be reproduced except in full. This letter and the test documentation upon which it is based are public information. All such letters and documentation may be reviewed upon request.
- This letter shall not be construed as authorization or consent by the FHWA to use, manufacture, or sell any patented system for which the applicant is not the patent holder.
- This FHWA eligibility letter is not an expression of any Agency view, position, or determination of validity, scope, or ownership of any intellectual property rights to a specific device or design. Further, this letter does not impute any distribution or licensing rights to the requester. This FHWA eligibility letter determination is made based solely on the crash-testing information submitted by the requester. The FHWA reserves the right to review and revoke an earlier eligibility determination after receipt of subsequent information related to crash testing.

Sincerely,

Michael & Juffitle

Michael S. Griffith Director, Office of Safety Technologies Office of Safety

Enclosures

1-1-1

Page 1 of 9

Request for Federal Aid Reimbursement Eligibility of Highway Safety Hardware

	Date of Request:	July 11, 2019	C New @ Resubmission	
Ì	Name:	ROBERTO IMPERO		
ter	Company:	INDUSTRY AMS SRL		
Submitter	Address:	VIA DANTE GIACOSA SNC, MARCIANSIE (CE), 81025		
Sub	Country:	ITALY		
	To:	Michael S. Griffith, Director FHWA, Office of Safety Technolog	ies	

I request the following devices be considered eligible for reimbursement under the Federal-aid highway program.

Device & Testing	Criterion - Enter from right to left starting with Test Level
-----------------------------	---

System Type	Submission Type	Device Name / Variant	Testing Criterion	Test Level
'CC': Crash Cushions, Attenuators, & Terminals	Physical Crash Testing C Engineering Analysis	HERCULES	AASHTO MASH	TL3

By submitting this request for review and evaluation by the Federal Highway Administration, I certify that the product(s) was (were) tested in conformity with the AASHTO Manual for Assessing Safety Hardware and that the evaluation results meet the appropriate evaluation criteria in the MASH.

Individual or Organization responsible for the product:

Contact Name:	ROBERTO IMPERO	Same as Submitter 🔀
Company Name:	INDUSTRY AMS SRL	Same as Submitter 🔀
Address:	VIA DANTE GIACOSA SNC, MARCIANSIE (CE), 81025	Same as Submitter 🖂
Country:	ITALY	Same as Submitter 🔀
	isclosures of financial interests as required by the FHWA for Safety Hardware Devices' document.	Federal-Aid Reimbursement

Subject: Discolosure of financial interest

CSI Spa, is an independent research and testing laboratory having no affiliation with any another entity. The principals and staff of CSI Spa have no past or present financial, contractual or organizational interest in any company or entity directly or indirectly related to the products that CSI Spa tests.

Version 10.0 (05/16) Page 2 of 9

PRODUCT DESCRIPTION

 New Hardware or Significant Modification
C
Mo
Exist

C Modification to Existing Hardware

Product Description

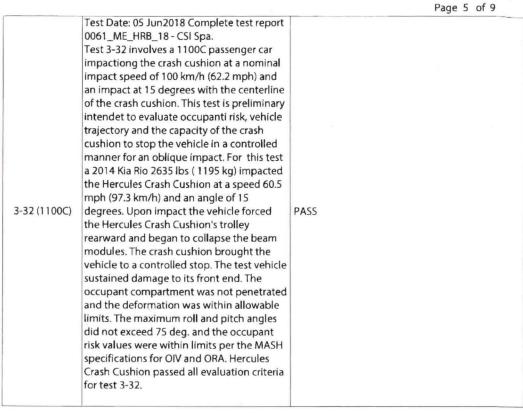
The Hercules Crash Cushion is a fully-redirective, non-gating crash cushion testet to MASH criteria. It has a frontal trolley unit thath allows a controlled deformation, a collapsable beam made up of a 10 modules thath crush in a frontal impact to absorb energy and stop the vehicle in a controlled manner, and 4-beam side panels for side impact redirection. The unit is a 19.4 feet (5.92m) long, 23.2 inches (0.59m) wide at the rear, and 35.0 inches (0.89) high.

CRASH TESTING

By signature below, the Engineer affiliated with the testing laboratory, agrees in support of this submission that all of the critical and relevant crash tests for this device listed above were conducted to meet the MASH test criteria. The Engineer has determined that no other crash tests are necessary to determine the device meets the MASH criteria.

Engineer Name:	MASSINO CUCCHIETTI	
Engineer Signature:	Cathely	
Address:	1012, TORWO-VIATUNISI 69	Same as Submitter
Country:	ITALY	Same as Submitter

A brief description of each crash test and its result:


CSI S.p. Viale Lombardia n.20/B 2002/ BOLLATE (MI) 1. 11380100151

Page 3 of 9

		Page 3 of 9
Required Test Number	Narrative Description	Evaluation Results
3-30 (1100C)	Test Date: 01 Jun2018 Complete test report 0059_ME_HRB_18 - CSI Spa. Test 3-30 involves a 1100C passenger car impactiong the crash cushion at a nominal impact speed of 100 km/h (62.2 mph) and an impact at 0 degrees with the quarter point of the vehicle aligned with the center line of the crash cushion. This test is preliminary intendet to evaluate occupanti risk and vehicle trajectory criteria. For this test a 2013 Kia Rio 2624 lbs (1190 kh) impacted the Hercules Crash Cushion at a speed 60.4 mph (97.2 km/h) and an angle of 0 degrees. Upon impact the vehicle forced the Hercules Crash Cushion's trolley rearward and began to collapse the beam modules. The crash cushion broight the vehicle to a controlled stop. The test vehicle sustained damage to its front end. The occupant compartment was not penetrated and the deformation was within allowable limits. The maximum roll and pitch angles did not exceed 75 deg. and the occupant risk values were within limits per the MASH specifications for OIV and ORA. Hercules Crash Cushion passed all evaluation criteria for test 3-30.	PASS

Version 10.0 (05/16) Page 4 of 9

Required Test	Narrative	Evaluation
Number	Description	Results
3-31 (2270P)	Test Date: 30May Complete test report 0051_ME_HRB_18 - CSI Spa. Test 3-31involves a 2270P pick up truck impactiong the crash cushion at a nominal impact speed of 100 km/h (62.2 mph) and an impact at 0 degrees with the center line of the vehicle aligned with the center line of the Crash Cushion. This test is preliminary intendet to evaluate the capacity of the attenuator to stop the vehicle in a safe and controlled manner. For this test, a 2013 Dodge Ram 1500 weighing 5033 lbs (2283 kg) impacted the Hercules Crash Cushion at a speed 60.8 mph (97.9 km/h) and an angle of 0 degrees. Upon impact the vehicle forced the Hercules Crash Cushion's trolley rearward and began to collapse the beam modules. The crash cushion brought the vehicle to a controlled stop. The test vehicle sustained damage to its front end. The occupant compartment was not penetrated and the deformation was within allowable limits. The maximum roll and pitch angles did not exceed 75 deg. and the occupant risk values were within limits per the MASH specifications for OIV and ORA. Hercules Crash Cushion passed all evaluation criteria for test 3-31.	PASS

Page 6 of 9 Test Date: 28 May2018 Complete test report 0050_ME_HRB_18 - CSI Spa. Test 3-33 involves a 2270P pick up truck impactiong the crash cushion at a nominal impact speed of 100 km/h (62.2 mph) and an impact at 15 degrees with the centerline of the vehicle aligned with the center line of the crash cushion. This test is preliminary intendet to evaluate occupanti risk, vehicle trajectory and the capacity of the crash cushion to stop the vehicle in a controlled manner for an oblique impact. For this test a 2012 Dodge Ram 1500 weighing 5064 lbs (2297 kg) impacted the Hercules Crash Cushion at a speed 60.9 mph (98 km/h) and PASS 3-33 (2270P) an angle of 15 degrees. Upon impact the vehicle forced the Hercules Crash Cushion's trolley rearward and began to collapse the beam modules. The crash cushion brought the vehicle to a controlled stop. The test vehicle sustained damage to its front end. The occupant compartment was not penetrated and the deformation was within allowable limits. The maximum roll and pitch angles did not exceed 75 deg. and the occupant risk values were within limits per the MASH specifications for OIV and ORA. Hercules Crash Cushion passed all evaluation criteria for test 3-33. Test Date: 31 May2018 Complete test report 0058_ME_HRB_18 - CSI Spa. Test 3-34 involves a 1100C passenger car impactiong the crash cushion at a nominal impact speed of 100 km/h (62.2 mph) and an impact at 15 degrees with the CIP at the point where the crash cushion behavior changes from capturing to redirective. This test is preliminary intendet to evaluate occupanti risk and vehicle trajectory criteria. For this test a 2012 Kia Rio 2632 lbs (1194 kg) impacted the Hercules Crash Cushion at a speed 60.7 mph (97.7 km/h) and an angle 3-34 (1100C) PASS of 15 degrees. UThe impact point was downstream the trolley. Upont the impact the vehicle was smoothly redirected. The test vehicle sustained damage to its right front corner, doors and rear quarter panel. The occupant compartment was within allowable limits. The maximum roll and pitch angles did not exceed 75 deg. and the occupant risk values were within limits per the MASH specifications for OIV and ORA. Hercules Crash Cushion passed all evaluation criteria for test 3-34.

Page 7 of 9

		Page 7 of 9
3-35 (2270P)	Test Date: 22 May2018 Complete test report 0046_ME_HRB_18 - CSI Spa. Test 3-35 involves a 2270P pick up truck impactiong the crash cushion at a nominal impact speed of 100 km/h (62.2 mph) and an impact at 25 degrees with the CIP at the point where the crash cushion behavior changes from capturing to redirective (BLON). This test is preliminary intendet to evaluate the capacity of the attenuator for redirection/containment of heavy vehicles. For this test a 2002 Dodge Ram 1500 weighing 5071 lbs (2300 kg) impacted the Hercules Crash Cushion at a speed 60.0 mph (96.6 km/h) and an angle of 25 degrees. The impact point was downstream the trolley and very near to the nose. Upont the impact the vehicle sustained damage to its left front corner, doors and rear quarter panel. The occupant compartment was within allowable limits. The maximum roll and pitch angles did not exceed 75 deg. and the occupant risk values were within limits per the MASH specifications for OIV and ORA. Hercules Crash Cushion passed all evaluation criteria for test 3-35.	PASS
3-36 (2270P)	Test Date: 13 Sept2018 Complete test report 0099_ME_HRB_18 - CSI Spa. Test 3-36 involves a 2270P pick up truck impactiong the crash cushion at a nominal impact speed of 100 km/h (62.2 mph) and an impact at 25 degrees with the CIP at the rear transition whit rigid back up structure. This test is preliminary intendet to evaluate the capacity for redirection/containment of heavy vehicles at the rear of the system where shields a rigid object. For this test a 2008 Chevrolet Silverado weighing 5088 lbs (2308 kg) impacted the Hercules Crash Cushion at a speed 60.0 mph (96.6 km/h) and an angle of 25 degrees. The impact point was located 2.1 <cip<2.7 from="" the<br="">backup structure. Upont the impact the vehicle was smoothly redirected. The test vehicle sustained damage to its right front corner, doors and rear quarter panel. The occupant compartment was within allowable limits. The maximum roll and pitch angles did not exceed 75 deg. and the occupant risk values were within limits per the MASH specifications for OIV and ORA. Hercules Crash Cushion passed all evaluation criteria for test 3-36.</cip<2.7>	PASS

Page 8 of 9

		Page 8 of 9
3-37 (2270P)	Test Date: 14 Sept2018 Complete test report 0100_ME_HRB_18 - CSI Spa. Test 3-37 involves a 2270P pick up truck impactiong the crash cushion at a nominal impact speed of 100 km/h (62.2 mph) and an impact at 25 degrees with the CIP at the rear transition whit rigid back up structure. This test is preliminary intendet to evaluate the potential for snagging and capacity for redirection of heavy vehicles at the rear of the attenuator. For this test a 2009 Chevrolet Silverado weighing 5057 lbs (2294 kg) impacted the Hercules Crash Cushion at a speed 60.6 mph (97.5 km/h) and an angle of 25 degrees. Provide a dimension from the front of the device. Upont the impact the vehicle was smoothly redirected. The test vehicle sustained damage to its right front corner, doors and rear quarter panel. The occupant compartment was within allowable limits. The maximum roll and pitch angles did not exceed 75 deg. and the occupant risk values were within limits per the MASH specifications for OIV and ORA. Hercules Crash Cushion passed all evaluation criteria for test 3-37.	PASS
3-38 (1500A)	Test 3-38 involves a 1500A sedan impacting the crash cushion at nominal speed of 100 km/h (62.2 mph) and an impact at 0 degrees with the centerline of the vehicle aligned with the center line of the crash cushion. In order to evaluate the behavior of mid-size vehicle, simulation was occured. Simulation report named TEST TL 3.38 has been attached to request.	Non-Critical, not conducted
3-40 (1100C)	Test for non-redirective crash cushion is not applicable	Non-Relevant Test, not conducted
3-41 (2270P)	Test for non-redirective crash cushion is not applicable	Non-Relevant Test, not conducted
3-42 (1100C)	Test for non-redirective crash cushion is not applicable	Non-Relevant Test, not conducted
3-43 (2270P)	Test for non-redirective crash cushion is not applicable	Non-Relevant Test, not conducted
3-44 (2270P)	Test for non-redirective crash cushion is not applicable	Non-Relevant Test, not conducted
3-45 (1500A)	Test for non-redirective crash cushion is not applicable	Non-Relevant Test, not conducted

Full Scale Crash Testing was done in compliance with MASH by the following accredited crash test laboratory (cite the laboratory's accreditation status as noted in the crash test reports.):

Version 10.0 (05/16) Page 9 of 9

Laboratory Name:	CSI SpA	
Laboratory Signature: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	To Anito	
Address:	Viale Lombardia 20 - 2002 i Bollate - Mi	Same as Submitter
Country:	Italy	Same as Submitter
Accreditation Certificate Number and Dates of current Accreditation period :	ACCREDIA 0006 - REV.3 EXPIRING DATE : 2020-03-09	1

Submitter Signature*:

Submit Form ludeco

ATTACHMENTS

Attach to this form:

- 1) Additional disclosures of related financial interest as indicated above.
- 2) A copy of the full test report, video, and a Test Data Summary Sheet for each test conducted in support of this request.
- 3) A drawing or drawings of the device(s) that conform to the Task Force-13 Drawing Specifications [Hardware Guide Drawing Standards]. For proprietary products, a single isometric line drawing is usually acceptable to illustrate the product, with detailed specifications, intended use, and contact information provided on the reverse. Additional drawings (not in TF-13 format) showing details that are relevant to understanding the dimensions and performance of the device should also be submitted to facilitate our review.

FHWA Official Business Only:

Lugion	ity Letter	
Number	Date	Key Words

e Lombardia n.20/B 20021 BOLLATE (MI) C.P./E.L. 11360160151

di/of 13 / 123 pag.	Data: Date: 12/07/2019					0
		T=0 T=0.1	T=0.2	T=0.3	T=0.4	T=0.5
(Test Report)	lev. 3	General Information	Ø	Doct impact Table		
	8 1	Test agency	CSI S.p.A.	Post-impact Traje	ility	Satisfactory
rt	1	Test No.	0059/ME/HRB/18		tance	3 m upstream
(Test Keport) 0059\ME\HRB\18 Rev.		Date	01/06/2018	Stopping Dis		5 m lateral
		Test Article	01,00,2010	Vehicle snap	ging	None
5	E	Туре	HERCULES		eting	None
es	N N	Installation length [m]	5.83	Occupant Risk Val		
7	20	Size and/or dimension and material of key		Impact Velo		
	00	Elements	See attached drawings		rection	11.2
		Foundation type and condition	Concrete (anchored)	Y-direction		0.8
	å				cceleration [g's]	
		Test Vehicle			rection	-18.2
		Type/ Designation	1100C	Y-di	ection	-5.8
		Model	Kia Rio			40.5
		Mass [kg]		PHD		18.2
		Curb	1065.0	ASI 2010		1.11
		Test Inertial	1114.2	Test Article	Damage	
		Test Inertial Gross static	1114.2 1189.8	Test Article Test Article Deflec		
-	2 March 1			Test Article Deflec		2.57
	a stra	Gross static		Test Article Deflect Permanent .	tions [m]	2.57 2.57
Ū		Gross static Impact Conditions Speed [km/h] Angle [deg]	1189.8 97.2 0.0	T <mark>est Article Deflec</mark> Permanent . Dynamic	tions [m]	2.57
Ū		Gross static Impact Conditions Speed [km/h] Angle [deg] Impact Severity [kJ]	1189.8 97.2 0.0 433.7	T <mark>est Article Deflec</mark> Permanent . Dynamic	tions [m]	2.57
Ū		Gross static Impact Conditions Speed [km/h] Angle [deg] Impact Severity [kJ] Impact Location	1189.8 97.2 0.0 433.7 Frontal, offset W/4, 0*	Test Article Deflec Permanent Dynamic Working Wie	tions [m] Jth	2.57
		Gross static Impact Conditions Speed [km/h] Angle [deg] Impact Severity [kJ]	1189.8 97.2 0.0 433.7	Test Article Deflec Permanent Dynamic Working Wie Vehicle Damage See appendi	tions [m] Jth	2.57

ACCREDIA 3 (AB N=0006 Signatory of (A, IA' and ILAC Nutual Recognition Agreements

a visi - se bold

di/ <i>of</i> 13 / 123 pag.	Data: 12/07/2019 Date: 12/07/2019						
ib På		T=0	T=0.1	T=0.2	T=0.3	T=0.4	T=0.5
	3						
		General Information			Post-impact Traj	ectory	
	0051\ME\HRB\18 Rev.		****	CSI S.p.A.		bility	Satisfactory
()	18			0051/ME/HRB/18		istance	
l est Keport	B			30/05/2018			2 m Laterally
bid	H I	Test Article			Vehicle sna	agging	None
		Type	******	HERCULES		cketing	None
75	E I	Installation length [n	n]	5.83	Occupant Risk Va	alues	
2			on and material of key		Impact Vel	ocity [m/s]	
-	500	Elements		See attached drawings	X-c	lirection	9.7
		Foundation type and cond		Concrete (anchored)		lirection	
	å				Ridedown	Acceleration [g's]	
	~	Test Vehicle			X-c	lirection	-18.6
		Type/ Designation		2270P	Y-d	lirection	-1.5
		Model	*** * * * * * * * * * * * * * * * * * *	Dodge RAM 1500	THIV		35.0
		Mass [kg]			PHD		18.6
				2248.2	ASI 2010		1.25
			** * *** * * * * * * * * * * * * * * * *	2282.6	Test Article	Damage	Moderate
				2282.6	Test Article Defle	ctions [m]	
		Impact Conditions			Permanent		4.02
U	8			97.9			4.05
				0.0	•	/idth	N/A
				844.0	Vehicle Damage		
		Impact Location		Frontal, head centered, 0°	See appen	dix A	
				100 million 100			
A	\sum			< 10 10.0		internal deformation	64 mm 455 mm

annulla e sostituisce il precedente rapporto datato 08/05/2019 / substitutes test report dated 08/05/2019

LAB MP0006 Signetory of EA, LAF and ILAC Nutual Paccyrittion Agreenwyte

rag. di/of 13 / 123 pag.	Data: Date: 12/07/2019				
		T=0 T=0.1	T=0.2	T=0.3 T=0.4	T=0.5
KAFFUKIU DI FRUVA (Test Report)	0061\ME\HRB\18 Rev. 3		D		
5	× I	General Information		Post-impact Trajectory	
(t)	18	Test agency	CSI S.p.A.	Vehicle Stability	
10	B	Test No.	0061/ME/HRB/18	Stopping Distance	
Test Report)	HR	Date	05/06/2018		12 m Laterally
R		Test Article	1150 51 11 55	Vehicle snagging	
st	X	Type	HERCULES	Vehicle pocketing	None
Te	N	Installation length [m]	5.83	Occupant Risk Values	
0	90	Size and/or dimension and material of key	C	Impact Velocity [m/s]	11.5
	•	Elements	See attached drawings	X-direction	
	°N	Foundation type and condition	Concrete (anchored)	Y-direction	
1	Z	Test Vehicle		Ridedown Acceleration [
			1100C	X-direction	
		Type/ Designation Model	Kia Rio	Y-direction THIV	
		Mass [kg]	Na Rio	PHD	
		Curb	1073.8	ASI 2010	
		Test Inertial	1119.2	Test Article Damage	
		Gross static	1194.8	Test Article Deflections [m]	HOUEIGLE
	2	Impact Conditions		Permanent	2.46
		Speed [km/h]	97.3	Dynamic	
UI		Angle [deg]	15.0	Working Width	
	2	Impact Severity [k]	436.4	Vehicle Damage	anarani.a pelut presenta na 1915 2015 1948 - 1947 2013 2013 2014 2014 2015 2015 2015 2015 2015 2015 2015 2015
ĭ			Frontal, head centered, 15°	See appendix A	
ŭ		Impact Location	rionial, fiedu centereu, 15		
Ľ		Impact Location Exit Speed [km/h]	< 10	Maximum internal defor	mation 4 mm

 G & P & C

 Image: Second action of the control of the control

9 Mag . St page

Pag. di/of 13 / 123 pag.	Data: 12/07/2019 Date: 12/07/2019				
		T=0 T=0.1	T=0.2	T=0.3 T	T=0.4 T=0.5
RAPPORTO DI PROVA (Test Report)	v. 3				
0	0050\ME\HRB\18 Rev.	General Information	. CSI S.p.A.	Post-impact Trajectory Vehicle Stability	Satisfactory
E B	18	Test agency Test No.		Stopping Distance	
ORTO DI P (Test Report)	B	Date		Stopping Distance	2 m Laterally
ep D	HR	Test Article		Vehicle snagging	and start spectra starts and
10 K	E	Туре	HERCULES	Vehicle pocketing	
R	M	Installation length [m]	. 5.83	Occupant Risk Values	
0E	150	Size and/or dimension and material of key		Impact Velocity [m/s	[]
d	00	Elements	0		
A	0	Foundation type and condition	Concrete (anchored)		-2.3
R	°N	*		Ridedown Accelerati	
		Test Vehicle	22700		
		Type/ Designation			-2.3
		Model Mass [kg]	. Dodge RAM 1500	THIV PHD	
	1	Curb	2222.4	ASI 2010	
		Test Inertial		Test Article Damage	
		Gross static		Test Article Deflections [m	
	200	Impact Conditions		Permanent	-
l U	2	Speed (km/h)	98.0	Dynamic	
		Angle [deg]	15.0	Working Width	N/A
		Impact Severity [kJ]	851.2	Vehicle Damage	
		Impact Location		See appendix A	
6		Exit Speed (km/h)		Maximum internal de	
Ū	ブ	Exit Angle [deg]	25.0	Maximum external d	eformation 244 mm

LAB NYROODS Signation Y of EA, UKE and ELAC Historial Bay ognition Agreenteerts

9 may - 88 poya

Pag. di/ <i>of</i> 13 / 122 pag.	Data: Date: 12/07/2019						
		T=0	T=0.1	T=0.2	T=0.3	T=0.4	T=0.5
KAPPOKIO DI PROVA (Test Report)	0058\ME\HRB\18 Rev. 3		C				
2	R	General Information			Post-impact Tra		
Ú,	18	• •		A CONTRACT OF A		ability	Satisfactory
OK 10 DI P (Test Report)	B			and a second	Stopping	Distance	48 m downstream
n da	a l			31/05/2018			7 m Laterally
)R		Test Article				agging	None
St 1	T I					ocketing	None
i o	18		m]	5.83	Occupant Risk V	/alues	
して	28		on and material of key		Impact Ve	elocity [m/s]	
H	00				X	direction	3.1
		Foundation type and con	dition	Concrete (anchored)		direction	6.1
2	°Z				Ridedowr	Acceleration [g's]	
	-	Test Vehicle				direction	-13.1
						direction	-4.5
				Kia Rio			24.6
		Mass [kg]					13.2
							1.18
				1117.6		le Damage	Moderate
				1194.4	Test Article Def		
	2	Impact Conditions			Permaner	nt	0.04
							0.10
	8					Width	N/A
	1			29.5	Vehicle Damage		
	- E						
-				90.0		internal deformation	6 mm
		Exit Angle [deg]		11.0	Maximum	external deformation	180 mm

annulla e sostituisce il precedente report datato 08/05/2019 / substitutes test report dated 08/05/2019

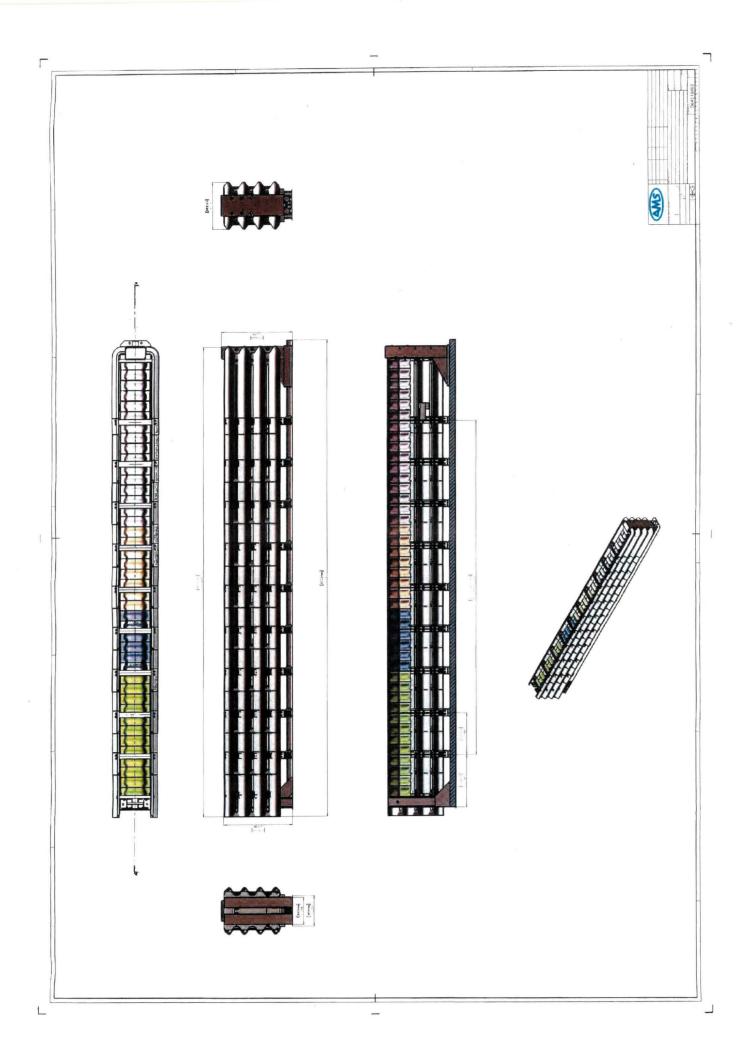
9 MP3 - 88 POP1

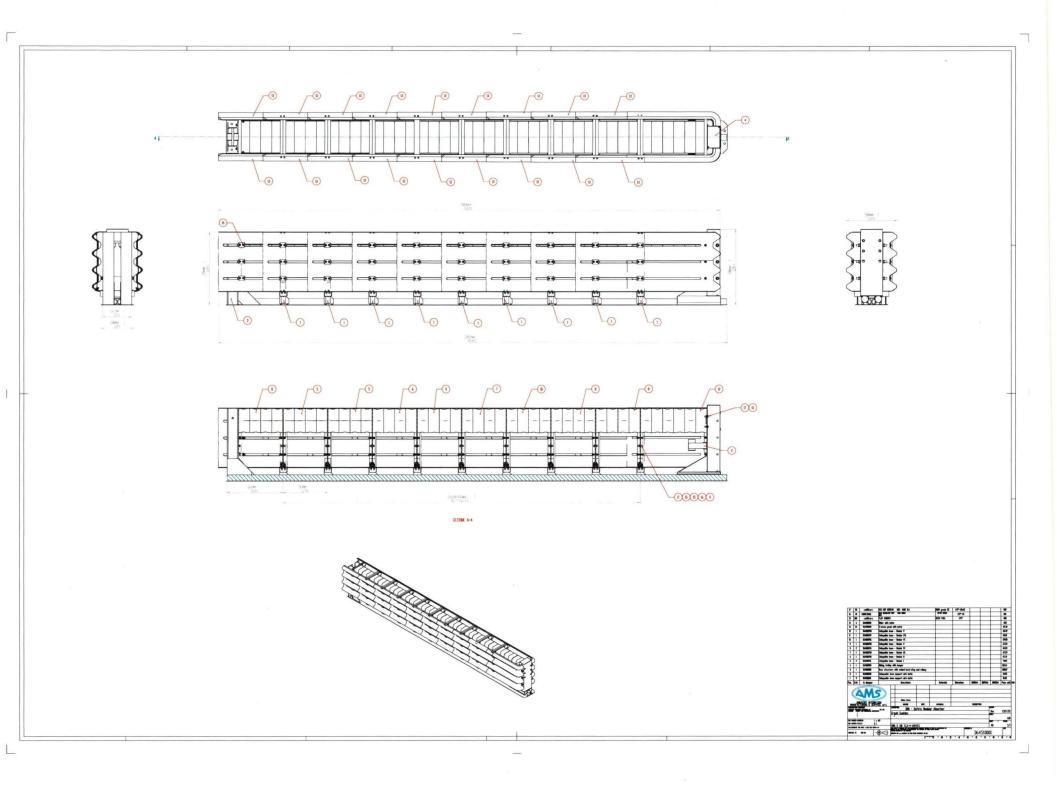
Pag. di/of 14/123 pag.	Date: 12/07/2019	T=0	T=0.1	T=0.2	T=0.3	T=0.4	T=0.5	
PPORTO DI PROVi (Test Report)	N° 0046/ME/HRB/18 Rev. 3	Test No. Date Test Article Type Installation length [m] Size and/or dimension Elements Foundation type and condit Test Vehicle Type/ Designation Model Mass [kg] Curb Test Inertial	and material of key	CSI S.p.A. 0046/ME/HRB/18 22/05/2018 HERCULES 5.83 See attached drawings Concrete (anchored) 2270P Dodge RAM 1500 2239.8 2300.0 2300.0 2300.0 96.6 25.0 147.9 1/2 of the length of the item 71.5 15.0	Stopping Vehicle s Vehicle p Occupant Risk Impact V X Ridedow Y Ridedow Y THIV PHD ASI 2010 Test Artic Test Article De Permane Dynamic Working Vehicle Damag See appe Maximur	stability pistance	12 m Laterally None 5.0 -7.2 -6.0 11.6 30.9 11.8 1.29 Moderate 0.22 0.35	
								9 ANR - BE POPU

1464 38 - Bay 6

LAB INFODOS Suprebut of EA, LAF and ILAC Nutual Recognition Agreements

14/124	. 12/07/2019				
Pag. di/of pag.	Data: Date:			0	
		T=0 T=0.1	T=0.2	T=0.3 T=0.4	T=0.5
RAPPORTO DI PROVA (Test Report)	ev. 3				
2	0099\ME\HRB\18 Rev.	General Information		Post-impact Trajectory	
É D	118	Test agency		Vehicle Stability	Satisfactory
10	8	Test No.		Stopping Distance	
a de	H	Date	13/09/2018		10 m Laterally
) R		Test Article		Vehicle snagging	None
St	W	Туре	HERCULES	Vehicle pocketing	None
e l	16	Installation length [m]	5.83	Occupant Risk Values	
e	60	Size and/or dimension and material of key		Impact Velocity [m/s]	
	6	Elements	See attached drawings	X-direction	
	0	Foundation type and condition	Concrete (anchored)	Y-direction	. 7.5
	Ň			Ridedown Acceleration [g's]	
	3	Test Vehicle	22200	X-direction	
		Type/ Designation	2270P	Y-direction	
		Model	Chevrolet Silverado	THIV	
		Mass [kg]	2252	PHD	
		Curb	2262.4	ASI 2010	
		Test Inertial		Test Article Damage	Moderate
		Gross static	2308.0	Test Article Deflections [m]	0.26
	1	Impact Conditions	06.6	Permanent	
		Speed [km/h]	96.6	Dynamic	
		Angle [deg]	25.0	Working Width	. N/A
		Impact Severity [kJ]	148.4	Vehicle Damage	
		Impact Location		See appendix A	40
		Exit Speed [km/h]	74 14	Maximum internal deformation	49 mm
a		Exit Angle (deg)	14	Maximum external deformation	590 mm


annulla e sostituisce il pr


Pag. di/ <i>of</i> 15 / 128 pag.	Data: 12/07/2019 Date: 12/07/2019					
		T=0 T=0.1	T=0.2	T=0.3	T=0.4	T=0.5
-						
(Test Report)	Rev.			1	1	
ž	8 8	General Information		Post-impact Traje		C. M. L. M.
É.	0100\ME\HRB\18	Test agency	Contraction of the second s		ility	
100	8	Test No Date		Stopping Di	tance	8 m Laterally
el	ΞI	Test Article	14/09/2018	Vehicle snar	ging	
E	E	Type			eting	
Test Report)	M	Installation length [m]		Occupant Risk Val		
E	00	Size and/or dimension and material of k		Impact Velo		
-	01	Elements		X-di	rection	11.4
1		Foundation type and condition	Concrete (anchored)	Y-di	ection	5.8
	°N	8		Ridedown A	cceleration [g's]	
•	4	Test Vehicle		X-di	rection	10.2
		Type/ Designation		Y-di	rection	6.0
		Model	Chevrolet Silverado			
		Mass [kg]				
		Curb				
		Test Inertial			Damage	Moderate
		Gross static	2293.8	Test Article Deflec		0.00
	-1	Impact Conditions				
		Speed [km/h] Angle [deg]			dth	
		Impact Severity [kJ]		Vehicle Damage	WCI	14/ A
		Impact Sevency [KJ]		See appendi	×Δ	
	e e	Exit Speed [km/h]			ternal deformation	199 mm
		Exit Angle [deg]			xternal deformation	
				VIAXIMUM e	clernal delormation	033(())))

annulla e sostituisce il precedente rapporto datato 10/05/2019 / substitutes test report dated 10/05/2019

9 MRI-85 POMM

