

Texas A&M Transportation Institute The Texas A&M University System 3135 TAMU College Station, TX 77843-3135

979-845-6375 Fax: 979-845-6107 http://tti.tamu.edu

MASH-16 Compliance Assessment

Sponsor Information

Date:	June 23, 2020
Name:	Roadside Safety Pooled Fund
Company:	N/A
Address:	N/A
City, ST Zip:	N/A
Country:	United States of America

Texas A&M Transportation Institute (TTI) evaluated the product described below and found it to meet the appropriate evaluation criteria in MASH-16.

Device & Testing Criterion

System Type	Device Name/Variant	Testing Criterion	Test Level
Longitudinal Barriers	UDOT 42-inch 10.8 Degree Single Face Cast-in-Place (CIP) Parapet	MASH-16	TL4

Disclosure of Financial Interest

- \boxtimes TTI has no financial interest beyond payment for services for design and/or evaluation of this product.
- ☐ Other (describe):

Product Description

C New Hardware	© Significant Modification to Existing Hardware	 Non-significant Modification to Existing Hardware
	Existing Hardware	Existing Hardware

The UDOT 42-inch 10.8 Degree Single Face CIP Parapet is a solid concrete parapet bridge rail system. The barrier has a total height of 42 inches. Number 4 Grade 60 rebar is used for longitudinal reinforcement and Number 4 Grade 60 rebar is used for transverse reinforcement. Attachment A shows a detailed drawing of the UDOT 42-inch 10.8 Degree Single Face CIP Parapet.

Evaluation Results

Any full-scale crash testing performed by TTI as part of this evaluation was done in compliance with MASH-16.

MASH Test Number	Description/Justification	Evaluation Results
4-10 (1100C)	Rail geometry has a direct influence on MASH occupant risk criteria. For concrete barriers, rail geometry is defined by the barrier shape or profile. MASH Test 4-10 has not been conducted on the UDOT 42-inch 10.8 Degree Single Face CIP Parapet. However, MASH Test 4-10 was successfully performed on the Type 60 Median Barrier and is documented in Research Report FHWA/CA17-2654, "Compliance Crash Testing of the Type 60 Median Barrier, Test 140MASH3C16-04." The Type 60 Median Barrier is a CIP single slope concrete median barrier. Since the Type 60 Median Barrier has been found to satisfy MASH Test 4-10 occupant risk criteria, the UDOT 42-inch 10.8 Degree Single Face CIP Parapet is considered satisfactory according to MASH Test 4-10 evaluation criteria.	Non-critical, not performed
4-11 (2270P)	Rail geometry has a direct influence on MASH occupant risk criteria. For concrete barriers, rail geometry is defined by the barrier shape or profile. MASH Test 4-11 has not been conducted on the UDOT 42-inch 10.8 Degree Single Face CIP Parapet. However, MASH Test 4-11 was successfully performed on a single slope CIP barrier and is documented in Research Report 405160-13-1, "Development and Testing of a Concrete Barrier Design for Use in Front of Slope or on MSE Wall." Therefore, since a single slope CIP barrier has been found to satisfy MASH Test 4-11 occupant risk criteria, the UDOT 42-inch 10.8 Degree Single Face CIP Parapet is considered satisfactory according to MASH Test 4-11 evaluation criteria.	Non-critical, not performed
4-12 (10000S)	To evaluate the structural adequacy of the UDOT 42-inch 10.8 Degree Single Face CIP Parapet without performing MASH Test 4-12 or Finite Element (FE) impact simulations, a strength analysis must be conducted using the procedure described in AASHTO LRFD Bridge Design Specifications, Section 13. The calculated	Non-critical, not performed

resistance of the barrier must be compared to the MASH TL-4 design impact load. The MASH TL-4 design impact load for a barrier with a height of 42 inches is 80 kips located at an effective height of 30 inches above the roadway surface, as determined in NCHRP Project No. 22-20(2), "Design Guidelines for Test Level 3 (TL-3) Through Test Level 5 (TL-5) Roadside Barrier Systems Placed on Mechanically Stabilized Earth (MSE) Retaining Wall." The UDOT 42-inch 10.8 Degree Single Face CIP Parapet has a calculated resistance of 96 kips at an effective height of 30 inches above the roadway surface. Attachment B presents the strength analysis performed on the UDOT 42-inch 10.8 Degree Single Face CIP Parapet. Since the calculated resistance is greater than the design impact load, the UDOT 42-inch 10.8 Degree Single Face CIP Parapet meets the MASH TL-4 structural adequacy criterion. For a bridge rail system to be considered a MASH acceptable barrier, a minimum height must be met to ensure stability of the vehicle and to prevent override of the barrier. The MASH TL-4 minimum rail height is 36 inches, as determined in NCHRP Project No. 22-20(2), "Design Guidelines for Test Level 3 (TL-3) Through Test Level 5 (TL-5) Roadside Barrier Systems Placed on Mechanically Stabilized Earth (MSE) Retaining Wall." The UDOT 42-inch 10.8 Degree Single Face CIP Parapet has a height of 42 inches and, therefore, the UDOT 42-inch 10.8 Degree Single Face CIP Parapet meets the MASH TL-4 minimum height is 36 inches, as determined in NCHRP	
Therefore, since the UDOT 42-inch 10.8 Degree Single Face CIP Parapet meets the MASH TL-4 structural adequacy and minimum height stability criteria, this bridge rail system is considered satisfactory according to MASH Test 4-12 evaluation criteria.	

Signature(s)

[□] *New Hardware or Significant Change to Existing Hardware:* By signature below, the researcher has determined that the critical crash test(s) for this device was (were) conducted

in accordance with MASH-16 criteria. The researcher has determined that no additional crash tests are necessary to determine MASH-16 compliance.

⊠ *Non-significant Change to Existing Hardware:* By signature below, the researcher has determined that the modification to existing hardware is deemed non-significant.

Researcher Name:	Sana Moran, E.I.T.
Researcher Signature:	Sana Moran
Company:	Texas A&M Transportation Institute
Address:	3135 TAMU
City, ST Zip:	College Station, TX 77843-3135
Country:	USA

TTI Crash Testing Performed: 🗌 Yes (lab signature required) 🖾 No (lab signature not required)

Laboratory Name:		
Laboratory Signature:		
Address:		
City, ST Zip:		
Country:		
Accreditation Certificat Dates of Current Accre	e Number and ditation Period:	

Attachment A

Details of UDOT 42-inch 10.8 Degree Single Face CIP Parapet

Attachment B

Analysis of UDOT 42-inch 10.8 Degree Single Face CIP Parapet

		Desi	gn Forces f	or Traffic R	nilings		
Test Level	F _t (kip)	F _L (kip)	F _v (kip)	L _t and L _L (ft)	L _v (ft)	H _e (in)	H _{min} (in)
TL 1	13.5	4.5	4.5	4.0	18.0	18.0	18.0
TL 2	27.0	9.0	4.5	4.0	18.0	20.0	18.0
TL 3	71.0	18.0	4.5	4.0	18.0	19.0	29.0
TL 4 (a)	68.0	22.0	38.0	4.0	18.0	25.0	36.0
TL 4 (b)	80.0	27.0	22.0	5.0	18.0	30.0	36.0
TL 5 (a)	160.0	74.0	160.0	10.0	40.0	35.0	42.0
TL 5 (b)	262.0	75.0	160.0	10.0	40.0	43.0	42.0
TL 6	175.0	58.0	80.0	10.0	40.0	90.0	90.0
\underline{NOTE} : (a) and (b) of	lenote different T	L 4 and TL 5 design force	e values for brid	ge rails of differ	ent heights.		
	Stability Crit	eria					
Test Level	4						
H =	42	Bridge Rail Height (in.)					
H _{min} =	36	Minimum Height (in.)					
СНЕСК	ОК	OK if: H ≥ H _{min}					

		Strength Criteria
		Material Properties
f' _e =	4	Compr. Strength of Concrete (ksi)
f _y =	60	Yield Strength of Steel Rebar (ksi)
E _s =	29000	Modulus of Elasticity of Steel (ksi)
E _c =	3605	Modulus of Elasticity of Concrete (ksi)
	Desig	gn Forces and Designations
Test Level	4	
F _t =	80	Transverse Impact Force (kips)
$F_L =$	27	Longitudinal Impact Force (kips)
F _v =	22	Vertical Impact force (kips)
L_t and $L_L =$	5	Longitudinal Length of Distribution of Impact Force (ft.)
L _v =	18	ft.
H _e =	30	in.

Bending Capacity of the Wall About the <u>Longitudinal Axis</u> for Impacts Within a Wall Segment, Marria				
		Segment, M _{emid}		
s _{vp} =	12	Spacing of Parapet Vertical Reinforcement (in.)		
A _{vpl} =	0.2	Area of One Parapet Vertical Reinforcement in tension zone (in ²)		
d _{cp} =	8.5	Extreme Distance of Parapet Vertical Tensile Reinforcement (in.)		
s _{va} =	12	Spacing of Anchorage Bar Reinforcement (in.)		
A _{val} =	0.2	Area of One Anchorage Bar Reinforcement in tension zone (in ²)		
d _{ea} =	14.5	Extreme Distance of Anchorage Bar Tensile Reinforcement (in.)		
b _c =	12	Unit Width of Wall (in.) - <u>Note</u> : b _c is always 12in		
A _{vp} =	0.2	Total Area of Parapet Vert. Reinforcement per 1ft of Wall (in ² /ft)		
A _{va} =	0.2	Total Area of Anchorage Bar Reinf. per 1ft of Wall (in ² /ft)		
A _{vmid} =	0.2	Total Area of Critical Reinforcement per 1ft of Wall (in ² /ft)		
d _{emid} =	8.5	Extreme Distance of Critical Tensile Reinforcement (in.)		
a _{emid} =	0.294	Whitney Stress Block Depth (in.)		
ε _{vtmid} =	0.0707	Strain in Tension most Critical Reinforcement (in./in.)		
$M_{emid} =$	8.35	Flexural Resistance of Cantilever Wall for Impacts Within a Wall Segment specified in AASTHO Article A13.3.1 (k-ft/ft)		
Bending Capacity of the Wall About the Longitudinal Axis for Impacts at End of Wall or				
Joint, Mcend				
bending Capac	ity of the Wall Abo	out the <u>Longitudinal Axis</u> for Impacts at End of Wall or Joint , M _{cend}		
s _{vp} =	ity of the Wall Ab	Joint , M _{cend} Spacing of Parapet Vertical Reinforcement (in.)		
s _{vp} = A _{vp1} =	4 0.2	Spacing of Parapet Vertical Reinforcement (in.) Area of One Parapet Vertical Reinforcement in tension zone (in ²)		
$s_{vp} = A_{vp1} = d_{cp} = d_{cp}$	4 0.2 8.5	Spacing of Parapet Vertical Reinforcement (in.) Area of One Parapet Vertical Reinforcement in tension zone (in ²) Extreme Distance of Parapet Vertical Tensile Reinforcement (in.)		
$s_{vp} = $ $A_{vp1} = $ $d_{cp} = $ $s_{va} = $	4 0.2 8.5 4	Spacing of Parapet Vertical Reinforcement (in.) Area of One Parapet Vertical Reinforcement in tension zone (in ²) Extreme Distance of Parapet Vertical Tensile Reinforcement (in.) Spacing of Anchorage Bar Reinforcement (in.)		
$S_{vp} = \frac{1}{A_{vp1}}$ $d_{cp} = \frac{1}{S_{va}}$ $A_{va1} = \frac{1}{A_{va1}}$	4 0.2 8.5 4 0.2	Spacing of Parapet Vertical Reinforcement (in.) Area of One Parapet Vertical Reinforcement in tension zone (in ²) Extreme Distance of Parapet Vertical Tensile Reinforcement (in.) Spacing of Anchorage Bar Reinforcement (in.) Area of One Anchorage Bar Reinforcement (in.)		
$S_{vp} = $ $A_{vp1} = $ $d_{cp} = $ $S_{va} = $ $A_{va1} = $ $d_{ca} = $	4 0.2 8.5 4 0.2 14.5	Spacing of Parapet Vertical Reinforcement (in.) Area of One Parapet Vertical Reinforcement in tension zone (in ²) Extreme Distance of Parapet Vertical Tensile Reinforcement (in.) Spacing of Anchorage Bar Reinforcement (in.) Area of One Anchorage Bar Reinforcement in tension zone (in ²) Extreme Distance of Anchorage Bar Reinforcement (in.) Spacing of Anchorage Bar Reinforcement (in.)		
$S_{vp} = $ $A_{vp1} = $ $d_{cp} = $ $S_{va} = $ $A_{va1} = $ $d_{ca} = $ $b_{c} = $	4 0.2 8.5 4 0.2 14.5 12	Spacing of Parapet Vertical Reinforcement (in.) Area of One Parapet Vertical Reinforcement in tension zone (in ²) Extreme Distance of Parapet Vertical Tensile Reinforcement (in.) Spacing of Anchorage Bar Reinforcement (in.) Area of One Anchorage Bar Reinforcement in tension zone (in ²) Extreme Distance of Anchorage Bar Reinforcement (in.) Unit Width of Wall (in.) - Note: b _c is always 12in		
$S_{vp} = \frac{A_{vp1}}{A_{vp1}} = \frac{A_{va1}}{A_{va1}} = \frac{A_{va1}}{A_{va1}} = \frac{A_{va1}}{A_{vp}} = \frac{A_{vp1}}{A_{vp}} = \frac{A_{vp1}}{A_{vp}} = \frac{A_{vp1}}{A_{vp1}} = \frac{A_{vp1}}{A_{$	4 0.2 8.5 4 0.2 14.5 12 0.6	Spacing of Parapet Vertical Reinforcement (in.) Area of One Parapet Vertical Reinforcement in tension zone (in ²) Extreme Distance of Parapet Vertical Tensile Reinforcement (in.) Spacing of Anchorage Bar Reinforcement (in.) Area of One Anchorage Bar Reinforcement (in.) Extreme Distance of Anchorage Bar Reinforcement (in.) Image: Distance of Anchorage Bar Reinforcement in tension zone (in ²) Extreme Distance of Anchorage Bar Tensile Reinforcement (in.) Image: Distance of Anchorage Bar Tensile Reinforcement (in.) Unit Width of Wall (in.) - Note: bc is always 12in Total Area of Parapet Vert. Reinforcement per 1ft of Wall (in ² /ft)		
$S_{vp} = S_{vp} = S_{vp} = S_{vp} = S_{va} = S_{vp} = S_{vp} = S_{va} = S$	4 0.2 8.5 4 0.2 14.5 12 0.6 0.6	Spacing of Parapet Vertical Reinforcement (in.) Area of One Parapet Vertical Reinforcement in tension zone (in ²) Extreme Distance of Parapet Vertical Tensile Reinforcement (in.) Spacing of Anchorage Bar Reinforcement (in.) Area of One Anchorage Bar Reinforcement in tension zone (in ²) Extreme Distance of Anchorage Bar Reinforcement (in.) Image: Anchorage Bar Reinforcement in tension zone (in ²) Extreme Distance of Anchorage Bar Tensile Reinforcement (in.) Unit Width of Wall (in.) - Note: b _c is always 12in Total Area of Parapet Vert. Reinforcement per 1ft of Wall (in ² /ft) Total Area of Anchorage Bar Reinf. per 1ft of Wall (in ² /ft)		
$S_{vp} = \frac{A_{vp1}}{A_{vp1}} = \frac{A_{vp1}}{A_{va1}} = \frac{A_{va1}}{A_{va1}} = \frac{A_{va1}}{$	4 0.2 8.5 4 0.2 14.5 12 0.6 0.6 0.6	 Spacing of Parapet Vertical Reinforcement (in.) Area of One Parapet Vertical Reinforcement in tension zone (in²) Extreme Distance of Parapet Vertical Tensile Reinforcement (in.) Spacing of Anchorage Bar Reinforcement (in.) Area of One Anchorage Bar Reinforcement in tension zone (in²) Extreme Distance of Anchorage Bar Reinforcement (in.) Marea of One Anchorage Bar Reinforcement in tension zone (in²) Extreme Distance of Anchorage Bar Tensile Reinforcement (in.) Unit Width of Wall (in.) - Note: b_c is always 12in Total Area of Anchorage Bar Reinf. per 1ft of Wall (in²/ft) Total Area of Critical Reinforcement per 1ft of Wall (in²/ft) 		
$S_{vp} = $ $A_{vp1} = $ $d_{cp} = $ $S_{va} = $ $A_{va1} = $ $d_{ca} = $ $b_{c} = $ $A_{vp} = $ $A_{va} = $ $A_{vend} = $ $d_{cend} = $	4 0.2 8.5 4 0.2 14.5 12 0.6 0.6 0.6 8.5	Spacing of Parapet Vertical Reinforcement (in.) Area of One Parapet Vertical Reinforcement in tension zone (in ²) Extreme Distance of Parapet Vertical Tensile Reinforcement (in.) Spacing of Anchorage Bar Reinforcement (in.) Spacing of One Anchorage Bar Reinforcement in tension zone (in ²) Extreme Distance of Anchorage Bar Reinforcement (in.) Streme Distance of Anchorage Bar Reinforcement in tension zone (in ²) Extreme Distance of Anchorage Bar Tensile Reinforcement (in.) Unit Width of Wall (in.) - Note: b _c is always 12in Total Area of Parapet Vert. Reinforcement per 1ft of Wall (in ² /ft) Total Area of Anchorage Bar Reinf. per 1ft of Wall (in ² /ft) Total Area of Critical Reinforcement per 1ft of Wall (in ² /ft) Extreme Distance of Critical Reinforcement per 1ft of Wall (in ² /ft)		
$S_{vp} = S_{vp} = S_{vp} = S_{vp} = S_{vp} = S_{va} = S$	4 0.2 8.5 4 0.2 14.5 12 0.6 0.6 0.6 8.5 0.882	Spacing of Parapet Vertical Reinforcement (in.) Area of One Parapet Vertical Reinforcement in tension zone (in ²) Extreme Distance of Parapet Vertical Tensile Reinforcement (in.) Spacing of Anchorage Bar Reinforcement (in.) Spacing of One Anchorage Bar Reinforcement in tension zone (in ²) Extreme Distance of Anchorage Bar Reinforcement (in.) Area of One Anchorage Bar Reinforcement in tension zone (in ²) Extreme Distance of Anchorage Bar Tensile Reinforcement (in.) Unit Width of Wall (in.) - Note: b _c is always 12in Total Area of Parapet Vert. Reinforcement per 1ft of Wall (in ² /ft) Total Area of Anchorage Bar Reinf. per 1ft of Wall (in ² /ft) Total Area of Critical Reinforcement per 1ft of Wall (in ² /ft) Extreme Distance of Critical Tensile Reinforcement (in.) Whitney Stress Block Depth (in.)		
$S_{vp} = S_{vp} = S_{vp} = S_{vp} = S_{vp} = S_{vp} = S_{va} = S_{vp} = S$	4 0.2 8.5 4 0.2 14.5 12 0.6 0.6 0.6 0.6 8.5 0.882 0.0216	 Spacing of Parapet Vertical Reinforcement (in.) Area of One Parapet Vertical Reinforcement in tension zone (in²) Extreme Distance of Parapet Vertical Tensile Reinforcement (in.) Spacing of Anchorage Bar Reinforcement (in.) Area of One Anchorage Bar Reinforcement in tension zone (in²) Extreme Distance of Anchorage Bar Reinforcement in tension zone (in²) Extreme Distance of Anchorage Bar Tensile Reinforcement (in.) Unit Width of Wall (in.) - <u>Note</u>: b_c is always 12in Total Area of Parapet Vert. Reinforcement per 1ft of Wall (in²/ft) Total Area of Critical Reinforcement per 1ft of Wall (in²/ft) Extreme Distance of Critical Tensile Reinforcement (in.) Whitney Stress Block Depth (in.) Strain in Tension most Critical Reinforcement (in./in.) 		

AASHTO Chapter 13 - LRFD Strength Analysis of Concrete Parapet

Bending Capacity of the Wall About the Vertical Axis for Impacts Within a Wall Segment,			
		$\mathbf{M}_{\mathrm{wmid}}$	
A _{wmid} =	1	Area of Longitudinal Reinforcement in tension zone (in ²)	
$h_w =$	42	Height of Wall (in.)	
d _{wmid} =	8.25	Average Distance of Longitudinal Tensile Reinforcement (in.)	
a _{wmid} =	0.420	Whitney Stress Block Depth (in.)	
$\epsilon_{wtmid} =$	0.0471	Strain in Tension most Long. Reinf. (in./in.)	
φ _{wmid} =	1.0	Strength Reduction Factor	
$\mathbf{M}_{\mathbf{wmid}} =$	40.20	Flexural Resistance of Wall about its Vertical Axis for Impacts Within a Wall Segment specified in AASTHO Article A13.3.1 (k-ft)	
Bending Capaci	ty of the Wall Abo	ut the Vertical Axis for Impacts at End of Wall or Joint,	
		\mathbf{M}_{wend}	
$A_{wend} =$	1	Area of Longitudinal Reinforcement in tension zone (in ²)	
h _w =	42	Height of Wall (in.)	
$d_{wend} =$	8.25	Average Distance of Longitudinal Tensile Reinforcement (in.)	
a _{wend} =	0.420	Whitney Stress Block Depth (in.)	
$\epsilon_{wtend} =$	0.0471	Strain in Tension most Long. Reinf. (in./in.)	
$\phi_{wend} =$	1.0	Strength Reduction Factor	
M _{wend} =	40.20	Flexural Resistance of Wall about its Vertical Axis specified in AASTHO Article A13.3.1 (k-ft)	

Nominal Railing	g Resistance to Tra	nsverse Load for Impacts Within a Wall Segment, R_{wmid}
L _t =	5	Longitudinal Length of Distribution of Impact Force (in.)
H =	3.50	Height of Wall (ft.)
M _{emid} =	8.35	Flexural Resistance of Cantilever Wall (k-ft/ft)
M _{wmid} =	40.20	Flexural Resistance of Wall about its Vertical Axis (k-ft)
M _b =	0.00	Add. Flex. Resist. of Wall about its Vertical Axis (k-ft)
L _{cmid} =	14.37	Critical Length of Yield Line Failure Pattern (ft.)
F _t =	80	Ultimate Transverse Force (kips)
H _e =	30	Height of Equivalent Transverse Load (in)
R _{wmid} =	96.06	Total Transverse Resistance of the Railing at midspan specified in AASHTO Article A13.3.1 Located at H _e (kips)
CHECK	ОК	OK if: $R_{wmid} \ge F_t$
Nominal Railing	Resistance to Tran	sverse Load for Impacts at End of Wall or at Joint, R _{wend}
Nominal Railing L _t =	Resistance to Tran 5	sverse Load for Impacts at End of Wall or at Joint, R _{wend} Longitudinal Length of Distribution of Impact Force (in.)
Nominal Railing L _t = H =	Resistance to Tran 5 3.50	sverse Load for Impacts at End of Wall or at Joint, R _{wend} Longitudinal Length of Distribution of Impact Force (in.) Height of Wall (ft.)
Nominal Railing L _t = H = M _{cend} =	Resistance to Tran 5 3.50 24.18	sverse Load for Impacts at End of Wall or at Joint, R _{wend} Longitudinal Length of Distribution of Impact Force (in.) Height of Wall (ft.) Flexural Resistance of Cantilever Wall (k-ft/ft)
Nominal Railing $L_t =$ H = $M_{cend} =$ $M_{wend} =$	Resistance to Tran 5 3.50 24.18 40.20	sverse Load for Impacts at End of Wall or at Joint, R _{wend} Longitudinal Length of Distribution of Impact Force (in.) Height of Wall (ft.) Flexural Resistance of Cantilever Wall (k-ft/ft) Flexural Resistance of Wall about its Vertical Axis (k-ft/ft)
Nominal Railing $L_t =$ H = $M_{cend} =$ $M_{wend} =$ $M_b =$	Resistance to Tran 5 3.50 24.18 40.20 0.00	sverse Load for Impacts at End of Wall or at Joint, R _{wend} Longitudinal Length of Distribution of Impact Force (in.) Height of Wall (ft.) Flexural Resistance of Cantilever Wall (k-ft/ft) Flexural Resistance of Wall about its Vertical Axis (k-ft/ft) Add. Flex. Resist. of Wall about its Vertical Axis (k-ft/ft)
Nominal Railing $L_t =$ H = $M_{cend} =$ $M_{wend} =$ $M_b =$ $L_{cend} =$	Resistance to Tran 5 3.50 24.18 40.20 0.00 5.97	sverse Load for Impacts at End of Wall or at Joint, R _{wend} Longitudinal Length of Distribution of Impact Force (in.) Height of Wall (ft.) Flexural Resistance of Cantilever Wall (k-ft/ft) Flexural Resistance of Wall about its Vertical Axis (k-ft/ft) Add. Flex. Resist. of Wall about its Vertical Axis (k-ft/ft) Critical Length of Yield Line Failure Pattern (ft.)
Nominal Railing $L_t =$ H = $M_{cend} =$ $M_{wend} =$ $M_b =$ $L_{cend} =$ $F_t =$	Resistance to Tran 5 3.50 24.18 40.20 0.00 5.97 80	Isverse Load for Impacts at End of Wall or at Joint, R _{wend} Longitudinal Length of Distribution of Impact Force (in.) Height of Wall (ft.) Flexural Resistance of Cantilever Wall (k-ft/ft) Flexural Resistance of Wall about its Vertical Axis (k-ft/ft) Add. Flex. Resist. of Wall about its Vertical Axis (k-ft/ft) Critical Length of Yield Line Failure Pattern (ft.) Ultimate Transverse Force (kips)
Nominal Railing $L_t =$ H = $M_{cend} =$ $M_{wend} =$ $M_b =$ $L_{cend} =$ $F_t =$ $H_e =$	Resistance to Tran 5 3.50 24.18 40.20 0.00 5.97 80 30	sverse Load for Impacts at End of Wall or at Joint, R _{wend} Longitudinal Length of Distribution of Impact Force (in.) Height of Wall (ft.) Flexural Resistance of Cantilever Wall (k-ft/ft) Flexural Resistance of Wall about its Vertical Axis (k-ft/ft) Add. Flex. Resist. of Wall about its Vertical Axis (k-ft/ft) Critical Length of Yield Line Failure Pattern (ft.) Ultimate Transverse Force (kips) Height of Equivalent Transverse Load (in)
Nominal Railing $L_t =$ H = $M_{cend} =$ $M_{wend} =$ $M_b =$ $L_{cend} =$ $F_t =$ $H_e =$ $R_{wend} =$	Resistance to Tran 5 3.50 24.18 40.20 0.00 5.97 80 30 115.55	sverse Load for Impacts at End of Wall or at Joint, R _{wend} Longitudinal Length of Distribution of Impact Force (in.) Height of Wall (ft.) Flexural Resistance of Cantilever Wall (k-ft/ft) Flexural Resistance of Wall about its Vertical Axis (k-ft/ft) Add. Flex. Resist. of Wall about its Vertical Axis (k-ft/ft) Critical Length of Yield Line Failure Pattern (ft.) Ultimate Transverse Force (kips) Height of Equivalent Transverse Load (in) Total Transverse Resistance of the Railing at end of wall or joint specified in AASHTO Article A13.3.1 (kips)