

Research Project Number TPF-5(193) Supplement #132

MASH 2016 EVALUATION OF THE MODIFIED THRIE BEAM SYSTEM

Submitted by

Robert W. Bielenberg, M.S.M.E., E.I.T. Research Associate Engineer Ronald K. Faller, Ph.D., P.E. MwRSF Director & Research Professor

Hua Jiang, Ph.D. Former Post-Doctoral Research Associate James C. Holloway, M.S.C.E. Research Engineer & Assistant Director – Physical Testing Division

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska–Lincoln

Main Office

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 **Outdoor Test Site** 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

NEW JERSEY DEPARTMENT OF TRANSPORTATION

1035 Parkway Avenue Trenton, New Jersey 08625

CALIFORNIA DEPARTMENT OF TRANSPORTATION

1120 N Street Sacramento, California 95814

MwRSF Research Report No. TRP-03-417-20

July 16, 2020

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-417-20	2.		3. Recipient's Accession No.	
4. Title and Subtitle MASH 2016 Evaluation of the Modified Thrie Beam System			5. Report DateJuly 16, 20206.	
7. Author(s) Bielenberg, R.W., Faller, R.K., Ji	8. Performing Organization Report No. TRP-03-417-20			
9. Performing Organization Name Midwest Roadside Safety Facility Nebraska Transportation Center University of Nebraska–Lincoln			10. Project/Task/Work Unit No.	
Main Office: Prem S. Paul Research Center at Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	11. Contract (C) or Grant (G) No. TPF-5(193) Supplement #132			
12. Sponsoring Organization Nan New Jersey Department of Transp 1035 Parkway Avenue	13. Type of Report and Period Covered Final Report: 2018 – 2020			
Trenton, New Jersey 08625	14. Sponsoring Agency Code			
California Department of Transpo 1120 N Street Sacramento, California 95814				
15. Supplementary Notes Prepared in cooperation with U.S.	Department of Transportation, 1	Federal Highway	Administration.	
(MTB) system in both a single- Assessing Safety Hardware 2016 approved under National Cooperation	sided roadside configuration an (MASH 2016) Test-Level 3 (T ative Highway Research Program	nd a dual-sided 1 L-3) criteria. The n Report No. 350	sportation (NJDOT) modified thrie beam median configuration under <i>Manual for</i> MTB system was previously tested and DTL-3 impact conditions. Two full-scale tion nos. 3-11 and 3-10, respectively.	
In test no. MTB-1, a single-sided roadside barrier configuration was constructed using 81-in. long W6x8.5 steel posts 75-in. post spacing, W14x22 blockouts, and 12-gauge guardrail sections. A 5,003-lb quad cab pickup truck impacted critical impact point of the system at a speed of 62.9 mph and an angle of 25.4 deg. The test vehicle was satisfactorily capture and smoothly redirected. Therefore, test no. MTB-1 was deemed successful according to MASH 2016 TL-3 safe performance criteria.				
small car impacted the critical im	pact point of the system at a spe noothly redirected. Therefore, te	ed of 63.1 mph a	a of the modified thrie beam. A 2,415-lb and an angle of 24.9 deg. The test vehicle s deemed successful according to MASH	
 17. Document Analysis/Descriptors Highway Safety, Crash Test, Compliance Test, MASH 2016, TL -3 Roadside Appurtenances Thrie Beam MTB 18. Availability Statement No restrictions. Document available from: Nation Technical Information Services Springfield Vir 				

TL-3, Roadside Appurtenances, T	hrie Beam, MTB	Technical Information Services, Springfield, Virginia 22161		
19. Security Class (this report)20. Security Class (this page)		21. No. of Pages	22. Price	
Unclassified Unclassified		216		

DISCLAIMER STATEMENT

This material is based upon work supported by the New Jersey Department of Transportation (NJDOT) and the California Department of Transportation (Caltrans) under TPF-5(193) Supplement #132. The contents of this report reflect views and opinions of the authors who are responsible for the facts and the accuracy of the data represented herein. The contents do not necessarily reflect the official views or policies of the University of Nebraska-Lincoln, NJDOT, Caltrans nor the Federal highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names, which may appear in this report are cited only because they are considered essential to the objectives of the report. The United States (U.S.) government and the State of Nebraska do not endorse products or manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Dr. Cody Stolle, Research Assistant Professor.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) the New Jersey Department of Transportation and California Department of Transportation, for sponsoring this project; and (2) MwRSF personnel for constructing the barriers and conducting the crash tests. Acknowledgement is also given to the following individuals who contributed to the completion of this research project.

Midwest Roadside Safety Facility

J.D. Reid, Ph.D., Professor K.A. Lechtenberg, M.S.M.E., E.I.T., Research Engineer S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Engineer J.D. Rasmussen, Ph.D., P.E., Research Associate Professor C.S. Stolle, Ph.D., E.I.T., Research Assistant Professor J.S. Steelman, Ph.D., P.E., Associate Professor M. Pajouh, Ph.D., P.E., Research Assistant Professor A.T. Russell, B.S.B.A., Testing and Maintenance Technician II E.W. Krier, B.S., Construction and Testing Technician II S.M. Tighe, Construction and Testing Technician I D.S. Charroin, Construction and Testing Technician I R.M. Novak, Construction and Testing Technician I T.C. Donahoo, Construction and Testing Technician I J.T. Jones, Construction and Testing Technician I J.E. Kohtz, B.S.M.E., CAD Technician E.L. Urbank, B.A., Research Communication Specialist Z.Z. Jabr, Engineering Technician Undergraduate and Graduate Research Assistants

California Department of Transportation

Bob Meline, Chief, Roadside Safety Research Branch David Whitesel, P.E., Transportation Engineer John Jewell, P.E., Senior Transportation Engineer, Specialist

New Jersey Department of Transportation

Hung Tang, Senior Engineer, Transportation Joseph Warren, Assistant Engineer, Transportation David Bizuga, Senior Executive Manager, Roadway Design Group 1 (Retired)

	SI* (MODER)	N METRIC) CONVE	RSION FACTORS	
	APPROXI	MATE CONVERSION	IS TO SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
in.	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
		AREA		2
in ²	square inches	645.2	square millimeters	mm ²
ft ²	square feet	0.093	square meters	m^2_2
yd ²	square yard	0.836	square meters	m ²
ac mi ²	acres square miles	0.405 2.59	hectares square kilometers	ha km ²
	square miles		square knometers	KIII
ci	flu: 1	VOLUME 29.57	milliliters	T
fl oz	fluid ounces gallons	3.785	liters	mL L
gal ft ³	cubic feet	0.028	cubic meters	m ³
yd ³	cubic yards	0.765	cubic meters	m ³
yu		volumes greater than 1,000 L shall		111
	NOIL.	MASS		
07	011200	28.35	aroma	a
oz lb	ounces pounds	28.55 0.454	grams kilograms	g kg
T	short ton (2,000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")
1		EMPERATURE (exact d		Mg (Of t)
	1		legrees)	
°F	Fahrenheit	5(F-32)/9 or (F-32)/1.8	Celsius	°C
c	C	ILLUMINATION	1	
fc	foot-candles	10.76	lux	lx
fl	foot-Lamberts	3.426	candela per square meter	cd/m ²
		ORCE & PRESSURE or S		
lbf	poundforce	4.45	newtons	N
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa
		ATE CONVERSIONS		
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
mm	millimeters	0.039	inches	in.
m	meters	3.28	feet	ft
m	meters	1.09	yards	yd
km	kilometers	0.621	miles	mi
		AREA		
mm ²	square millimeters	0.0016	square inches	in^2
m ²	square meters	10.764	square feet	ft ²
m ²	square meters	1.195	square yard	yd ²
ha	hectares	2.47	acres	ac
km ²	square kilometers	0.386	square miles	mi ²
		VOLUME		
mL	milliliter	0.034	fluid ounces	fl oz
L	liters	0.264	gallons	gal
			cubic feet	ft ³
m ³	cubic meters	35.314		
	cubic meters cubic meters	1.307	cubic yards	yd ³
m ³ m ³				
	cubic meters grams	1.307 MASS 0.035	cubic yards ounces	
n ³ g <g< td=""><td>cubic meters grams kilograms</td><td>1.307 MASS 0.035 2.202</td><td>cubic yards ounces pounds</td><td>yd³ oz lb</td></g<>	cubic meters grams kilograms	1.307 MASS 0.035 2.202	cubic yards ounces pounds	yd ³ oz lb
n ³ g g	cubic meters grams kilograms megagrams (or "metric ton")	1.307 MASS 0.035 2.202 1.103	cubic yards ounces pounds short ton (2,000 lb)	yd ³ oz
n ³ g Mg (or "t")	cubic meters grams kilograms megagrams (or "metric ton")	1.307 MASS 0.035 2.202	cubic yards ounces pounds short ton (2,000 lb)	yd ³ oz lb
n ³ g <g< td=""><td>cubic meters grams kilograms megagrams (or "metric ton")</td><td>1.307 MASS 0.035 2.202 1.103</td><td>cubic yards ounces pounds short ton (2,000 lb)</td><td>yd³ oz lb</td></g<>	cubic meters grams kilograms megagrams (or "metric ton")	1.307 MASS 0.035 2.202 1.103	cubic yards ounces pounds short ton (2,000 lb)	yd ³ oz lb
n ³ g Mg (or "t")	cubic meters grams kilograms megagrams (or "metric ton")	1.307 MASS 0.035 2.202 1.103 EMPERATURE (exact d 1.8C+32	cubic yards ounces pounds short ton (2,000 lb) egrees)	yd ³ oz lb T
n ³ g Mg (or "t")	cubic meters grams kilograms megagrams (or "metric ton")	1.307 MASS 0.035 2.202 1.103 EMPERATURE (exact d	cubic yards ounces pounds short ton (2,000 lb) egrees)	yd ³ oz lb T °F
n ³ g Mg (or "t") C x	cubic meters grams kilograms megagrams (or "metric ton") Celsius	1.307 MASS 0.035 2.202 1.103 EMPERATURE (exact d 1.8C+32 ILLUMINATION	cubic yards ounces pounds short ton (2,000 lb) egrees) Fahrenheit	yd ³ oz lb T
n ³ 5g Mg (or "t") C x	cubic meters grams kilograms megagrams (or "metric ton") Celsius lux candela per square meter	1.307 MASS 0.035 2.202 1.103 EMPERATURE (exact d 1.8C+32 ILLUMINATION 0.0929 0.2919	cubic yards ounces pounds short ton (2,000 lb) egrees) Fahrenheit foot-candles foot-Lamberts	yd ³ oz lb T °F fc
n ³ g Mg (or "t") PC	cubic meters grams kilograms megagrams (or "metric ton") Celsius lux candela per square meter	1.307 MASS 0.035 2.202 1.103 EMPERATURE (exact d 1.8C+32 ILLUMINATION 0.0929	cubic yards ounces pounds short ton (2,000 lb) egrees) Fahrenheit foot-candles foot-Lamberts	yd ³ oz lb T °F fc

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	iii
SI* (MODERN METRIC) CONVERSION FACTORS	iv
LIST OF FIGURES	vii
LIST OF TABLES	xi
1 INTRODUCTION 1.1 Background 1.2 Objective 1.3 Scope	
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 2.1 Test Requirements 2.2 Evaluation Criteria 2.3 Soil Strength Requirements	
3 TEST CONDITIONS. 3.1 Test Facility 3.2 Vehicle Tow and Guidance System 3.3 Test Vehicles 3.4 Simulated Occupant 3.5 Data Acquisition Systems 3.5.1 Accelerometers 3.5.2 Rate Transducers 3.5.3 Retroreflective Optic Speed Trap 3.5.4 Digital Photography	
4 DESIGN DETAILS, TEST NO. MTB-1	
5 FULL-SCALE CRASH TEST NO. MTB-1 5.1 Static Soil Test 5.2 Weather Conditions 5.3 Test Description 5.4 Barrier Damage 5.5 Vehicle Damage 5.6 Occupant Risk	

5.7 Discussion	57
6 DESIGN DETAILS, TEST NO. MTB-2	59
7 FULL-SCALE CRASH TEST NO. MTB-2	
7.1 Static Soil Test	
7.2 Weather Conditions	
7.3 Test Description	
7.4 Barrier Damage	
7.5 Vehicle Damage	
7.6 Occupant Risk	
7.7 Discussion	
8 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	
9 RECOMMENDATIONS	
9.1 MASH TL-4	
9.2 Transitioning to the MGS	
9.3 Guardrail Terminals and Anchorages	
9.4 Transitioning to Thrie-Beam AGTs	
9.5 Working Width – Lateral Offset	
9.6 Grading Requirements	
9.7 Curbs	
9.8 Flaring	
9.9 Blockout Types	113
10 MASH EVALUATION	
10.1 Test Matrix	
10.2 Full-Scale Crash Test Results	
10.3 MASH Evaluation	
11 REFERENCES	116
12 APPENDICES	
Appendix A. NJDOT Modified Thrie Beam Drawings	
Appendix B. Material Specifications	
Appendix C. Vehicle Center of Gravity Determination	
Appendix D. Static Soil Tests	
Appendix E. Vehicle Deformation Records	
Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. N	МТВ-1 176
Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. I	MTB-2 196

LIST OF FIGURES

Figure 1. Test Vehicle, Test No. MTB-1	8
Figure 2. Test Vehicle's Interior Floorboards and Undercarriage, Test No. MTB-1	9
Figure 3. Vehicle Dimensions, Test No. MTB-1	10
Figure 4. Test Vehicle, Test No. MTB-2	
Figure 5. Test Vehicle's Interior Floorboards and Undercarriage, Test No. MTB-2	12
Figure 6. Vehicle Dimensions, Test No. MTB-2	13
Figure 7. Target Geometry, Test No. MTB-1	15
Figure 8. Target Geometry, Test No. MTB-2	16
Figure 9. Camera Locations, Speeds, and Lens Settings, Test No. MTB-1	19
Figure 10. Camera Locations, Speeds, and Lens Settings, Test No. MTB-2	
Figure 11. System Layout, Test No. MTB-1	22
Figure 12. Section Views, Test No. MTB-1	23
Figure 13. Splice and Post Detail, Test No. MTB-1	24
Figure 14. End Section Details, Test No. MTB-1	25
Figure 15. BCT Anchor and Splice Details, Test No. MTB-1	26
Figure 16. Post Nos. 3 through 27 Components, Test No. MTB-1	27
Figure 17. Foundation Tube and BCT Timber Post Details, Test No. MTB-1	28
Figure 18. Ground Strut Details, Test No. MTB-1	29
Figure 19. Cable Assembly, Test No. MTB-1	30
Figure 20. Guardrail Section Details, Test No. MTB-1	31
Figure 21. Rail Transition Details, Test No. MTB-1	32
Figure 22. Hardware, Test No. MTB-1	
Figure 23. Bill of Materials, Test No. MTB-1	
Figure 24. Test Installation Photographs, Test No. MTB-1	35
Figure 25. Additional Test Installation Photographs, Test No. MTB-1	
Figure 26. Impact Location, Test No. MTB-1	39
Figure 27. Sequential Photographs, Test No. MTB-1	
Figure 28. Additional Sequential Photographs, Test No. MTB-1	43
Figure 29. Documentary Photographs, Test No. MTB-1	
Figure 30. Vehicle Final Position and Trajectory Marks, Test No. MTB-1	
Figure 31. System Damage, Test No. MTB-1	
Figure 32. Damage between Post Nos. 10 and 12, Test No. MTB-1	
Figure 33. Damage between Post Nos. 13 and 15, Test No. MTB-1	49
Figure 34. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No.	
MTB-1	
Figure 35. Vehicle Damage, Test No. MTB-1	
Figure 36. Vehicle Damage, Test No. MTB-1	
Figure 37. Vehicle Damage, Test No. MTB-1	
Figure 38. Occupant Compartment Damage, Test No. MTB-1	
Figure 39. Vehicle Undercarriage Damage, Test No. MTB-1	
Figure 40. Summary of Test Results and Sequential Photographs, Test No. MTB-1	
Figure 41. System Layout, Test No. MTB-2	
Figure 42. Section Views, Test No. MTB-2	
Figure 43. Splice and Post Detail, Test No. MTB-2	
Figure 44. End Section Details, Test No. MTB-2	63

Figure 45. BCT Anchor and Splice Details, Test	No. MTB-264
Figure 46. Post Nos. 3 through 27 Components,	Test No. MTB-265
Figure 47. Foundation Tube and BCT Timber Po	ost Details, Test No. MTB-266
Figure 48. Ground Strut Details, Test No. MTB-	267
Figure 49. Cable Assembly, Test No. MTB-2	
Figure 50. Guardrail Section Details, Test No. N	ITB-269
	B-270
	o. MTB-273
	o. MTB-274
	-276
•	⁻ B-2
	est No. MTB-279
	MTB-280
• • • •	MTB-281
	MTB-282
	I, Test No. MTB-283
	rough 15, Test No. MTB-286
	th 15, Test No. MTB-287
Figure 66. Permanent Set Deflection, Dynamic I	
•	
Figure 67. Vehicle Damage, Test No. MTB-2	
Figure 68. Vehicle Damage, Test No. MTB-2	
Figure 69. Occupant Compartment Damage, Tes	st No. MTB-291
Figure 70. Vehicle Undercarriage Damage, Test	No. MTB-292
Figure 71. Summary of Test Results and Sequen	tial Photographs, Test No. MTB-295
	1GS
Figure 73. Recommended Distance between Mo	dified Thrie Beam and (a) Energy-
Absorbing Terminals, (b) Flared Termina	als, and (c) Trailing-End Guardrail
Anchorages	
Figure 74. Schematic of Upstream Stiffness Tran	
-	hrie-Beam AGTs108
• • • • • • • • • • • • • • • • • • • •	Guardrail Transition109
0	IASH TL-2 Thrie-Beam AGT110
e	ils, Test No. MTB-1122
	ils, Test No. MTB-2123
-	st Nos. MTB-1 and MTB-2
-	st Nos. MTB-1 and MTB-2
•	est Nos. MTB-1 and MTB-2
	on, Test Nos. MTB-1 and MTB-2
-	on, Test Nos. MTB-1 and MTB-2131
Figure B-6. 10-gauge Symmetrical W-Beam to	
and MTB-2	

Figure B-7. 10-gauge Symmetrical W-Beam to Thrie Beam Transition, Test Nos. MTB-1	122
and MTB-2 Figure B-8. 10-gauge Symmetrical W-Beam to Thrie Beam Transition, Test Nos. MTB-1	133
and MTB-2	134
Figure B-9. 72-in. Long Foundation Tube, Test Nos. MTB-1 and MTB-2	
Figure B-10. BCT Timber Post – MGS Height – Not Standard, Test Nos. MTB-1 and	155
MTB-2	136
Figure B-11. Ground Strut Assembly, Test Nos. MTB-1 and MTB-2	
Figure B-12. Ground Strut Assembly, Test Nos. MTB-1 and MTB-2	
Figure B-13. BCT Cable Anchor Assembly, Test Nos. MTB-1 and MTB-2	
Figure B-14. Anchor Bracket Assembly, Test Nos. MTB-1 and MTB-2	
Figure B-15. 8 in. x 8 in. x $^{5}/_{8}$ in. Anchor Bearing Plate, Test Nos. MTB-1 and MTB-2	
Figure B-16. $2^{3}/_{8}$ in. O.D. x 6-in. Long BCT Post Sleeve, Test Nos. MTB-1 and MTB-2	
Figure B-17. W6x8.5, 81-in. Long Steel Post, Test Nos. MTB-1 and MTB-2	
Figure B-18. W14x22, 17-in. Long Steel Blockout, Test Nos. MTB-1 and MTB-2	
Figure B-19. 16D Double Head Nails, Test Nos. MTB-1 and MTB-2	
Figure B-20. ⁵ / ₈ in11 UNC, 10-in. Long Guardrail Bolt, Test Nos. MTB-1 and MTB-2	
Figure B-21. 5%-in11 UNC, Heavy Hex Nut, Test Nos. MTB-1 and MTB-2	
Figure B-22. 5% in11 UNC, 2-in. Long Guardrail Bolt, Test Nos. MTB-1 and MTB-2	
Figure B-23. ⁵ / ₈ in11 UNC, 1 ¹ / ₄ -in. Long Guardrail Bolt, Test Nos. MTB-1 and MTB-2	
Figure B-24. 7/8 in9 UNC, 8-in. Long Hex Head Bolt, Test Nos. MTB-1 and MTB-2	
Figure B-25. 7/8-in9 UNC, Nut, Test Nos. MTB-1 and MTB-2	
Figure B-26. 5%-in11 UNC, 10-in. Long Hex Head Bolt, Test Nos. MTB-1 and MTB-2	152
Figure B-27. 5%-in11 UNC, Nut, Test Nos. MTB-1 and MTB-2	153
Figure B-28. 5%-in11 UNC, 11/2-in. Long Hex Head Bolt, Test Nos. MTB-1 and MTB-2	154
Figure B-29. Plain Round Washers, Test Nos. MTB-1 and MTB-2	155
Figure C-1. Vehicle Mass Distribution, Test No. MTB-1	
Figure C-2. Vehicle Mass Distribution, Test No. MTB-2	
Figure D-1. Soil Strength, Initial Calibration Tests, Test No. MTB-1	
Figure D-2. Static Soil Test, Test No. MTB-1	
Figure D-3. Static Soil Test, Test No. MTB-2	
Figure E-1. Floor Pan Deformation Data – Set 1, Test No. MTB-1	
Figure E-2. Floor Pan Deformation Data – Set 2, Test No. MTB-1	
Figure E-3. Occupant Compartment Deformation Data – Set 1, Test No. MTB-1	
Figure E-4. Occupant Compartment Deformation Data – Set 2, Test No. MTB-1	
Figure E-5. Exterior Vehicle Crush (NASS) – Front, Test No. MTB-1	
Figure E-6. Exterior Vehicle Crush (NASS) – Side, Test No. MTB-1	
Figure E-7. Floor Pan Deformation Data – Set 1, Test No. MTB-2	
Figure E-8. Floor Pan Deformation Data – Set 2, Test No. MTB-2.	
Figure E-9. Occupant Compartment Deformation Data – Set 1, Test No. MTB-2	
Figure E-10. Occupant Compartment Deformation Data – Set 2, Test No. MTB-2	
Figure E-11. Exterior Vehicle Crush (NASS) – Front, Test No. MTB-2	
Figure E-12. Exterior Vehicle Crush (NASS) – Side, Test No. MTB-2	
Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MTB-1	
Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MTB-1	
Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MTB-1	
Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MTB-1	180

Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MTB-1 Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. MTB-1 Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. MTB-1	.182
Figure F-8. Acceleration Severity Index (SLICE-1), Test No. MTB-1	
Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MTB-1	
Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MTB-1	186
Figure F-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MTB-1	.187
Figure F-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MTB-1	188
Figure F-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MTB-1	.189
Figure F-14. Lateral Occupant Displacement (SLICE-2), Test No. MTB-1	.190
Figure F-15. Vehicle Angular Displacements (SLICE-2), Test No. MTB-1	.191
Figure F-16. Acceleration Severity Index (SLICE-2), Test No. MTB-1	
Figure F-17. Longitudinal Filtered Acceleration, Test No. MTB-1	
Figure F-18. Longitudinal Extracted Acceleration, Test No. MTB-1	
Figure F-19. Longitudinal Average Acceleration, Test No. MTB-1	
Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MTB-2	
Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MTB-2	
Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MTB-2	
Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MTB-2	
Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MTB-2	
Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. MTB-2	
Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. MTB-2	
Figure G-8. Acceleration Severity Index (SLICE-1), Test No. MTB-2	
Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MTB-2	
Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MTB-2	
Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MTB-2	
Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MTB-2	
Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MTB-2	
Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. MTB-2	
Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. MTB-2	
Figure G-16. Acceleration Severity Index (SLICE-2), Test No. MTB-2	
Figure G-17. Longitudinal Filtered Acceleration, Test No. MTB-2	
Figure G-18. Longitudinal Extracted Acceleration, Test No. MTB-2	
Figure G-19. Longitudinal Average Acceleration, Test No. MTB-2	.215

LIST OF TABLES

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers	4
Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barrier	5
Table 3. Weather Conditions, Test No. MTB-1	37
Table 4. Sequential Description of Impact Events, Test No. MTB-1	40
Table 5. Sequential Description of Impact Events, Test No. MTB-1, Cont	41
Table 6. Maximum Occupant Compartment Intrusions by Location, Test No. MTB-1	56
Table 7. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MTB-1	57
Table 8. Weather Conditions, Test No. MTB-2	75
Table 9. Sequential Description of Impact Events, Test No. MTB-2	77
Table 10. Maximum Occupant Compartment Intrusions by Location, Test No. MTB-2	93
Table 11. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MTB-2	94
Table 12. Summary of Safety Performance Evaluation	97
Table 13. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers	114
Table B-1. Bill of Materials, Test Nos. MTB-1 and MTB-2.	125
Table B-2. Bill of Materials, Test Nos. MTB-1 and MTB-2, Cont	126

1 INTRODUCTION

1.1 Background

In 2016, the American Association of State Highway and Transportation Officials (AASHTO) implemented an updated standard for the evaluation of roadside hardware. The standard, called the *Manual for Assessing Safety Hardware 2016* (MASH 2016) [1], improved the criteria for evaluating roadside hardware beyond the previous National Cooperative Highway Research Program (NCHRP) Report No. 350 [2] standard through updates to the test vehicles, test matrices, and impact conditions. In an effort to encourage state departments of transportation and hardware developers to advance their hardware designs, the Federal Highway Administration (FHWA) and AASHTO have collaborated to develop a MASH implementation policy that includes sunset dates for various categories of roadside hardware. The new policy will require that devices installed on federal aid roadways after the sunset dates must have been evaluated to MASH 2016.

The New Jersey Department of Transportation (NJDOT) and the California Department of Transportation (Caltrans) currently use roadside hardware systems that were originally developed and evaluated under NCHRP Report No. 350 criteria. This includes modified thrie beam guardrail which was previously evaluated to NCHRP Report No. 350 Test Levels 3 (TL-3) and 4 (TL-4). Additionally, these states desire to use a dual-sided version of the system for median applications that has yet to be evaluated to MASH or NCHRP Report No. 350. It was determined to be acceptable under NCHRP Report No. 350 by the FHWA based on crash testing of the single-sided system.

The original evaluation and testing of the modified three beam guardrail was performed by the Texas A&M Transportation Institute (TTI) [3]. The original development of the modified thrie beam rail stemmed from a desire to develop a barrier capable of safely redirecting bus-type vehicles while still providing safe performance for passenger car impacts. Testing of standard thrie beam guardrail during early research found that the performance of the standard thrie beam was marginal, as it captured and redirected the bus but allowed the vehicle to roll over. Thus, a modified thrie beam guardrail was developed that utilized 14-in. deep M14x17.2 blockouts with an angled cutout and increased the top rail height to 34 in. A thrie beam backup plate was included between the thrie beam and the blockout at posts where the splice did not occur to reduce the potential for stress concentrations that could arise as the thrie beam wrapped around the edge of the blockout during the impact. The modified three beam was evaluated by impacting the barrier with a 20,040-lb International school bus at 55.8 mph and an angle of 15.0 degrees. The modified thrie beam safely redirected the bus with a dynamic deflection of 2.87 ft. A subsequent test was conducted to evaluate the performance of small car on the system in terms of vehicle snag and capture. A 2,276-lb Honda Civic was used to impact the barrier at 62.5 mph and an angle of 15.0 degrees. The small car was safely redirected with a dynamic deflection of 0.8 ft. No snagging of the vehicle on the system posts was noted. A second test of a Honda Civic vehicle impacting at 61.6 mph and 18.1 degrees on the repaired barrier from the first test demonstrated very similar performance.

Several previous research efforts have evaluated modified three beam guardrail under NCHRP Report No. 350. In 1995, TTI performed test designation no. 3-11 on a modified three

beam guardrail similar to the system detailed above except the blockout section was changed to a W14x22 section [4]. The modified thrie-beam guardrail system successfully contained and redirected the vehicle and met all evaluation criteria set forth in NCHRP Report No. 350 for TL-3. The maximum dynamic deflection of the guardrail was 3.4 ft. The relatively large dynamic deflection sustained by the guardrail system and snagging of the left wheel assembly on post no. 17 was somewhat unexpected given the stiffness of the thrie-beam rail element and the 14-in. deep blockout. Review of the high-speed film showed that post nos. 16 through 18 were severely twisted from the vehicle impact as the thrie-beam rail element deflected. The added moment arm from the deep blockout aggravated the torsional moment acting on the posts. As the posts twisted, the resistance to rail motion provided by the posts decreased which increased the dynamic deflection of the guardrail. The torsional collapse of the posts allowed the left-front wheel assembly of the vehicle to come into direct contact with post no. 17.

Finally, two tests have been conducted on modified thrie beam under NCHRP Report No. 350 TL-4 impact criteria. TTI tested the modified thrie beam with W14x22 blockouts with an impact of a 17,636-lb single-unit truck at a speed of 49.0 mph and an angle of 15.7 degrees [5]. The 8000S single-unit truck was safely and stably redirected with a maximum dynamic deflection of 2.33 ft. A subsequent test of the modified thrie beam was conducted according to NCHRP Report No. 350 TL-4 for Trinity Industries that used a slightly modified blockout with a different shape for the angled cutout [6]. In this test, a 17,380-lb single-unit truck impacted the barrier at a speed of 50.2 mph and an angle of 14.9 degrees. The test resulted in a successful redirection of the 8000S vehicle with a dynamic deflection of 2.18 ft.

Review of previous testing of the modified thrie beam system suggested the barrier may potentially meet MASH TL-3 criteria. However, the increased mass and kinetic energy of the MASH 2270P test vehicle has been shown to increase impact loading and dynamic deflection of guardrail systems, and no MASH testing has been conducted on the modified thrie beam system with a small car. Additionally, no testing has been conducted on a dual-sided modified thrie beam system. Thus, a need exists to evaluate the modified thrie beam system under MASH 2016 criteria to determine its dynamic deflection, working width, and crashworthiness under MASH TL-3. If the modified thrie beam system proves successful under TL-3 impact conditions, further study regarding its performance under TL-4 impacts with the 10000S vehicle may be warranted.

1.2 Objective

The objective of this research is to conduct full-scale crash testing on the modified thrie beam guardrail system according to TL-3 of the MASH 2016 impact safety standards. The effort will seek to evaluate both the single-sided and dual-sided median versions of the design through full-scale crash testing with both the 1100C and 2270P vehicles.

1.3 Scope

Two full-scale crash tests were conducted on the modified thrie beam guardrail according to MASH 2016 test designation nos. 3-10 and 3-11. The system was constructed following NJDOT's schematic drawings, which are shown in Appendix A. Because the sponsors desired to evaluate both the single-sided and dual-sided median versions of modified thrie beam guardrail, MwRSF proposed conducting MASH test designation nos. 3-10 and 3-11 on the critical configuration of the barrier such that only two tests were required. Test designation no. 3-10 was

conducted on the dual-sided, median version of the modified thrie beam and test designation no. 3-11 was conducted on the single-sided configuration. The test results were analyzed, evaluated, and documented, and conclusions and recommendations were made pertaining to the safety performance of the system. Specific recommendations will also be made regarding transitioning of the modified thrie beam to crashworthy thrie beam approach guardrail transitions and transitioning the modified thrie beam transition from its 34-in. height to the 31-in. height of the Midwest Guardrail System (MGS).

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Longitudinal barriers, such as the modified thrie beam guardrail, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the FHWA for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016. Note that there is no difference between MASH 2009 [7] and MASH 2016 for longitudinal barriers, except that additional occupant compartment deformation measurements, photographs, and documentation are required by MASH 2016. According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 1.

Test	Test	Test	Vehicle	Impact Conditions		Evaluation
Article	Designation No.	Vehicle	Weight lb	Speed mph	Angle deg.	Criteria ¹
Longitudinal	3-10	1100C	2,425	62	25	A,D,F,H,I
Barrier	3-11	2270P	5,000	62	25	A,D,F,H,I

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 2

Because NJDOT and Caltrans would like to evaluate both the single-sided roadside and dual-sided median versions of the modified three beam guardrail, MwRSF proposed to run test designation nos. 3-10 and 3-11 on the critical configuration of the barrier such that only two tests were required. Test designation no. 3-10 (test no. MTB-2) was conducted on the dual-sided, median version of the modified thrie beam as this system configuration would tend to increase loading and occupant risk values for the small car vehicle and increase the propensity for vehicle snag on the post due to the higher stiffness and reduced dynamic deflection of the dual-sided system. Conversely, test designation no. 3-11 (test no. MTB-1) was conducted on the single-sided configuration because the 2270P vehicle will impart increased barrier loading on the components of a single-sided system. Additionally, the potential for the torsional buckling of the system posts that led to increased barrier deflection and post snag as occurred in the original test designation no. 3-11 testing of the modified three beam would be more prevalent in the single-sided configuration. Finally, evaluation of the single-sided modified three beam configuration with the 2270P vehicle would also produce the maximum dynamic deflection and working width values for the barrier system. Previous evaluation of the T-39 three beam barrier for both roadside and median versions followed a similar methodology [8].

Evaluation of the length of need for guardrail systems has traditionally been conducted near the midpoint of 175-ft long systems. This has shown to be sufficiently far from the system anchors to simulate the performance and dynamic deflection of longer barrier systems and limit the sensitivity of the results to the proximity of the end anchorages. MwRSF evaluated the MTB guardrail using a similar length. It should be noted that 175 ft typically becomes the minimal functional system length, since any reduction affects barrier performance and anchorage requirements. Thus, further analysis and testing is usually required to justify barrier systems shorter than that length, or the length of the system in its full-scale crash test. MwRSF may be able to provide guidance based on previous MGS research, but actual determination of minimum system lengths and effects on performance are outside the scope of this effort and would require further study.

Test nos. MTB-1 and MTB-2 were conducted, documented, and evaluated by MwRSF personnel in accordance with the MASH TL-3 guidelines. The tests were conducted to MwRSF's list of accredited testing services granted by the A2LA laboratory accreditation body (A2LA Cert. No. 2937.01).

Structural Adequacy	А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.						
	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.						
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 deg.						
Occupant Risk	Н.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 MASH 2016 for calculation procedure) should satisfy the followi limits:						
		Occupant In	npact Velocity Limit	tS				
		Component Preferred Maximum						
		Longitudinal and Lateral 30 ft/s 40 ft/						
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:						
		Occupant Ridedown Acceleration Limits						
		Component	Preferred	Maximum				
		Longitudinal and Lateral						

Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barrier

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the longitudinal barrier to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle.

Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH 2016. The full-scale vehicle crash tests documented herein were conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

2.3 Soil Strength Requirements

In accordance with MASH 2016, foundation soil strength must be verified before any fullscale crash testing can occur. During the installation of a soil dependent system, W6x16 posts are installed near the impact region using the same installation procedures as the system itself. Prior to full-scale testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips at post deflections between 5 and 20 in. measured at a height of 25 in. If dynamic testing near the system is not desired, MASH 2016 permits a static test to be conducted instead and compared against the results of a previously established baseline test. In this situation, the soil must provide a resistance of at least 90 percent of the static baseline test at deflections of 5, 10, and 15 in. Further details can be found in Appendix B of MASH 2016.

3 TEST CONDITIONS

3.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately five miles northwest of the University of Nebraska-Lincoln.

3.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [13] was used to steer the test vehicle. A guide flag, attached to the left-front wheel and the guide cable, was sheared off before impact with the barrier system. The ³/₈-in. diameter guide cable was tensioned to approximately 3,500 lb and supported both laterally and vertically every 100 ft by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

3.3 Test Vehicles

For test no. MTB-1, a 2012 Dodge Ram 1500 quad cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,089 lb, 5,003 lb, and 5,162 lb, respectively. The test vehicle is shown in Figures 1 and 2 and vehicle dimensions are shown in Figure 3.

For test no. MTB-2, a 2009 Kia Rio was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,497 lb, 2,415 lb, and 2,579 lb, respectively. The test vehicle is shown in Figures 4 and 5 and vehicle dimensions are shown in Figure 6.

MASH 2016 requires test vehicles used in crash testing to be no more than six model years old. A 2009 model was used for this test because the vehicle geometry of newer models did not comply with recommended vehicle dimension ranges specified in Table 4.1 of MASH 2016. The use of older test vehicles due to recent small car vehicle properties falling outside of MASH 2016 recommendations was allowed by FHWA and AASHTO in MASH implementation guidance dated May of 2018 [14].

Figure 1. Test Vehicle, Test No. MTB-1

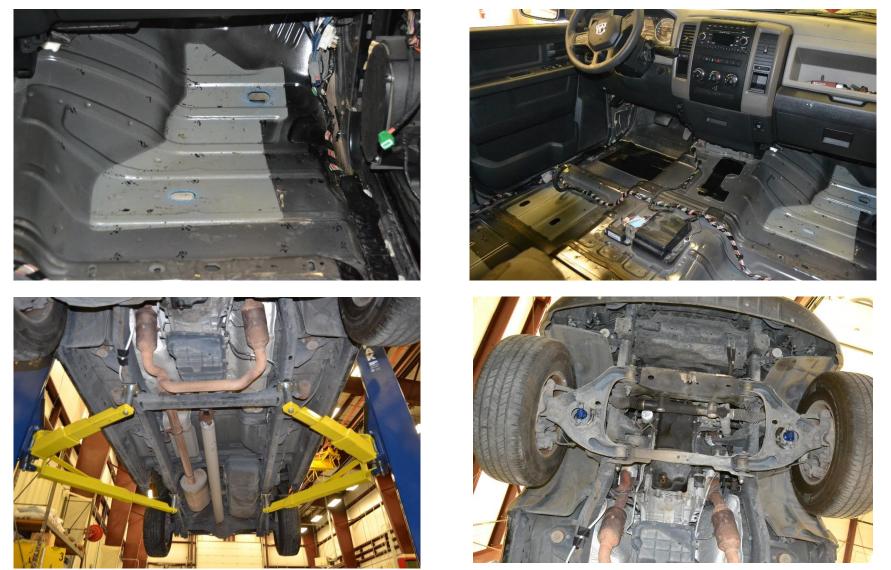


Figure 2. Test Vehicle's Interior Floorboards and Undercarriage, Test No. MTB-1

	11/7/2018	Test Name:	MTB-1	VIN No: 1C6RD6	FT1CS307273	
Year:	2012	Make:	Dodge	Model: Ra	am 1500	
Tire Size:	265/77/17	Tire Inflation Pressure:	35 Psi	Odometer:1	197759	
	2			Vehicle Geometry - in. (Target Ranges listed below	mm)	
		Test Inertial CG		A: 77 (1956) B: 78±2 (1950±50) B:	39 3/4 (1010) 39±3 (1000±75)	
				K: 20 3/4 (527) L: M: 67 (1702) N: 67 ± 1.5 (1700±38) N: . O: 43 1/2 (1105) P: 43±4 (1100±75) Q: 30 1/2 (775) R:	67 (1702) 67±1.5 (1700±38) 4 4 1/4 (108) 18 1/2 (470)	
-		c		S: <u>13 7/8 (352)</u> T: U (impact width):	77 1/8 (1959) 70 3/4 (1797)	
	ution lb (kg)			Wheel Center		
Gross Static	LF <u>1453</u> (659) RF 1453 (659)		Height (Front): Wheel Center	14 7/8 (378)	
	LR <u>1111 (504</u>) RR 1145 (519)		Height (Rear): Wheel Well	15 (381)	
Weights				Clearance (Front): Wheel Well	34 1/4 (870)	
lb (kg)	Curb	Test Inertial	Gross Static	Clearance (Rear): Bottom Frame	37 7/8 (962)	
W-front	2869 (1301) 2811 (1275)	2906 (1318)	Height (Front):	11 (279)	
W-rear	2220 (1007	<u>) 2192 (994)</u>	2256 (1023)	Bottom Frame Height (Rear):	13 (330)	
W-total	5089 (2308	3) 5003 (2269)	5162 (2341)	Engine Type:	gasoline	
		5000±110 (2270±50)	5165±110 (2343±50)	Engine Size:	5.7L V8 Hemi	
GVWR Ratings Ib Surrogate Occupant Data			Transmission Type:	automatic		
Front	3700	Type:	Hybrid II	Drive Type:	RWD	
Rear	3900	Mass:	159 lb	Cab Style:	quad cab	
Total	6700	Seat Position:	Right/Passenger	Bed Length:	76"	
Note any damage prior to test:						

Figure 3. Vehicle Dimensions, Test No. MTB-1

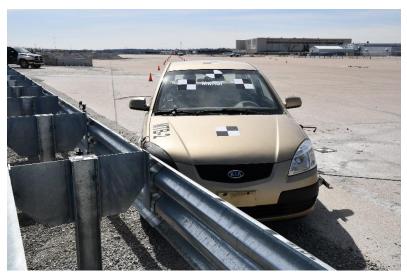


Figure 4. Test Vehicle, Test No. MTB-2

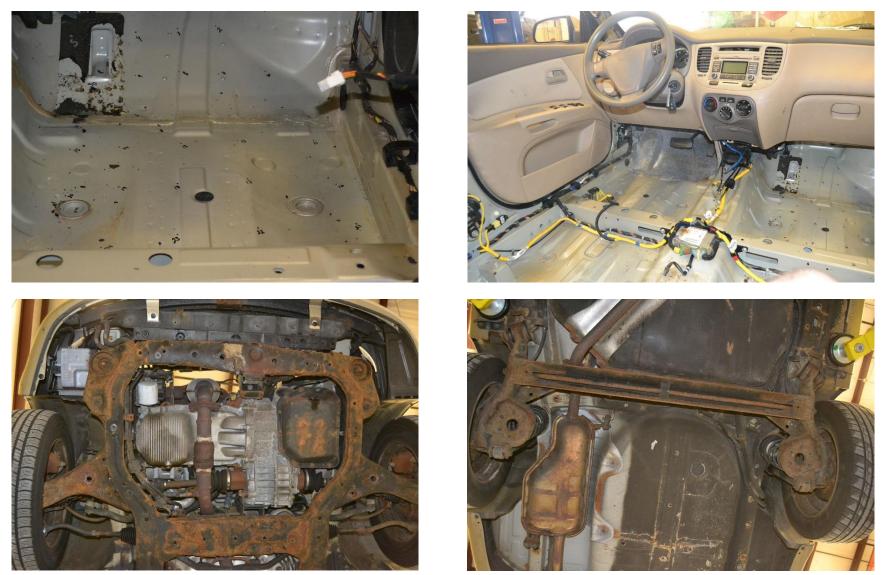


Figure 5. Test Vehicle's Interior Floorboards and Undercarriage, Test No. MTB-2

Date:	9/20/20)18		Test Name:	МТ	B-2	VIN No:	KNADE	223596440	731
Year:	2009)		Make:	к	ia	Model:	el:Rio		
Tire Size:	185/65F	R14	Tire Inflat	ion Pressure:	32	Psi	Odometer:		209189	
	(Target Range	eometry - in.		(4 4 5 7)
	M			N			E: 98 1/2	(4248) D (4248) D (2502) F	: <u>57 3/8</u> : <u>33</u> 35±4 (90 : <u>35</u>	(1457) (838) 00±100) (889)
			Tes	t Inertial CG			98±5 (25 G: 22 3/4		: 36 3/16 39±4 (99	(919) 90±100)
	- Q -	-					l:7 1/2	(191) J	: 22	(559)
P	R			D	Ð	В	K: <u>11</u>	(279) L	: 24 1/4	(616)
			s				M: 58 56±2 (1	(1473) N 425±50)	: 57 1/2 56±2 (14	(1461) 125±50)
<u> </u>		_н^+_	ł		1		0: 27 1/2 24±4 (6		: 4 1/4	(108)
	- D	1	— Е ——— — С ———				Q: 22 1/2	(572) R	: 15 1/4	(387)
	-		— U ——		-		S: 7 1/4	(184) T	: 64 1/2	(1638)
Mass Distribu	ution lb (kg)						U (i	mpact width)	: 29	(737)
Gross Static		(365)	RF 808	(367)			Тор	of radiator con support		(749)
	LR_476	(216)	RR 490	(222)				Wheel Cente Height (Front)	er :: 10 3/4	(273)
Weights								Wheel Cente Height (Rear)	: 11	(279)
lb (kg)	Cu	ırb	Test Ir	nertial	Gross	Static	Cle	Wheel Wel earance (Front)	: 25 5/8	(651)
W-front	1574	(714)	1528	(693)	1613	(732)	C	Wheel Wel learance (Rear)	: 25 1/2	(648)
W-rear	923	(419)	887	(402)	966	(438)		Bottom Fram Height (Front)		(184)
W-total	2497	(1133)	2415 2420±55 ((1095) 1100±25)	2579 2585±55	(1170) (1175±50)		Bottom Fram Height (Rear)		(184)
								Engine Type	: Gaso	oline
GVWR Ratings lb			Surrogate	Occupant Da	ta			Engine Size	: <u>1.4 L</u>	4 cyl
Front	1918	1		Type:	Hybrid		Transr	nission Type	: Autor	natic
Rear	1874			Mass:	161 lb			Drive Type	:FW	/D
Total	3638	,	Seat	Position:	164					
Note any damage prior to test:										

Figure 6. Vehicle Dimensions, Test No. MTB-2

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [15] was used to determine the vertical component of the c.g. for the pickup truck used in test no. MTB-1. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The location of the final c.g. for test no. MTB-1 is shown in Figure 7. The vertical component of the c.g. for the 1100C vehicle was determined using a procedure published by SAE [16]. The location of the final c.g. for test no. MTB-2 is shown in Figure 8. Data used to calculate the locations of the c.g. and ballast information are shown in Appendix C.

Square, black- and white-checkered targets were placed on the vehicles for reference to be viewed from the high-speed digital video cameras and aid in video analysis, as shown in Figures 7 and 8. Round, checkered targets were placed at the c.g. on the left- and right-side doors and the roof of the vehicles.

The front wheels of the test vehicles were aligned to vehicle standards, except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted on the vehicle's left-side dash for both tests and fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A radio-controlled brake system was installed in the test vehicles so the vehicles could be brought safely to a stop after the test.

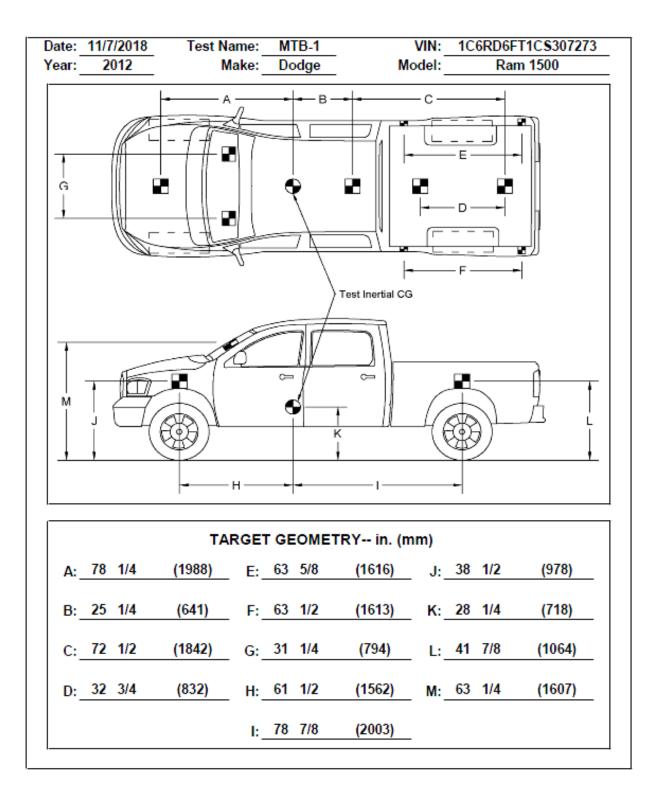


Figure 7. Target Geometry, Test No. MTB-1

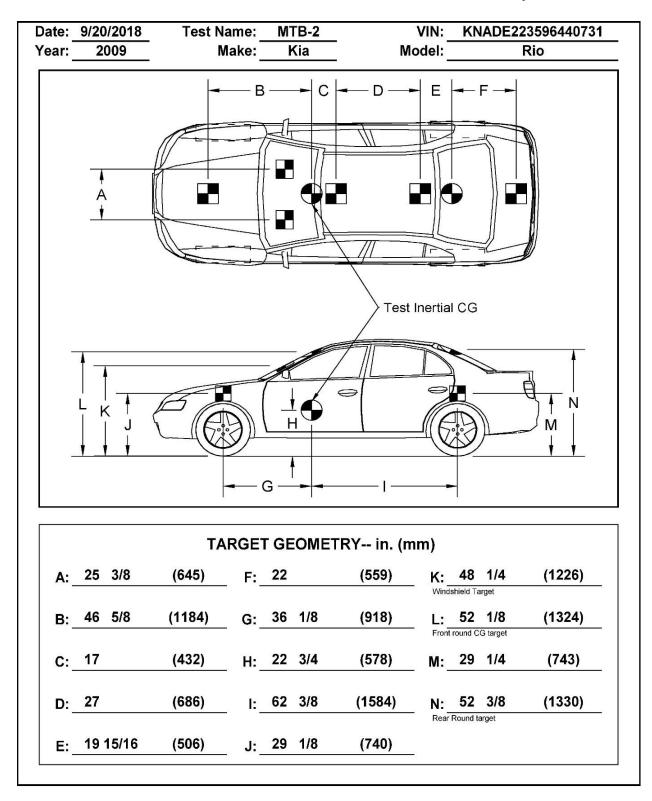


Figure 8. Target Geometry, Test No. MTB-2

3.4 Simulated Occupant

For test nos. MTB-1 and MTB-2, a Hybrid II 50th-Percentile, Adult Male Dummy, equipped with footwear, was placed in the right-front seat of the test vehicle for both tests with the seat belt fastened. The simulated occupant had a final weight of 159 lb and 161 lb for test nos. MTB-1 and MTB-2, respectively. As recommended by MASH 2016, the simulated occupant was not included in calculating the c.g. locations.

3.5 Data Acquisition Systems

3.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometer systems were mounted near the c.g. of the test vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to SAE J211/1 specifications [17].

The SLICE-1 and SLICE-2 units were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-2 unit was designated as the primary system for test no. MTB-1, and the SLICE-1 unit was designated as the primary system for test no. MTB-2. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of \pm 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

3.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 deg./sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

3.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicles before impact. Five retroreflective targets, spaced at approximately 18-in. intervals, were applied to the side of the vehicles. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

3.5.4 Digital Photography

Five AOS high-speed digital video cameras, eleven GoPro digital video cameras, and two Panasonic digital video cameras were used to film test no. MTB-1. Seven AOS high-speed digital video cameras, ten GoPro digital video cameras, and four Panasonic digital video cameras were used to film test no. MTB-2. Camera details and operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figures 9 and 10, respectively.

The high-speed videos were analyzed using TEMA Motion and Red lake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and posttest conditions for all tests.

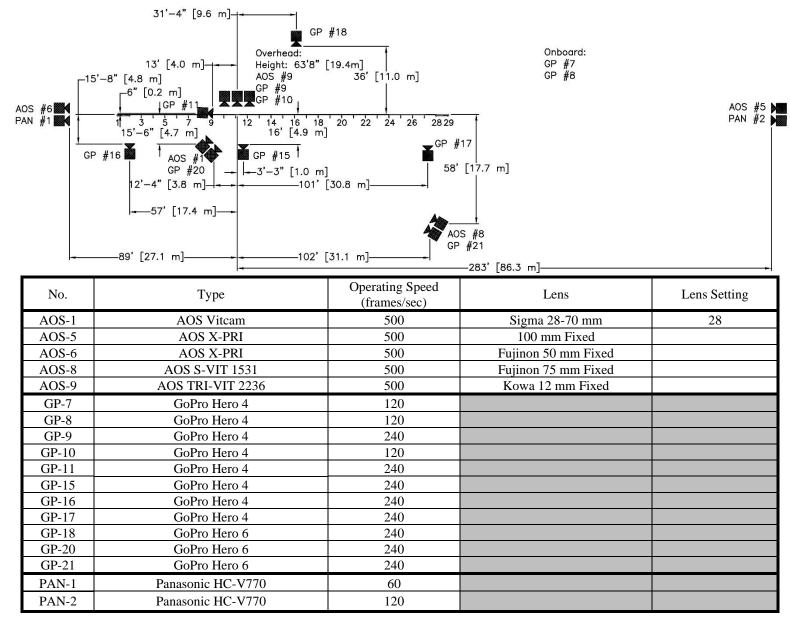


Figure 9. Camera Locations, Speeds, and Lens Settings, Test No. MTB-1

AOS PAN	3-11 [1.2 m] AOS #1 PAN #2 GP #17 #7	9"[19.1 m] 82'-6" [25.2 m] 1 m]	Onboard GP#7 GP#8 1 1	AOS #5 -1'-1" [0.3 m] PAN #4
No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-1	AOS Vitcam CTM	500	Kowa 25 mm	
AOS-5	AOS X-PRI Gigabit	500	100 mm Fixed	
AOS-6	AOS X-PRI Gigabit	500	Sigma 28-70 mm	35
AOS-7	AOS X-PRI	500	Fujinon 50 mm Fixed	
AOS-8	AOS S-VIT 1531	500	Kowa 16 mm Fixed	
AOS-9	AOS TRI-VIT	500	Kowa 12 mm Fixed	
AOS MINI	Smize		Kowa 35 mm Fixed	
GP-7	GoPro Hero 4	120		
GP-8	GoPro Hero 4	120		
GP-10	GoPro Hero 4	120		
GP-11	GoPro Hero 4	240		
GP-15	GoPro Hero 4	120		
GP-17	GoPro Hero 4	240		
GP-18	GoPro Hero 6	240		
GP-19	GoPro Hero 6	240		
GP-20	GoPro Hero 6	240		
GP-21	GoPro Hero 6	240		
PAN-1	Panasonic – HC-V770	60		
PAN-2	Panasonic – HC-V770	60		
PAN-3	Panasonic – HC-V770	60		
PAN-4	Panasonic – HC-V770	60		

Figure 10. Camera Locations, Speeds, and Lens Settings, Test No. MTB-2

4 DESIGN DETAILS, TEST NO. MTB-1

The test installation consisted of a 176-ft $-\frac{9}{16}$ -in. long modified three beam guardrail supported by 29 posts. Design details for test no. MTB-1 are shown in Figure 11 through Figure 23. Photographs of the system for test no. MTB-1 are shown in Figure 24 and Figure 25. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

The modified thrie beam test article was constructed based on the NJDOT standard plans. It was noted previously that two similar blockout designs were evaluated with the modified thrie beam system under NCHRP Report No. 350. Because these two blockouts are very similar, NJDOT elected to evaluate the system with the original W14x22 blockout rather than the Trinity alternative. Similarly, the NJDOT plans denoted the use of W6x9 or W6x8.5 posts with A709 Grade 36 steel. After discussion with the sponsors regarding available steel grades for W6x9 and W6x8.5 posts, W6x8.5 posts fabricated from A36 steel were selected for the tested system.

For test no. MTB-1, post nos. 3 through 27 were 81-in. long W6x8.5 steel posts spaced 75 in. apart with W14x22 blockouts and an embedment depth of 46 in. The blockouts were attached with two diagonally opposed ⁵/₈-in. diameter bolts and the thrie beam rail elements were attached to the blockout with one ⁵/₈-in. diameter button head bolt. Post nos. 1, 2, 28, and 29 were 5¹/₂-in. x 7¹/₂-in. x 46-in. breakaway cable terminal (BCT) timber posts placed into 6-in. x 8-in. x 72-in. ASTM A53 Grade B, steel foundation tubes. Post nos. 3 through 27 featured 12-gauge thrie-beam rails with additional post bolt slots at half-post spacing intervals. The mounting height was 34 in. to the top of the thrie-beam rail. Rail splices were located at posts, as shown in Figure 13. The lap splice connections between the rail sections were configured to reduce vehicle snag potential at the splice. The modified thrie beam guardrail utilized 12-in. long, 12-gauge thrie-beam backup plates at each post location without a rail splice.

The upstream and downstream ends of the guardrail installation were configured with a non-proprietary end anchorage system [8-12]. The guardrail anchorage system had a comparable strength to other crashworthy end terminals. The anchorage system consisted of timber posts, foundation tubes, anchor cables, bearing plates, rail brackets, and channel struts. Due to the 34-in. height of the modified thrie-beam guardrail, a 10-gauge, symmetric W-beam to thrie beam transition section was used to transition down to a 12-gauge, W-beam rail segment with a top mounting height of 30¹/₈ in. at each end of the system. This allowed for anchorage of the system using typical trailing end anchorage hardware. The only modification required was altering the hole location for the post bolt in the BCT posts to adjust for the ⁷/₈-in. height difference.

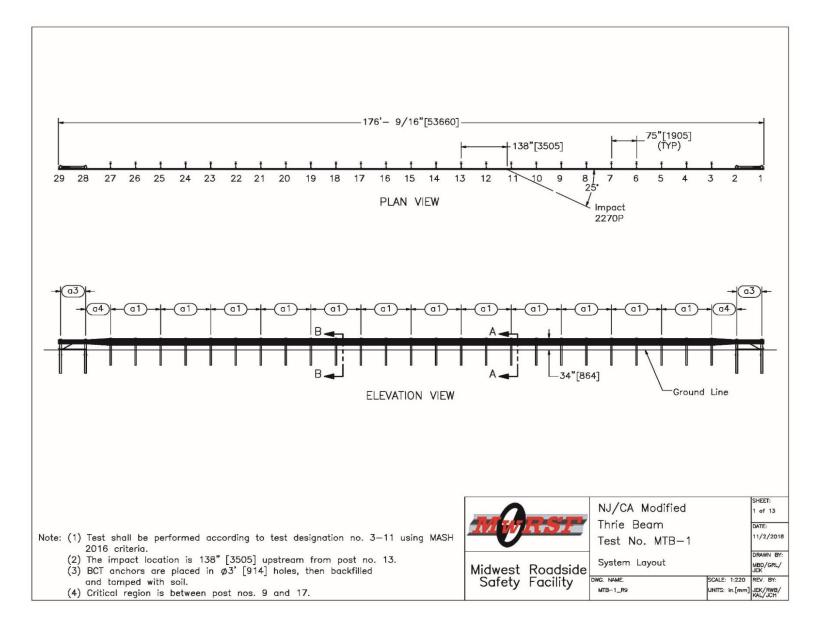


Figure 11. System Layout, Test No. MTB-1

22

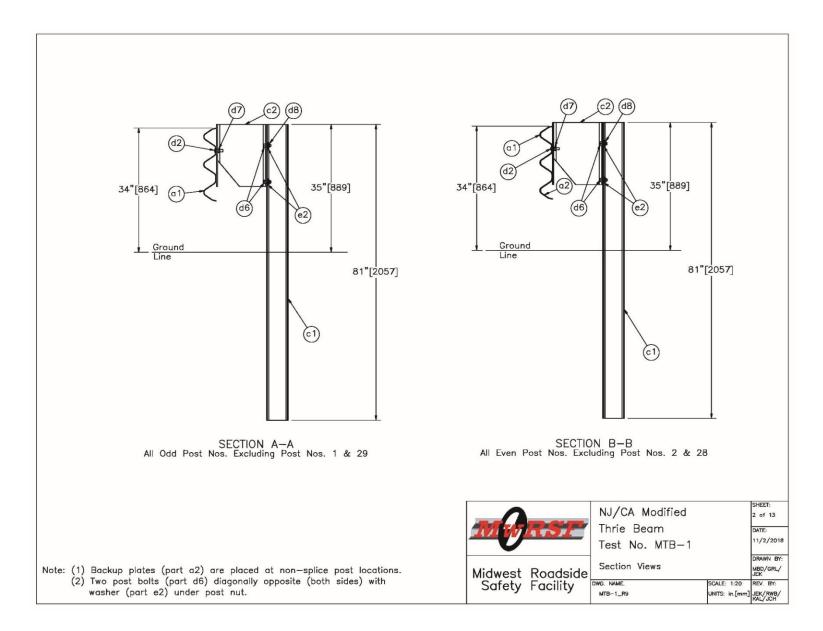
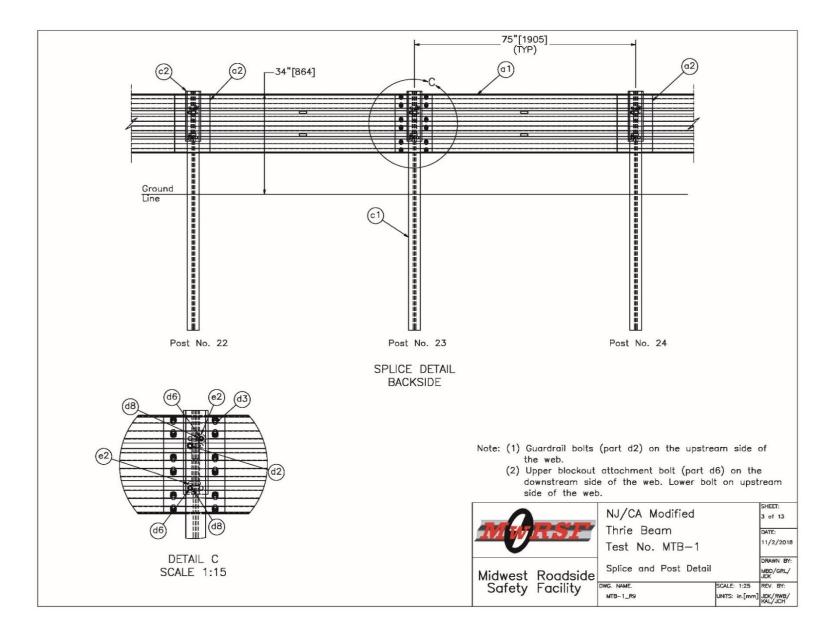
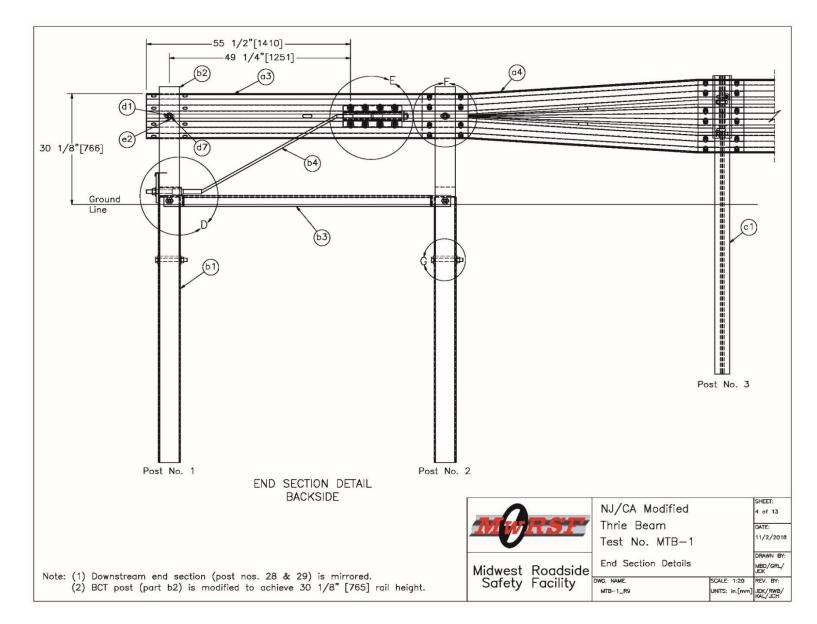




Figure 12. Section Views, Test No. MTB-1

July 16, 2020 MwRSF Report No. TRP-03-417-20

Figure 13. Splice and Post Detail, Test No. MTB-1

July 16, 2020 MwRSF Report No. TRP-03-417-20

Figure 14. End Section Details, Test No. MTB-1

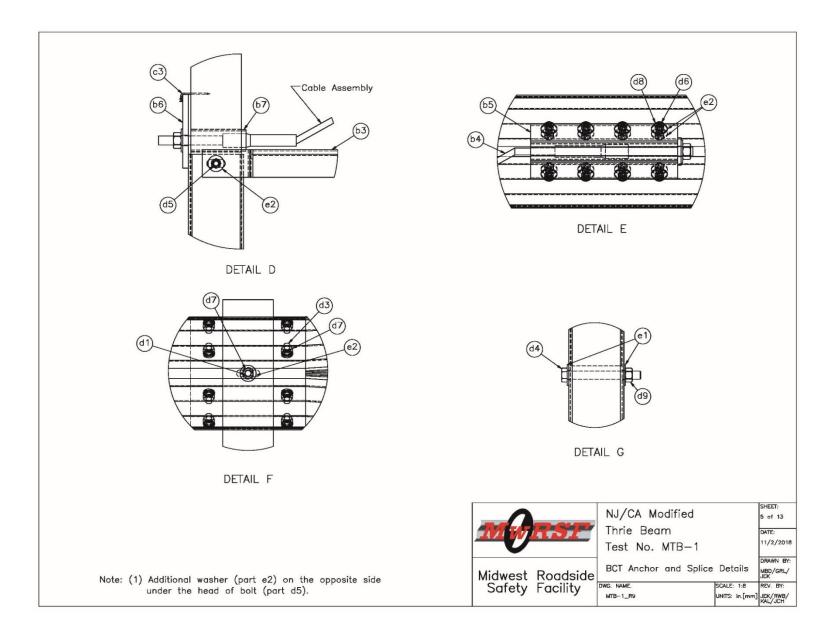


Figure 15. BCT Anchor and Splice Details, Test No. MTB-1

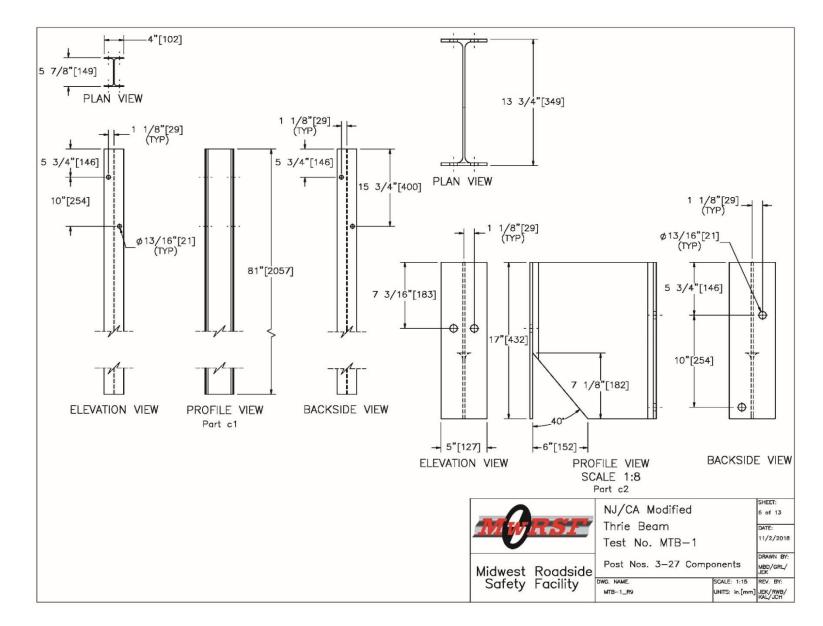


Figure 16. Post Nos. 3 through 27 Components, Test No. MTB-1

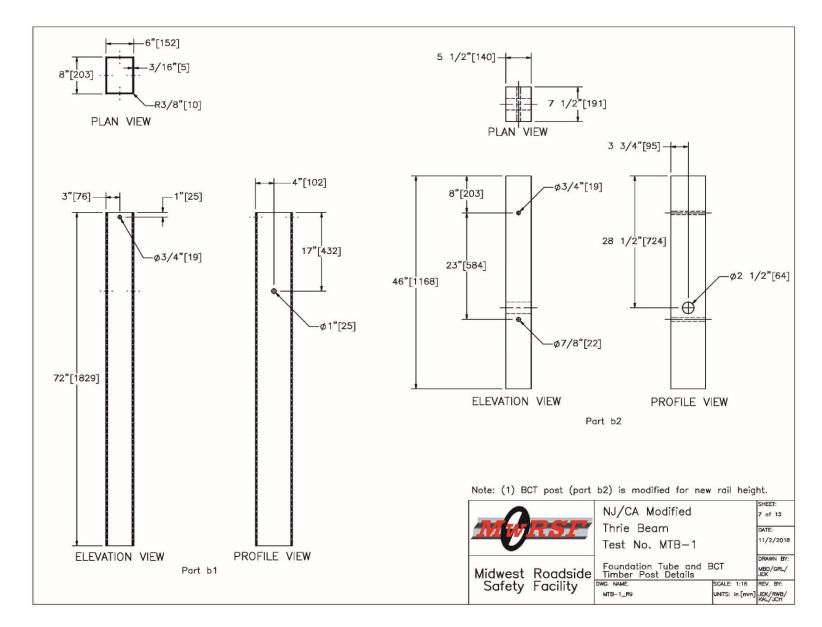


Figure 17. Foundation Tube and BCT Timber Post Details, Test No. MTB-1

Figure 18. Ground Strut Details, Test No. MTB-1

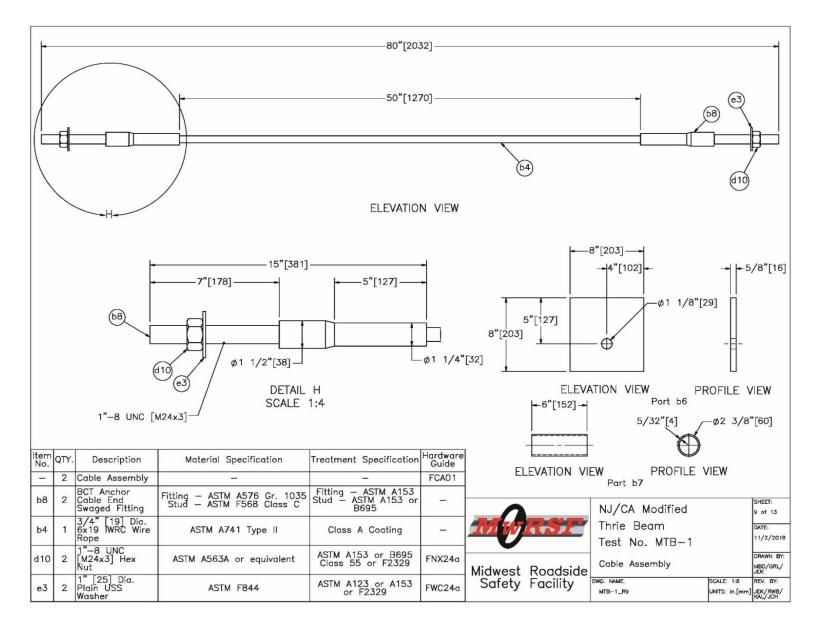
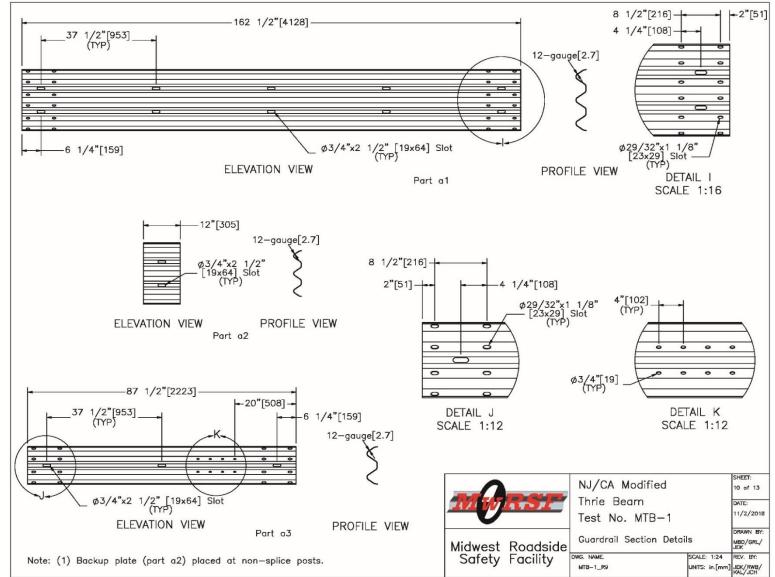



Figure 19. Cable Assembly, Test No. MTB-1

July 16, 2020 MwRSF Report No. TRP-03-417-20

Figure 20. Guardrail Section Details, Test No. MTB-1

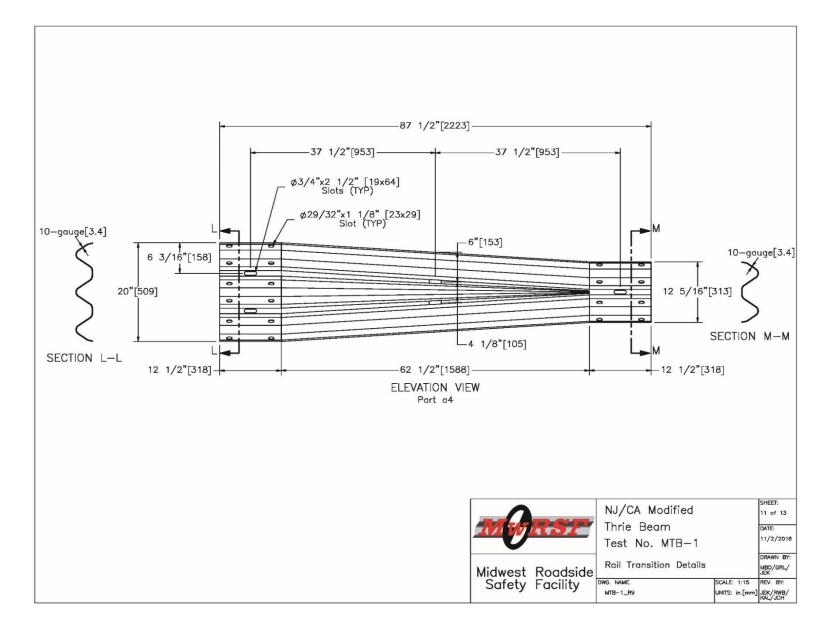


Figure 21. Rail Transition Details, Test No. MTB-1

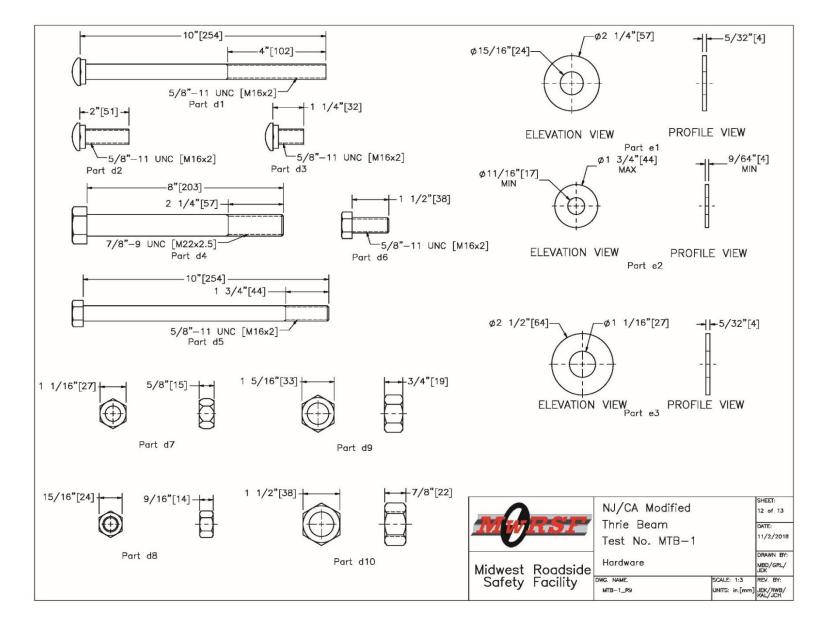


Figure 22. Hardware, Test No. MTB-1

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
a1	12	12'-6" [3,810] 12-gauge [2.7] Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM04a
۵2	12	12" [305] 12-gauge [2.7] Thrie Beam Backup Plate	AASHTO M180	ASTM A123 or A653	RTB01a
a3	2	6'—3" [3,810] 12—gauge [2.7] W—Beam MGS End Section	AASHTO M180	ASTM A123 or A653	-
a4	2	10-gauge [3.4] Symmetrical W-beam to Thrie Beam Transition	AASH⊺O M180	ASTM A123 or A653	RWT01b
b1	4	72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
b2	4	BCT Timber Post — MGS Height — Not Standard	SYP Grade No. 1 or better (No knots 18" [457] above or below ground tension face)	-	-
b3	2	Ground Strut Assembly	ASTM A36	ASTM A123	PFP01
b4	2	3/4" [19] Dia. 6x19 WRC Wire Rope	ASTM A741 Type II	Class A Coating	-
b5	2	Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01
b6	2	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
b7	2	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
b8	4	BCT Anchor Cable End Swaged Fitting	Fitting – ASTM A576 Gr. 1035 Stud – ASTM F568 Class C	Fitting — ASTM A153 Stud — ASTM A153 or B695	-
c1		W6x8.5 [W152x12.6], 81" [2,057] Long Steel Post	ASTM A36	ASTM A123	-
c2	25	W14x22 [356x32.7], 17" [432] Long Steel Blockout	ASTM A992	ASTM A123	—
c3	2	16D Double Head Nail	-	-	
d1	4	5/8"—11 UNC [M16x2], 10" [254] Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB03
d2	25	5/8"—11 UNC [M16x2], 2" [51] Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB02
d3	172	5/8"—11 UNC [M16x2], 1 1/4" [32] Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB01
d4	4	7/8"-9 UNC [M22x2.5], 8" [203] Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	-
d5	4	5/8"—11 UNC [M16x2], 10" [254] Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX16a
d6	66	5/8"—11 UNC [M16x2], 1 1/2" [38] Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX16a
d7	201	5/8"—11 UNC [M16x2] Heavy Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX16b
d8		5/8"-11 UNC [M16x2] Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX16a
d9	4	7/8"-9 UNC [M22x2.5] Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX22a
d10	4	1"-8 UNC [M24x3] Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX24a
e1	8	7/8" [22] Dia. Plain USS Washer	ASTM F844	ASTM A123 or A153 or F2329	
e2	94	5/8" [16] Dia. Plain USS Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC16a
e3	4	1" [25] Dia. Plain USS Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC24a
				NJ/CA Modified Thrie Beam Test No. MTB-1	SHEET: 13 of 13 DATE: 11/2/2018

			Test No. MTB	-1	11/2/2018
5	Midwest	Roadside	Bill of Materials		DRAWN BY: MBD/GRL/ JEK
		Facility	DWG. NAME. MTB1_R9	SCALE: 1:384 UNITS: in.[mm]	

Figure 23. Bill of Materials, Test No. MTB-1

Figure 24. Test Installation Photographs, Test No. MTB-1

Figure 25. Additional Test Installation Photographs, Test No. MTB-1

5 FULL-SCALE CRASH TEST NO. MTB-1

5.1 Static Soil Test

Before full-scale crash test no. MTB-1 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, shown in Appendix D, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

5.2 Weather Conditions

Test no. MTB-1 was conducted on November 17, 2018 at approximately 2:30 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 3.

Temperature	25 deg. F
Humidity	80 percent
Wind Speed	19 mph
Wind Direction	10 deg. from True North
Sky Conditions	Sunny
Visibility	1.50 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0 in.
Previous 7-Day Precipitation	0 in.

Table 3. Weather Conditions, Test No. MTB-1

5.3 Test Description

Test no. MTB-1 was conducted under the MASH TL-3 guidelines for test designation no. 3-11. Test designation no. 3-11 is an impact of the 2270P vehicle at 62 mph and 25 degrees on the system. The critical impact point for this test was selected to maximize vehicle snag on the system posts and splice loading. Initial vehicle impact was to occur 11 ft - 6 in. upstream from post no. 13, as shown in Figure 26, which was selected using the critical impact point plots found in Section 2.3 of MASH 2016. The 5,003-lb quad cab pickup truck impacted the modified thrie beam guardrail at a speed of 62.9 mph and an angle of 25.4 deg. The actual point of impact was 0.3 in. downstream from the target location. During the test, the pickup truck was captured and redirected by the thrie beam system. During the redirection of the vehicle, torsional collapse of some of the W-section blockouts was observed. The torsional collapse of the blockouts did not compromise the overall test result, but it allowed increased wheel snag on the posts and disengagement of the vehicle's right-front wheel. Additionally, the collapse of the blockouts allowed the lower portion of the thrie beam guardrail to contact the flange and web of the blockout and post flanges at post no. 13. The contact at post no. 13 was sufficient to cause a small tear downstream from the thrie beam splice at that post. However, this tear did not adversely affect the barrier system performance. The stability and trajectory of the vehicle were acceptable. Prior to coming to a stop, the test vehicle impacted portable barriers used to shield other areas of the test facility downstream from the barrier. This contact was well after vehicle exit and resulted in minor damage to the front of the test vehicle. The vehicle came to rest 282 ft - 3 in. downstream from the impact point and 14 ft - 7 in. laterally in front of the barrier after brakes were applied.

A detailed description of the sequential impact events is contained in Table 4. Sequential photographs are shown in Figures 27 and 28. Documentary photographs of the crash test are shown in Figure 29. The vehicle trajectory and final position are shown in Figure 30.

Figure 26. Impact Location, Test No. MTB-1

TIME (sec)	EVENT
0.000	Vehicle's right-front bumper contacted the rail between post nos. 11 and 12 at a speed of 62.9 mph and angle of 25.4 deg.
0.004	Vehicle's right fender contacted rail.
0.008	Vehicle's right headlight contacted rail.
0.010	Post no. 11 deflected backward.
0.012	Post no. 12 deflected backward.
0.016	Vehicle's right-front tire contacted rail.
0.024	Vehicle's grille contacted rail.
0.028	Post no. 10 deflected backward and post no. 2 deflected downstream.
0.038	Post nos. 3 through 10 rotated clockwise due to rail movement.
0.044	Post no. 16 rotated counterclockwise.
0.046	Post no. 13 deflected backward.
0.048	Post nos. 17 through 27 rotated counterclockwise due to rail movement.
0.050	Post no. 29 deflected upstream.
0.052	Post no. 12 rotated backward.
0.060	Post no. 12 twisted counterclockwise.
0.064	Post no. 12 deflected downstream.
0.072 Vehicle's right-front door contacted rail.	
0.074	Post no. 12 bent backward and post no. 13 rotated backward.
0.090	Vehicle's right-front tire contacted post no. 12.
0.108	Blockout no. 13 deflected backward and torsionally buckled.
0.112	Post no. 13 deflected downstream.
0.122	Post no. 14 deflected backward and vehicle's right-rear door contacted rail.
0.136	Post no. 14 rotated backward.
0.140	Rail disengaged from bolt at post no. 13.
0.142 Post flange at post no. 13 contacted rail splice at post no. 13 initiating smaller in splice	
0.146	Post no. 15 deflected backward.
0.154	Blockout at post no. 13 contacted lower portion of three bream downstream from splice at post no.13.
0.160	Post no. 13 bent downstream.
0.164	Vehicle's right-front tire contacted post no. 13.
0.166	Post no. 14 twisted counterclockwise.

Table 4. Sequential Description of Impact Events, Test No. MTB-1

TIME	
(sec)	EVENT
0.168	Vehicle's right-front wheel snagged on post no. 13.
0.180	Vehicle's right quarter panel contacted rail.
0.184	Vehicle's right-rear bumper contacted rail.
0.188	Vehicle's right taillight contacted rail.
0.190	Post no. 11 twisted clockwise.
0.194	Post no. 10 rotated backward.
0.206	Post no. 13 deflected forward.
0.208	Post no. 10 twisted clockwise.
0.210	Post no. 16 deflected backward
0.218	Post no. 15 rotated backward.
0.236	Vehicle was parallel to system at a speed of 45.7 mph.
0.248	Vehicle's right-front tire contacted post no. 14.
0.256	Vehicle's right-front wheel became disengaged.
0.258 Rail disengaged from bolt at post no. 14 and vehicle's left-rear tire bec airborne.	
0.270	Post no. 14 bent backward and post no. 13 deflected upstream.
0.276	Post no. 11 rotated counterclockwise.
0.290	Post no. 15 twisted counterclockwise.
0.302	Post nos. 3 through 9 rotated counterclockwise due to rail movement.
0.306	Post no. 14 deflected forward.
0.310	Post no. 15 rotated downstream.
0.336	Post nos. 17 through 27 rotated clockwise due to rail movement.
0.446	Vehicle's right-rear tire contacted the disengaged tire.
0.470	Vehicle's left-rear tire regained contact with ground.
0.502	Post no. 15 deflected forward.
0.524	Vehicle's left-rear tire became airborne.
0.530	Vehicle's right-rear tire became airborne.
0.588	Vehicle exited system with a speed of 40.6 mph.
0.632	Vehicle's right-rear tire regained contact with ground.
0.638	Vehicle's left-rear tire regained contact with ground.
0.924	Vehicle came to a rest.

Table 5. Sequential Description of Impact Events, Test No. MTB-1, Cont.

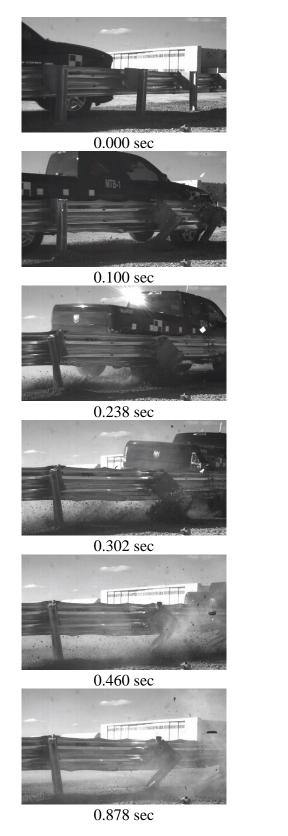


Figure 27. Sequential Photographs, Test No. MTB-1

0.000 sec

0.118 sec

0.202 sec

0.320 sec

0.514 sec

0.706 sec

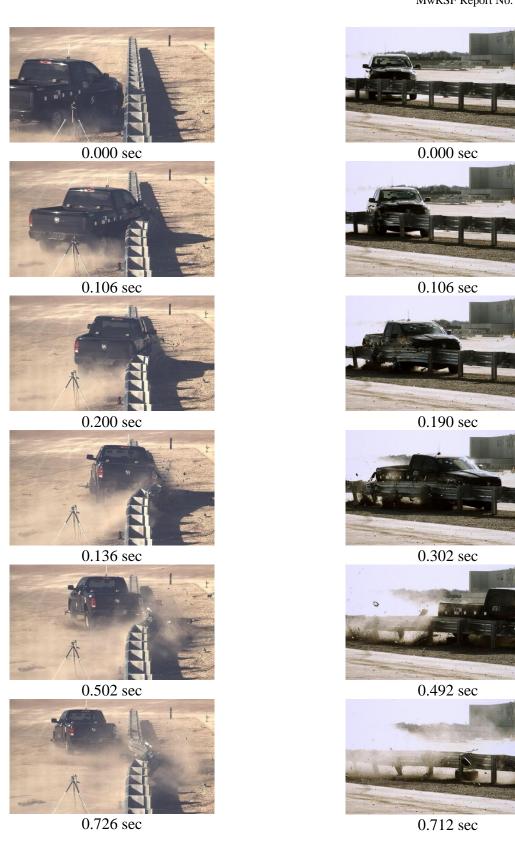


Figure 28. Additional Sequential Photographs, Test No. MTB-1

Figure 29. Documentary Photographs, Test No. MTB-1

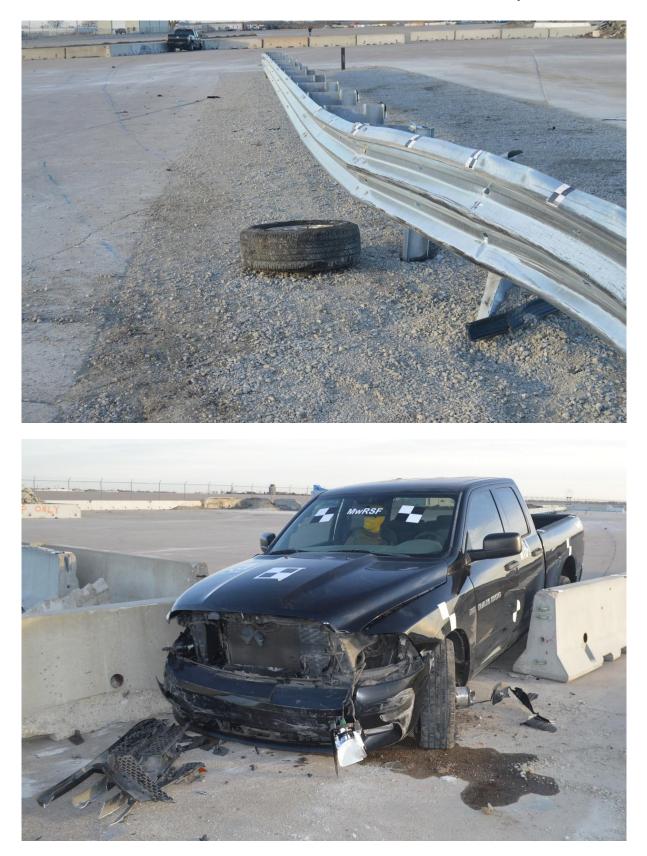


Figure 30. Vehicle Final Position and Trajectory Marks, Test No. MTB-1

5.4 Barrier Damage

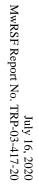
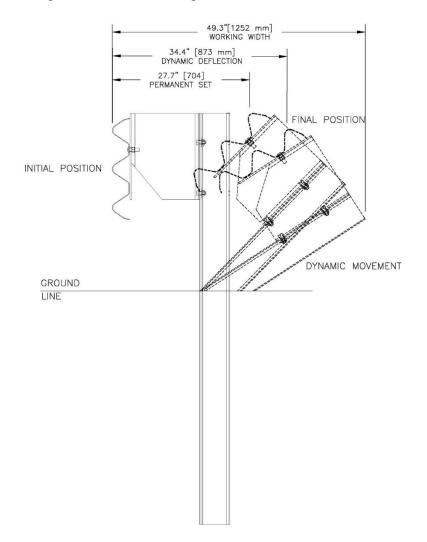
Barrier damage was moderate, as shown in Figures 31 through 33, consisting of contact marks, deformation, disengaged rail elements, and bending, kinking, rotation, and twisting of the steel posts. The total length of vehicle contact along the barrier was approximately 37 ft – $10\frac{1}{2}$ in., which spanned from 2 in. upstream from post no. 10 to $2\frac{1}{2}$ in. downstream from post no. 16. All measurements were taken from post centerlines.

The most significant damage occurred between post nos. 11 and 13 where impact occurred. A 19-in. long contact mark was found on the top of the rail, beginning 13 in. upstream from post no. 11. A 23-in. long contact mark was found on the middle corrugation, beginning 18 in. upstream from post no. 11. A 24-ft 7-in. long contact mark was found across the entire front face of the rail, beginning $7\frac{1}{2}$ in. downstream from post no. 11 and ending 5 in. downstream of post no. 15. The top slot at post no. 12, used to attach the blockout to the guardrail, was torn as a result of bolt pull out. The bottom rail corrugation was flattened from 17 in. upstream from post no. 12 to $7\frac{1}{2}$ in. upstream from post no. 15. The top slot at post no. 13 and the top and bottom slots at post no. 14 were indented as a result of bolt pull out. A 4-in. long tear was found at the bottom edge of the rail 8 in. downstream from post no. 13. A 17-in. long contact mark was found on the top edge of the rail, beginning 8 in. downstream from post no. 15. Various kinks and dents were observed on the rail between post no. 9 and post no. 17.

The front flange of the blockouts at post nos. 3 through 11 twisted clockwise. The lower front flange of the blockout at post no. 10 bent inward, 7 in. from the bottom. The lower front flange of the blockout at post no. 11 bent inward 6 in. from the bottom. The front flange of post no. 12 twisted counter-clockwise, 35 in. from the top, and the back flange twisted clockwise 24 in. from the top. The blockout at post no. 12 bent clockwise 3¹/₂ in. from the front face, and the lower front flange of the blockout bent inward 7 in. from the bottom. The backing plate at post no. 12 bent inward 11 in. from the top and twisted clockwise 11 in. from the bottom. A 9-in. tall contact mark was found on the front flange of post no. 12, 29 in. from the top of the post. The front flange of post no. 13 was bent 17 in. from the top. The blockout at post no. 13 bent 4 in. upstream from the back of the blockout. The front flange of the blockout at post no. 13 bent clockwise, and the base of the blockout bent inward 7 in. from the bottom. A 10-in. tall contact mark was found on the upstream side of the front flange of post no. 13, 27 in. from the top. The front flange of post no. 14 was bent 18 in. from the top. The front flange of the blockout at post no. 14 bent clockwise, and the base of the blockout was bent 7 in. from the bottom. The stiffener at post no. 14 bent inward 7 in. from the bottom. A 6-in. tall contact mark was found 261/2 in. from the top of post no. 14. Post no. 15 twisted counterclockwise 35 in. from the top. The front flange of the blockout at post no. 15 bent clockwise, and the base of the blockout bent inward 7 in. from the bottom. The front flange of the blockout at post no. 16 bent inward 6 in. from the bottom. Post no. 15 twisted counter-clockwise 35 in. from the top. The base of the front flange bent inward 7 in. from the bottom of the post. The blockout of post no. 16 was bent inward 6 in. from the bottom of the post. The blockout web of post no. 23 was bent 7 in. downstream from the front flange. No damage was observed on post nos. 1 and 2, 17 through 22, and 24 through 29.

Figure 31. System Damage, Test No. MTB-1

Figure 32. Damage between Post Nos. 10 and 12, Test No. MTB-1

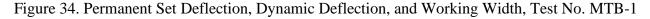


Figure 33. Damage between Post Nos. 13 and 15, Test No. MTB-1

July 16, 2020 MwRSF Report No. TRP-03-417-20

The maximum lateral permanent set deflection was 27.7 in. at post no. 13, as measured via GPS. The maximum lateral dynamic rail and barrier deflections were 34.4 in. at the midspan of rail no. 12, and 38 in. at post no. 13, respectively, as determined from high-speed digital video analysis. The working width of the system was found to be 49.3 in. at post no. 13, also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 34.

5.5 Vehicle Damage

Damage to the vehicle was moderate, as shown in Figures 35 through 39. The maximum occupant compartment intrusions are listed in Table 6 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment and none of the established MASH 2016 intrusion limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix E.

Figure 35. Vehicle Damage, Test No. MTB-1

Figure 36. Vehicle Damage, Test No. MTB-1

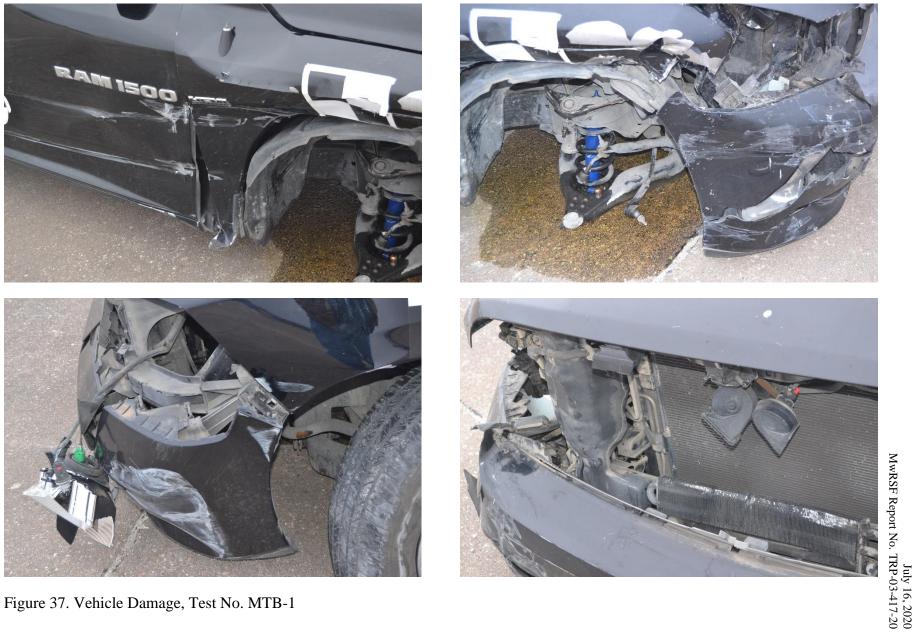


Figure 37. Vehicle Damage, Test No. MTB-1

Figure 38. Occupant Compartment Damage, Test No. MTB-1

Figure 39. Vehicle Undercarriage Damage, Test No. MTB-1

July 16, 2020 MwRSF Report No. TRP-03-417-20

LOCATION	MAXIMUM INTRUSION in.	MASH 2016 ALLOWABLE INTRUSION in.
Wheel Well & Toe Pan	0.1	≤ 9
Floor Pan & Transmission Tunnel	-0.5	N/A ¹
A-Pillar	0.6	<i>≤</i> 5
A-Pillar (Lateral)	-0.5	N/A^2
B-Pillar	0.3	≤ 5
B-Pillar (Lateral)	-0.5	N/A ¹
Side Front Panel (in Front of A-Pillar)	0.3	≤ 12
Side Door (Above Seat)	-1.0	N/A ¹
Side Door (Below Seat)	0.1	≤ 12
Roof	0.4	<i>≤</i> 4
Windshield	0	≤ 3
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	0.8	N/A ²

Table 6. Maximum Occupant Compartment Intrusions by Location, Test No. MTB-1

Note: Negative values denote outward deformation

N/A¹ - MASH 2016 criteria are not applicable when deformation is outward

N/A² - No MASH 2016 criteria exist for this location

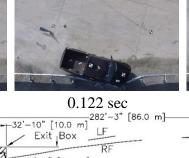
The majority of damage was concentrated on the right-front corner and right side of the vehicle where impact occurred. The front bumper cover was crushed in and partially torn from the vehicle. The grille and both headlights were disengaged from the vehicle. The right-front wheel assembly was torn from the vehicle. The front and side of the right-front fender were crushed inward. The right side of vehicle was deformed or scratched along its entirety. The right tail light was crushed. The right-side shocks bent backward. The right-side sway bar end link was disconnected from the lower control arm. The right-side steering knuckle disengaged from the vehicle. The right-side lower control arm broke and the upper control arm bent backward. The steering gear box broke apart and the right-side tie rod was bent. The front bumper mounts were bent backward.

5.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 7. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 7. The results of the occupant risk analysis are summarized in Figure 40. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix F.

Evaluation Criteria		Transducer		MASH 2016
		SLICE-1	SLICE-2 (primary)	Limits
OIV	Longitudinal	-14.97	-14.34	±40
ft/s	Lateral	-15.74	-16.84	±40
ORA	Longitudinal	-10.35	-10.76	±20.49
g's	Lateral	-9.55	-9.56	±20.49
MAX.	Roll	4.1	-6.1	±75
ANGULAR DISPL.	Pitch	-1.3	-2.0	±75
deg.	Yaw	-39.8	-39.5	not required
THIV ft/s		20.73	21.21	not required
PHD g's ASI		13.44	13.79	not required
		0.73	0.75	not required

Table 7. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MTB-1


5.7 Discussion

The analysis of the test results for test no. MTB-1 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 40. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 15.0 deg., and its trajectory did not violate the bounds of the exit box. Therefore, test no. MTB-1 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

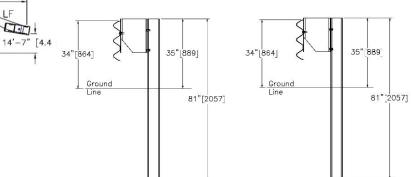
25.

1 2 3 4 5 6

RF

LE

0.492 sec



0.574 sec

Test Agency	MwR
Test Number	MTI
Date	November 7, 20
MASH 2016 Test Designation No	
Test ArticleNJDOT-Caltrans	Modified Thrie Be
Total Length	176 ft - ⁹ / ₁₆
Key Component – Steel Thrie Beam Guardrail	
Thickness	12 gau
Top Mounting Height	
Key Component – Steel Post	
Shape	W6x
Length	81
Embedment Depth	46
Spacing	75
Key Component - Steel Blockout (Post Nos. 3-27)	
Shape	W142
Soil Type Coarse	e, Crushed Limesto
Vehicle Make / Model 20	012 Dodge Ram 15
Curb	5,089
Test Inertial	,
Gross Static	5,162
Impact Conditions	
Speed	
Angle	25.4 d
Impact Location 11 ft - 5.7 in. upstr	
Impact Severity 121.8 kip-ft > 105.6 kip-ft lin	mit from MASH 20
Exit Conditions	
Speed	
Angle	
Exit Box Criterion	F
Vehicle Stability	
Vehicle Stopping Distance	
Vehicle Damage	Moder
VDS [18]	
CDC [19]	01-FYEV

16'-8" [5.1 m]

8 9 10 11 12 13 14 15 16 17 16 19 20 21 22 23 24 25 26 2/ 28 29

SECTION B-B All Even Post Nos. Excluding Post Nos. 2 & 28

- .
- Maximum Test Article Deflections .

•	Transducer Data	

		Tran	sducer	MASH 2016	
Evaluation Criteria		SLICE-1	SLICE-2 (primary)	Limit	
OIV	Longitudinal	-14.97	-14.34	±40	
ft/s	Lateral	-15.74	-16.84	±40	
ORA	Longitudinal	-10.35	-10.76	±20.49	
g's	Lateral	-9.55	-9.56	±20.49	
MAX	Roll	4.1	-6.1	±75	
ANGULAR DISP.	Pitch	-1.3	-2.0	±75	
deg.	Yaw	-39.8	-39.5	not required	
THIV – ft/s		20.73	21.21	not required	
PHD – g's		13.44	13.79	not required	
ASI		0.73	0.75	not required	

Figure 40. Summary of Test Results and Sequential Photographs, Test No. MTB-1

6 DESIGN DETAILS, TEST NO. MTB-2

The test installation for test no. MTB-2 consisted of a 176-ft – $\frac{1}{2}$ -in. long, dual-sided modified three beam guardrail supported by 33 posts. Design details for the test no. MTB-2 system are shown in Figures Figure 41 through Figure 53. Photographs of the system for test no. MTB-2 are shown in Figure 54 and Figure 55. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

The dual-sided modified thrie beam test article was constructed based on the NJDOT standard plans. The system was nearly identical to the single-sided modified thrie beam system with the exception of a second set of blockouts and thrie beam rails installed on the backside of the barrier line posts. In addition, the upstream and downstream ends of the guardrail installation were configured with a dual, non-proprietary end anchorage systems [8-12]. The guardrail anchorage system had a comparable strength to other crashworthy end terminals. The anchorage system consisted of timber posts, foundation tubes, anchor cables, bearing plates, rail brackets, and channel struts. Due to the 34-in. height of the modified thrie-beam guardrail, a 10-gauge, symmetric W-beam to thrie beam transition section was used to transition down to a 12-gauge, W-beam rail segment with a top mounting height of 30¹/₈ in. at each end of the system. This allowed for anchorage of the system using typical trailing end anchorage hardware. The only modification required was altering the hole location for the post bolt in the BCT posts to adjust for the ⁷/₈-in. height difference.

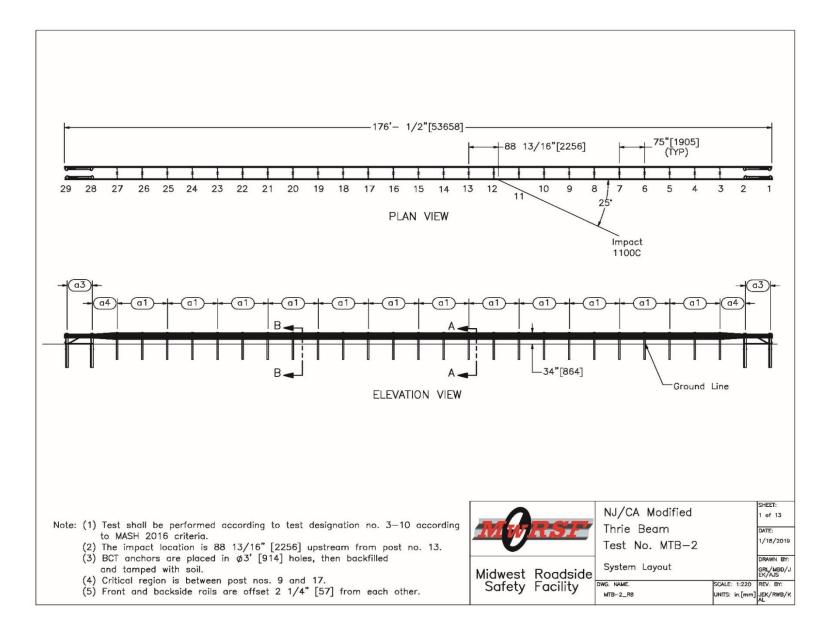


Figure 41. System Layout, Test No. MTB-2

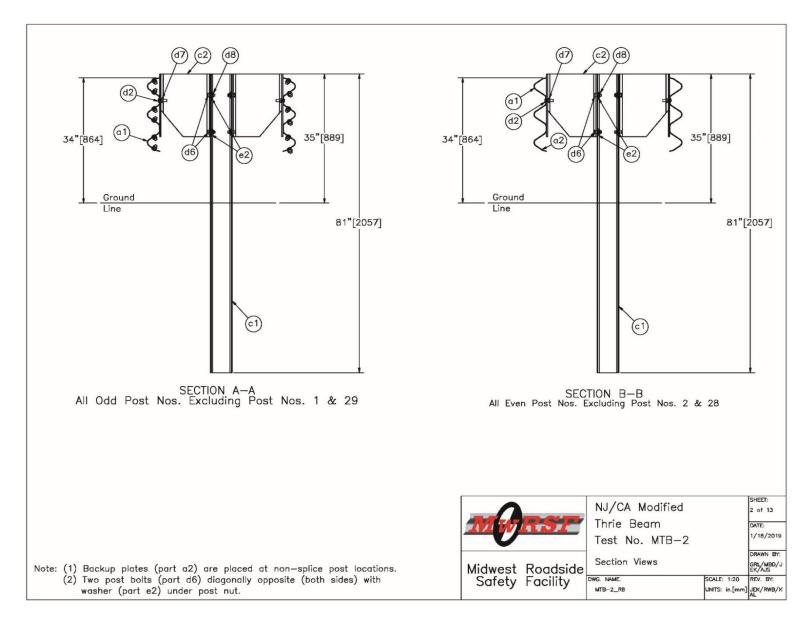
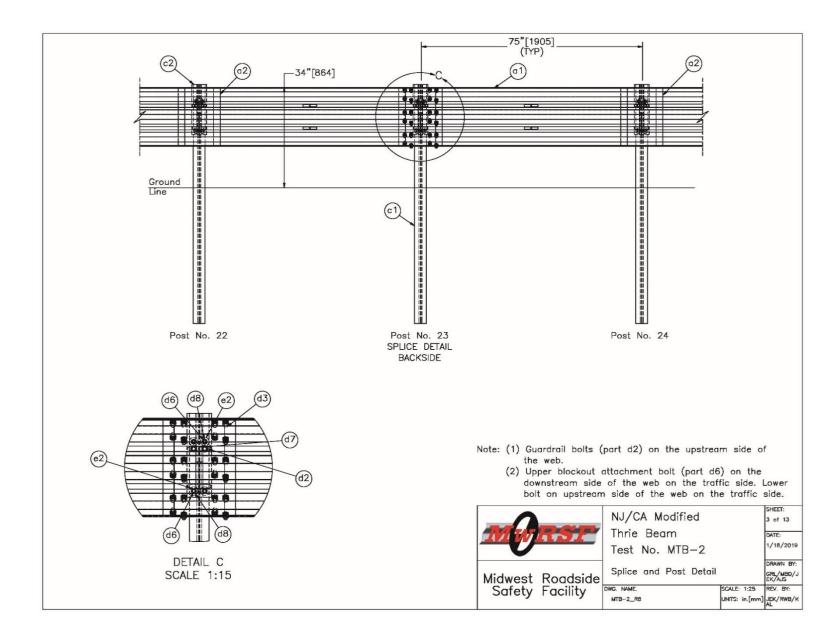



Figure 42. Section Views, Test No. MTB-2

July 16, 2020 MwRSF Report No. TRP-03-417-20

Figure 43. Splice and Post Detail, Test No. MTB-2

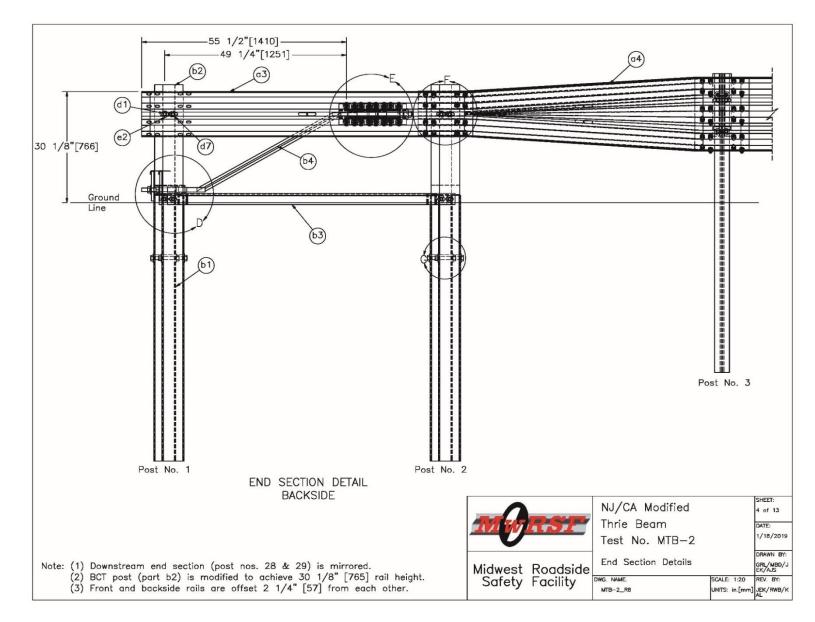


Figure 44. End Section Details, Test No. MTB-2

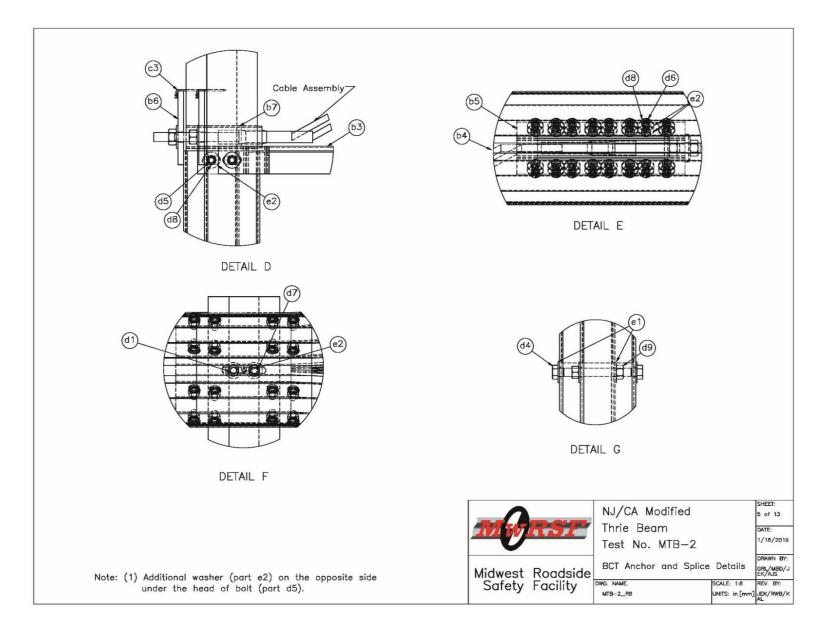


Figure 45. BCT Anchor and Splice Details, Test No. MTB-2

64

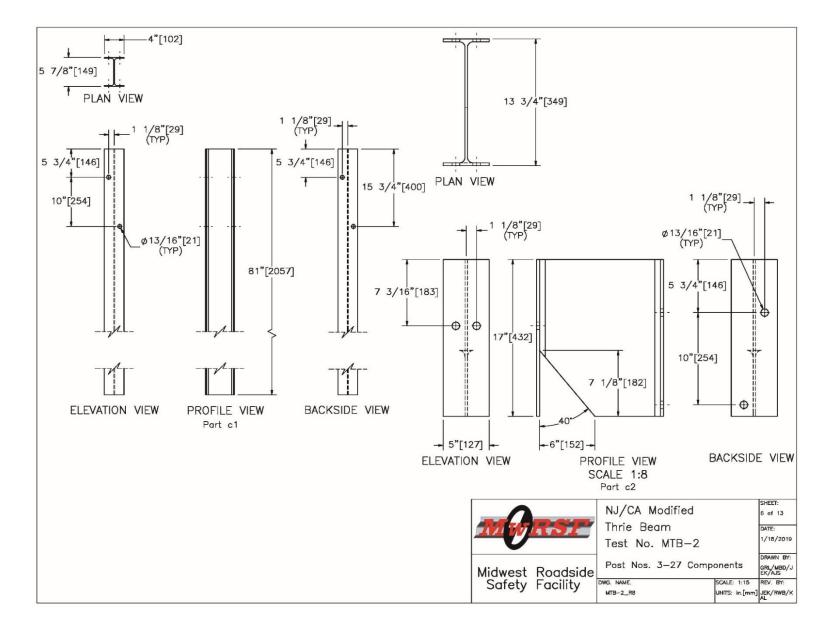


Figure 46. Post Nos. 3 through 27 Components, Test No. MTB-2

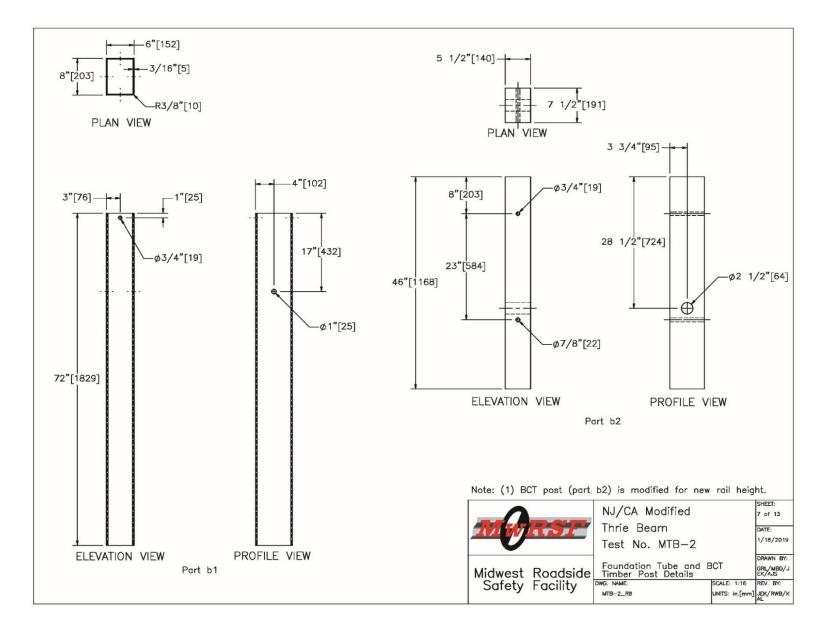


Figure 47. Foundation Tube and BCT Timber Post Details, Test No. MTB-2



Figure 48. Ground Strut Details, Test No. MTB-2

67

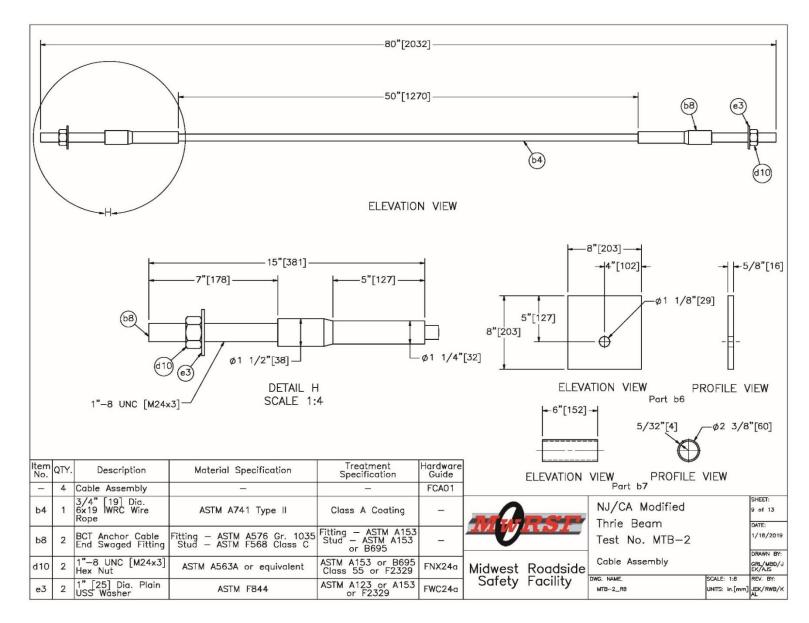


Figure 49. Cable Assembly, Test No. MTB-2

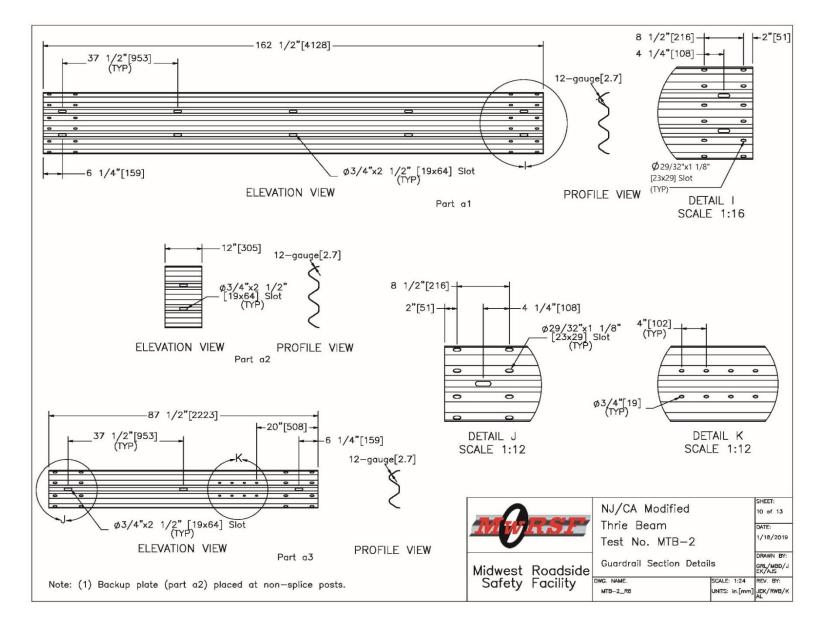


Figure 50. Guardrail Section Details, Test No. MTB-2

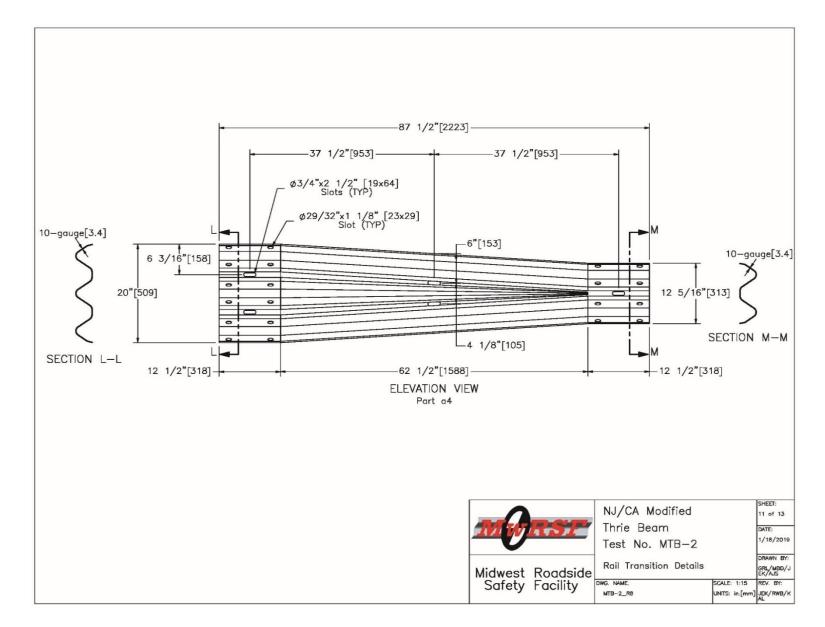
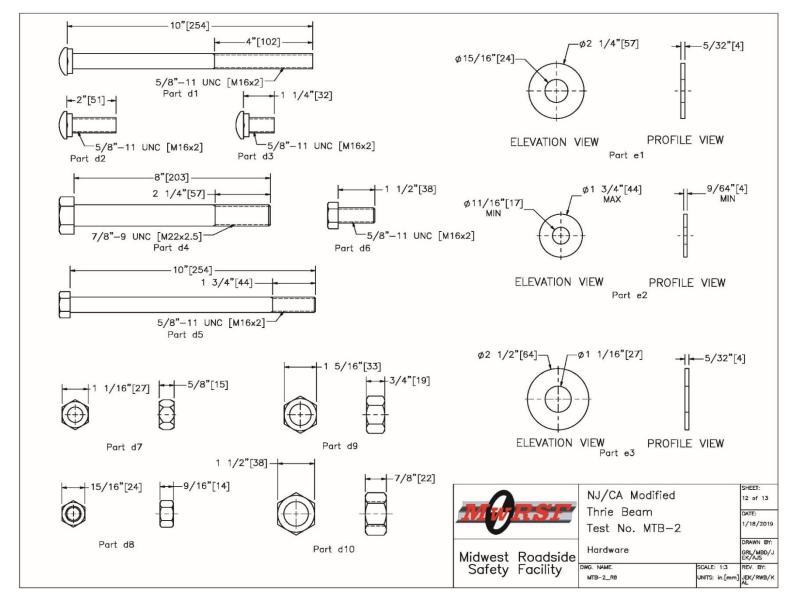



Figure 51. Rail Transition Details, Test No. MTB-2

July 16, 2020 MwRSF Report No. TRP-03-417-20

Figure 52. Hardware, Test No. MTB-2

a2 2 a3 a4	24	12'-6" [3,810] 12-gauge [2.7] Thrie Beam Section 12" [305] 12-gauge [2.7] Thrie Beam Backup Plate	AASHTO M180	ASTM A123 or A653	RTM04a
a3 a4		12" [305] 12-gauge [2.7] Thrie Beam Backup Plate			
a4	٨		AASHTO M180	ASTM A123 or A653	RTB01a
	-	6'-3" [3,810] 12-gauge [2.7] W-Beam MGS End Section	AASHTO M180	ASTM A123 or A653	-
h1	4	10-gauge [3.4] Symmetrical W-beam to Thrie Beam Transition	AASHTO M180	ASTM A123 or A653	RWT01b
	8	72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
b2	8	BCT Timber Post — MGS Height — Not Standard	SYP Grade No. 1 or better (No knots 18" [457] above or below ground tension face)	-	-
b3	4	Ground Strut Assembly	ASTM A36	ASTM A123	PFP01
b4	4	3/4" [19] Dia. 6x19 IWRC Wire Rope	ASTM A741 Type II	Class A Coating	-
b5	4	Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01
b6	4	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
b7	4	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
b8	8	BCT Anchor Cable End Swaged Fitting	Fitting – ASTM A576 Gr. 1035 Stud – ASTM F568 Class C	Fitting – ASTM A153 Stud – ASTM A153 or B695	-
2		W6x8.5 [W152x12.6], 81" [2,057] Long Steel Post	ASTM A36	ASTM A123	-
c2 5	50	W14x22 [356x32.7], 17" [432] Long Steel Blockout	ASTM A992	ASTM A123	-
c3	4	16D Double Head Nail		-	—
d1	8	5/8"—11 UNC [M16x2], 10" [254] Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB03
d2 5	50	5/8"—11 UNC [M16x2], 2" [51] Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB02
d3 3	344	5/8"—11 UNC [M16x2], 1 1/4" [32] Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB01
d4	8	7/8"-9 UNC [M22x2.5], 8" [203] Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	-
d5	8	5/8"—11 UNC [M16x2], 10" [254] Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX16
d6 1	132	5/8"—11 UNC [M16x2], 1 1/2" [38] Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX16
d7 4	102	5/8"—11 UNC [M16x2] Heavy Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX16
d8 1	140	5/8"-11 UNC [M16x2] Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX16d
d9	8	7/8"-9 UNC [M22x2.5] Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX22d
110	8	1"-8 UNC [M24x3] Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX24d
e1 ·	16	7/8" [22] Dia. Plain USS Washer	ASTM F844	ASTM A123 or A153 or F2329	-
e2 1	188	5/8" [16] Dia. Plain USS Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC16d
e3	8	1" [25] Dia. Plain USS Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC24d

	NJ/CA Modified		SHEET: 13 of 13
MARSE	Thrie Beam		DATE:
	Test No. MTB-2		1/18/2019
Midwest Roadside	Bill of Materials		DRAWN BY: GRL/MBD/J EK/AJS
	DWG. NAME. MTB2_R8	SCALE: 1:384 UNITS: in.[mm]	rev. By: Jek/RWB/K Al

Figure 53. Bill of Materials, Test No. I	MTB-2
--	-------



Figure 54. Test Installation Photographs, Test No. MTB-2

Figure 55. Test Installation Photographs, Test No. MTB-2

7 FULL-SCALE CRASH TEST NO. MTB-2

7.1 Static Soil Test

Before full-scale crash test no. MTB-2 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, shown in Appendix D, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

7.2 Weather Conditions

Test no. MTB-2 was conducted on March 22, 2019 at approximately 2:30 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 8.

Temperature	63 deg. F
Humidity	31 percent
Wind Speed	6 mph
Wind Direction	200 deg. from True North
Sky Conditions	Partly cloudy
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.42 in.

Table 8. Weather Conditions, Test No. MTB-2

7.3 Test Description

Test no. MTB-2 was conducted under the MASH TL-3 guidelines for test designation no. 3-10. Test designation no. 3-10 is an impact of the 1100C vehicle at 62 mph and 25 degrees on the system. The critical impact point for this test was selected to maximize vehicle snag on the system posts and splice loading. Initial vehicle impact was to occur 7 ft $-4^{13}/_{16}$ in. upstream from post no. 13, as shown in Figure 56, which was selected using the critical impact point plots found in Section 2.3 of MASH 2016. The 2,415-lb small car impacted the MTB guardrail at a speed of 63.1 mph and an angle of 24.9 deg. The actual point of impact was 1.6 in. upstream from the target location. During the test, the vehicle was captured and redirected by the thrie beam guardrail. As the vehicle was redirected, the right-front wheel and tire of the vehicle snagged on post no. 13 in the system. However, the wheel snag did not adversely affect vehicle stability or the occupant risk values. After exiting the system, the vehicle came to rest 187 ft – 7 in. downstream from the impact point and 51 ft – 11 in. laterally in front of the barrier after brakes were applied.

A detailed description of the sequential impact events is contained in Table 9. Sequential photographs are shown in Figures 57 and 58. Documentary photographs of the crash test are shown in Figures 59 through 61. The vehicle trajectory and final position are shown in Figure 62.

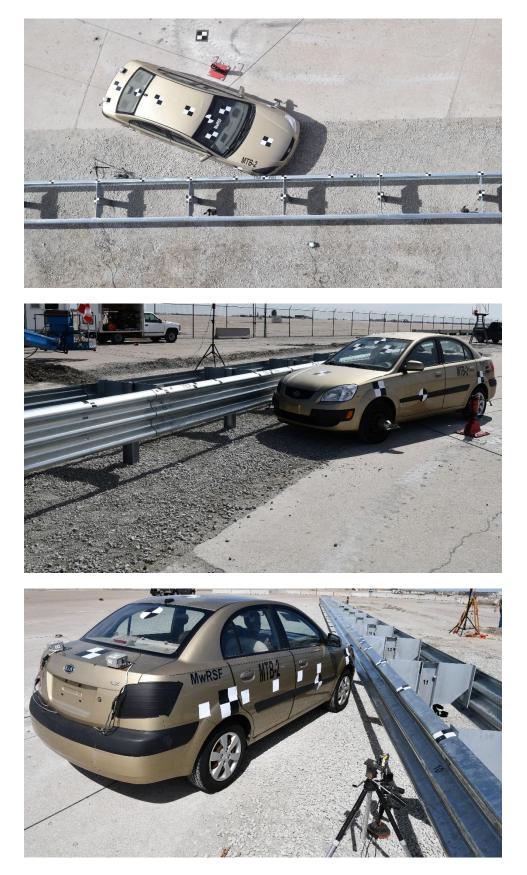
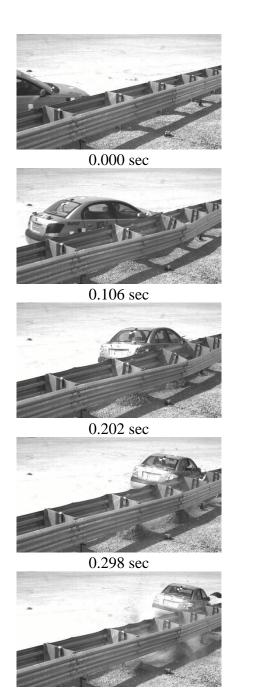
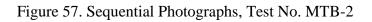



Figure 56. Vehicle Impact Point, Test No. MTB-2

TIME	EVENT
(sec)	
0.000	Vehicle's front bumper contacted rail between post nos. 11 and 12 at a speed of 63.1 mph and an angle of 24.9 deg.
0.006	Vehicle's right headlight contacted rail.
0.018	Post no. 12 deflected backward, vehicle's right fender deformed, and vehicle's hood and right fender contacted rail.
0.022	Post no. 13 deflected backward.
0.024	Post no. 11 deflected backward.
0.040	Post no. 14 deflected backward and soil heave formed on the downstream side of post no. 13.
0.042	Vehicle's right headlight shattered.
0.058	Vehicle's right mirror contacted rail.
0.067	Vehicle's right-front tire contacted post no. 13.
0.074	Vehicle's right-front door contacted rail.
0.100	Post no. 15 deflected backward.
0.102	Rail disengaged from bolt at post no. 14 on non-traffic side.
0.124	Post no. 16 deflected backward, soil heave formed on the non-traffic flange of post no. 15.
0.130	Rail disengaged from bolt at post no. 15 on non-traffic side.
0.144	Vehicle's right-rear door contacted rail.
0.146	Vehicle's right quarter panel contacted rail.
0.164	Vehicle was parallel to the system at a speed of 46.0 mph.
0.172	Post no. 16 deflected forward.
0.174	Vehicle's right taillight contacted rail.
0.184	Vehicle's right taillight became disengaged.
0.196	Post no. 12 deflected forward.
0.216	Post no. 13 deflected forward.
0.244	Post nos. 11 and 14 deflected forward.
0.300	Post no. 15 deflected forward.
0.334	Vehicle exited system at a speed of 45.9 mph and an angle of 13.4 deg.
0.912	System came to a rest.


Table 9. Sequential Description of Impact Events, Test No. MTB-2

0.428 sec

0.520 sec

0.000 sec

0.100 sec

0.180 sec

0.300 sec

0.400 sec

0.500 sec

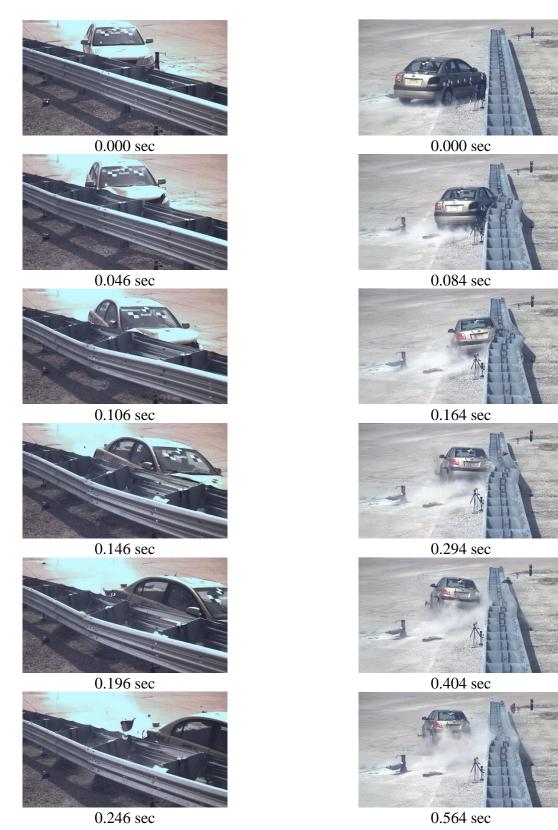


Figure 58. Additional Sequential Photographs, Test No. MTB-2

July 16, 2020 MwRSF Report No. TRP-03-417-20

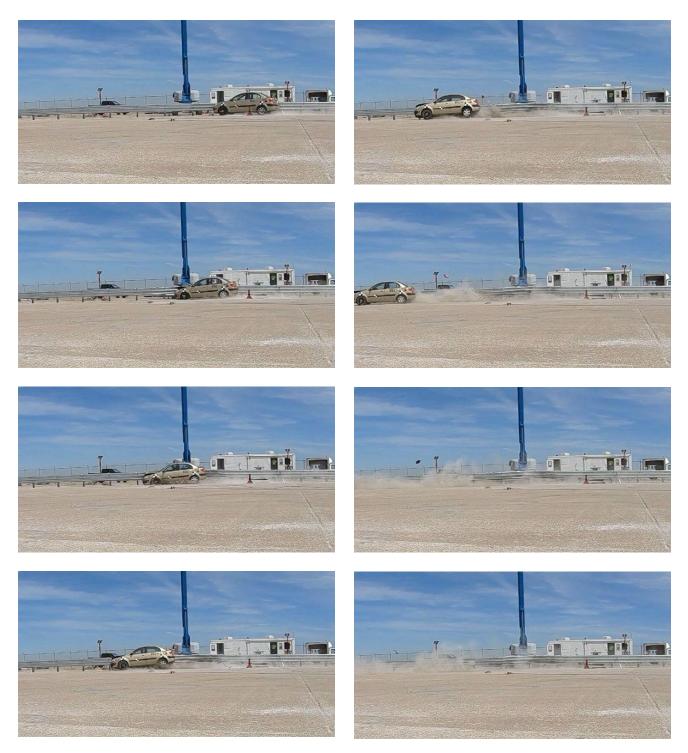


Figure 59. Documentary Photographs, Test No. MTB-2

Figure 60. Documentary Photographs, Test No. MTB-2

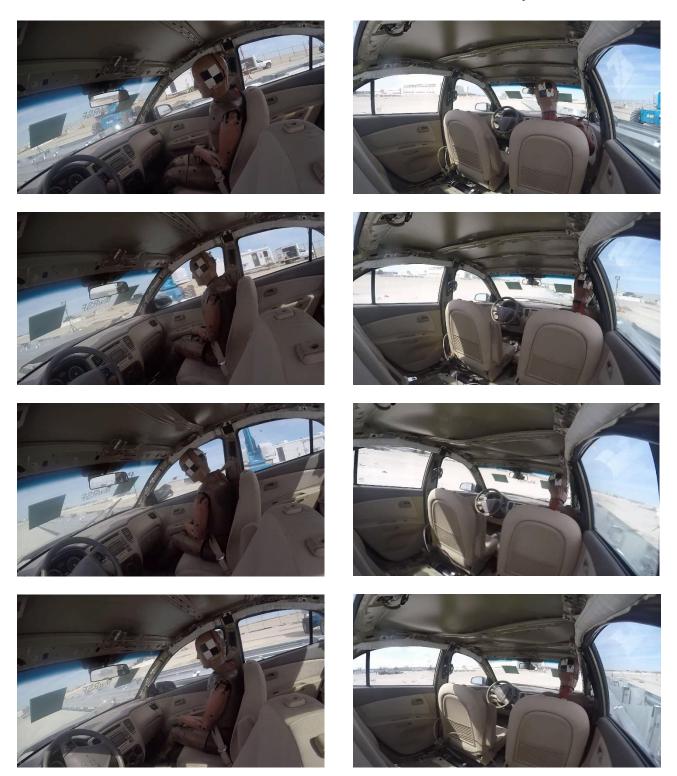


Figure 61. Documentary Photographs, Test No. MTB-2

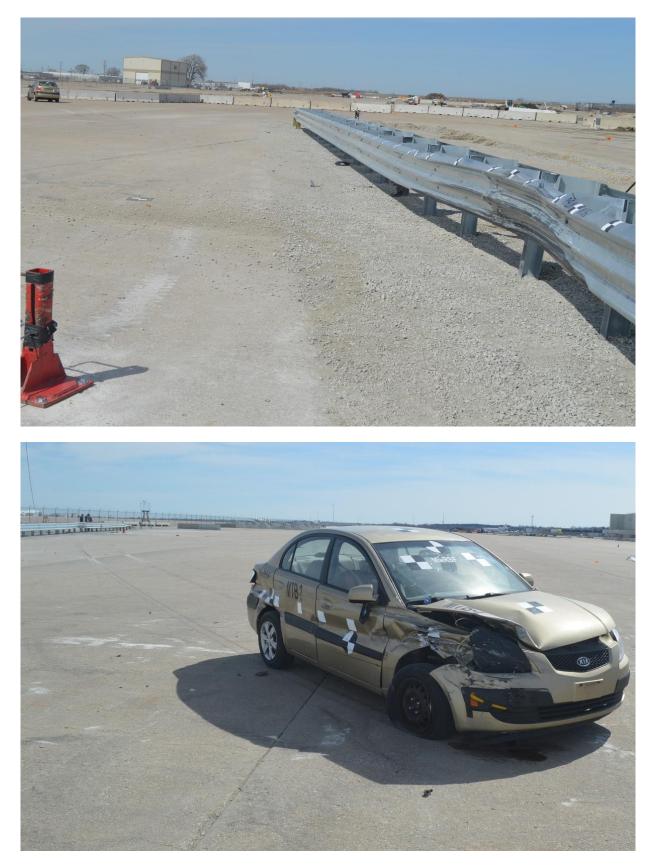


Figure 62. Vehicle Trajectory and Final Position, Test No. MTB-2

7.4 Barrier Damage

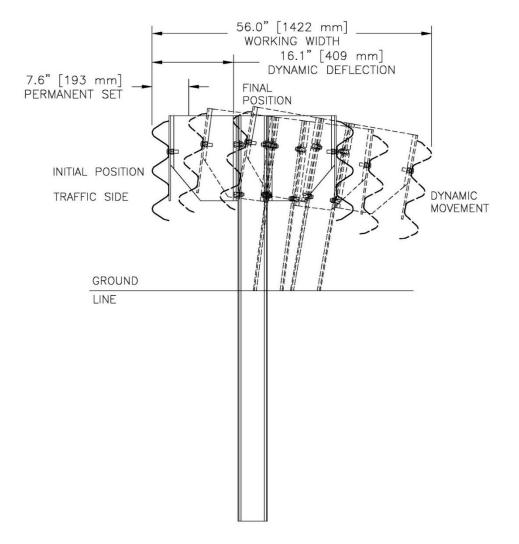
Barrier damage was moderate, as shown in Figures 63 through 65, mainly consisting of bending, kinking, denting, and contact marks on the front face of the rail. The length of vehicle contact along the barrier was approximately 17 ft - 3 in., which spanned from 22 in. upstream from post no. 12 to 38 in. downstream from post no. 14.

A 17 ft – 3-in. long contact mark was found on the bottom corrugation beginning 22 in. upstream from post no. 12. A 13-ft – 5-in. long contact mark was found on the middle corrugation, beginning 22 in. upstream from post no. 12. A 12-ft – 7-in. long contact mark was found on the top corrugation, beginning 12 in. upstream from post no. 12. A small contact mark was found on the top front face of the blockout at post no. 12. Dents were found on the middle corrugation 22 in. and 33 in. downstream from post no. 12. The rail bent backward and was slightly flattened between post nos. 12 and 14. The bottom corrugation at post no. 12 bent outward 1 in. The bottom corrugation at post no. 14 bent outward $\frac{3}{4}$ in. and the backing plate on the non-traffic side detached as a result of bolt pull out. A 1-in. long gap between the guardrail and backing plate was found on the non-traffic side blockout at post no. 16. Various kinks were found on the rail between post nos. 10 and 15.

Post nos. 10 and 12 rotated clockwise. The lower front flange on the traffic-side blockouts at post nos. 11 through 14 were bent inward 10 in. from the top. The non-traffic-side blockouts at post nos. 12 and 13 bent slightly near the bottom. Contact marks were noted on the flanged of post no. 13 due to wheel and tire contact. Bolt pullout occurred on the non-traffic side at post nos. 14 and 15, and at post no. 15 the bolt was removed entirely. The traffic-side blockout at post no. 15 bent 11 in. from its top. The front flange of the traffic-side blockout at post no. 16 bent slightly at the top. Soil gaps were found around post nos. 11 through 16. Soil heave formed around post nos. 12 thorough 15. No damage was observed on the remainder of the posts.

Figure 63. System Damage, Test No. MTB-2




Figure 64. Traffic-Side Damage, Post Nos. 12 through 15, Test No. MTB-2

98

Figure 65. Damage between Post Nos. 12 through 15, Test No. MTB-2

The maximum lateral permanent set of the barrier system was 7.6 in., which occurred at post no. 13, as measured via GPS. The maximum lateral dynamic barrier deflection, was 16.1 in. at post no. 13, as determined from high-speed digital video analysis. The working width of the system was found to be 56.0 in., also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 66.

7.5 Vehicle Damage

Damage to the vehicle was moderate, as shown in Figures 67 through 70. The maximum occupant compartment intrusions are listed in Table 10, along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment and none of the established MASH 2016 deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix E.

Figure 67. Vehicle Damage, Test No. MTB-2

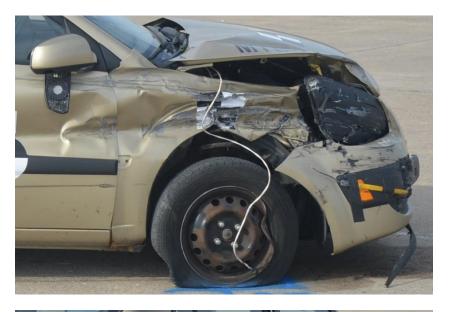


Figure 68. Vehicle Damage, Test No. MTB-2

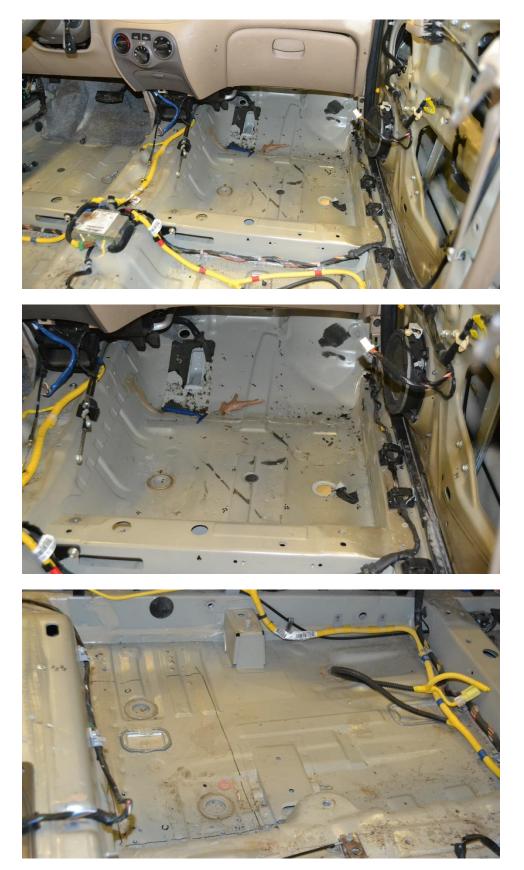


Figure 69. Occupant Compartment Damage, Test No. MTB-2

Figure 70. Vehicle Undercarriage Damage, Test No. MTB-2

LOCATION	MAXIMUM INTRUSION in.	MASH 2016 ALLOWABLE INTRUSION in.
Wheel Well & Toe Pan	0.5	≤ 9
Floor Pan & Transmission Tunnel	0.3	≤ 12
A-Pillar	0.2	<i>≤</i> 5
A-Pillar (Lateral)	-0.2	N/A ²
B-Pillar	0.2	≤ 5
B-Pillar (Lateral)	0.2	≤ 3
Side Front Panel (in Front of A-Pillar)	0.1	≤ 12
Side Door (Above Seat)	0.1	≤ 9
Side Door (Below Seat)	-0.7	N/A ²
Roof	0.1	<u>≤ 4</u>
Windshield	0	≤ 3
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	0.4	N/A ¹

Table 10. Maximum Occupant Compartment Intrusions by Location, Test No. MTB-2

Note: Negative values denote outward deformation

 $N/A^1 - No MASH 2016$ criteria exist for this location

N/A² – MASH 2016 criteria are not applicable when deformation is outward

The majority of the damage was concentrated on the right-front corner and the right side where impact occurred. The hood kinked on the right side. The front bumper detached, and the right-front quarter panel was deformed inward and scraped. The right-front door was deformed inward along its length and dented near the handle. The right-rear door was dented and scraped along its length. The right-rear quarter panel was crushed inward and scraped along its length. The right-rear quarter panel was crushed inward and scraped along its length. The right-rear quarter panel was crushed inward and scraped along its length. The right-rear wheel well was crushed inward, and the right-front wheel was dented due to contact with post no. 13. The right taillight was broken, and the cover was disengaged. The windshield was cracked and buckled outward. The rest of the window glass and roof were undamaged. The right-side spring perch was bent. The right lower control arm was bent backward. The front cross member of the vehicle was bent upward near the mid point.

7.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 11. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 11. The results of the occupant risk analysis are summarized in Figure 71. The recorded data from the accelerometers and rate transducers are shown graphically in Appendix F.

		Trans	MASH 2016		
OIV Longitudinal –		SLICE-1 (primary)	SLICE-2	Limits	
OIV	Longitudinal	-16.73	-17.76	± 40	
ft/s	Lateral	-24.18	-23.39	±40	
ORA	Longitudinal	-7.27	-5.45	±20.49	
g's	Lateral	-10.62	-10.93	±20.49	
MAX.	Roll	6.9	-8.9	±75	
ANGULAR DISPL.	Pitch	-3.7	-4.3	±75	
deg.	Yaw	-35.6	-36.2	not required	
	HIV ft/s	27.31	25.15	not required	
_	HD g's	11.20	11.46	not required	
	ASI	1.29	1.21	not required	

Table 11. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MTB-2

7.7 Discussion

The analysis of the test results for test no. MTB-2 showed that the system adequately contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 71. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 13.4 deg., and its trajectory did not violate the bounds of the exit box. Therefore, test no. MTB-2 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-10.

THE AND	10 m	A.C.	· ACT	- The	15	1
		the second second second second			ATT DE	
		The second		-		
and a state of the	A Martin	The states	and the parts	The last of		
0.000 sec 0.110 sec 0.164	sec	0.31	0 sec	0	.390 sec	
14'-11" [4.6 m]	5.0					1
	1					
'-11" [15.8 m]	34"[864]		35"[889]	34"[864]	< > 35°	*[889]
Exit Box						
32'-10" [10.0 m]	G	round		Ground		
F	L.	ne	81"[2057]	Line		81
Test Agency						
Test NumberMTB-2						
DateMarch 22, 2019						
MASH 2016 Test Designation No						
Test ArticleNJDOT-Caltrans Modified Thrie Beam	All Od	SECTION A-A Id Post Nos. Excluding P	ost Nos. 1 & 29	All Even F	SECTION B-B Post Nos. Excluding Post Nos. 2 &	28
Total Length					,	
Key Component – Steel Thrie Beam Guardrail	 Vehicle Date 	mage			Moderate	te
Thickness					1-FRQ-3	
Top Mounting Height					01-FDEW-9	
Key Component – Steel Post					0.5 in	
Shape		U			Moderate	te
Length		Test Article Deflec				
Embedment Depth						
Spacing						
Key Component – Steel Blockout (Post Nos. 3-27)		0			56.0 in	n.
Shape	Transducer	Data	Tron	sducer		
Soil Type Coarse, Crushed Limestone	Evolucti	on Criteria	SLICE-1	saucer	MASH 2016	
Vehicle Make / Model	Evaluation		(primary)	SLICE-2	Limit	
Curb	OT	Longitudinal	-16.73	-17.76	±40	
Test Inertial	OIV	Longitudinal			-	
Gross Static	ft/s	Lateral	-24.18	-23.39	±40	
Impact Conditions	ORA	Longitudinal	-7.27	-5.45	±20.49	
Speed	g's	Lateral	-10.62	-10.93	±20.49	
Angle 24.9 deg. Impact Location 7 ft – 6.4 in. upstream from post no. 13	MAX	Roll	6.9	-8.9	±75	
Impact Detailor in the second	ANGULAR	Pitch	-3.7	-4.3	±75	
Exit Conditions	DISP.					
Speed	deg.	Yaw	-35.6	-36.2	not required	
Angle	THIV	√ – ft/s	27.31	25.15	not required	
Vehicle Stability	РНГ	$\mathbf{D} - \mathbf{g's}$	11.20	11.46	not required	
Vehicle Stopping Distance		ASI	1.29	1.21	1	
Exit Box Criterion	P	101	1.29	1.41	not required	

Figure 71. Summary of Test Results and Sequential Photographs, Test No. MTB-2

95

July 16, 2020 fwRSF Report No. TRP-03-417-20

8 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The research detailed in the report describes the full-scale crash testing and evaluation of the modified thrie beam guardrail system to MASH TL-3 in both a single-sided roadside configuration and a dual-sided median barrier configuration. Two full-scale crash tests are required to evaluate a longitudinal barrier such as the modified thrie beam guardrail. Review of the system configurations and test requirements led the researchers to determine that test designation no. 3-11 was critical for evaluation of the single-sided roadside configuration in order to maximize structural loading of the barrier system, evaluate the potential for collapse of the wide flange of the blockouts, and determine the maximum dynamic deflection and working width. Test designation no. 3-10 was selected to evaluate the dual-sided median barrier configuration as this configuration would tend to produce increased loading and occupant risk values for the small car and increase the propensity for vehicle snag on the post due to the higher stiffness and reduced dynamic deflection of the dual-sided configuration. Previous evaluation of the T-39 thrie beam barrier for both roadside and median versions followed a similar methodology [8]. Thus, two full-scale crash tests were conducted for evaluation of the modified thrie-beam guardrail.

Test no. MTB-1 consisted of test designation no. 3-11, in which a 5,003-lb quad cab pickup truck impacted the MTB guardrail at a speed of 62.9 mph and an angle of 25.4 deg., resulting in an impact severity of 121.8 kip-ft. Impact occurred 11 ft – 5.7 in. upstream from post no. 13, and the vehicle exited the system at a speed of 40.7 mph and an angle of 15.0 deg. The vehicle was contained and smoothly redirected with moderate damage to both the system and vehicle. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment. All vehicle decelerations, ORAs, and OIVs fell within the recommended safety limits established in MASH 2016. Therefore, test no. MTB-1 was successful according to the safety criteria of MASH 2016 test designation no. 3-11.

Test no. MTB-2 consisted of test designation no. 3-10, in which a 2,415-lb small car impacted the MTB guardrail at a speed of 63.1 mph and an angle of 24.9 deg., resulting in an impact severity of 57.2 kip-ft. Impact occurred 7 ft – 6.4 in. upstream from post no. 13, and the vehicle exited the system at a speed of 45.9 mph and an angle of 13.4 deg. The vehicle was contained and smoothly redirected with moderate damage to both the system and vehicle. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment. All vehicle decelerations, ORAs, and OIVs fell within the recommended safety limits established in MASH 2016. Therefore, test no. MTB-2 was successful according to the safety criteria of MASH 2016 test designation no. 3-10. A summary of the safety performance evaluation for both tests is provided in Table 12.

Based on the results of the two successful full-scale crash tests conducted in this study, the modified thrie-beam guardrail system meets all safety requirements for MASH 2016 TL-3 for both single-sided roadside and dual-sided median configurations.

Evaluation Factors		Eva	luation Criteria		Test No. MTB-1	Test No. MTB-2				
Structural Adequacy	A.	Test article should conta vehicle to a controlled underride, or override th deflection of the test artic	stop; the vehicle sh ne installation, althoug	nould not penetrate,	S	S				
	D.	Detached elements, fragr should not penetrate or si compartment, or present a or personnel in a work zo occupant compartment sh 5.3 and Appendix E of M	etrating the occupant er traffic, pedestrians, or intrusions into, the	S	S					
	F.	The vehicle should rema maximum roll and pitch a	S	S						
Occupant	H.	Occupant Impact Velocity MASH for calculation pro-								
Risk		Occupan	t Impact Velocity Lim	its	S	S				
		Component	Preferred	Maximum						
		Longitudinal and Lateral	30 ft/s	40 ft/s						
	I.	The Occupant Ridedown Section A5.3 of MASH for following limits:								
		Occupant Ri	dedown Acceleration l	Limits	S	S				
		Component	Preferred	Maximum						
		Longitudinal and Lateral	15.0 g's	20.49 g's						
	3-11	3-10								
		Pass/	Fail		Pass	Pass				
S – Satisfactory U – Unsatisfactory NA – Not Applicable										

Table 12. Summary of Safety Performance Evalu	ation
---	-------

9 RECOMMENDATIONS

The MASH TL-3 modified three beam guardrail systems detailed herein was evaluated using a basic test configuration on level terrain in both roadside and median configurations. Realworld installations will have other considerations for the application of the design that should be considered. The following sections provide recommendations for implementation of the modified three beam guardrail.

9.1 MASH TL-4

The modified thrie beam guardrail system was previously successfully tested to NCHRP Report No. 350 TL-4. Based on its previous use as a TL-4 system, users may desire to use the modified thrie beam guardrail as a TL-4 barrier under MASH as well. While the design of the modified thrie beam guardrail system may have increased capacity as compared to standard W-beam guardrails due to its mounting height and use of thrie beam rail elements, there are concerns with its ability to meet MASH TL-4 safety criteria. Test designation no. 4-12 required for MASH TL-4 consists of a 22,000-lb single unit truck (SUT) impacting the barrier at 56 mph and an angle of 15 degrees. This test differs significantly from test designation no. 4-12 in NCHRP Report No. 350, which consists of a 17,637-lb SUT vehicle impacting the barrier at 49.7 mph and an angle of 15 degrees. The increased mass and speed required in MASH test designation no. 4-12 has led to increased barrier loads during crash testing of TL-4 barriers. Additionally, rigid barrier heights required to meet MASH TL-4 have increased to 36 in. in order to capture and contain the SUT vehicle. Based on the increased MASH TL-4 requirements, it is unknown if the modified thrie beam guardrail can effectively meet MASH TL-4 without full-scale crash testing.

9.2 Transitioning to the MGS

For certain applications, such as terminating the barrier system, end users may wish to transition the modified thrie beam guardrail to the MGS. This transition requires both a transition in the beam section, a guardrail height transition, and a transition of the splices to the midspan between posts. It is recommended that a 10-gauge symmetrical W-to-thrie transition section be used to accomplish the rail section transition from thrie beam to W-beam. The symmetrical W-to-thrie transition section will also transition the rail height from a 34-in. tall thrie beam down to a $30\frac{1}{8}$ -in. tall W-beam guardrail. In order to reach the nominal 31-in. height of the MGS, it is recommended that the height of the W-beam rail be transitioned up $\frac{7}{8}$ in. over one $12\frac{1}{2}$ -ft long W-beam segment.

If transitioning to the MGS, there is a need to transition the splices to the midspan as well. It is recommended that this be accomplished by placing the first post downstream from the symmetrical W-to-thrie transition piece at $\frac{1}{2}$ post spacing and then using standard spacing from that point on. A schematic of the recommended transition is shown in Figure 72. The total length of the transition is 18.75 ft.

It should be noted that the proposed transition design is based on the best currently available transition research and engineering judgment. Further analysis and full-scale crash testing would be required to verify the performance of the transition.

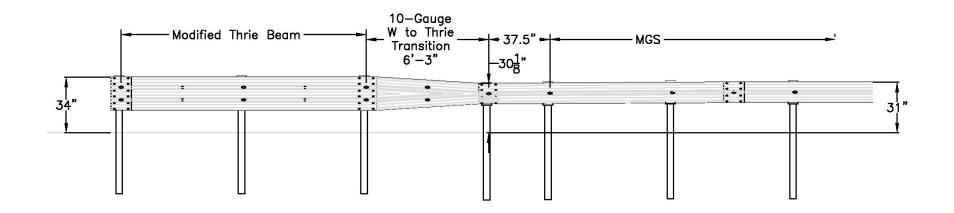


Figure 72. Modified Thrie Beam Transition to MGS

9.3 Guardrail Terminals and Anchorages

It should also be noted that the modified thrie beam guardrail system constructed for use in this testing program utilized trailing end cable anchorages installed on each end of the barrier system. The function of these cable anchorages was to develop the appropriate rail tension required to simulate a typical field installation of the barrier which would typically be longer than a standard test installation and have some form of anchorage on each end. Note that these anchors were installed after transitioning to W-beam guardrail such that a standard trailing end anchorage could be employed. No current trailing end anchorage or end terminal design has been full-scale tested for use with modified thrie beam guardrail. Thus, it is recommended that field installations of the modified thrie beam guardrail transition to MGS guardrail at the end of the system and then employ a MASH tested trailing end anchorage or end terminal design. Details on transitioning to the MGS are contained in the previous section.

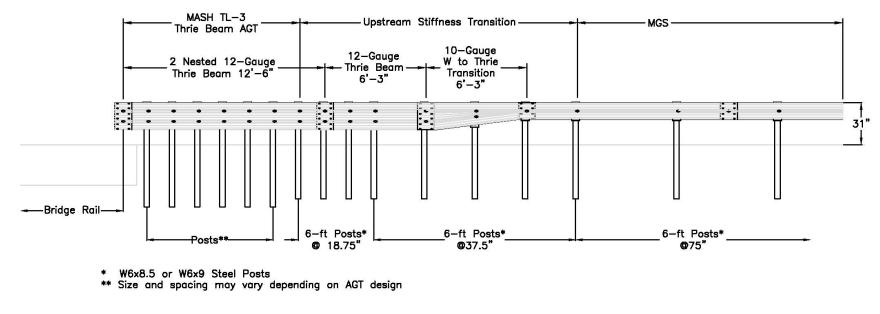
Guardrail terminals are sensitive systems that have been carefully designed to satisfy safety performance standards. Thus, installation of the modified thrie beam guardrail within the length that a terminal requires to function properly could degrade the system's crashworthiness. Thus, for energy absorbing terminals, it is recommended to have a minimum length of 12.5 ft of standard MGS between the inner end of a guardrail terminal, identified by system stroke length, and the transition to the modified thrie beam guardrail, as shown in Figure 73.

Non-energy absorbing terminals typically flare away from the roadway utilizing either an angled or parabolic geometry. Both geometric layouts result in increased effective impact angles, which result in increased system deflections for impacts on or near the flared terminal. Due to the increase in system deflections associated with guardrail flares, at least 25 ft of tangent MGS should be used to separate a flared guardrail terminal and the transition to the modified thrie beam guardrail, as shown in Figure 73.

Installation of the modified thrie beam guardrail near W-beam guardrail trailing end anchorages may also affect system performance. Guidance has been previously provided for length-of-need and working width for MGS trailing-end anchorages [9-10]. However, modified thrie beam guardrail near W-beam trailing end anchorages would likely change system performance and make previous recommendations for the trailing end terminal behavior invalid. From the noted study, impacts beyond 43.75 ft from the end post resulted in consistent redirection and working width. In order to ensure that the modified thrie beam does not affect the performance of the W-beam trailing end anchorage, it would be conservative to place the modified thrie beam and associated transition to the MGS outside of the region 43.75 ft from the end post of the anchorage. Thus, it is recommended that the modified thrie beam guardrail and the associated transition to the MGS be located a minimum of 46 ft 10-½ in. from the downstream end of the trailing end anchorage, as shown in Figure 73.

Note that the dual-sided median version of the modified thrie beam guardrail would require a MASH TL-3 crashworthy median terminal for the W-beam guardrail. Trailing end terminals may not be applicable for the dual-sided median version of the modified thrie beam guardrail due to the potential for impact from reverse direction traffic unless the end of the system is outside the clear zone for both traffic directions. Similarly, there are no non-energy absorbing, median end terminals. Thus, implementation of energy-absorbing guardrail terminals with the dual-sided median version of the modified thrie beam guardrail should follow similar guidance as the roadside version in terms of the transitioning to the MGS and the location of terminal relative to the modified three beam.

End users may also want to consult with the manufacturers of the end terminal systems for any additional guidance or information that they can provide.


Figure 73. Recommended Distance between Modified Thrie Beam and (a) Energy-Absorbing Terminals, (b) Flared Terminals, and (c) Trailing-End Guardrail Anchorages

9.4 Transitioning to Thrie-Beam AGTs

Another consideration for implementation of the modified thrie beam guardrail system is the attachment of the system directly to a thrie-beam approach guardrail transition (AGT). It is recommended that the modified thrie beam guardrail be attached to a MASH-compliant thrie beam AGT that is crashworthy at both the upstream stiffness transition and the attachment to the bridge rail or parapet. MwRSF has previously developed an upstream stiffness transition for use when transitioning between the MGS and thrie beam AGTs [20-21]. This upstream stiffness transition should be applicable to the modified thrie beam as well because the barrier system would have similar or greater stiffness than the MGS system. Details on attachment of the upstream stiffness transition from the MGS to a variety of crashworthy thrie beam AGTs were described in the original research reports.

A schematic outlining the basic parts of a three beam AGT and upstream stiffness transition to the MGS is shown in Figure 74. Application of the MGS upstream stiffness transition to the connection of the modified three beam to a MASH compliant three beam AGT should not require transitioning of the rail element as the modified three beam and the AGT both use three beam rail elements. However, in order to apply the previously developed upstream stiffness transition to a crashworthy three beam AGT, several minor adjustments to the basic schematic in Figure 74 are needed.

- 1. The MASH TL-3 thrie beam AGT region on the downstream end of the transition can use the post spacing and rail configuration of any MASH TL-3 compliant AGT. It should be noted that the selected MASH TL-3 compliant AGT should be compatible with the bridge rail/end buttress being used.
- 2. In the upstream stiffness transition region, the 6.25-ft long, 10-gauge W- to thrie transition section and the 6.25-ft long, 12-gauge thrie beam are replaced by a single 12.5-ft long thrie beam section.
- 3. In the upstream stiffness transition region, it is recommended to use the same W6x8.5 or W6x9 posts at the same spacing used in the original MASH-tested design. Note that end users could elect to use up to 81-in. long posts in that region as well if it was desired to limit the number of post types in the system. For example, many thrie beam AGTs use 78-in. long posts at reduced post spacing and the modified thrie beam uses 81-in. long posts. As such, it may be desired to use one of these post alternatives to limit the number of post types in inventory. It is believed that this increase in the post depth would not negatively affect the upstream stiffness transition region as the modified thrie beam is already using 81-in. long posts.
- 4. In the upstream stiffness transition region, it is recommended to use 6-in. x 12-in. x 19-in. southern yellow pine blockouts. These blockouts are required in the upstream stiffness transition to reduce vehicle snag on the posts in that region. During MASH TL-3 testing of the upstream stiffness transition, researchers observed significant wheel snag with the small car and pickup truck on the posts in the upstream stiffness transition area where the vehicle engaged in the ½ post spacing. As such, there is concern with reducing blockout depth in that region. Additionally, it is not recommended to use the W14x22 blockouts from the modified thrie beam in that region due to their tendency to collapse in the web and potentially reduce their effective depth which may similarly increase the snag concern. MwRSF has also previously recommended the use of an alternative HSS 12x4x¼ by 17.5-in. long blockout for the upstream stiffness transition [22], as shown in Figure 75. Note that Figure 75 also depicts a 6-in. x 12-in. x 18-in. southern yellow pine blockout. This slightly shorter timber blockout is also acceptable for use in the upstream stiffness transition region.
- 5. The first post on the upstream end of the upstream stiffness transition can be removed. This post exists in the transition from MGS to a bridge rail to provide an improved stiffness transition and aid in aligning the splices with the posts for the AGT. Because the modified thrie beam system has splices at the posts by default, the need to transition the splice location is eliminated. Additionally, the consistent post spacing and the increased stiffness and reduced deflection of the modified thrie beam system on the upstream end of the transition eliminate the need for this post to provide an adequate transition in stiffness.

103

Figure 74. Schematic of Upstream Stiffness Transition from MGS to MASH TL-3 Thrie Beam AGT

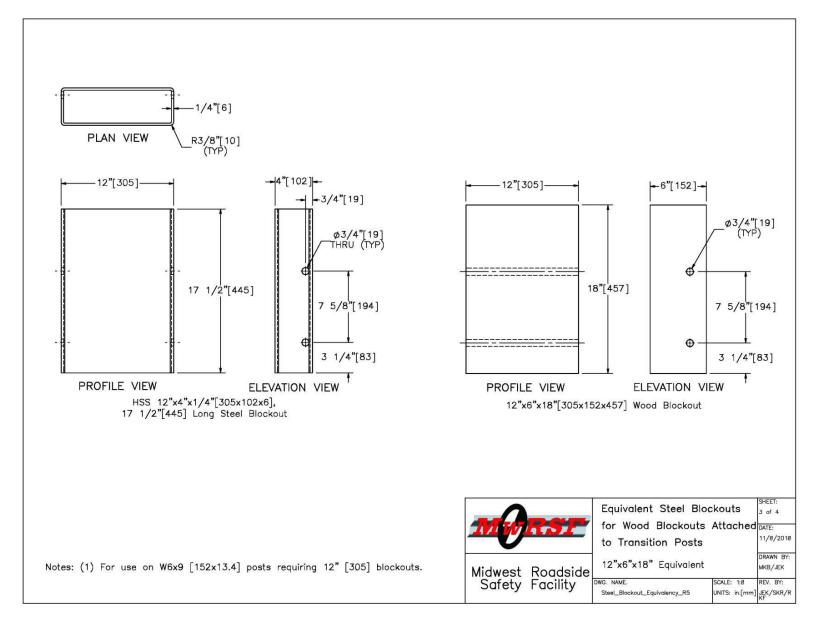


Figure 75. Alternative Steel Tube Blockout

- 6. Following the single 12.5-ft long thrie beam section, the modified thrie beam can be attached. The modified thrie beam will start at the 31-in. mounting height of the AGT and then transition to the standard modified thrie beam height of 34 in. over a distance of 25 ft to 50 ft. MwRSF and FHWA have previously had recommended height transitions for the MGS over similar lengths.
- 7. Following the height transition for the modified three beam, standard modified three beam as evaluated in this research study is applied.
- 8. Note that the use of curbs within the transition region would follow guidance published previously relative to AGTs and curbs [23].

As an example, a conversion from an existing AGT from MGS to a bridge rail has been completed in Figure 76. The existing AGT design consisted of the MGS guardrail, the MASH TL-3 tested upstream stiffness transition, and a MASH TL-3 compliant three beam transition to bridge rail, commonly called the "Iowa Transition," that utilizes 6.5-ft long, W6x8.5 or W6x9 posts at ¹/₄ post spacing [24]. The conversion shown implements the transition conversion guidance above to an existing AGT design.

Note that the design shown in Figure 76 is very similar to the typical AGT design used by the New Jersey Department of Transportation with the exceptions that the New Jersey system uses a curb in the region adjacent to the bridge rail and uses slightly longer 86-in. long posts in the nested thrie beam region adjacent to the bridge rail. Both of these variations used by the New Jersey Department of Transportation would be acceptable within the recommendations for transitioning from modified thrie beam to existing AGTs.

Alternatively, MwRSF has evaluated a 34-in. tall AGT that uses the standardized end buttress developed through the Midwest Pooled Fund Program [25]. If desired, end users could apply this AGT design to attach to the modified thrie beam without a height transition. The basic configuration of the transition would be the same as the 31-in. tall transition detailed previously, except that there would be no height transition and the 34-in. tall modified thrie beam would be attached directly following the single 12.5-ft long thrie beam section. In order to use this alternative, the AGT would have to be attached to the standardized end buttress designed for 34-in. tall AGTs.

End users may also be interested in attachment of the modified thrie beam to MASH TL-2 compliant thrie beam approach guardrail transitions. Currently, only one thrie beam approach guardrail transition has been evaluated to MASH TL-2. The thrie beam approach guardrail transition shown in Figure 77 was evaluated to MASH TL-2 through three full-scale crash tests at TTI [26]. This TL-2 thrie beam AGT was identical to the previous MASH TL-3 upstream stiffness transition for thrie beam AGTs developed at MwRSF upstream of the downstream end of the W-to-thrie transition section. As such, the basic guidance provided previously for transitioning from modified thrie beam to MASH TL-3 AGTs would also apply to transitioning to the MASH TL-2 AGT system. However, there are three additional points that should be made with respect to attachment to the MASH TL-2 AGT design.

- 1. The MASH TL-2 AGT design evaluated at TTI utilized 8-in. deep blockouts in the AGT rather than 12-in. deep blockouts. As such, the use of 8-in. deep blockouts or 12-in. deep blockouts would be appropriate for the attachment of the modified thrie beam to the MASH TL-2 AGT.
- 2. The MASH TL-2 AGT design evaluated at TTI used a 37 ¹/₂-in. long, 10-gauge thrie beam section between the W-to-thrie transition section and the end shoe attachment to the parapet. Thus, it is recommended that the W-to-thrie transition section and the 37 ¹/₂-in. long, 10-gauge thrie beam section be replaced with a single 112 ¹/₂-in. long, 10-gauge thrie beam section.
- 3. The MASH TL-2 AGT design evaluated at TTI was attached to a 36-in tall, singleslope parapet with a vertical taper over the final 3 ft of the parapet to reduce snag. It is believed that either this parapet shape or other parapet shapes that have been utilized with MASH TL-3 thrie beam AGTs could be applied for the TL-2 approach guardrail transition.

As an example, a conversion from the existing MASH TL-2 AGT has been completed in Figure 78.

A final note should be made with respect to transitioning from the downstream end of a bridge back to the modified thrie beam. If the downstream end of the bridge is within the clear zone for opposing traffic, then attachment of modified thrie beam should follow the guidance listed above for approach guardrail transitions. If the downstream end of the bridge is not within the clear zone for opposing traffic, it is often desirable to attached guardrail directly to the downstream end of the bridge parapet without a transition. In this scenario, the transition from a rigid parapet to the semi-flexible guardrail poses less of a risk for pocketing or snagging. As a result, the departing transition is typically designed to be much simpler (i.e., using only W-beam guardrail at standard post spacing rather than the post configurations used in typical approach guardrail transition systems).

The main concern with this type of simplified downstream transition from bridge rails is increased rail loading. The rigid concrete barrier will not deflect, thus potentially producing high tensile and/or shear forces in the rail at the edge of the rigid parapet that may result in tearing or rupture. This concern could be mitigated somewhat by the location of the first post downstream of the bridge rail. By placing the first downstream post closer to the end of the bridge rail, the propensity for the rail to be bent around the end of the bridge would be lowered. Thus, it may be worth considering placement of the first post 3.125 ft (quarter post spacing) or less from the end of the downstream bridge end. Additionally, modified thrie beam has considerably more cross-sectional area and capacity than W-beam guardrail. While W-beam guardrail ruptures have been observed in crash testing of stiffened barrier systems, thrie beam ruptures are relatively rare. This would indicate that the propensity for potential rail failure would be significantly less for a modified thrie beam guardrail transitioning directly off the downstream end of a bridge rail.

As such, the following recommendations can be made with respect to transitioning from the downstream end of a bridge rail to modified thrie beam. First, if the bridge end/modified thrie beam is within the clear zone of opposing traffic, then the recommendations for approach guardrail transitioning of modified thrie beam guardrail should be used on the downstream end of the bridge

rail. Second, if the bridge end/modified thrie beam is outside of the clear zone of opposing traffic, it is believed that modified thrie beam can safely be attached directly to the end of the bridge rail as long as the following factors are met: first, standard thrie beam end connection hardware is used to attach the thrie beam rail to the parapet (terminal connectors, anchorage, etc.); and second, the first post downstream of the bridge rail should be 3.125 ft or less from the end of the parapet to limit rail loads.

It should be noted that the proposed transition designs recommended herein are based on the best currently available transition research and engineering judgment. Further analysis and fullscale crash testing would be required to fully verify the performance of the transitions.

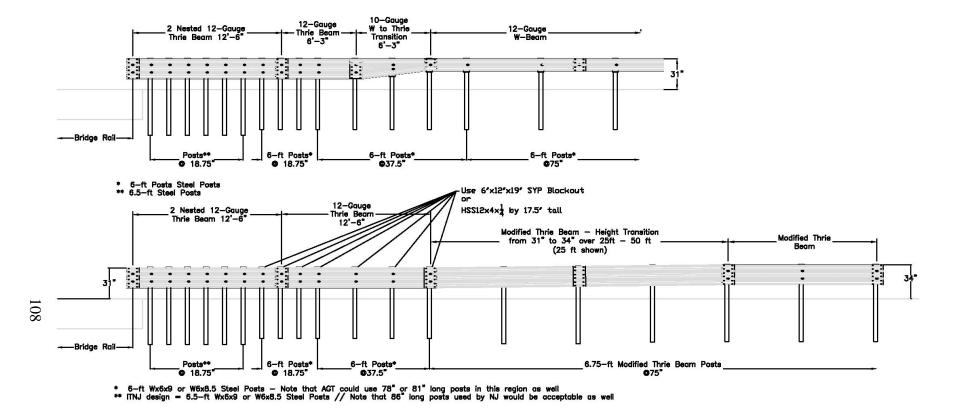


Figure 76. Modified Thrie Beam Transition to Thrie-Beam AGTs

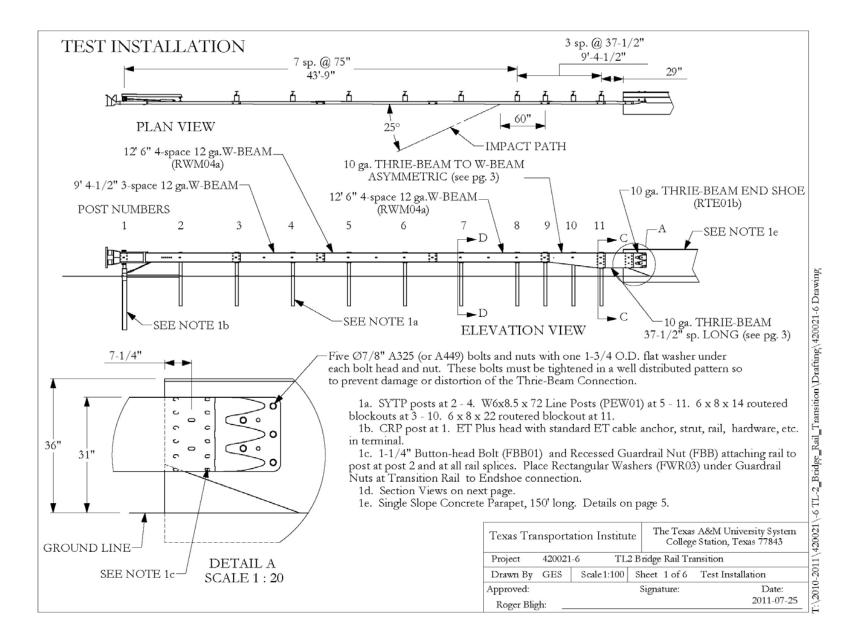


Figure 77. MASH TL-2 Thrie Beam Approach Guardrail Transition

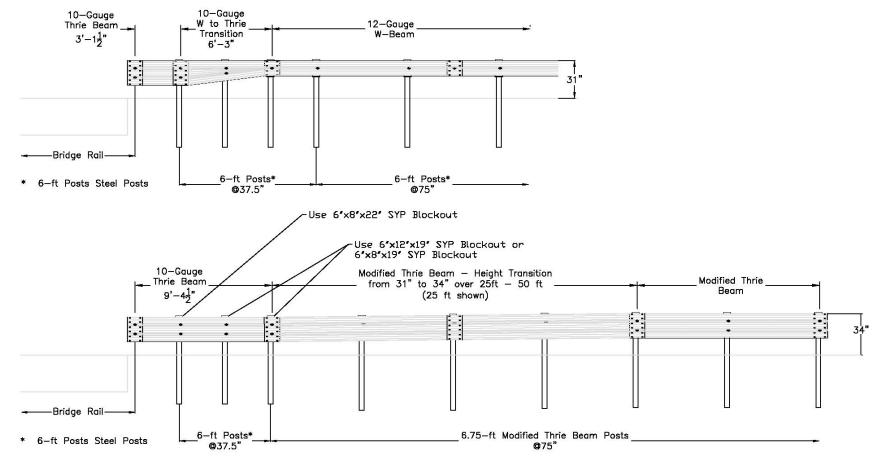


Figure 78. Modified Thrie Beam Transition to MASH TL-2 Thrie-Beam AGT

9.5 Working Width – Lateral Offset

During the crash testing program, test designation no. 3-11, test no. MTB-1, was conducted on the single sided roadside configuration of the modified three beam guardrail as this combination was expected to generate the maximum dynamic deflection for the barrier system. Working width of the system would be affected differently as the width of the overall particular version of the barrier factors into its determination. For example, the working width of the median version of the barrier is at least 40-1/8 in. based on the width of the system. The maximum dynamic deflection and working width observed in test no. MTB-1 were 34.4 in. and 49.3 in., respectively. These values should be applied to determine acceptable lateral offsets for the single-sided roadside version of the modified three beam system. While it is likely that the median barrier configuration would exhibit reduced dynamic deflection under test designation no. 3-11 than the single-sided roadside configuration, determination of the dynamic deflection and working width for the median barrier configuration would require further research and analysis through simulation or full-scale crash testing. As such, it is recommended that the dynamic deflection from test no. 3-11 on singlesided modified thrie beam be combined with the overall system width of the dual-sided barrier to estimate the working width for the dual-sided modified three beam under MASH TL-3 impacts. This would yield a conservative estimated working width value of 74 1/2 in. for the dual-sided modified thrie beam system under MASH TL-3. As noted above, actual working widths would likely be considerably lower.

9.6 Grading Requirements

As with any barrier system, grading of the terrain adjacent to the modified thrie beam guardrail is an important aspect of its installation to ensure proper function of the system. The modified thrie beam guardrail should be installed on a maximum grade of 10H:1V as noted in the *Roadside Design Guide* [27]. Previous research under NCHRP Report No. 350 indicated that approach slopes as steep as 8H:1V could be accommodated by the MGS for limited offsets [28]. This may suggest that the increased rail height and thrie beam coverage provided by modified thrie beam guardrail could potentially allow for the use of steeper approach slopes than the 10H:1V slope recommended above. However, additional research and testing would be required to confirm and define performance limits of the barrier with respect to steeper approach slopes.

Installation of the median barrier configuration of the modified thrie beam guardrail in vditches or flat-bottom ditches with slopes greater than 10H:1V is not recommended at this time. Research and full-scale crash testing of cable median barriers has indicated that traversal of vditches with 6H:1V and 4H:1V slopes can significantly affect barrier performance in terms of vehicle capture and stability. Thus, it is anticipated that similar issues with barrier performance may occur if the median modified thrie beam guardrail is installed in ditches with slopes greater than 10H:1V.

End users also often use longitudinal barrier systems to shield steep slopes. Typically, 2 ft of level terrain is recommended to be placed behind W-beam guardrail systems to ensure development of adequate post-soil forces. A similar offset would be 2 ft recommended for the modified thrie beam guardrail evaluated herein. Note that the MGS has been successfully evaluated at MASH TL-3 when installed at the slope break point of 2H:1V slopes or flatter slopes with 6-ft long posts at standard 75-in. post spacing [29]. Modified thrie beam guardrail uses the

same posts section as the MGS with 6-in. deeper embedment. The top rail height of the modified thrie beam is 3 in. higher than the MGS, but the thrie beam rail element on modified thrie beam guardrail extends 4¹¹/₁₆ in. lower than the MGS. As such, modified thrie beam would be expected to have similar or improved vehicle capture and increased post-soil restive forces as compared to the standard MGS installed at the slope break point of a 2H:1V slope. Thus, it is believed that modified thrie beam would perform acceptably under MASH TL-3 impact conditions when installed at the slope break point of 2H:1V or shallower slopes. It should be noted that this recommendation is based on the best currently available research and engineering judgment. Further analysis and full-scale crash testing would be required to fully verify the performance of the modified thrie beam adjacent to slopes.

9.7 Curbs

There may be a desire to install the modified thrie beam guardrail adjacent to a curb and gutter to address water flow and drainage issues. It is known that vehicle traversal of curbs can affect vehicle trajectory, including vehicle pitch and the height of the vehicle bumper and frontend structure. Thus, impacts that include a traversal of the curb prior to impact with the barrier may affect the vehicle trajectory and capture. Additionally, previous full-scale testing of guardrail with curbs had indicated the potential for increased rail loads and rail rupture due to increased post embedment and wedging of the vehicle underneath the guardrail. Previous testing of the MGS with curbs has indicated that the MGS is capable of meeting MASH TL-3 if the curb offset for a 6-in. tall AASHTO Type B curb is less than or equal to 6 in. in front of the face of rail [30]. However, no full-scale testing has been conducted on thrie-beam guardrail adjacent to curb to prove that it provides similar performance.

There are concerns with using modified thrie beam guardrail adjacent to curbs. Previous testing of upstream stiffness transitions for thrie beam AGTs have shown a tendency for small car vehicles to become wedged between the curb and the bottom of the rail segment, which increases the deceleration of the small car and increases the loading of the rail element [23]. There is an additional concern with respect to impacts on modified thrie beam guardrail adjacent to curb with the 2270P pickup truck vehicle in terms of vehicle capture. Because the use of the curb reduces the clear space between the bottom of the guardrail and the ground or curb, there is potential for the pickup truck wheel to ride up the curb and then continue to ride up the rail. This may lead to poor vehicle capture and vaulting of the vehicle. A similar behavior was observed in early testing of the thrie beam bullnose barrier under NCHRP Report No. 350 [31-33].

As such, the use of modified thrie beam guardrail adjacent to curbs is not recommended at this time, and further research would be required to determine the effect curbs adjacent to the barrier. If the modified thrie beam guardrail were transitioned to a thrie-beam AGT or the MGS, curbs could be used with those regions in accordance with previous crash testing and guidance.

9.8 Flaring

Flaring of the modified thrie beam guardrail may also be desired in certain applications. The flare rates used for the modified thrie beam guardrail should be obtained based on guidelines set forth in the AASHTO *Roadside Design Guide*, or other applicable research. Currently, there is no MASH TL-3 guidance for flare rates for the thrie beam guardrail system outside of the recommendation in the AASHTO *Roadside Design Guide*.

9.9 Blockout Types

The modified thrie beam guardrail evaluated in this study used a W14x22 blockout that has a 7¹/₈-in. x 6-in. triangular region of the web cut away near the lower front flange. A previous test of the modified thrie beam was conducted according to NCHRP Report No. 350 TL-4 for Trinity Industries that used the same blockout section with a slightly different shape for the angled cutout [6], as shown in Figure 79. In this test, a 17,380-lb SUT impacted the barrier at a speed of 50.2 mph and an angle of 14.9 degrees. The test resulted in a successful redirection of the 8000S vehicle with a dynamic deflection of 2.18 ft. Based on the similarities between the blockout tested herein and the alternative blockout tested by Trinity Industries, it is believed that either blockout is acceptable for use with the MASH TL-3 modified thrie beam system.

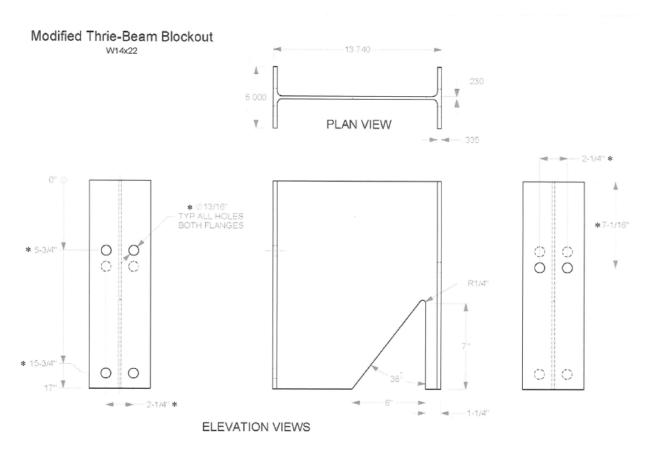


Figure 79. Trinity Industries Alternative Modified Thrie Beam Blockout [6]

10 MASH EVALUATION

The modified thrie-beam guardrail system was evaluated to determine its compliance with MASH 2016 TL-3 evaluation criteria in both a single-sided roadside configuration and a dualsided median configuration. The single-sided roadside configuration of the modified thrie-beam guardrail consisted of a 12-gauge thrie-beam panels mounted at a height of 34 in. and supported by 81-in. long W6x8.5 posts and W14x22 blockouts with an angled cutout in the web. The dual-sided modified thrie-beam guardrail was largely identical to the single-sided configuration except that the blockouts and thrie beam guardrail panels are mirrored on the backside of the system. Both configurations were transitioned to the W-beam guardrail at each end and anchored with standard trailing end anchorages.

10.1 Test Matrix

The modified thrie-beam guardrail system is classified as a longitudinal barrier for the purposes of evaluation. In MASH 2016, two full-scale crash tests are potentially required to evaluate this type of hardware, as shown in Table 13.

Test	Test	Test	Vehicle	Impact C	onditions	Evaluation
Test Article	Designation No.	Vehicle	Weight (lb)	Speed (mph)	Angle (deg.)	Criteria ¹
Longitudinal	3-10	1100C	2,425	62	25	A,D,F,H,I
Barrier	3-11	2270P	5,000	62	25	A,D,F,H,I

Table 13. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barriers

NJDOT and Caltrans desired to evaluate both the single-sided roadside and dual-sided median versions of the modified thrie beam guardrail. MwRSF reviewed the system designs and elected to conduct test designation nos. 3-10 and 3-11 on the critical configuration of the barrier such that only two tests were required. Test designation no. 3-11 (test no. MTB-1) was conducted on the single-sided configuration because the 2270P vehicle will impart increased barrier loading on the components of a single-sided system. Additionally, the potential for the torsional buckling of the system posts that led to increased barrier deflection and post snag in the original test designation no. 3-11 testing of the modified thrie beam would be more prevalent in the singlesided configuration. Finally, evaluation of the single-sided modified thrie beam configuration with the 2270P vehicle would also produce the maximum dynamic deflection and working width values for the barrier system. Test designation no. 3-10 (test no. MTB-2) was conducted on the dualsided, median version of the modified three beam as this system configuration would tend to increase loading and occupant risk values for the small car vehicle and increase the propensity for vehicle snag on the post due to the higher stiffness and reduced dynamic deflection of the dualsided system. Previous evaluation of the T-39 thrie beam barrier in for both roadside and median versions followed a similar methodology [8]. Thus, a total of two tests were conducted to complete the MASH TL-3 test matrix for evaluation of the single-sided roadside and dual-sided median versions of the modified thrie beam guardrail.

10.2 Full-Scale Crash Test Results

The results of the MASH TL-3 full-scale crash testing of the modified three beam guardrail system are summarized below.

- 1. Test no. MTB-1 was conducted under the MASH TL-3 guidelines for test designation no. 3-11. Test designation no. 3-11 is an impact of the 2270P vehicle into the system at 62 mph and an angle of 25 degrees. The critical impact point for this test was selected to maximize vehicle snag on the system posts and splice loading. The 5,003-lb quad cab pickup truck impacted the MTB guardrail at a speed of 62.9 mph, an angle of 25.4 deg, and at an impact point 11 ft -5.7 in. upstream from post no. 13. During the test, the pickup truck was captured and redirected by the thrie beam. During the redirection of the vehicle, torsional collapse of some of the W-section blockouts was observed similar to that seen in the original NCHRP Report No. 350 testing of the system. The torsional collapse of the blockouts did not compromise the overall test result. However, it may have led to increased wheel snag on the posts and disengagement of the right-front wheel. Additionally, the collapse of the blockouts appeared to allow the lower portion of the thrie beam guardrail to contact the flange and web of the blockout and the post flanges at post nos. 12 and 13. The contact at post no. 13 was sufficient to cause a small tear just downstream of the thrie beam splice at that post. However, this tear did not adversely affect the barrier system performance. The stability and trajectory of the vehicle were acceptable. Prior to coming to a stop, the test vehicle impacted portable barriers used to shield other areas of the test facility downstream from the barrier. This contact was well after vehicle exit and resulted in minor damage to the front of the test vehicle. The vehicle came to rest 282 ft - 3 in. downstream from the impact point and 14 ft - 7 in. laterally in front of the barrier after brakes were applied. Test no. MTB-1 met all of the safety requirements for MASH TL-3.
- 2. Test no. MTB-2 was conducted under the MASH TL-3 guidelines for test designation no. 3-10. Test designation no. 3-10 is an impact of the 1100C vehicle into the system at 62 mph and an angle of 25 degrees. The critical impact point for this test was selected to maximize vehicle snag on the system posts and splice loading. The 2,415-lb small car impacted the MTB guardrail at a speed of 63.1 mph, an angle of 24.9 deg, and at an impact point 7 ft − 6.4 in. upstream from post no. 13. During the test, the vehicle was captured and redirected by the thrie beam. As the vehicle was redirected, the right-front wheel and tire of the vehicle snagged on post no. 13 in the system. However, the wheel snag did not adversely affect vehicle stability or the occupant risk values. After exiting the system, the vehicle came to rest 187 ft − 7 in. downstream from the impact point and 51 ft − 11 in. laterally in front of the barrier after brakes were applied. Test no. MTB-2 met all of the safety requirements for MASH TL-3.

10.3 MASH Evaluation

Based on the results of the two successful full-scale crash tests conducted in this study, the modified thrie beam guardrail system meets all of the safety requirements for MASH TL-3 in both a single-sided roadside configuration and a dual-sided median configuration.

11 REFERENCES

- 1. *Manual for Assessing Safety Hardware (MASH), Second Edition*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- Ross, H.E., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *Recommended Procedures for* the Safety Performance Evaluation of Highway Features, National Cooperative Highway Research Program (NCHRP) Report 350, Transportation Research Board, Washington, D.C., 1993.
- 3. Ivey, D.L., Robertson, R., Buth, C.E., and McDevitt, C.F., *Test and Evaluation of W-beam and Thrie-Beam Guardrails*, FHWA Contract DOT-FH-11-9485, Texas Transportation Institute, Texas A&M University System, College Station, Texas, January 1982.
- 4. Mak, K.K., Bligh, R.P., and Menges, W.L., *Testing of State Roadside Safety Systems: Volume I: Technical Report*, Report No. FHWA-RD-98-036, Texas Transportation Institute, Texas A&M University System, College Station, Texas, April 1999.
- 5. Buth, C.E., and Menges, W.L., *NCHRP Report 350 Test 4-12 of the Modified Thrie Beam Guardrail*, Report No. FHWA-RD-99-065, Texas Transportation Institute, Texas A&M University System, College Station, Texas, December 1999.
- 6. Griffith, M.S., FHWA Eligibility Letter B-248, Federal Highway Administration, March 27, 2014.
- 7. *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 8. Griffith, M.S., Federal Highway Administration (FHWA), *Eligibility Letter HSA-10/B-148 for: T-39 Thrie-Beam Guardrail*, June 2, 2006.
- Mongiardini, M., Faller, R.K., Reid, J.D., Sicking, D.L., Stolle, C.S., and Lechtenberg, K.A., Downstream Anchoring Requirements for the Midwest Guardrail System, Report No. TRP-03-279-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 28, 2013.
- Mongiardini, M., Faller, R.K., Reid, J.D., and Sicking, D.L., Dynamic Evaluation and Implementation Guidelines for a Non-Proprietary W-Beam Guardrail Trailing-End Terminal, Paper No. 13-5277, Transportation Research Record No. 2377, Journal of the Transportation Research Board, TRB AFB20 Committee on Roadside Safety Design, Transportation Research Board, Washington D.C., January 2013, pages 61-73.
- Stolle, C.S., Reid, J.D., Faller, R.K., and Mongiardini, M., *Dynamic Strength of a Modified W-Beam BCT Trailing-End Termination*, Paper No. IJCR 886R1, Manuscript ID 1009308, International Journal of Crashworthiness, Taylor & Francis, Vol. 20, Issue 3, Published online February 23, 2015, pages 301-315.

- 12. Griffith, M.S., Federal Highway Administration (FHWA), *Eligibility Letter HSST/B-256 for: Trailing-End Anchorage for 31" Tall Guardrail*, December 18, 2015.
- 13. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 14. Clarifications on Implementing the AASHTO Manual for Assessing Safety Hardware, 2016, FHWA and AASHTO, https://design.transportation.org/wp-content/uploads/sites/21/2019 /11/Clarifications-on-Implementing-MASH-2016-aka-MASH-QA-Updated-Nov-19-2019.pdf, November 2019.
- 15. *Center of Gravity Test Code SAE J874 March 1981*, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 16. MacInnis, D., Cliff, W., and Ising, K., A Comparison of the Moment of Inertia Estimation Techniques for Vehicle Dynamics Simulation, SAE Technical Paper Series – 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.
- 17. Society of Automotive Engineers (SAE), Instrumentation for Impact Test Part 1 Electronic Instrumentation, SAE J211/1 MAR95, New York City, New York, July 2007.
- 18. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 19. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.
- Rosenbaugh, S.K., Lechtenberg, K.A., Faller, R.K., Sicking, D.L., Bielenberg, R.W., and Reid, J.D.. *Development of the MGS Approach Guardrail Transition Using Standardized Steel Posts*, Report No. TRP-03-210-10, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, 2010.
- 21. Lechtenberg, K.A., Mongiardini, M., Rosenbaugh, S.K., Faller, R.K., Bielenberg, R.W., and Albuquerque, F.D.B.. Development and Implementation of the Simplified MGS Stiffness Transition. *Transportation Research Record: Journal of the Transportation Research Board*, No. 2309, 2012, pp. 1-11.
- 22. Rosenbaugh, S.K., *Equivalent Steel Blockouts for Approach Guardrail Transitions*, Draft Technical Memorandum to Central Federal Lands Highway Division, Project/Contract No. DTFH68-17-E-000042, October 26, 2018.
- 23. Winkelbauer, B.J., Putjenter, J.G., Rosenbaugh, S.K., Lechtenberg, K.A., Bielenberg, R.W., Faller, R.K., and Reid, J.D., *Dynamic Evaluation of MGS Stiffness Transition with Curb*, Report No. TRP 03-291-14, Midwest Roadside Safety Facility, University of Nebraska Lincoln, Lincoln, Nebraska, June 30, 2014.

- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, R.W., Reid, J.D., and Coon, B.A.. Performance Evaluation of the Guardrail to Concrete Barrier Transition – Update to NCHRP 350 Test No. 3-21 with 28 in. C.G. Height (2214T-1), Report No. TRP-03-175-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, 2006.
- Rosenbaugh, S.K., Faller, R.K., Schmidt, J.D., and Bielenberg, R.W., *Development of a 34-in. Tall Thrie-Beam Guardrail Transition to Accommodate Future Roadway Overlays*, Paper No. 19-03446, <u>Journal of the Transportation Research Board</u>, Transportation Research Record No. 2673, Issue 2, Transportation Research Board, Washington D.C., Pages 489-501, DOI 10.1177/0361198118825464, January 2019.
- 26. Bligh, R.P., Arringtion, D.R., Menges, W.L., *Development of a Mash TL-2 Guardrail-to-Bridge Rail Transition Compatible with 31-Inch Guardrail*, Report No. FHWA/TX-12/9-1002-8, Texas A&M Transportation Institute, Texas A&M University System, College Station, Texas, December 2011.
- 27. *Roadside Design Guide*, 4th *Edition*, 2011, American Association of State Highway and Transportation Official (AASHTO), Washington, DC, 2011.
- Johnson, E.A., Lechtenberg, K.A., Reid, J.D., Sicking, D.L., Faller, R.K., Bielenberg, R.W., and Rohde, J.R., *Approach Slope for Midwest Guardrail System*, Report No. TRP-03-188-08, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, December 4, 2008.
- Haase, A.J., Kohtz, J.E., Lechtenberg, K.A., Bielenberg, R.W., Reid, J.D., and Faller, R.K., Midwest Guardrail System (MGS) with 6-ft Posts Placed Adjacent to a 1V:6H Fill Slope, Report No. TRP 03-320-16, Midwest Roadside Safety Facility, University of Nebraska Lincoln, Lincoln, Nebraska, August 22, 2016.
- Ronspies, K.B., Rosenbaugh, S.K., Faller, R.K., and Holloway, J.C., *Crash Testing Evaluation of the MGS with Curb: Mash Test Nos. 3-10 and 3-11*, Report No. TRP-03-390-18, Midwest Roadside Safety Facility, University of Nebraska Lincoln, Lincoln, Nebraska, March 22, 2020.
- Bielenberg, B.W., Faller, R.K., Reid, J.D., Rohde, J.R., Sicking, D.L., and Keller, E.A., *Concept Development of a Bullnose Guardrail System for Median Applications*, Report No. TRP-03-73-98, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, May 22, 1998.
- 32. Bielenberg, R.W., Reid, J.D., Faller, R.K., Rohde, J.R., Sicking, D.L., Keller, E.A., and Holloway, J.C., *Phase II Development of a Bullnose Guardrail System for Median Applications*, Report No. TRP-03-78-98, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, December 18, 1998.

33. Bielenberg, R.W., Faller, R.K., Reid, J.D., Rohde, J.R., Sicking, D.L., Keller, E.A., Holloway, J.C., and Supencheck, L.L., *Phase III Development of a Bullnose Guardrail System for Median Applications*, Report No. TRP-03-95-00, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, June 1, 2000.

12 APPENDICES

Appendix A. NJDOT Modified Thrie Beam Drawings

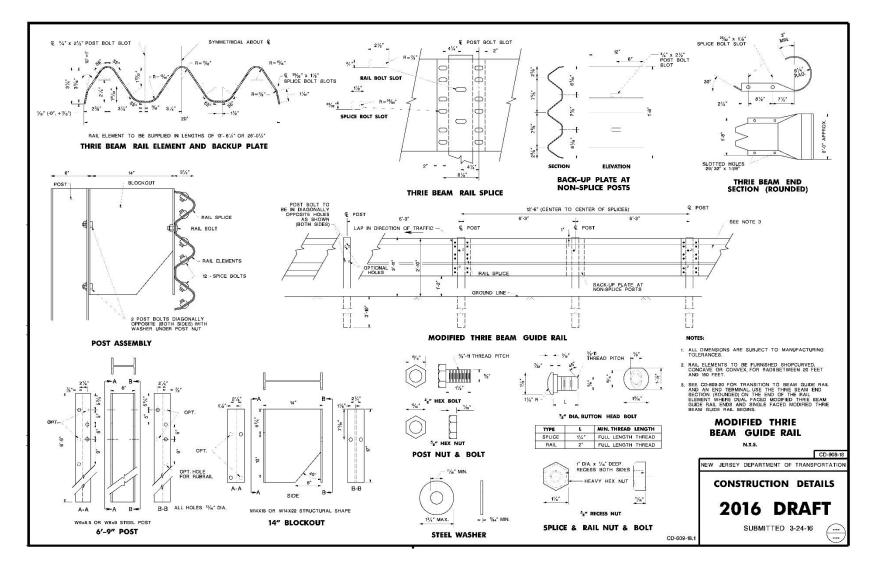


Figure A-1. NJDOT Modified Thrie Beam Details, Test No. MTB-1

122

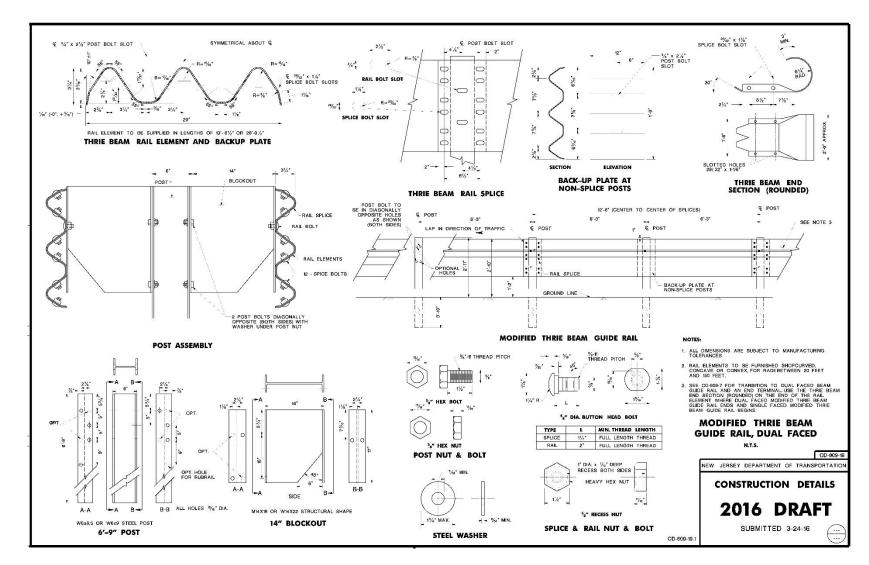


Figure A-2. NJDOT Modified Thrie Beam Details, Test No. MTB-2

123

Appendix B. Material Specifications

Item No.	Description	Material Specification	Reference
a1	12 ft – 6 in. 12-gauge Thrie Beam Section	AASHTO M180	H#130217 H#L33118
a2	12 in. 12-gauge Thrie Beam Backup Plate	AASHTO M180	H#L31018 H#L33118
a3	6 ft – 3 in. 12-gauge W-Beam MGS End Section	AASHTO M180	H#9513565 H#515691
a4	10-gauge Symmetrical W-beam to Thrie Beam Transition	AASHTO M180	H#191871 H#A80344 H#265388
b1	72-in. Long Foundation Tube	ASTM A500 Gr. B	H#A49248
b2	BCT Timber Post - MGS Height - Not Standard	SYP Gr. No. 1 or better (No knots 18 in. above or below ground tension face)	Ch#25729
b3	Ground Strut Assembly	ASTM A36	
b4	BCT Cable Anchor Assembly	-	
b5	Anchor Bracket Assembly	ASTM A36	H#JK16101488
b6	8 in. x 8 in. x $^{5}/_{8}$ in. Anchor Bearing Plate	ASTM A36	H#4181496
b7	2 ³ / ₈ -in. O.D. x 6-in. Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	H#B712810
c1	W6x8.5, 81-in. Long Steel Post	ASTM A36	H#13897 H#26236
c2	W14x22, 17-in. Long Steel Blockout	ASTM A992	H#B138445
c3	16D Double Head Nails	-	
d1	⁵ / ₈ in11 UNC, 10-in. Long Guardrail Bolt and Heavy Hex Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#20351510 Nut: H#20550810
d2	⁵ / ₈ in11 UNC, 2-in. Long Guardrail Bolt and Heavy Hex Nut	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolt: H#10439100 Nut: H#20550810
d3	⁵ / ₈ in11 UNC, 1 ¹ / ₄ -in. Long Guardrail Bolt and Heavy Hex Nut	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolt: H#10553090 Nut: H#20550810
d4	$^{7}/_{8}$ in9 UNC, 8-in. Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolt: H#2038622 Nut: H#12101054

Table B-1. Bill of Materials, Test Nos. MTB-1 and MTB-2

Item No.	Description	Material Specification	Reference
d5	⁵ / ₈ in11 UNC, 10-in. Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolt: H#DL15107048 Nut: P#36713 C#210101523
d6	⁵ / ₈ in11 UNC, 1 ¹ / ₂ -in. Long Hex Head Bolt and Nut"	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolt: H#816070039 Nut: P#36713 C#210101523
e1	⁷ / ₈ -in. Dia. Plain Round Washer	ASTM F844	P#33188 C#210151571
e2	⁵ / ₈ -in. Dia. Plain Round Washer	ASTM F844	P#33188 C#210151571

Table B-2. Bill of Materials, Test Nos. MTB-1 and MTB-2, Cont.

0	 1		1	
Cert	ed	An	2	VSIS
	 			1010

Order Number: 1121475

Customer PO: 2270

Document #: 1 Shipped To: NE

BOL Number: 55149

Use State: KS

As of: 4/26/10

Trinity Highway Products, LLC 425 E. O'Connor Lima, OH Customer: MIDWEST MACH.& SUPPLY CO. P. O. BOX 81097 LINCOLN, NE 68501-1097

Project: RESALE

Qty		Description	Spec	CL	TY	Heat Code/ Heat #	Yield	TS	Elg	С	Mn	P S	Si	Cu	Съ	Cr	Vn A	₩
20	209G	T12/12'6/6'3/S	M-180	A	2	130794	63,340	81,340	26.6 0.	190 0	0.750 0	0.011 0.003	0.030 0.	.110	0.00 0	060 0	.000	4
			M-180	A	2	128756	62,920	81,360	24.4 0	.190	0.740	0.012 0.004	0.020 0	0.110	0.000 0	0.060	0.000	4
			M-180	Α	2	129161	63,450	81,140	26.0 0	.190	0.730	0.010 0.003	0.020 0	0.150	0.000 (0.050	0.000	4
			M-180	Α	2	129162	62,160	78,740	25.4 0	.190	0.740	0.014 0.004	0.020 0	0.150	0.000 (0.070	0.000	4
			M-180	A	2	130216	63,390	81,100	22.9 0	.190	0.730	0.011 0.004	0.020 0	0.100	0.000 (0.050	0.000	4
			M-180	A	2	130217	64,020	83,600	21.8 0	.190	0.760	0.013 0.005	0.020 0	0.150	0.000 (0.060	0.000	4
			M-180	A	2	130793	63,980	83,300	23.0 0	.200	0.740	0.012 0.003	0.030 0	0.120	0.000 (0.050	0.000	4
	209G		M-180	Α	2	130217	64,020	83,600	21.8 0.	190 0	0.760 0	0.013 0.005	0.020 0	.150	0.00 0	.060 0	.000	4
			M-180	А	2	129151	63,860	81,300	26.8 0	.190	0.740	0.010 0.004	0.020 (0.090	0.000 (0.050	0.000	4
			M-180	A	2	129154	61,190	79,690	24.8 0	.180	0.730	0.012 0.006	0.020 (0.150	0.000 (0.060	0.000	4
			M-180	A	2	129161	63,450	81,140	26.0 0	.190	0.730	0.010 0.003	0.020 (0.150	0.000 (0.050	0.000	4
			M-180	A	2	129162	62,160	78,740	25.4 0	.190	0.740	0.014 0.004	0.020 0	0.150	0.000 (0.070	0.000	4
			M-180	A	2	130216	63,390	81,100	22.9 0	.190	0.730	0.011 0.004	0.020 0	0.100	0.000 (0.050	0.000	4
			M-180	A	2	130218	57,750	82,130	22.2 0	.130	0.750	0.011 0.005	0.020 0	0.130	0.000 (0.050	0.000	4
			M-180	A	2	130793	63,980	83,300	23.0 0	.200	0.740	0.012 0.003	0.030 0	0.120	0.000 (0.050	0.000	4
	209G		M-180	A	2	130216	63,390	81,100	22.9 0.	190 (0.730 0	0.011 0.004	0.020 0	.100	0.00 0	050 0	0.000	4
			M-180	A	2	129152	62,700	80,900	25.2 0	.190	0.720	0.012 0.004	0.020 (0.150	0.000 (0.060	0.000	4
			M-180	Α	2	129154	61,190	79,690	24.8 0	0.180	0.730	0.012 0.006	0.020	0.150	0.000 (0.060	0.000	4
			M-180	A	2	130217	64,020	83,600	21.8 0	.190	0.760	0.013 0.005	0.020	0.150	0.000 (0.060	0.000	4
			M-180	A	2	130793	63,980	83,300	23.0 0	.200	0.740	0.012 0.003	0.030	0.120	0.000 (0.050	0.000	4
			M-180	A	2	130794	63,340	81,340	26.6 0	0.190	0.750	0.011 0.003	0.030	0.110	0.000 (0.060	0.000	4
20	729G	TS 8X6X3/16X8'-0" SLEEVE	A-500			N0266	54,007	72,010	29.0 0.	.057 (0.645 0	800.0 800.0	0.014 0	.000	0.00 0	.000 0	0.000	4
20) 749G	T\$ 8X6X3/16X6'-0" SLEEVE	A-500			N0266	54,007	72,010	29,0 0.	.057 (0.645 (0.008 0.008	0.014 0	.000	0.00 0	.000 0	0.000	4
20) 12379G	T12/12'6/SPEC/S 34'RCX	M-180	A	2	129152	62,700	80,900	25.2 0.	.190 (0.720 (0.012 0.004	0.020 0	.150	0.00 0	.060 0	000.0	4

1 of 3

Figure B-1. 12 ft – 6 in. Thrie Beam Section, Test Nos. MTB-1 and MTB-2

	1						0		8			. 8				y Proc	n.,
						Certif	fied Analy	sis							inter.	-	ucis.
frinity Hi	ghway P	roducts, LLC															7
50 East R	obb Ave	ð.				Or	der Number: 129897	0 Pr	od Ln Gr	p: 0-0	DE2.0						2
ima OH 4	5801 Ph	m:(419) 227-1296				C	ustomer PO: 3624										
e severe en person s			11 00			0.72			01.1					A	sof: 9/7/18		
Justomer:		EST MACH & SUPP					OL Number: 106000		Ship I	Jate:							
	P. O. B	SOX 703				1	Document #: 1										
							Shipped To: NE										
	MILFO	RD, NE 68405					Use State: NE										
Project:	STOCI	ĸ															
																	-
Qty	Part #	Description	Spec	CL	ТҮ	Heat Code/ Heat	Yield	TS	Elg	с	Mn	P S	Si	Cu	Cb Cr	Vn	A
			M-180	A	2	227752	60,970	79,700	24.9	0.190	0.730	0.014 0.004	0.010	0.120	0.000 0.060	0.002	
			M-180	A	2	228143	62,240	80,850	26.3	0.190	0.740	0.012 0.002	0.020	0.120	0.000 0.060	0.002	
			M-180	A	2	228144	57,980	78,970	27.3	0.190	0.730	0.015 0.003	0.020	0.120	0.000 0.050	0.001	1
			M-180	Α	2	228145	56,880	76,080	28.9	0.190	0.730	0.013 0.004	0.020	0.120	0.000 0.060	0.008	4
	205G				2	L33418											-
		w	M-180	A	2	230047	63,610	83,360		0.180		0.011 0.004			0.000 0.060		
60	211G	T12/12'6/3'1.5/S	M-180	A	2	95812 L33118	63,610	83,360	25.8	0.190	0.740	0.010 0.002	0.020	0.100	0.000 0.060	0.002	9
-	2110	11010 00 11010	M-180	A	2	227752	.60,970	79,700	24.9	0.190	0.730	0.014 0.004	0.010	0.120	0.000 0.060	0.002	4
			M-180	A	2	227753	61,750	80,930		0.190		0.013 0.004			0.000 0.050		
			M-180	A	2	228143	62,240	80,850	26.3	0.190	0.740	0.012 0.002	0.020	0.120	0.000 0.060	0.002	4
			M-180	А	2	228144	57,980	78,970	27.3	0.190	0.730	0.015 0.003	0.020	0.120	0.000 0.050	0.001	4
			M-180	A	2	228145	56,880	76,080	28.9	0.190	0.730	0.013 0.004	0.020	0.120	0.000 0.060	0.008	4
	211G				2	L32818											
			M-180	A	2	226511	61,110	79,440		0.180		0.009 0.004			0.000 0.070		
			M-180	A	2	227752	60,970	79,700		0.190		0.014 0.004			0.000 0.060		
			M-180	A	2	228143	62,240	80,850		0.190		0.012 0.002			0.000 0.060		
60	261G	T12/25/3'1.5/S	M-180	A	2	228145 L33418	56,880	76,080	28.9	0.190	0.730	0.013 0.004	0.020	0.120	0.000 0.060	0.008	4
00	2010	112/2010 1.010	M-180	A	2	230047	63,610	83,360	25.8	0.180	0 770	0.011 0.004	0.010	0.060	0.000 0.060	0 001	4
			M-180	A	2	95812	63,610	83,360	25.8			0.010 0.002			0.000 0.060		
	261G		14-14-0	5. B.	2	L32818	,		2010	1000				000000		12.9.965	10
			M-180	A	2	226511	61,110	79,440	27.4	0.180	0.720	0.009 0.004	0.010	0,110	0.000 0.070	0.002	4
			M-180	A	2	227752	60,970	79,700	24.9	0.190	0.730	0.014 0.004	0.010	0.120	0.000 0.060	0.002	4
			M-180	Α	2	228143	62,240	80,850	26.3	0.190	0.740	0.012 0.002	0.020	0.120	0.000 0.060		
			M-180	Α	2	228145	56,880	76,080	28.9	0,190	0.730	0.013 0.004	0.020	0.120	0.000 0.060	0,008	4

128

Certified Analysis

. 6

in the	Producis
E C	

Trinity Hi	ghway Products, LLC				1
550 East R	obb Ave.	Order Number:	1293172	Prod Ln Grp: 0-OE2.0	
Lima, OH 4	5801 Phn:(419) 227-1296	Customer PO:	3572		As of: 5/1/18
Customer:	MIDWEST MACH & SUPPLY CO	BOL Number:	104228	Ship Date:	AS 01. 5/1/10
	P. O. BOX 703	Document #:	1		2
		Shipped To:	NE		
	MILFORD, NE 68405	Use State:	NE		
Project:	STOCK				

Qty	Part #	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	С	Mn	Р	S	Si	Cu	Cb	Cr	Vn	ACW
1	111G	10/12'6/3'1.5/S	RHC		2	L10518T													4
			M-180	в	2	217849	60,890	79,570	28.0	0.180	0.720	0.014	0.002	0.030	0.140	0.00	0 0.100	0.001	4
			M-180	В	2	218811	63,570	83,180	24.6	0.190	0.710	0.012	0.002	0.020	0.110	0.00	0.050	0.002	. 4
			M-180	В	2	217849	60,890	79,570	28.0	0.180	0.720	0.014	0.002	0.030	0.140	0.00	0.100	0.001	4
			M-180	в	2	218811	63,570	83,180	24.6	0.190	0.710	0.012	0.002	0.020	0.110	0.00	0.050	0.002	4
40	211G	T12/12'6/3'1.5/S			2	L31018													
			M-180	Α	2	222878	64,680	81,820	25.2	0.180	0.740	0.012	0.003	0.020	0.130	0.000	0.070	0.002	4
50	261G	T12/25/3'1.5/S			2	L31418													
			M-180	A	2	222038	63,780	82,280	22.9	0.190	0.750	0.012	0.002	0.030	0.100	0.000	0.070	0.001	4
			M-180	A	2	222878	64,680	81,820	25.2	0.180	0.740	0.012	0.003	0.020	0.130	0.000	0.070	0.002	4
			M-180	A	2	224111	61,010	81,710	26.1	0.190	0.730	0.011	0.003	0.020	0.120	0.000	0.060	0.002	4
			M-180	A	2	224112	63,490	81,930	25.0	0.190	0.730	0.014	0.005	0.020	0.130	0.000	0.060	0.010	4
12	736G	5'/TUBE SL/.188"X6"X8"FLA	A-500			A712224	79,860	80,000	25.8	0.050	0.810	0.008	0.002	0.030	0.090	0.000	0.050	0.003	4
9	738A	5'TUBE SL.188X6X8 1/4 /PL	A-36		2	749231	50,400	73,800	29.0	0.170	0.770 (0.010 (0.004	0.020	0.030	0.008	0.020	0.008	4
	738A		A-500		2	822¥34060	54,505	68,028	29.0	0.200	0.790 (0,010 (0.003	0.011	0.014	0.002	0.020	0.001	4
	738A		HW		2	15616848													
6	957G	T12/BUFFER/ROLLED	A-36			9412222	54,100	72,900	31.0	0.200	0.400 0	0.008 0	0.005	0.010	0.020	0.000	0.040	0.001	4
600	3320G	3/16"X1.75"X3" WASHER	HW			P37836													
12	9852A	STRUT & YOKE ASSY	A-36			195070	52,940	69,970	31.1	0.190	0.520 0).014 C	.004	0.020	0.110	0.000	0.050	0.000	4
	9852A		A-36		2	645887	39,900	62,500	32.0	0.190	0.400 0	0.009 0	.015	0.009	0.054	0.001	0.038	0.001	4
						• *											1 03	f 2	

Figure B-3. 12 in. Thrie Beam Backup Plates, Test Nos. MTB-1 and MTB-2

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

Customer:	MIDWEST MAC P. O. BOX 703 MILFORD,NE,68		IPPLY CO.				Test Report Ship Date; Customer P O Shipped to: Project GHP Order No.:	11/15/2016 3366 MIDWEST MACH INVENTORY 202136	INERY & SUPP	LY CO.			
HT # code	Heat #	c.	MN.	Ρ.	s.	Si.	Tensile	Yield	Elong.	Quanity	Class	Туре	Description
9830	9513565	0.21	0.3	0.01	0.008	0.01	76639	56644	25.65	80	A	1	12GA 12FT6IN/3FT1 1/2IN WB T1
9827	9513566	0.22	0.76	0.011	0.008	0.01	79453	59412	28,02	з	Α	2	12GA 12FT6IN/3FT1 1/2IN WB T2
9816	31639313	D.19	0.82	0.01	0.005	0.03	77300	56000	27	з	А	2	12 GA 12FT6IN WB T2 FLEAT-SKT COMBO PAN
9828	9513569	0.23	0.78	0.009	0.008	0.01	78281	58917	24.95	170	Α	1	12GA 25FT0IN 3FT1 1/2IN WB T1
9818	31639313	0.19	0.82	0.01	0,005	0,03	77300	56000	27	з	A	2	12GA 9FT4 1/2IN 3FT1 1/2IN W8 T2
9830	9513585	0.21	0.3	0.01	0.008	0.01	76639	56644	25.65	40	А	1	12GA 6FT 3IN WB T1 HS@ 3FT 1.SIN

R#17-410 HT Code#9830 H#9513565

6'3" W-Beam Yellow Paint Feb 2017 SMT

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-653 All Galvanizing has occurred in the United States All stetel used in the manufacture is of Domestic Origin, "Made and Meited in the United States" All Stetel used meets Title 23CFR 635.410 - Buy America All Guardrail: and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation	KARA J CARPENTER Notary Public In and for the State of Ohio My Commission Expires February 16, 2021
All controlled oxidized/corrosion resistant Guardrall and terminal sections meet ASTM ABO8, Type 4. By: All controlled oxidized/controlled oxidize	STATE OF OHIO: COUNTY OF STARK Sworn to and subscribed before-me, a Notary Public, by Andrew Artar this 16 day of November, 2016 Aptary Public, State of Ohio

Figure B-4. 6 ft – 3 in. W-Beam MGS End Section, Test Nos. MTB-1 and MTB-2

×						Certifie	ed 'naly	ysis							Trinic	<u> </u>	3.16
Trinity Hi	ghway I	Products, LLC												÷			/
550 East R	lobb Av	e.				Order	Number: 11647	46									
Lima, OH	45801					Cust	omer PO: 2563										
		/EST MACH.& S					Number: 69500							As	s of: 5/16/12		
Customer:			UPPLI CO.														
	P. O. I	30X 703				Doc	cument #: 1										
						Shi	ipped To: NE										
1	MILFO	ORD, NE 68405				τ	Ise State: KS										
Project:	RESA	LE															
Qty 50	Part #	Description 12/6'3/S	Spec M-180	CL	TY 2	Heat Code/ Heat #	Yie ld 64,000	TS 72,300	Elg	C	Mn 0.740 (P S	Si	Cu .021	Cb Cr 0.04 0.032	Vn /	
50	00	12/03/3	M-180	A		4111321	63,100	80,200		0.210		0.009 0.003			0.000 0.030		
			M-180	A	2	515659	67,000	75,200	26.0			0.012 0.008			0.000 0.025		
			M-180	A	2	515660	66,800	74,300	27.0	0.064	0.740	0.012 0.006	0.009 0	0.017	0.000 0.025		
			. M-180	A	2	515662	63,900	72,900	28.0	0.064	0.770	0.010 0.006	0.009 0	0.016	0.000 0.025		
			M-180	A	2	515663	64,900	76,500	21.0	0.064	0.740	0.009 0.007	0.007 0	1.023	0.000 0.026	0.000	4
			M-180	A	2	515668	66,700	75,500	27.0	0.063	0.770	0.014 0.007	0.010 0	1.024	0.000 0.030	0.000	4
			M-180	Å	2	515668	70,200	80,800	21.0	0.063	0.770	0.014 0.007	0.010 0).024	0.000 0.030	0.000	4
			M-180	Α	2	515669	64,500	74,100	26.0	0.063	0.790	0.014 0.007	0.009 0).017	0.000 0.028		
			M-180	A	2	515687	63,400	74,100	30.0			0.012 0.010			0.000 0.060		
			M-180	A		515687	65,100	74,400		0.068		0.012 0.010			0.000 0.060		
			M-180	A		515690	63,000	71,800	27.0			0.010 0.008			0.000 0.042		
			M-180 M-180	A		515696	62,900	72,500		0.058		0.013 0.008			0.000 0.046		
			MI-180	A	2	515696	63,900	73,400	29.0	0.058	0.740	0.013 0.008	0.011 0	1.029	0.000 0.046	0.000	4

67,800

62,900

66,700

64,000

63,800

63,900

65,000

63,100

63,600

64,800

67,000

64,900

77,700

71,600

74,200

74,000

74,200

73,300

74,500

80,200

73,600

74,300

75,200

76,500

30 60G 12/25/6'3/S

131

4

4

28.0 0.065 0.800 0.013 0.009 0.012 0.036 0.000 0.035 0.000 4

27.0 0.061 0.740 0.013 0.010 0.012 0.027 0.000 0.064 0.000 4

30.0 0.061 0.740 0.013 0.010 0.012 0.027 0.000 0.064 0.000 4

28.0 0.061 0.760 0.016 0.007 0.011 0.021 0.000 0.028 0.000 4

29.0 0.066 0.750 0.014 0.009 0.010 0.026 0.000 0.039 0.000 4

27.0 0.064 0.760 0.016 0.009 0.012 0.024 0.000 0.041 0.000 4

28.0 0.064 0.760 0.016 0.009 0.012 0.024 0.000 0.041 0.000 4

29.0 0.210 0.710 0.009 0.007 0.010 0.030 0.00 0.030 0.000 4

27.0 0.066 0.720 0.012 0.006 0.011 0.021 0.000 0.026 0.000 4

26.0 0.069 0.740 0.010 0.006 0.011 0.022 0.000 0.021 0.000

26.0 0.064 0.790 0.012 0.008 0.008 0.022 0.000 0.025 0.000

21.0 0.064 0.740 0.009 0.007 0.007 0.023 0.000 0.026 0.000 4

Figure B-5. 6 ft – 3 in. W-Beam MGS End Section, Test Nos. MTB-1 and MTB-2

M-180

M-180 A

A 2

A 2

A 2

A

A 2

A 2

A

A

A

A 2

2

2

2

2

2

A 2

515700

616068

616068

616071

616072

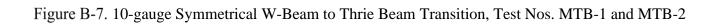
616073

616073

515656

515658

515659


515663

4111321

				Ce	rtified Analy	sis		in the states
Trinity H	ighway Pro	ducts, LLC						
2548 N.E.	28th St.				Order Number: 1277693	Prod Ln Grp:	3-Guardrail (Dom)	
Ft Worth (THP), TX 76	111 Phn:(817) 665-14	99		Customer PO: 35079			As of: 4/12/17
Customer:	GORDO	N'S SPECIALTIES I	NC		BOL Number: 66287	Ship Da	te:	ASUL 4/12/17
		HIGHWAY PRODU	CTS		Document #: 1			
	720 WES	T WINTERGREEN			Shipped To: TX			
	HUTCHIN	48, TX 75141			Use State: TX			
Project:	RESALE		ALC: N			16 and a st		
LL STE	EL USED V	VAS MELTED ANI	MANUFAC	TURED IN USA AND	e Stain Policy QMS-LG-002. COMPLIES WITH THE BU			
ALL STEI ALL GUA ALL COA ALL GALV ALL GALV	EL USED V RDRAIL M TINGS PR VANIZED M VANIZED M O GOOD P/	VAS MELTED ANI MEETS AASHTO M OCESSES OF THE IATERIAL CONFOR IATERIAL CONFOR	MANUFAC -180, ALL ST STEEL OR IR AS WITH AST AS WITH AST DING IN SUI	TURED IN USA AND TRUCTURAL STEEL RON ARE PERFORMI IM A-123 (US DOMEST TM A-123 & ISO 1461 (FFIX B,P, OR S, ARE	O COMPLIES WITH THE BU MEETS ASTM A36 UNLESS ED IN USA AND COMPLIES IC SHIPMENTS) INTERNATIONAL SHIPMENT	S OTHER WISE ST S WITH THE "BU" S)	TATED. Y AMERICA ACT", 2	
ALL STEI ALL GUA ALL COA ALL CALV ALL GALV FINISHEL BOLTS CO NUTS CO WASHERS 3/4" DIA C.	EL USED W RDRAIL M TINGS PR VANIZED M O GOOD PA OMPLY W MPLY WT COMPLY W	VAS MELTED ANI MEETS AASHTO M OCESSES OF THE LATERIAL CONFOR ART NUMBERS EN ITH ASTM A-307 S ITH ASTM A-363 SH WITH ASTM F-436 S ZINC COATED SW	MANUFAC -180, ALL ST STEEL OR IR MS WITH AST MS WITH AST DING IN SUI PECIFICATIO PECIFICATION	TURED IN USA AND TRUCTURAL STEEL RON ARE PERFORM M A-123 (US DOMEST IM A-123 & ISO 1461 (FFIX B,P, OR S, ARE ONS AND ARE GAL ONS AND ARE GALV. N AND/OR F-844 AND	O COMPLIES WITH THE BU MEETS ASTM A36 UNLESS ED IN USA AND COMPLIES IC SHIPMENTS) INTERNATIONAL SHIPMENT UNCOATED	S OTHERWISE ST S WITH THE "BU S) CE WITH ASTM A- WITH ASTM A- RDANCE WITH AS	TATED. Y AMERICA ACT", 2 1-153, UNLESS OTHE 153, UNLESS OTHER STM F-2329.	RWISE STATED.
ALL STEI ALL GUA ALL COA ALL COA ALL COA ALL COA ALL COA ALL COA TINISHEL 30LTS CO VASHERS /4" DIA C. TRENGTI Itate of Tex Votary Pul	EL USED W RDRAIL N TINGS PR VANIZED M VANIZED M O GOOD PA OMPLY W MPLY WT COMPLY W ABLE 6X19 H - 46000 Ll (as, County o	VAS MELTED ANI MEETS AASHTO M OCESSES OF THE LATERIAL CONFOR AT RUMBERS EN ITH ASTM A-307 S TH ASTM A-307 S TH ASTM A-563 SE WITH ASTM F-436 S ZINC COATED SW B of Tarrant. Sworn and Notar My	D MANUFAC -180, ALL ST STEEL OR IR MS WITH AST MS WITH AST DING IN SUI PECIFICATIO PECIFICATION AGED END AI	TURED IN USA AND TRUCTURAL STEEL RON ARE PERFORM M A-123 (US DOMEST TM A-123 & ISO 1461 (FFIX B,P, OR S, ARE ONS AND ARE GALV N AND/OR F-844 AND ISI C-1035 STEEL ANN ore me this 12nd day of A	O COMPLIES WITH THE BU MEETS ASTM A36 UNLESS ED IN USA AND COMPLIES IC SHIPMENTS) INTERNATIONAL SHIPMENT UNCOATED VANIZED IN ACCORDANCE ARE GALVANIZED IN ACCOR EALED STUD 1" DIA ASTM	S OTHERWISE ST S WITH THE "BU S) CE WITH ASTM A- WITH ASTM A- RDANCE WITH AS	TATED. Y AMERICA ACT", 2 1-153, UNLESS OTHE 153, UNLESS OTHER STM F-2329.	RWISE STATED.

Figure B-6. 10-gauge Symmetrical W-Beam to Thrie Beam Transition, Test Nos. MTB-1 and MTB-2

l'rinity H	lighway F	Products, LLC														1		/
2548 N.E	. 28th St.					Order	Number: 12679	55 Pro	d Ln Gr	p: 3-	Guardr	ail (Dom)					V	
Ft Worth (THP), TX	76111 Phn:(817) 665-1499				Custo	omer PO: 33653								Asof: 1	NAMA		
Customer	GORD	ON'S SPECIALTIES INC				BOL	Number: 63907		Ship I	Date:				1	ASOLI	0/4/10		
	dba GS	SI HIGHWAY PRODUCTS					ument#: 1 pped To: TX											
	HUTCH	HINS, TX 75141					se State: TX											
Dur fan de																		
Project:	RESAL	LB		-	1							C HICK	-			-	-	
Qty	Part #	Description	Spec	CL	ту		Yield	TS	Elg	с	Mn	P S	Si	Cu	Съ	Cr	Vn	ACT
175	11G	12/12/6/31.58			197	F14016		1									and the	
			M-180	A		1264666	61,000	79,800		0.190		0.009 0.00					0.003	
			M-180 M-180	A		A80569 C78738	64,100 66,800	84,300 85,800		0.210		0.016 0.00					0.001	
			M-180	A		C79057	64,200	87,100		0.210		0.011 0.00					0.001	
100	61G	12/25/3'1.5/S	111.100			F13716				0.220	0.850	0.010 0.00	* 0,050	0.100	0.002	. 0.080	0.001	
			M-180	A		1164306	56,300	77,700	29.0	0,190	0.780	0.010 0.00	2 0.020	0.120	0.002	0.050	0.003	4
			M-180	A		1264315	58,500	80,400	21.0	0.200	0.750	0.007 0.00	0.020	0.100	0.001	0.040	0.003	4
			M-180	A		1264669	56,100	76,900	26.0	0.180	0.770	0.012 0.00	2 0.020	0.120	0.002	0.060	0.004	4
			M-180	A		C78738	66,800	85,800		0.210		0.011 0.00						
50	\$50G	12/BUFFER/ROLLED	A-36			635238	51,500	72,500	30.0	0.190	0.440 0	0.021 0.018	0.011	0.077	0.001	0.069	0.001	4
- 200	901G	12/FLARE/8 HOLE	M-180	A	2	193147	62,430	81,280	26,2	0.190	0.730 (0.014 0.003	0.020	0.110	0.000	0.060	0.001	4
15	926G	10/END SHCE/EXTRA HOLE	M-180	в	2	193144	59,120	78,090	29.2	0.190	0.720 0	0.013 0.004	0.010	0.120	0.000	0.040	0.000	4
50	32218G	TIO/TRAN/IB:WB/ASYM/R	M-180	B	2	A78617	51,300	72,300	30.2	0.200	0.697 (0.009 0.002	0.030	0.070	0.002	0.050	0.002	4
/ 50	32219G	T10/TRAN/TB:WB/ASYM/LT	M-180	B	2	A80344	63,200	85,600	19.9	0.200	0.700 (0.009 0.003	0.030	0.130	0.002	0.060	0.001	4

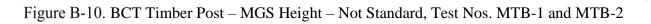

					Ce	runed	Analy	ysis				And
Trinity H	lighway Pr	oducts, LLC										
2548 N.E	. 28th St.					Order Nur	mber: 126671	84 Pro	d Ln Grp: 3-G	uardrail (Doe	m)	
Ft Worth (THP), TX 7	6111 Phn:(817) 665-14	99			Custome	r PO: 33512					As of: 9/14/16
Customer	: GORDO	N'S SPECIALTIES	NC			BOL Nur	mber: 63626		Ship Date:			
	7970100000000	HIGHWAY PRODU ST WINTERGREEN	CTS				ent#: 1 d To: TX					
	HUTCHI	NS, TX 75141				Use S	state: TX					
Project:	RESALI	B										
ALL STE ALL GUA ALL COA	EL USED ARDRAIL ATINGS PH VANIZED	aterials subject to Tri WAS MELTED ANI MEETS AASHTO M ROCESSES OF THE MATERIAL CONFOR	MANUFAU -180, ALL S STEEL OR I MS WITH AS	CTURED TRUCTU IRON ARI TM A-123	IN USA ANI RAL STEEL E PERFORM (US DOMEST	D COMPLIES MEETS AST ED IN USA A ITC SHIPMENT	WITH THE E M A36 UNLE AND COMPLI	BUY AME SS OTHE SS WITH	RWISE STATE	D.		635.410.
ALL STE ALL GUA ALL COA ALL GAL	EL USED ARDRAIL TINGS PI VANIZED N VANIZED N	WAS MELTED AND MEETS AASHTO N ROCESSES OF THE MATERIAL CONFOR MATERIAL CONFOR	MANUFAU -180, ALL S STEEL OR I MS WITH AS MS WITH AS	CTURED TRUCTU IRON ARI TM A-123 STM A-12:	IN USA ANI RAL STEEL E PERFORM (US DOMEST 3 & ISO 1461	D COMPLIES MEETS AST ED IN USA A ITC SHIPMENT (INTERNATIO	WITH THE E M A36 UNLE AND COMPLI (IS) (NAL SHIPME)	BUY AME SS OTHE SS WITH	RWISE STATE	D.		635.410.
ALL STE ALL GUA ALL COM ALL GAL ALL GAL FINISHEI	EL USED ARDRAIL TINGS PH VANIZED N VANIZED N O GOOD F	WAS MELTED AND MEETS AASHTO N ROCESSES OF THE MATERIAL CONFOR	MANUFAG -180, ALL S STEEL OR I MS WITH AS MS WITH AS IDING IN SU	CTURED TRUCTU IRON ARI TM A-123 STM A-12: JFFIX B,F	IN USA ANI RAL STEEL E PERFORM (US DOMEST 3 & ISO 1461 P, OR S, ARE	D COMPLIES MEETS AST ED IN USA A ITC SHIPMENT (INTERNATIO	WITH THE E TM A36 UNLE AND COMPLI (TS) (NAL SHIPME)	BUY AME SS OTHEJ ES WITH NTS)	RWISE STATE THE "BUY AM	D. IERICA AC'	T", 23 CFR	
ALL STE ALL GUA ALL COM ALL CAL ALL GAL FINISHEI BOLTS C WASHERS W4" DIA C	EL USED ARDRAIL ATINGS PI VANIZED I VANIZED I O GOOD F OMPLY W S COMPLY WI S COMPLY	WAS MELTED ANI MEETS AASHTO N ROCESSES OF THE MATERIAL CONFOR WATERIAL CONFOR PART NUMBERS EN VITH ASTM A-307 S ITH ASTM A-563 SI WITH ASTM F-436 S 9 ZINC COATED SW	D MANUFAI -180, ALL S STEEL OR I MS WITH AS MS WITH AS DING IN SU PECIFICATION	CTURED TRUCTU IRON ARI TM A-123 STM A-123 STM A-123 UFFIX B,I IONS AND ONS AND ONS AND	IN USA ANI RAL STEEL E PERFORM (US DOMEST 3 & ISO 1461 P, OR S, ARE D ARE GAL O ARE GALV R F-844 AND	D COMPLIES MEETS AST ED IN USA A ITC SHIPMENT (INTERNATIO UNCOA TEL VANIZED IN ARE GALVA)	WITH THE E M A36 UNLE AND COMPLI (5) WAL SHIPME O N ACCORDAN ACCORDAN NIZED IN ACC	BUY AME SSS OTHEJ ESS WITH NTS) NCE WITH CE WITH A CORDANCE	RWISE STATE THE "BUY AM I ASTM A-153, ASTM A-153, U SWITH ASTM F	D. IERICA AC UNLESS O JNLESS OT -2329.	T", 23 CFR THERWISH HERWISE	E STATED.
ALL STE ALL GUA ALL GUA ALL GAL GALL GAL FINISHEI BOLTS C WASHERS MA* DIA C STRENGT	EL USED ARDRAIL ATINGS PH VANIZED N D GOOD F OMPLY W MPLY W S COMPLY W S COMPLY ABLE 6X1 H - 46000 1	WAS MELTED ANI MEETS AASHTO N ROCESSES OF THE MATERIAL CONFOR WATERIAL CONFOR PART NUMBERS EN VITH ASTM A-307 S ITH ASTM A-563 SI WITH ASTM F-436 S 9 ZINC COATED SW	D MANUFAG -180, ALL S STEEL OR I MS WITH AS MS WITH AS IDING IN SU PECIFICATION PEC	CTURED TRUCTU IRON ARI TM A-123 STM A-123 STM A-123 UFFIX B,I IONS AN IONS ANE ONS ANE ON AND/O AJSI C-1033	IN USA ANI RAL STEEL E PERFORM (US DOMEST) 3 & ISO 1461 P, OR S, ARE D ARE GAL O ARE GALV R F-844 AND 5 STEEL ANN	D COMPLIES MEETS AST ED IN USA A IIC SHIPMENT (INTERNATIO UNCOATEL LVANIZED IN ARE GALVA) VEALED STUE	WITH THE E M A36 UNLE AND COMPLI (S) ONAL SHIPMED ON ACCORDAN ACCORDANC NIZED IN ACCO O 1" DIA ASTI	BUY AME SSS OTHEJ ESS WITH NTS) NCE WITH CE WITH A CORDANCE	RWISE STATE THE "BUY AM I ASTM A-153, ASTM A-153, U SWITH ASTM F	D. IERICA AC UNLESS O JNLESS OT -2329.	T", 23 CFR THERWISH HERWISE	E STATED.
ALL STE ALL GUA ALL GUA ALL GAL ALL GAL GAL GAL FINISHEI BOLTS C WASHERS WA" DIA C STRENGT State of Te: Notary Pu	EL USED ARDRAIL ATINGS PH VANIZED N D GOOD F OMPLY W S COMPLY W S COMPLY W ABLE 6X1 H - 46000 1 Kas, County	WAS MELTED ANI MEETS AASHTO N ROCESSES OF THE MATERIAL CONFOR PART NUMBERS EN VITH ASTM A-307 S ITH ASTM A-363 SI WITH ASTM A-563 SI WITH ASTM A-563 SI WITH ASTM A-563 SI WITH ASTM F-436 S 9 ZINC COATED SW LB of Tarrant. Swom and	D MANUFAG -180, ALL S STEEL OR I MS WITH AS MS WITH AS IDING IN SU PECIFICATION PEC	CTURED TRUCTU IRON ARI TM A-123 STM A-123 STM A-123 UFFIX B,I IONS AN IONS ANE ONS ANE ON AND/O AJSI C-1033	IN USA ANI RAL STEEL E PERFORM (US DOMEST) 3 & ISO 1461 P, OR S, ARE D ARE GAL O ARE GALV R F-844 AND 5 STEEL ANN	D COMPLIES MEETS AST ED IN USA A IIC SHIPMENT (INTERNATIO UNCOATEL LVANIZED IN ARE GALVA) VEALED STUE	WITH THE E M A36 UNLE AND COMPLI (S) ONAL SHIPMED ON ACCORDAN ACCORDANC NIZED IN ACCO O 1" DIA ASTI	BUY AME SSS OTHEJ ESS WITH NTS) NCE WITH CE WITH A CORDANCE	RWISE STATE THE "BUY AM I ASTM A-153, ASTM A-153, U WITH ASTMI HTO M30, TYPE	D. IERICA AC UNLESS O JNLESS OT -2329.	T", 23 CFR THERWISE HERWISE IG Trinity	E STATED.

Figure B-8. 10-gauge Symmetrical W-Beam to Thrie Beam Transition, Test Nos. MTB-1 and MTB-2

STING	CERT # 25	5) 914.01	i.		VIECH	ANIC	AL TE			Arc	celor	Nittal
i nis rep	n lliw noc	ot be repro	duced in w	hole or in	part withou	it the prior	written app	roval from Arc	elorMittal US	SA LLC.	Pag	e 1 of 1
			PIPE & '	£			13500 S	flittal Riverd outh Perry e, IL 60827	Avenue			
SOU.		NT DIVI	PIPE & ⁻ SION 190		9TH ST		PO#: SO#: Date Of Is Shippe		Carrier: 4/2016	LoadID # Steel T	t 025833 ransport,	
	Heat		Coil	Thick	kness (in	7) 1	Width (in,	Weid	ht (tons)	Re	duction	Ratio
	248		19239	0.17			56.257	24			% (13:1)	
LEAV		rade			Part Nun	nber		Product D			Comm	ents
	ITT B1	5-106		1817056	25-		Ho	Product Do bt Band Prin	ne			nents
	ITT B1	5-106		1817056	25-		Ho	t Band Prir	ne			eents
This make Heat	ITT B1	5-106 siled and manual sile yiel	factured in the	USA. All pro	25- ducts are strat		Hc	ot Band Prin	ne			
This mate Heat A4924	(TTT B1 erial was me cc B 1192	5-106 silled and manu- sill Yie (339 58. 58.	afactured in The old Te bit // OKSI 75	HB17056 USA. Ali pro (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	25- ducts are strat () 0/r () % L () % L	nd cest and fr	Hc	ot Band Prin	NC ents Elangation	based on 2° g	ape length	
This mate Heat A4924	(TTT B1 erial was me cc B 1192	5-106 silled and manu- sill Yie (339 58. 58.	afactured in line and 7 and and 7 and and and 7 and and and and and and and and and and	HB17056 USA. Ali pro (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	25- ducts are strat () 0/r () % L () % L	nd cest and fr	Hc	ot Band Prin	NC ents Elangation	based on 2° g	ape length	
This material Heat A49241 Material Heat	TTT B1	5-106 illed and manu- bit Yie 1339 58. 58. 59. cordance with Mr.	factured in the aid Tet sit 0 0KSI 75 9KSI 76 150 17025 by	IB17056 USA Ali pro analie / 5.8 KSI 29 an accredited S	25- ducts are strat ducts are strat 54) Dir 54) Dir 54) Dir 54) Dir 54) Dir 54) Si	N-Value	Hc rea of morcury o e N-Range Ni	t Band Prir r radioactive elem Hardness Cr	ne ents Elonget on Ft-Ibs Mo	"F Cb	sige length Size D V	it Al
This material Heat A49241 Material Heat	C C C C C C C	5-106 illed and manu- illed and manu- illed and manu- (k) 339 58. 58. 58. cordance with Mn .81	dactured in the old Ten bit fi OKSI 75 9KSI 76 ISO 17025 by I P .014	HB 17056 USA Ali pro 4 5,8 KSI 29 5,0 KSI 29 an accredited S .002	25- ducts are stree <u>67 Dir</u> 56) Dir 56) Dir 56 L 100 % L 1ab. Si .04	N-Vature Cu .02	Hc	t Band Prir	ne ents Elangation Ft-lbs	based on 2° g	sigo lengti: Size D	it
Heat Heat A4924i Material Heat A49248	C C C C C C C C C C C C C C	5-106 illed and manu- illed and manu-	diactured in the old Tein 0KSI 75 0KSI 76 150 17025 by 1 P .014 B	HB 17056 USA Ali pro anti/e (1) 5.8 KSI 29 5.0 KSI 29 5.0 KSI 29 an accredited S .002 T/	25- ducts are strat <u>27</u> <u>Dir</u> <u>36</u> <u>Dir</u> <u>26</u> <u>Dir</u> <u>36</u> <u>Dir</u> <u>26</u> <u>26</u> <u>Dir</u> <u>26</u> <u>26</u> <u>26</u> <u>26</u> <u>26</u> <u>26</u> <u>26</u> <u>26</u>	N-Volue Cu .02 Sb	Hc rea of morcury o e N-Range Ni	t Band Prir r radioactive elem Hardness Cr	ne ents Elonget on Ft-Ibs Mo	"F Cb	sige length Size D V	it Al
Heat Heat Heat Heat Heat	C C C C C C C	5-106 illed and manu- illed and manu- illed and manu- (k) 339 58. 58. 58. cordance with Mn .81	dactured in the old Ten bit fi OKSI 75 9KSI 76 ISO 17025 by I P .014	HB 17056 USA Ali pro 4 5,8 KSI 29 5,0 KSI 29 an accredited S .002	25- ducts are stree <u>67 Dir</u> 56) Dir 56) Dir 56 L 100 % L 1ab. Si .04	N-Vature Cu .02	Hc rea of morcury o e N-Range Ni	t Band Prir r radioactive elem Hardness Cr	ne ents Elonget on Ft-Ibs Mo	"F Cb	sige length Size D V	it Al
This malk Heat A4924i A4924i Material Heat A49248 Chemical A49248 Chemical A49248	C C C C C C C C C C C C C C	5-106 Ited and manualited and manual	Alactured in the and Ten BI (1) OKSI 75 9KSI 76 150 17025 by 1 P .014 B .0001	IB 17056 USA Ali pro (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	25- ducts are strat <u>50</u> Dir <u>50</u> 0 % L 0 % L 0 % L 1ab. Si .04 Ca .0011 In accordance ed in the m standard t strandard t strandard t	Cu .02 Sb .0010 whithe Cur ecords of o date imated the items d by an	Ni .02	Marchess Cr .04 ASTM E415 and E	Mo .00	based on 2° g "# Cb .000	sigo lengti Size D V .001	itr Al

Figure B-9. 72-in. Long Foundation Tube, Test Nos. MTB-1 and MTB-2

, 1 () ,	A Charg	e Repi	ort			- 1 S	Centra 05 N. Owen lutton, NE 6 el : (402) 77	8979	ras F	
Char <u>c</u> Tally Cyline	25729/U2		Recipe Preset Operati	Guard		E D	art Time nd Time uration	7/27/1 7/27/1	8 11:5	OXFORD LAB-À CCA WOOD ANALYSIA 80/7/2010 9:58
				FLW	INJ	MNT	MXT	PRS	VAC	Calibration title; SAMOUST-pcf
1	Initial Vacuum	Time	SP ACT				7.00 11.53		2	GAKPLE ID: 25728
2.	Vacuum Fill	Vacuum	SP ACT				4.45		2	DEN8119 = 32.0 pcF
3	Atm Absorption	Time	SP ACT				1,00 1.00			XWT DXIDES XBALANCE GRUB = 1.030 % 48.5
4	Pressure	Time	SP ACT	. 0.00	4.10 11.87	25.00 25.00	25.00 25.00	140.00 147.95		000 = 0.380 % 17.9 A8205 = 0.716 % 38.7
5	Release Pressure	Pressure	SP ACT				6.00 6.62	10.00 9.95		TOTAL = 2.126 XVT 100.0
6	Emptying	Cylinder Empty	SP ACT				5.38			RETENTION GRON = 0.330 pcf
7	Final Vacuum	Time .	SP ACT			40,00 40.00	40.00 40.00			000-= 0.121 pcf A9205 = 0.229 pcf
8.	Drain Cylinder	Cylinder Empty	SP ACT				5.98	1		TDTAL- 0.680 pcf
19 1		51 51 18	8		25 262	· .			2 1	
Таńк	Intermation for T02 C	CA			arge Data	112-11-1-1-1 		1970,508,407,900-3	478-1414-17-1	tow you construct the work of the Provide Provide Law
acuun ressu	/acuum n Fill re Charge	FT GAL 9.3 7878 2.7 2260 0.6 532 7.6 6393	L8 6669 1913 450 5413	8 Calo 4 Net 1 Estir 1 Calo	tion Concenulated Chen Injection (Genated Heart Unated Heart Unated Retenu	nical Use (L al/CuFt) wood (%) ntiòn	bs) 2	38.91 (3.09 .]	Target /	Basis Tally olume (CuFT) 480.89 Assay Retention 0.60 (Lbs/CuFT) / NC /
Tally.			. 1040 - 360 - 560 - 570					3F/SF 5,7		Total Volume 480.61 CuFt
	ation Description T004140B T006115B		y Spec 6 SYP		Srade	Lot		MC% D		0

			*			Certifie	a analy	515								Trinie.		y Produ	-
Frinity Hi	ghway P	roducts, LLC															1000		1
550 East R	obb Ave					Order N	Number: 1275017	Prod	Ln Grj	p: 3-0	Juardra	ail (D	om)						
Lima, OH 4	5801 Ph	n:(419) 227-1296				Custor	ner PO: 3400		24						Δ	s of: 3/	122/17		
Customer:	MIDW	EST MACH.& SUPPLY	co.			BOLN	Jumber: 99202		Ship D	ate:						501. 57	44111		
	P. O. B	OX 703				Docu	ment #: 1		÷.										
						Ship	ped To: NE												
	MILFO	RD, NE 68405					e State: NE												
Project:	RESAL																		
	100010																		-
Qty	Part#	Description	Spec	CL	ТҮ	Heat Code/ Heat	Yield	TS	Elg	С	Mn	Р	S	Si	Cu	Cb	Cr	Vn	A
400	3380G	5/8"X1.5" HEX BOLT A307	HW			0052429-113200													-
600	3400G	5/8"X2" GR BOLT	HW			29221													
500	3480G	5/8"X8" GR BOLT A307	HW			20260													
500	5480G	5/8"X8" GR BOLT A307	HW			29369													
450	3500G	5/8"X10" GR BOLT A307	HW			29550-В													
700	3540G	5/8"X14" GR BOLT A307	HW			29567													
300	3580G	5/8"X18" GR BOLT A307	HW			29338													
600	4235G	3/16"X1.75"X3" WSHR	HW			C7001													
10	9852A	STRUT & YOKE ASSY	A-36			195070	52,940	69,970	31.1	0.190	0.520	0.014	0.004	0.020	0.110	0.000	0.050	0.000	4
10			11.50																
	9852A		A-36			A82292	54,000	73,300	31.0	0.200	0.460	0.010	0.003	0.020	0.150	0.000	0.060	0.001	4
	9852A		A-36			645887	39,900	62,500	32.0	0.190	0.400	0.009	0.015	0.009	0.054	0.001	0.038	0.001	4
	0850 1					(1000	20.000	(0.600	20.0	0.100	0.400	0.000	0.015	0.000	0.054	0.001	0.039	0.001	1
	9852A		A-36			645887	39,900	62,500	32.0	0.190	0.400	0.009	0.013	0.009	0.054	0.001	0.050	0.001	-
	9852A		HW			15056184													
20	12173G	T12/6'3/4@1'6.75"/S			2	L35216													
			M-180	A	2	209331	62,090	81,500	28.1	0.190	0.720	0.013	0.002	0.020	0.110	0.000	0 0.070	0.002	
			M-180	A	2	209332	61,400	81,290	25.3	0.190	0.730	0.014	0.003	0.020	0.120		0.060		
			M-180	A	2	209333	61,200	80,050		0.200					0.120		0 0.070		

Figure B-11. Ground Strut Assembly, Test Nos. MTB-1 and MTB-2

Trinity Highway Products, LLC 550 East Robb Ave. Order Number: 1275956 Prod Ln Grp: 3-Guardrail (Dom) Lima, OH 45801 Phn:(419) 227-1296 Customer PO: 3415 As of: 3/2.2/17 Customer: MIDWEST MACH.& SUPPLY CO. BOL Number: 99204 Ship Date: P. O. BOX 703 Document #: 1 Shipped To: NE MILFORD, NE 68405 Use State: NE Project: RESALE

Qty Part# Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	С	Mn	P S	Si	Cu	Cb C	· Vn	ACW
	M-180	A	2	208318	64,140	81,540	24.5	0.190	0.720	0.011 0.003	0.020	0.110	0.000 0.00	0 0.00) 4
	M-180	A	2	208674	63,250	82,410	22.7	0.190	0.730	0.011 0.003	0.020	0.100	0.000 0.00	0 0.00	2 4
	M-180	A	2	208675	62,100	81,170	22.7	0.190	0.730	0.012 0.004	0.020	0.090	0.000 0.03	0 0.00	14
	M-180	A	2	208676	62,920	82,040	25.4	0.190	0.720	0.012 0.004	0.010	0.100	0.000 0.0	0.00	2 4
12365G			2	L35216											
	M-180	A	2	209331	62,090	81,500	28.1	0.190	0.720	0.013 0.002	0.020	0.110	0.000 0.01	0 0.00	2 4
	M-180	A	2	209332	61,400	81,290	25.3	0.190	0.730	0.014 0.003	0.020	0.120	0.000 0.0	0.00	14
	M-180	A	2	209333	61,200	80,050	25.8	0.200	0.740	0.016 0.005	0.010	0.120	0.000 0.0	0 0.00	24

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy QMS-LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT, 23 CFR 635.410.

ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED.

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT", 23 CFR 635.410.

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 (US DOMESTIC SHIPMENTS)

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 & ISO 1461 (INTERNATIONAL SHIPMENTS)

FINISHED GOOD PART NUMBERS ENDING IN SUFFIX B,P, OR S, ARE UNCOATED

BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.

NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. WASHERS COMPLY WITH ASTMF-436 SPECIFICATION AND/OR F-844 AND ARE GALVANIZED IN ACCORDANCE WITH ASTMF-2329. 3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II BREAKING STRENGTH-46000 LB

Figure B-12. Ground Strut Assembly, Test Nos. MTB-1 and MTB-2

.

24150 Oak Grove Lane Sedalia MO. 65302-0844 660-829-6721(P) 660-829-6780(F)

Date: Sold to:

Order

1/8/18 The Commercial Group 12801 Universal Drive Taylor, MI 48180 214425

Certificate of Compliance

Report of Chemical Analysis and Physical Tests

		Tensile Stre	ngth		Torsic	n	T		1		T
Item			Lbs. per	Wt.	Test	Heat					
No.	Description	Lbs.	sq. in.	Coat	8"	No.	c	Mn	P	s	Si
001	.0395" Galvanized Wire						1	INTE	1	3	ar
	.0395 *	341	278,000	.385	65	17R590203	.81	1	1	-	
			210,000		00	111090203	1.01	.54	.011	.009	.20
	.0395	330	269,000	.372	71	17R594359	.80	.58	.015	-	
			100,000		1 "	17R594359	.82	.56	.008	.010	.24
						1111351720				.009	.18
002	.0460" Galvanized Wire										
	.0460	415	250,000	.417	71	17R591720	82	.53	.008	.009	.18
003	.0540" Galvanized Wire					1					
	.054	580	253,000	.410	55	17R590203	.81	.54	.011	.009	.20
						17R591077	.B1	.53	.006	.008	.21
						17R593340	.82	.54	.009	.015	.21
					1	17R591720	.82	.53	.008	.009	.18
				1		17R594796	.83	.49	.005	.005	.18
004	.0610" Galvanized Wire										
	0.061	751	257,000	,489	45	16R585888	.80	.72	.007	.017	.23
		/ .	201,000	,403		17R591077	.81	.53	.006	.008	21
						16KY73253	.84	.61	.006	.013	1
The ma	iterial covered by this certifican	tion was manuf	actured and levie		-	The chemical					
	ance with specifications as list					reported abo					
	s of the material have been te					the records o				of ican ie	G IN
equirer	ments outlined in these specifi	cations.						pipare			
						00	•	0		0	
4	SHEILA DOWDY			Signed	li -	Mir	h	le	Z	loh	ind
4	Notary Public - Notary S			1959							100000000000000000000000000000000000000
1	State of Missouri, Pettis C Commission Number 0046		P	age 2 of	2						
	My Commission Expires Jun	6. 2020									
1.000											
7											
7	Shula Dor	non									
7	Shiila Dor Ganuary S	3, 2015	δ								
7	Shula Dor Ganuary S	2019 3, 2019	δ								
ר ר ר	Shula Dor Ganuary S	3, 2015	8								

Figure B-13. BCT Cable Anchor Assembly, Test Nos. MTB-1 and MTB-2

Certified Analysis

Trinity Highway Products, LLC			
550 East Robb Ave.	Order Number: 1269489	Prod Ln Grp: 3-Guardrail (Dom)	
Lima, OH 45801 Phn:(419) 227-1296	Customer PO: 3346		Asof: 11/7/16
Customer: MIDWEST MACH.& SUPPLY CO.	BOL Number: 97457	Ship Date:	11301, 11//110
P. O. BOX 703	Document #: 1		
	Shipped To: NE		
MILFORD, NE 68405	Use State: NE	4	
Project: RESALE			

Qty	Part #	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	С	Mn	Р	S	Si	Cu	Cb	Cr	Vn	ACV
	701A	ANCHOT Box	A-36		3	JK16101488	56,172	75,460	25.0	0.160	0.780	0.017	0.028	0.200	0.280	0.001	0.140	0.028	4
	701A		A-36			535133	43,300	68,500	33.0	0.019	0.460	0.013	0.016	0.013	0.090	0.001	0.090	0.002	4
4	729G	TS 8X6X3/16X8'-0" SLEEVE	A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
20	738A	5'TUBE SL.188X6X8 1/4 /PL	A-36		2	4182184	45,000	67,900	31.0	0.210	0.760	0.012	0.008	0.010	0.050	0.001	0.030	0.002	4
	738A		A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
6	749G	TS 8X6X3/16X6'-0" SLEEVE	A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
6	782G	5/8"X8"X8" BEAR PL/OF	A-36			DL15103543	58,000	74,000	25.0	0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	4
20	783A	5/8X8X8 BEAR PL 3/16 STP	A-36			PL14107973	48,167	69,811	25.0	0.160	0.740	0.012	0.041	0.190	0.370	0.000	0.220	0.002	4
	783A		A-36			DL15103543	58,000	74,000	25.0	0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	4
45	3000G	CBL 3/4X6'6/DBL	HW			(119048)													
7,000	3340G	5/8" GR HEX NUT	HW			0055551-116146													
4,000	3360G	5/8"X1.25" GR BOLT	HW			0053777-115516													
450	3500G	5/8"X10" GR BOLT A307	HW			28971-В													
1,225	3540G	5/8"X14" GR BOLT A307	HW			29053-В													
																	2	of 5	

Figure B-14. Anchor Bracket Assembly, Test Nos. MTB-1 and MTB-2

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

	MIDWEST MAG P. O. BOX 703 MILFORD.NE.6		UPPLY CO	k.			Test Report Ship Date: Customer P.O.: Shipped to: Project:	11/17/2017 3515 MIDWEST MA	CHINERY & SL	IPPLY CO.		×	
	11121 O' 10,112,0						GHP Order No:	128AA					
HT # code	LOT#	C.	Mn.	P.	S.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
A74070		0.21	0.46	0.012	0.002	0.03	76100	58800	25.2	4	А	2	12GA TB TRANS.
4181496		0.24	0.84	0.014	0.01	0.01	72400	44800	34	4		2	5/8IN X 8IN X 8IN BRG. PL,
4181489		0.09	0.45	0.012	0.004	0.01	58000	43100	27	4		2	350 STRUT & YOKE
196828BM		0.04	0.84	0.014	0.003		76000	74000	25			2	350 STRUT & YOKE
E22985		0.17	0.51	0.013	0.008	0.008	72510	64310	29.5	4		2	2IN X 5 1/2IN PIPE SLEEVE
811T08220		0.22	0.81	0.013	0.006	0.005	71412	56323	35	8		2	3/16IN X 6IN X 8IN X 6FTOIN TUBE SLEEVE

All Galvanizing has occurred in the United States All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Steel used meets Title 23CFR 635.410 - Buy America All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4.

2 Lat

STATE OF OHIO: COUNTY OF STARK Sworn to and subscribed before me, a Notary Public Andrew Aftar this 21 day of November, 2017 Notary Public, State of Ohio

James P. Dehnke Notary Public, State of Ohio

iv Commission Expires 10-19-2019

Figure B-15. 8 in. x 8 in. x $^{5}/_{8}$ in. Anchor Bearing Plate, Test Nos. MTB-1 and MTB-2

171 Ci	eage Dr	abama), Inc abama, US							TUI	be NDUSTRI	Date Cus	.B/L: e: tomer:	8079 ⁻ 11.10 179	1452 .2017	
				N	IATE	RIAL	TES	REF	ORT						
Sold Steel PO B MANI USA	& Pip ox 16	e Supply 88 AN KS 6	Comp 16505	an								oped to el & Pip New (V CENT A		oly Co Parkv S 66	mpan vay 031
Material: 3.0	x2.0x18	8x40'0"0(5	ix4).		M	laterial N	lo: 0300	2018840	000-В			Made in	0.01 20002-01012		
Sales order:	122693	76			P	urchase	Order: 4	5002966	556	Cust Ma	terial #:		in: USA 0018840		
Heat No	с	Mn	Р	S	Si	A	Cu	Cb	Mo	Ni	Cr	v	ті	в	N
B704212	0.200	0.450	0.010	0.004	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Bundle No	PCs	Yield	Ter	nsile	Eln.	2in			Ce	rtification			с	E: 0.2	8
40867002	20	064649 F	si 08	7652 Psi	24 %			Ā	STM A5	00-13 GR	ADE B&	c			
Material Note Sales Or.Note															
Material: 2.3			x1).				lo: R023			A	44-1-1 41.		in: USA		
Sales order: Heat No	C	Mn	Р	S	Si	Al	Order: 4 Cu	.5002960 Cb	Mo	Ni	terial#: Cr	642004 V	U42 Ti	в	N
B712810	0.210	0.460	0.012	0.002	0.020	0.024		0.002		0.030	0.060	0.004		0.000	
Bundle No	PCs	Yield		sile	Eln.		Rb	OLUGE		rtification	0.000	0.00 (E: 0.3	19 19
									-				-		
MC00006947 Material Note Sales Or.Note	:	063688 F	osi 08	3220 Psi	25 %	91		A	STM A5	00-13 GR	ADE B&	c			
Material: 2.3	-		x1).				lo: R023						in: USA		
Sales order:							Order: 4			Cust Ma		642004		~	-
Heat No	C	Mn	P	S	Sì	AI	Cu	Cb	Mo	Ni	Cr	V	Ti	B	N
17037261	0.210	0.810	0.005	0.004	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000		0.000	
Bundle No	PCs	Yield		nsile	Eln,					rtification			C	E: 0.3	5
41532001 Material Note Sales Or.Note		066144 F	31 04	2159 Psi	27 %			~		00-13 GF		·			
			de	markie	haved										

Authorized by Quality Assurance: The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements. Scottaute Page : 3 Of 4 Page : 3 Of 4

Figure B-16. 2³/₈ in. O.D. x 6-in. Long BCT Post Sleeve, Test Nos. MTB-1 and MTB-2

PACKING LIST/MTR

	306 - 131													and the state of t	1	· · · · · · · · · · · · · · · · · · ·		100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100		
	CUSTOMER ORI	DER NO.	DATED	OU	R ORDER NO	FR	EIGHT PMT	CUST	OMER NO.	СН	ANGE DATE					DATE SH	TPPED	LO.	AD NUMBI	!R
	36011		7/13/18	86	5956-1		COLLXXX	283	00001	F	8/07/18				8	28	18		8-342	2
F.0	. B HUNTI	NGTON					ROUTE REQUE	STED		TERMS		ROUTING VIA	т	TPX816	62	8		в.ф.1	.# 273	3825
1012	P O BOX	SIGN CORP 123 MILLS NY	2 23417			H 1 7 1 0	RAILCAR DI-HIGHWAY CSXT UTICA STCC 33125 NEW YORK M	NEW YO	ORP. RK NYSW	T 30 DA	YS	This is to certify report as containe	ed in the re		this com	ipany.	rue and co	пеct	XXX	
	PROD.	DES	SCRIPTION		LENGTH		QUANTITY		TIMATED			L	<u> </u>		TITY THIS			_		
	2759		5# WF BEAM		ORDERRI	<u> </u>	ORDERED	`	WEIGHT		BUNDLES	SHIPPED	PIEC)ES	LIN F	EET	POUND	s		
		NO CLIPS SWV 67 A A36 SHIP BY	astm « astm .	A36-(8															
			MANUFACTUR	ED IN	i usa			-		1		144e-ori							<u>, 19 19</u>	
		2759	942		42'		147 F	PCS	52,479#			5 of 21	TARP	105 Materi	42' Al		37,4	85		
					*****								SHIPP	ED WIT	H: 83	776-2	8	8005-1		
																		_		<u></u>
		All m	elting and a	manu:	acturing p	proces	ses for t	hese ma	terials	occurre	d in the	U.S.A.								
	HEATNO	Stre Yield	ength (P.S.I I Tensi		Elongat %	ion Lth	c	tu Cr	Ni	, Mo	Nb	heat no.	с	MIN	P	s	\$1	v	SN	СЕ
	13897	49000	> 7100	0	26.2	8	,2	8 .19	.09	. 03	.002	13897	,15	.66	.016	.03	2 .20	.006	.013	.33
	26236	48000	7000	0	25.3	8	.2	.20	.10	.03	.002	26236	.15	.69	.018	-02	3 .21	.005	.009	33
																	1	1		
													*****	**************************************						

Figure B-17. W6x8.5, 81-in. Long Steel Post, Test Nos. MTB-1 and MTB-2

	Long Proc Structural an (260) 625- Quality S and Man	Dynamic: ducts Group d Rei Division 8100 (260) teel 100% oufactured intent: PC = 7	25-8950 EAF Mo in the U	elted JSA	Ship to: Steel & P 401 New Ce	ipe Suppl entury Parkway y KS, 66031	C y ay	ILL TE		1 5 6 7 8	Sill to: Steel & Pipe 55 Poyntz Aven 70 Box 1688 Manhattan KS, 6 Natha: Kaycia Van	6505 US	Produced	d: 12 / 27 / 2 d: 08 / 21 / 2
		2008 and AE		ed										
	oduct v	Vide Flange E			Standards TM A6/A6M - 1			Grades*			ASN # Ler		0000481210	- 7040.00 lbs
Heat Nu	٧	V14X22 V360X32.9 3138445		ASTN	M A992/A992N 1 A572/A572M O M270M/M27	- 15		A992 / A992 A572 gr50/gr M270 gr345/g	345	06081	0140 40	0" 8 4500	299792	
Condit	ion(s)	As-Rolled Fine Grained Fully Killed No Weld Rep		AST	SA G40.21-13 M A36/A36M -	14		50WM/345W A36 / A36M	1		8 8			
Test 1 2	Yield (fy Strength ksi / MPa 62 / 427 63 / 434	Str ksi 77	sile (fu) ength / MPa / 531 / 531	fy / fu ratio .81 .82	% Elong. {8" gage} 26 28	Test 1 2 3 4 5 6		bsorbed Ene Specimen 1	rgy ft-lb <u>Specimen</u>		3 <u>Average</u>	Minimum	L	
3 4														
3 4 Notes:	Calculated Che +Mn/6+{Cr+Mo	mistry Values: Ca +V)/5+(Ni+Cu)/15	toon Equival CE2 (AWS)	ants (C1, C2, C3, F =C+(Mn+Si)/6+(Cr	°C), Corrosion Inde +Mo+V)/5+(Ni+Cu).	7	01)= 26.01(Cu)+3. = C + (Mn/6) + (S	88(Ni)+1.20(Cr)+1 #24) + (Cr/5) + (N	49(Si)+17.29(P)-7 (40) +(Mo/4) + (V/	.29(Cu)(Ni)-9.10(Ni)(14)	P)-33.39(Cu²) Pcm	(AWS) = C+Si/30+Mn/2	0+Cu/20+Ni/60+C	/20+mo/15+ V/10 +
3 4 <u>Notes:</u> CE1 {IIV/}=C I hereby cer specificatio	+Mn/6+(Cr+Mo tify that the n by the elec	+V)/5+(Ni+Cu)/15 material descr tric arc fumac	CE2 (AWS) bed herein e/continuo	=C+(Mn+Si)/6+(Cr has been mad us cast process	C), Corrosion Inde Mo+V/5+(Ni+Cu), e to the applicat a and tested in a th satisfactory r Signed:	7 (\$ (ASTM G10 115 CE3 (CET) ble iccordance esults.	01)= 26.01(Cu)+3. = C + (Mn/6) + (S	/24) + (Cr/5) + (N	49(Si)+17.29(P)-7 40) +(Mo/4) + (V/ CERTIFIC	14)	9)-33.39(Cu ²) Pcm	(AWS) = C+Si/30+Mn/2	0+Cu/20+Ni/80+C	/20+ma/15+ V/10 +
3 4 <u>Notes:</u> <u>CE1 (IIW)=C</u> I hereby cer specificatio with the req I hereby c operations	+Mn/6+(Cr+Mo tify that the n by the elec wirements o ertify that th s performed	+v)/5+(Ni+Cu)/16 material descr tric arc fumac f American Bu ne content of by this mate	CE2 (AWS) bed herein e/continuo reau of Shi his report	=C+(Mn+Si)/6+(Cr has been mad us cast process pping Rules with are accurate acturer are in	+Mo+V)/5+(Ni+Cu) e to the applical s and tested in a th satisfactory r	7 (1) (ASTM GIU 15 CE3 (CET) ble liccordance esults. II tests and th the	= C + (Mn/6) + (S	ABS	of Indiana	ATION	hitley Sworn	to and subscri		
3 4 <u>CET (IIW=C</u> I hereby cer specificatio with the req I hereby c operations requireme Signed:	+Mru6+(Cr+Ma tify that the n by the elec unirements of ertify that the s performed ints of the n	+v)/5+(Ni+Cu)/16 material descr tric arc fumac f American Bu ne content of by this mate	ce2 (AWS) bed herein e/continuo eau of Shi his report ial manuf ications a ash	=C-(Mn+Si)/6+(Cr has been mad us cast process pping Rules with are accurate acturer are in nd applicable	•Mo+V)/5+(Ni+Cu) e to the applical s and tested in a th satisfactory r Signed: and correct. A compliance with	7 (1) (ASTM GIU 15 CE3 (CET) ble liccordance esults. II tests and th the	= C + (Mn/6) + (S	ABS	ed:	ATION	hitley Sworn	to and subscri	ibed before	me

Figure B-18. W14x22, 17-in. Long Steel Blockout, Test Nos. MTB-1 and MTB-2

144

Certificate of Compliance

Page 1 of 1

600 N County L Elmhurst IL 60		University of Nebraska Midwest Roadside Safety Facility	Purchase Order E000357170		
630-600-3600 chi.sales@mcn	naster.com	M W R S F 4630 Nw 36TH St Lincoln NE 68524-1802	Order Placed By Shaun M Tighe		
		Attention: Shaun M Tighe Midwest Roadside Safety Facility	McMaster-Carr Nu 2098331-01	mber	
Line	Product		Oi	dered	Shipped
1 97812A10	9 Steel Double-Headed Nai Packs of 5	I Size 16D, 3" Length, .16" Shank Diameter, 200		5 Packs	5

Certificate of compliance

145

This is to certify that the above items were supplied in accordance with the description and as illustrated in the catalog. Your order is subject only to our terms and conditions, available at www.mcmaster.com or from our Sales Department.

Sal Wei-C

Sarah Weinberg Compliance Manager

Figure B-19. 16D Double Head Nails, Test Nos. MTB-1 and MTB-2

r c	HAL	TED			1	EMAIL				351	Cold Springs Re
		RTER					ļ			Saukvilje,	Wisconsin 53 (262) 268-2- (-800-437-8)
Melted in USA		ning Company, I		CHAR	TER ST	EEL TES	TREPO	ORT		Fa	x (262) 268-25
NCIGU IN ODA				F		Cust P.O.					160532M- 10094
					Charter Sa						700570 203515 20738
2525 Ste Dallas,T	X-75207	Frwy, 4th I				Grade Process nish Size Ship dale			10	010 R AK F	G RHQ 41/ 41/ 27-0CT-
Kind Att I hereby certify that to these requirements.	ne material d	ial Certific Jescribed here Ig of false, fict	ein has beer	n manufactu auduleni sia	red in accord ilements or e	ance with the atries on this	document n	ns and slar nay be puni	idards lisled shable as a l	below and the felony under	al II satisfie
Lab Code: 125544 CHEM %Wt	C .09	MN .33	P .007	S .002	ulls of Heat L SI . .050	NI .04	CR .05	MO .01	CU .05	SN ,004	V .001
	AL ,028	N .0970	8 ,0001	TJ .001	NB .001		2				
										_	
	1			Test resu	its of Rolling	Lot # 207385	2				
REDUCTION RA	FIO=152 1			Test resu	lls of Rolling	Lot # 207385	2				
REDUCTION RA	Manufa	actured per (customer sp per Document	acificallons	il Quality M	anual Rev D	ale 9/12/12 arter Steel o		for the folie Y-12	owing custo	met qocrut	ents:
	Manufa Meets Custom	actured per (customer sp ter Document	acificallons	il Quality M	anual Rev D	ale 9/12/12 arter Steel o	xceptions	for the folle Y-12	owing custo	merdocum	ents:
Specifications:	Manufa Meets Custom	customer sp	acificallons	il Quality M	anual Rev D	ale 9/12/12 arter Steel o	xceptions	for the follo Y-12	owing custo	mer docum	ents:
Specifications:	Manufa Meets Custom	customer sp	acificallons	il Quality M	anual Rev D	ale 9/12/12 arter Steel o	xceptions	for the folio Y-12	owing custo	merdocum	ents:
Specifications:	Manufa Meets Custom	customer sp	acificallons	il Quality M	anual Rev D	ale 9/12/12 arter Steel o	xceptions	for the follo Y-12	owing custo	merdocum	ents:
Specifications:	Manufa Meets Custom	customer sp	acificallons	il Quality M	anual Rev D	ale 9/12/12 arter Steel o	xceptions	for the folio Y-12	owing custo	mer qocnu	ents:
Specifications:	Manufa Meets Custom	customer sp	acificallons	il Quality M	anual Rev D	ale 9/12/12 arter Steel o	xceptions	for the folio Y-12	owing custo	mer qocnu	ents:
Specifications:	Manufa Meets Custom	customer sp	acificallons	il Quality M	anual Rev D	ale 9/12/12 arter Steel o	xceptions	for the follo Y-12	owing custo	merdocum	ents:
Specifications:	Manufa Meets Custom	customer sp	acificallons	il Quality M	anual Rev D	ale 9/12/12 arter Steel o	xceptions	for the follo Y-12	owing custo	merdocum	ents:
Specifications:	Mapuf Meets Custor	customer sp	acificallons	n Quanty M with any a 9/A29M-12	lanual Rev D ppplicable Ch Revial	ale 9/12/12 arter Sleel d Dale	xceptions d = 01-MA	orsedes all المراجع علي المراجع	previously d	aled MTRs fo	
Specifications; Additional Comments	Manufa Meets Guston	customer sp	acificallons	ti Quality M with any a 9/A29M-12	anual Rev D	ale 9/12/12 arter Steol o on = Date	xceptions d = 01-MA	orsedes all Ja Manager a	previously di	aled MTRs fo	

Figure B-20. ⁵/₈ in.-11 UNC, 10-in. Long Guardrail Bolt, Test Nos. MTB-1 and MTB-2

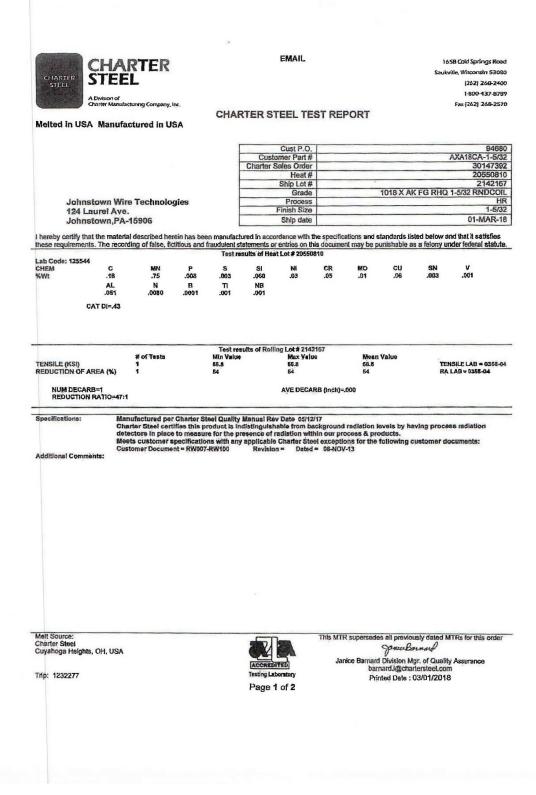


Figure B-21. 5%-in.-11 UNC, Heavy Hex Nut, Test Nos. MTB-1 and MTB-2

CERTIFICATE OF COMPLIANCE

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

CUSTOMER NAME:

1 OTH

CUSTOMER PO: 182402

SHIPPER #: 059943 DATE SHIPPED: 03/07/2017

LUI#:	29221		*	
SPECIFICA	TION:	ASTM A307, GRADE	A MILD CARBON	STEEL BOLTS
TENSILE:	SPEC:	60,000 psi*min	RESULTS:	68,460 66,327
HARDNESS	:	100 max		71.30
*Pounde Dor Cr	wara luch			71.60

TRINITY INDUSTRIES

*Pounds Per Square Inch.

COATING: ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE ROGERS GALVANIZE: 29221

CHEMICAL COMPOSITION

MILL	GRADE	HEAT#	С	Mn	Р	S	Si
CHARTER	1010	10439100	.09	.40	.008	.011	.090

QUANTITY AND DESCRIPTION:

10,400 PCS 5/8" X 2" GUARD RAIL BOLT . P/N 3400G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS 3/7 rda Mic ROVED SIGNATORY DATE OFFICIAL SEAL MERRY F. SHANE NOTARY PUBLIC - STATE OF ILLINOIS MY COMMISSION EXPIRES OCTOBER 3, 2018

Figure B-22. % in.-11 UNC, 2-in. Long Guardrail Bolt, Test Nos. MTB-1 and MTB-2

CERTIFICATE OF COMPLIANCE

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

CUSTOMER NAME:

CUSTOMER PO:

SHIPPER #: 063741 DATE SHIPPED: 06/29/2018

LOT#: 30934-B

SPECIFICA	TION:	ASTM A307, GRADE	A MILD CARBON S	TEEL BOLTS
TENSILE:	SPEC:	60,000 psi*min	RESULTS:	66,100
		•		65,400
HARDNESS	:	100 max		65.60
				65.20

GREGORY INDUSTRIES

40787

*Pounds Per Square Inch.

COATING: ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE AZZ GALVANIZING: 30934-B

CHEMICAL COMPOSITION

MILL	GRADE	HEAT#	С	Mn	P	S	Si
CHARTER STEEL	1010	10553090	.08	.38	.005	.011	.090

QUANTITY AND DESCRIPTION:

7,000 PCS 5/8" X 1.25" GUARD RAIL BOLT P/N 1001G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS

PROVED SIGNATORY

7/3/18 DATE

OFFICIAL SEAL MERRY F. SHANE NOTARY PUBLIC - STATE OF ILLINOIS MY COMMISSION EXPIRES OCTOBER 3, 2018

Figure B-23. ⁵/₈ in.-11 UNC, 1¹/₄-in. Long Guardrail Bolt, Test Nos. MTB-1 and MTB-2

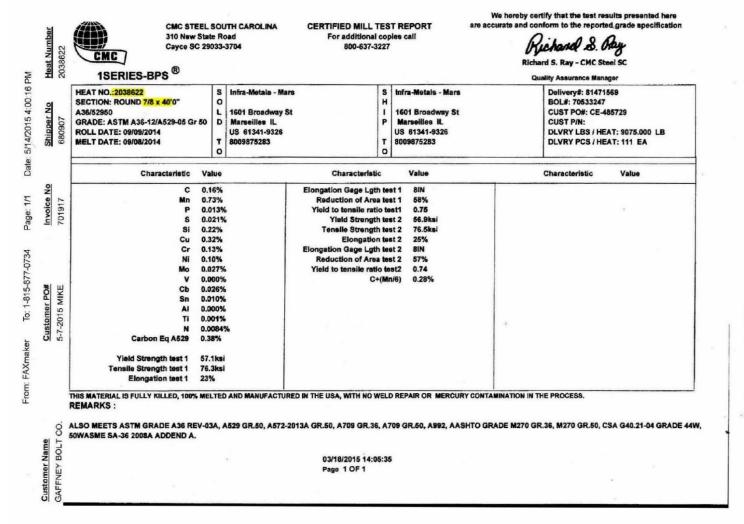


Figure B-24. ⁷/₈ in.-9 UNC, 8-in. Long Hex Head Bolt, Test Nos. MTB-1 and MTB-2

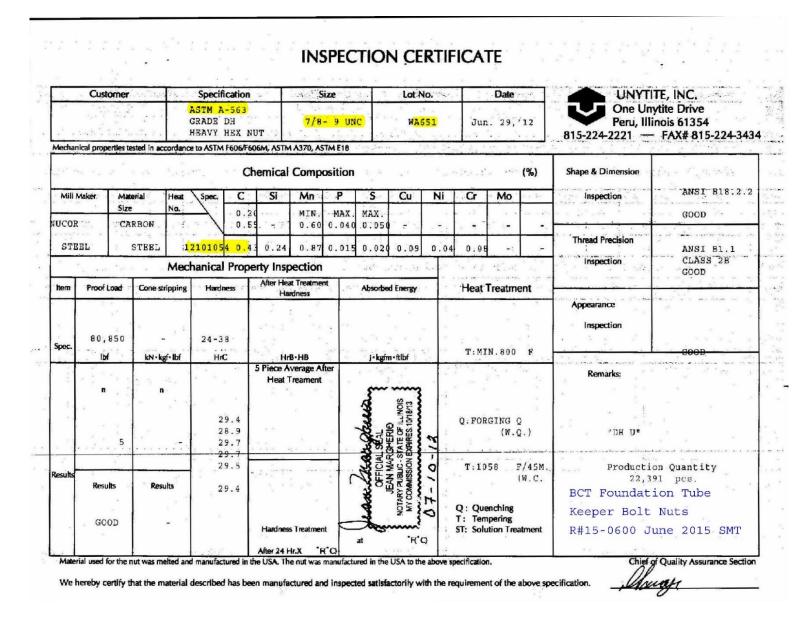


Figure B-25. 7%-in.-9 UNC, Nut, Test Nos. MTB-1 and MTB-2

NUCOR

NUCOR CORPORATION NUCOR STEEL SOUTH CAROLINA

Sold To: BIRMINGHAM FASTENER & SUPPLY PO BOX 10323 BIRMINGHAM, AL 35202-0323 (205) 595-3511 Fax: (205) 591-0244 Mill Certification 3/11/2016 MTR #: C1-366222 300 Steel Mill Road DARLINGTON, SC 29540 (843) 393-5841 Fax: (843) 395-8701

Ship To: BIRMINGHAM FASTENER & SUPPLY 931 AVE W PO BOX 10323 BIRMINGHAM, AL 35202-0000 (205) 595-351 Fax: (205) 591-0244

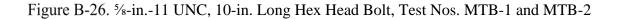
Customer P.O.	M7812	Sales Order	238747.1
Product Group	Merchant Ber Quality	Part Number	30000562480DES0
Grade	ASTM A307-55, F1554-07a gr 55, S1, AASHTO M314 GR 55, S1	Lot #	DL1510704804
Size	9/16" (.5625) Round	Heat #	DL15107048
Product	9/16" (.5625) Round 40' A307-55	B.L. Number	C1-686488
Description	A307-55	Load Number	C1-366222
Customer Spec		Customer Part #	

Roll Date: 1/28/2016 Melt Date: 12/5/2015 Qty Shipped LBS: 17,494 Qty Shipped Pcs: 517

Meit Date: 12/5/2015

С	Mn	V	SI	S	Ρ	Cu	Cr	Ni	Mo	Cb	CE1554	
0.22%	0.82%	0.0410%	0.27%	0.010%	0.007%	0.20%	0.10%	0.06%	0.015%	0.001%	0.37%	
CE1554: CE	per F1554 0	3R55. S1							and the second second			
Roil Date: 1	/28/2016											

 Yield 1: 67,000psi
 Tenstie 1: 87,000psi
 Elongation: 21% in 8"(% in 203.3mm)


 Yield 2: 66,000psi
 Tensile 2: 88,000psi
 Elongation 21% in 8"(% in 203.3mm)

 Réduction of Area: 50.43%
 Reduction of Area #2: 53.52%
 Elongation 21% in 8"(% in 203.3mm)

Specification Comments:

1. WELDING OR WELD REPAIR WAS NOT PERFORMED ON THIS MATERIAL 2. MELTED AND MANUFACTURED IN THE USA 3. MERCURY, RADIUM, OR ALPHA SOURCE MATERIALS IN ANY FORM HAVE NOT BEEN USED IN THE PRODUCTION OF THIS NATERIAL

Page 1 of 2

STELFAST"INC.

R#16-0217 BCT Hex Nuts December 2015 SMT Fastenal part#36713

22979 Stelfast Parkway Strongsville, Ohio 44149

⁹ Control# 210101523

CERTIFICATE OF CONFORMANCE

DESCRIPTION OF MATERIAL AND SPECIFICATIONS

- Sales Order #: 129980
- Part No: AFH2G0625C
- Cust Part No: 36713
- Quantity (PCS): 1200
- Description: 5/8-11 Fin Hx Nut Gr2 HDG/TOS 0.020
- Specification: SAE J995(99) GRADE 2 / ANSI B18.2.2
- Stelfast I.D. NO: 595689-0201087
- Customer PO: 210101523
- Warehouse: DAL

The data in this report is a true representation of the information provided by the material supplier certifying that the product meets the mechanical and material requirements of the listed specification. This certificate applies to the product shown on this document, as supplied by STELFAST INC. Alterations to the product by our customer or a third party shall render this certificate void.

This document may only be reproduced unaltered and only for certifying the same or lesser quantity of the product specified herein. Reproduction or alteration of this document for any other purpose is prohibited.

Stelfast certifies parts to the above description. The customer part number is only for reference purposes.

David Biss

Quality Manager

December 07, 2015

Page 1 of 1

Figure B-27. ⁵/₈-in.-11 UNC, Nut, Test Nos. MTB-1 and MTB-2

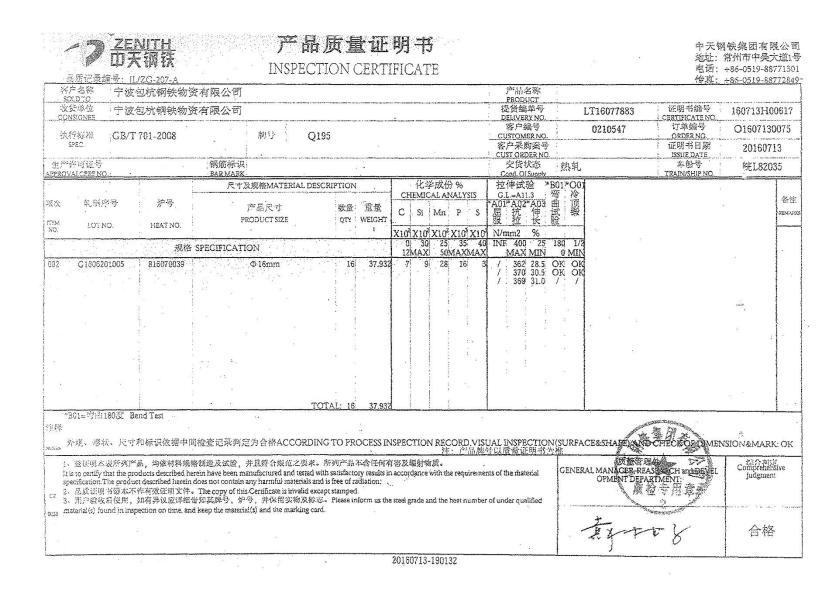


Figure B-28. %-in.-11 UNC, 11/2-in. Long Hex Head Bolt, Test Nos. MTB-1 and MTB-2

July 16, 2020 MwRSF Report No. TRP-03-417-20

CERTIFIED MATERIAL TEST REPORT FOR USS FLAT WASHERS HDG

FACTORY: IFI & Mor ADDRESS: Chang'an N	gan Ltd North Road, Wuyuan Town,	, Haiyan,Zhejia	REPORT DATE: ing, China	22/10/2018	
SAMPLING PLAN PER A SIZE: USS 1 HDG	1 1000000 0000 00 10	3240PCS	PO NUMBER:	210151571	
HEADMARKS: NO MARI	 COMPANY AND A COMPANY AND AND AND AND AND AND AND AND AND AND	3240FC3	PART NO:	33188	
DIMENSIONAL INSPECT	TIONS	SPECIFIC	CATION: ASTM B18.2	1.1-2011	
CHARACTERISTICS ******************	SPECIFIED	****	ACTUAL RESULT		REJ. ******
APPEARANCE	ASTM F844		PASSED	100	0
OUTSIDE DIA	2.492-2.529		2.496-2.504	10	0
INSIDE DIA	1.055-1.092		1.080-1.089	10	0
THICKNESS	0.135-0.192		0.135-0.157	10	0
CHARACTERISTICS ************	TEST METHOD ************************************	SPECIFIED ********	ACTUAL RESULT		REJ. *****
HOT DIP GALVANIZED	ASTM F2329-13	Min 0.0017"	0.0017-0.0020 in	8	0
ASTM SPECIFICATIO	N. WE CERTIFY THAT IDED BY THE MATERIA	E.	IS A TRUE REPI MORGAN TESTIN 验专用章	PPLICABLE RESENTAT NG LABOR B MGR.)	ION OF

Figure B-29. Plain Round Washers, Test Nos. MTB-1 and MTB-2

Appendix C. Vehicle Center of Gravity Determination

Dat			MTB-1	VIN:	1065	RD6FT1CS3	07273
Yea	ar: <u>2012</u>	Make:	Dodge	_ Model:		Ram 1500	
Vehicle Co	G Determinat	ion		Weight	Vertical CG	Vertical M	
VEHICLE	Equipment	()		(lb)	(in.)	(lb-in.)	
+		d Truck (Curb)		5089	28.22933	143659.06	1
+	Hub			20	14.875	297.5	1
+		ation cylinder &	framo	8	28 3/4	237.5	1
+		tank (Nitrogen)		31	28 1/2	883.5	1
+	Strobe/Bra			5	28	140	1
+		eiver/Wires		5	51 1/4	256.25	1
				30		997.5	-
+		ncluding DAS		12423-1242	33 1/4	(7) 33 25-27 28	-
-	Battery			-42	39 1/2	-1659	-
-	Oil			-10	15 7/8	-158.75	
-	Interior			-97	31 5/8	-3067.625	-
-	Fuel			-186	14 3/4	-2743.5	-
	Coolant			-3	37 1/4	-111.75	
-	Washer flu			-5	33 5/8	-168.125	4
+		ast (In Fuel Tan		122	14 1/8	1723.25	
+		upplemental Ba	ittery	13	25 3/8	329.875	
+	Smart Barr	rier		9	2 3/8	21.375	
				-		122	
Note: (+) is ad	lded equipment to	o vehicle, (-) is remo Estimated Tot Vertical CG	al Weight (lb)) 4989		0 140629.56	
		Estimated Tot Vertical CG	al Weight (lb) Location (in.)) 4989		1]
Vehicle Dir	mensions for	Estimated Tot Vertical CG <u>C.G. Calculatio</u>	al Weight (lb) Location (in.)) 4989) 28.1879	67	140629.56]
	mensions for	Estimated Tot Vertical CG	al Weight (lb) Location (in.) ons Front Tr) 4989) 28.1879	67	140629.56 in.	-
Vehicle Dir	mensions for	Estimated Tot Vertical CG <u>C.G. Calculatio</u>	al Weight (lb) Location (in.) ons Front Tr) 4989) 28.1879	67 67	140629.56	-
Vehicle Dir	mensions for	Estimated Tot Vertical CG <u>C.G. Calculatio</u>	al Weight (lb) Location (in.) ons Front Tr) 4989) 28.1879	6422157	140629.56 in.	-
Vehicle Dir Wheel Bas	mensions for se: <u>140.625</u> Gravity	Estimated Tot Vertical CG C.G. Calculatio in. 2270P MAS	al Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets) 4989) 28.1879 rack Width: rack Width:	67 Test Inertia	140629.56 in. in.	- Differenc
Vehicle Dir Wheel Bas Center of C Test Inertia	mensions for se: <u>140.625</u> Gravity I Weight (Ib)	Estimated Tot Vertical CG C.G. Calculatio in. 2270P MAS 5000	al Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110) 4989) 28.1879 rack Width: rack Width:	67 Test Inertia 5003	140629.56 in. in.	- Differenc 3.
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina	mensions for se: <u>140.625</u> Gravity I Weight (Ib) al CG (in.)	Estimated Tot Vertical CG C.G. Calculatio in. 2270P MAS	al Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110) 4989) 28.1879 rack Width: rack Width:	67 Test Inertia	140629.56 in. in.	- Differenc 3.
Vehicle Dir Wheel Bas Center of C Test Inertia	mensions for se: <u>140.625</u> Gravity I Weight (Ib) al CG (in.)	Estimated Tot Vertical CG C.G. Calculatio in. 2270P MAS 5000	al Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110) 4989) 28.1879 rack Width: rack Width:	67 Test Inertial 5003 61.613032 -0.448631	140629.56 in. in.	- Differenc 3. -1.3869
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina	mensions for se: <u>140.625</u> Gravity I Weight (lb) al CG (in.) (in.)	Estimated Tot Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA	al Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110) 4989) 28.1879 rack Width: rack Width:	67 Test Inertia 5003 61.613032	140629.56 in. in.	Differenc 3. -1.3869 N. 0.1879
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG	mensions for se:140.625 Gravity I Weight (Ib) al CG (in.) (in.) i (in.)	Estimated Tot Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA	al Weight (lb) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater) 4989) 28.1879 rack Width: rack Width:	67 Test Inertial 5003 61.613032 -0.448631	140629.56 in. in.	- Differenc 3. -1.3869 N
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C	Gravity I Weight (Ib) CG (in.) G is measured fr	Estimated Tot Vertical CG <u>C.G. Calculatio</u> in. 2270P MAS 5000 63 NA 28	al Weight (lb) Location (in.) Ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle) 4989 28.1879	67 Test Inertia 5003 61.613032 -0.448631 28.19	140629.56 in. in.	- Differenc 3. -1.3869 N
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral	Gravity I Weight (Ib) CG (in.) (in.) G is measured from the second s	Estimated Tot Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 om front axle of tes	al Weight (lb) Location (in.) Ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle) 4989 28.1879	67 Test Inertia 5003 61.613032 -0.448631 28.19) side	140629.56 in. in.	Differenc 3. -1.3869 N 0.1879
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C	Gravity I Weight (Ib) CG (in.) (in.) G is measured from the second s	Estimated Tot Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 om front axle of tes	al Weight (lb) Location (in.) Ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle) 4989 28.1879	67 Test Inertia 5003 61.613032 -0.448631 28.19	140629.56 in. in.	Differenc 3. -1.3869 N 0.1879
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral	mensions for se: 140.625 Gravity I Weight (Ib) I CG (in.) (in.) G is measured fr CG measured fr GHT (Ib)	Estimated Tot Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 rom front axle of tes om centerline - posit	al Weight (lb) Location (in.) Ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle) 4989 28.1879 rack Width: rack Width:	67 Test Inertia 5003 61.613032 -0.448631 28.19) side	140629.56 in. in. TIAL WEIGH	- Differenc 3. -1.3869 N/ 0.1879
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral	mensions for se: <u>140.625</u> Gravity I Weight (Ib) I CG (in.) (in.) G is measured from CG measured from GHT (Ib) Left	Estimated Tot Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 om front axle of tes om centerline - posit	al Weight (lb) Location (in.) Ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle) 4989 28.1879 rack Width: rack Width:	67 Test Inertia 5003 61.613032 -0.448631 28.19) side	140629.56 in. in. TIAL WEIGH	- Differenc 3. -1.3869 N 0.1879 - TT (Ib) Right
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral	mensions for se: 140.625 Gravity I Weight (Ib) I CG (in.) (in.) G is measured fr CG measured fr GHT (Ib)	Estimated Tot Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 om front axle of tes m centerline - posit Right 1397	al Weight (lb) Location (in.) Ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle) 4989 28.1879 rack Width: rack Width:	67 Test Inertia 5003 61.613032 -0.448631 28.19) side	140629.56 in. in. TIAL WEIGH	- Differenc 3. -1.3869 N/ 0.1879
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI	mensions for se: <u>140.625</u> Gravity I Weight (Ib) I CG (in.) (in.) G is measured from CG measured from GHT (Ib) Left	Estimated Tot Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 om front axle of tes om centerline - posit	al Weight (lb) Location (in.) Ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle) 4989 28.1879 rack Width: rack Width:	67 Test Inertial 5003 61.613032 -0.448631 28.19) side TEST INER	140629.56 in. in. TIAL WEIGH	- Differenc 3. -1.3869 N 0.1879 - TT (Ib) Right
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI Front Rear	mensions for se:140.625 Gravity I Weight (Ib) I CG (in.) (in.) G is measured from GHT (Ib) Left 1472 1113	Estimated Tot Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 om front axle of tes om centerline - posit Right 1397 1107	al Weight (lb) Location (in.) Ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle) 4989 28.1879 rack Width: rack Width:	67 Test Inertial 5003 61.613032 -0.448631 28.19) side TEST INER Front Rear	140629.56 in. in. TIAL WEIGH Left 1442 1093	- Differenc 3. -1.3869 N. 0.1879 1T (Ib) HT (Ib) Right 1369 1099
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI Front Rear FRONT	mensions for se: 140.625 Gravity I Weight (Ib) I CG (in.) (in.) G is measured from GHT (Ib) Left 1472 1113 2869	Estimated Tot Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 om front axle of tes om centerline - posit Right 1397 1107 Ib	al Weight (lb) Location (in.) Ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle) 4989 28.1879 rack Width: rack Width:	67 Test Inertia 5003 61.613032 -0.448631 28.19) side TEST INER Front Rear FRONT	140629.56 in. in. TIAL WEIGH Left 1442 1093 2811	- Differenc 3. -1.3869 N. 0.1879 - HT (Ib) - HT (Ib) - Right 1369 - 1099
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI Front Rear	mensions for se:140.625 Gravity I Weight (Ib) I CG (in.) (in.) G is measured from GHT (Ib) Left 1472 1113	Estimated Tot Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 om front axle of tes om centerline - posit Right 1397 1107	al Weight (lb) Location (in.) Ons Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle) 4989 28.1879 rack Width: rack Width:	67 Test Inertial 5003 61.613032 -0.448631 28.19) side TEST INER Front Rear	140629.56 in. in. TIAL WEIGH Left 1442 1093	- Differenc 3. -1.3869 N. 0.1879 1T (Ib) HT (Ib) Right 1369 1099

Figure C-1. Vehicle Mass Distribution, Test No. MTB-1

and a first state of the		_ Test Name: _	MTB-2	VIN:	KNAI		+0751
Year:	2009	Make:	Kia	Model:		Rio	
Vehicle CG D	eterminati	ion					
	Vohiolo Ea	uinmont			Weight		
-	Vehicle Eq	Unballasted Ca	or (Curb)		(lb) 2497		
_	+	Hub	19				
-	+	Brake activatio	8				
-	+	Pneumatic tanl		Indine	30		
	+	Strobe/Brake E			5		
-	+	Brake Receiver			5		
	+	CG Plate includ			13		
-	-	Battery			-31		
-		Oil			-11		
	-	Interior			-56		
	.	Fuel			-38		
	-	Coolant			-7		
-	-	Washer fluid			-2		
_	+	Water Ballast (0		
	+	Onboard Suppl		ttery	0		
	+	Trunk Contents	5		-13		
-	Note: (+) is ac	dded equipment to ve Estin	ehicle, (-) is rem nated Total '				
			nated Total				
		Estin	nated Total · ns		2419 58.0	 	
Vehicle Dimer	nsions for	Estin C.G. Calculatio	nated Total ns Front Tr	Weight (lb)	2419 58.0	in. in.	-
Vehicle Dimer Wheel Base: _	nsions for 98.5	Estin <u>C.G. Calculatio</u> _in.	nated Total ns Front Tr	Weight (lb) ack Width:	2419 58.0		-
Vehicle Dimer Wheel Base: Roof Height:	nsions for 98.5 57.375	Estin <u>C.G. Calculatio</u> _in. _in.	nated Total ' ns Front Tr Rear Tr	Weight (lb) ack Width: ack Width:	2419 58.0	in.	- Difference
Vehicle Dimer Wheel Base: _	nsions for 98.5 57.375 vity	Estin <u>C.G. Calculatio</u> _in.	nated Total ns Front Tr Rear Tr H Targets	Weight (lb) ack Width: ack Width:	2419 58.0 57.5	in.	
Vehicle Dimer Wheel Base: Roof Height: Center of Grav	nsions for 98.5 57.375 vity /eight (lb)	Estin <u>C.G. Calculatio</u> _in. _in. _in. _in. _in.	nated Total ns Front Tr Rear Tr H Targets 55	Weight (lb) ack Width: ack Width:	2419 58.0 57.5 Test Inertial	in.	-5
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal Cl Lateral CG (in	nsions for 98.5 57.375 vity /eight (lb) G (in.)	Estin <u>C.G. Calculatio</u> _in. _in. <u>1100C MAS</u> 2420 ±	nated Total ns Front Tr Rear Tr H Targets 55	Weight (lb) ack Width: ack Width:	2419 58.0 57.5 Test Inertial 2415	in.	-5. -2.82 N
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (ir	nsions for 98.5 57.375 vity /eight (lb) G (in.) n.) n.)	Estin in. in. in. 1100C MAS 2420 ± 39 ± NA NA	nated Total ¹ Front Tr Rear Tr H Targets : 55 : 4	Weight (lb) ack Width: ack Width:	2419 58.0 57.5 Test Inertial 2415 36.178	in.	-5. -2.82 N
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (ir	nsions for 98.5 57.375 vity /eight (lb) G (in.) n.) n.)	Estin <u>C.G. Calculatio</u> _in. _in. <u>1100C MAS</u> <u>2420 ±</u> <u>39 ±</u> NA	nated Total ¹ Front Tr Rear Tr H Targets : 55 : 4	Weight (lb) ack Width: ack Width:	2419 58.0 57.5 Test Inertial 2415 36.178 -0.777	in.	-5 -2.82 N
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal CC Lateral CG (in Vertical CG (ir Note: Long. CG is	nsions for 98.5 57.375 vity /eight (lb) G (in.) n.) m.) s measured fro	Estin in. in. in. 1100C MAS 2420 ± 39 ± NA NA	nated Total ns Front Tr Rear Tr H Targets 55 55 4 vehicle	Weight (lb) rack Width: rack Width:	2419 58.0 57.5 Test Inertial 2415 36.178 -0.777 22.746	in.	-5 -2.82 N
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG	vity /eight (Ib) G (in.) n.) s measured from measured from	Estin <u>C.G. Calculatio</u> _in. _in. <u>1100C MAS</u> 2420 ± 39 ± NA NA om front axle of test w	nated Total ns Front Tr Rear Tr H Targets 55 55 4 vehicle	Weight (lb) rack Width: rack Width:	2419 58.0 57.5 Test Inertial 2415 36.178 -0.777 22.746 side	in.	-5 -2.82 N N
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal CC Lateral CG (in Vertical CG (ir Note: Long. CG is	vity /eight (Ib) G (in.) n.) s measured from measured from	Estin <u>C.G. Calculatio</u> _in. _in. <u>1100C MAS</u> 2420 ± 39 ± NA NA om front axle of test w	nated Total ns Front Tr Rear Tr H Targets 55 55 4 rehicle	Weight (lb) rack Width: rack Width:	2419 58.0 57.5 Test Inertial 2415 36.178 -0.777 22.746	in.	-5 -2.82 N N
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG	vity /eight (Ib) G (in.) n.) s measured from measured from	Estin <u>C.G. Calculatio</u> _in. _in. <u>1100C MAS</u> 2420 ± 39 ± NA NA om front axle of test w	nated Total ns Front Tr Rear Tr H Targets 55 55 4 rehicle	Weight (lb) rack Width: rack Width:	2419 58.0 57.5 Test Inertial 2415 36.178 -0.777 22.746 side	in.	-5 -2.82 N N
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG	nsions for 98.5 57.375 vity /eight (lb) G (in.) n.) s measured from measured from measured from IT (lb)	Estin <u>C.G. Calculatio</u> in. in. <u>1100C MAS</u> 2420 ± 39 ± NA NA om front axle of test w m centerline - positive	nated Total ns Front Tr Rear Tr H Targets 55 55 4 rehicle	Weight (lb) rack Width: rack Width:	2419 58.0 57.5 Test Inertial 2415 36.178 -0.777 22.746 side	TIAL WEIGH	-5 -2.82 N N
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal Cl Lateral CG (in Vertical CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG is	nsions for 98.5 57.375 vity /eight (lb) G (in.) n.) n.) s measured from measured from measured from IT (lb) Left	Estin	nated Total ns Front Tr Rear Tr H Targets 55 55 4 rehicle	Weight (lb) rack Width: rack Width:	2419 58.0 57.5 Test Inertial 2415 36.178 -0.777 22.746 side TEST INER	TIAL WEIGI	-5 -2.82 N N HT (Ib)
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal CU Lateral CG (in Vertical CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG (CURB WEIGH Front Rear	nsions for 98.5 57.375 vity /eight (lb) G (in.) n.) a measured from measured from IT (lb) Left 805 466	Estin	nated Total ns Front Tr Rear Tr H Targets 55 55 4 rehicle	Weight (lb) rack Width: rack Width:	2419 58.0 57.5 Test Inertial 2415 36.178 -0.777 22.746 side TEST INER Front Rear	TIAL WEIGI Left 789 451	-5 -2.82 N N HT (Ib) HT (Ib) Right 739 436
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal CU Lateral CG (in Vertical CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG (CURB WEIGH Front Rear	nsions for 98.5 57.375 vity /eight (lb) G (in.) n.) a measured from measured from IT (lb) Left 805 466 1574	Estin	nated Total ns Front Tr Rear Tr H Targets 55 55 4 rehicle	Weight (lb) rack Width: rack Width:	2419 58.0 57.5 Test Inertial 2415 36.178 -0.777 22.746 side TEST INER Front Rear FRONT	in. TIAL WEIGI Left 789 451 1528	-5 -2.82 N N HT (Ib) HT (Ib) Right 739 436 Ib
Vehicle Dimer Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal CU Lateral CG (in Vertical CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG (CURB WEIGH Front Rear	nsions for 98.5 57.375 vity /eight (lb) G (in.) n.) a measured from measured from IT (lb) Left 805 466	Estin	nated Total ns Front Tr Rear Tr H Targets 55 55 4 rehicle	Weight (lb) rack Width: rack Width:	2419 58.0 57.5 Test Inertial 2415 36.178 -0.777 22.746 side TEST INER Front Rear	TIAL WEIGI Left 789 451	Right 739 436

Figure C-2. Vehicle Mass Distribution, Test No. MTB-2

Appendix D. Static Soil Tests

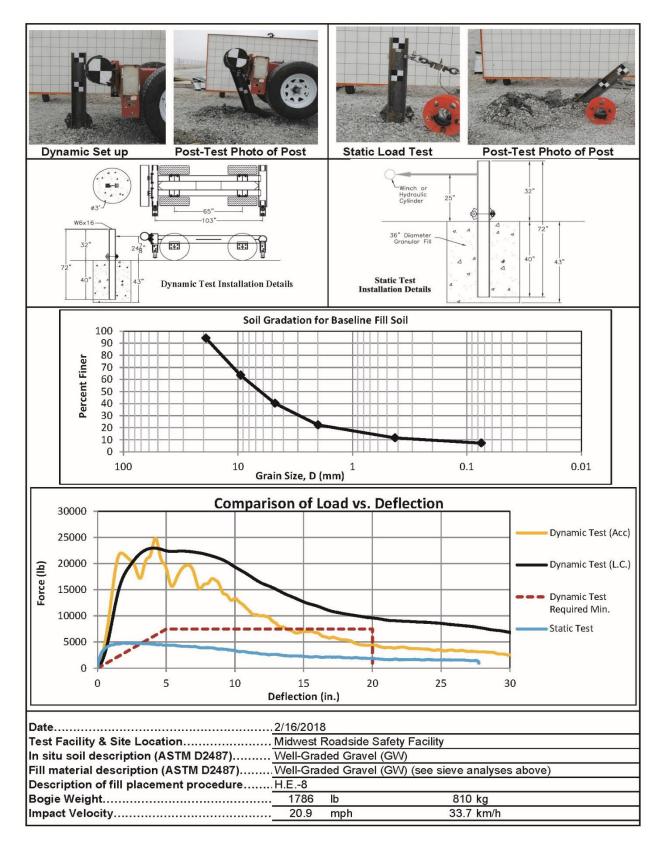


Figure D-1. Soil Strength, Initial Calibration Tests, Test No. MTB-1

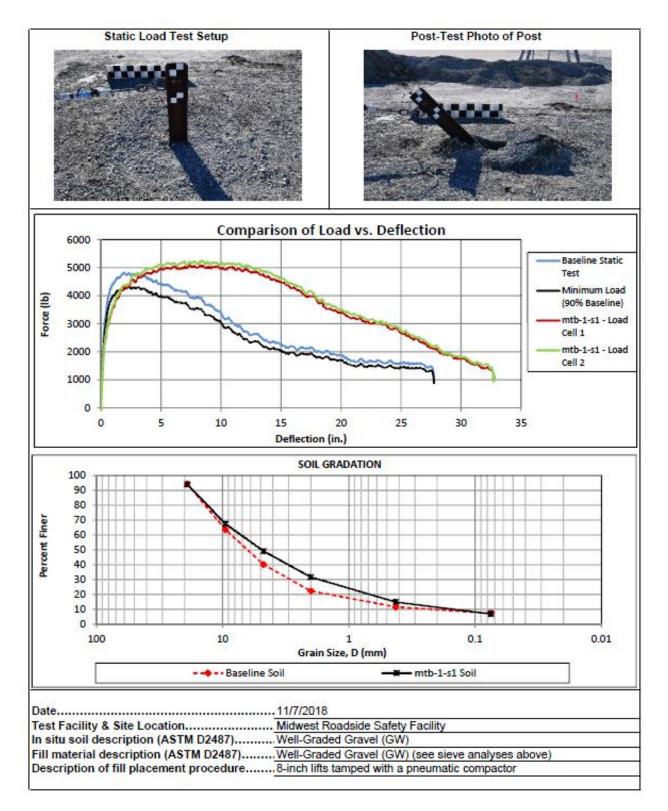


Figure D-2. Static Soil Test, Test No. MTB-1

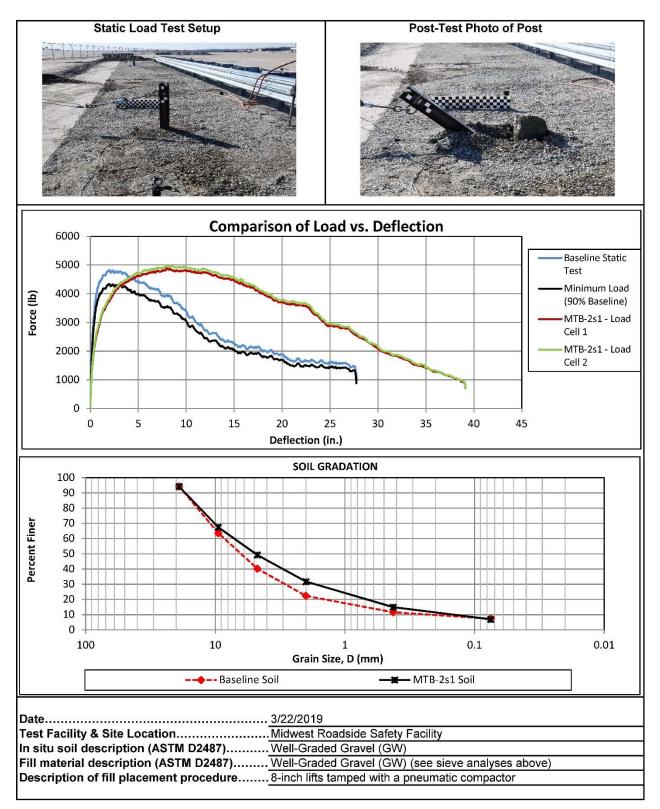


Figure D-3. Static Soil Test, Test No. MTB-2

Appendix E. Vehicle Deformation Records

Year:		/2018			Test Name: Make:		B-1 dge			VIN: Model:	1C6R	D6FT1CS3 Ram 1500	07273
							FORMATIC						
					PASSENG	SER SIDE	FLOOR PA	N - SET 1					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔΥ ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^C
	1	51.5257	14.6096	-3.8444	51.5273	14.8611	-3.6810	-0.0016	-0.2515	-0.1634	0.2999	0.0000	NA
ļ	2	52.5304	19.6218	-1.0359	52.4918	19.8606	-0.8078	0.0386	-0.2388	-0.2281	0.3325	0.0386	Х
. =	3	53.9030	23.6886	2.0925	53.8792	23.9474	2.3642	0.0238	-0.2588	-0.2717	0.3760	0.0238	X
N N N N N N N N N N N N N N N N N N N	4 5	53.9742 54.0180	28.9421 33.3217	1.9718	53.9237 53.9577	29.1164 33.4736	2.2966 2.0916	0.0505	-0.1743 -0.1519	-0.3248 -0.3329	0.3721	0.0505	X
	6	48.5429	13.9429	-2.3869	48.5073	14.2479	-2.1646	0.0356	-0.3050	-0.2223	0.3791	0.0356	X
ᅙᅗ (7	49.6394	19.3528	0.8089	49.5272	19.5119	1.0500	0.1122	-0.1591	-0.2411	0.3099	0.1122	Х
1	8	50.7453	23.4015	3.8701	50.7128	23.5922	4.1360	0.0325	-0.1907	-0.2659	0.3288	0.0325	Х
ļ	9	50.6567	29.2493	3.9234	50.6469	29.4256	4.1666	0.0098	-0.1763	-0.2432	0.3005	0.0098	X
	10	50.7768	33.4389	3.8765	50.6986	33.5619	4.1932	0.0782	-0.1230	-0.3167	0.3486	0.0782	X
eforming in	11	45.1167 46.6227	13.4608 18.6887	-0.5185 3.3997	45.1597 46.5579	13.6867 18.8418	-0.3698 3.5847	-0.0430 0.0648	-0.2259 -0.1531	-0.1487 -0.1850	0.2738	-0.1487 -0.1850	Z
ŀ	12	40.0227	22.9923	5.2481	40.5579	23.1888	5.4702	-0.0029	-0.1965	-0.1850	0.2467	-0.2221	Z
ŀ	14	47.5131	29.3534	5.2607	47.4164	29.5388	5.5312	0.0967	-0.1854	-0.2705	0.3419	-0.2705	Z
[15	47.4558	33.3166	5.2687	47.3628	33.4533	5.5519	0.0930	-0.1367	-0.2832	0.3279	-0.2832	Z
	16	41.8222	13.0427	0.4688	41.7762	13.2659	0.6142	0.0460	-0.2232	-0.1454	0.2703	-0.1454	Z
-	17	43.3180	17.3631	5.1874	43.2353	17.5590	5.4008	0.0827	-0.1959	-0.2134	0.3013	-0.2134	Z
Z	18	43.5494 43.6456	22.6040 29.4993	5.2823 5.2796	43.4585 43.8582	22.8192 29.4550	5.5016 5.4189	0.0909	-0.2152 0.0443	-0.2193 -0.1393	0.3204	-0.2193 -0.1393	Z
à l	20	43.6612	33.3642	5.2911	43.6343	33.5592	5.5582	0.0269	-0.1950	-0.2671	0.3318	-0.2671	Z
Б N	21	36.6006	13.5421	2.2672	36.5762	13.7538	2.3525	0.0244	-0.2117	-0.0853	0.2295	-0.0853	z
9 I	22	36.9026	16.9131	5.2942	36.9348	17.0812	5.4655	-0.0322	-0.1681	-0.1713	0.2422	-0.1713	Z
-	23	37.3450	22.1040	5.2800	37.2867	22.3113	5.4744	0.0583	-0.2073	-0.1944	0.2901	-0.1944	Z
ļ	24	37.5360	29.4770	5.2816	37.5874	29.6292	5.5091	-0.0514	-0.1522	-0.2275	0.2785	-0.2275	Z
ŀ	25 26	37.7588 33.3596	33.6904 13.5454	5.2956 2.2432	37.7058 33.3855	33.8710 13.7710	5.5481 2.3460	0.0530	-0.1806 -0.2256	-0.2525 -0.1028	0.3149	-0.2525 -0.1028	Z
ŀ	20	34.0670	17.0360	5.2506	33.9606	17.2588	5.4027	0.1064	-0.2228	-0.1521	0.2900	-0.1521	Z
ľ	28	34.2094	21.6562	5.2615	34.1175	21.8122	5.4424	0.0919	-0.1560	-0.1809	0.2559	-0.1809	Z
[29	34.5784	28.9410	5.2851	34.4938	29.1276	5.5090	0.0846	-0.1866	-0.2239	0.3035	-0.2239	Z
	30	34.3919	33.7939	5.2878	34.3646	33.9406	5.5316	0.0273	-0.1467	-0.2438	0.2858	-0.2438	Z
							-						
deforming ir	ulations that ward towar	rd the occup	le directiona ant compart	ment.			nents that an	e negative a	and only incl	ude positive	e values whe	re the com	oonent is
deforming ir	ulations that ward towar	rd the occup olumn denote	le directiona ant compart	ment. ctions are i			nents that an	e negative a	and only incl to intrusion i	ude positive	e values whe	re the com	ponent is
deforming ir	ulations that ward towar	rd the occup olumn denote	e directiona ant compart s which dire	ment. ctions are i			nents that an	e negative a	and only incl to intrusion i	ude positive s recorded,	e values whe	re the com	ponent is

Figure E-1. Floor Pan Deformation Data – Set 1, Test No. MTB-1

Date: Year:		/2018)12			Test Name: Make:		'B-1 dge			VIN: Model:	1C6R	D6FT1CS3 Ram 1500	07273
							FORMATIO						
		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Directions
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
	1	54.7174	33.9907	-7.6017	54.9837	33.9953	-7.4317	-0.2663	-0.0046	-0.1700	0.3160	0.0000	NA
	2	55.7386 57.1185	39.0001 43.0620	-4.7943 -1.6627	55.9669 57.3640	38.9907 43.0705	-4.5577 -1.3808	-0.2283 -0.2455	0.0094	-0.2366 -0.2819	0.3289	0.0000	NA NA
그룹	4	57.2287	48.3147	-1.7914	57.4489	48.2389	-1.4541	-0.2400	0.0758	-0.3373	0.4099	0.0000	NA
TOE PAN - WHEEL WELL (X, Z)	5	57.3058	52.6935	-2.0113	57.5180	52.5954	-1.6639	-0.2122	0.0981	-0.3474	0.4187	0.0000	NA
原표 오	6	51.7196	33.3480	-6.1644	51.9486	33.4072	-5.9353	-0.2290	-0.0592	-0.2291	0.3293	0.0000	NA
주물 .	7	52.8327	38.7552	-2.9697	52.9870	38.6671	-2.7199	-0.1543	0.0881	-0.2498	0.3065	0.0000	NA
~	8	53.9462 53.8998	42.8008 48.6492	0.0928	54.1829 54.1618	42.7418 48.5756	0.3695	-0.2367 -0.2620	0.0590	-0.2767 -0.2569	0.3689	0.0000	NA NA
ł	10	54.0507	52.8377	0.0833	54.2453	52.7114	0.4151	-0.1946	0.1263	-0.3318	0.4049	0.0000	NA
	11	48.2768	32.8939	-4.3197	48.5845	32.8740	-4.1631	-0.3077	0.0199	-0.1566	0.3458	-0.1566	Z
ł	12	49.7930	38.1173	-0.3993	49.9953	38.0229	-0.2049	-0.2023	0.0944	-0.1944	0.2960	-0.1944	Z
[13	50.6979	42.4174	1.4485	50.9704	42.3647	1.6821	-0.2725	0.0527	-0.2336	0.3628	-0.2336	Z
ļ	14	50.7476	48.7783	1.4508	50.9230	48.7153	1.7351	-0.1754	0.0630	-0.2843	0.3399	-0.2843	Z
-	15	50.7191	52.7419	1.4520	50.8994 45.1912	52.6302	1.7509	-0.1803	0.1117	-0.2989 -0.1533	0.3665	-0.2989	Z
	16	44.9724 46.4660	32.5014 36.8187	-3.3551 1.3671	46.6505	32.4805 36.7680	-3.2018 1.5898	-0.2188 -0.1845	0.0209	-0.1533	0.2680	-0.1533 -0.2227	Z
_	18	46.7349	42.0579	1.4551	46.9135	42.0264	1.6860	-0.1786	0.0315	-0.2309	0.2936	-0.2309	Z
NA.	19	46.8812	48.9523	1.4420	47.3651	48.6588	1.5984	-0.4839	0.2935	-0.1564	0.5872	-0.1564	Z
FLOOR PAN (Z)	20	46.9249	52.8170	1.4474	47.1719	52.7648	1.7314	-0.2470	0.0522	-0.2840	0.3800	-0.2840	Z
80	21	39.7419	33.0417	-1.5947	39.9833	33.0107	-1.5000	-0.2414	0.0310	-0.0947	0.2612	-0.0947	Z
5	22	40.0469	36.4155	1.4290	40.3462	36.3389	1.6115	-0.2993	0.0766	-0.1825	0.3588	-0.1825	Z
-	23 24	40.5272 40.7718	41.6030 48.9744	1.4096	40.7384 41.0954	41.5661 48.8815	1.6168	-0.2112 -0.3236	0.0369	-0.2072 -0.2446	0.2982	-0.2072 -0.2446	Z
	24	41.0251	53.1860	1.4095	41.2462	53,1224	1.6801	-0.3230	0.0636	-0.2706	0.3552	-0.2706	Z
	26	36.5014	33.0685	-1.6416	36,7930	33.0524	-1.5285	-0.2916	0.0161	-0.1131	0.3132	-0.1131	Z
[27	37.2127	36.5588	1.3650	37.3740	36.5394	1.5281	-0.1613	0.0194	-0.1631	0.2302	-0.1631	Z
	28	37.3887	41.1779	1.3695	37.5657	41.0914	1.5636	-0.1770	0.0865	-0.1941	0.2766	-0.1941	Z
-	29 30	37.8104 37.6959	48.4599 53.2727	1.3840	37.9980 37.9058	48.4038 53.2177	1.6243	-0.1876 -0.2099	0.0561	-0.2403 -0.4942	0.3100	-0.2403 -0.4942	Z
^A Positive va	alues denot		on as inward										
leforming ir	nward towa	rd the occup	le directiona ant compart es which dire	ment.				-	-				ponent is
		Pret	test Floor	Pan					Pos	ttest Floor	Pan		
													Star 1

Figure E-2. Floor Pan Deformation Data – Set 2, Test No. MTB-1

Date: Year:		2018 112			Test Name: Make:		'B-1 dge			VIN: Model:	1C6F	Ram 1500	07273
				PA			FORMATIO		T 1				
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔY ^A (in.)	ΔΖ ^Α (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for Crush ^C
	1	43.0808	4.8155	-27.6487	43.2224	5.1506	-27.5653	-0.1416	-0.3351	0.0834	0.3732	0.3732	X, Y, Z
τÑ	2	43.1884	17.0808	-27.2086	43.3424	17.3845	-27.1263	-0.1540	-0.3037	0.0823	0.3503	0.3503	X, Y, Z
DASH (X, Y, Z	3	44.0136 36.7431	28.1918 3.8529	-26.5694 -16.9854	44.1984 36.7755	28.4643 4.1823	-26.4911 -16.9864	-0.1848 -0.0324	-0.2725 -0.3294	0.0783	0.3384	0.3384	X, Y, Z X, Y, Z
<u> </u>	5	38.8227	17.6079	-16.8430	38.9472	17.9385	-16.7738	-0.1245	-0.3306	0.0692	0.3600	0.3600	X, Y, Z
	6	39.5334	29.4624	-16.6148	39.6319	29.7491	-16.5470	-0.0985	-0.2867	0.0678	0.3106	0.3106	X, Y, Z
SIDE PANEL (')	7	48.7867 48.7739	36.2034 36.2331	-0.0067 -4.6263	48.7712 48.7665	36.0147 35.9250	0.2376	0.0155	0.1887 0.3081	0.2443 0.2153	0.3091	0.1887 0.3081	Y
IS IS C	9	51.9033	36.4185	-3.7095	51.8926	36.3789	-3.5484	0.0107	0.0396	0.1611	0.1662	0.0396	Ý
	10	35.3501	37.6596	-22.4691	35.0356	38.0095	-22.4320	0.3145	-0.3499	0.0371	0.4719	-0.3499	Y
us a	11	27.7268 15.8089	37.7989 38.0035	-22.6470 -22.8603	27.4952 15.5316	38.3408 38.8813	-22.6316 -22.7399	0.2316	-0.5419 -0.8778	0.0154	0.5895	-0.5419 -0.8778	Y
MPACT SIDE DOOR (1)	12	35.9172	38.0035	-22.8603	35.5220	38.8813	-22.7399	0.3952	0.1314	0.1204	0.9284	0.1314	Y
APA D	14	27.6250	39.5106	-2.7259	27.3116	39.6529	-2.6790	0.3134	-0.1423	0.0469	0.3474	-0.1423	Y
-	15	17.4570	38.7824	-2.9868	17.1444	39.1925	-2.9602	0.3126	-0.4101	0.0266	0.5163	-0.4101	Y
	16 17	34.1250 34.3596	5.0209 11.2836	-42.7340 -42.8801	34.1679 34.4693	5.3439 11.6690	-42.7032 -42.8191	-0.0429	-0.3230 -0.3854	0.0308	0.3273	0.0308	Z
	18	33.8543	17.4593	-42.7948	33.8544	17.8768	-42.7521	-0.0001	-0.4175	0.0427	0.4197	0.0427	Z
	19	32.5738	21.6233	-42.3331	32.6292	22.0068	-42.2590	-0.0554	-0.3835	0.0741	0.3945	0.0741	Z
	20	31.9251 29.2240	25.6571 5.3214	-42.4815 -45.4392	32.0557 29.3361	26.0563 5.6914	-42.3617 -45.3978	-0.1306 -0.1121	-0.3992 -0.3700	0.1198	0.4368	0.1198	Z
N.	22	28.5778	10.7588	-45.4812	28.6769	11.1830	-45.4241	-0.0991	-0.4242	0.0571	0.4393	0.0571	Z
ROOF - (Z)	23	28.0769	16.7830	-45.3112	28.1308	17.1898	-45.2441	-0.0539	-0.4068	0.0671	0.4158	0.0671	Z
ğ	24 25	27.3489 26.0778	20.6836 25.0955	-45.1800 -45.0160	27.3654 26.1564	21.1243 25.4750	-45.1058 -44.9231	-0.0165 -0.0786	-0.4407 -0.3795	0.0742	0.4472	0.0742	Z
	25	20.0778	6.2880	-46.6138	20.1504	6.6442	-44.9231	-0.1472	-0.3795	0.0358	0.3985	0.0358	Z
	27	20.2564	11.3403	-46.5616	20.3150	11.8282	-46.5142	-0.0586	-0.4879	0.0474	0.4937	0.0474	Z
	28	20.0231	16.8409	-46.3754	20.1246	17.2092	-46.3136	-0.1015	-0.3683	0.0618	0.3870	0.0618	Z
	29 30	20.0842 20.1520	21.0613 24.7814	-46.1393 -45.8442	20.0882 20.2922	21.4911 25.2074	-46.0676 -45.7492	-0.0040	-0.4298 -0.4260	0.0717	0.4358	0.0717	Z
	31	46.6759	34.6230	-29.1394	46.6962	34.8745	-28.9190	-0.0203	-0.2515	0.2204	0.3350	0.2204	Z
A-PILLAR Maximum (X, Y, Z)	32	44.2202	34.2384	-30.7691	44.3320	34.4872	-30.5603	-0.1118	-0.2488	0.2088	0.3435	0.2088	Z
A-PILLAR Maximum (X, Y, Z)	33 34	41.7002 38.7663	32.5483 32.5624	-32.1704 -34.3839	41.7418 38.7712	32.8162 32.8831	-32.0302 -34.2398	-0.0416	-0.2679 -0.3207	0.1402	0.3052	0.1402	Z
A Max	35	36.7535	32.1396	-35.6941	36.8688	32.4550	-35.5311	-0.1153	-0.3154	0.1630	0.3733	0.1630	Z
	36	33.7742	30.9216	-37.2756	33.8900	31.2585	-37.1291	-0.1158	-0.3369	0.1465	0.3852	0.1465	Z
	31	46.6759	34.6230	-29.1394	46.6962	34.8745	-28.9190	-0.0203	-0.2515	0.2204	0.3350	-0.2515	Y
LAR S	32 33	44.2202 41.7002	34.2384 32.5483	-30.7691 -32.1704	44.3320 41.7418	34.4872 32.8162	-30.5603 -32.0302	-0.1118 -0.0416	-0.2488 -0.2679	0.2088	0.3435	-0.2488 -0.2679	Y
A-PILLAR Lateral (Y)	34	38.7663	32.5624	-34.3839	38.7712	32.8831	-34.2398	-0.0049	-0.3207	0.1441	0.3516	-0.3207	Y
Ϋ́	35	36.7535	32.1396	-35.6941	36.8688	32.4550	-35.5311	-0.1153	-0.3154	0.1630	0.3733	-0.3154	Y
er E	36 37	33.7742 8.3737	30.9216 35.4867	-37.2756	33.8900 8.4186	31.2585 35.7684	-37.1291 -28.2167	-0.1158	-0.3369 -0.2817	0.1465	0.3852	-0.3369	Y Z
B-PILLAR Maximum (X, Y, Z)	38	5.6136	35.5314	-28.6694	5.7059	35.8121	-28.6061	-0.0923	-0.2807	0.0633	0.3022	0.0633	Z
The X	39	7.2524	31.6100	-40.2919	7.3221	31.9056	-40.2198	-0.0697	-0.2956	0.0721	0.3121	0.0721	Z
	40 37	4.0336 8.3737	31.7389 35.4867	-40.0495	4.0499 8.4186	32.0399 35.7684	-39.9839 -28.2167	-0.0163	-0.3010 -0.2817	0.0656	0.3085	0.0656	Z
LAR al M	37	5.6136	35.5314	-28.3133	5.7059	35.8121	-28.2107	-0.0949	-0.2817	0.0900	0.3012	-0.2817	Y
B-PILLA Lateral ()	39	7.2524	31.6100	-40.2919	7.3221	31.9056	-40.2198	-0.0697	-0.2956	0.0721	0.3121	-0.2956	Y
*	40 alues denot	4.0336 e deformatio	31.7389 on as inward	-40.0495 d toward the	4.0499 occupant c	32.0399 ompartmen	-39.9839 t, negative v	-0.0163 alues denot	-0.3010 e deformatio	0.0656 ons outward	0.3085 away from	-0.3010 the occupar	T T
compartme ⁸ Crush cak	nt. culations tha		le direction	al componer			onents that a						
[©] Direction f	for Crush co	olumn denot	es which dir	ections are	included in t	he crush ca	lculations. It	f "NA" then	no intrusion	is recorded,	and Crush	will be 0.	

Date: Year:		/2018)12			Test Name: Make:		B-1 dge			VIN: Model:	1C6R	D6FT1CS3 Ram 1500	07273
				PA			FORMATI		T 2				
		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Directions
	POINT	X (in.)	Y (in.)	Z (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	for Crush ^C
	1	46.3180	24.0781	-31.6149	46.7984	24.5308	-31.3348	-0.4804	-0.4527	0.2801	0.7171	0.7171	X, Y, Z
- ଲ	2	46.5141	36.3448	-31.2507	46.9886	36.8025	-30.8851	-0.4745	-0.4577	0.3656	0.7539	0.7539	X, Y, Z
AS Y	3	47.4183	47.4532 23.2290	-30.6767	47.8910	47.9354	-30.2225	-0.4727	-0.4822	0.4542	0.8138	0.8138	X, Y, Z
۵×	 5	39.9215 42.1021	36.9690	-20.9771	40.2604 42.5320	23.6783 37.4052	-20.7571 -20.5825	-0.3389	-0.4493 -0.4362	0.2200	0.6043	0.6043	X, Y, Z X, Y, Z
IMPACT SIDE SIDE DASH DOOR PANEL (X. Y. Z) (Y) (Y) (Y)	6	42.8992	48.8191	-20.7523	43.3134	49.2064	-20.4104	-0.4142	-0.3873	0.3419	0.6622	0.6622	X, Y, Z
	7	52.1212	55.5958	-4.1413	52.3956	55.4282	-3.4724	-0.2744	0.1676	0.6689	0.7422	0.1676	Y
SAS	<u> </u>	52.1311	55.5966	-8.7610	52.4203	55.3340	-8.1552	-0.2892	0.2626	0.6058	0.7208	0.2626	Y
	10	55.2573 38.8051	55.7646 57.0101	-7.8300	55.0147 38.8354	55.9305 57.4830	-7.1002	0.2426	-0.1659	0.7298	0.7868		Y
	11	31.1841	57.2043	-26.8943	31.2511	57.8828	-26.4688	-0.0670	-0.6785	0.4255	0.8037	-0.6785	Y
Sec	12	19.2692	57.4954	-27.1673	19.3021	58.4933	-26.7863	-0.0329	-0.9979	0.3810	1.0687	-0.9979	Y
880	13	39.2855	58.3350	-7.0288	39,1889	58.2299	-6.5312	0.0966	0.1051	0.4976	0.5177		Y
N N	14 15	30.9980 20.8263	59.0416 58.3866	-6.9850 -7.2913	30.9226 20.7505	59.2028 58.8226	-6.5499 -6.9385	0.0754	-0.1612 -0.4360	0.4351 0.3528	0.4701		Y
	16	37.4374	24.2549	-46.7450	37.9155	24.8546	-46.4874	-0.4781	-0.5997	0.2576	0.8091		Z
	17	37.7190	30.5146	-46.9289	38.1870	31.1105	-46.6265	-0.4680	-0.5959	0.3024	0.8158	0.3024	Z
	18	37.2589	36.6944	-46.8846	37.7517	37.3343	-46.5360	-0.4928	-0.6399	0.3486	0.8797	0.3486	Z
	19 20	36.0070 35.3889	40.8705	-46.4551 -46.6318	36.4322 35.8858	41.5477 45.5210	-46.0957 -46.2261	-0.4252 -0.4969	-0.6772 -0.6131	0.3594	0.8767		Z
~	20	32.5520	24.5745	-49.4760	33.1095	25.1550	-49.2214	-0.5575	-0.5805	0.2546	0.8442	0.2546	Z
8	22	31.9462	30.0162	-49.5551	32.5061	30.6235	-49.2608	-0.5599	-0.6073	0.2943	0.8769	0.2943	Z
ROOF - (23	31.4891	36.0448	-49.4251	31.9808	36.6802	-49.1019	-0.4917	-0.6354	0.3232	0.8660	0.3232	Z
8	24 25	30.7893 29.5500	39.9514 44.3735	-49.3218 -49.1915	31.2685 30.0563	40.6245 44.9875	-48.9725 -48.8110	-0.4792 -0.5063	-0.6731 -0.6140	0.3493	0.8971		Z
	26	24.1298	25.5958	-50.6980	24.6680	26.2150	-50.4807	-0.5382	-0.6192	0.2173	0.8487		Z
	27	23.6347	30.6521	-50.6800	24.1236	31.3359	-50.4314	-0.4889	-0.6838	0.2486	0.8766	0.2486	Z
	28	23.4412	36.1554	-50.5292	23.9377	36.7545	-50.2404	-0.4965	-0.5991	0.2888	0.8300		Z
	29 30	23.5323 23.6262	40.3766 44.0979	-50.3191 -50.0468	24.0316 24.1403	40.9855 44.7685	-49.9977 -49.6903	-0.4993 -0.5141	-0.6089 -0.6706	0.3214 0.3565	0.8505		Z
	31	50.1406	53.8484	-33.2736	50.5516	54.2652	-32.6514	-0.4110	-0.4168	0.6222	0.8543		Z
≝ ≣ ស	32	47.6901	53.4717	-34.9129	48.0551	53.9190	-34.3314	-0.3650	-0.4473	0.5815	0.8194	0.5815	Z
A-PILLAR Maximum (X, Y, Z)	33	45.1645	51.7915	-36.3160	45.5042	52.2371	-35.8263	-0.3397	-0.4456	0.4897	0.7442	0.4897	Z
₫ĝX	34 35	42.2416 40.2321	51.8133 51.3971	-38.5440 -39.8614	42.6106 40.7394	52.2667 51.8341	-38.1007 -39.4100	-0.3690 -0.5073	-0.4534 -0.4370	0.4433	0.7337		Z
-	36	37.2515	50.1912	-41.4498	37.7126	50.7170	-41.0046	-0.4611	-0.5258	0.4452	0.8290	475 -0.4729 037 -0.6785 687 -0.9979 177 0.1051 701 -0.1612 680 -0.4380 001 0.2576 158 0.3024 797 0.3496 767 0.3694 874 0.4057 442 0.2546 709 0.2943 680 0.3232 971 0.3493 821 0.3805 487 0.2173 786 0.2486 505 0.3214 171 0.3665 543 0.6222 194 0.5815 442 0.4997 337 0.4433 075 0.4514 290 0.4452	Z
	31	50.1406	53.8484	-33.2736	50.5516	54.2652	-32.6514	-0.4110	-0.4168	0.6222	0.8543	-0.4168	Y
З¥	32	47.6901	53.4717	-34.9129	48.0551	53.9190	-34.3314	-0.3650	-0.4473	0.5815	0.8194	-0.4473	Y
eral	33 34	45.1645 42.2416	51.7915 51.8133	-36.3160 -38.5440	45.5042 42.6106	52.2371 52.2667	-35.8263 -38.1007	-0.3397 -0.3690	-0.4456 -0.4534	0.4897	0.7442	-0.4456 -0.4534	Y Y
A-PILLAR Lateral (Y)	35	40.2321	51.3971	-39.8614	40.7394	51.8341	-39.41007	-0.5073	-0.4334	0.4433	0.8075	-0.4334	Y
	36	37.2515	50.1912	-41.4498	37.7126	50.7170	-41.0046	-0.4611	-0.5258	0.4452	0.8290	-0.5258	Y
B-PILLAR Maximum (X, Y, Z)	37	11.8423	54.9992	-32.6410	12.2389	55.4295	-32.3200	-0.3966	-0.4303	0.3210	0.6675	0.3210	Z
B-PILLAR Maximum (X, Y, Z)	38	9.0843	55.0620 51.0559	-33.0109 -44.6006	9.5228	55.5046 51.5514	-32.6924 -44.3089	-0.4385 -0.4245	-0.4426 -0.4955	0.3185	0.6997	0.3185	Z
₽ ∰ K		7.5317	51.0009	-44.0000	7.9700	51.0014	-44.0601	-0.4245	-0.4955	0.2917	0.7388	0.2917	Z
	37	11.8423	54.9992	-32.6410	12.2389	55.4295		-0.3966	-0.4303	0.3210	0.6675	-0.4303	Y
PILLAR Meral (Y)	38	9.0843	55.0620	-33.0109	9.5228	55.5046	-32.6924	-0.4385	-0.4426	0.3185	0.6997	-0.4426	Y
B-PI	39	10.7505 7.5317	51.0559 51.2101	-44.6006 -44.3749	11.1750 7.9700	51.5514 51.7147	-44.3089 -44.0601	-0.4245 -0.4383	-0.4955 -0.5046	0.2917 0.3148	0.7147	-0.4955 -0.5046	Y
^A Positive v compartme ^B Crush calo	alues denot nt. culations that	te deformation at use multip rd the occup	on as inward	toward the	occupant c	ompartmen	t, negative v	alues denot	e deformati	ons outward	away from	the occupar	nt
^c Direction f	for Crush or	olumn denote	es which dir	ections are	included in t	he crush ca	lculations. It	f "NA" then	no intrusion	is recorded	, and Crush	will be 0.	

Figure E-4. Occupant Compartment Deformation Data – Set 2, Test No. MTB-1

Figure E-5. Exterior Vehicle Crush (NASS) - Front, Test No. MTB-1

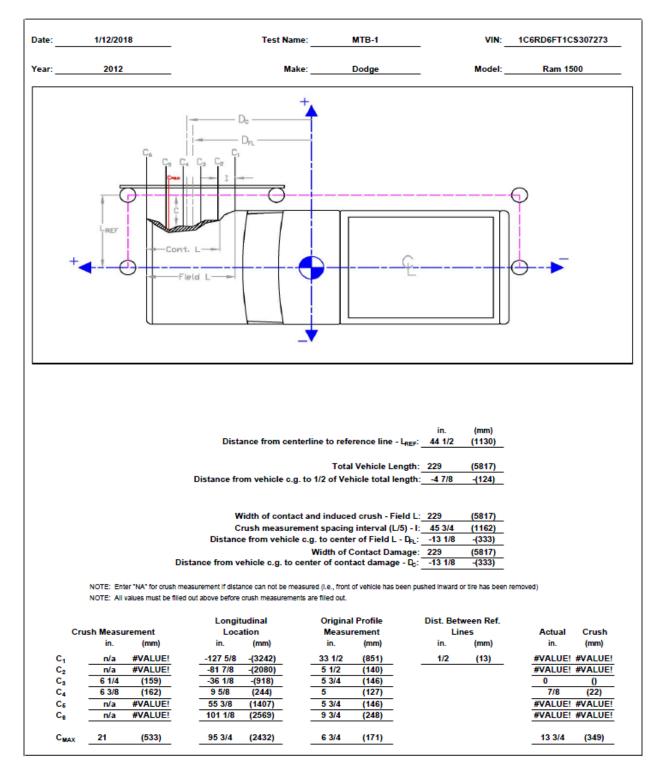


Figure E-6. Exterior Vehicle Crush (NASS) - Side, Test No. MTB-1

Date: Year:	9/20/ 20				Test Name: Make:		B-2 ia			VIN: Model:)E2235964 Rio	40731
							FORMATIO						
[POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔY ^A (in.)	ΔZ ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^C
	1	63.9964	9.6915	2.8727	64.2097	9.6791	2.5636	-0.2133	0.0124	0.3091	0.3758	0.3091	Z
	2	64,7593	6.7154	4.4410	64.9206	6.6287	4.0926	-0.1613	0.0867	0.3484	0.3936	0.3484	z
	3	64.3797	3.9877	4.5218	64.5442	3.8593	4.1561	-0.1645	0.1284	0.3657	0.4211	0.3657	Z
TOE PAN - WHEEL WELL (X, Z)	4	63.9188	1.0276	4.7348	64.0987	0.9976	4.3342	-0.1799	0.0300	0.4006	0.4402	0.4006	z
AN R	5	63.2835	-3.5260	4.8933	63.4690	-3.5592	4.5124	-0.1855	-0.0332	0.3809	0.4250	0.3809	Z
l li li x l	6	61.5904	10.2711	6.5347	61.8135	10.2128	6.2511	-0.2231	0.0583	0.2836	0.3655	0.2836	Z
ē₽)	7	61.1647	7.0646	6.6375	61.3577	6.9173	6.2983	-0.1930	0.1473	0.3392	0.4171	0.3392	z
5	8	61.0593	4.1293	6.5156	61.2762	4.1301	6.1244	-0.2169	-0.0008	0.3912	0.4473	0.3912	Z
	9	60.7574	1.1937	6.7030	60.9216	1.1347	6.3898	-0.1642	0.0590	0.3132	0.3585	0.3132	z
	10	59.9345	-2.0022	7.0942	60.1167	-2.0364	6.7643	-0.1822	-0.0342	0.3299	0.3784	0.3299	Z
	11	54.7532	13.1964	8.3216	54.9655	13.1615	8.0790	-0.2123	0.0349	0.2426	0.3243	0.2426	Z
	12	54.2065	8.2978	8.2070	54.5153	8.2608	7.9292	-0.3088	0.0370	0.2778	0.4170	0.2778	z
	13	53,7921	4.7251	8.2498	54.0213	4,7019	7.9567	-0.2292	0.0232	0.2931	0.3728	0.2931	Z
	14	53.2865	0.8012	8.3692	53.5118	0.7838	8.0255	-0.2253	0.0174	0.3437	0.4113	0.3437	Z
	15	53.1102	-2.2816	8.4945	53.3420	-2.3354	8.1818	-0.2318	-0.0538	0.3127	0.3929	0.3127	Z
	16	49.8547	14.1525	8.6947	50.1307	14.1123	8.4686	-0.2760	0.0402	0.2261	0.3590	0.2261	Z
	17	49.5381	8.8817	8.2836	49.7655	8.8645	8.0690	-0.2274	0.0172	0.2146	0.3131	0.2146	Z
	18	48.8525	4.7636	8.3284	49.0896	4.7218	8.0997	-0.2371	0.0418	0.2287	0.3321	0.2287	Z
FLOOR PAN (Z)	19	48.8790	1.2165	8.6729	49.0923	1.1774	8.4137	-0.2133	0.0391	0.2592	0.3380	0.2592	Z
4	20	48.2836	-1.8277	9.0314	48.5468	-1.8735	8.7792	-0.2632	-0.0458	0.2522	0.3674	0.2522	Z
5 N	21	45.3584	14.8436	8.6065	45.6031	14.8328	8.4138	-0.2447	0.0108	0.1927	0.3117	0.1927	Z
2	22	44.3741	9.4074	8.4142	44.6585	9.3825	8.2446	-0.2844	0.0249	0.1696	0.3321	0.1696	Z
	23	43.5115	4.9677	8.3911	43.7573	4.9601	8.1993	-0.2458	0.0076	0.1918	0.3119	0.1918	Z
	24	42.6536	0.8974	8.7863	42.8871	0.8819	8.5953	-0.2335	0.0155	0.1910	0.3021	0.1910	Z
	25	42.6379	-1.8945	8.8774	42.8894	-1.8921	8.6728	-0.2515	0.0024	0.2046	0.3242	0.2046	Z
1	26	40.5826	15.4805	8.3749	40.8025	15.5124	8.2049	-0.2199	-0.0319	0.1700	0.2798	0.1700	Z
	27	39.8059	9.3941	8.3789	40.0616	9.3602	8.2235	-0.2557	0.0339	0.1554	0.3011	0.1554	Z
	28	39.7096	4.9618	8.4028	39.9809	5.0099	8.2352	-0.2713	-0.0481	0.1676	0.3225	0.1676	Z
	29	39.6290	1.4827	8.4774	39.8806	1.4742	8.3096	-0.2516	0.0085	0.1678	0.3025	0.1678	Z
	30	39.1689	-2.1222	8.2797	39.4107	-2.1102	8.0988	-0.2418	0.0120	0.1809	0.3022	0.1809	Z

^A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

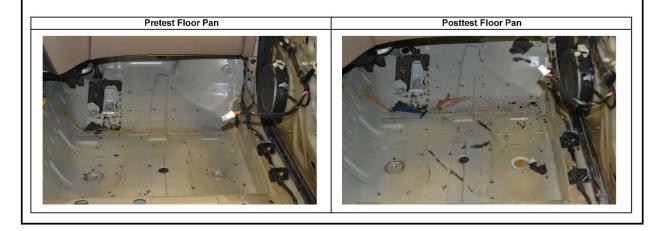


Figure E-7. Floor Pan Deformation Data – Set 1, Test No. MTB-2

Date: Year:	9/20/ 20				Test Name: Make:		B-2 ia			VIN: Model:	KNAE	DE2235964 Rio	40731
							FORMATIC FLOOR PA						
[Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔY ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for
	POINT	(in.)	(in.)	(in.)			. ,			• •			Crush ^C
	1	61.4391	33.9345	3.0030	61.0349	34.7120	2.9765	0.4042	-0.7775	0.0265	0.8767	0.4051	X, Z
	2	62.5701	31.0752	4.5661	62.1226	31.7271	4.5724	0.4475	-0.6519	-0.0063	0.7907	0.4475	X
TOE PAN - WHEEL WELL (X, Z)	3	62.5378	28.3212	4.6409	62.0706	29.0502	4.6801	0.4672	-0.7290	-0.0392	0.8667	0.4672	X
Z¥	4	62.4541	25.3261	4.8472	62.0877	26.0099	4.8371	0.3664	-0.6838	0.0101	0.7758	0.3665	X, Z
A N	5	62.3985	20.7285	4.9957	62.0778	21.4305	5.0401	0.3207	-0.7020	-0.0444	0.7731	0.3207	X
	6	58.9756	34.1978	6.6630	58.5635	34.9210	6.6521	0.4121	-0.7232	0.0109	0.8324	0.4122	X, Z
F E	7	58.9580	30.9630	6.7588	58.5825	31.6369	6.6987	0.3755	-0.6739	0.0601	0.7738	0.3803	X, Z
5	8	59.2241	28.0381	6.6308	58.8468	28.8089	6.5834	0.3773	-0.7708	0.0474	0.8595	0.3803	X, Z
	9	59.2951	25.0875	6.8118	58.9452	25.8212	6.8212	0.3499	-0.7337	-0.0094	0.8129	0.3499	X
	10	58.8818	21.8124	7.1954	58.5327	22.5236	7.2357	0.3491	-0.7112	-0.0403	0.7933	0.3491	Х
1 1	11	51.8220	36.2326	8.4474	51.4144	36.9067	8.3775	0.4076	-0.6741	0.0699	0.7908	0.0699	Z
	12	51.8982	31.3044	8.3221	51.5503	31.9690	8.2701	0.3479	-0.6646	0.0520	0.7520	0.0520	Z
	13	51.9381	27.7080	8.3570	51.5900	28.3903	8.3124	0.3481	-0.6823	0.0446	0.7673	0.0446	Z
1	14	51.9318	23.7514	8.4678	51.5910	24.4888	8.3986	0.3408	-0.7374	0.0692	0.8153	0.0692	Z
	15	52.1460	20.6707	8.5866	51.8331	21.3681	8.5805	0.3129	-0.6974	0.0061	0.7644	0.0061	Z
1 1	16	46.8416	36.5619	8.8162	46.4083	37.2040	8.7272	0.4333	-0.6421	0.0890	0.7797	0.0890	Z
	17	47.1934	31.2942	8.3939	46.8138	31.9174	8.3396	0.3796	-0.6232	0.0543	0.7317	0.0543	Z
z	18	47.0331	27.1224	8.4295	46.6663	27.7503	8.3979	0.3668	-0.6279	0.0316	0.7279	0.0316	Z
FLOOR PAN (Z)	19	47.5068	23.6062	8.7668	47.2037	24.2569	8.7314	0.3031	-0.6507	0.0354	0.7187	0.0354	Z
μ μ Ν	20	47.3002	20.5105	9.1183	47.0287	21.1219	9.1141	0.2715	-0.6114	0.0042	0.6690	0.0042	Z
80	21	42.2941	36.6801	8.7238	41.8505	37.2871	8.6075	0.4436	-0.6070	0.1163	0.7608	0.1163	Z
5	22	42.0042	31.1634	8.5191	41.6159	31.7526	8.4608	0.3883	-0.5892	0.0583	0.7080	0.0583	Z
_ <u> </u>	23	41.7090	26.6505	8.4858	41.3626	27.2527	8.4353	0.3464	-0.6022	0.0505	0.6966	0.0505	Z
[24	41.3714	22.5036	8.8717	41.0630	23.1277	8.8625	0.3084	-0.6241	0.0092	0.6962	0.0092	Z
[25	41.7082	19.7319	8.9571	41.3936	20.3377	8.9576	0.3146	-0.6058	-0.0005	0.6826	-0.0005	Z
1 [26	37.4764	36.7094	8.4874	36.9476	37.2436	8.3632	0.5288	-0.5342	0.1242	0.7619	0.1242	Z
[27	37.4743	30.5737	8.4780	37.0726	31.1306	8.4114	0.4017	-0.5569	0.0666	0.6899	0.0666	Z
	28	37.9382	26.1647	8.4928	37.5846	26.7739	8.4521	0.3536	-0.6092	0.0407	0.7056	0.0407	Z
[29	38.2974	22.7030	8.5602	38.0132	23.2474	8.5527	0.2842	-0.5444	0.0075	0.6142	0.0075	Z
	30	38.2963	19.0693	8.3546	38.0755	19.6596	8.3571	0.2208	-0.5903	-0.0025	0.6302	-0.0025	Z

A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

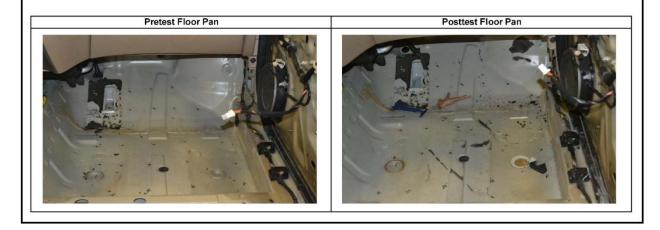
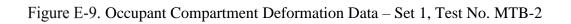
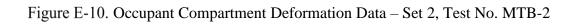



Figure E-8. Floor Pan Deformation Data – Set 2, Test No. MTB-2


Date: Year:		/2018		27	Test Name: Make:		B-2 lia	8		VIN: Model:	KNAI	DE2235964 Rio	40731
1000000						87		~~			5		
				D/			FORMATIC		T 4				
				Г <i>Р</i>	SSENGL	SIDE IN	ERIOR ON	03n - 3L	1.1				
Г		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Directions
I	TOWT	X	Y	Z	(in.)	(in.)	(in.)	ΔX ⁺ (in.)	ΔΥ`` (in.)	ΔΖ (in.)	(in.)	(in.)	for
	POINT	(in.)	(in.)	(in.)	and a second a second						200 DEDIGE LD		Crush ^C
	1 2	51.2837 50.3047	12.1913 0.1942	-19.2225 -19.9689	51.2843 50.3004	12.3961 0.3968	-19.5374 -20.3172	-0.0006 0.0043	-0.2048 -0.2026	-0.3149 -0.3483	0.3756	0.3756	X, Y, Z X, Y, Z
ΞŃ.	3	49.5053	-9.0843	-19.9689	49.5993	-8.8368	-20.3172	-0.0940	-0.2026	-0.3483	0.4030	0.4030	X, Y, Z X, Y, Z
DASH (X, Y, Z)	4	48.5213	14.6351	-10.2523	49.3993	14.7856	-10.5668	0.0305	-0.1505	-0.3145	0.3500	0.3500	X, Y, Z
	5	46.3795	-1.6337	-9.9550	46.5311	-1.4495	-10.3063	-0.1516	0.1842	-0.3513	0.4246	0.4246	X, Y, Z
	6	43.7414	-9.7829	-10.5271	43.8952	-9.6071	-10.8436	-0.1538	0.1758	-0.3165	0.3934	0.3934	X, Y, Z
<u>ш п</u>	7	55.5771	16.1899	2.4092	55.6114	16.4252	2.1464	-0.0343	-0.2353	-0.2628	0.3544	-0.2353	Y
SIDE (Y)	8	60.2355	15.8969	2.7153	60.2315	16.2588	2.3960	0.0040	-0.3619	-0.3193	0.4826	-0.3619	Y
S 14	9	56.4666	15.9940	-1.9363	56.4365	15.8910	-2.2200	0.0301	0.1030	-0.2837	0.3033	0.1030	Y
<u> </u>	10	48.8938	18.0171	-15.0724	48.5050	17.9606	-15.4060	0.3888	0.0565	-0.3336	0.5154	0.0565	Y
US R	11	34.3809	19.4425	-15.5836	34.0888	19.8538	-15.7558	0.2921	-0.4113	-0.1722	0.5331	-0.4113	Y
MPACT SIDE DOOR (Y)	12	23.7882	20.0012	-16.3140	23.4120	20.6997	-16.4757	0.3762	-0.6985	-0.1617	0.8097	-0.6985	Y
P D D	13 14	44.9866 37.6867	18.4507 19.2898	-0.6730 0.0957	44.8121 37.5181	19.1967 19.9533	-0.9314 -0.1476	0.1745	-0.7460 -0.6635	-0.2584 -0.2433	0.8085	-0.7460 -0.6635	Y Y
≌ ∣	14	28.7236	19.2898	0.0957	28.5874	20.2029	0.4069	0.1362	-0.5440	-0.2433	0.7265	-0.6635	Y
	16	30.4175	8.1879	-37.0564	30.3635	8.3195	-37.3460	0.0540	-0.1316	-0.2896	0.3226	-0.2896	Z
	17	30.8037	3.0216	-37.3385	30.6950	3.1129	-37.6174	0.0040	-0.0913	-0.2789	0.3220	-0.2890	Z
	18	30.8772	-0.8440	-37.4888	30.7829	-0.6778	-37.7507	0.0943	0.1662	-0.2619	0.3242	-0.2619	Z
	19	29.6237	-4.0714	-37.8205	29.5107	-4.0187	-38.0757	0.1130	0.0527	-0.2552	0.2840	-0.2552	Z
	20	29.4922	-8.1152	-37.8465	29.4454	-7.9428	-38.0634	0.0468	0.1724	-0.2169	0.2810	-0.2169	Z
Ñ	21	19.2233	8.1474	-38.5457	18.9827	8.2573	-38.7771	0.2406	-0.1099	-0.2314	0.3514	-0.2314	Z
	22	19.1485	4.2840	-38.8351	18.9537	4.3204	-39.0470	0.1948	-0.0364	-0.2119	0.2901	-0.2119	Z
6	23	18.6453	0.4562	-39.0657	18.4789	0.5182	-39.2588	0.1664	-0.0620	-0.1931	0.2623	-0.1931	Z
ROOF - (Z)	24 25	18.2319	-2.7917 -6.4113	-39.2012	18.0608	-2.7712 -6.3501	-39.3731	0.1711	0.0205	-0.1719	0.2434	-0.1719	Z
- F	25	17.4661 9.2178	-6.4113 9.2690	-39.3038 -38.8457	17.3027 9.0100	9.3410	-39.4555 -38.9756	0.1634 0.2078	0.0612	-0.1517 -0.1299	0.2312	-0.1517 -0.1299	Z
	26	9.1627	5.5344	-39.1496	8.9085	5.5998	-39.2716	0.2078	-0.0720	-0.1299	0.2554	-0.1299	Z
	28	9.2087	1.4984	-39.3853	9.0524	1.5863	-39.4979	0.1563	-0.0879	-0.11220	0.2117	-0.1220	Z
Ē	29	9.5103	-2.2098	-39.5239	9.3083	-2.2322	-39.6247	0.2020	-0.0224	-0.1008	0.2269	-0.1008	Z
	30	9.7442	-5.1882	-39.5795	9.5435	-5.1719	-39.6683	0.2007	0.0163	-0.0888	0.2201	-0.0888	Z
	31	54.3458	15.0277	-22.4646	54.1704	15.1155	-22.8705	0.1754	-0.0878	-0.4059	0.4508	0.1754	Х
¥≣Ñ	32	51.9399	14.7222	-24.0407	51.8587	14.8478	-24.4191	0.0812	-0.1256	-0.3784	0.4069	0.0812	Х
A-PILLAR Maximum (X, Y, Z)	33	49.5159	14.4057	-25.6361	49.4273	14.5432	-26.0270	0.0886	-0.1375	-0.3909	0.4237	0.0886	Х
A a A	34	47.1912	14.0856	-27.0036	47.0488	14.2301	-27.4101	0.1424	-0.1445	-0.4065	0.4543	0.1424	X
₹2-	35	44.1689	13.6351	-28.7740	43.9814	13.7987	-29.1513	0.1875	-0.1636	-0.3773	0.4520	0.1875	X
	36	40.5082	13.1106	-30.7138	40.3686	13.2797	-31.0757	0.1396	-0.1691	-0.3619	0.4231	0.1396	X
~	31 32	54.3458 51.9399	15.0277 14.7222	-22.4646 -24.0407	54.1704 51.8587	15.1155 14.8478	-22.8705 -24.4191	0.1754	-0.0878 -0.1256	-0.4059 -0.3784	0.4508	-0.0878 -0.1256	Y
A-PILLAR Lateral (Y)	33	49.5159	14.7222	-24.0407	49.4273	14.6478	-24.4191	0.0812	-0.1256	-0.3764	0.4089	-0.1256	Y
era	34	47.1912	14.0856	-27.0036	47.0488	14.2301	-27.4101	0.1424	-0.1445	-0.4065	0.4543	-0.1445	Ý
A-F Lat	35	44.1689	13.6351	-28.7740	43.9814	13.7987	-29.1513	0.1875	-0.1636	-0.3773	0.4520	-0.1636	Ý
	36	40.5082	13.1106	-30.7138	40.3686	13.2797	-31.0757	0.1396	-0.1691	-0.3619	0.4231	-0.1691	Y
Ψ.E.Ω	37	16.1162	14.3694	-33.1190	16.0114	14.3377	-33.3691	0.1048	0.0317	-0.2501	0.2730	0.1095	X, Y
A D C	38	14.4216	17.3353	-26.5745	14.4289	17.2408	-26.7510	-0.0073	0.0945	-0.1765	0.2003	0.0945	Y
B-PILLAR Maximum (X, Y, Z)	39	19.0891	18.4520	-20.1435	19.1990	18.3050	-20.3775	-0.1099	0.1470	-0.2340	0.2974	0.1470	Y
ų≥⊙	40	15.8428	19.0213	-16.2147	15.9354	18.8685	-16.4237	-0.0926	0.1528	-0.2090	0.2750	0.1528	Y
AR	37	16.1162	14.3694	-33.1190	16.0114	14.3377	-33.3691	0.1048	0.0317	-0.2501	0.2730	0.0317	Y
-PILLAR Lateral (Y)	38	14.4216	17.3353	-26.5745	14.4289	17.2408	-26.7510	-0.0073	0.0945	-0.1765	0.2003	0.0945	Y
3-PILLAF Lateral (Y)	39	19.0891	18.4520	-20.1435	19.1990	18.3050	-20.3775	-0.1099	0.1470	-0.2340	0.2974	0.1470	Y
ц П	40	15.8428	19.0213	-16.2147	15.9354	18.8685	-16.4237	-0.0926	0.1528	-0.2090	0.2750	0.1528	Y

deforming inward toward the occupant compartment. ^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Date: _ Year: _		/2018 009	i.		Test Name: Make:		(ia	4 2		VIN: Model:		DE2235964 Rio	40731
					VF		FORMATI	ON					
				PA					T 2				
Γ		Pretest X	Pretest Y	Pretest Z	Posttest X	CONTRACTOR CONTRACTOR	Posttest Z	ΔX ^A	ΔΥ ^Α	ΔZ ^A	Total ∆	Crush ^B	Direction: for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
-	1	48.3307	35.0901	-19.5630	48.2897	35.3224	-19.3604	0.0410	-0.2323	0.2026	0.3110	0.3110	X, Y, Z
ΞÂ	2	48.8901	23.0649	-20.2893	48.8559	23.2953	-20.1259	0.0342	-0.2304	0.1634	0.2845	0.2845	X, Y, Z
DASH (X, Y, Z)	3	49.2840 45.3461	13.7600 37.1783	-20.4394 -10.5742	49.3454 45.1770	14.0478 37.3429	-20.2899 -10.4042	-0.0614 0.1691	-0.2878	0.1495	0.3301	0.3301 0.2908	X, Y, Z X, Y, Z
<u> </u>	5	45.3072	20.7698	-10.2433	45.3144	20.9909	-10.1267	-0.0072	-0.2211	0.1166	0.2501	0.2501	X, Y, Z
	6	43.7299	12.3487	-10.7865	43.7486	12.5620	-10.6619	-0.0187	-0.2133	0.1246	0.2477	0.2477	X, Y, Z
u d	7	52.2404	39.6492	2.0305	51.9775	39.8950	2.3338	0.2629	-0.2458	0.3033	0.4707	-0.2458	Y
SIDE PANEL (Y)	8	56.9001	39.9556	2.3007	56.5798	40.3227	2.6014	0.3203	-0.3671	0.3007	0.5725	-0.3671	Y
	9 10	53.1148 45.2460	39.5600 40.5703	-2.3215	52.8818 44.8033	39.4666 40.4887	-2.0286	0.2330	0.0934	0.2929	0.3857	0.0934	Y
IMPACT SIDE DOOR (Y)	10	45.2460 30.6666	40.5703 40.1250	-15.4005	44.8033 30.2649	40.4887	-15.2480 -15.6561	0.4427	-0.3921	0.1525	0.4753	0.0816	Y
SIC	12	20.0844	39.3216	-16.4492	19.5707	39.9861	-16.4184	0.5137	-0.6645	0.0308	0.8405	-0.6645	Y
SQE	13	41.4246	40.5294	-0.9717	40.9244	41.2555	-0.7897	0.5002	-0.7261	0.1820	0.9003	-0.7261	Y
AP	14	34.0834	40.4286	-0.1472	33.5905	41.0712	-0.0351	0.4929	-0.6426	0.1121	0.8176	-0.6426	Y
<u>=</u>	15	25.1505	39.6481	0.3841	24.6994	40.1741	0.4848	0.4511	-0.5260	0.1007	0.7002	-0.5260	Y
	16	28.0144	28.4122	-37.2301	28.1360	28.5787	-37.2431	-0.1216	-0.1665	-0.0130	0.2066	-0.0130	Z
	17 18	29.0567 29.6233	23.3373 19.5126	-37.5098 -37.6567	29.1335 29.7073	23.4574 19.7090	-37.5053 -37.6326	-0.0768 -0.0840	-0.1201 -0.1964	0.0045	0.1426	0.0045	Z
t	18	29.6233	19.5126	-37.9753	29.7073	16.2323	-37.9574	-0.0840	-0.1964	0.0241	0.2150	0.0241	Z
t	20	29.1780	12.1232	-37.9961	29.3138	12.3322	-37.9394	-0.1358	-0.2090	0.0567	0.2556	0.0567	Z
Â	21	16.9065	26.9359	-38.6324	16.8629	27.0561	-38.7178	0.0436	-0.1202	-0.0854	0.1538	-0.0854	Z
	22	17.3248	23.0942	-38.9173	17.3401	23.1476	-38.9818	-0.0153	-0.0534	-0.0645	0.0851	-0.0645	Z
ROOF - (Z)	23	17.3141	19.2331	-39.1400	17.3577	19.3158	-39.1898	-0.0436	-0.0827	-0.0498	0.1059	-0.0498	Z
8	24 25	17.3189 17.0221	15.9587 12.2706	-39.2689 -39.3617	17.3653	15.9998 12.3532	-39.3007 -39.3807	-0.0464 -0.0507	-0.0411	-0.0318	0.0697	-0.0318	Z
F	25	6.8378	26.7669	-39.3617	6.8344	26.8517	-39.3607	0.0034	-0.0828	-0.0190	0.1314	-0.1003	Z
	27	7.2590	23.0553	-39.1555	7.2147	23.1280	-39.2471	0.0443	-0.0727	-0.0916	0.1251	-0.0916	Z
-	28	7.8195	19.0580	-39.3874	7.8731	19.1659	-39.4667	-0.0536	-0.1079	-0.0793	0.1442	-0.0793	Z
ŀ	29	8.5924	15.4186	-39.5244	8.6171	15.4116	-39.5867	-0.0247	0.0070	-0.0623	0.0674	-0.0623	Z
	30	9.2052	12.4946	-39.5787	9.2274	12.5263	-39.6250	-0.0222	-0.0317	-0.0463	0.0603	-0.0463	Z
~ 5 ~	31 32	50.9798 48.6209	38.2885 37.6744	-22.8318 -24.3888	50.8166 48.5646	38.3862 37.8227	-22.6865 -24.2435	0.1632 0.0563	-0.0977 -0.1483	0.1453	0.2394 0.2151	0.2185	X, Z X, Z
And A	32	46.2455	37.6744	-24.3888	48.5646	37.8227	-24.2435	0.0563	-0.1483	0.1453	0.2151	0.1558	X, Z X, Z
A-PILLAR Maximum (X, Y, Z)	34	43.9706	36.4291	-27.3141	43.8856	36.5903	-27.2521	0.0850	-0.1612	0.0620	0.1925	0.1052	X, Z
₩ ⁴	35	41.0174	35.5918	-29.0605	40.9058	35.7673	-29.0044	0.1116	-0.1755	0.0561	0.2154	0.1249	X, Z
	36	37.4395	34.5991	-30.9712	37.3972	34.7873	-30.9418	0.0423	-0.1882	0.0294	0.1951	0.0515	X, Z
	31	50.9798	38.2885	-22.8318	50.8166	38.3862	-22.6865	0.1632	-0.0977	0.1453	0.2394	-0.0977	Y
A-PILLAR Lateral (Y)	32 33	48.6209 46.2455	37.6744 37.0469	-24.3888 -25.9650	48.5646 46.1987	37.8227 37.2071	-24.2435 -25.8603	0.0563	-0.1483 -0.1602	0.1453 0.1047	0.2151 0.1970	-0.1483 -0.1602	Y Y
era	33	46.2455	36.4291	-25.9650	46.1987	36.5903	-25.8603	0.0468	-0.1602	0.1047	0.1970	-0.1602	Y
A-F Latr	35	41.0174	35.5918	-29.0605	40.9058	35.7673	-29.0044	0.1116	-0.1755	0.0561	0.1325	-0.1755	Y
	36	37.4395	34.5991	-30.9712	37.3972	34.7873	-30.9418	0.0423	-0.1882	0.0294	0.1951	-0.1882	Ý
B-PILLAR Maximum (X, Y, Z)	37	13.0696	32.7200	-33.1883	13.1148	32.7106	-33.3304	-0.0452	0.0094	-0.1421	0.1494	0.0094	Y
, Kir	38	11.0588	35.4578	-26.6339	11.1466	35.3934	-26.7229	-0.0878	0.0644	-0.0890	0.1406	0.0644	Y
Xax Xax	39 40	15.5934	37.1758	-20.2405	15.7152	37.0670	-20.3326	-0.1218	0.1088	-0.0921	0.1875	0.1088	Y
	40 37	12.3308	37.3329	-16.2872	12.3905	37.2113	-16.3923	-0.0597	0.1216	-0.1051	0.1715	0.1216	Y Y
B-PILLAR Lateral (Y)	37	13.0696 11.0588	32.7200 35.4578	-33.1883 -26.6339	13.1148 11.1466	32.7106 35.3934	-33.3304 -26.7229	-0.0452 -0.0878	0.0094	-0.1421 -0.0890	0.1494	0.0094	Y
-PILLA Lateral (Y)	39	15.5934	37.1758	-20.2405	15.7152	37.0670	-20.3326	-0.1218	0.1088	-0.0921	0.1875	0.1088	Ý
<u><u></u></u>	40	12.3308	37.3329	-16.2872	12.3905	37.2113	-16.3923	-0.0597	0.1216	-0.1051	0.1715	0.1216	Ý
												he occupant	

deforming inward toward the occupant compartment. ^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

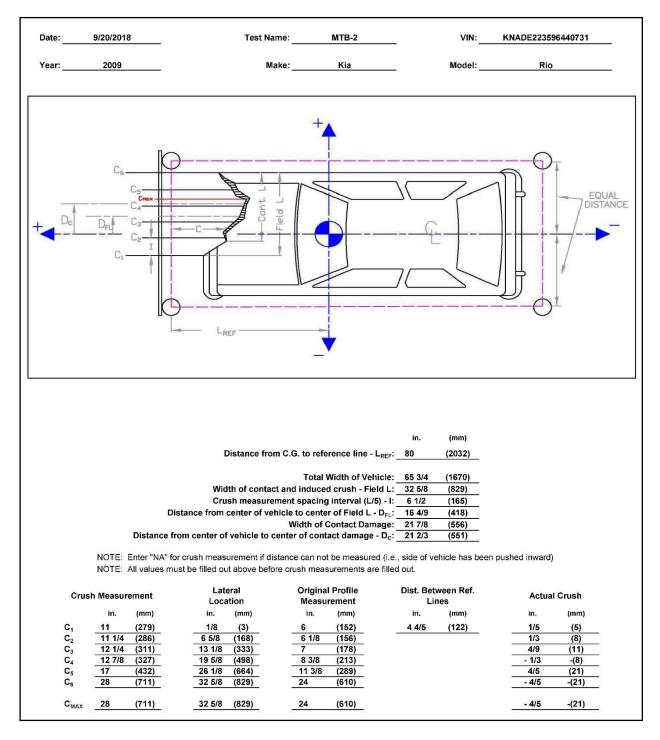


Figure E-11. Exterior Vehicle Crush (NASS) - Front, Test No. MTB-2

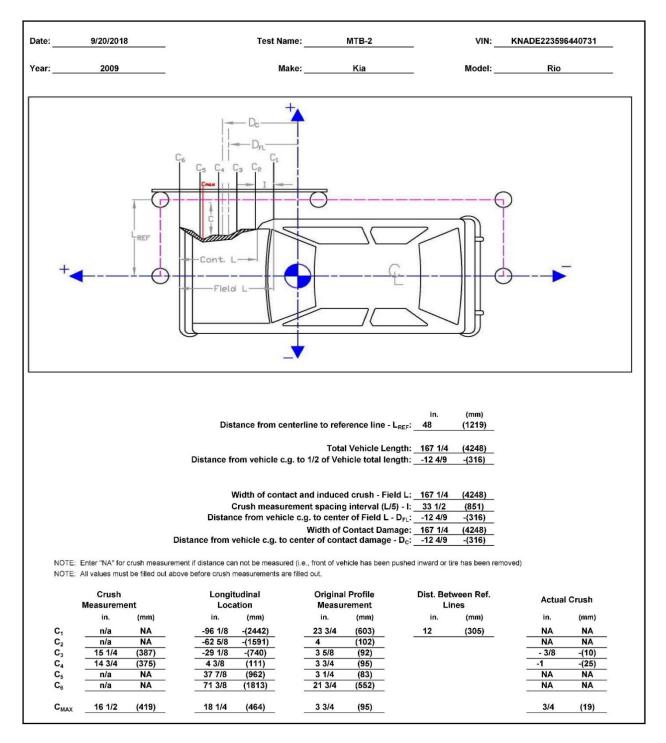


Figure E-12. Exterior Vehicle Crush (NASS) - Side, Test No. MTB-2

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. MTB-1

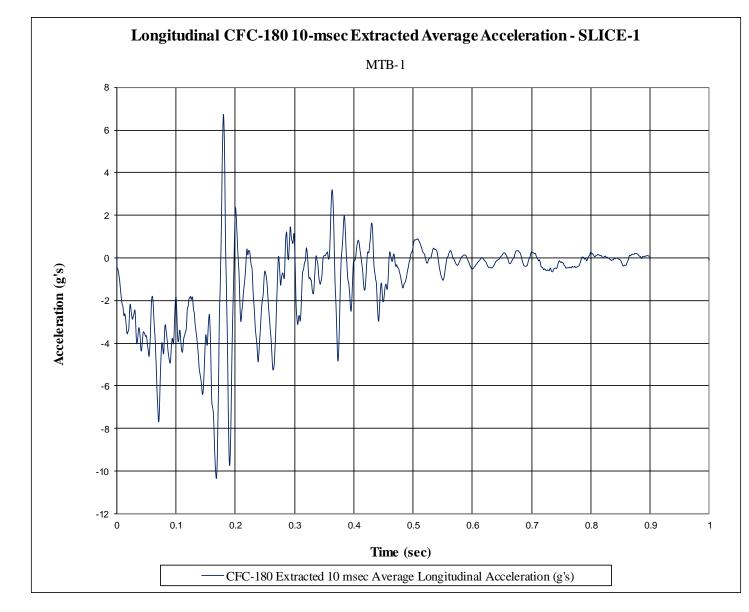


Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MTB-1

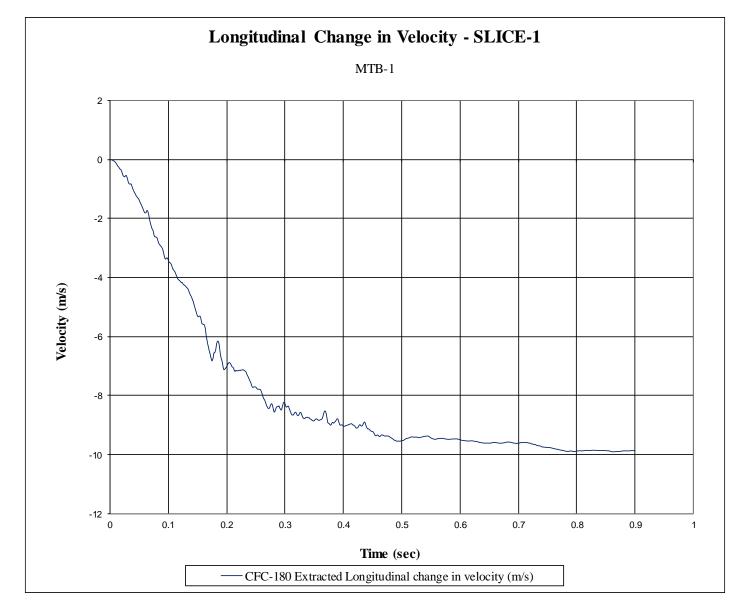


Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MTB-1

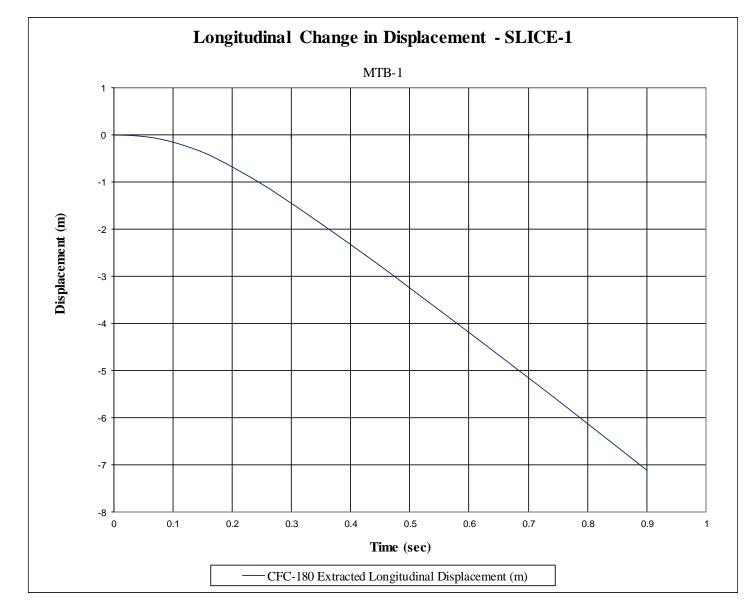


Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MTB-1

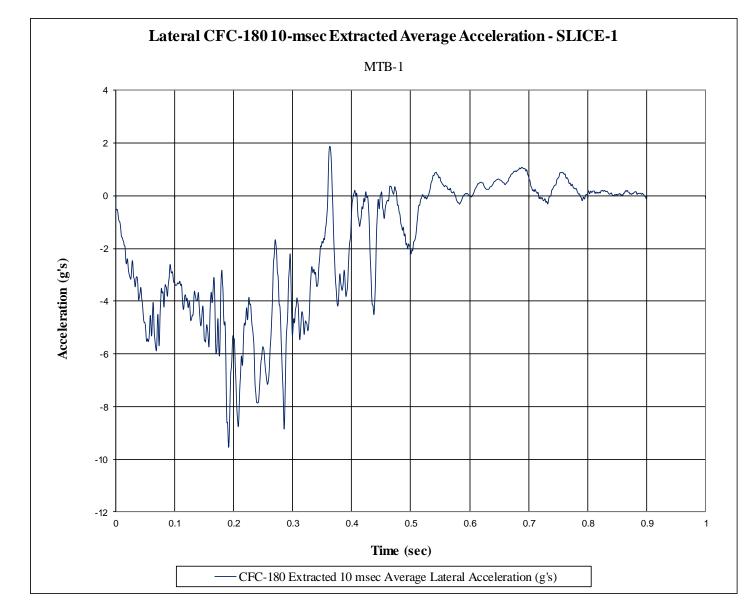


Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MTB-1

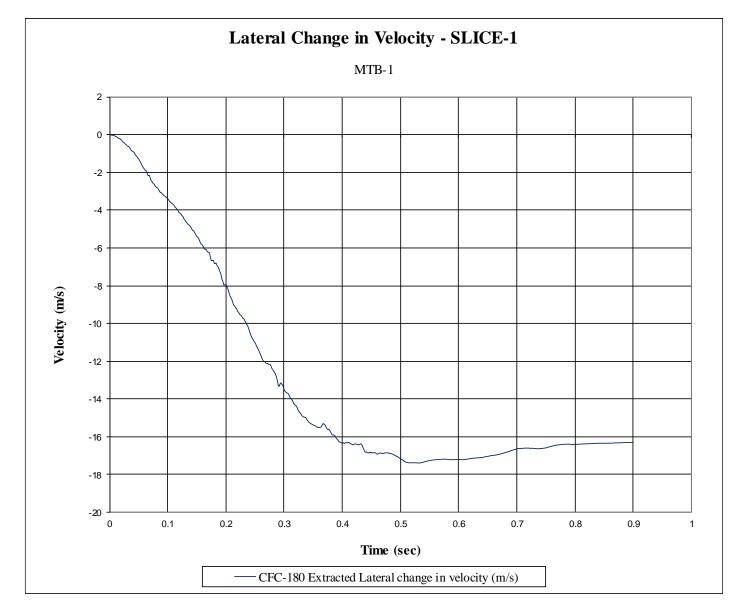


Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MTB-1

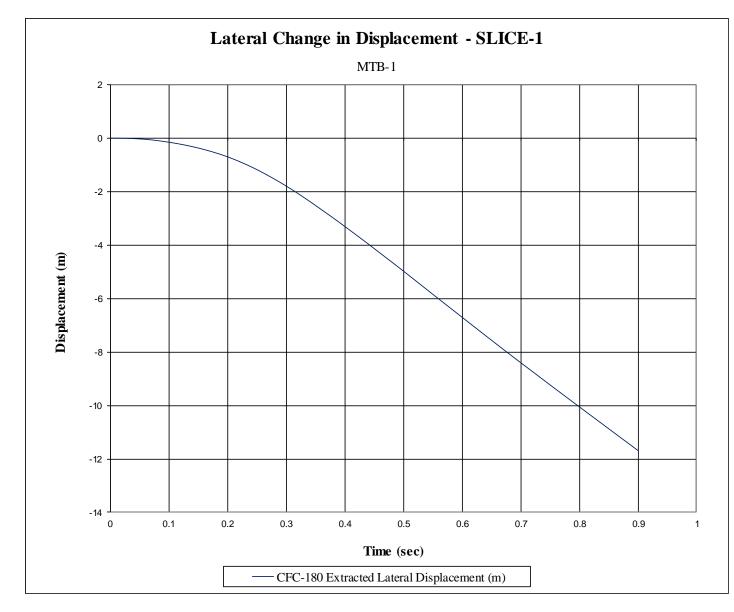


Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. MTB-1

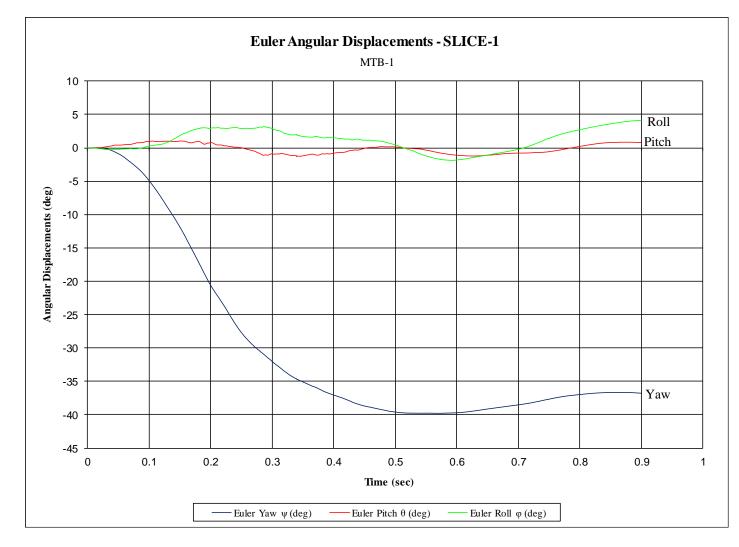


Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. MTB-1

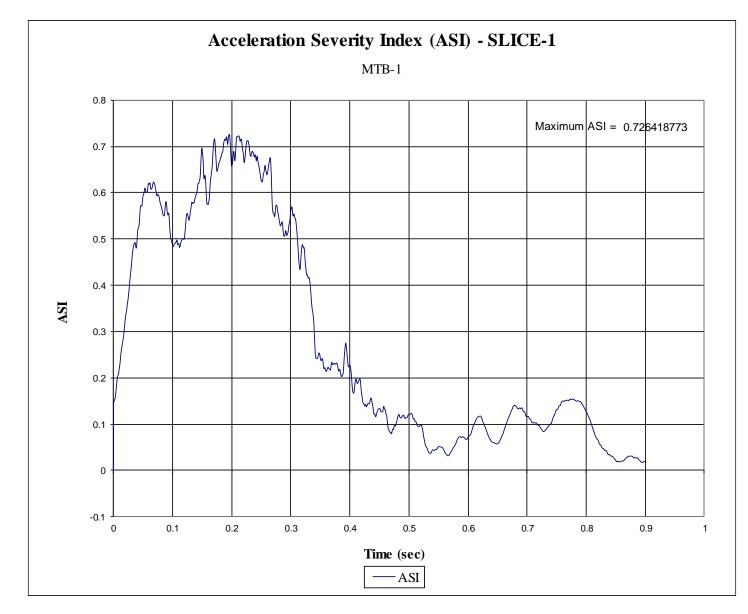


Figure F-8. Acceleration Severity Index (SLICE-1), Test No. MTB-1

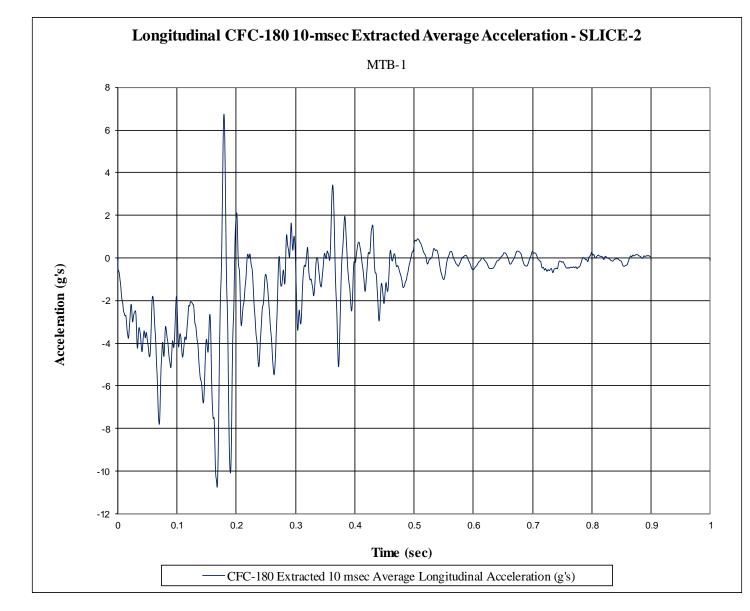


Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MTB-1

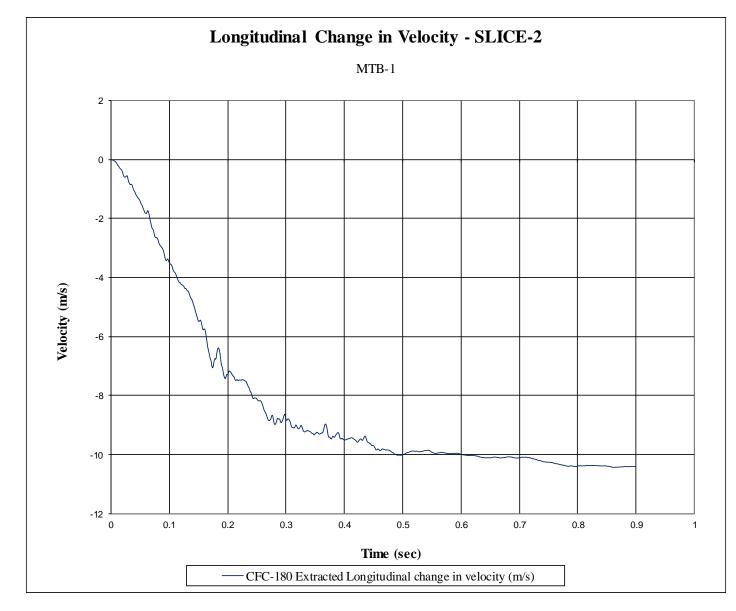


Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MTB-1

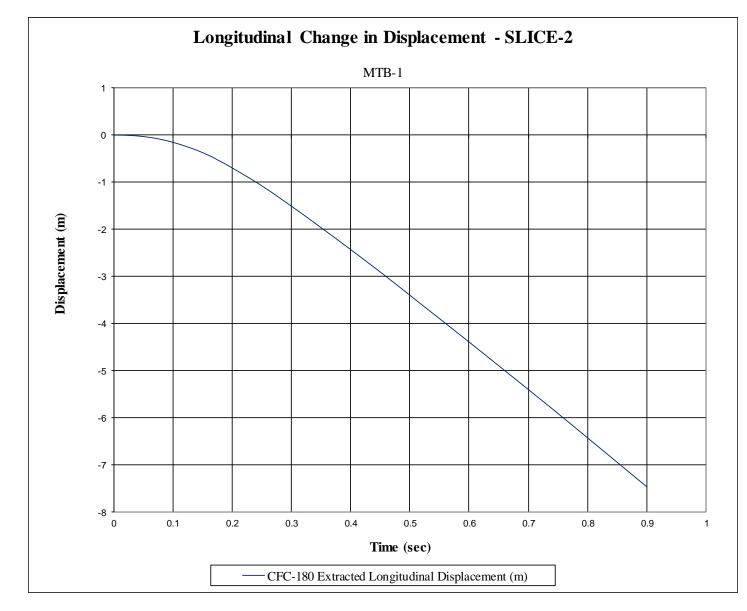


Figure F-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MTB-1

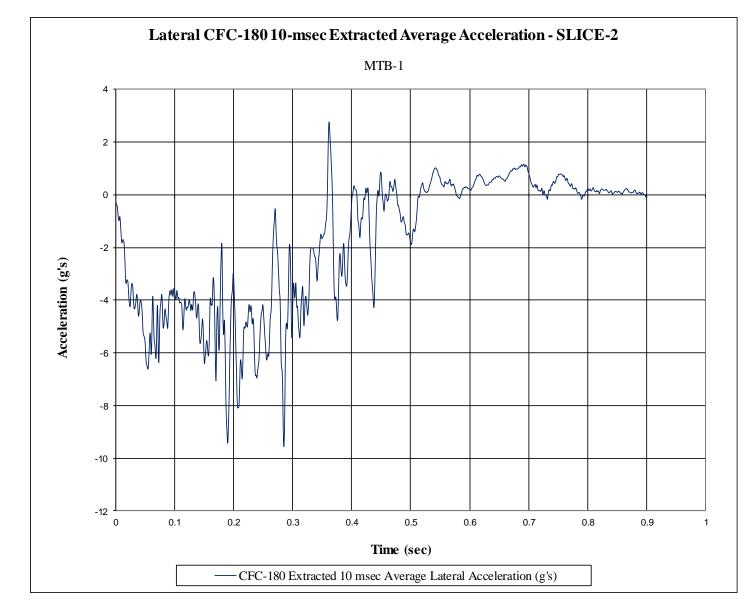


Figure F-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MTB-1

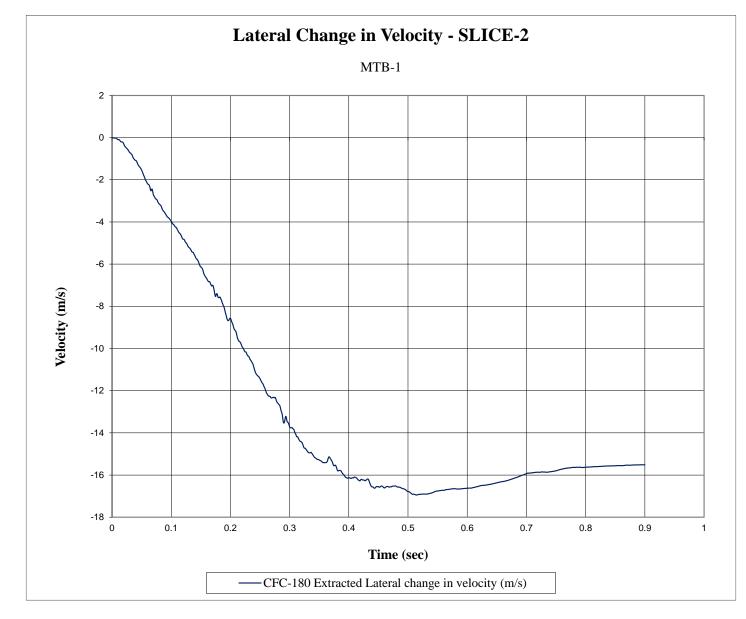


Figure F-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MTB-1

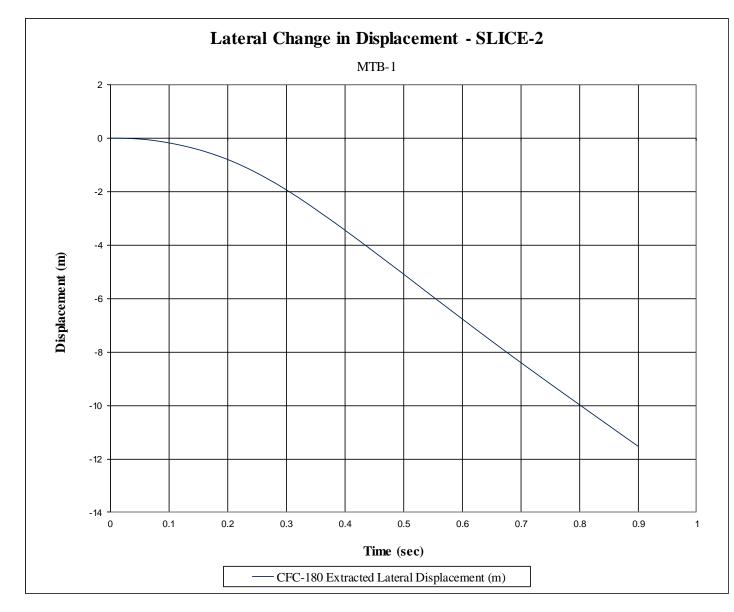


Figure F-14. Lateral Occupant Displacement (SLICE-2), Test No. MTB-1

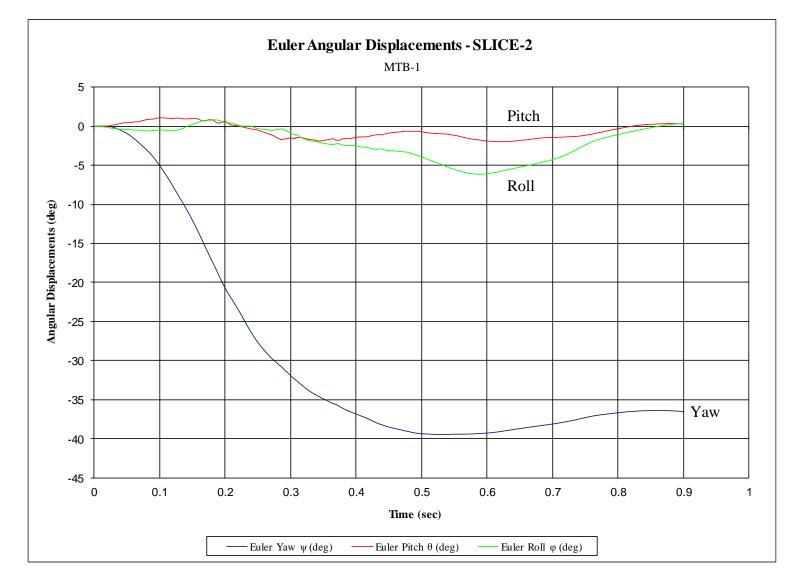


Figure F-15. Vehicle Angular Displacements (SLICE-2), Test No. MTB-1

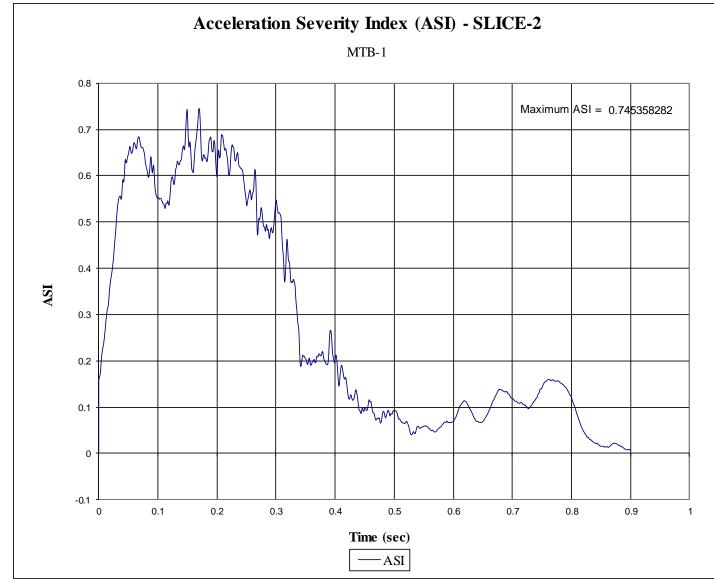


Figure F-16. Acceleration Severity Index (SLICE-2), Test No. MTB-1

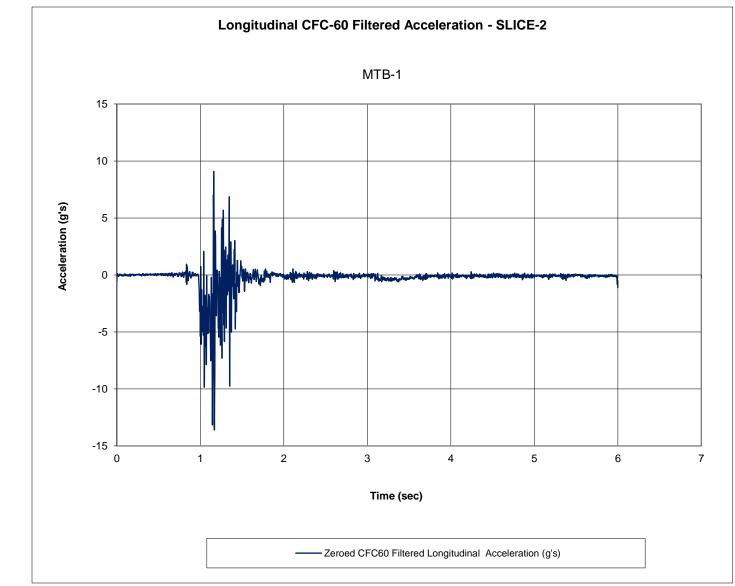


Figure F-17. Longitudinal Filtered Acceleration, Test No. MTB-1

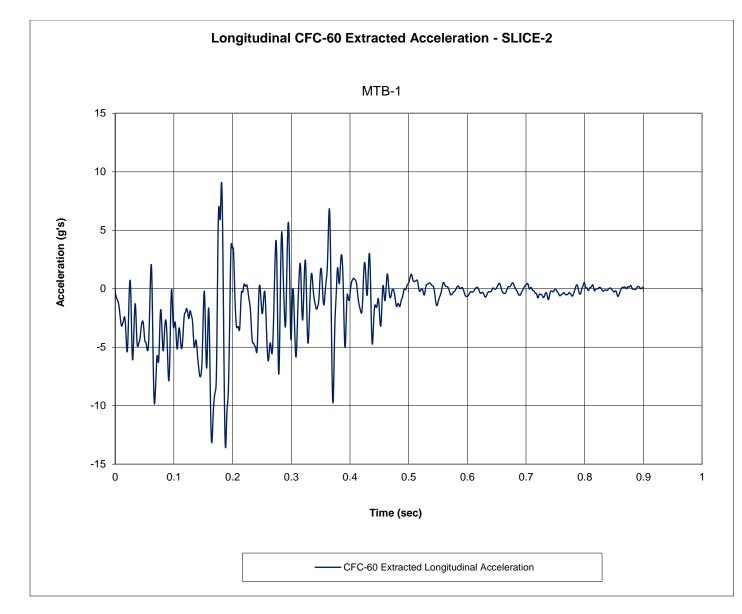
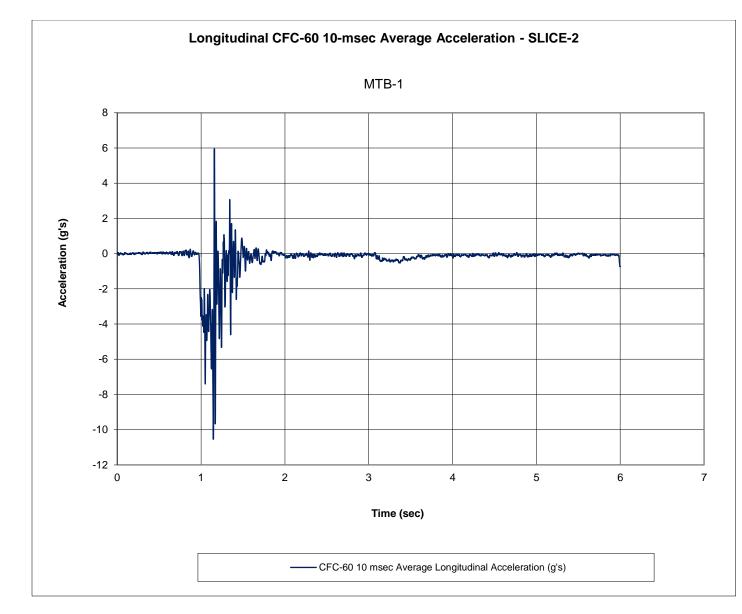



Figure F-18. Longitudinal Extracted Acceleration, Test No. MTB-1

July 16, 2020 MwRSF Report No. TRP-03-417-20

Figure F-19. Longitudinal Average Acceleration, Test No. MTB-1

Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. MTB-2

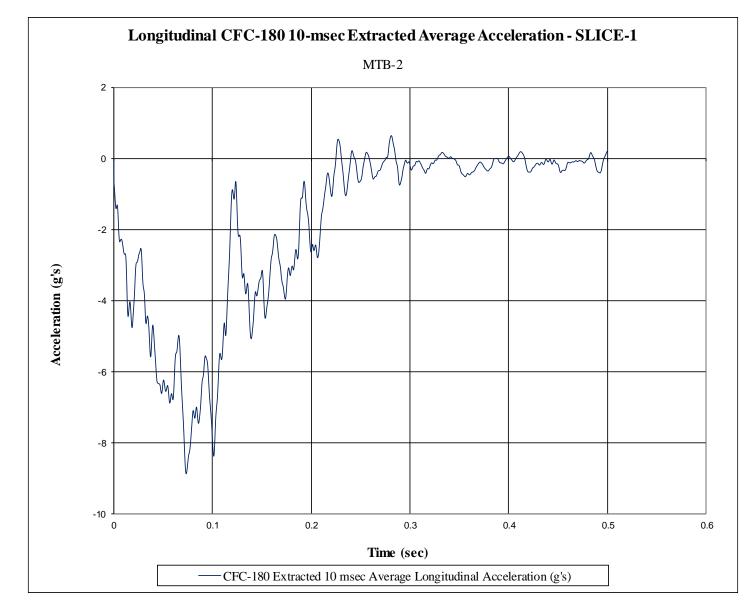


Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MTB-2

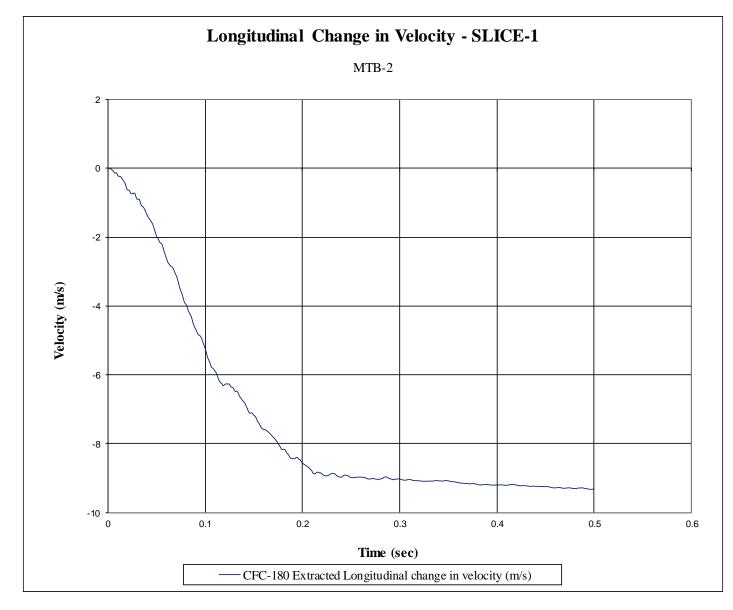


Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MTB-2

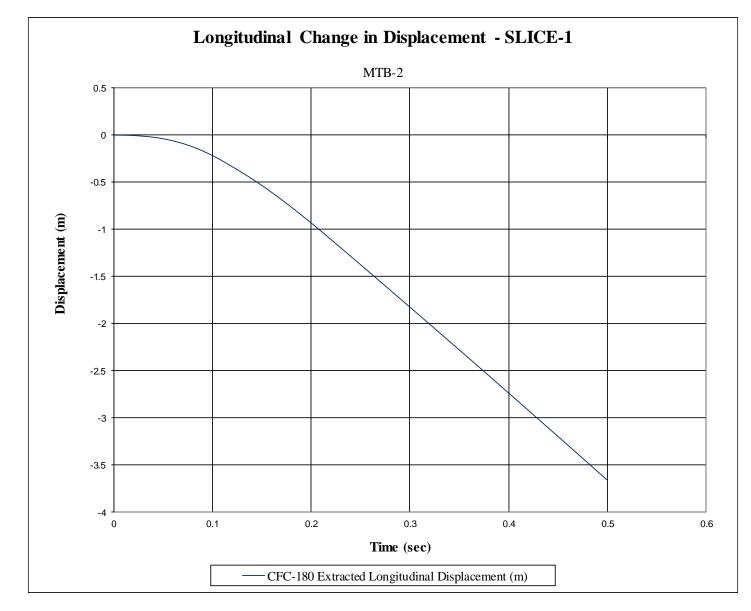


Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MTB-2

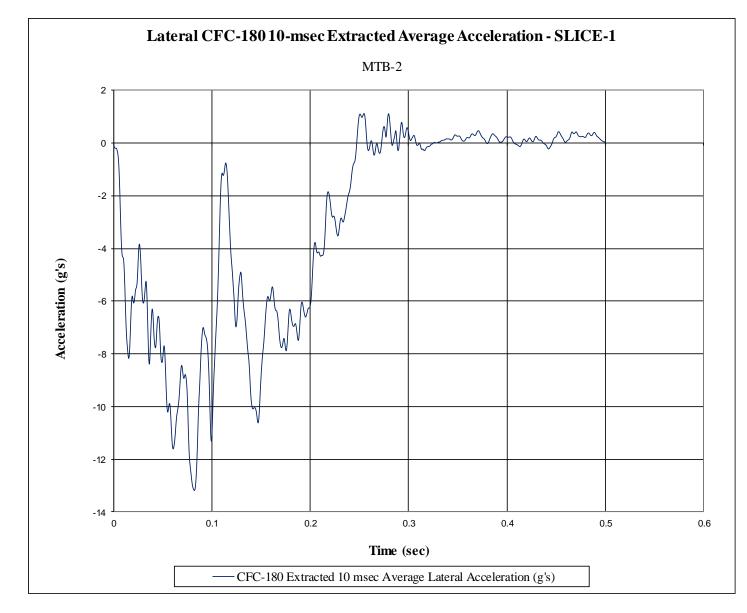


Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MTB-2

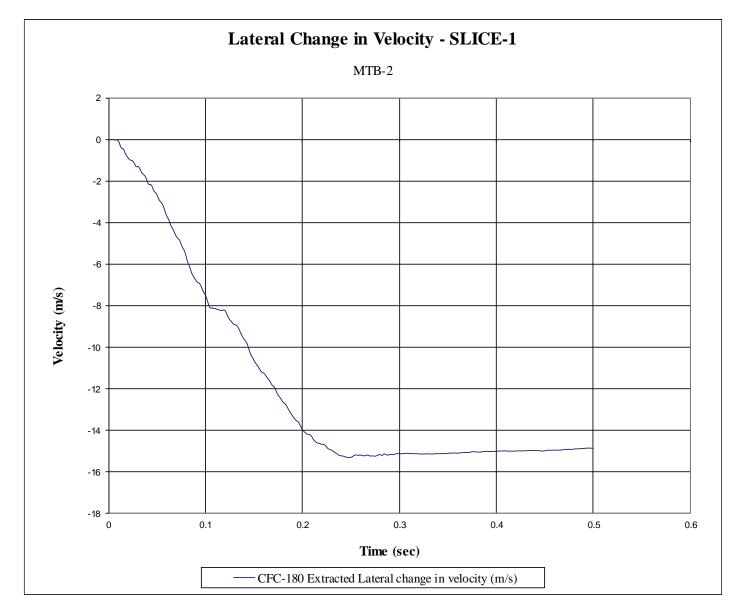


Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MTB-2

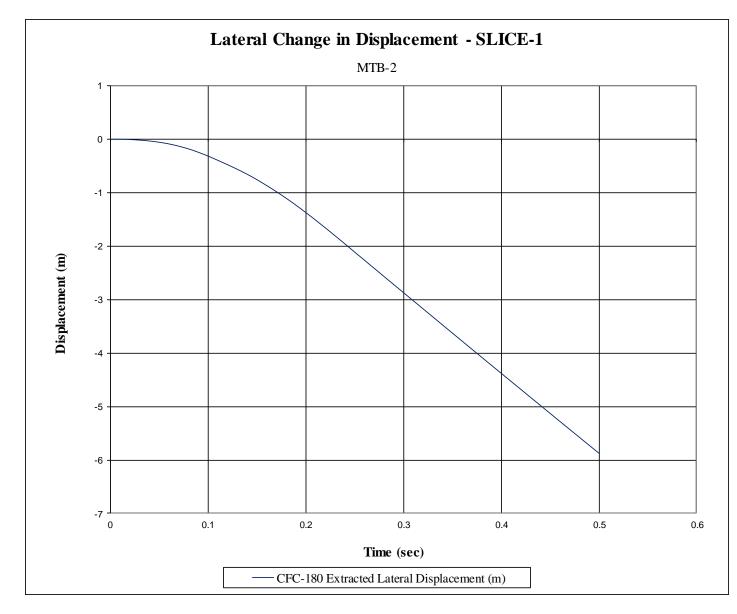


Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. MTB-2

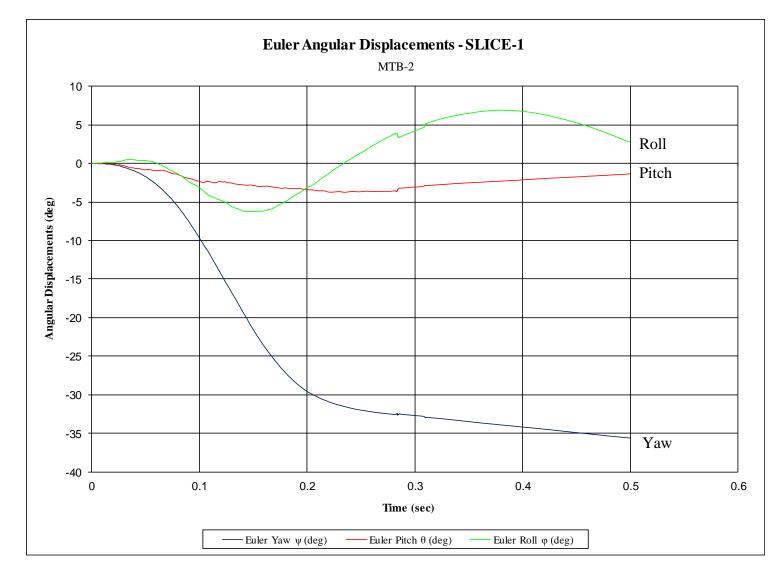


Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. MTB-2

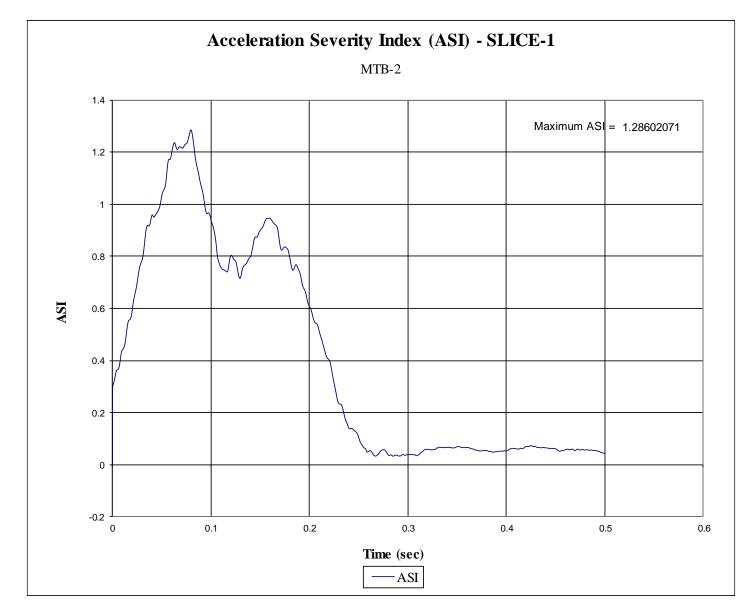


Figure G-8. Acceleration Severity Index (SLICE-1), Test No. MTB-2

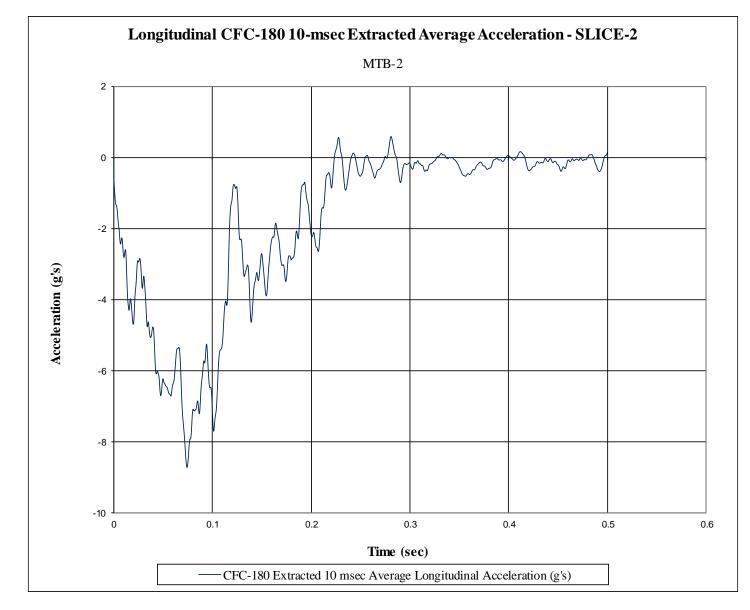


Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MTB-2

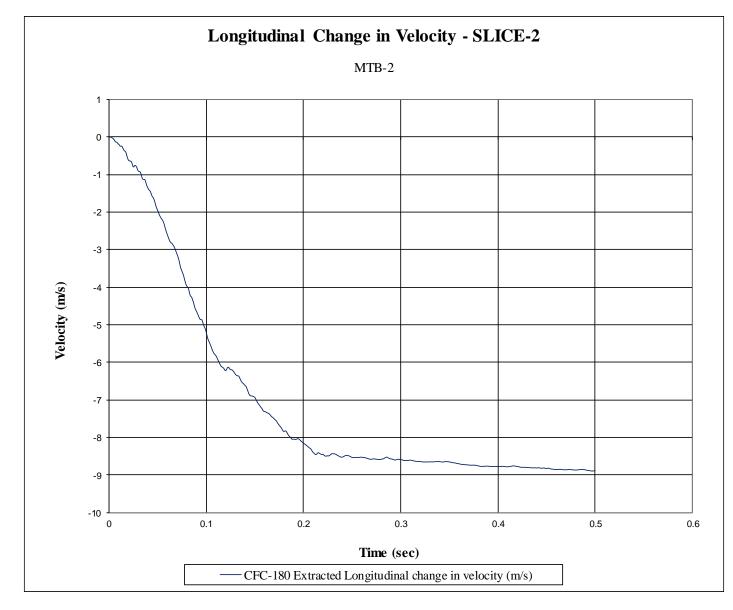


Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MTB-2

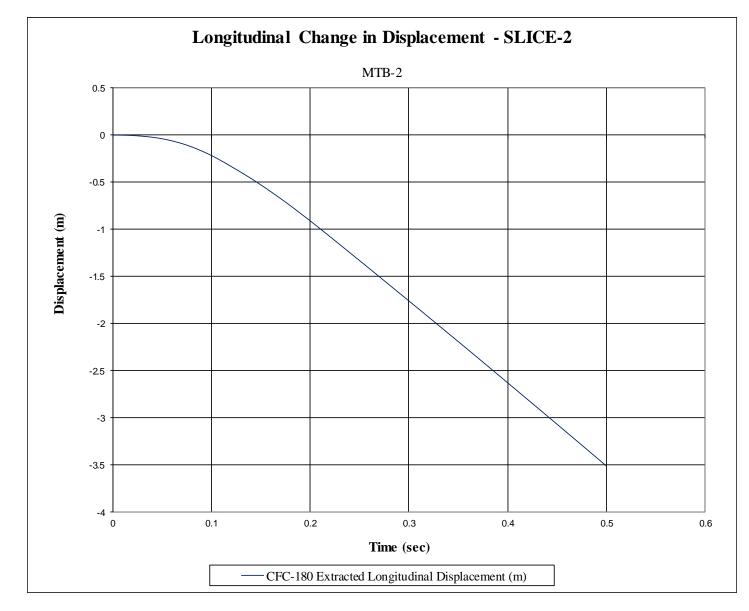


Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MTB-2

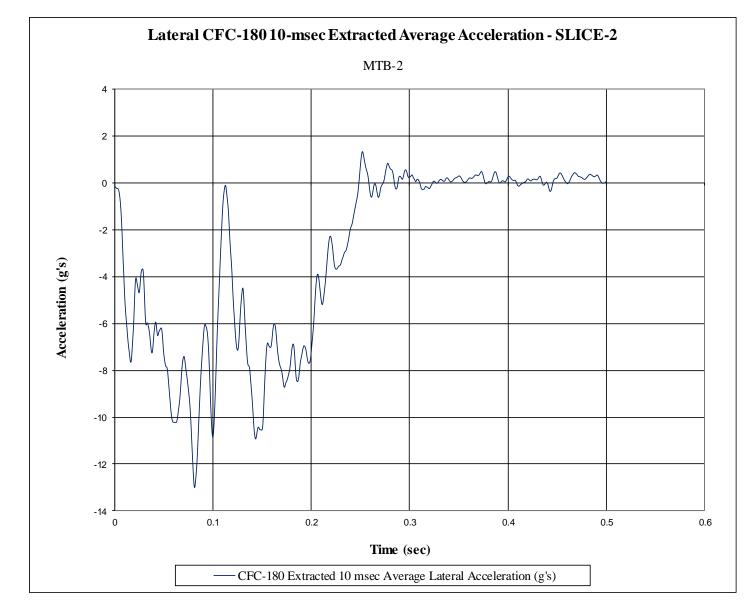


Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MTB-2

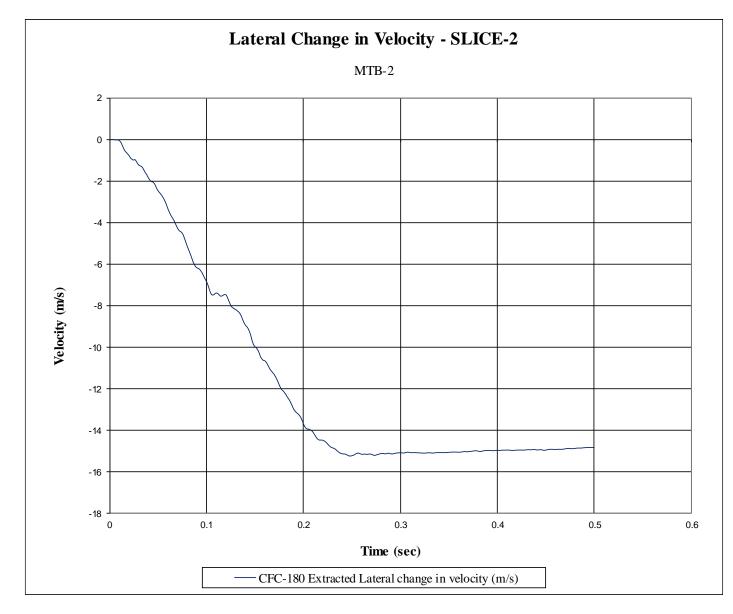


Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MTB-2

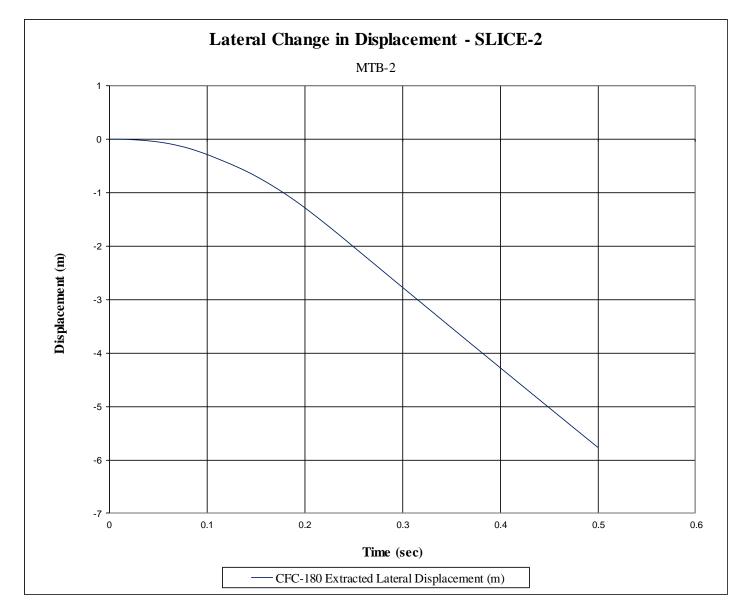


Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. MTB-2

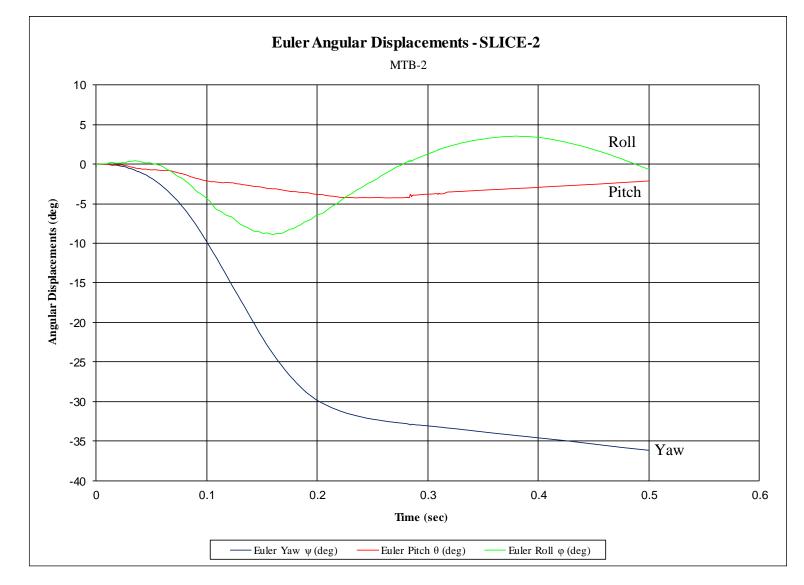


Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. MTB-2

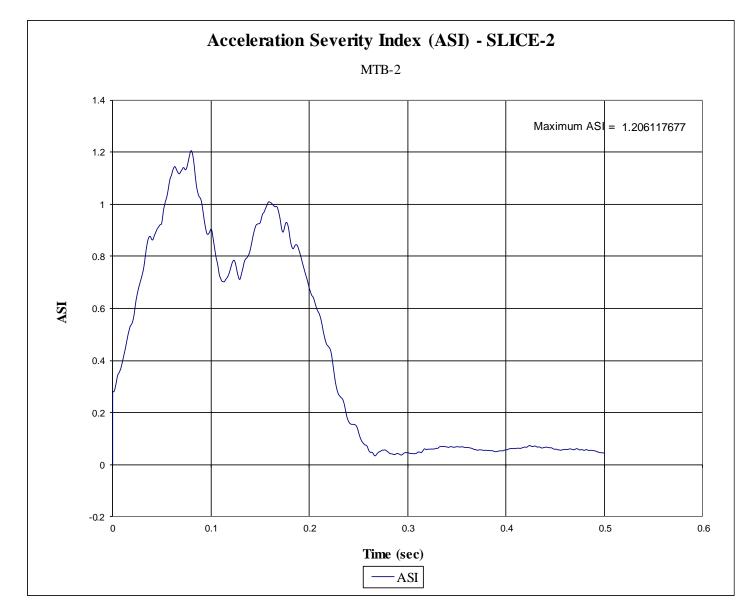


Figure G-16. Acceleration Severity Index (SLICE-2), Test No. MTB-2

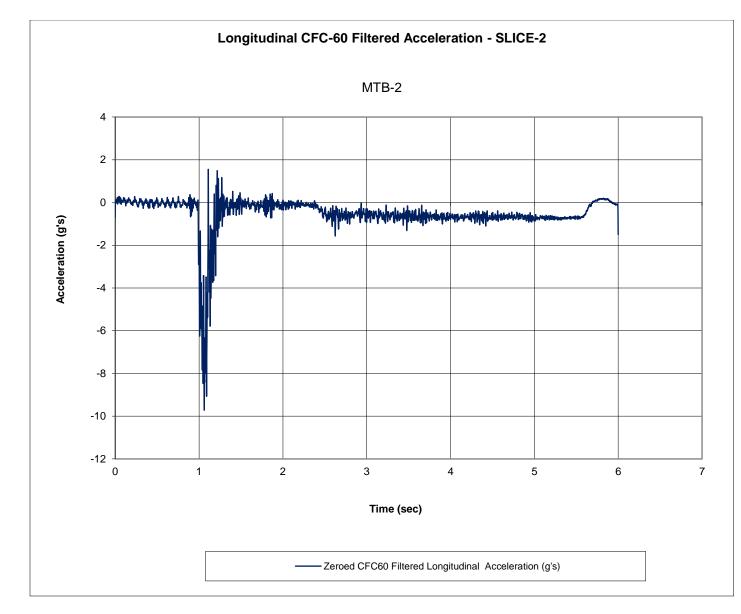


Figure G-17. Longitudinal Filtered Acceleration, Test No. MTB-2

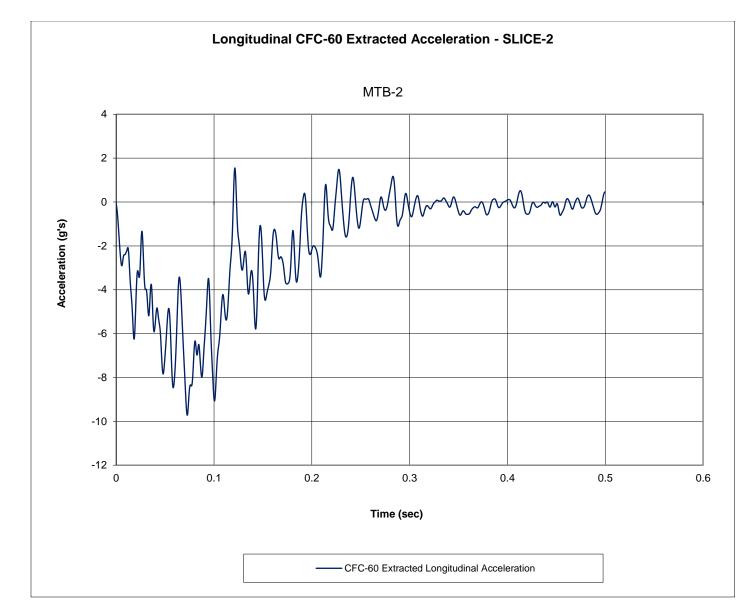


Figure G-18. Longitudinal Extracted Acceleration, Test No. MTB-2

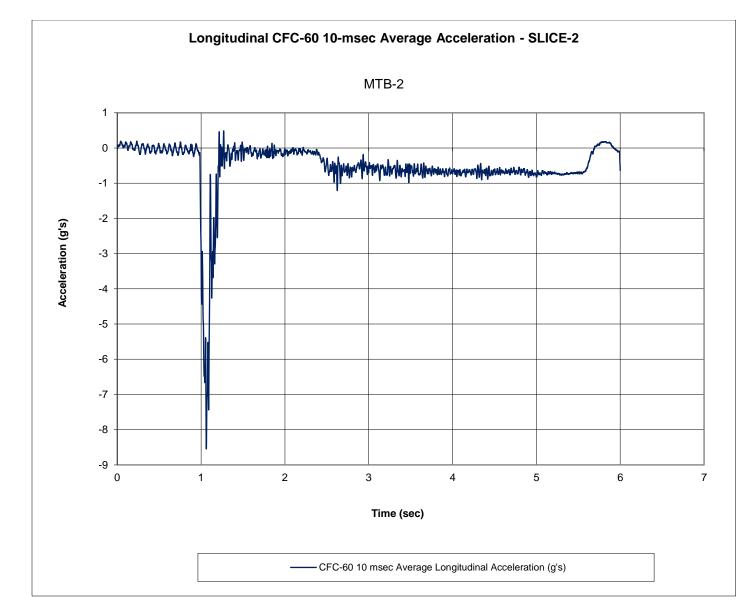


Figure G-19. Longitudinal Average Acceleration, Test No. MTB-2

END OF DOCUMENT