

Hawaii Department of Transportation Research Project Number 67167

CRASH TESTING AND EVALUATION OF THE HAWAII THRIE BEAM APPROACH GUARDRAIL TRANSITION: MASH TEST NOS. 3-20 AND 3-21

Submitted by

Scott K. Rosenbaugh, M.S.C.E., E.I.T. Research Engineer Samuel E. Hovde, B.S.C.E., E.I.T. Graduate Research Assistant

Ronald K. Faller, Ph.D., P.E. Research Professor & MwRSF Director Erin L. Urbank, B.A. Research Communication Specialist

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Outdoor Test Site 4630 N.W. 36th Street Lincoln, Nebraska 68524

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965

Submitted to

Hawaii Department of Transportation

Aliiaimoku Building 869 Punchbowl Street Honolulu, Hawaii 96813

MwRSF Research Report No. TRP-03-425-20

March 20, 2020

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-425-20	2.		3. Recipient	's Accession No.		
4. Title and Subtitle				5. Report Date		
Crash Testing and Evaluation of the Hawaii Thrie Beam Approach Guardrail Transition: MASH Test Nos 3-20 and 3-21			March 20, 2020			
	6.					
7. Author(s)			8. Performing Organization Report No.			
Rosenbaugh, S.K., Hovde, S.E., F	Faller, R.K., and Urbank, E.L.		TRP-03-425	5-20		
9. Performing Organization Name Midwest Roadside Safety Facility Nebraska Transportation Center University of Nebraska-Lincoln	e and Address (MwRSF)		10. Project/	Γask/Work Unit No.		
Main Office: Prem S. Paul Research Center at V Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	Whittier School Outdoor To 4630 N.W. Lincoln, N	est Site: . 36th Street ebraska 68524	11. Contract Research Pr	t © or Grant (G) No. oject 67167		
12. Sponsoring Organization Nan Hawaii Department of Transporta	ne and Address tion		13. Type of Report and Period Covered Final Report: 2018-2020			
Aliiaimoku Building 869 Punchbowl Street Honolulu, Hawaii 96813			14. Sponsoring Agency Code			
15. Supplementary Notes Prepared in cooperation with U.S.	. Department of Transportation, I	Federal Highway .	Administratio	on.		
 16. Abstract The Hawaii Department of T to safely transition from W-beam the current safety standards of the for Assessing Safety Hardware, 2' W6x9/W6x8.5 steel posts and wa Post. The AGT was also designed of HDOT's AGT design, the upstr W-to-thrie transition segment to e thrie beam. Within this research study, performance according to Test Le accordance with MASH 2016 te contained and safely redirected th 2016 limits. Therefore, test nos. I the modified HDOT thrie beam A 	Fransportation's (HDOT's) Thrie guardrail to a rigid concrete par e American Association of State rd <i>Edition</i> (MASH 2016). The AC as attached to HDOT's specially for use with a vertical 6-in. curb ream section was modified to inc nsure a crashworthy connection two full-scale crash tests were evel 3 (TL-3) criteria in MASH 2 st designation nos. 3-20 and 3-2 e vehicles. All occupant risk mea HWTT-1 and HWTT-2 were deal GT to concrete parapet was dete	Beam Approach C apet. However, the Highway and Tra T consisted of ne -designed reinforce placed below the lude the MGS stiff between the upstra conducted on the 2016. Test nos. H 21, respectively. I asurements were f emed to have satis rmined to be crash	Guardrail Tra e AGT had n nsportation (sted thrie bea ced concrete thrie beam. fness transitio eam W-beam e HDOT AC WTT-1 and 1 In both tests, ound to be w sfied all safe hworthy to M	nsition (AGT) was designed ot yet been evaluated under Official (AASHTO) <i>Manual</i> am supported by W6x15 and end post, the Type D2 End Although not originally part on utilizing an asymmetrical and the downstream nested GT to investigate the safety HWTT-2 were conducted in , the transition successfully ithin the established MASH ty performance criteria, and IASH 2016 TL-3.		
17. Document Analysis/Descriptors18. Availabil:Highway Safety, Crash Test, Roadside Appurtenances, Compliance Test, MASH 2016, Approach Guardrail Transition, AGT, Concrete Parapet, and Thrie Beam18. Availabil: No restriction Technical Inf 22161			ity Statement is. Document available from: National formation Services, Springfield, Virginia			
19. Security Class (this report) Unclassified	20. Security Class (this page) Unclassified	21. No. of Pages 213	3	22. Price		

DISCLAIMER STATEMENT

This report was completed with funding from the Hawaii Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Hawaii Department of Transportation. This report does not constitute a standard, specification, regulation, product endorsement, or an endorsement of manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority for the data contained herein was Dr. Mojdeh Asadollahi Pajouh, Research Assistant Professor.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) Hawaii Department of Transportation and (2) MwRSF personnel for constructing the barriers and conducting the crash tests.

Acknowledgement is also given to the following individuals who made a contribution to the completion of this research project.

Midwest Roadside Safety Facility J.D. Reid, Ph.D., Professor J.C. Holloway, M.S.C.E., E.I.T., Research Engineer & Assistant Director - Physical Testing Division K.A. Lechtenberg, M.S.M.E., E.I.T., Research Engineer R.W. Bielenberg, M.S.M.E., E.I.T., Research Engineer J.D. Rasmussen, Ph.D., P.E., Research Assistant Professor C.S. Stolle, Ph.D., E.I.T., Research Assistant Professor J.S. Steelman, Ph.D., P.E., Assistant Professor A.T. Russell, B.S.B.A., Testing and Maintenance Technician II E.W. Krier, B.S., Construction and Testing Technician II S.M. Tighe, Construction and Testing Technician I D.S. Charroin, Construction and Testing Technician I R.M. Novak, Construction and Testing Technician I T.C. Donahoo, Construction and Testing Technician I J.T. Jones, Construction and Testing Technician I C.I. Sims, Construction and Testing Technician I J.E. Kohtz, B.S.M.E., CAD Technician Z.Z. Jabr, Engineering Technician Undergraduate and Graduate Research Assistants

Hawaii Department of Transportation James Fu, P.E., State Bridge Engineer Dean Takiguchi, P.E., Bridge Design Engineer Kimberly Okamura, Bridge Design Engineer

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	. ii
UNCERTAINTY OF MEASUREMENT STATEMENT	. ii
INDEPENDENT APPROVING AUTHORITY	. ii
ACKNOWLEDGEMENTS	. ii
TABLE OF CONTENTS	iii
LIST OF FIGURES	. v
LIST OF TABLES	. X
1 INTRODUCTION 1.1 Background 1.2 Objective 1.3 Scope	1 1 1
2 DESIGN DETAILS 2.1 Design Modifications 2.2 Test Article Details – Modified HDOT AGT	12 12 15
3 TEST REQUIREMENTS AND EVALUATION CRITERIA 3.1 Test Requirements 3.2 Evaluation Criteria	49 49 50 51
4 TEST CONDITIONS 4.1 Test Facility 4.2 Vehicle Tow and Guidance System 4.3 Test Vehicles 4.4 Simulated Occupant 4.5 Data Acquisition Systems 4.5.1 Accelerometers 4.5.2 Rate Transducers 4.5.3 Retroreflective Optic Speed Trap 4.5.4 Digital Photography	52 52 52 59 59 59 62 62 62
5 FULL-SCALE CRASH TEST NO. HWTT-1 5.1 Static Soil Test 5.2 Weather Conditions 5.3 Test Description 5.4 Barrier Damage 5.5 Vehicle Damage	65 65 65 72 76

5.6 Occupant Risk
5.7 Discussion
6 FULL-SCALE CRASH TEST NO. HWTT-2
6.1 Static Soil Test
6.2 Weather Conditions
6.3 Test Description
6.4 Barrier Damage
6.5 Vehicle Damage
6.6 Occupant Risk
6.7 Discussion
7 SUMMARY AND CONCLUSIONS 103
8 REFERENCES 105
9 APPENDICES
Appendix A. Material Specifications
Appendix B. Vehicle Center of Gravity Determination
Appendix C. Static Soil Tests
Appendix D. Vehicle Deformation Records
Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. HWTT-1 179
Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. HWTT-2 196

LIST OF FIGURES

Figure 1. HDOT AGT to 34-in. Tall Bridge Rail Details	2
Figure 2. HDOT AGT to 34-in. Tall Bridge Rail Details, Continued	3
Figure 3. HDOT AGT to 34-in. Tall Bridge Rail Details, Bridge Rail Cross Sections	4
Figure 4. HDOT AGT to 34-in. Tall Bridge Rail Details, AGT and End Post Cross Sections	5
Figure 5. HDOT AGT to 42-in. Tall Bridge Rail Details	6
Figure 6. HDOT AGT to 42-in. Tall Bridge Rail Details, Continued	7
Figure 7. HDOT AGT to 42-in. Tall Bridge Rail Details, Bridge Rail Cross Sections	8
Figure 8. HDOT AGT to 42-in. Tall Bridge Rail Details, AGT and End Post Cross Sections	9
Figure 9. HDOT AGT Details, Material Specifications and Notes	10
Figure 10. HDOT AGT Details, Guardrail and Connection Hardware	11
Figure 11. Modified HDOT AGT with Inclusion of MGS Upstream Stiffness Transition	14
Figure 12. Modified HDOT AGT with Inclusion of MGS Upstream Stiffness Transition	15
Figure 13. System Layout, Test No. HWTT-1	17
Figure 14. System Layout, Test No. HWTT-2	18
Figure 15. Post Nos. 3 through 10 Details, Test Nos. HWTT-1 and HWTT-2	19
Figure 16. Post Nos. 11 through 19 Details, Test Nos. HWTT-1 and HWTT-2	20
Figure 17. Type D2 End Post and Terminal Connector, Test Nos. HWTT-1 and HWTT-2	21
Figure 18. Guardrail End Section and Splice Detail, Test Nos. HWTT-1 and HWTT-2	22
Figure 19. BCT Anchor Details, Test Nos. HWTT-1 and HWTT-2	23
Figure 20. Post Nos. 16 through 19 Components, Test Nos. HWTT-1 and HWTT-2	24
Figure 21. Post Nos. 10 through 15 Components, Test Nos. HWTT-1 and HWTT-2	25
Figure 22. Post Nos. 3 through 7 Components, Test Nos. HWTT-1 and HWTT-2	26
Figure 23. Post Nos. 8 and 9 Blockout Details, Test Nos. HWTT-1 and HWTT-2	27
Figure 24. BCT Timber Post and Foundation Tube Details, Test Nos. HWTT-1 and	
HWTT-2	28
Figure 25. Ground Strut Details, Test Nos. HWTT-1 and HWTT-2	29
Figure 26. BCT Anchor Cable Details, Test Nos. HWTT-1 and HWTT-2	30
Figure 27. Cable Assembly and Anchor Components, Test Nos. HWTT-1 and HWTT-2	31
Figure 28. End Post Rebar Details, Test Nos. HWTT-1 and HWTT-2	32
Figure 29. End Post Sections, Test Nos. HWTT-1 and HWTT-2	33
Figure 30. End Post Details, Test Nos. HWTT-1 and HWTT-2	34
Figure 31. Curb Reinforcement Details, Test Nos. HWTT-1 and HWTT-2	35
Figure 32. Curb Details, Test Nos. HWTT-1 and HWTT-2	36
Figure 33. End Post Reinforcement Details, Test Nos. HWTT-1 and HWTT-2	37
Figure 34. End Post Reinforcement Details, Test Nos. HWTT-1 and HWTT-2	38
Figure 35. Longitudinal End Post and Curb Reinforcement Details, Test Nos. HWTT-1 and	
HWTT-2	
Figure 36. Guardrail Section Details, Test Nos. HWTT-1 and HWTT-2	40
Figure 37. Asymmetric Transition Rail and Terminal Connector Details, Test Nos. HWTT-	
1 and HWTT-2	41
Figure 38. Hardware, Test Nos. HWTT-1 and HWTT-2	42
Figure 39. Bill of Materials, Test Nos. HWTT-1 and HWTT-2	
Figure 40. Bill of Materials, Continued, Test Nos. HWTT-1 and HWTT-2	44
Figure 41. Bill of Materials, Continued, Test Nos. HWTT-1 and HWTT-2	45
Figure 42. Test Installation Photographs, Test Nos. HWTT-1 and HWTT-2	46

Figure 43. Test Installation Photographs, Test Nos. HWTT-1 and HWTT-2	47
Figure 44. Test Installation Photographs, Test Nos. HWTT-1 and HWTT-2	48
Figure 45. Test Vehicle Photographs, Test No. HWTT-1	53
Figure 46. Test Vehicle Interior Floorboards and Undercarriage, Test No. HWTT-2	54
Figure 47. Vehicle Dimensions, Test No. HWTT-1	55
Figure 48. Test Vehicle Photographs, Test No. HWTT-2	56
Figure 49. Test Vehicle Interior Floorboards and Undercarriage, Test No. HWTT-2	57
Figure 50. Vehicle Dimensions, Test No. HWTT-2	58
Figure 51. Target Geometry, Test No. HWTT-1	60
Figure 52. Target Geometry, Test No. HWTT-2	61
Figure 53. Camera Locations, Speeds, and Lens Settings, Test No. HWTT-1	63
Figure 54. Camera Locations, Speeds, and Lens Settings, Test No. HWTT-2	64
Figure 55. Impact Location, Test No. HWTT-1	66
Figure 56. Sequential Photographs, Test No. HWTT-1	68
Figure 57. Additional Sequential Photographs, Test No. HWTT-1	69
Figure 58. Documentary Photographs, Test No. HWTT-1	70
Figure 59. Vehicle Final Position and Trajectory Marks, Test No. HWTT-1	71
Figure 60. System Damage, Test No. HWTT-1	73
Figure 61. Thrie Beam Damage, Test No. HWTT-1	74
Figure 62. Rail Connection Terminal, Buttress and Post Damage, Test No. HWTT-1	75
Figure 63. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No.	
HWTT-1	76
Figure 64. Vehicle Damage, Test No. HWTT-1	78
Figure 65. Vehicle Damage, Test No. HWTT-1	79
Figure 66. Interior and Undercarriage Damage, Test No. HWTT-1	80
Figure 67. Summary of Test Results and Sequential Photographs, Test No. HWTT-1	83
Figure 68. Impact Location, Test No. HWTT-2	85
Figure 69. Sequential Photographs, Test No. HWTT-2	87
Figure 70. Additional Sequential Photographs, Test No. HWTT-2	88
Figure 71. Documentary Photographs, Test No. HWTT-2	89
Figure 72. Vehicle Final Position and Trajectory Marks, Test No. HWTT-2	90
Figure 73. System Damage, Test No. HWTT-2	92
Figure 74. Thrie Beam Damage, Test No. HWTT-2	93
Figure 75. Buttress Damage, Test No. HWTT-2	94
Figure 76. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No.	
HWTT-2	95
Figure 77. Vehicle Damage. Test No. HWTT-2	97
Figure 78. Vehicle Damage, Test No. HWTT-2	98
Figure 79. Interior and Undercarriage Damage. Test No. HWTT-2	99
Figure 80. Summary of Test Results and Sequential Photographs. Test No. HWTT-2	102
Figure A-1, 12 ft – 6 in, 12-gauge Thrie Beam Section. Test Nos. HWTT-1 and HWTT-2.	112
Figure A-2, 6 ft. – 3 in, 12-gauge Thrie Beam Section, Test Nos. HWTT-1 and HWTT-2	
Figure A-3. 6 ft – 3 in 10-gauge W-Beam to Thrie-Beam Asymmetric Transition Section	
Test Nos. HWTT-1 and HWTT-2	114
Figure A-4, 12 ft – 6 in, 12-gauge W-Beam MGS Section, Test Nos, HWTT-1 and HWTT-	
2	115

Figure A-5. 12 ft – 6 in. 12-gauge W-Beam MGS End Section, Test Nos. HWTT-1 and	
HWTT-2	.116
Figure A-6. 10-gauge Thrie Beam Terminal Connector, Test Nos. HWTT-1 and HWTT-2	.117
Figure A-7. Reinforced Concrete Buttress, Test Nos. HWTT-1 and HWTT-2	.118
Figure A-8. Reinforced Concrete Buttress, Test Nos. HWTT-1 and HWTT-2	.119
Figure A-9. Reinforced Concrete Curb, Test Nos. HWTT-1 and HWTT-2	.120
Figure A-10. BCT Timber Posts, Test Nos. HWTT-1 and HWTT-2	.121
Figure A-11. BCT Timber Posts, Test Nos. HWTT-1 and HWTT-2	.122
Figure A-12, 72-in, Long Foundation Tube, Test Nos, HWTT-1 and HWTT-2	.123
Figure A-13, Ground Strut Assembly, Test Nos, HWTT-1 and HWTT-2	.124
Figure A-14. BCT Anchor Cable Swaged Fitting and 0.75 in. Dia. 6x19 IWRC Wire Rope,	
Test Nos. HWTT-1 and HWTT-2	.125
Figure A-15. 8-in. x 8-in. x 5/8-in. Anchor Bearing Plate, Test Nos. HWTT-1 and HWTT-2	.126
Figure A-16. 2 ³ / ₈ -in. O.D. by 6-in. Long BCT Post Sleeve, Test Nos. HWTT-1 and HWTT-	
2	.127
Figure A-17. Anchor Bracket Assembly, Test Nos. HWTT-1 and HWTT-2	.128
Figure A-18, W6x8.5 72-in, Long Steel Post, Test Nos, HWTT-1 and HWTT-2	.129
Figure A-19, W6x15 78-in, Long Steel Post, Test Nos, HWTT-1 and HWTT-2	.130
Figure A-20, 17 ¹ / ₂ -in, Long, 8-in, x 6-in, x ¹ / ₄ -in, Steel Blockout, Test Nos, HWTT-1 and	
HWTT-2	131
Figure A-21 17 ¹ / ₂ -in Long 12-in x 4-in x ¹ / ₄ -in Steel Blockout Test Nos HWTT-1 and	
HWTT-?	132
Figure A-22 $14^{3}/_{16}$ -in x 12-in x $\frac{1}{8}$ -in Composite Recycle Blockout Test Nos HWTT-1	.152
and HWTT-?	133
Figure A-23 $14^{3}/_{16}$ -in x 8-in x $\frac{1}{8}$ -in Composite Recycle Blockout Test Nos HWTT-1	.155
and HWTT-2	134
Figure A-24 16 D Double Head Nails Test Nos HWTT-1 and HWTT-2	135
Figure $\Delta_2 25^{-3/2}$ in Dia Unbent Rehar. Test Nos. HWTT-1 and HWTT-2	136
Figure A 26 ¹ / ₂ -in Dia Rebar Test Nos HWTT-1 and HWTT-2	137
Figure A 27 $\frac{1}{2}$ in Dia Rebar Test Nos. HWTT-1 and HWTT-2	138
Figure A -28 $\frac{5}{2}$ in Dia Rebar Test Nos. HWTT-1 and HWTT-2	130
Figure A 20.5% in Dia 11 UNC 14 in Long Guardrail Bolts Test Nos HWTT 1 and	.157
Hydre A-29. 78-III. Dia. 11 ONC, 14-III. Long Guardian Dons, 16st Nos. 11W 11-1 and	140
Figure A 30 % in Dig 11 UNC 10 in Long Guardrail Bolts Test Nos HWTT 1 and	.140
HUWTT 2	1/1
Figure A 21.5% in Dig 11 UNC 11% in Long Guardrail Polts, Test Nos, HWTT 1 and	.141
Figure A-51. 78-III. Dia. 11 UNC, 174-III. Long Guardian Boits, 16st Nos. Hw 11-1 and	140
Eigen A 22 5/ in Dig 11 UNC 10 in Long User Head Date Test Neg UW/TT 1 and	.142
Figure A-52. 78-In. Dia. 11 UNC, 10-In. Long Hex Head Bolls, 1est Nos. Hw11-1 and	142
$\mathbf{F} = \mathbf{A} + 2 + 5 + 1 + $.143
Figure A-33. %-in. Dia. 11 UNC, 1/2-in. Long Hex Head Bolts, 1est Nos. Hw11-1 and	1 4 4
	.144
Figure A-34. [/] / ₈ -in. Dia. 9 UNC, 16-in. Long Heavy Hex Head Bolts, Test Nos. HWTT-1	1.1-
and HWTT-2	.145
Figure A-35. ^{//} 8-in. Dia. 9 UNC, 8-in. Long Hex Head Bolts, Test Nos. HWTT-1 and	1.4.5
HWTT-2	.146
Figure A-36. %-in. Dia. 11 UNC, 2-in. Long Guardrail Bolts, Test Nos. HWTT-1 and	
HWTT-2	.147

Figure A-37. %-in. Dia. 11 UNC, Heavy Hex Nuts, Test Nos. HWTT-1 and HWTT-2	148
Figure A-38. 7%-in. Dia. 9 UNC, Hex Nuts, Test Nos. HWTT-1 and HWTT-2	149
Figure A-39. 7/8-in. Dia. 9 UNC, Heavy Hex Nuts, Test Nos. HWTT-1 and HWTT-2	150
Figure A-40. 1-in. Dia. 8 UNC, Heavy Hex Nuts, Test Nos. HWTT-1 and HWTT-2	151
Figure A-41. 5%-in. Dia. Hex Nuts, Test Nos. HWTT-1 and HWTT-2	152
Figure A-42. 7/8-in. Plain USS Washers, Test Nos. HWTT-1 and HWTT-2	153
Figure A-43. 1-in. Plain USS Washers, Test Nos. HWTT-1 and HWTT-2	154
Figure A-44. 3-in. x 3-in. x ¹ / ₄ -in. Square Washer Plate, Test Nos. HWTT-1 and HWTT-2	155
Figure A-45. Hilti HIT RE-500 V3 Epoxy Adhesive, Test Nos. HWTT-1 and HWTT-2	156
Figure B-1. Vehicle Mass Distribution, Test No. HWTT-1	158
Figure B-2. Vehicle Mass Distribution, Test No. HWTT-2	159
Figure C-1. Soil Strength, Initial Calibration Tests	161
Figure C-2. Static Soil Test, Test No. HWTT-1	162
Figure C-3. Soil Strength, Initial Calibration Tests	163
Figure C-4. Static Soil Test, Test No. HWTT-2	164
Figure D-1. Floor Pan Deformation Data – Set 1, Test No. HWTT-1	166
Figure D-2. Occupant Compartment Deformation Data – Set 1, Test No. HWTT-1	167
Figure D-3. Windshield Deformation, Test No. HWTT-1	168
Figure D-4. Maximum Occupant Compartment Deformations by Location, Test No.	
HWTT-1	169
Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. HWTT-1	170
Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. HWTT-1	171
Figure D-7. Floor Pan Deformation Data – Set 1, Test No. HWTT-2	172
Figure D-8. Occupant Compartment Deformation Data - Set 1, Test No. HWTT-2	173
Figure D-9. Floor Pan Deformation Data – Set 2, Test No. HWTT-2	174
Figure D-10. Occupant Compartment Deformation Data - Set 2, Test No. HWTT-2	175
Figure D-11. Maximum Occupant Compartment Deformations by Location, Test No.	
HWTT-2	176
Figure D-12. Exterior Vehicle Crush (NASS) - Front, Test No. HWTT-2	177
Figure D-13. Exterior Vehicle Crush (NASS) - Side, Test No. HWTT-2	178
Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HWTT-1	180
Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HWTT-1	181
Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No. HWTT-1	182
Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HWTT-1	183
Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. HWTT-1	184
Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. HWTT-1	185
Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. HWTT-1	186
Figure E-8. Acceleration Severity Index (SLICE-1), Test No. HWTT-1	187
Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HWTT-1	188
Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HWTT-1	189
Figure E-11. Longitudinal Occupant Displacement (SLICE-2), Test No. HWTT-1	190
Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HWTT-1	191
Figure E-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. HWTT-1	192
Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. HWTT-1	193
Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. HWTT-1	194
Figure E-16. Acceleration Severity Index (SLICE-2), Test No. HWTT-1	195
Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HWTT-2	197

Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HWTT-2	198
Figure F-3. Longitudinal Occupant Displacement (SLICE-2), Test No. HWTT-2	199
Figure F-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HWTT-2	200
Figure F-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. HWTT-2	201
Figure F-6. Lateral Occupant Displacement (SLICE-2), Test No. HWTT-2	202
Figure F-7. Vehicle Angular Displacements (SLICE-2), Test No. HWTT-2	203
Figure F-8. Acceleration Severity Index (SLICE-2), Test No. HWTT-2	204
Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HWTT-2	205
Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HWTT-2	206
Figure F-11. Longitudinal Occupant Displacement (SLICE-1), Test No. HWTT-2	207
Figure F-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HWTT-2	208
Figure F-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. HWTT-2	209
Figure F-14. Lateral Occupant Displacement (SLICE-1), Test No. HWTT-2	210
Figure F-15. Vehicle Angular Displacements (SLICE-1), Test No. HWTT-2	211
Figure F-16. Acceleration Severity Index (SLICE-1), Test No. HWTT-2	212

LIST OF TABLES

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barrier Transitions	49
Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barriers	50
Table 3. Weather Conditions, Test No. HWTT-1	65
Table 4. Sequential Description of Impact Events, Test No. HWTT-1	67
Table 5. Maximum Occupant Compartment Intrusion by Location	81
Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. HWTT-1	82
Table 7. Weather Conditions, Test No. HWTT-2	84
Table 8. Sequential Description of Impact Events, Test No. HWTT-2	86
Table 9. Maximum Occupant Compartment Intrusion by Location	100
Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. HWTT-2	101
Table 11. Summary of Safety Performance Evaluation, Test Nos. HWTT-1 and HWTT-2	104
Table A-1. Bill of Materials for Test Nos. HWTT-1 and HWTT-2	109
Table A-2. Bill of Materials for Test Nos. HWTT-1 and HWTT-2, Continued	110
Table A-3. Bill of Materials for Test Nos. HWTT-1 and HWTT-2, Continued	111

1 INTRODUCTION

1.1 Background

The Hawaii Department of Transportation (HDOT) utilizes a thrie beam approach guardrail transition (AGT) to connect W-beam guardrail to concrete barriers and bridge rails. However, the crashworthiness of this AGT under current impact safety standards has not been demonstrated. This report documents the system modifications and full-scale crash testing conducted to evaluate the safety performance of the HDOT thrie beam AGT to concrete parapet in accordance with the American Association of State Highway and Transportation (AASHTO) *Manual for Assessing Safety Hardware, Second Edition* (MASH 2016) [1].

HDOT's AGT consisted of nested thrie beam supported by W6x15 posts with a 6-in. tall, vertical curb located below the thrie beam guardrail, as shown in Figures 1 through 10. The downstream end of the guardrail is connected to a specialized concrete end post, HDOT's Type 2 End Post. The end post can be configured to match up with either HDOT's 34-in. tall vertical concrete bridge rail, as shown in Figures 1 through 4, or HDOT's 42-in. tall vertical concrete bridge rail, as shown in Figures 5 through 8. Note, that both of these bridge rails have previously been evaluated to the Test Level 3 (TL-3) criteria of MASH 2016 [2-3].

The upstream end of the AGT was originally transitioned to W-beam guardrail utilizing a symmetric W-to-thrie transition segment, as shown in Figures 2, 6, and 10. However, HDOT recently adopted the Midwest Guardrail System (MGS), which raised the top-mounting height of the W-beam guardrail to 31 in. Subsequently, the upstream end of the transition needed to be redesigned to connect the taller W-beam systems to the AGT. Additionally, modifying the upstream end of the AGT to replicate previously MASH evaluated upstream stiffness transitions would reduce the number of crash tests necessary to evaluate the entire AGT. Therefore, the AGT system was to be modified as part of this research study, in addition to evaluating the HDOT AGT to concrete parapet to the MASH 2016 TL-3 criteria.

1.2 Objective

The objective of this report was to evaluate the safety performance of the modified HDOT Thrie Beam AGT between MGS and concrete parapet. The system was evaluated according to the TL-3 criteria of MASH 2016 [1].

1.3 Scope

The research objective was achieved through the completion of several tasks. The first task included a review of the existing HDOT AGT to concrete parapet, the identification of potential safety issues, and the recommendation of system modifications to improve the crashworthiness of the AGT. The modified system was then constructed and subjected to two full-scale crash tests in accordance with MASH 2016 test designation nos. 3-20 and 3-21. The full-scale vehicle crash test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the HDOT AGT to concrete parapet.

Figure 1. HDOT AGT to 34-in. Tall Bridge Rail Details

 \mathbf{N}

Figure 2. HDOT AGT to 34-in. Tall Bridge Rail Details, Continued

Figure 3. HDOT AGT to 34-in. Tall Bridge Rail Details, Bridge Rail Cross Sections

4

Figure 4. HDOT AGT to 34-in. Tall Bridge Rail Details, AGT and End Post Cross Sections

March 20, 2020 MwRSF Report No. TRP-03-425-20

 $\boldsymbol{\sigma}$

Figure 5. HDOT AGT to 42-in. Tall Bridge Rail Details

March 20, 2020 MwRSF Report No. TRP-03-425-20

6

Figure 6. HDOT AGT to 42-in. Tall Bridge Rail Details, Continued

Figure 7. HDOT AGT to 42-in. Tall Bridge Rail Details, Bridge Rail Cross Sections

 ∞

Figure 8. HDOT AGT to 42-in. Tall Bridge Rail Details, AGT and End Post Cross Sections

March 20, 2020 MwRSF Report No. TRP-03-425-20

9

GENERAL NOTES FOR STANDARD BRIDGE RAILINGS AND TRANSITIONS

DESIGN SPECIFICATIONS:

- A. AASHTO LRFD Bridge Design Specifications, 7th Edition, 2014 including all interim revisions. B. State of Hawaii, Department of Transportation, Highways Division, "Design Criteria for
- Bridges and Structures", August 8, 2014.

MATERIALS:

- A. Reinforced Concrete: Class A (f'c = 4,000 psi minimum) unless otherwise specified. Reinforced Stell: Deformed and plain northon stell bars for concrete spectred.
 B. Reinforced Stell: Deformed and plain carbon stell bars for concrete reinforcement shall meet the requirements of ASHTO M3IM/M3/OF Grade 60 (ASTM A6I5-I5a Grade 60). Deformed and Plain reinforcing bars which are shown to be welded in the plans shall meet the requirements of ASTM AT06/A706M-I5 Grade 60.
- C. Structural Steel: W-beam structural steel shapes shall conform to ASTM A992/A992M-II. Structural steel plates and bars shall conform to ASTM A36/A36M-14. All structural steel shall be hot-dip galvanized after fabrication in accordance with ASTM A123/A123M-15.
- D. Guardrail bolts and recessed nuts shall conform to FBB0I-05 from "A Guide to Standardized Highway Barrier Hardware" AASHTO-AGC-ARTBD Joint Committee Task Force 13 Report.
- E. Carriage bolts and nuts shall conform to FBC10-20 From "A Guide to Standardized Highway Barrier Hardware" AASHTO-AGC-ARTBD Joint Committee Task Force 13 Report.
- F. High Strength bolts (Heavy Hex Structural Bolts) shall conform to ASTM A325-14, Type I unless otherwise specified and hot-dip galvanized in accordance with ASTM F2329/F2329M-15. G. Bolts (Hex and Heavy Hex Bolts) shall conform to ASTM A307, Grade A unless otherwise
- specified and hot-dip galvanized in accordance with ASTM F2329/F2329M-15.
- H. Anchor bolts (and anchor rods) shall conform to ASTM FI554-I5, Grade I05, Class 2A, unless otherwise specified and hot-dip galvanized in accordance with ASTM F2329/F2329M-I5. I. Nuts for ASTM A325 bolts shall be heavy hex and shall conform to ASTM A563-15, Grade DH
- and hot-dip galvanized in accordance with ASTM F2329/F2329M-15. J. Nuts for ASTM A307 bolts shall conform to ASTM A563-15, Grade A and hot-dip galvanized in accordance with ASTM F2329/F23294-15, Nuts for ASTM A307 bolts size 1/2" or less shall be here and for sizes greater than 1/2" shall be heavy here.
- K. Nuts for ASTM F1554 anchor bolts (and anchor rods) shall be heavy hex and conform to ASTM A563-15, Grade DH and hot-dip galvanized in accordance with ASTM F2329/F2329M-15.
- L. Washers for bolts shall conform to ASTM F436-II, Type I and hot-dip galvanized in accordance with ASTM F2329/F2329M-I5. Washers for bolts shall be circular style unless otherwise specified.
- M. Preformed expansion joint filler for concrete (bituminous type) shall conform to ASTM D994-II(2016) and shall be considered incidental to contract pay items and will not be paid for separately.

CONSTRUCTION REQUIREMENTS:

Ó

- A. Refer to Hawaii Standard Specifications for Road and Bridge Construction, 2015 edition and Special Provisions.
- B. Except as noted otherwise, all vertical dimensions are measured plumb.
- C. For steel reinforcing, stagger all splices where possible.
- D. Steel reinforcing shall be supported, bent and placed as per AASHTO LRFD Bridge Design Specifications, 7th Edition, 2014 including all interim revisions.
- E. For cast-in-place concrete minimum reinforcement cover shall be as follows: Concrete cast against earth: 3"
 - Walls: Curbs and Railings:
 - Slab tops:
 - Measured to the closest part of the bars.
- F. At the time concrete is placed, reinforcing shall be free from mud, oil, laitance or other coatings which may adversely affect bond strength.
- G. All reinforcement, dowels and other embedded items shall be positively secured before pouring.
- H. Minimum clear spacing between parallel bars shall be one and one-half (11/2") times the diameter of the larger bar (for non-bundled bars), but in no case shall the clear distance between the bars be less than one and one-half ($l_2^{(r)}$) times the maximum coarse aggregate size.
- All dimensions relating to reinforcing bars (e.g. spacing of bars etc.) are to centers of bars unless noted otherwise.
- J. All footings shall bear on firm undisturbed natural soils or properly compacted structural fill.
- K. The welding of reinforcing steel shall be in accordance with the Structural Welding Code-Reinforcing Steel AWS DI.4/DI.4M 2011.
- L. The welding of structural steel shall be in accordance with the Structural Welding Code AWS DIJ/DIJM 2015.
- M. The Contractor shall conduct his work in such a manner and provide such temporary shoring or other measures as may be necessary to insure the safety of all concerned and to protect existing structures.
- N. In the event of over excavation, the space between the footing or footing key and the ground shall be filled with a minimum of class D concrete at the Contractor's expense at no cost to the State.
- 0. Unless noted otherwise chamfer all exposed concrete edges three-quarters (3/4) of an inch.

<u>SYMBOLS</u>	AND	ABBRE	/IATIONS
Detail		IR	Tobound

designation -	+ XXX	Dia., ø	Diameter	I.F.	Inside Face	Rdwy	Roadway
Charle Ma Can	ATT A XXX XXX	Dim.	Dimension	In.	Inch	Ref.	Reference
Sheer NO. Sec	Sheet No. Detail	Dwa., Dwas.	Drawing, Drawings	Int.	Interior	Reinf.	Reinforcement
is cur or	is drawn		<i>y</i>	Inv.	Invert	Ret	Retaining
Defail Location		EA Es es	Fach	1	1.1.0.7	Reald	Required
<u> </u>		EF, L0, 00.	Each Eaco	1+	loiot	RE	Rear Face
(X) - ⊈ Bearii	ng Abutment Seat Line	Eleo	Electrical	57.	JUIII	Dt.	Right
D - Paring	No & Docianation	Clec.	Electrical			D. CHI	Right Of Way
- Buring i	No. & Designation	EI., Elev.	Elevation	L	Length	/t/w	Right Of way
		E mD.	Embankment	LBS., ID., IDS.	Pound, Pounds	c	Courth
Abut.	Abutment	E.P.	Edge of Pavement	L.F., Lin. Ft.	Linear Feet	50	Southhousd
AC	Asphaltic Concrete	Eq.	Equal	Lg.	Long	5.B.	Soumbound
Adj.	Adjacent	Est.	Estimated	Longit.	Longitudinal	Sect.	Section
Alf.	Alternate	E.W.	Each Way	.L.S.	Lump Sum	SF	Square Feet
Approx.	Approximate	Exc.	Excavation	Lt.	Left	Shidr.	Shoulder
Az.	Azimuth	Exist.	Existing	Lta, Std.	Lighting Standard	Sht.	Sheet
		Exp. (E)	Expansion		- , , , , , , , , , , , , , , , , , , ,	Spc.	Space
B	Baseline	Fxt.	Exterior	Mar	Havimum	Spcd.	Spaced
Bal.	Balance			Mech	Mechanical	Spcg.	Spacing
Bet., Btwn.	Between	(F)	Fixed	Mio.	Minimum	Spec.	Specification
B.F.	Both faces	E'.	Specified Strength of	Hice	Hiccollocous	Sprd.	Spread
B.F.E.	Bottom Footing Elevation	' C	Specified Shenghi of	M156.	MISCENAREOUS	Sta.	Station
Bk.	Back	E (Concrete			Std.	Standard
BIt.	Bolt	r ci	Strength of Concrete at	N	North	Stirr	Stirruo
Rm.	Beam	6.6	Time of Initial Prestress	N.B.	Northbound	Str	Straight
R Rot Rott	Bottom	r.r.	Front Face	N.F.	Near Face	Struct	Structural
Br	Bridge	Fig.	Figure	No., #	Number	Summ	Symmetrical
Bra Bras	Rearing Poarings	Fin.	Finish	N.T.S.	Not To Scale	Synan.	Symmetrical
Dig., Digo.	Dealing, Dealings	Fin. Gr.	Finish Grade			T	Too
D.v.C.	Beginning of Vertical Curve	Ftg.	Footing	0.B.	Outbound	Tama	Top
¢	Center Line			0.C.	On Center	The	Thick Thickness
Cant.	Cantilever	Ga.	Gage, Gauge	0.G.	Outside Girder	TIK.	Thick, Thickness
C.F.	Cubic Feet	Galv.	Galvanized	Opp'a	Opening	T.0.0.	TOP UT DECK
CIP	Cast in Place	Gir. G	Girder	0/5 0/5	Offset	T of.	l ofal
CIP	Cast Iron Piné	GRP	Grouted Rubble Paving	0, 0, 0, 0	0,100,	I ransv.	Transverse
CI CIE	Clear	Gr	Grade	00	Pull Pay	Typ.	Typical
Col.	Columo	Grd	Ground	P.D.	Full Bux		
Con.	Colomn	0/0.	Ground	P.C.	Point of Curvature	Var.	Varies
Conc.	Concrete		4.0	P.C.C.	Portland Cement Concrete	V.C.	Vertical Curve
Com	Connection	(11)	Hinge	Pert.	Perforated	Vert.	Vertical
Const.	Construction	HOFIZ.	Horizontal	PG-()	Prestressed Girder-(Type)		
Cont.	Continuous	HS	High Strength	PL	Plate	W	West
CRM	Cement Rubble Masonry	Ht.	Height	P/S	Prestressed Strands	w/	With
C.Y., Cu. Yd.	Cubic Yards	Hwy.	Highway	Pvmt.	Pavement	W.W.	Wingwall

CONSTRUCTION REQUIREMENTS con't:

Detail or Section

B

B.F. B.F.E. Bk. Blt. Bm.

Cant. C.F. CiP C.I.P.

CI., CIr. Col. Conc.

- P. Refer to Standard Plans for additional details and notes not covered by details and typical drawings.
- Q. Anchor bolts shall have sufficient length when installed to ensure that the bolt projects at least $\frac{1}{6}$ " beyond the top of the nut but should not project more than $\frac{1}{4}$ ". Anchor bolts shall not be out of plumb more than 1:40 Horizontal: Vertical.

Not

R. Bolts and high strength bolts shall have sufficient length when installed to ensure that the bolt projects at least \%" beyond the nut but should not project more than \%".

Figure 9. HDOT AGT Details, Material Specifications and Notes

FED. ROAD STATE FED. AID PROJ. NO. FISCAL SHEET TOTAL YEAR NO. SHEETS HAWAII HAW. STP-1500(092)R 2017 1 IO

Radius

D

AUG 21 2017

DRAFT

STATE OF HAWAI

STANDARD BRIDGE RAILINGS & TRANSITIONS

GENERAL NOTES and

SYMBOLS and ABBREVIATIONS CRASH TESTING OF VARIOUS BRIDGE GUARDRAILS AND TRANSITIONS Project No. STP-15000921R

SHEET No. QL OF 2

Date: Aug, 2017

SHEETS

Scale: As Noted

NOTES:

1

- A. The work necessary to connect guardrail to the concrete end post shall include all labor, materials, tools, equipment and incidentals necessary to complete the work and will not be paid for separately.
- B. Lap terminal connector and rail elements in the direction of traffic to prevent snagging.
- C. Boils shall have sufficient length when installed to ensure that the nut is at least flush but should not project more than ¼. The Contractor will not be allowed to cut, grind or otherwise after the boilt to meet this requirement unless it is done during the fabrication of the bolt prior to galvanizing.
- The "Terminal Connector", "Transition Section", backup plate and thrie beam shall be fabricated from ID-gauge steel conforming to the requirements of AASHTO M 180 Type II, Class B and be gelvanized after fabrication.
- arter rauricarion. E. Cap (Bearing) Plate shall be fabricated from structural steel conforming to ASTM A36/A36M-14 and shall be hot-dip galvanized after fabrication in accordance with ASTM AI23/A4723M-15.
- The first 25-0" of guardrait adjoining the "Terminal Connector" shall be pleed tangent to the concrete transition front Tace or parallel to the readway, unless conditions at the site renders It impossible to do so. Flare point to be determined in field.
- G. All w-beam guardrail shall conform to the requirements of AASHTO MI80 Type II, Class A and be galvanized after fabrication.
- H. Double nest the first panel of thrie beam guardrail adjoining all endpost connections, except on highways with one-way fraffic pattern (one-way ramps or divided roadways), use single thrie beam elements at trailing ends.
- I. Where double nested thrie-beam occurs the 12" backup plate is not required. J. Head of all bolts shall be placed on the traffic side of the rail.
- K. Structural Steel: W-beam structural steel shapes shall conform to ASTM A992/A992M-II. Structural steel plates and bars shall conform to ASTM A36/A36M-14
- L. All structural steel shall be hot-dip galvanized after fabrication in accordance with ASTM Al23/Al23M-I5.
- M. All W6x15 guardrail posts shall be clearly stamped during fabrication "W6x15" on each post.

Project No. ST

SHEET No. Q2 OF

Scale: As Noted

Figure 10. HDOT AGT Details, Guardrail and Connection Hardware

METAL GUARDRAIL TYPE 3 THRIE BEAM AND APPURTENANCES DETAILS

March 20, 2020 MwRSF Report No. TRP-03-425-20

2 DESIGN DETAILS

2.1 Design Modifications

As described previously, the upstream region of the HDOT thrie beam AGT was modified to include the MGS with a top rail mounting height of 31 in. Specifically, the MGS upstream stiffness transition, which was successfully evaluated and crash tested to MASH TL-3, was incorporated into the HDOT AGT design. The MGS upstream stiffness transition was designed to transition from 31-in. tall W-beam guardrail to the stiffened thrie beam regions of AGTs using an asymmetrical W-to-thrie transition rail segment and standard 6-ft long W6x8.5 or W6x9 guardrail posts [4]. The MGS stiffness transition was designed to be compatible with a variety of thrie beam AGTs. Thus, its inclusion within the HDOT AGT would only require modifications to a few components, all of which were discussed with HDOT prior to the finalization of the new AGT design.

Merging the HDOT AGT and the MGS upstream stiffness transition required the use of the asymmetrical W-to-thrie rail segment and a rearrangement of the posts. The top of Figure 11 shows the original HDOT AGT, while the bottom of the figure shows the as-tested MGS upstream stiffness transition. The middle of Figure 11 depicts the merging of the two transitions to create a modified HDOT AGT. Note that the length of the thrie beam and transition rail segments remained the same. The modified HDOT AGT incorporated two more posts than the original HDOT AGT, but the additional posts located within the upstream stiffness transition were deemed necessary to provide a smooth transition between standard MGS and the stiffened, nested thrie beam region of the AGT. Further elimination of posts in this region of the system would require additional tests to evaluate the safety performance in this region. Additionally, the number of the larger W6x15 transition posts was reduced from eight to four, and only post nos. 1 and 2 were spaced 18.75 in. apart. The rest of the W6x15 posts were spaced at 37.5 in. on-center.

HDOT's original AGT was detailed with a top rail height of 32 in., as noted in Figure 11. However, most three beam AGTs, the MGS stiffness transition, and the MGS itself have nominal rail mounting heights of 31 in. Therefore, the top-mounting height of the three beam was reduced from 32 in. to 31 in. within the modified transition.

HDOT's Type D2 End Post is 34 in. tall, so the end post extended 3 in. above the 31-in. thrie beam. Due to concerns of vehicle snag on the upstream end of the end post above the rail, a vertical taper measuring 2 in. vertically and 12 in. longitudinally was placed on the upstream end of the parapet. Note, this taper was not included in the sketches in Figure 11 as it would be too small to see clearly, but it was incorporated into the test article's detailed drawings.

The original HDOT AGT used W6x12 steel blockouts between the W6x15 posts and the guardrail segments. However, wide-flange steel blockouts have been associated with multiple performance issues. First, the thin, single web of wide-flange sections make the blockout more vulnerable to buckling, which allows for increased lateral displacements and increases the risk of vehicle snag. Second, the flange edges of wide-flange sections represent relatively sharp, hard points that induce stress concentrations that can lead to tearing in the rail. Previously, rectangular HSS tube blockouts have been developed for use within AGTs as they are much less likely to buckle/fail under lateral loading and have rounded edges that greatly reduce the risk of rail tearing

[5]. Therefore, the modified HDOT AGT incorporated rectangular HSS tube blockouts instead of the previous-used W6x12 blockouts.

The original HDOT also specified 12-in. backup plates for use behind the guardrail except for post locations adjacent to nested rail sections or at rail splices. The modified HDOT AGT design limited the amount of backup plates to only two post locations within the entire AGT. Further, the risk of rail tearing was reduced by the switch to HSS tube blockouts. Subsequently, backup plates were deemed unnecessary and were removed from the modified HDOT AGT.

A total of seven bolts were used in the original HDOT AGT to anchor the thrie beam to the Type D2 End Post, five ⁷/₈-in. diameter bolts in the terminal connector and two ⁵/₈-in. diameter bolts through the center of the splice between the terminal connector and the nested thrie beam. Previous MASH crash testing of thrie beam transitions has shown that the five ⁷/₈-in. diameter bolts are sufficient to anchor the rail [6-9]. Thus, the extra two bolts in the center of the splice were removed from the modified HDOT AGT.

Finally, the 6-in. curb located beneath the thrie beam rails was flared away from the roadway to mitigate wheel snag in the original HDOT AGT design. However, the same flared curb would interfere with the placement of post no. 7 in the modified HDOT AGT, as shown in Figure 12. Multiple options were investigated to alleviate this issue, including reducing the lateral flare of the curb and reducing the length of the curb such that it terminates within the 37.5-in. spacing of the W6x15 transition posts. Ultimately, HDOT decided to eliminate the flare and instead terminate the curb with a vertical taper, as shown at the bottom of Figure 12. Note, the longitudinal length of the tangent curb in the modified HDOT AGT remained the same as the flared curb in the original HDOT AGT.

Figure 11. Modified HDOT AGT with Inclusion of MGS Upstream Stiffness Transition

Figure 12. Modified HDOT AGT with Inclusion of MGS Upstream Stiffness Transition

2.2 Test Article Details - Modified HDOT AGT

The modified HDOT AGT test installation was approximately 83 ft long and consisted of a concrete parapet, transition, a three beam AGT, MGS, and a guardrail anchorage system, as shown in Figures 13 through 41. Photographs of the test installation are shown in Figures 42 through 44. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.

At the downstream end of the test installation, there existed an 8-ft long version of HDOT's Type D2 End Post. Since the downstream half of the end post was not expected to interact with

the test vehicles, the length of the end post was reduced from its standard 18-ft length to reduce installation costs. The test installation end post was 34 in. tall, 18 in. wide, and was reinforced with a combination of longitudinal and lateral steel rebar. The vertical steel bars of the end post were anchored directly to the non-reinforced existing concrete tarmac using a chemical epoxy with a minimum bond strength of 1,450 psi. The upstream end of the end post was sloped vertically with a 2-in. x 12-in. taper. The face of the end post was recessed 4 in. at the location of the guardrail terminal connector so that the face of the thrie beam was nearly flush with the face of the concrete parapet. The concrete was found to have a compressive strength of approximately 4,900 psi prior to crash testing.

The downstream end of the AGT was comprised of 12.5 ft of nested thrie beam rail supported by W6x15 steel posts at various spacings, while the upstream end of the AGT incorporated the previously MASH tested MGS upstream stiffness transition [4] to connect the AGT to the adjacent MGS. All guardrail segments had a top mounting height of 31 in. Blockouts within the AGT consisted of rectangular HSS steel tubes. The W6x15 posts were 7 ft long, while the W6x8.5/W6x9 posts were 6 ft long. To ensure the width of the blockouts matched the width of the posts, 6-in. wide blockouts were used with W6x15 posts, and 4-in. wide blockouts were used with W6x8.5/W6x9 posts.

A 6-in. tall concrete curb was placed below the AGT with its front face flush with the face of the guardrail. The curb began at the upstream end of the concrete end posts and extended 176.25 in. upstream. The curb was terminated with a vertical taper measuring 4 in. vertically by 36 in. longitudinally prior to extending below the asymmetrical W-to-thrie transition segment. A 4-in. x 12-in. vertical taper was applied to the downstream end of the curb adjacent to the concrete end post to mitigate wheel snag on the end post.

Approximately 37.5 ft of MGS extended from the upstream end of the AGT. This MGS region of the test installation utilized plastic blockouts manufactured by Mondo Polymer Technologies.

Finally, a guardrail anchorage system typically utilized as a trailing end terminal was utilized to anchor the upstream end of the test installation. The guardrail anchorage system was originally designed to simulate the strength of other crashworthy end terminals. The anchorage system consisted of timber posts, foundation tubes, anchor cables, bearing plates, rail brackets, and channel struts, which closely resembled the hardware used in the Modified Breakaway Cable Terminal (BCT) system. The guardrail anchorage system has been MASH TL-3 crash tested as a downstream trailing end terminal [10-13].

Figure 13. System Layout, Test No. HWTT-1

Figure 14. System Layout, Test No. HWTT-2

Figure 15. Post Nos. 3 through 10 Details, Test Nos. HWTT-1 and HWTT-2

Figure 16. Post Nos. 11 through 19 Details, Test Nos. HWTT-1 and HWTT-2

Figure 17. Type D2 End Post and Terminal Connector, Test Nos. HWTT-1 and HWTT-2

Figure 18. Guardrail End Section and Splice Detail, Test Nos. HWTT-1 and HWTT-2

22

Figure 19. BCT Anchor Details, Test Nos. HWTT-1 and HWTT-2

Figure 20. Post Nos. 16 through 19 Components, Test Nos. HWTT-1 and HWTT-2

Figure 21. Post Nos. 10 through 15 Components, Test Nos. HWTT-1 and HWTT-2

Figure 22. Post Nos. 3 through 7 Components, Test Nos. HWTT-1 and HWTT-2

Figure 23. Post Nos. 8 and 9 Blockout Details, Test Nos. HWTT-1 and HWTT-2

Figure 24. BCT Timber Post and Foundation Tube Details, Test Nos. HWTT-1 and HWTT-2

Figure 25. Ground Strut Details, Test Nos. HWTT-1 and HWTT-2

Figure 26. BCT Anchor Cable Details, Test Nos. HWTT-1 and HWTT-2

Figure 27. Cable Assembly and Anchor Components, Test Nos. HWTT-1 and HWTT-2

Figure 28. End Post Rebar Details, Test Nos. HWTT-1 and HWTT-2

Figure 29. End Post Sections, Test Nos. HWTT-1 and HWTT-2

Figure 30. End Post Details, Test Nos. HWTT-1 and HWTT-2

Figure 31. Curb Reinforcement Details, Test Nos. HWTT-1 and HWTT-2

Figure 33. End Post Reinforcement Details, Test Nos. HWTT-1 and HWTT-2

Figure 34. End Post Reinforcement Details, Test Nos. HWTT-1 and HWTT-2

Figure 35. Longitudinal End Post and Curb Reinforcement Details, Test Nos. HWTT-1 and HWTT-2

Figure 36. Guardrail Section Details, Test Nos. HWTT-1 and HWTT-2

Figure 37. Asymmetric Transition Rail and Terminal Connector Details, Test Nos. HWTT-1 and HWTT-2

Figure 38. Hardware, Test Nos. HWTT-1 and HWTT-2

42

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
a1	2	12'-6" [3,810] 12-gauge [2.7] Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM08a
a2	1	6'-3" [1,905] 12-gauge [2.7] Thrie Beam Section	AASHTO M180	ASTM A123 or A653	RTM19a
٥3	1	6'-3" [1,905] 10-gauge [3.4] W-Beam to Thrie- Beam Asymmetric Transition Section	AASHTO M180	ASTM A653	RWT02
a4	3	12'-6" [3,810] 12-gauge [2.7] W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
۵5	1	12'-6" [3,810] 12-gauge [2.7] W-Beam MGS End Section	AASHTO M180	ASTM A123 or A653	RWM14a
a6	1	10-gauge [3.4] Thrie Beam Terminal Connector	AASHTO M180 Min. yield strength = 50 ksi [345 MPa] Min. ultimate strength = 70 ksi [483 MPa]	ASTM A123 or A653	RTE01b
ь1	1	Reinforced Concrete	Min. f'c = 4,000 psi [27.6 MPa] NE Mix 47BD		y — 1
c1	2	BCT Timber Post – MGS Height	SYP Grade No. 1 or better (No knots +/- 18" [457] from ground on tension face)	_	PDF01
c2	2	72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
c3	1	Ground Strut Assembly	ASTM A36	ASTM A123	PFP02
c4	2	BCT Anchor Cable End Swaged Fitting	Fitting — ASTM A576 Gr. 1035 Stud — ASTM F568 Class C	Fitting – ASTM A153 Stud – ASTM A153 or B695	
c5	1	3/4" [19] Dia. 6x19 IWRC IPS Wire Rope	ASTM A741 Type 2	Class A Coating	-
c6	1	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
c7	1	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
c8	1	Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01
d1	7	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" [1,829] Long Steel Post	ASTM A992	*ASTM A123	PWE06
d2	6	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" [1,829] Long Steel Post	ASTM A992	*ASTM A123	PWE06
d3	4	W6x15 [W152x22.5], 78" [1,981] Long Steel Post	ASTM A992	*ASTM A123	-
d4	4	17 1/2" [445] Long, 8"x6"x1/4" [203x152x6] Steel Blockout	ASTM A500 Gr. B	*ASTM A123	-
d5	6	17 1/2" [445] Long, 12"x4"x1/4" [305x102x6] Steel Blockout	ASTM A500 Gr. B	*ASTM A123	

* Component does not need to be galvanized for testing purposes.

		RSF	Hawaii Thrie—Beam to Bridge Rail Test No. HWTT—1	SHEET: 26 of 28 DATE: 3/2/2020	
	Midwest Safety	Roadside	Bill of Materials		DRAWN BY: DJW/MKB/S BW/JRF
		Facility	DWG. NAME. HWTT-1_R13	SCALE: None UNITS: in.[mm]	REV. BY: SKR/JEK/ JCH/KAL

Figure 39. Bill of Materials, Test Nos. HWTT-1 and HWTT-2

Item No.	QTY.	Description	Material Specification	Т	reatment Specification	Har Gi	dware uide	
d6	2	14 3/16"x12"x5 1/8" [360x305x130] Composite Recycled Blockout	Mondo Polymer MGS14SH or Equivalent				-	
d7	5	14 3/16"x8"x5 1/8" [360x203x130] Composite Recycled Blockout	Mondo Polymer GB14SH2 or Equivalent		-		-	
d8	1	16D Double Head Nail	_				<u></u>	
e1	6	#6 [19] Rebar, 60 1/16" [1526] Total Unbent Length	ASTM A615 Gr. 60	**Epo	xy—Coated (ASTM A775 or A934)	r i	-	
e2	1	#6 [19] Rebar, 57 9/16" [1462] Total Unbent Length	ASTM A615 Gr. 60	**Epo	xy—Coated (ASTM A775 or A934)	r	-	
e3	4	#6 [19] Rebar, 56 1/16" [1424] Total Unbent Length	ASTM A615 Gr. 60	**Epo	xy—Coated (ASTM A775 or A934)	r	-	
e4	1	#6 [19] Rebar, 53 3/16" [1351] Total Unbent Length	ASTM A615 Gr. 60	**Epo	xy—Coated (ASTM A775 or A934)	C	-	
e5	6	#6 [19] Rebar, 34 9/16" [878] Total Unbent Length	ASTM A615 Gr. 60	**Epo	xy—Coated (ASTM A775 or A934)	7	-	
e6	4	#4 [13] Rebar, 57 3/16" [1453] Total Unbent Length	ASTM A615 Gr. 60	**Epo	xy—Coated (ASTM A775 or A934)	C	<u>—</u>	
e7	1	#4 [13] Rebar, 55 7/16" [1408] Total Unbent Length	ASTM A615 Gr. 60	**Epo	xy—Coated (ASTM A775 or A934)	r		
e8	2	#4 [13] Rebar, 53 3/16" [1351] Total Unbent Length	ASTM A615 Gr. 60	**Epo	xy—Coated (ASTM A775 or A934)	2		
e9	1	#4 [13] Rebar, 49 7/8" [1267] Total Unbent Length	ASTM A615 Gr. 60	**Epo	xy—Coated (ASTM A775 or A934)	r	-	
e10	3	#6 [19] Rebar, 92" [2337] Total Length	ASTM A615 Gr. 60	**Epo	xy—Coated (ASTM A775 or A934)	1 1	<u>1000</u>	
e11	3	#6 [19] Rebar, 92 7/8" [2359] Total Unbent Length	ASTM A615 Gr. 60	**Epo	xy-Coated (ASTM A775 or A934)	r		
e12	4	#4 [13] Rebar, 92" [2337] Total Length	ASTM A615 Gr. 60	**Epo	xy—Coated (ASTM A775 or A934)	r	-	
e13	2	#4 [13] Rebar, 49 5/8" [1260] Total Length	ASTM A615 Gr. 60	**Epo	xy—Coated (ASTM A775 or A934)			
e14	7	#4 [13] Rebar, 16" [406] Total Length	ASTM A615 Gr. 60	**Epo	xy—Coated (ASTM A775 or A934)	5	-	
e15	1	#4 [13] Rebar, 12 3/4" [324] Total Length	ASTM A615 Gr. 60	**Epo	xy—Coated (ASTM A775 or A934)	r		
e16	1	#5 [16] Rebar, 172" [4369] Total Length	ASTM A615 Gr. 60	**Epo	xy—Coated (ASTM A775 or A934)	1	-	
e17	1	#5 [16] Rebar, 164 1/4" [4172] Total Unbent Length	ASTM A615 Gr. 60	**Epo	xy—Coated (ASTM A775 or A934)	r	-	
					-		5	
** R	ebar	does not need to be epoxy-coated for testing pur	poses.		Hawaii Thrie—Beam	AGT	SHEET: 27 of 28	
				SP	to Bridge Rail		DATE:	
Test No. HWTT-1								
			Midwaat Pa	adoida	Bill of Materials		DRAWN BY: DJW/MKB/S	
			Safety Fac	cility	DWG. NAME.	SCALE: None	REV. BY:	
					HWTT-1_R13	JNITS: in.[mm]	SKR/JEK/ JCH/KAL	

Figure 40. Bill of Materials, Continued, Test Nos. HWTT-1 and HWTT-2

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
f1	13	5/8"—11 UNC [M16x2], 14" [356] Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB06
f2	15	5/8"—11 UNC [M16x2], 10" [254] Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB03
f3	44	5/8"–11 UNC [M16x2], 1 1/4" [32] Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB01
f4	2	5/8"—11 UNC [M16x2], 10" [254] Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX16a
f5	8	5/8"—11 UNC [M16x2], 1 1/2" [38] Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX16a
f6	5	7/8"—9 UNC [M22x2.5], 16" [406] Long Heavy Hex Head Bolt	ASTM F3125 Gr. A325 or equivalent	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F2329 or F2833 Gr. 1	FBX22b
f7	2	7/8"-9 UNC [M22x2.5], 8" [203] Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	ASTM A153 or B695 Class 55 or F2329	
f8	24	5/8"—11 UNC [M16x2], 2" [51] Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FBB02
f9	96	5/8"—11 UNC [M16x2] Heavy Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX16b
f10	2	7/8"-9 UNC [M22x2.5] Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	
f11	5	7/8"-9 UNC [M22x2.5] Heavy Hex Nut	ASTM A563DH	ASTM A153 or B695 Class 55 or F2329	FNX22b
f12	2	1"—8 UNC [M24x3] Heavy Hex Nut	ASTM A563DH or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX24b
f13	10	5/8"-11 UNC [M16x2] Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX16a
g1	46	5/8" [16] Dia. Plain USS Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC16a
g2	4	7/8" [22] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	-
g3	2	1" [25] Dia. Plain USS Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC24a
g4	5	3"x3"x1/4" [76x76x6] or 3 1/2"x3 1/2"x1/4" [89x89x6] Square Washer Plate	ASTM A572 Gr. 50	ASTM A123	<u></u>
-	-	Epoxy Adhesive	Hilti HIT RE-500 V3	_	<u></u>
					0

MARSI	Hawaii Thrie—Bear to Bridge Rail	Hawaii Thrie-Beam AGT to Bridge Rail				
	Test No. HWTT-1	Test No. HWTT-1				
Midwest Roadsi	Bill of Materials		DRAWN BY: DJW/MKB/S BW/JRF			
Safety Facility	DWG. NAME. HWTT-1_R13	SCALE: None UNITS: in.[mm]	REV. BY: SKR/JEK/ JCH/KAL			

Figure 41. Bill of Materials, Continued, Test Nos. HWTT-1 and HWTT-2

Figure 42. Test Installation Photographs, Test Nos. HWTT-1 and HWTT-2

Figure 43. Test Installation Photographs, Test Nos. HWTT-1 and HWTT-2

47

Figure 44. Test Installation Photographs, Test Nos. HWTT-1 and HWTT-2

3 TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1 Test Requirements

Longitudinal barriers, such as approach guardrail transitions, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [1]. According to TL-3 of MASH 2016, longitudinal barrier transition systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 1. Note that there is no difference between MASH 2009 [14] and MASH 2016 for longitudinal barriers such as the system tested in this project, except that additional occupant compartment deformation measurements, photographs, and documentation are required by MASH 2016.

	—	Test	-	Vehicle	Impact C	onditions	Evaluation Criteria ¹	
	Article	Designation No.	Test Vehicle	Weight, lb	Speed, mph	Angle, deg.		
Ι	Longitudinal	3-20	1100C	2,425	62	25	A,D,F,H,I	
	Barrier	3-21	2270P	5,000	62	25	A,D,F,H,I	

Table 1. MASH 2016 TL-3 Crash Test Conditions for Longitudinal Barrier Transitions

¹ Evaluation criteria explained in Table 2.

Recent testing of AGTs has illustrated the importance of evaluating two different transition regions along the length of the AGT: (1) the downstream transition where the thrie beam connects to the rigid parapet and (2) the upstream stiffness transition where the W-beam guardrail transitions to a stiffer thrie beam barrier. However, the upstream stiffness transition of the modified HDOT AGT was specifically designed to replicate the MASH-crashworthy MGS stiffness transition [4]. Therefore, crash testing of the upstream stiffness transition was deemed non-critical.

It should be noted that the test matrix detailed herein represents the researchers' best engineering judgement with respect to the MASH 2016 safety requirements and their internal evaluation of critical tests necessary to evaluate the crashworthiness of the guardrail transition system. However, these opinions may change in the future due to the development of new knowledge (crash testing, real-world performance, etc.) or changes to the evaluation criteria. Thus, any tests within the evaluation matrix deemed non-critical may eventually need to be evaluated based on additional knowledge gained over time or revisions to the MASH 2016 criteria.

A.Test article should contain and redirect the vehicle or bring to to a controlled stop; the vehicle should not penetrate, und override the installation although controlled lateral deflect test article is acceptable.								
	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.						
	F.	The vehicle should remain upright during and after collision. The naximum roll and pitch angles are not to exceed 75 degrees.						
Occupant	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:						
Risk		Occupant Impact Velocity Limits						
		Component	Preferred	Maximum				
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)				
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:						
		Occupant Ridedown Acceleration Limits						
		Component	Preferred	Maximum				
		Longitudinal and Lateral	15.0 g's	20.49 g's				

Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barriers

3.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the thrie beam guardrail transition system to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH 2016. The full-scale vehicle crash tests documented herein were conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

3.3 Soil Strength Requirements

In accordance with Chapter 3 and Appendix B of MASH 2016, foundation soil strength must be verified before any full-scale crash testing can occur. During the installation of a soil-dependent system, W6x16 posts are installed near the impact region utilizing the same installation procedures as the system itself. Prior to full-scale testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips at post deflections between 5 and 20 in. measured at a height of 25 in. above the ground line. If dynamic testing near the system is not desired, MASH 2016 permits a static test to be conducted instead and compared against the results of a previously-established baseline test. In this situation, the soil must provide a resistance of at least 90% of the static baseline test at deflections of 5, 10, and 15 in. Further details can be found in Appendix B of MASH 2016.

4 TEST CONDITIONS

4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [15] was used to steer the test vehicle. A guide flag, attached to the right-front wheel and the guide cable, was sheared off before impact with the barrier system. The $\frac{3}{8}$ -in. diameter guide cable was tensioned to approximately 3,500 lb and supported both laterally and vertically every 100 ft by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicles

For test no. HWTT-1, a 2010 Hyundai Accent passenger car was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,475 lb, 2,407 lb, and 2,571 lb, respectively. The test vehicle is shown in Figures 45 and 46, and vehicle dimensions are shown in Figure 47. MASH 2016 describes that vehicles used in crash testing should be no more than six model years old. A 2010 model was used for this test, because the vehicle geometry of newer models did not comply with recommended vehicle dimension ranges specified in Table 4.1 in MASH 2016 [1].

For test no. HWTT-2, a 2014 Dodge Ram QuadCab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 4,953 lb, 5,000 lb, and 5,160 lb, respectively. The test vehicle is shown in Figures 48 and 49, and vehicle dimensions are shown in Figure 50. Note, the windshield was cracked prior to full-scale crash testing. Since the barrier system was not expected to make contact with the windshield, this pre-existing damage was not expected to affect the evaluation of the AGT.

Figure 45. Test Vehicle Photographs, Test No. HWTT-1

Figure 46. Test Vehicle Interior Floorboards and Undercarriage, Test No. HWTT-2

Date:	7/1/20	19	-		Test Name	»:HW	'TT-1	VIN No:	KMHCN4	AC8BU60	8788
Year:	201	0	_		Make	»:Нуц	ındai	Model:	F	ccent	
Tire Size:	185/65	R14		Tire Inflat	tion Pressure	a:32	psi	Odometer:	1	74272	
	M				N		▲ T	Vehicle G Target Ranges A: 65 1/2 65±3 (16	eometry - in. (s listed below (1664) B: (50±75)	mm) 57 3/4	(1467)
			A					C: <u>168 1/2</u> 169±8 (43 E: <u>98 3/4</u> 98±5 (25)	(4280) D: (00±200) D: (2508) F: (00±125) F:	32 3/4 35±4 (9 37	(832) 00±100) (940)
				Te	st Inertial CG			G: <u>22</u> 7/8	<u>(581)</u> H:	36 1/4 39±4 (9	(921) 90±100)
	- Q -	-						I: 14 1/2	(368) J:	21	(533)
P	R		-		D		В	K: <u>14 3/4</u>	(375) L:	23	(584)
			9 s				↓ ↓ ↓ ĸ ↓ ↓	M: <u>58</u> 56±2 (14	(1473) N:	57 3/4 56±2 (1	(1467) 425±50)
		н	1				1	O: 28 24±4 (60	(711) P: 00±100)	3 1/2	(89)
	- D	-	E	I		F		Q: 23	(584) R:	15 3/8	(391)
				С		•		S: 7 1/2	(191) T:	65	(1651)
Mass Distribu	ution - lb (ka)							U (ir	npact width):	29 1/8	(740)
Gross Statio	LE 807	(366)	PE	798	(362)			Тор о	of radiator core	30 1/2	(775)
Cross clane	LP 510	(000)	- ''' -	456	(207)				Wheel Center	11	(279)
	LK 510	(231)		400	(207)				Wheel Center		(279)
Weights									Height (Rear): Wheel Well	10 3/4	(273)
lb (kg)	C	urb		Test I	nertial	Gross	s Static	Cle	arance (Front): Wheel Well	26 1/4	(667)
W-front	1573	(714)		1523	(691)	1605	(728)	_ Cle	earance (Rear):	25 5/8	(651)
W-rear	902	(409)		884	(401)	966	(438)		Height (Front):	7	(178)
W-total	2475	(1123)		2407 2420±55	(1092) (1100±25)	2571	(1166) (1175±50)	-	Bottom Frame Height (Rear):	5 1/2	(140)
									Engine Type:	Gas	oline
GVWR Rating	gs Ib			Surrogate	e Occupant E)ata			Engine Size:	1.6L	4 cyl
Front	1918	-10			Туре:	Hybrid	d II	Transn	nission Type:	Auto	matic
Rear	1874				Mass:	164	b	-	Drive Type:	F۷	VD
Total	3638	-		Seat	Position:	Left/Dr	iver	-			
Note any damage prior to test: down left/driver's side rear door and quarter panel.Two small dents on right/passenger's side											

Figure 47. Vehicle Dimensions, Test No. HWTT-1

Figure 48. Test Vehicle Photographs, Test No. HWTT-2

Figure 49. Test Vehicle Interior Floorboards and Undercarriage, Test No. HWTT-2

57

Date:	7/19/20	19		Test Name	e: HW	TT-2	VIN No:	1C6R	R6FG1ES23	7040
Year:	2014			Mak	e:Do	dge	Model:		RAM 1500	
Tire Size:	265/70F	R17	Tire Inflat	ion Pressure	e: 40	psi	Odometer:		251198	
							Vehicle G Target Range	Geometry - i es listed below	n. (mm)	
		6	Test Inerti			Ť	A: 77 1/2 78±2 (1 C: 229 1/8 237±13 (0 E: 140 5/8 148±12 (3 G: 28 min: 2	(1969) 950±50) (5820) 3020±325) (3572) 3760±300) (711) 8 (710) (205)	B: $64 1/4$ D: $39 7/8$ $39\pm3 (1)$ F: $48 3/8$ H: $65 5/16$ $63\pm4 (1)$	(1632) (1013) 000±75) (1229) (1659) 575±100)
				s Co		B 	$\begin{array}{c} 12 \\ K: \ 20 \ 1/2 \\ M: \ 68 \ 1/8 \\ \hline 67 \pm 1.5 \ (\\ 0: \ 42 \ 3/4 \\ \hline 43 \pm 4 \ (1 \\ Q: \ 30 \end{array}$	(305) (521) (1730) (170±38) (1086) (1086) (100±75) (762)	J: <u>25 1/4</u> L: <u>29 1/4</u> N: <u>68 1/8</u> 67±1.5 (P: <u>4 1/2</u> R: <u>18 1/2</u>	(641) (743) (1730) (1700±38) (114) (470)
-			C	-1-			S: 14 1/4	(362)	T:77 1/4	(1962)
Mass Distrib	ution - Ib (ka)						U (i	mpact widt	h): <u>36 7/8</u>	(937)
Gross Static	LF <u>1440</u> LR <u>1221</u>	(653) (554)	RF <u>1330</u> RR <u>1169</u>	(603) (530)			Ci	Wheel Cen Height (Fror Wheel Cen Height (Rea Wheel W earance (Fror	ter nt): <u>14 7/8</u> ter ar): <u>15 1/8</u> /ell nt): <u>35 1/4</u>	(378) (384) (895)
Weights Ib (kg)	Cu	ırb	Test li	nertial	Gross	Static	с	Wheel W learance (Rea	/ell ar):37_3/4	(959)
W-front	2707	(1228)	2677	(1214)	2770	(1256)		Bottom Fra Height (Fro	me nt): <u>11 1/4</u>	(286)
W-rear	2246	(1019)	2323	(1054)	2390	(1084)		Bottom Fra Height (Rea	me ar): <u>13</u>	(330)
W-total	4953	(2247)	5000 5000±110	(2268) (2270±50)	5160 5165±110	(2341) (2343±50)		Engine Typ	00: Gas	oline
GV/WR Ratin	as - Ib		Surrogate	Occupant [Data		Trans	mission Tvr	ne: Auto	matic
Front	3700		ounogut	Type:	Hybrid	4 11	Tuno	Drive Tvr	De: R\	VD
Rear	3900			Mass:	160	b		Cab Sty	le: Qua	d Cab
Total	6800		Seat	Position:	Left/Dr	iver		Bed Leng	th:7	6"
Note ar	ny damage pric	or to test:								

Figure 50. Vehicle Dimensions, Test No. HWTT-2

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The vertical component of the c.g. for the 1100C vehicle was determined utilizing a procedure published by SAE [16]. The location of the final c.g. for the passenger car is shown in Figures 47 and 51. The Suspension Method [17] was used to determine the vertical component of the c.g. for the pickup truck. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The location of the final c.g. is shown in Figures 50 and 52. Data used to calculate the locations of the vehicles' c.g. and ballast information for both vehicles are shown in Appendix B.

Square, black- and white-checkered targets were placed on the vehicles for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figures 51 and 52. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicle.

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted under the vehicle's left windshield wiper for both test nos. HWTT-1 and HWTT-2. The flash bulb was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A remote-controlled brake system was installed in the test vehicles so the vehicle could be brought safely to a stop after the test.

4.4 Simulated Occupant

For test nos. HWTT-1 and HWTT-2, a Hybrid II 50th-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the left-front seat of the test vehicles with the seat belt fastened. The simulated occupant had a final weight of 164 lb and 160 lb for test nos. HWTT-1 and HWTT-2, respectively. As recommended by MASH 2016, the simulated occupant was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

4.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometer systems were mounted near the c.g. of the test vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [18].

Figure 51. Target Geometry, Test No. HWTT-1

Figure 52. Target Geometry, Test No. HWTT-2
The two systems, the SLICE-1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-1 unit was designated as the primary system for test no. HWTT-1, and the SLICE-2 unit was designated as the primary system for test no. HWTT-2. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

4.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicles. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicles before impact. Five retroreflective targets, spaced at approximately 18-in. intervals, were applied to the sides of the vehicles. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

4.5.4 Digital Photography

Six AOS high-speed digital video cameras, nine GoPro digital video cameras, and four Panasonic digital video cameras were utilized to film test no. HWTT-1. For test no. HWTT-2, six AOS high speed digital video cameras, eight GoPro digital video cameras, and four Panasonic digital video cameras were used. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system for test nos. HWTT-1 and HWTT-2 are shown in Figures 53 and 54, respectively.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and posttest conditions for the tests.

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-1	AOS Vitcam CTM	500	Sigma 28-70	28
AOS-5	AOS X-PRI Gigabit	500	100 mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	Sigma 28-70	70
AOS-7	AOS X-PRI Gigabit	500	Fujinon 50 mm Fixed	-
AOS-8	AOS S-VIT 1531	500	Kowa 16 mm Fixed	-
AOS-9	AOS TRI-VIT 2236	500	Kowa 12 mm Fixed	-
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-10	GoPro Hero 4	120		
GP-11	GoPro Hero 4	240		
GP-17	GoPro Hero 4	240		
GP-18	GoPro Hero 6	240		
GP-19	GoPro Hero 6	240		
GP-20	GoPro Hero 6	240		
GP-21	GoPro Hero 6	240		
PAN-1	Panasonic HC-V770	120		
PAN-2	Panasonic HC-V770	120		
PAN-3	Panasonic HC-V770	120		
PAN-4	Panasonic HC-V770	120		

Figure 53. Camera Locations, Speeds, and Lens Settings, Test No. HWTT-1

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-1	AOS Vitcam CTM	500	Minolta 70-120	70
AOS-5	AOS X-PRI Gigabit	500	100 mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	Fujinon 75 mm Fixed	-
AOS-7	AOS X-PRI Gigabit	500	Fujinon 50 mm Fixed	-
AOS-8	AOS S-VIT 1531	500	Kowa 16 mm Fixed	-
AOS-9	AOS TRI-VIT 2236	500	Kowa 12 mm Fixed	-
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-10	GoPro Hero 4	120		
GP-11	GoPro Hero 4	240		
GP-18	GoPro Hero 6	240		
GP-19	GoPro Hero 6	240		
GP-20	GoPro Hero 6	240		
GP-21	GoPro Hero 6	240		
PAN-1	Panasonic HC-V770	120		
PAN-2	Panasonic HC-V770	120		
PAN-3	Panasonic HC-V770	120		
PAN-4	Panasonic HC-V770	120		

Figure 54. Camera Locations, Speeds, and Lens Settings, Test No. HWTT-2

5 FULL-SCALE CRASH TEST NO. HWTT-1

5.1 Static Soil Test

Before full-scale crash test no. HWTT-1 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

5.2 Weather Conditions

Test no. HWTT-1 was conducted on July 1, 2019 at approximately 3:30 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 3.

Temperature	91° F
Humidity	45%
Wind Speed	17 mph
Wind Direction	190° from True North
Sky Conditions	Sunny/Partly Cloudy
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.40 in.

Table 3. Weather Conditions, Test No. HWTT-1

5.3 Test Description

Initial vehicle impact was to occur 60 in. upstream from the upstream end of the concrete end post, as shown in Figure 55, which was selected using the CIP plot found in Figure 2-14 of MASH 2016 to maximize the probability of pocketing and vehicle snag on the concrete parapet. The 2,407-lb passenger car impacted the modified HDOT AGT at a speed of 61.8 mph and at an angle of 25.2 deg. The actual point of impact was 4.9 in. upstream from the targeted impact location. The vehicle was contained and redirected with only minor system deflections. The curb prevented the front tire from traveling underneath the rail, thereby mitigating vehicle snag. Only the plastic bumper cover of the vehicle protruded between the curb and the bottom of the guardrail and snagged on the buttress. During the redirection of the vehicle, the simulated occupant's head contacted the side window thus causing the window to shatter, but did not strike any component of the barrier. All measured accelerations resulted in occupant risk values (OIV and ORA) within the MASH allowed limits. The vehicle remained stable throughout the impact event. After exiting the system, the vehicle continued traveling downstream before the remote brakes were applied and the vehicle came to a stop 124 ft downstream and 34 ft – 10 in. in front of the system.

A detailed description of the sequential impact events is contained in Table 4. Sequential photographs are shown in Figures 56 and 57. Documentary photographs of the crash test are shown in Figure 58. The vehicle trajectory and final position are shown in Figure 59.

Figure 55. Impact Location, Test No. HWTT-1

TIME	EVENT
0.000	Vehicle's front bumper contacted rail 64% in upstream from parapet.
0.004	Vehicle's front bumper deformed.
0.010	Vehicle's hood deformed, vehicle's left headlight deformed, vehicle's left fender contacted rail and vehicle's hood and left headlight deformed.
0.012	Post no. 17 deflected backward.
0.014	Post no. 16 deflected backward and vehicle's left fender deformed.
0.016	Post nos. 18 and 19 deflected backward.
0.030	Vehicle's grille contacted rail and vehicle rolled toward system.
0.034	Vehicle's grille deformed and vehicle's left-front door contacted rail.
0.038	Vehicle's front bumper and grille partially detached.
0.048	Vehicle's windshield cracked.
0.054	Vehicle yawed away from system.
0.060	Vehicle's front bumper contacted parapet.
0.064	AGT components reached their maximum lateral deflection.
0.068	Vehicle pitched downward.
0.076	Vehicle's left-front tire contacted parapet.
0.082	Vehicle's right-rear tire became airborne occupant's head impacted and shattered left-front window.
0.120	System came to a rest.
0.176	Vehicle was parallel to system at a speed of 39.0 mph.
0.230	Vehicle's left-rear door contacted parapet.
0.236	Vehicle's left quarter panel deformed and vehicle's rear bumper contacted parapet.
0.264	Vehicle's left-rear tire contacted buttress.
0.344	Vehicle exited system at a speed of 37.2 mph.
0.346	Vehicle rolled away from system.
0.714	Vehicle's right-rear tire regained contact with ground.
3.500	Vehicle came to rest 124 ft downstream from impact.

Table 4. Sequential Description of Impact Events, Test No. HWTT-1

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.500 sec

0.800 sec

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.500 sec

0.800 sec

Figure 56. Sequential Photographs, Test No. HWTT-1

Figure 57. Additional Sequential Photographs, Test No. HWTT-1

March 20, 2020 MwRSF Report No. TRP-03-425-20

Figure 58. Documentary Photographs, Test No. HWTT-1

Figure 59. Vehicle Final Position and Trajectory Marks, Test No. HWTT-1

5.4 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 60 through 62. Barrier damage consisted of contact marks and kinks of the thrie beam sections, contact marks on the front face of the concrete end post, and minor spalling of the concrete. The length of vehicle contact along the barrier was approximately 13 ft – $7\frac{1}{2}$ in., which began $23\frac{1}{2}$ in. upstream from the center line of post no. 17.

Contact marks on the thrie beam began $23\frac{1}{2}$ in. upstream from the centerline of post no. 17 and continued downstream through to the concrete end post. The bottom corrugation sustained various degrees of flattening damage beginning 23 in. upstream from post no. 18 and continued downstream. Multiple kinks were found on the top and bottom of the thrie beam around post nos. 17 and 18. Post nos. 18 and 19 slightly rotated counterclockwise and sustained minor damage to the top front upstream corner of the blockouts. Post nos.17 through 19 had soil gaps between $\frac{1}{8}$ in. and $\frac{1}{4}$ in. in front of the posts. A $\frac{1}{2}$ -in. soil gap was observed behind the back of curb. No movement was observed in the upstream anchorage system.

A contact mark was found on the concrete curb starting 3¹/₄ in. upstream from post no. 17 and extending to the concrete end post. The curb also sustained minor spalling along its top edge beginning 1 in. upstream from post no. 19 and continued downstream onto the Type D2 End Post.

Minor spalling on the top edge of the end post below the rail extended from the upstream extended 12¹/₂ in. downstream. Contact marks were found on lower face of the Type D2 End Post below the thrie beam terminal connector. Additional contact marks were found on the angled portion of the end post recess that extended downstream approximately 2 ft.

The maximum lateral permanent set of the barrier system was 1.4 in. which occurred in the thrie beam between post nos. 17 and 18, as measured in the field. The maximum lateral dynamic barrier deflection was 2.6 in. at post no. 18, as determined from high-speed digital video analysis. The working width of the system was found to be 20.0 in. at post no. 18, also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 63.

Figure 61. Thrie Beam Damage, Test No. HWTT-1

March 20, 2020 MwRSF Report No. TRP-03-425-20

Figure 62. Rail Connection Terminal, Buttress and Post Damage, Test No. HWTT-1

Figure 63. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. HWTT-1

5.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 64 through 66. The majority of the damage was concentrated on the left-front corner and left side of the vehicle where the impact occurred. The left side of the vehicle hood was crushed inward toward the engine compartment. Scraping and inward crushing was recorded on the left-side bumper and left-front fender. The front bumper cover was disengaged on the right side. A piece of the bumper cover disengaged after snagging between the thrie beam and curb. The left-front headlight shattered, and the left-front door was scraped and crushed inward behind the front fender, causing the middle section of the door to be forced outward. The left-rear door was dented and scraped, starting at the door handle and ending at the door seam. The left-rear quarter panel was scraped and crushed along the entirety of its length, and it was cut from the bottom of the fuel fill door to the rear panel. The fuel door was disengaged from the vehicle. The left-rear taillight was shattered, and the rear bumper was crushed inward. Contact with the head of the test dummy caused the left-front window to shatter.

Undercarriage damage was minimal. The left control arm was bent toward the rear of the test vehicle. The left-outer tie rod was bent toward the center of the test vehicle. The transmission and oil pan had scrapes in the middle and along the bottom, and on the left side, respectively. The frame rail on the left side twisted slightly, and it was bent up in front of the rear axle. The front cross member folded and twisted, while the rear cross member compressed in on itself. The left cross member bent toward the middle, and the right cross member showed indicators of beginning to fold. The frame horn was pushed rearward and inward toward the engine compartment. A wrinkle also occurred across the entire length of the floor pan.

The windshield was significantly deformed and a large tear in the windshield stretched from the lower left corner to the upper right side of the windshield. However, the system never contacted the windshield. This tear was caused by deformations to the vehicle's front-left side, quarter panel, and lower A-frame. Additionally, the tearing and cracking of the windshield allowed the glass to sag adjacent to the tear. This behavior resulted in a maximum of 3.5 in. of deformation to the windshield adjacent to the tear, which would violate the MASH accepted limit. However, since the system never contacted the windshield and the tearing and deformations were the result of vehicle deformations, this windshield damage did not result in test failure. Similar windshield damage has been observed in other recent MASH 1100C tests into rigid barriers, including testing of the Hawaii 34-in. tall concrete bridge rail [2]. Windshield damages in the form of tearing and deformations have been allowed for these other systems/tests when the barrier does not make direct contact with the system.

The maximum occupant compartment intrusions are listed in Table 5 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle intrusions and the corresponding locations are provided in Appendix D. MASH 2016 defines intrusion as the occupant compartment being deformed and reduced in size with no penetration. Outward deformations, which are denoted as negative numbers in Appendix D, are not considered as crush toward the occupant, and are not subject to evaluation by MASH 2016 criteria. It should be noted only one reference set was used to measure the occupant compartment intrusions due to shifting of the second reference set during testing.

78

Figure 65. Vehicle Damage, Test No. HWTT-1

Figure 66. Interior and Undercarriage Damage, Test No. HWTT-1

LOCATION	MAXIMUM INTRUSION (in.)	MASH 2016 ALLOWABLE INTRUSTION (in.)
Wheel Well & Toe Pan	0.6	≤ 9
Floor Pan & Transmission Tunnel	1.4	≤ 12
A-Pillar	0.4	≤5
A-Pillar (Lateral)	0.0	≤ 3
B-Pillar	0.4	≤5
B-Pillar (Lateral)	0.0	≤ 3
Side Front Panel (in Front of A-Pillar)	1.7	≤ 12
Side Door (Above Seat)	0.0	≤ 9
Side Door (Below Seat)	0.0	≤ 12
Roof	0.1	<i>≤</i> 4
Windshield	3.5	≤ 3
Side Window	Shattered due to contact with simulated occupant's head	No shattering resulting from contact with structural member of test article
Dash	0.5	N/A

Table 5. Maximum Occupant Compartment Intrusion by Location

N/A - Not applicable

5.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined by accelerometer data, are shown in Table 6. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 6. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix E.

Evaluation Criteria		Trans	MASH 2016	
		SLICE-1 (primary)	SLICE-2 (backup)	Limits
OIV	Longitudinal	-30.34	-30.85	± 40
ft/s	Lateral	34.36	32.49	±40
ORA	Longitudinal	-8.41	-5.78	±20.49
g's	Lateral	5.94	6.77	±20.49
MAX.	Roll	-17.4	-13.2	±75
ANGULAR DISPL	Pitch	-6.5	-9.0	±75
deg.	Yaw	57.6	56.7	not required
THIV ft/s		0.11	0.12	not required
PHD g's		39.49	39.12	not required
ASI		2.64	2.53	not required

Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. HWTT-1

5.7 Discussion

The analysis of the test results for test no. HWTT-1 showed that the system adequately contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 67. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor override the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix E, were deemed acceptable as they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 12.8 deg., and its trajectory did not violate the bounds of the exit box. Shattering of the side window was due to impact with the dummy's head and not a barrier component. Further, the dummy's head did not contact any barrier component as it extended out the side window. Deformations and tearing of the windshield were caused by vehicle deformations as the windshield was never in contact with the barrier. Thus, there was no potential for the test article to penetrate into the vehicle, and there was no perceived risk to the occupant. Therefore, test no. HWTT-1 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-20.

0.000 sec

0.050 sec

0.150 sec

0.250 sec

0.350 sec

34'-10" [10.6 m]

			124" [37.8 m]	
	5 8 5 8 8 1 11 ¹²		LR		
Test Agency	32'-10" [10.0 m]		RE		34
Test NumberHWTT-1			Exit Box		
• Date					
MASH 2016 Test Designation No					
Test ArticleModified HDOT AGT to Type D2 End Post					-
• Total Length	 Vehicle Damag 	e			N
Key Component – Thrie beam Guardrail	VDS [19]				
Thickness	CDC [20].				10-I
Mounting Height	Maximum	Interior Deformat	tion		
 Key Component – ASTM A992 W6x15 Steel Post 	 Test Article Da 	mage			
Length	 Maximum Test 	Article Deflectio	ons		
Embedment Depth	Permanent	Set			
Spacing	Dynamic				
• Key Component – Type D2 End Post (Concrete Parapet)	Working W	idth			
Length	 Transducer Dat 	a			
Width				ducer	MASH 2016
Height	Evaluatio	n Criteria	SLICE-1	SLICE-2	Limit
• Soil TypeCrushed Limestone			(primary)	(backup)	Lillin
Vehicle Make /Model Hyundai Accent	OUL	Longitudinal	-30.34	-30.85	+40
Curb	OIV	Longitudina	50.51	50.05	210
Test Inertial	It/S	Lateral	34.36	32.49	±40
Gross Static		Longitudinal	8 /1	5 78	+20.49
Impact Conditions	ORA	Longitudinai	-0.41	-5.78	120.49
Speed 61.8 mph	g's	Lateral	5.94	6.77	±20.49
Angle		D -11	174	12.0	.75
Impact Location	MAX	Roll	-17.4	-13.2	±/5
 Impact Severity	ANGULAR	Pitch	-6.5	-9.0	±75
Exit Conditions	DISP.		77 4		
Speed	aeg.	Yaw	57.6	56.7	not required
Angle	THIN	- ft/s	0.11	0.12	not required
Exit Box Criterion Pass	1111 (100	0.11	0.12	not required
Vehicle StabilitySatisfactory	PHD	-g's	39.49	39.12	not required
 Vehicle Stopping Distance	Λ	SI	2.64	2.53	not required
	А	01	2.04	2.35	not required

Figure 67. Summary of Test Results and Sequential Photographs, Test No. HWTT-1

6 FULL-SCALE CRASH TEST NO. HWTT-2

6.1 Static Soil Test

Before full-scale crash test no. HWTT-2 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

6.2 Weather Conditions

Test no. HWTT-2 was conducted on July 19, 2019 at approximately 1:15 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 7.

Temperature	97° F
Humidity	46%
Wind Speed	18 mph
Wind Direction	190° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.33 in.
Previous 7-Day Precipitation	0.35 in.

Table 7. Weather Conditions, Test No. HWTT-2

6.3 Test Description

Initial vehicle impact was to occur 84 in. upstream from the upstream end of the concrete end post, as shown in Figure 68, which was selected using the CIP plot found in Figure 2-17 of MASH 2016 to maximize the probability of pocketing and vehicle snag on the concrete parapet. The 5,000-lb pickup truck impacted the modified HDOT AGT at a speed of 63.0 mph and at an angle of 25.2 deg. The actual point of impact was 5.7 in. upstream from the targeted impact location. The vehicle was captured and redirected by the modified HDOT AGT with minor deflections to the system. The front-left tire rode up on top of the curb but did not snag on the concrete end post. The vehicle remained stable throughout the impact event. During the redirection of the vehicle, the dummy's head contacted the side window, thus causing the window to shatter. However, the head did not strike any component of the barrier. All measured accelerations resulted in occupant risk values (OIV and ORA) within the MASH allowed limits. After exiting the system, the vehicle continued traveling downstream before the remote brakes were applied and the vehicle came to a stop 165 ft – 8in. downstream from impact and 6 ft – 6 in. behind the system.

A detailed description of the sequential impact events is contained in Table 8. Sequential photographs are shown in Figures 69 and 70. Documentary photographs of the crash test are shown in Figure 71. The vehicle trajectory and final position are shown in Figure 72.

Figure 68. Impact Location, Test No. HWTT-2

TIME	EVENT
0.000	Vehicle's front bumper contacted rail 89 ³ / ₄ in upstream from concrete parapet.
0.002	Vehicle's front bumper deformed and vehicle's left headlight contacted rail.
0.008	Vehicle's left fender contacted rail and deformed.
0.010	Vehicle's left-front tire contacted rail.
0.016	Post no. 17 deflected backward.
0.018	Post no. 16 deflected backward.
0.020	Post nos. 15 and 18 deflected backward, and vehicle's grille contacted rail.
0.024	Post no. 19 deflected downstream.
0.026	Post no. 14 deflected backward.
0.030	Post no. 13 deflected backward.
0.042	Vehicle's left-front door contacted rail.
0.044	Vehicle yawed away from system.
0.046	Vehicle's left-front door deformed.
0.056	Vehicle pitched downward.
0.062	Vehicle rolled toward system.
0.086	Occupant's head shattered left-front side window and exited vehicle.
0.104	Vehicle's right-front tire became airborne.
0.116	Vehicle's windshield cracked.
0.130	Vehicle's left-rear door contacted rail.
0.182	Vehicle's grille became disengaged.
0.184	Vehicle was parallel to system at a speed of 42.4 mph.
0.186	Occupant's head re-entered vehicle.
0.188	Vehicle's left-rear tire contacted rail and vehicle's right-rear tire became airborne.
0.206	Vehicle's rear bumper deformed.
0.310	System came to a rest.
0.368	Vehicle exited system at a speed of 41.0 mph.
0.444	Vehicle rolled away from system.
0.456	Vehicle yawed toward system.
0.784	Vehicle's right-front tire regained contact with ground.
0.878	Vehicle's right-rear tire regained contact with ground.
4.600	Vehicle came to rest 165 ft $- 8$ in. downstream from impact and 6 ft $- 6$ in. behind the system.

 Table 8. Sequential Description of Impact Events, Test No. HWTT-2

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

Figure 69. Sequential Photographs, Test No. HWTT-2

0.000 sec

0.050 sec

0.150 sec

0.300 sec

0.500 sec

0.850 sec

0.000 sec

0.050sec

0.100 sec

0.150 sec

0.200 sec

0.250 sec

Figure 70. Additional Sequential Photographs, Test No. HWTT-2

Figure 71. Documentary Photographs, Test No. HWTT-2

Figure 72. Vehicle Final Position and Trajectory Marks, Test No. HWTT-2

6.4 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 73 through 75. Barrier damage consisted of contact marks, post deflection, rail kinking, and gouging and spalling to the concrete parapet and curb. The length of vehicle contact along the barrier was approximately 13 ft - 8 in., which began 6 in. downstream from the center of post no. 16 and extended 5 ft - 6 in. onto the concrete end post.

Contact marks were found on the thrie beam and were mostly concentrated on the upper and middle corrugations. The marks started 6 in. downstream from post no. 16 and onto the terminal connector. The upper half of the thrie beams between post nos. 17 and 19 were flattened. Various rail kinking was found on the guardrail spanning from post no. 14 to post no. 19. The largest rail kinks were found around post nos. 17 and 18. The lower corrugation was also folded upward between post nos. 17 and 19.

Post no. 1 had a ¹/₈ in. soil gap on the upstream side, but no other damage was documented to the upstream anchorage. Post nos. 3 through 17 all experienced slight counterclockwise rotation around the vertical axis. Post nos. 15 through 19 rotated backward leaving soil gaps adjacent to the front flange, the largest of which were measure to be around 2¹/₂ in. at post nos. 17 and 18. In addition to being deflected backward, post nos. 18 and 19 experienced clockwise rotation resulting in minor localized deformations to the upstream sides of the front flanges adjacent to the blockouts.

The concrete curb had tire marks on the top and face starting 15¹/₂ in. downstream from post no. 16 and continuing 44 in. onto the lower face of the Type D2 End Post. Another tire mark was found on the angled section at the downstream end of the lateral recess on the end post. Scratches were also recorded on the top of the barrier starting at the upstream end and continuing for 71 in. Concrete spalling was found on the top-front edge of the end post behind the nested thrie beam, as shown in Figure 75. Minor concrete spalling also occurred at the joint between the curb and the concrete end post.

The maximum lateral permanent set of the barrier system was 6.2 in., which occurred in the thrie beam between post nos. 18 and 19, as measured in the field. The maximum lateral dynamic barrier deflection was 9 in. at post no. 18, as determined from high-speed digital video analysis. The working width of the system was found to be 23 in., also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 76.

Figure 73. System Damage, Test No. HWTT-2

March 20, 2020 MwRSF Report No. TRP-03-425-20

Figure 74. Thrie Beam Damage, Test No. HWTT-2

Figure 75. Buttress Damage, Test No. HWTT-2

Figure 76. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. HWTT-2

6.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 77 through 79. The majority of the damage was concentrated on the left-front corner and left side of the vehicle where the impact occurred. The grille disengaged from the vehicle, and the front bumper crushed inward. The vehicle's headlights detached, and the hood was slightly bent inward on the left side. Significant damage was imparted to the left-front fender including being crushed inward and rearward. The left-front door was scraped and crushed inward along the entirety of its length causing the door to bow outward near the top. The left-rear door experienced scraping down its entire length and was crushed in the middle. Similarly, the left-rear fender was scraped and crushed, and the rear bumper bowed outward in the middle due to crushing of the left corner. The windshield was cracked prior to testing, but the impact caused further cracking to the left side of the windshield.

The left-front shock and spring were bent into an L-shape, and the bump stop was detached from the vehicle. The sway and anti-roll bar linkage was deformed on the left-front side. The left-front steering knuckle was scraped due to contact with the lower control arm. The left lower control

arm was broken off both mounts, and the upper control arm was bent. The right-lower control arm was scraped on the leading edge. The left-front outer tie rod was bent, and the steering gear box was scraped on the bottom. The engine and transmission mounts on the left-front side was slightly twisted on the bushing. The vehicle frame bent near the left-front wheel assembly. The front cross member had several scrapes and dents, and the middle cross member buckled in the middle. On the left side, the frame horn was pushed toward the centerline of the vehicle.

The maximum occupant compartment intrusions are listed in Table 9 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle intrusions and the corresponding locations are provided in Appendix D. MASH 2016 defines intrusion as the occupant compartment being deformed and reduced in size with no penetration. Outward deformations, which are denoted as negative numbers in Appendix D, are not considered as crush toward the occupant, and are not subject to evaluation by MASH 2016 criteria. Note that none of the established MASH 2016 intrusion limits were violated.

97

Figure 78. Vehicle Damage, Test No. HWTT-2

86

March 20, 2020 MwRSF Report No. TRP-03-425-20

Figure 79. Interior and Undercarriage Damage, Test No. HWTT-2

LOCATION	MAXIMUM INTRUSION (in.)	MASH 2016 ALLOWABLE INTRUSION in.
Wheel Well & Toe Pan	6.5	≤ 9
Floor Pan & Transmission Tunnel	0.1	≤ 12
A-Pillar	0.2	≤ 5
A-Pillar (Lateral)	0.0	≤ 3
B-Pillar	0.6	≤ 5
B-Pillar (Lateral)	0.0	≤ 3
Side Front Panel (in Front of A-Pillar)	2.9	≤ 12
Side Door (Above Seat)	0.0	≤ 9
Side Door (Below Seat)	0.0	≤ 12
Roof	0.3	<i>≤</i> 4
Windshield	0.0	≤ 3
Side Window	Shattered due to contact with dummy's head	No shattering resulting from contact with structural member of test article
Dash	0.7	N/A

Table 9. Maximum Occupant Compartment Intrusion by Location

N/A – Not applicable

6.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from accelerometer data, are shown in Table 10. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 10. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix F.

	a	Trans	MASH 2016				
Evaluati	on Criteria	SLICE-2 (primary)	SLICE-2SLICE-1(primary)(backup)				
OIV	Longitudinal	-23.47	-24.67	±40			
ft/s	Lateral	26.73	25.90	±40			
ORA	Longitudinal	-13.77	±20.49				
g's	Lateral	9.90	11.35	±20.49			
MAX.	Roll	-23.0	-27.2	±75			
ANGULAR DISPL.	Pitch	-9.1	-6.9	±75			
deg.	Yaw	40.3	41.3	not required			
THIV ft/s		34.49	34.00	not required			
Р	HD g's	16.64	16.37	not required			
I	ASI	1.58	1.50	not required			

Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. HWTT-2

6.7 Discussion

The analysis of the test results for test no. HWTT-2 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 80. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. Shattering of the side window was due to impact with the dummy's head and not a barrier component. Further, the dummy's head did not contact any barrier component as it extended out the side window. After impact, the vehicle exited the barrier at an angle of 11.1 deg., and its trajectory did not violate the bounds of the exit box. Therefore, test no. HWTT-2 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-21.

					A	
0.000 sec	0.100 sec 0.20	0 sec	0.300	sec	().400 sec
 7/112. 1 2 3 4 15 6 89 11 16'-8" [5.1 m] 25.2" Test Agency Test Number Date MASH 2016 Test Design 	165'-8" [50.5 m] 16, 19 17, 19 19 10, 19 10, 10 m] Exit Box MwRSF HWTT-2 	6'-6" [2.0 m]	<u>f</u> f 	<u>T</u>		
 Test Article Total Length Key Component – Thrie b Thickness Mounting Height Key Component – ASTM Length Embedment Depth Spacing Key Component – Type I Length 		 Vehicle Dama VDS [19 CDC [20 Maximur Test Article I Maximum Te Permaner Dynamic Working Transducer D 	age] o Interior Deformat Damage st Article Deflectio at Set Width	ion		
Height				Trans	ducer	MACH 2016
Soil Type	Crushed Limestone	Evaluat	ion Criteria	SLICE-2	SLICE-1	Limit
Vehicle Make /Model	Dodge Ram 1500			(primary)	(backup)	10
Curb Test Inertial		OIV	Longitudinal	-23.47	-24.67	±40
Gross Static	5,000 lb	10/8	Lateral	26.73	25.90	±40
Impact Conditions		ORA	Longitudinal	-13.77	-11.47	±20.49
Speed		g's	Lateral	9.90	11.35	±20.49
Angle		MAX	Roll	-23.0	-27.2	±75
Impact Location		ANGULAR	Pitch	-9.1	-6.9	±75
Impact Severity		deg	Yaw	40.3	41.3	not required
Exit Conditions Speed	41.0 mmh	TH	V - ft/s	34.49	34.00	not required
Angle		PH	$D - \sigma$'s	16.64	16.37	not required
Exit Box Criterion	Pass	111	<u> </u>	1 58	150	not required
Vehicle Stability	Satisfactory	L	701	1.30	1.50	not required

• Vehicle Stopping Distance 165 ft 8 in. downstream and 6 ft 6 in. behind

Figure 80. Summary of Test Results and Sequential Photographs, Test No. HWTT-2

7 SUMMARY AND CONCLUSIONS

HDOT desired to test and evaluate their thrie beam guardrail transition to a specialized concrete parapet, the HDOT Type D2 End Post, according to MASH 2016 TL-3 criteria. Prior to full-scale crash testing, the HDOT AGT was modified to improve its performance and connect with 31-in. tall MGS guardrail. The upstream end of the HDOT was altered to include the MASH crashworthy MGS upstream stiffness transition, and multiple W6x15 posts were removed from the downstream end of the AGT based on MASH testing of similar transitions. The height of the system was reduced from 32 in. to 31 in. to match the adjacent MGS, and the top edge of the Type D2 End Post was given a 2-in. x 12-in. vertical taper to mitigate the potential for vehicle snag on the concrete parapet above the rail. The W6x12 blockouts were replaced with rectangular HSS sections to improve strength and prevent premature collapse. Finally, the flare at the upstream end of the curb was eliminated, and a vertical taper was used to terminate the curb while minimizing wheel snag.

The modified HDOT AGT was then subjected to full-scale crash testing in accordance with the TL-3 evaluation criteria of MASH 2016. Test nos. HWTT-1 and HWTT-2 were conducted to MASH 2016 test designations nos. 3-20 and 3-21, respectively. Summaries of the test evaluations are shown in Table 11.

In test no. HWTT-1, the 1100C vehicle impacted the modified HDOT AGT at a speed of 61.8 mph, an angle of 25.2 deg., and at a location 64.9 in. upstream from the Type D2 End Post. The vehicle was captured and safely redirected by the barrier system. The vehicle exited the system at a speed of 37.2 mph and an angle of 12.8 deg., which did not violate the bounds of the exit box, and came to rest 124 ft downstream from impact and 34 ft – 10 in. in front of the barrier. All vehicle decelerations, ORA's, and OIV's fell within the recommended safety limits established in MASH 2016. Therefore, test no. HWTT-1 was successful according to the safety criteria of MASH 2016 test designation no. 3-20.

In test no. HWTT-2, the 2270P vehicle impacted the modified HDOT AGT at a speed of 63.0 mph, an angle of 25.2 deg., and at a location of 89.7 in. upstream from the Type D2 End Post. The vehicle was captured and safely redirected by the barrier system. The vehicle exited the system at a speed of 41.0 mph and an angle of 11.1 deg, which did not violate the bounds of the exit box, and came to rest 165 ft – 8 in. downstream from impact and 6 ft – 6 in. behind the barrier system. All vehicle decelerations, ORA's, and OIV's fell within the recommended safety limits established in MASH 2016. Therefore test no. HWTT-2 was successful according to the safety criteria of MASH 2016 test designation no. 3-21.

Although MASH 2016 only specifies two full-scale crash tests to evaluate longitudinal transitions, recent research has illustrated the importance of evaluating two different regions within approach guardrail transitions: (1) the upstream stiffness transition where W-beam connects to stiffened thrie beam and (2) the downstream end of an AGT where the guardrail attaches to the rigid parapet. The upstream region of the modified HDOT AGT includes the MGS upstream stiffness transition, which has already been successfully crash tested to MASH TL-3 [4]. With the successful crash tests documented herein, the downstream region of the AGT has also been proven crashworthy. Therefore, the modified HDOT AGT meets the safety performance criteria for MASH 2016 TL-3.

Evaluation Factors		E	valuation Criteria		Test No. HWTT-1	Test No. HWTT-2							
Structural Adequacy	А.	Test article should contain and r stop; the vehicle should not pen- controlled lateral deflection of th	t article should contain and redirect the vehicle or bring the vehicle to a controlle o; the vehicle should not penetrate, underride, or override the installation althoug trolled lateral deflection of the test article is acceptable.										
	D.	1. Detached elements, fragmer penetrate or show potential for undue hazard to other traffic, per	nts or other debris from the penetrating the occupant of destrians, or personnel in a	the test article should not compartment, or present an work zone.	S	S							
		2. Deformations of, or intrusion limits set forth in Section 5.2.2 a	S	S									
	F.	The vehicle should remain uprig pitch angles are not to exceed 75	S	S									
Occupant	H.	Occupant Impact Velocity (OIV calculation procedure) should sa											
Risk		Occu	pant Impact Velocity Limit	S	S								
		Component	Preferred	Maximum									
		Longitudinal and Lateral											
	I.	The Occupant Ridedown Accel MASH 2016 for calculation proc	leration (ORA) (see Appendent Append	ndix A, Section A5.2.2 of ollowing limits:									
		Occupant	t Ridedown Acceleration L	imits	S	S							
		Component	Preferred	Maximum									
		Longitudinal and Lateral	20.49 g's										
		MASH 2016 Test	t Designation No.		3-20	3-21							
		Final Evaluatio	n (Pass or Fail)		Pass	Pass							

Table 11. Summary of Safety Performance Evaluation, Test Nos. HWTT-1 and HWTT-2

S – Satisfactory U – Unsatis

U – Unsatisfactory NA - Not Applicable

8 REFERENCES

- 1. *Manual for Assessing Safety Hardware, Second Edition, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.*
- Bielenberg, R.W., Yoo, S.H., Faller, R.K., and Urbank, E.L., Crash Testing and Evaluation of the HDOT 34-in. Tall Aesthetic Concrete Bridge Rail: MASH Test Designation Nos. 3-10 and 3-11, Report No. TRP-03-420-19, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, October 2019.
- 3. Bielenberg, R.W., Dowler, N.T., Faller, R.K., and Urbank, E.L., *Crash Testing and Evaluation of the HDOT 42-in. Tall Aesthetic Concrete Bridge Rail: MASH Test Designation Nos. 3-10 and 3-11*, Report No. TRP-03-424-20, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, January 2020.
- 4. Rosenbaugh, S.K., Lechtenberg, K.A., Faller, R.K., Sicking, D.L., Bielenberg, R.W., and Reid, J.D., *Development of the MGS Approach Guardrail Transition Using Standardized Steel Posts*, Report No. TRP-03-210-10, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, December 21, 2010.
- 5. Rosenbaugh, S.K., *Equivalent Steel Blockouts for Approach Guardrail Transitions*, Technical Memorandum to Central Federal Lands Highway Division, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 26, 2018.
- 6. Rosenbaugh, S.K., Schmidt, J.D., and Faller, R.K., Development of a Standardized Buttress for Approach Guardrail Transitions, *Transportation Research Record: Journal of the Transportation Research Board*, 2018. https://doi.org/10.1177%2F0361198118758676.
- 7. Rosenbaugh, S.K., et al. *Development and Evaluation of Standardized Concrete End Buttress*, Draft Report No. TRP-03-369-20 (in progress), Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, 2020.
- 8. Rosenbaugh, S.K., Fallet, W.G., Faller, R.K., Bielenberg, R.W., and Schmidt, J.D. *34-in. Tall Thrie Beam Transition to Concrete Buttress*, Report No. TRP-03-367-19-R1, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, July 2019.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, R.W., Reid, J.D., and Coon, B.A., *Performance Evaluation of the Guardrail to Concrete Barrier Transition – Update to NCHRP 350 Test No. 3-21 with 28 in. C.G. Height (2214T-1)*, Report No. TRP-03-175-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, 2006.
- Mongiardini, M., Faller, R.K., Reid, J.D., Sicking, D.L., Stolle, C.S., and Lechtenberg, K.A., Downstream Anchoring Requirements for the Midwest Guardrail System, Report No. TRP-03-279-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 28, 2013.

- Mongiardini, M., Faller, R.K., Reid, J.D., and Sicking, D.L., Dynamic Evaluation and Implementation Guidelines for a Non-Proprietary W-Beam Guardrail Trailing-End Terminal, Paper No. 13-5277, Transportation Research Record No. 2377, Journal of the Transportation Research Board, TRB AFB20 Committee on Roadside Safety Design, Transportation Research Board, Washington D.C., January 2013, pages 61-73.
- 12. Stolle, C.S., Reid, J.D., Faller, R.K., and Mongiardini, M., *Dynamic Strength of a Modified W-Beam BCT Trailing-End Termination*, Paper No. IJCR 886R1, Manuscript ID 1009308, International Journal of Crashworthiness, Taylor & Francis, Vol. 20, Issue 3, Published online February 23, 2015, pages 301-315.
- 13. Griffith, M.S., Federal Highway Administration (FHWA), *Eligibility Letter HSST/B-256 for: Trailing-End Anchorage for 31" Tall Guardrail*, December 18, 2015.
- 14. *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 15. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 16. MacInnis, D., Cliff, W., and Ising, K., *A Comparison of the Moment of Inerita Estimation Techniques for Vehicle Dynamics Simulation*, SAE Technical Paper Series 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.
- 17. *Center of Gravity Test Code SAE J874 March 1981*, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 18. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July, 2007.
- 19. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 20. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

9 APPENDICES

Appendix A. Material Specifications

Item No.	Description	Material Specification	Reference
a1	12'-6" [3,810] 12-gauge [2.7] Thrie Beam Section	AASHTO M180	#L30719
a2	6'-3" [1,905] 12-gauge [2.7] Thrie Beam Section	AASHTO M180	#L34518
a3	6'-3" [1905] 10-gauge [3.4] W- Beam to Thrie-Beam Asymmetric Transition Section	AASHTO M180	H#A80436
a4	12'-6" [3,810] 12-gauge [2.7] W- Beam MGS Section	AASHTO M180	V1207 H#C85187
a5	12'-6" [3,810] 12-gauge [2.7] W- Beam MGS End Section	AASHTO M180	S8534 H#9411949
a6	10-gauge [3.4] Thrie Beam Terminal Connector	AASHTO M180 Min. yield strength = 50 ksi [345 MPa] Min. ultimate strength = 70 ksi [483 MPa]	H#A81568
b1b	Reinforced Concrete: Buttress	Min. f'c = 4,000 psi [27.6 MPa] NE Mix 47BD	Ticket#1235879 ProCode#470031PF ID#URR-123 ID#URR-124
b1c	Reinforced Concrete: Curb	Min. f'c = 4,000 psi [27.6 MPa] NE Mix 47BD	Ticket#4215635 ProCode#470031PF
c1	BCT Timber Post - MGS Height	SYP Grade No. 1 or better (No knots +/- 18" [457] from ground on tension face)	Ch#25729 White Paint
c2	72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	H#821T08220
c3	Ground Strut Assembly	ASTM A36	Yoke: H#645887 Strut: H#195070 H#A82292 Welded Wire:H#15056184
c4	BCT Anchor Cable End Swaged Fitting	Fitting - ASTM A576 Gr. 1035 Stud - ASTM F568 Class C	PO#40299 ASPI#122160
c5	3/4" [19] Dia. 6x19 IWRC IPS Wire Rope	ASTM A741 Type 2	PO#40299 ASPI#122160
c6	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	H#4181496
c7	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	H#B712810
c8	Anchor Bracket Assembly	ASTM A36	H#JK16101488
d1	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" [1,829] Long Steel Post	ASTM A992	H#55044251

Table A-1. Bill of Materials for Test Nos. HWTT-1 and HWTT-2

Item No.	Description	Material Specification	Reference			
d2	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" [1,829] Long Steel Post	ASTM A992	H#55044251			
d3	W6x15 [W152x22.5], 78" [1,981] Long Steel Post	ASTM A992 MTR says A572 instead	H#2815472			
d4	17 1/2" [445] Long, 8"x6"x1/4" [203x152x6] Steel Blockout	ASTM A500 Gr. B	H#17156541			
d5	17 1/2" [445] Long, 12"x4"x1/4" [305x102x6] Steel Blockout	ASTM A500 Gr. B	H#B46771			
d6	14 3/16"x12"x5 1/8" [360x305x130] Composite Recycled Blockout	Mondo Polymer MGS14SH or Equivalent	L#1904/1000			
d7	14 3/16"x8"x5 1/8" [360x203x130] Composite Recycled Blockout	Mondo Polymer GB14SH2 or Equivalent	L#1804/1000			
d8	16D Double Head Nail	-	PO E000548963 COC			
e1	#6 [19] Rebar, 57 7/8" [1470] Total Unbent Length	ASTM A615 Gr. 60	H#6005053			
e2	#6 [19] Rebar, 55 3/8" [1407] Total Unbent Length	ASTM A615 Gr. 60	H#6005053			
e3	#6 [19] Rebar, 53 7/8" [1368] Total Unbent Length	ASTM A615 Gr. 60	H#6005053			
e4	#6 [19] Rebar, 51" [1295] Total Unbent Length	ASTM A615 Gr. 60	H#6005053			
e5	#6 [19] Rebar, 33 7/8" [860] Total Unbent Length	ASTM A615 Gr. 60	H#6005053			
e6	#4 [13] Rebar, 56 3/4" [1441] Total Unbent Length	ASTM A615 Gr. 60	H#605061			
e7	#4 [13] Rebar, 55" [1397] Total Unbent Length	ASTM A615 Gr. 60	H#605061			
e8	#4 [13] Rebar, 52 3/4" [1340] Total Unbent Length	ASTM A615 Gr. 60	H#605061			
e9	#4 [13] Rebar, 49 1/2" [1257] Total Unbent Length	ASTM A615 Gr. 60	H#605061			
e10	#6 [19] Rebar, 92" [2337] Total Length	ASTM A615 Gr. 60	H#6005053			
e11	#6 [19] Rebar, 92 7/8" [2359] Total Unbent Length	ASTM A615 Gr. 60	H#6005053			
e12	#4 [13] Rebar, 92" [2337] Total Length	ASTM A615 Gr. 60	H#58035268			
e13	#4 [13] Rebar, 49 5/8" [1260] Total Length	ASTM A615 Gr. 60	H#58035268			
e14	#4 [13] Rebar, 16" [406] Total Length	ASTM A615 Gr. 60	H#605061			
e15	#4 [13] Rebar, 12 3/4" [324] Total Length	ASTM A615 Gr. 60	H#605061			

Table A-2. Bill of Materials for Test Nos. HWTT-1 and H

Item No.	Description	Material Specification	Reference
e16	#5 [16] Rebar, 172" [4369] Total Length	ASTM A615 Gr. 60	H#6005295
e17	#5 [16] Rebar, 164 1/4" [4172] Total Unbent Length	ASTM A615 Gr. 60	H#6005295
f1	5/8"-11 UNC [M16x2], 14" [356] Long Guardrail Bolt	ASTM A307 Gr. A	H#DL17100590 L#30361-P
f2	5/8"-11 UNC [M16x2], 10" [254] Long Guardrail Bolt	ASTM A307 Gr. A	H#1721198 R#19-255
f3	5/8"-11 UNC [M16x2], 1 1/4" [32] Long Guardrail Bolt	ASTM A307 Gr. A	H#10553090
f4	5/8"-11 UNC [M16x2], 10" [254] Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	H#JK110419701
f5	5/8"-11 UNC [M16x2], 1 1/2" [38] Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	H#14300105-3 L#1B1450923 P#1191919
f6	7/8"-9 UNC [M22x2.5], 16" [356] Long Heavy Hex Head Bolt	ASTM F3125 Gr. A325 or equivalent	H#75071284
f7	7/8"-9 UNC [M22x2.5], 8" [203] Long Hex Head Bolt	ASTM A307 Gr. A or equivalent	P#92005 C#llne35042_COC ONLY
f8	5/8"-11 UNC [M16x2], 2" [51] Long Guardrail Bolt	ASTM A307 Gr. A	H#10439100
f9	5/8"-11 UNC [M16x2] Heavy Hex Nut	ASTM A563DH or equivalent	H#10470360 L#17-35-017
f10	7/8"-9 UNC [M22x2.5] Hex Nut	ASTM A563A or equivalent	H#331704677 L#1N1810005 P#36717
f11	7/8"-9 UNC [M22x2.5] Heavy Hex Nut	ASTM A563DH	H#189069
f12	1"-8 UNC [M24x3] Heavy Hex Nut	ASTM A563DH or equivalent	COC Only P#38210 T#210157128
f13	5/8" [16] Dia. Hex Nut	ASTM A563A	H#331608011 P#36713 L#1N1680027
g1	5/8" [16] Dia. Plain USS Washer	ASTM F844	n/a
g2	7/8" [22] Dia. Plain Round Washer	ASTM F844	P#33187 PO#170077928 COC
g3	1" [25] Dia. Plain USS Washer	ASTM F844	P#33188 PO#210151571
g4	3"x3"x1/4" [76x76x6] or 3 1/2"x3 1/2"x1/4" [89x89x6] Square Washer Plate	ASTM A572 Gr. 50	H#E8I347
-	Epoxy Adhesive	Hilti HIT RE-500 V3	Hilti COC

Table A-3. Bill of Materials for Test Nos. HWTT-1 and HWTT-2, Continued

Certified Analysis

Project:	STOCK			
	MILFORD, NE 68405	Use State: NE		
		Shipped To: NE		
	P. O. BOX 703	Document #: 1		
Customer	MIDWEST MACH & SUPPLY CO	BOL Number: 107841	Ship Date:	
Lima, OH	45801 Phn:(419) 227-1296	Customer PO: 3693		Asof: 2/28/19
550 East	Robb Ave.	Order Number: 1305851	Prod Ln Grp: 0-OE2.0	

Qty	Part #	Description	Spec	CL	Τ¥	lleat Code/lleat	Yield	TS	Elg	С	Ma	P S	Si	Cu	Cb C	r Vn	ACW
65	12173G	T12/6'3/4@1'6.75"/S			2	L34518											
			M-180	А	2	C88581	59,000	79,100	16.3	0.210	0.690	0.009 0.002	0.030	0.110	0.000 0.06	0 0.00	1 4
			M-180	А	2	232897	64,140	82,950	26.2	0.190	0.730	0.012 0.000	0.030	0.100	0.000 0.06	0 0.00	4
			M-180	А	2	232898	61,510	80,400	26.7	910.0	0.720	0.010 0.003	0.020	0.100	0.000 0.07	0 0.002	2 4
160	12365G	T12/12'6/8@1'6.75/S			2	L30719											
			M-180	A	2	C88581	59,000	79,100	16.3	0.210	0.690	0.009 0.002	0.030	0.110	0.000 0.06	0.00	4
			M-180	A	2	232897	64,140	82,950	26.2	0.190	0.730	0.012 0.000	0.030	0.100	0.000 0.06	0 0.00	4
			M-180	A	2	232898	61,510	80,400	26.7	0.019	0.720	0.010 0.003	0.020	0.100	0.000 0.07	0 0.002	. 4
4	12447G	T12/25/8@1'6.75:4@3'1.5/S			2	L30719											
			M-180	_A	2	233580	62,360	81,100	25.2	0.190	0.720	0.011 0.004	0.020	0.100	0.000.0.05	0.001	4
			M-180	A	2	233581	61,600	79,750	24.6	0.180	0.720	0.011 0.004	0.020	0.130	0.000 0.06	0 0.002	4
75	54043G	7'0 PST/6X15/DB:3HI	A-572			2815472	62,500	75,700	23.0	0.070	0.840 0	.008 0.025	0.220	0,280	0.029 0.090	0.004	4

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy QMS-LG-002.

ALL SFEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT, 23 CFR 635.410.

ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED.

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED I NUSA AND COMPLIES WITH THE "BUY AMERICA ACT", 23 CFR 635.410. ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 (US DOMESTIC SHIPMENTS)

ALL GAL VANIZED MATERIAL CONFORMS WITH ASTM A-123 & ISO 1461 (INTERNATIONAL SHIPMENTS)

FINISHED GOOD PART NUMBERS ENDINGIN SUFFIX B,P, OR S, ARE UNCOATED

=

Trinity Highway Products LLC

Figure A-1. 12 ft - 6 in. 12-gauge Thrie Beam Section, Test Nos. HWTT-1 and HWTT-2

Certified Analysis

Order Number: 1305851	Prod Ln Grp: 0-OE2.0	
Customer PO: 3693		Arof 2/28/10
BOL Number: 107841	Ship Date:	ASUL 220/19
Document #: 1		
Shipped To: NE		
Use State: NE		
	Order Number: 1305851 Customer PO: 3693 BOL Number: 107841 Document #: 1 Shipped To: NE Use State: NE	Order Number: 1305851 Prod Ln Grp: 0-OE2.0 Customer PO: 3693 BOL Number: 107841 Ship Date: Document #: 1 Shipped To: NE Use State: NE

Qty	Part #	Description	Spec	CL	Τ¥	Heat Code/Heat	Yield	TS	Elg	С	Ma	P S	Si	Cu	Cb C	r Vn	ACW
65	12173G	T12/6'3/4@1'6.75"/S			2	L34518											
			M-180	А	2	C88581	59,000	79,100	16.3	0.210	0.690	0.009 0.002	0.030	0.110	0.000 0.06	0 0.001	4
			M-180	А	2	232897	64,140	82,950	26.2	0.190	0.730	0.012 0.000	0.030	0.100	0.000 0.06	0 0.001	4
			M-180	А	2	232898	61,510	80,400	26.7	010.0	0.720	0.010 0.003	0.020	0.100	0.000 0.07	0 0.002	4
160	12365G	T12/12'6/8@1'6.75/S			2	L30719											
			M-180	A	2	C88581	59,000	79,100	16.3	0.210	0.690	0.009 0.002	0.030	0.110	0.000 0.06	0.001	4
			M-180	A	2	232897	64,140	82,950	26.2	0.190	0.730	0.012 0.000	0.030	0.100	0.000 0.06	0 0.001	4
			M-180	A	2	232898	61,510	80,400	26.7	0.019	0.720	0.010 0.003	0.020	0.100	0.000 0.07	0 0.002	4
4	12447G	T12/25/8@1'6.75:4@3'1.5/S			2	L30719											
			M-180	A	2	233580	62,360	81,100	25.2	0.190	0 720	0.011 0.004	0.020	0.100	0.000.0.05	0.001	4
			M-180	A	2	233581	61,600	79,750	24.6	0.180	0.720	0.011 0.004	0.020	0.130	0.000 0.06	0 0.002	4
75	54043G	7'0 PST/6X15/DB:3HI	A-572			2815472	62,500	75,700	23.0	0.070	0.840 0	.008 0.025	0.220	0,280	0.029 0.090	0.004	4

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy QMS-LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT, 23 CFR 635.410.

ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED.

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED I NUSA AND COMPLIES WITH THE "BUY AMERICA ACT", 23 CFR 635.410. ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 (US DOMESTIC SHIPMENTS)

ALL GAL VANIZED MATERIAL CONFORMS WITH ASTM A-123 & ISO 1461 (INTERNATIONAL SHIPMENTS)

FINISHED GOOD PART NUMBERS ENDINGIN SUFFIX B,P, OR S, ARE UNCOATED

7

Trinity Highway Products LLC

2 of 3

Figure A-2. 6 ft. - 3 in. 12-gauge Thrie Beam Section, Test Nos. HWTT-1 and HWTT-2

NUCOR STEEL GA	LLATIN	Phone	Nucor 3 4831 U.S. Ghent, e: 1(800)581	Steel Gallat Highway 42 V KY 41045-970 -3853 Fax: (85	in /est 4 9)567-3165		13	1
		META	LLURGI	CAL TEST	REPORT	Г		
Invoice To: Triameri 1617 Ak akron, O	ca Steel Reso ron Peninsula H 44313	ources, LLC Rd #103	Ship To:	Triamerica S Pick Up	eel Resource	s, LLC Cust Custo	Date: 6. tomer No: 3 mer P.O.: 07	/28/2016 0932 74532
Mill Order No: 2006	12-5	Custom	ner Referen	Ce No: NA		Load No:	668737	
This product was m in the USA to meet	nelted and m the requirem	anufactured ents of:	Excess Excess H	R Sheet Steel	Bands rdered Size:	Nom 0.132 ((In.) X 62.58 (In.) X Coil
Con Number(s). 13:	9077					Nom 3.353 ((mm) X 1590	(mm) X Coil
CHEMICAL ANALYS	SIS (Weigh	t %)						
Heat No C	Mn	Р	S	Si	Cu	Ni	Cr	Mo
A80436 0.05	0.46	0.011	0.004	0.03	0.14	0.05	0.06	0.02
AI	0.0020	0.020	0.001	0.0001	0.002	0.0078	0.008	
MECHANICAL PROP	FRTIES	0.020	0.001	0.0001	0.002	0.0070	0.000	
Coil Tested Yield Strength(ksi) Yield Strength(mpa) Tensile Strength(ksi) Tensile Strength(ksi) % Elongation N-Value N-Value Range Hardness(HRBW) Test Section Orientation Test Method BEND TEST RESUL Coil ID # Orientation Hot rolled colls manufacture	i) ba) TS Diameter/rad of mandre	ius No. of I cracks	Size of Pa cracks F	SS/ ail	e time of shipmen	t (fca mill)		
Mercury was not added duri This product is in complianc Above tests performed in ac determined using after fracti- company. The elongation original gaug Above test results were perf Bend tests were conducted bend method at a 180 degre This report shall not be repri- * This mechanical property if The information contain- above. If the reader of th copying of this commun by telephone and destro	ng production of the a with DFARS 252 cordance to ASTM re method) or JIS the length is 2 inche formed in accordance n accordance with e bend Bend test oduced, except in a soben tested at ad in this report is message is n loation is strictly y the original mo	is material. The m .225, the Buy Am I standards E8 (yi Z2241, E18, E41 es for ASTM test n toe to EN 10204 3 ISO 7438, ASTM specimen is long Ull, without writter a subcontractor's may be confide of the intended y prohibited. If besage. Thank	naterial was prod erican Act. eld strength dete 5, and E1019 an nethod and 1.97 5.1 I E290, or JIS Z2 er than 6" and wi n approval of the laboratory. ential informati recipient, you you have rece You.	uced using a fully k rmined using 0.2% d are correct as cor inches for JIS test r 248 using the press der than 0.8" undersigned labora intended only are hereby notifi ived this commu	illed fine grain prac offset method and tained in the recorn nethod. . guided, two supp tory managers. If or the use of t ed that any diss nication in error	clice elongation rds of the bort and a mandrel he individual or semination, distr r, please notify u	Stephen S. Chemical La Mechanical L steve.sipple@ entity named ibution, or is immediately	Sipple boratory aboratory nucor.com

Figure A-3. 6 ft – 3 in. 10-gauge W-Beam to Thrie-Beam Asymmetric Transition Section, Test Nos. HWTT-1 and HWTT-2

	COR STEEL GA	LLATIN	Phone	Nuco 4831 U. Ghen : 1(800)58	r Steel Ga S. Highway t, KY 41045 81-3853 Fax	Ilatir 42 We -9704 : (859	า est)567-3165		-	
6.			METAL	LURG	SICAL TE	ST	REPORT			
Invoice 1	Fo: Gregory 4100 13 Canton,	Industries th Street SW OH 44710		Ship T	o: Gregory 4100 13t Canton,	Indus h Stre OH 4	tries eet SW 4710	Cust Custo	Date: * omer No: * mer P.O.: 3	1/21/2018 10019 19620
Mill Orde	er No: 2140	78-1	Custom	er Refer	ence No: 39	320 ·	-	Load No:	736148	
This pro in the U	oduct was n SA to meet	nelted and mathematication the requirematication of the requirematicati	anufactured ents of:	1020 s tensile, HR Sh	teel for SS 5 0.10% max eet Steel Bar	0 grac Si, an nds	le for Guard ad 0.06% Cr i	Rails - 50 ksi max	min yield, 7	0 ksi min
Coil Nur	nber(s): 14	65177				Or	dered Size:	Min 0.095 (Ir Min 2.413 (n	n.) X 56.88 (nm) X 1445	In.) X Coil (mm) X Coil
CHEMIC	AL ANALY	SIS (Weight	:%)							
Heat No C85187	C 0.20	Mn 0.48	P 0.008	S	Si 3 0.0	3	Cu 0.06	Ni 0.02	Cr 0.05	Mo 0.01
	AI	Ca	Nb	V	В		Ti	N	Sn	
	0.029	0.0017	0.000	0.00	1 0.00	01	0.001	0.0080	0.003	
MECHAI Coil Tess Yield Str Yield Str Tensile S Tensile S % Elong N-Value Hardness Test Sec Orientati Test Met BEND TI Coil ID #	NICAL PROP ted rength(ksi) rength(mpa Strength(mpa Strength(mpa Strength(mpa tength(mpa Strength(mpa ation Range s(HRBW) tion s(HRBW) tion EST RESUL Orientation	ERTIES i) i) pa) TS Diameter/rad of mandre	ius No. of cracks	Size of cracks	Pass/ Fail	urs at the	Ht Law IZUJ	e.		
Mercury wa size of 6 or This produc Above tests determined The elongat Above tests bend metho This report * This mech This report above. If the copying of by telepho	s not added dur finer according i t is in compliance performed in au using at fracture tion original gau results were per were conducted d at a 180 degre shall not be rep nanical property hation contain he reader of th f this commun	ing production of th to ASTM E112. we with DFARS 252 coordance to ASTM or method) or JIS 22 ge length is 2 inche formed in accordance with ae bend. Bend test oduced, except in f has been tested at ed in this report is message is no ication is strictly we the original me	is material. The n 225, the Buy Am standards E8 (yi 241, E18, E415, 5 for ASTM test n ce to EN 10204 3 ISO 7438, ASTM specimen is long ull, without writter a subcontractor's may be confided to the intended r prohibited. If	erican Act. eld strength and E1019 a nethod and 1 1 E290, or JIS er than 6" an a approval of laboratory. ential inforn recipient, j you have r You.	produced using a determined using ind are correct as 1.97 inches for JI 5 Z2248 using th d wider than 0.8" the undersigned mation intende you are hereby eccived this co	d only on otifie ommun	led fine grain prace offset method and red in the records lethod. guided, two supp ory managers. for the use of the ad that any diss lication in error	elongation of the company. port and a mandrel he individual or semination, dist r, please notify u	Stephen Chemical Mechanical steve.sipple	A. Suple S. Sipple Laboratory Chaboratory @nucor.com Page 1 of 1

Figure A-4. 12 ft – 6 in. 12-gauge W-Beam MGS Section, Test Nos. HWTT-1 and HWTT-2

Gregory Industries 13:54:11 Jun 24 2015 Page 1 HEAT MASTER LISTING Heat No. Mill# Name YR Primary Grade Secondary Grade CODE Original Heat Number ______ 9411949 ARC03 ARCELOR MITTAL USA, LLC 15 1021 8534 ******* Chemistry ****** Cr Si · P C Mn S Cu Ni Mo Sn Al V Cb N Ti 0.0400 0.0100 0.0100 0.2100 0.7500 0.0060 0.0200 0.0100 0.0100 0.0020 0.0580 0.0020 0.0020 0.0042 0.0020 Ca 0.0003 ****** Mechanical Test ****** YIELD TENSILE 56527 75774 TENSILE ELONGATION ROCKWELL 27.15 78 Guardrail W-Beam 20ct/25' 100ct/12' 10ct/25ft w/MGS Anchor Panel July 2015 SMT .

Figure A-5. 12 ft - 6 in. 12-gauge W-Beam MGS End Section, Test Nos. HWTT-1 and HWTT-2

Figure A-6. 10-gauge Thrie Beam Terminal Connector, Test Nos. HWTT-1 and HWTT-2

Ready Mixed Concrete Company 6200 Cornhusker Hwy, Lincoln, NE 68529 Phone: (402) 434-1844 Fax: (402) 434-1877

Customer's Signature:

PLANT	TRUCK	DRIVE	R CUSTO	MER	PROJEC	TAX TAX	PO NUMBER	2 D	ATE	TIME	TICKET
01	284	8520	6246	1				4/:	29/19 7	:59 AM	1235879
Customer UNL-MIDV	VEST RC	DADSID	E SAFETY	Deliv 4630	ery Address NW 36TH	5		Special In NORTH	nstructions OF THE GOC	DDYEAR	HANGARS
LOAD	QUAN		ORDERED	PR	ODUCT	PRODUCT	DESCRIPTION	UOM		CE	EXTENDED
2.00	2	2.00	2.00		470031PF	47BD (1PF)		yd	\$123	3.00	\$246.0
- Em Source									· ·		
			1971 - 1498 1971 - 1978	- d	-	MINIMUM HAU	L		4		\$50.0
Water Add	ed On Job	At	SLUMP	Notes	5:			TICKET	SUBTOTAL		\$296.0
Custome	r's Reques	it:	4.00 in					SALES	TAX TOTAL		\$0.0 \$296.0
								PREVIC	US TOTAL		\$296.0
~	CALITION	EDEO			~		Term	s & Co	nditions		
Contains Por concrete or g contact with Equipment (f thoroughly w attention pro	KEEP tland ceme grout may c skin. Alway PPE). In car ith water. If mptly.	CHILDI ent. Fresh ause skin s wear ap se of cont irritation	REN AWAY ly mixed ceme i injury. Avoid ppropriate Per- tact with eyes persists, seek	ent, mo prolon sonal I or skir medic	ortar, ged Protective h, flush cal	This concrete is concrete. Streng the mix to excee acceptance of a thereof. Cylinde drawn by a licer Ready Mixed Cc unless expressly personal or proo The purchaser's within 3 days fro to investigate ar price of the mat	produced with the <i>i</i> , this are based on a ed this slump, except ny decrease in com- r tests must be han sed testing lab and norcete Company w y told to do so by cu- erty damage that n exceptions and cla m time of delivery. I y such claim. Selik	ASTM stanc 3" slump. E bt under the pressive str dled accord /or certified ill not delive istomer and nay occur as ims shall be In such a c er's liability s any claims	lard specificatii Drivers are not i authorization o rength and any ing to ACI/AST technician. Ir any product to customer assis a result of any o deemed waiw ase, seller shall shall in no even are made	ons for re permitted of the cust risk of los M specifi beyond ar umes all I y such dir ed unless I be given at exceed	ady mix to add water to comer and their sa sa result cations and hy curb lines iability for any ective. made in writing full opportunity the purchase

Figure A-7. Reinforced Concrete Buttress, Test Nos. HWTT-1 and HWTT-2

LINCOLN OFFICE 825 "M" Street Suite 100 Lincoln, NE 68508 Phone: (402) 479-2200 Fax: (402) 479-2276

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 6x12

ASTM Designation: C 39

Date 17-May-19

Client Name: Midwest Roadside Safety Facility Project Name: Miscellaneous Concrete Testing Placement Location: HWTT Buttress

Mix Designation:

Required Strength:

							aboratory	Test Data	9							
Luborutory Identification	Field I dentification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Cured in Laboratory	Age of Test, Drays	Length of Specimen, in	Diamater al Specimen, in.	Cross-Sectional Area,sq.in.	Maximum Load, Ibf	Compressive Strength psi.	Required Strength, psi.	Type of Fracture	ASTM Practice for Capping Specimen	
URR-123	С	4/29/2019	5/17/2019	5/17/2019	18	0	18	12	5.99	28.18	140,473	4,980		5	C 1231	
URR-124	D	4/29/2019	5/17/2019	5/17/2019	18	0	18	12	5.99	28.18	134,987	4,790		5	C 1231	

1 cc. Ms. Karla Lechtenberg

Midwest Roadside Safety Facility

Figure A-8. Reinforced Concrete Buttress, Test Nos. HWTT-1 and HWTT-2

Ready Mixed Concrete Company 6200 Cornhusker Hwy, Lincoln, NE 68529 Phone: (402) 434-1844 Fax: (402) 434-1877

Customer's Signature:

PLANT	TRUCK	DRIVE	R CUSTO	MER	PROJEC	T TAX	PO NUMBE	R D/	ATE TIME	TICKET
4	135	9264	4 6246	1				5/2	3/19 11:15 A	M 4215635
Customer UNL-MID\	VEST RC	DADSID	DE SAFETY	Deliv 4630	ery Address NW 36TH	ST		Special In AIRPARK GOODYE	structions (/ NORTH OF OLI ARHANGARS	0
LOAD			ORDERED	PR	ODUCT	PRODUCT	DESCRIPTION	UOM	UNIT PRICE	EXTENDED PRICE
2.50	2	2.50	2.50		470031PF	47BD (1PF)		yd	\$123.00	\$307.5
						MINIMUM HAU	L			\$45.0
Water Add	led On Job	At	SLUMP	Notes	s:			TICKET	SUBTOTAL	\$352.50
Custome	r's Reques	st:	3.00 in					SALES T	TAX TOTAL	\$0.00 \$352.5 0
								PREVIO	US TOTAL TOTAL	\$352.5
Contains Po concrete or g contact with Equipment (thoroughly w attention pro	CAUTION KEEP rtland ceme grout may c skin. Alway PPE). In ca vith water. If mptly.	N FRES CHILD ent. Fresh cause skii vs wear a se of cor f irritation	SH CONCR DREN AWAY hly mixed cerm n injury. Avoid ppropriate Per intact with eyes persists, seel	ETE Y ent, me prolor rsonal or skii k medie	ortar, iged Protective n, flush cal	This concrete is concrete. Streng the mix to exceed acceptance of a thereof. Cylinde drawn by a licer Ready Mixed Cd unless expressi personal or prog The purchaser's within 3 days fro to investigate an	Tern produced with the this are based on a ed this slump, exce ny decrease in corr rests must be har used testing lab ann oncrete Company w told to do so by c berty damage that t exceptions and cli m time of delivery ny such claim. Sel	ASTM stand a 3" slump. D pt under the npressive str died accordi do/or certified if vill not delive: ustomer and may occur as aims shall be In such a ca ter's liability s	Additions and specifications for rivers are not permit authorization of the c ength and any risk of ng to ACI/ASTM spe technician. r any product beyond customer assumes i a result of any such deemed waived unli se, seller shall be gin hall in no event exce	ready mix ted to add water to ustomer and their loss as a result cifications and any curb lines all liability for any directive. ass made in writing ven full opportunity ed the purchase

Figure A-9. Reinforced Concrete Curb, Test Nos. HWTT-1 and HWTT-2

PO 3616

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: <u>Midwest Machinery and Supply</u> BOL# <u>N05656</u> Customer PO# <u>3616</u> Preservative: <u>CCA ~ C 0.60D pcf AWPA UC4B</u>

Part #	Physical Description	# of Pieces	Charge #	Tested Retention
GS6846				
PST	5.5x7.5-46" BCT	42	25729	.680
6118b	6x8-14" Tapered Block	126	25729	.680
GR6822				
BLK	6x8-22" CH Block	168	25702	.694
GR6819	-			
BLK	6x8-19" OCD Block	168	25702	.694
GR61219				
BLK	6x12-19" OCD Thrie	168	25698	.686
	a na hair a charachtar an bhairt 1866 1877 1886 1877 1886			

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168 standards.

1

Nick Sowl, General Counsel

VA: Iowa Wood Preservers certifies that the treated wood products listed above have been treated in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and retention requirements.

> <u>7/31/18</u> Date

Figure A-10. BCT Timber Posts, Test Nos. HWTT-1 and HWTT-2

	A Charge	e Repo	ort			. 1 5 T	Centra 05 N. Owen Sutton, NE 68 Fel: (402) 77:	l Nebr 8979 3-4319	as	Ċ,
Charg Tally Cylind	e C1-25729/ 25729/U20 er CYL_1	U0 3826	Recipe Preset Operato	Defaul Guard or Lariy	Rail	Si Ei D	tart Time nd Time uration	7/27/18 7/27/18	10:1 11:5	0XFORD LAB-X CCA WOOD ANALYSIS 80/7/2018 9:59
				FLW	INJ :	MNT	MXT	PRS	VAC	Calibration titls: SAMDUST-pcf
1	Initial Vacuum	Time	SP ACT				· 7.00 11.53		2 2	BAMPLE ID: 25728
2 .	Vacuum Fill	Vacuum	SP ACT				4.45		2	DEN8174 = 32.0 pcf
3	Atm Absorption	Time	SP ACT				1.00 1.00		•	XVT DXIDES XBALANCE CR03 = 1.030 X 48.5
4	Pressure	Time	SP ACT	0.00	4.10 11.87	25.00 25.00	25.00 25.00	140.00 147.95		CUD = 0.390 % 17.9 A9205 = 0.716 % 83.7
5	Release Pressure	Pressure	SP ACT	· · · · · · · · · · · · · · · · · · ·			6.00 6.62	10.00 9.95		10TAL-= 2.126 XWT 100.0
6	Emptying	Cylinder Empty	SP ACT				5.38			RETENTION CR03 = 0.330 pcf
7	Final Vacuum	Time *	SP ACT		1	40.00 40.00	40.00 40.00		:	600.= 60.121 pcf A9205 = 0.229 pcf
8	Drain Cylinder	Cylinder Empty	SP ACT				5.98			TDTAL- 0/680 Pcf
		a					6			
	-	•				• •				· ·
Tarik I	nformation for T02 C	CA		Ch	arge Data		<u></u>			
nase itial Va acuum ressum nd of C	acuum Fill Dharge	FT GAL 9.3 7878 2.7 2260 0.6 532 7.6 6393	LB 6669 1913 450 5413	s Solu S Solu 8 Calc 4 Net I 1 Estir 1 Calc Tota	tion Concer ulated Cher injection (Gr nated Heart ulated Rete I Gallons Us	ntration nical Use (L al/CuFt) wood (%) ntion sed (Gal)	1 bs) 2: 1,4	.90% Vo 38.91 Di 3.09 Ta As 0.50 85.16	blume isp. Vo arget A ssay (accenentationeneurreconductioned Basis Tally olume (CuFT) 480.89 Assay Retention 0.60 Lbs/CuFT) / NC /
Tally.				SECTOR PROPERTY.	ares a scenera	STUDICAST (10	B	3 F/SF 5,76	7.35	Total Volume 480.61 CuFt
esigna .ock .ock	ation Description T004140B T006115B T006120B T006120B T006118B	Qt 120 43 330 120	y Speci 5 SYP 2 SYP 5 SYP 6 SYP	ie C 1 1 1	Grade ,	Lot	* * *	MC% Dre	essing	CuFt BdFt 144.38 1,732.50 46,12 553.43 196.00 2,352.01 49.00 588.00 45.12 541.41
tock tock tock	6x8x4 6 \"9#8 /	BCT 4	2 SYP	14	Ĩ.			6 L.		

Figure A-11. BCT Timber Posts, Test Nos. HWTT-1 and HWTT-2

	725											3	046	HD	6
Ati 18 Ch 60 Te Fa	as Tube Co 55 East 122 icago, Illinoi 533 : 773-64 x: 773-64	rp (Chicago) nd Street s, USA 16-4500 16-6128					la N OF Z	S7	TUD	e USTRIES	Re Da Cu	f.B/L: te: stomer	8072 08.17 2908	8203 7.2016	
				MA	TERI	AL TE	EST F	REPC	RT						
<u>S</u> G4 C U	old to regory Inc 100 13th S ANTON C SA	dustries Inc Street SW. DH 44710	2.								<u>Shi</u> Tru 120 HA US	ipped <u>t</u> I-Form D4 Gilke RTFOF A	o Steel & ' ∀ Ave ℃ CITY	Wire IN 47	7348
Material: 8	.0x6.0x188>	(27'0"0(2x2)S	ILDOMU	IS .	Ma	aterial No	a: 80060	188				Made in	n: USA		
Sales orde	r: 1105121				Pu	ırchase (Order: 35	5569		Cust Mat	terial #: 7	Melted RB3/16-	in: USA 8-6-27		
Heat No	C	Mn	Р	s	Si	AI	Cu	Cb	Мо	Ni	Cr	v	Ті	В	N
}6 16137	0.210	0.930	0.011	0.003	0.020	0.041	0.020	0.008	0.020	0.020	0.030	0.008	0.001	0.000	0.003
Bundle No	PCs	Yield	Ten	sile	Eln.2in			C	ertificati	on			CE: 0.38		
M8006500	76 4	058210 Psi	073	148 Psi	32 %			A	STM A50	00-13 GRA	DE B&C				
Material N Sales Or.N	ote: lote:														
Material: 8	.0x6.0x188x	(30'0"0(2x3)S	ILDOMU	IS	Ma	aterial No	80060	188				Made in	: USA		
Sales orde	r: 1105121				Pu	Irchase (Order: 35	5569		Cust Mat	terial #: T	RB3/16-	in: USA 8-6-30		
Heat No	C	Mn	Р	s	Si	Al	Cu	Cb	Мо	Ni	Cr	V	Ti	в	N
821T08220	0.220	0.810	0.013	0.006	0.006	0.041	0.160	0.002	0.005	0.010	0.020	0.002	0.002	0.000	0.007
Bundle No	PCs	Yield	Ten	sile	Eln.2in			C	ertificati	on			CE: 0.37		
M8006500	38 6	057275 Psi	070	934 Psi	32 %			A	STM A50	00-13 GRA	DE B&C				
Material N Sales Or.N	ote: lote:														
Material: 8	.0x6.0x188>	(30'0"0(2x3)S	ILDOMU	IS	Ma	aterial No	a: 80060 ⁻	188				Made in Melted	n: USA in: USA		
Sales orde	r: 1105121		-		Pu	Irchase C	Order: 35	5569		Cust Mat	terial #: 1	RB3/16-	8-6-30	-	
Heat No	C	Mn	P	5	Si	AI	Cu	Cb	Mo	NI	0.020	V	0.002	B 0.000	0.007
021108220	0.220	0.810 Viola	0.013	0.006	0.006	0.041	0.160	0.002	0.005	0.010	0.020	0.002	0.002	0.000	0.007
M8006500	PUS	057275 Del	070	934 Dei	32 %				STM A50	00-13 GRA	DE B&C		02. 0.37		
Material N	ote:	JULE 10 PSI	070	004 [3]	52 70			~	STILL AD	UU-IU GIVA	2 000				
Sales Or.N	lote:														
Jason Ri Jason Ri Authoriz The resu specifica	- Cuchon chard ed by Quali Its reported tion and co	ity Assurance d on this rep pontract requi	e: ort repre- rements	esent the	e actual at	ttributes	of the ma	aterial fu	rnished	and indica	te full co	mpliance	e with all a	applica	ble

Figure A-12. 72-in. Long Foundation Tube, Test Nos. HWTT-1 and HWTT-2

	Certified Analys	sis	av Products
Trinity Highway Products, LLC			
550 East Robb Ave.	Order Number: 1275017	Prod Ln Grp: 3-Guardrail (Dom)	
Lima, OH 45801 Phn:(419) 227-1296	Customer PO: 3400		As of: 3/22/17
Customer: MIDWEST MACH.& SUPPLY CO.	BOL Number: 99202	Ship Date:	
P. O. BOX 703	Document #: 1	A.	
	Shipped To: NE		
MILFORD, NE 68405	Use State: NE		
Project: RESALE			

Qty	Part #	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	C	Mn	P	S	Si	Cu	Cb	Cr	Vn .	ACW
400	3380G	5/8"X1.5" HEX BOLT A307	HW			0052429-113200													
600	3400G	5/8"X2" GR BOLT	HW			29221													
500	3480G	5/8"X8" GR BOLT A307	HW			29369													
450	3500G	5/8"X10" GR BOLT A307	HW			29550-B													
700	3540G	5/8"X14" GR BOLT A307	HW			29567													
300	3580G	5/8"X18" GR BOLT A307	HW			29338													
600	4235G	3/16"X1.75"X3" WSHR	HW			C7001													
10	9852A	STRUT & YOKE ASSY	A-36			195070	52,940	69,970	31.1	0.190	0.520	0.014	0.004	0.020	0.110	0.000	0.050	0.000	4
	9852A		A-36			A82292	54,000	73,300	31.0	0.200	0.460	0.010	0.003	0.020	0.150	0.000	0.060	0.001	4
	9852A		A-36			645887	39,900	62,500	32.0	0.190	0.400	0.009	0.015	0.009	0.054	0.001	0.038	0.001	4
	9852A		A-36			645887	39,900	62,500	32.0	0.190	0.400	0.009	0.015	0.009	0.054	0.001	0.038	0.001	4
	9852A		HW			15056184													
20	12173G	T12/6'3/4@1'6.75"/S			2	L35216											1		
			M-180	A	2	209331	62,090	81,500	28.1	0.190	0.72	0 0.01	3 0.002	0.020	0.110	0.00	0 0.070	0.002	4
			M-180	A	2	209332	61,400	81,290	25.3	0,190	0.73	0 0.01	4 0.003	0.020	0.120	0.00	0 0.060	0.001	4
			M-180	A	2	209333	61,200	80,050	25.8	0.200	0.74	0 0.01	6 0.005	0.010	0.120	0.00	0 0.070	0.002	4
	1																2 0	of 4	

Figure A-13. Ground Strut Assembly, Test Nos. HWTT-1 and HWTT-2

DUCTSING 14700 Brookpark Rd Cleveland, OH 44135-5166

ISO 9001:2008

Cleveland, OH 44135-5166 customerservice@assemblyspecialty.com

Certificate of Conformance

Date: September 24, 2018

PH 216.676.5600

FX 216.676.6761 www.assemblyspecialty.com

> To: Gregory Industries, Inc. Gregory Galv. & Metal Processing 4100 13th St. SW Canton, OH 44710

We certify that our system and procedures for the control of quality assures that all items furnished on the order will meet applicable tests, requirements and inspection requirements as required by the purchase order and applicable specifications and drawings.

PURCHASE ORDER #: 40299

DATE SHIPPED: 09/24/18

ASPI SALES ORDER #: 122160

MANUFACTURER: ASSEMBLY SPECIALTY PRODUCTS, INC.

QTY	CUST P/N	ASPI P/N	ASPI LOT#	DESCRIPTION
250	3012G	C-2028	89315	6' 6" BCT Cable Assembly
250	3012G	C-2028	89316	6' 6" BCT Cable Assembly
250	3012G	C-2028	89318	6' 6" BCT Cable Assembly
250	3012G	C-2028	89864	6' 6" BCT Cable Assembly
250	3012G	C-2028	89865	6' 6" BCT Cable Assembly
250	. 3012G	C-2028	89866	6' 6" BCT Cable Assembly
250	3012G	C-2028	89929	6' 6" BCT Cable Assembly
250	3012G	C-2028	89930	6' 6" BCT Cable Assembly
250	3012G	C-2028	89931	6' 6" BCT Cable Assembly
250	3012G	C-2028	89932	6' 6" BCT Cable Assembly

REMARKS: NOMINAL BREAKING STRENGTH: 46,000 lbs

WIRE ROPE MANUFACTURED IN ACCORDANCE WITH AASHTO DESIGNATION: M30-02 and ASTM A741 TYPE 2, CLASS A FITTINGS GALVANIZED IN ACCORDANCE WITH ASTM A-153 CLASS C.

STEEL USED TO MANUFACTURE THESE ITEMS WAS MELTED AND MANUFACTURED IN THE U.S.A ALL MANUFACTURING PROCESSES SUPPLIED OR PERFORMED BY ASSEMBLY SPECIALTY PRODUCTS, INC. TOOK PLACE IN THE U.S.A.

Signature: Certification and Compliance Manager

Figure A-14. BCT Anchor Cable Swaged Fitting and 0.75 in. Dia. 6x19 IWRC Wire Rope, Test Nos. HWTT-1 and HWTT-2

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

	MIDWEST MAC P. O. BOX 703 MILFORD,NE,6	CHINERY & S 8405	UPPLY CO	i i			Test Report Ship Date: Customer P.O.: Shipped to: PROJECT:	11/17/2017 3515 MIDWEST MAG	CHINERY & SU	JPPLY CO.			
							GHP Order No:	128AA					
HT CODE	Lot #	C.	Mn.	Ρ.	S.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
A74070		0.21	0.46	0.012	0.002	0.03	76100	58800	25.2	4	А	2	12GA TB TRANS.
4181496		0.24	0.84	0.014	0.01	0.01	72400	44800	34	4		2	5/8IN X 8IN X 8IN BRG. PL.
4181489		0.09	0.45	0.012	0.004	0.01	58000	43100	27	4		2	350 STRUT & YOKE
196828BM		0.04	0.84	0.014	0.003	0.02	76000	74000	25			2	350 STRUT & YOKE
E22985		0.17	0.51	0.013	0.008	0.008	72510	64310	29.5	4		2	2IN X 5 1/2IN PIPE SLEEVE
821T08220		0.22	0.81	0.013	0.006	0.006	70934	57275	32	8		2	3/16IN X 6IN X 8IN X 6FT0IN TUBE SLEEVE

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-653

All Galvanizing has occurred in the United States

All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States"

All Steel used meets Title 23CFR 635.410 - Buy America

All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin

126

All material fabricated in accordance with Nebraska Department of Transportation All sheet, zinc-coated or zinc-iron alloy-coated by the hot dip process that meets ASTM Specifications A653

Tarver By:

Jeffery L Grover, VP of Highway Products Sales & Marketing Gregory Highway Products, Inc.

Figure A-15. 8-in. x 8-in. x 5%-in. Anchor Bearing Plate, Test Nos. HWTT-1 and HWTT-2

Atlas T 171 Cle Birming 35217 Tel: Fax:	ube (Ala aage Dr ham; Al	abama), Inc. abama, USA						AS F ZEKEL	TUI	be NDUSTRI	Ref. Date Cus	.B/L: e: tomer:	80791 11.10. 179	452 2017	
				N	IATE	RIAL	TEST	REF	PORT	,					
Sold Steel PO B MANI USA	<u>to</u> & Pip ox 16 HATTA	e Supply 88 AN KS 61	Compa 6505	an							Stee 401 NEV US4	oped to el & Pip New (V CENT	e Supp Century URY KS	y Con Parkw 3 660	npan 'ay)31
Material: 3.0>	(2.0x18	8x40'0"0(5>	(4).		Ma	aterial N	lo: 0300	201884	00-В			Made ir Melted	n: USA in: USA		
Sales order:	122693	76			Pu	rchase	Order: 4	5002966	56	Cust Ma	terial #:	663002	0018840		
Heat No	С	Mn	Р	S	Si	AI	Cu	СЬ	Mo	Ni	Cr	v	Ti	B	N
B704212 Bundle No 40867002	0.200 PCs 20	0.450 Yield 064649 Pt	0.010 Ten si 087	0.004 sile 7652 Psi	0.020 Eln.2 24 %	0.000 2in	0.000	0.000 Ä	0.000 Ce STM A5	0.000 rtification 00-13 GR	0.000	0.000	0.000 CE	0.000 : 0.28	0.000
Material Note Sales Or.Note	: ::														
Material: 2.37	75x154)	(42'0"0(34x	1).		Mε	nterial N	lo: RO23	3751544:	200			Made ir Melted	n: USA in: USA		
Sales order:	12269	76	-	-	Pu	rchase	Order: 4	5002966	556	Cust Ma	terial #:	642004	042	_	
Heat No	C	Mn	P	S	Si	AI	Cu	Cb	Mo	Ni	Cr	V 0.004	Ti	B	N
Bundle No	PCs	Yield	Ten	sile	Ein.2	0.024 lin	Rb	0.002	0.020 Ce	rtification	0.000	0.004	0.002 CE	: 0.32	0.008
MC00006947	34	063688 P	i 083	3220 Psi	25 %	91		 A	- STM A5	00-13 GR	ADE B&	с			
Material Note Sales Or.Note	:														
Material: 2.37	75x154>	42'0"0(34x	1).		Ma	iterial N	lo: RO23	751544	200			Made in Melted	n: USA in: USA		
Sales order:	12269	76			Pu	rchase	Order: 4	5002966	656	Cust Ma	terial #:	642004	042		
Heat No	С	Mn	Р	S	Si	AI	Cu	Cb	Мо	Ni	Cr	V	Ti	B	N
17037261	0.210	0.810	0.005	0.004	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
41532001	34	Yield 066144 P	i 082	15110 2159 Psi	27 %	2in 		 A	Ce STM A5	00-13 GR	ADE R&	 C	CE	0.35	
Material Note Sales Or.Note	:				2. 2										
Authorized by The results re specification of	Quality ported and con CCI ⁹ SLILU	Assurance on this repo tract require the the the the the the the the the th	fort repre- ments. 1.1 meth	sent the	land actual at	tributes Page : 3	of the m 3 Of 4	naterial fi	urnished	and indic	oto full c als Servi	compliance I ce Cen t	e with all er institu	applica Ite	ble

Figure A-16. 2³/₈-in. O.D. by 6-in. Long BCT Post Sleeve, Test Nos. HWTT-1 and HWTT-2

Certified Analysis

Trinity Hig	ghway Products, LLC			
550 East Re	obb Ave.	Order Number: 12694	89 Prod Ln Grp: 3-Guardrail (Dom)	
Lima, OH 4	5801 Phn:(419) 227-1296	Customer PO: 3346		Asof: 11/7/16
Customer:	MIDWEST MACH.& SUPPLY CO.	BOL Number: 97457	Ship Date:	11301.11///10
	P. O. BOX 703	Document #: 1		
		Shipped To: NE		
	MILFORD, NE 68405	Use State: NE		
Project:	RESALE			

Qty	Part #	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	С	Mn	Р	S	Si	Cu	Cb	Cr	Vn	ACW	
	701A	ANCHOT Box	A-36			JK16101488	56,172	75,460	25.0	0.160	0.780	0.017	0.028	0.200	0.280	0.001	0.140	0.028	4	-
	701A		A-36			535133	43,300	68,500	33.0	0.019	0.460	0.013	0.016	0.013	0.090	0.001	0.090	0.002	4	
4	729G	TS 8X6X3/16X8'-0" SLEEVE	A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4	
20	738A	5'TUBE SL.188X6X8 1/4 /PL	A-36		2	4182184	45,000	67,900	31.0	0.210	0.760	0.012	0.008	0.010	0.050	0.001	0.030	0.002	4	
	738A		A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4	
6	749G	TS 8X6X3/16X6'-0" SLEEVE	A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4	
6	782G	5/8"X8"X8" BEAR PL/OF	A-36			DL15103543	58,000	74,000	25.0	0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	4	
20	783A	5/8X8X8 BEAR PL 3/16 STP	A-36			PL14107973	48,167	69,811	25.0	0.160	0.740	0.012	0.041	0.190	0.370	0.000	0.220	0.002	4	
	783A		A-36			DL15103543	58,000	74,000	25.0	0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	4	
45	3000G	CBL 3/4X6'6/DBL	HW			119048														
7,000	3340G	5/8" GR HEX NUT	HW			0055551-116146														
4,000	3360G	5/8"X1.25" GR BOLT	HW			0053777-115516														
450	3500G	5/8"X10" GR BOLT A307	HW			28971-B														
1,225	3540G	5/8"X14" GR BOLT A307	HW			29053-В														

Figure A-17. Anchor Bracket Assembly, Test Nos. HWTT-1 and HWTT-2

Figure A-18. W6x8.5 72-in. Long Steel Post, Test Nos. HWTT-1 and HWTT-2

Certified Analysis

Trinity Highway Products, LLC			
550 East Robb Ave.	Order Number:	1302452 Prod Ln Grp: 0-OE2.0	
Lima, OH 45801 Phn:(419) 227-1296	Customer PO: 3	3656	Asof: 11/13/18
Customer: MIDWEST MACH & SUPPLY CO	BOL Number:	107001 Ship Date:	1001.1015/10
P. O. BOX 703	Document #:	1	
	Shipped To: N	NE	
MILFORD, NE 68405	Use State: N	NE	
Project: STOCK			

Q	y Pa	art #	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	С	Mn	P S	Si	Cu	Cb Cr	Vn	ACW
				M-180	Α	2	222038	63,780	82,280	22.9	0.190	0.750	0.012 0.002	0.030	0.100	0.000 0.070	0.001	4
				M-180	Α	2	222878	64,680	81,820	25.2	0.180	0.740	0.012 0.003	0.020	0.130	0.000 0.070	0.002	4
				M-180	A	2	222038	63,780	82,280	22.9	0.190	0.750	0.012 0.002	0.030	0.100	0.000 0.070	0.001	4
				M-180	A	2	222878	64,680	81,820	25.2	0.180	0.740	0.012 0.003	0.020	0.130	0.000 0.070	0.002	4
7	5 54	1043G	7'0 PST/6X15/DB:3HI	A-572			2815472	62,500	75,700	23.0	0.070	0.840 (0.008 0.025	0.220	0.280	0.029 0.090	0.004	4

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy QMS-LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT, 23 CFR 635.410.

ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED.

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT", 23 CFR 635.410. ALL GAL VANIZED MATERIAL CONFORMS WITH ASTM A-123 (US DOMESTIC SHIPMENTS) ALL GAL VANIZED MATERIAL CONFORMS WITH ASTM A-123 & ISO 1461 (INTERNATIONAL SHIPMENTS)

FINISHED GOOD PART NUMBERS ENDING IN SUFFIX B,P, OR S, ARE UNCOATED

BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.

NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. WASHERS COMPLY WITH ASTM F-436 SPECIFICATION AND/OR F-844 AND ARE GALVANIZED IN ACCORDANCE WITH ASTM F-2329. 3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II BREAKING STRENGTH – 46000 LB

State of Ohio, County of Allen. Sworn and subscribed before me this 13rd day of November, 2018 .

Notary Public Commission Expi

Trinity Highway Products, LLC Certified By

Quality Assurance

2 of 2

Figure A-19. W6x15 78-in. Long Steel Post, Test Nos. HWTT-1 and HWTT-2

Atlas	Tube (Arkansas) Inc.
50391	N County Road 1015
Blythe	ville, Arkansas, USA
7231	5
Tel:	870-838-2000
Fax:	870-762-6630

Ref.B/L: 80827884 Date: 06.18.2018 Customer: 179

MATERIAL TEST REPORT

Sold to

- - -

Steel & Pipe Supply Compan PO Box 1688 MANHATTAN KS 66505 USA

Shipped to

Steel & Pipe Supply Compan 401 New Century Parkway NEW CENTURY KS 66031 USA

Sales order	.0x6.0x25	50x40'0"0(3x2	2).			Material Purchas	No: 80 e Order:	C45200	2438	Cust Mat	erial #:	Made in: Melted in: 668006002	USA USA 25040	
Heat No Ti	Св	Min N	P	CA	S	Si		AI	Cu	Cb	Mo	Ni	Cr	
17156541	0.200 0.0070	0. 7 70 0.0030	0.007	C	0.002	0.030	0.033	0.110	0.002	0.012	0.040	0.050	0.003	0.00
Bundle No	PCs	Yield	Ter	nsile		Eln.2in			Ce	rtification			CE:	0.36
M5001970	87 6	065570 Psi	07	9210	Psi	28 %			ASTM A5	00-13 GRA	DE B&C	2		
Material No Sales Or.No	ote: ote:													
Material: 8.	0x6.0x25	50x40'0"0{3x2	2).			Material	No: 80	0602504	000			Made in: Melted in:	USA USA	
Sales order	: 12954	37				Purchase	order:	C45200	2438	Cust Mate	erial #:	668006002	25040	
Heat No Ti	с в	Mn N	P	CA	S	Şi		AI	Cu	Съ	Mo	Ni	Cr	
17156541 0.0000 0	0.200	0.770 0.0030	0.007	Q	0.002	0.030	0.033	0.110	0.002	0.012	0.040	0.050	0.003	0.00
Bundle No	PCs	Yield	Ter	nsile		Eln.2in			Ce	rtification			CE:	0.36
Vaterial No	te: ote:	00001010	070	52.10	1 31	20 /0			ASTM AS	00-13 GRA	DE BAC			
Sales Or.No														
Sales Or.No Material: 10 Sales order:	0.0x10.0x	313x40'0"0(2	2x2).			Material	No: 10	0100313	4000			Made in: Melted in:	USA USA	,
Sales Or.No Material: 1C Sales order: Ieat No	0.0x10.0x : 12954	313x40'0"0(2 68 Mn	2x2). P		s	Material Purchase Si	No: 10 Order:	0100313 C45200 Al	4000 2438 Cu	Cust Mate	erial #:	Made in: Melted in: 651000313	USA USA 40	
Vaterial: 10 Vaterial: 10 Sales order: teat No	0.0x10.0x : 12954	x313x40'0"0(2 68 Mn N	2x2). P	CA	S	Matorial Purchase Si	No: 10 Order:	0100313 C45200 AI	4000 2438 Cu	Cust Mate	erial #: Mo	Made in: Melted in: 651000313 Ni	USA USA 140 Cr	
Material: 10 Sales order: Jeat No 71 7176181 .0000 0	0.0x10.0x : 12954 C B 0.210 0.0070	(313x40'0"0(2 68 Mn 0.730 0.0030	2x2). P 0.006	CA	S	Material Purchase Si 0.030	No: 10 Order: 0.025	0100313 C45200 AI 0.090	4000 2438 Cu 0.001	Cust Mate Cb 0.012	erial #: Mo 0.040	Made in: Melted in: 651000313 Ni 0.030	USA USA 140 Cr 0.003	0.001
Material: 10 Sales order: Jeat No 71 7176181 0.0000 0 Bundle No	0.0x10.0x 12954 C B 0.210 0.0070 PCs	313x40'0"0(2 68 <u>Mn</u> 0,730 0.0030 Yield	2x2). P 0.006 Ten	CA O Isile	S .002	Matorial Purchase Si 0.030 Eln.2in	No: 10 Order: 0.025	0100313 C45200 AI 0.090	4000 2438 Cu 0.001 Cei	Cust Mate Cb 0.012	erial #: Mo 0.040	Made in: Melted in: 651000313 Ni 0.030	USA USA 440 cr 0.003 CE:	0.00
Material: 10 Sales order: deat No 7176181 .0000 0 Bundle No 150019542	0.0x10.0x 12954 C B 0.210 0.0070 PCs 22 4	313×40'0"0(2 68 0.730 0.0030 Yield 061200 Psi	2x2). P 0.006 Ten 077	CA O sile	s .002 Psi	Matorial Purchase Si 0.030 Eln.2in 33 %	No: 10 Order: 0.025	0100313 C45200 AI 0.090	4000 2438 Cu 0.001 Ce ASTM A50	Cust Mate Cb 0.012 rtification 000-13 GRA	0.040 DE B&C	Made in: Melted in: 651000313 Ni 0.030	USA USA 40 Cr 0.003 CE:	0.00
Material: 10 Sales order: Heat No Fi 20000 0 Sundle No 450019542 Material Not Haterial Not	0.0x10.0x 12954 C B 0.210 0.0070 PCs 22 4 te: te:	313x40'0"0(2 68 0.730 0.0030 Yield 061200 Psi	2x2). P 0.006 <u>Ten</u> 077	CA O Isile	s .002 Psi	Matorial Purchase Si 0.030 Eln.2in 33 %	No: 10 Order: 0.025	0100313 C45200 AI	4000 2438 Cu 0.001 Cei ASTM ASt	Cust Mate Cb 0.012 rtification 00-13 GRA	erial #: Mo 0.040 DE B&C	Made in: Melted in: 651000313 Ni 0.030	USA USA 40 Cr 0.003 CE:	0.001
Material: 10 Sales order: Heat No Ti 17175181 3.0000 0 3undle No 150019542 Aaterial Not iales Or.No	0.0x10.0x 129540 C 8 0.210 0.0070 PCs 22 4 te: te:	313×40'0"0(2 58 0,730 0.030 Yield 061200 Psi	2x2). P 0.006 Ten 077	CA O Isile	s .002 Psi	Matorial Purchase Si 0.030 Eln.2in 33 %	No: 10 0 Order: 0.025	0100313 C45200 AI	4000 2438 Cu 0.001 Cei ASTM A5(Cust Mate Cb 0.012 rtification DO-13 GRA	orial #: Mo 0.040 DE B&C	Made in: Melted in: 651000313 Ni 0.030	USA USA i40 Cr 0.003 CE:	0.001 0.35
Material: 10 Sales order: leat No 1 7176181 .0000 0 3undle No A50019542 Aaterial Not iales Or.No	0.0x10.0x : 129541 C B 0.210 0.0070 PCs 22 4 te: te: by Quality	313×40'0"0(2 68 0.730 0.0030 Yield 061200 Psi	2×2). P 0.006 Ten 077	CA 0 1180 I	s .002 Psi	Matorial Purchase Si 0.030 Eln.2in 33 %	No: 10	0100313 C45200 AI	4000 2438 Cu 0.001 Cer ASTM A50	Cust Mate Cb 0.012 rtification 00-13 GRA	orial #: Mo 0.040 DE B&C	Made in: Melted in: 651000313 Ni 0.030	USA USA 40 Cr 0.003 CE:	0.001
Material: 10 Sales order: Heat No 1 7176181 .0000 0 Bundle No 150019542 Material Not Haterial Not sales Or.No	0.0x10.0x c 12954 c 8 0.210 0.0070 PCs 22 4 te: te: by Quality reported a and con d usi 97	313x40'0"0(2 68 0.730 0.0030 Yield 061200 Psi 061200 Psi Assurance: on this report tract requirem	P 0.006 Ten 077 O77	CA O Isila 1180 I Sent tl od.	S .002 Psi he ac	Matorial Purchase Si 0.030 Eln.2in 33 %	No: 10 0 Order: 0.025	0100313 C45200 AI 0.090	4000 2438 Cu 0.001 Ce ASTM A50	Cust Mate Cb 0.012 rtification D0-13 GRA	orial #: Mo 0.040 DE B&C	Made in: Melted in: 651000313 Ni 0.030	USA USA Cr 0.003 CE:	0.00 0.35 plicable
Alterial: 10 Material: 10 Sales order: leat No 1 7176181 10000 0 Sundle No 150019542 1aterial Not ales Or.No uthorized b he results in Socification Construction Construt	0.0x10.0x 12954 C 8 0.210 0.0070 PCs 22 4 te: te: te: te: Stitution NORTH AME	Assurance: Assura	P 0.006 Ten 077 O77 represents. meth	CA 0 isila 1180 I sent tl od.	S .002 Psi	Matorial Purchase Si 0.030 Eln.2in 33 %	No: 10 0 Order: 0.025 s of the 2 Of	0100313 C45200 AI 0.090 material	4000 2438 Cu 0.001 ASTM A50	Cust Mate Cb 0.012 rtification 00-13 GRA and indicat	0.040 0.040 DE B&C a full co	Made in: Melted in: 651000313 Ni 0.030	USA USA Cr 0.003 CE: th all ap	0.00 0.35 plicable
Atterial: 10 Atterial: 10 Sales order: leat No i 7175181 150019542 Isterial Not ales Or.No undle No undle No undle No undle Sor.No undle Sor.No	D.Ox10.0x 12954 C B 0.210 0.0070 PCs 22 4 te: by Quality reported and cont Stitut NORTH AME	Assurance: Assurance: on this report tract requirem MS D1.1 CA	P P 0.006 Ten 077 represents. meth	CA 0 1180 I 1180 I Sont ti od.	S .002 Psi	Matorial Purchase Si 0.030 Eln.2in 33 %	No: 10 0 Order: 0.025	0100313 C45200 AI 0.090 material	4000 2438 Cu 0.001 Cei ASTM A5ti	Cust Mate Cb 0.012 rtification DO-13 GRA and indicat	o.040 DE B&C o full co	Made in: Melted in: 651000313 Ni 0.030	USA USA 40 cr 0.003 CE: th all ap	0.00 0.35 plicable

Figure A-20. 17¹/₂-in. Long, 8-in. x 6-in. x ¹/₄-in. Steel Blockout, Test Nos. HWTT-1 and HWTT-2

STEEL & PIPE SUPPLY-NEW CENTURY

STEEL & PIPE SUPPLY CO., INC. - BILL TO

SH0000065644

MATERIAL TEST REPORT ORIGINAL

M/C No. <u>MC0000056391</u> Date <u>03/01/2019</u>

MARUICHI LEAVITT PIPE & TUBE, LLC

1717 W. 115th St. Chicago, IL 60643

TEL: (773) 239-7700 FAX: (773) 239-1023

1	0070	L NIS - C	1	1			0						-	-			Hydrostatic	1	
	SPEC	PCS	1		Che	emical	Com	posit	ion(L	adle	Analy	(SIS)		le	nsile l'est		Test	Bending	
	SIZE	Calculated	Heat No	C (%)	Si (%)	Mn	P (%)	S (%)	Cu (%)	Ni (%)	Cr (%)	Mo (%)	V (%)	Yield	Tensile	Elong	Pressure (PSI)	Flattening	Remarks
	Customer PO No. / Customer Item No.	Wt(LBS)		X 100	X 100	100	X 1000	(PSI)	(PSI)	(%)	Result	Test							
	1 ASTM A500/A500M-13 GRADE B ERW TUBING 6IN x 3IN x 0.188IN x 20FT HRB 4500324823 / 6660030018820	48 10,272	A59120	18	4	69	9	2	30	20	40	6	5	61,851	72,499	26			SA0000158644
	2 ASTM A500/A500M-13 GRADE B ERW TUBING 6IN x 3IN x 0.375IN x 20FT HRB 4500324823 / 6660030037520	16 6,344	A58347	6	4	114	9	2	30	20	40	8	7	60,461	66,694	28			SA0000158644
	3 ASTM A500/A500M-13 GRADE B ERW TUBING 7IN x 5IN x 0.250IN x 40FT HRB 4500324823 / 6670050025040	9 6,848	821C10790	19	1	80	13	4	15	10	30	4	1	57,856	74,471	32			SA0000158644
4	ASTM A500/A500M-13 GRADE B ERW TUBING 8IN x 3IN x 0.188IN x 20FT HRB 4500324823 / 6680030018820	12 3,180	821C10780	18	1	76	11	5	19	10	30	6	1	58,686	68,054	33			SA0000158644
-	ASTM A500/A500M-13 GRADE B ERW TUBING 12IN x 4IN x 0.250IN x 40FT HRB 4500324823 / 66120040025040	6 6,196	B46771	18	3	70	8	2	20	10	40	8	1	64,078	74,433	30			SA0000158644
6	ASTM A500/A500M-13 GRADE B ERW TUBING 5IN x 5IN x 0.250IN x 40FT HRB 4500324845 / 6550025040	5 3,124	B49151	20	2	66	9	6	20	10	40	3	1	56,484	75,312	25			SA0000158646

Made and Melted in The U.S.A.

This material has not come in direct contact with mercury during the manufacturing or testing processes. No Weld Repair.

Remarks:

BL No.

Destination

Supplier

We hereby certify that the material described herein conforms fully to the said specification.

Maruichi Leavitt Pipe & Tube, LLC

F-824-101 - Rev. 0

Figure A-21. 17¹/₂-in. Long, 12-in. x 4-in. x ¹/₄-in. Steel Blockout, Test Nos. HWTT-1 and HWTT-2

MONDO P Plastics From T	OLYMER TEC	CHNOLOGIES INC.	MATER	IAL CE	RTIFICA	TE
P.O. BOX 250			SHIPMENT	NUMBER:	34545	
27620 ST. RT. RENO, OH 45	7 NORTH 773		SHIPMEI	NT DATE:	4/4/2019	
Phone: 740-376 Fax: 740-376-9 (888) 607-4790	5-9396 960			PAGE:	2	
CONS	IGNED TO		SHIP TO			
Midwe	st Roadside Safety		Midwest Roadsi	de Safety		
Lincoln	NE 68524		4630 NW 36th S Lincoln, NE 685	Street 524		
CONSIGNED	ITEM NUMBER	DESCRIPTIO	N	LOT #	SHIP	VIA
4	M <mark>GS14S</mark> H	Midwest Composite Block 14 Steel Post	4" h x 12" d for	1904/100) FedEx F	reight

MADE IN USA

The composite guardrail blocks for the Midwest Guardrail System are manufactured by Mondo Polymer Technologies, Inc., and are of the same formulation, composition, and test properties as those which were MASH qualified and and eligible for reimbursement by the Federal Highway Administration under the Federal-aid highway program, Approval #HSST/B-39C.

All materials meet required specifications.

Mesic Ellis Approved by:

Date: 4/4/2019

Print Name: N

Maggie Ellis

Position: General Manager

Figure A-22. $14^{3}/_{16}$ -in. x 12-in. x ¹/₈-in. Composite Recycle Blockout, Test Nos. HWTT-1 and HWTT-2
MONDO POLYMER TECHNOLOGIES INC. Plastics From Today for Tomorrow...

P.O. BOX 250 27620 ST. RT. 7 NORTH RENO, OH 45773

Phone: 740-376-9396 Fax: 740-376-9960 (888) 607-4790

CONSIGNED TO

Midwest Roadside Safety 4630 NV 36th Street Lincoln, NE 68524

MATERIAL CERTIFICATE

SHIPMENT NUMBER: 34545 PURCHASE ORDER HWTT SHIPMENT DATE: 4/4/2019

PAGE: 1

SHIP TO

Midwest Roadside Safety

4630 NW 36th Street Lincoln, NE 68524

CONSIGNED	ITEM NUMBER	DESCRIPTION	LOT #	SHIP VIA
10	GB14SH2	Composite Guardrial Block 14" for Steel Post w/hanger CO	1804/1000	FedEx Freight

MADE IN USA

The composite guardrail offset blocks for the Midwest Guardrail System (MGS), are manufactured by Mondo Polymer Technologies, Inc., and are of the same formulation, composition, and test properties as those which were MASH qualified and eligible for reimbursement by the Federal Highway Administration under the Federal-aid highway program, Approval No. HSST-1/B-278A.

All materials meet required specifications.

Mayie Illis Approved by:

Date: 4/4/2019

Print Name: N

Maggie Ellis

Position: General Manager

Figure A-23. $14^{3}/_{16}$ -in. x 8-in. x ¹/₈-in. Composite Recycle Blockout, Test Nos. HWTT-1 and HWTT-2

	cMASTE	Ce	rtificate of Cor	npliance
600 N County Elmhurst IL 630-600-3600 chi.sales@m	/ Line Rd 60126-2081 0 cmaster.com	University of Nebraska Midwest Roadside Safety Facility M W R S F 4630 Nw 36TH St Lincoln NE 68524-1802 Attention: Shaun M Tighe Midwest Roadside Safety Faci	Purchase Order E000548963 Order Placed By Shaun M Tighe McMaster-Carr Number 7204107-01	Page 1 of 1 08/02/2018
Line	Product		Ordered Ship	ped
1 97812A1	109 Raised-Head Ren	novable Nails, 16D Penny Size, 3" Long, Packs of	5 5 Packs	5
Certificate of	compliance			

This is to certify that the above items were supplied in accordance with the description and as illustrated in the catalog. Your order is subject only to our terms and conditions, available at www.mcmaster.com or from our Sales Department.

Sal Wei-C Sarah Weinberg Compliance Manager

Figure A-24. 16 D Double Head Nails, Test Nos. HWTT-1 and HWTT-2

CMC STEEL OKLAHOMA 584 Old Highway 70 Durant OK 74701-0000

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

n Jacob Selzer - CMC Steel

						Quality	y Assurance Manager	
HEAT NO.:6005053 SECTION: REBAR 19MM (#6) 60'0" GRADE: ASTM A615-18e1 Gr 420/6 ROLL DATE: 01/27/2019 MELT DATE: 01/27/2019 Cert. No.: 82626070 / 005053J053	420/60 0	S Concret O L 6300 Co D Lincoln US 6852 T 4024341 O 4024344	e Industries Inc rnhusker Hwy NE 9-0529 899 899	S H I P T O	Nebco Inc Steel Division Havelock NE US 68529-0000 4024341800		Delivery#: 826260' BOL#: 1731410 CUST PO#: 13511 CUST P/N: DLVRY LBS / HEA DLVRY PCS / HEA	70 0 T: 61280.000 LB T: 680 EA
Characteristic	Value		Characteristic		Value	3	Characteristic	Value
C Mn P S Si Cu Cr Ni Mo V Sn Al NB N Carbon Eq A6 Yield Strength test 1 Yield Strength test 1 Yield Strength test 1 Tensile Strength 1 (metric) Elongation test 1	0.26% 0.90% 0.010% 0.036% 0.26% 0.11% 0.10% 0.033% 0.006% 0.013% 0.004% 0.001% 0.001% 0.001% 0.0081% 0.0081% 0.47% 85.2ksi 588MPa 101.7ksi 702MPa 14%		Elongation Gage Lgth t Bend Test 1 Rebar Deformation Avg. S Rebar Deformation Avg. F Rebar Deformation Max. Bend Test Diameter Uniform Elongation	est 1 Spac Heigh Gap	8IN Passed 0.500IN 0.043IN 0.116IN 3.750IN 7.3%	The Following is *Material i *100% me *EN10204 *Contains *Contains *Manufact of the pla *Meets the *Warning: known to o or other to uwww P	true of the material repre is fully killed and rolled in the USA 2004 3.1 compliant no weld repair no Mercury contamination tured in accordance with the nt quality manual e "Buy America" requiremen This product can expose y the State of California to ce eproductive harm. For mon 65Warnings ca ooy	sented by this MTR: e latest version nts of 23 CFR635.410 you to chemicals which are suse cancer, birth defects e information go

REMARKS:

136

03/12/2019 11:54:14 Page 1 OF 1

Figure A-25. ¾-in. Dia. Unbent Rebar, Test Nos. HWTT-1 and HWTT-2

MATERIAL TEST REPORT

Date Printed: 19-MAR-19

Date Sh	nipped: 19-M	AR-19			Product:	: DEF #4 (1/2")	E.		S	pecificati	on: ASTM	A706/A615 C	GR 60		
				FWIP: 528	315348		Customer:	CONCRETE IN	DUSTRIE	S INC			Cust. PO:	135424	
							P O BOX 2 LINCOLN,	529 NE 68529							
								1999 - 1 _{990 -} 1997 -							
Heat	CHEM	AICA	L AN	ALYS	IS (I	In Weight %	6, uncertair	ty of measu	rement	0.005%)	(H)	eat cast 01/0)3/19)	
Heat Number	CHEN	AICA Mn	L AN P	ALYS	IS (I SI	In Weight % Cu	6, uncertair Ni Ci	ty of measu Mo	rement (Al	0.005% v) B	(H Cb	eat cast 01/0 Sn)3/19) N	Ti

		MEC	HANICA	LPROPERTIES	(Ter	siles test date 01/04	1/19)	
Heat Number	Sample No.		Yield (Psi)	Ultimate (Psi)	Elongation (%)	Reduction (%)	Bend	Wt/ft
605061	01	(MDa)	67853	967930 *****	15.1		ok	0.662
605061	02	(MPa)	467.8 65649 452.6	94460 651.3	15.3		ok	0.662

All melting and manufacturing processes of the material subject to this test certificate occurred in the United States of America. ERMS also certifies this material to be free from Mercury contamination.

Bace hung

Bryce Lakamp Process Control Engineer

This material has been produced, tested and conforms to the

requirements of the applicable specifications. We hereby certify that the

above test results represent those contained in the records of the Company.

Figure A-26. ¹/₂-in. Dia. Rebar, Test Nos. HWTT-1 and HWTT-2

		CE	RTIFIED MATERIAL TH	EST REPORT	20			Page 1/1
GÐ GERDA	CUSTOMER SH NEBCO INC	IP TO	CUSTOMER BILL TO CONCRETE INDUSTRI	ES INC	GRADE 60 (420)	SHAPE / Rebar /	SIZE #4 (13MM)	DOCUMENT ID: 0000000000
US-ML-MIDLOTHIAN	HAVELOCK,N USA	NE 68529	LINCOLN,NE 68529-052 USA	9	LENGTH 60'00"	W1 60,	EIGHT 120 LB	HEAT / BATCH 58035268/02
MIDLOTHIAN, TX 76065 USA	SALES ORDE 6710118/00013	R 30	CUSTOMER MATER	IAL Nº	SPECIFICATION / DATI ASTM A615/A615M-16	E or REVISION		
CUSTOMER PURCHASE ORDER NUMBE 131916	R	BILL OF LADING 1327-0000292103	DATE 08/21/2018					
$ \begin{array}{c} {\rm CHEMICAL\ COMPOSITION} \\ {\rm C} \\ {\rm G} \\ {\rm$	\$ 0.015	Si Cu 0.21 0.22	Ni 0.08	Cr M 0.12 0.0	10 Sn 60 0.004	V % 0.002	Nb % 0.013 0.0	A1 % 003
CHEMICAL COMPOSITION CEqyA706 0.62								
MECHANICAL PROPERTIES VS PSI 64453	MPa 444	UTS PSI 103375	UTS MPa 713		G/L Inch 8.000	G/L mm 200.0		
MECHANICAL PROPERTIES Elong. 13.70	BendTest OK							
COMMENTS / NOTES								
The above figures an specified requirement	e certified chemical an ts. This material, inclu	d physical test records as o iding the billets, was melte	contained in the permanent r ed and manufactured in the U	ecords of company. W JSA. CMTR complies	ve certify that these data are with EN 10204 3.1.	correct and in co	mpliance with	
Max	kary QUA	SKAR YALAMANCHILI LITY DIRECTOR			Wale A. 7	QUALITY A	IPKINS ISSURANCE MGR.	
Phone: (409) 267-	071 Email: Bhaskar. Yala	manchili@gerdau.com			Phone: 972-779-3118 E	mail: Wade.Lumpk	tins@gerdau.com	

Figure A-27. ¹/₂-in. Dia. Rebar, Test Nos. HWTT-1 and HWTT-2

CMC STEEL OKLAHOMA 584 Old Highway 70 Durant OK 74701-0000

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Jacob Seizer - CMC Steel

						Quality	/ Assurance Manager	
HEAT NO.:6005295 SECTION: REBAR 16MM (#5) 60'0" GRADE: ASTM A615-18e1 Gr 420/60 ROLL DATE: 02/10/2019 MELT DATE: 02/10/2019 Cert. No.: 82631779 / 005295J002	420/60 D	S Concrete O L 6300 Cor D Lincoln US 68529 T 40243418 O 4024341	e Industries Inc nhusker Hwy NE 9-0529 399 899	S H I P T O	Nebco Inc Steel Division Havelock NE US 68529-0000 4024341800		Delivery#: 8263177 BOL#: 1736610 CUST PO#: 135113 CUST P/N: DLVRY LBS / HEA DLVRY PCS / HEA	'9 5 T: 110394.000 LB T: 1764 EA
Characteristic	Value		Characteristic		Value		Characteristic	Value
C Mn P S Si Cu Cr Ni Mo V Sn Al NB N Carbon Eq A6 Yield Strength test 1 Yield Strength test 1 Yield Strength test 1 Tensile Strength test 1 Tensile Strength 1 (metric) Elongation test 1	0.28% 0.95% 0.013% 0.037% 0.19% 0.37% 0.10% 0.014% 0.005% 0.014% 0.000% 0.000% 0.0108% 0.000% 0.000% 0.50% 83.0ksi 573MPa 100.0ksi 690MPa 15%		Elongation Gage Lgth te Bend Test 1 Rebar Deformation Avg. S Rebar Deformation Avg. H Rebar Deformation Max. (Bend Test Diameter Uniform Elongation	est 1 Ipaci Ieigh Gap	8IN Passed 0.421IN 0.040IN 0.113IN 2.188IN 10.9%	The Following is *Material i *100% me *EN10204 *Contains *Manufact of the plau *Meets the *Warning: known to or other m	true of the material repress is fully killed lited and rolled in the USA :2004 3.1 compliant no weld repair no Mercury contamination tured in accordance with the nt quality menual a "Buy America" requiremen This product can expose y the State of California to ca eproductive harm. For more rest/Urninee on conv	sented by this MTR: latest version its of 23 CFR635.410 ou to chemicals which are use cancer, birth defects information go

REMARKS :

03/12/2019 13:12:40 Page 1 OF 1

Figure A-28. 5%-in. Dia. Rebar, Test Nos. HWTT-1 and HWTT-2

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

CUSTOMER N	AME:	TRINITY IN	DUSTRIES					
CUSTOMER P	CUSTOMER PO:		187087			SHIF DATE SH	PER #: IPPED:	061972 11/06/2017
LOT#:	30361-P							
SPECIFICATIO	ON:	ASTM A30	el Bolts					
TENSILE: SPEC: HARDNESS:		60,000 psi*min RESULTS: 100 max			66,566 66,832 82,60			
Pounds Per Squa	are Inch.					02.70		
COATING: ROGERS GAL	ASTM SF .VANIZE:	PECIFICATIO 30361-P CI	DN F-2329 HC	OT DIP GALV	JANIZE			
MILL		GRADE	HEAT#	С	Mn	ρ	S	Si
NUCOR		1010	DL17100590	.10	.41	.005	.005	.05
QUANTITY AND	DESCRIPT			Ŧ				
4,825	PCS 5/8 P/N 3540	G G	ard rail bol	-1				
WE HEREBY CEP	TIFY THE A	OVE BOLTS H	IAVE BEEN MAN	UFACTURED E	BY ROCK	FORD BOLT A	ND STEEL	. AT OUR FAC

20/7

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS ember

McComas OVED SIGNATORY

11/6/17

OFFICIAL SEAL MERRY F. SHANE NOTARY PUBLIC - STATE OF ILLINOIS NY COMMISSION EXPIRES OCTOBER 3, 2018

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

CUSTOMER NAME: GREGORY INDUSTRIES CUSTOMER PO: 39864 SHIPPER #: 063466 DATE SHIPPED: 05/24/2018 LOT#: 0920-B ASTM A307, GRADE A MILD CARBON STEEL BOLTS SPECIFICATION: TENSILE: SPEC: 60,000 psi*min RESULTS: 79,300 76,800 HARDNESS: 100 max 90.00 90.80

*Pounds Per Square Inch.

COATING: ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE AZZ GALVANIZING: 30920-B

CHEMICAL COMPOSITION

MILL	GRADE	HEAT#	C	Mn	Р	S	Si
MID AMERICAN STEEL & WIRE	1012	1721198	.13	.51	.016	.027	.19

10

20,700 PCS 5/8" X 10" GUARD RAIL BOLT P/N 1010G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS

5/31/18 clomas VED SIGNATORY

OFFICIAL SEAL MERRY F. SHANE NOTARY PUBLIC - STATE OF ILLINOIS MY COMMISSION EXPIRES OCTOBER 3, 2018

Figure A-30. %-in. Dia. 11 UNC, 10-in. Long Guardrail Bolts, Test Nos. HWTT-1 and HWTT-2

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

CUSTOMER NAME:

CUSTOMER PO: 40787

SHIPPER #: 063741 DATE SHIPPED: 06/29/2018

LOT#: 30934-B

SPECIFICA	TION:	ASTM A307, GRADE	A MILD CARBON S	TEEL BOLTS
TENSILE:	SPEC:	60,000 psi*min	RESULTS:	66,100
a manual and		•		65,400
HARDNESS	S:	100 max		65.60
				65.20

GREGORY INDUSTRIES

*Pounds Per Square Inch.

COATING: ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE AZZ GALVANIZING: 30934-B

CHEMICAL COMPOSITION

MILL	GRADE	HEAT#	C	Mn	Р	S	Si
CHARTER STEEL	1010	10553090	.08	.38	.005	.011	.090

QUANTITY AND DESCRIPTION:

7,000 PCS 5/8" X 1.25" GUARD RAIL BOLT P/N 1001G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS

OFFICIAL SEAL MERRY F. SHANE NOTARY PUBLIC - STATE OF ILLINOIS

7/3/18

MY COMMISSION EXPIRES OCTOBER 3, 2018

Figure A-31. %-in. Dia. 11 UNC, 1¼-in. Long Guardrail Bolts, Test Nos. HWTT-1 and HWTT-2

From: 281-391-20	944 To: The Boulder Company	Date: 5/24/2012 Time: 3:34:00 PM	Page 2 of 2
		May 24, 2012	
K-T Bolt N 1150 Katy F Katy, Texas Ph: 281-391 shirley@k-	Ianufacturing Company, Inc.@ ort-Bend Road 77494 2196 Fax: 281-391-2673 tbolt.com	Date: May 24,2012	*
		Angener Wall rest heport	
Company: Part Descrip Material Sp Coating Spe Purchase O: Lot Number Comments: Material He Testing Lab	otion: ecification: cification der Number: : at Number: oratory: C Mn P S Si Cu .13 .69 .018 .030 .20 .26 100% Melted & Manu Tensil	The Boulder Company 125 pcs % - 11X 9 ½"Finish Hex Bolts A307 A ASTM F2329-05 161005 08334-1 None JK1110419701 Nucor Cr Ni Mo V Cb Sn Al B Ti Ca Co N .12 .09 .020 .003 .002 .13ctured in the USA. Values reflect originating Steel Mill e and Hardness Test Results	
Property Tensile: Proof/Yield: Elongation: ROA: Hardness:	#1 psi 70.550 52.360 27.5 149 HBN Test results m	<u>Comments</u> eet mechanical requirements of specification.	

All reports are the exclusive property of K-T Bolt Manufacturing Company, Inc & Any reproduction must be in their entirety and at the permission of same.

Figure A-32. 5%-in. Dia. 11 UNC, 10-in. Long Hex Head Bolts, Test Nos. HWTT-1 and HWTT-2

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z.,JIASHAN,ZHEJIANG,P.R.CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 110161336 COMMODITY : HEX MACHINE BOLT GR-A SIZE : 5/8-11X1-1/2 NC LOT NO : 1B1450923 SHIP QUANTITY : 2,400 PCS LOT QUANTITY 14,959 PCS HEADMARKS : CYI & 307A

MANUFACTURE DATE : 2014/08/11

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2019/04/18 PACKING NO: GEM140901009 INVOICE NO: GEM/FNL-140917WI-2 PART NO: 1191919 SAMPLING PLAN: ASME B18. 18-2017 (Category. 2) /ASTM F1470-2018 HEAT NO: 14300105-3 MATERIAL: X1008A FINISH: HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A307-2014 Chemistry MN% P% **S%** SI% C% AL% Spec. : MIN. MAX. 0.3300 1.2500 0.0410 Test Value 0.0340 0.1000 0.3400 0.0120 0.0090 0.0300

DIMENSIONAL INSPECTIONS :ACCORDING TO ASME B18. 2. 1-2012

		SAMPLED BY: TAO JIA MIN						
INSPECTIONS ITEM	SAMPLE	SPECIFIED	ACTUAL RESULT	ACC.	REJ			
MAJOR DIAMETER	4 PCS	0.6130-0.6250 inch	0.6190-0.6210 inch	4	0			
WIDTH ACROSS CORNERS	4 PCS	1.0330-1.0830 inch	1.0540-1.0610 inch	4	0			
HEIGHT	4 PCS	0.3780-0.4440 inch	0.3940-0.3980 inch	4	0			
NOMINAL LENGTH	15 PCS	1.4200-1.5600 inch	1.4610-1.4680 inch	15	0			
WIDTH ACROSS FLATS	4 PCS	0.9060-0.9380 inch	0.9260-0.9290 inch	4	0			
SURFACE DISCONTINUITIES	29 PCS	ASTM F788-2013	PASSED	29	0			
THREAD	4 PCS	ASME B1.1-2003 nut	PASSED	4	0			

MECHANICAL PROPERTIES : ACCORDING TO ASTM A 307-2014

				SAMPLE	DBY: GDAN LIAN		
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	13 PCS	ASTM F606-2016		69-100 HRB	82-84 HRB	13	C
TENSILE STRENGTH	3 PCS	ASTM F606-2016		Min. 60 KSI	76-78 KSI	3	0
PLATING THICKNESS (µ m)	5 PCS	ASTM B568-1998		>=53	62.76-69.38	5	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER WE CERTIFY THAT ALL PRODUCTS WE SUPPLIED ARE IN COMPLIANCE WITH DIN EN 10204 3.1 CONTENT

Quality Supervisor:

grin

page 1 of 1

Figure A-33. ⁵/₈-in. Dia. 11 UNC, 1¹/₂-in. Long Hex Head Bolts, Test Nos. HWTT-1 and HWTT-2

Web: www.portlandbolt.com | Email: sales@portlandbolt.com

Phone: 800-547-6758 | Fax: 503-227-4634

3441 NW Guam Street, Portland, OR 97210

CERTIFICATE OF CONFORMANCE |

For: MIDWEST ROADSIDE SAFETY FACIL PB Invoice#: 119382 Cust PO#: CHAT Date: 4/08/2019 Shipped: 4/09/2019

We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.

Des	cripti	on: 7/8	X 16 GA	LV ASTM	F3125	GRADE A325	HEAVY HE	X BOLI	Г	
H	eat#: (75071284	+	Base St	teel: 4	140	Diam:	7/8		
Sou	rce:	KREHER ST	EEL CO	LLC		Proof Lo	ad: 39	,250 I	BF	
с:	.400	Mn:	.880	Р:	.010	Hardness	: 269	HBN		
s :	.018	Si:	.240	Ni:	.140	Tensile:	59,480	LBF	RA:	.00%
Cr:	1.010	Mo:	.170	Cu:	.210	Yield:	0		Elon:	.00%
Pb:	.000	v :	.003	Cb:	.000	Sample L	ength:	0		
N :	.000			CE:	.6562	Charpy:			CVN Temp:	

LOT#18895

Nuts:

ASTM A563DH HVY HX

Coatings:

ITEMS HOT DIP GALVANIZED PER ASTM F2329/A153C

Other:

ALL ITEMS MELTED & MANUFACTURED IN THE USA

Ву Certification Department Quality Assurance Dane McKinnon

Figure A-34. ⁷/₈-in. Dia. 9 UNC, 16-in. Long Heavy Hex Head Bolts, Test Nos. HWTT-1 and HWTT-2

No. 4682 P. 3

Certificate of Compliance

Sold To:	Purchase Order	
UNL TRANSPORTATION	Job:	TL-2 and Bullnose
	Invoice Date:	03/27/2018
THIS IS TO CERTIFY THAT WE HAVE SUP THESE PARTS WERE PURCHASED TO	PLIED YOU WITH THE O THE FOLLOWING SP	FOLLOWING PARTS. ECIFICATIONS.
5 PCS 7/8"-9 x 8" ASTM A307 Grade A Hot Dipped Galvanized He UNDER PART NUMBER 92005	x Bolt SUPPLIED UNDE	R OUR TRACE NUMBER line35042 AND
20 PCS 7/8"-9 Hot Dip Galvanized Finish Grade A Finished Hex Nu UNDER PART NUMBER 36717	t SUPPLIED UNDER OU	IR TRACE NUMBER 110254885 AND
5 PCS 7/8"-9 x 8" ASTM A307 Grade A Hot Dipped Galvanized He: UNDER PART NUMBER 92005	x Bolt SUPPLIED UNDE	R OUR TRACE NUMBER line35042 AND
5 PCS 7/8"-9 x 8" ASTM A307 Grade A Hot Dipped Galvanized He; UNDER PART NUMBER 92005	x Bolt SUPPLIED UNDE	R OUR TRACE NUMBER line35042 AND
5 PCS 7/8"-9 x 8" ASTM A307 Grade A Hot Dipped Galvanized Her UNDER PART NUMBER 92005	k Bolt SUPPLIED UNDE	R OUR TRACE NUMBER line35042 AND
		7
		8
This is to certify that the above document is true and accurate to the best of my knowledge.	Please check current r	evision to avoid using obsolete copies.
April and	This document was pr time.	inted on 04/12/2018 and was current at that
Fastenal Account Representative Signature	Fastenal Store Locat	ion/Address
Printed Name	3201 N. 23rd Street S LINCOLN, NE 68521 Phone #: (402)476-79 Em #: 402(476-7050	TE 1 00
<u>4/12/18</u>	сил н. 402/4/0-/938	\$

Page 1 of 1

Figure A-35. 7/8-in. Dia. 9 UNC, 8-in. Long Hex Head Bolts, Test Nos. HWTT-1 and HWTT-2

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

CUSTOMER NAME:

CUSTOMER PO:

SHIPPER #: 059943 DATE SHIPPED: 03/07/2017

 LOT#:
 29221

 SPECIFICATION:
 ASTM A307, GRADE A MILD CARBON STEEL BOLTS

 TENSILE:
 SPEC:
 60,000 psi*min
 RESULTS:
 68,460

 HARDNESS:
 100 max
 71.30
 71.60

TRINITY INDUSTRIES

182402

*Pounds Per Square Inch.

COATING: ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE ROGERS GALVANIZE: 29221

CHEMICAL COMPOSITION

MILL	GRADE	HEAT#	С	Mn	Р	S	Si
CHARTER	1010	10439100	.09	.40	.008	.011	.090

QUANTITY AND DESCRIPTION:

10,400 PCS 5/8" X 2" GUARD RAIL BOLT . P/N 3400G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS PURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE MF ON THIS 3/7 MAR OVED SIGNATORY DATE MERRY F. SHANE NOTARY PUBLIC - STATE OF ILLINOIS MY COMMISSION EXPIRES OCTOBER 3. 2018

Figure A-36. ⁵/₈-in. Dia. 11 UNC, 2-in. Long Guardrail Bolts, Test Nos. HWTT-1 and HWTT-2

DECKER MANUFACTURING CORPORATION 703 N. Clerk Street Albien, Michigan 49324 5×517 623 3955 • 7. 517,623,8535

Printed:	7/28/2017	10:29:02 AM
July 28	2017	
	1	

TRINITY HWY PRODUCTS LLC	55
550 E ROBBAVENUE	
LIMA, OH 45801	

PRODUCT MATERIAL CERTIFICATION

CUSTOMER PART NUMBER :	003340G	INVOICE:	137831
CUSTOMER P.O. NUMBER :	184358 B1		

LOT NUMBER:	17-35-017	DESCRIPTION:	5/8 GRD RAIL NUT .031
DATE:	Jan 17, 2017	QUANTITY:	72,000
HEAT NUMBER:	10470360	MATERIAL SUPPLIER:	CHARTER STEEL
MATERIAL:	STEEL - C1010		

We certify the product above was manufactured at DECKER MANUFACTURING CORPORATION from the specified raw material and that said product is certified to be manufactured, randomly sampled, tested and/or inspected and conforms to applicable specifications. We additionally certify that said raw material was domestically manufactured in the United States of America and that said raw material was manufactured free of mercury contamination.

The items were processed under the Decker Quality Manual. The current revision is dated January 12, 2005 No welding was performed.

This document accurately represents values and statements provided by our suppliers accredited testing facility. The original metallurgical test report shall be retained on file by DECKER MANUFACTURING CORPORATION for a period of not less than (10) years.

CHEMICAL ANALYSIS BY MATERIAL SUPPLIER

CARBON :	0.090
----------	-------

MANGANESE: 0.440

SULFUR: 0.009

PHOSPHOROUS : 0.006

CORPORATION DECKER MANUFACTURING

Russel L. Wilson Quality Assurance Manager

The above results partain only to the items tested. This report shall not be reproduced except in full without the approval of this testing facility.

Figure A-37. 5%-in. Dia. 11 UNC, Heavy Hex Nuts, Test Nos. HWTT-1 and HWTT-2

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR

ROAD,E.D.Z.,JIASHAN,ZHEJIANG,P.R.CHINA PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 110254885 COMMODITY : FINISHED HEX NUT GR-A SIZE : 7/8-9 NC 0/T 0.56MM LOT NO : 1N1810005 SHIP QUANTITY : 9,000 PCS LOT QUANTITY 55,748 PCS HEADMARKS :

MANUFACTURE DATE : 2018/01/05

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2018/03/28 PACKING NO: GEM180115010 INVOICE NO: GEM/FNL-180201WI-1 PART NO: 36717 SAMPLING PLAN: ASME B18.18-2011 (Category. 2) /ASTM F1470-2012 HEAT NO: 331704677 MATERIAL: XGML08 FINISH: HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

 Chemistry
 AL%
 C%
 MN%
 P%
 S%
 SI%

 Spec. : MIN.
 Sime
 <t

MAX.		0.5800		0.1300	0.2300	
Test Value	0.0360	0.0600	0.4500	0.0140	0.0030	0. 0300

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 2. 2-2015

		SAMPLED BY : WDANDAN						
INSPECTIONS ITEM	SAMPLE	SF	ECIFIED	ACTUAL RESULT	ACC.	REJ		
WIDTH ACROSS CORNERS	5 PCS		1.4470-1.5160 inch	1.4850-1.4930 inch	5	0		
FIM	15 PCS	ASME B18. 2. 2-2015	Max. 0.0250 inch	0.0110-0.0200 inch	15	0		
THICKNESS	5 PCS		0.7240-0.7760 inch	0.7460-0.7570 inch	5	0		
WIDTH ACROSS FLATS	5 PCS		1.2690-1.3120 inch	1.2930-1.2980 inch	5	0		
SURFACE DISCONTINUITIES	29 PCS		ASTM F812-2012	PASSED	29	0		
THREAD	15 PCS		GAGING SYSTEM 21	PASSED	15	0		

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2015

			SAMPLED BY : TANGHAO									
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.					
CORE HARDNESS	15 PCS	ASTM F606-2014		68-107 HRB	86-90 HRB	15	0					
PROOF LOAD	5 PCS	ASTM F606-2014		Min. 31,416 LBF	OK	5	0					
PLATING THICKNESS(µm)	29 PCS	ASTM B568-1998		>=53	62. 38-62. 57	29	0					

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

Grin

page 1 of 1

Figure A-38. 7%-in. Dia. 9 UNC, Hex Nuts, Test Nos. HWTT-1 and HWTT-2

			нах 815-224-3434					
	Job No:	29966	Job Informa	ıtion	Certified	Date: 2/2	21/19	
	Customer:			Ship	То:			
Custo	mer Part No:							
Cust	omer PO No:			Ship	ped Qty:			
	Lot Number:	29966-189069						
		5	Part Informa	tion				-
	Part No: Name:	A563 7/8-9 +0.022 DH HI ASTM A563 HHN, Grade Dye	HN HDG BLUE DYE DH, Hot Dipped Gal	-0 v, Blue				
Manufactu	red Quantity:	87,660						
			Applicable Speci	fications				
	Specifi	cation	Amend	1	Specification		1 1	Amend
ASME B1.1	633 • 6440 44500		2003	ASME B18.2.2			2015	
4SME B18.2	2.6		2010	ASTM A563			2015	
ASTM F2329	9/F2329M		2015	ASTM F606/60	16M		2016	
ASTM F812			2017					
est Results	7. 71. 4500 D							
est NO. 1920	Test. Abob D	Tomporing Tomp (900	Proof Long	Shan		Thread	Provinion	Vieuel A S
Description	Hardness (HF	(800 degree F Min)	(Pass/Fail) (AST	M Min) AS	ME B18.2.2	ASME	B18.1.1	F812
Sample Inspection	29.7	1,202	69,300		Pass	P	ass	Pass
			Certified Chemica	l Analysis				
Heat No 189069	Grade Manu 1045 Alton	facturer Origin C	Mn 0.7300 1	P S	0.2100	Cr 0.1250	Ni	Cu 0.1900
100000	To to Transit		Notes	0.0200	0.2100	0.1200	1 0.0110	0.1000
tests are in a ie samples te erformed in th	accordance with 1 sted conform the e production of th nelted and manu	the latest revisions of the met specifications as described/i he products. No heats to whic factured in the U.S.A. and the epresentation of information p h this document and may not	hods prescribed in the sted above and were r h Bismuth, Selenium, T e product was manufac provided by the materia be reproduced except	applicable SAE ar ianufactured free 'ellurium, or Lead tured and tested i I supplier and our in full.	of MSTM Specific of mercury conta was intentionally n the U.S.A. testing laboratory	ations . mination an added have . This certifi	d there is n been used ed material	o welding to produce test report
oducts. he steel was r e certify that t ates only to t	he items listed or				10			

Figure A-39. 7/8-in. Dia. 9 UNC, Heavy Hex Nuts, Test Nos. HWTT-1 and HWTT-2

No. 6648 P. 2

Certificate of Compliance

Sold To:		Purchase Order:	70acct BCTAnchorCableHardware
UNL TRANSPORTATION/Midwest Roadside Safe	ž	Job:	
		Invoice Date:	10/19/2018

THIS IS TO CERTIFY THAT WE HAVE SUPPLIED YOU WITH THE FOLLOWING PARTS. THESE PARTS WERE PURCHASED TO THE FOLLOWING SPECIFICATIONS.

200 PCS 1" x 2.500" OD Low Carbon Hot Dipped Galvanized Finish Steel USS General Purpose Flat Washer SUPPLIED UNDER OUR TRACE NUMBER 210151571 AND UNDER PART NUMBER 33188

200 PCS 1"-8 Hot Dipped Galvanized A563 Grade DH Heavy Hex Nut Made In USA SUPPLIED UNDER OUR TRACE NUMBER 210157128 AND UNDER PART NUMBER 38210

This is to certify that the above document is true and accurate to the best of my knowledge.

Fastenal Account Representative Signature

Please check current revision to avoid using obsolete copies.

This document was printed on 04/17/2019 and was current at that time.

Fastenal Store Location/Address

3201 N. 23rd Street STE 1 LINCOLN, NE 68521 Phone #: (402)476-7900 Fax #: 402/476-7958

Page 1 of 1

Figure A-40. 1-in. Dia. 8 UNC, Heavy Hex Nuts, Test Nos. HWTT-1 and HWTT-2

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER : GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z., JIASHAN, ZHEJIANG, P.R.CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 110216407 COMMODITY : FINISHED HEX NUT GR-A SIZE : 67/8-11 NC 0/T 0.51MM LOT NO : 1N1680027 SHIP QUANTITY : 23, 400 PCS LOT QUANTITY : 170, 278 PCS HEADMARKS : Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2017/03/23 PACKING NO: GEM160919007 INVOICE NO: GEM/FNL-160929WI PART NO: GEM/FNL-160929WI PART NO: GEM/FNL-160929WI PART NO: GEM18 SAMPLING PLAN: ASME B18. 18-2011 (Category. 2) /ASTM F1470-2012 HEAT NO: G31608011 MATERIAL: ML08 FINISH: HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

MANUFACTURE DATE : 2016/08/26 COUNTRY OF ORIGIN : CHINA R#17-507 H#331608011 BCT Cable Bracket Nuts

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A563-2007

Chemistry	AL%	C%	MN%	P%	S%	SI%
Spec. : MIN.						
MAX.		0.5800		0.1300	0.2300	
Test Value	0. 0350	0.0700	0. 4100	0.0160	0.0060	0.0500

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 2. 2-2010

			SAMPLE	DBY: DWTING		
INSPECTIONS ITEM	SAMPLE	SP	ECIFIED	ACTUAL RESULT	ACC.	REJ.
WIDTH ACROSS CORNERS	6 PCS		1.0510-1.0830 inch	1.0560-1.0690 inch	6	0
FIM	15 PCS	ASME B18. 2. 2-2010	Max. 0.0210 inch	0.0020-0.0040 inch	15	0
THICKNESS	6 PCS		0.5350-0.5590 inch	0.5390-0.5570 inch	6	0
WIDTH ACROSS FLATS	6 PCS		0.9220-0.9380 inch	0.9240-0.9340 inch	6	0
SURFACE DISCONTINUITIES	29 PCS		ASTM F812-2012	PASSED	29	0
THREAD	15 PCS		GAGING SYSTEM 21	PASSED	15	0

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2007

	SAMPLED BY: GDAN LIAN									
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.			
CORE HARDNESS	15 PCS	ASTM F606-2014		68-107 HRB	79-81 HRE	15	0			
PROOF LOAD	4 PCS	ASTM F606-2014		Min. 90 KSI	OK	4	C			
PLATING THICKNESS(µm)	5 PCS	ASTM B568-1998		>=53	70. 02-75. 81	5	0			

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

1 rin

page 1 of 1

Figure A-41. 5%-in. Dia. Hex Nuts, Test Nos. HWTT-1 and HWTT-2

CERTIFIED MATERIAL TEST REPORT FOR USS FLAT WASHERS HDG

FACTORY: IFI & Morgan Ltd ADDRESS: Chang'an North Roa	ad, Wuyuan Town, Hai	yan,Zhejia	REPORT DATE: ing, China	23/4/2018	
SAMPLING PLAN PER ASME B18. SIZE: USS 7/8 HDG	.18-11 QNTY(Lot size):	3600PCS	PO NUMBER:	170077928	
HEADMARKS: NO MARK			PART NO:	33187	
DIMENSIONAL INSPECTIONS		SPECIFIC	CATION: ASTM B18.2	1.1-2011	
CHARACTERISTICS ************************************	SPECIFIED ********	******	ACTUAL RESULT	' ACC.	REJ. ******
APPEARANCE	ASTM F844		PASSED	100	0
OUTSIDE DIA	2.243-2.280		2.246-2.254	10	0
INSIDE DIA	0.931-0.968		0.956-0.965	10	0
THICKNESS	0.136-0.192		0.136-0.157	10	0
CHARACTERISTICS TEST N	/ETHOD SPE ********* *****	CIFIED ********	ACTUAL RESULT	' ACC. * *******	REJ. ******
HOT DIP GALVANIZED ASTM	F2329-13 Min).0017"	0.0017-0.0020 in	. 8	0
ALL TESTS IN ACCORDANCE	WITH THE METHO	DS PRES	CRIBED IN THE A	PPLICABLE	
ASTM SPECIFICATION. WE	CERTIFY THAT TH	IS DAIA	IS A TRUE REP	RESENTAT	ION OF
INFORMATION PROVIDED B	Y THE MATERIAL ST	JPPLIER	ANR COUR TESTIN	NG LABOR	ATORY.
ISO 9001:2015 SGS Certificate # 1	HK04/0105	100	Mononin		
		合检	验专用章		
		QUANI (SIGNAT	LITY CONTROL	B MGR.)	

Figure A-42. 7/8-in. Plain USS Washers, Test Nos. HWTT-1 and HWTT-2

CERTIFIED MATERIAL TEST REPORT FOR USS FLAT WASHERS HDG

FACTORY: IFI & Morgan Lto ADDRESS: Chang'an North F	l Road, Wuyuan Town	, Haiyan,Zhejia	REPORT DATE: ang, China	22/10/2018	
SAMPLING PLAN PER ASME B SIZE: USS 1 HDG	18.18-11 QNTY(Lot size):	3240PCS	PO NUMBER:	210151571	
HEADMARKS: NO MARK			PART NO:	33188	
DIMENSIONAL INSDECTIONS		ODECHER		19 01 1 0011	
CHARACTERISTICS	SPECIFIED *********	57ECIFIC	ACTUAL RESU	JLT ACC.	REJ. ******
APPEARANCE	ASTM F844		PASSED	100	0
OUTSIDE DIA	2.492-2.529		2.496-2.504	10	0
INSIDE DIA	1.055-1.092		1.080-1.089	10	0
THICKNESS	0.135-0.192		0.135-0.157	10	0
		days durings			
CHARACTERISTICS TES: ************************************	I'METHOD ************************************	SPECIFIED *********	ACTUAL RESU * **************	JLT ACC. **** *******	REJ. ******
HOT DIP GALVANIZED AST	M F2329-13	Min 0.0017"	0.0017-0.0020	in 8	0
ALL TESTS IN ACCORDAN	CE WITH THE M E CERTIEY THA'	ETHODS PRES	CRIBED IN THE	APPLICABLE EPRESENTAT	ION OF
INFORMATION PROVIDED	BY THE MATERIA	AL SUPPLIER	ANR OGA TES	TING LABOR	ATORY.
ISO 9001:2015 SGS Certificate	# HK04/0105	A. B.	Monorally (3)		
		一检	验专用章)	
		QUAN	LITY CONTROL	IAR MOR)	
		(DIO AI	ione of gra.	$L_{III} = MOR, J$	

Figure A-43. 1-in. Plain USS Washers, Test Nos. HWTT-1 and HWTT-2

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015		PAGE 1 of 1 DATE 11/30/2018 TIME 05:54:18			
S O L D 66031-1127		S 13716 H Kansas P 401 Ne T O	City Warehouse w Century Parkway ENTURY KS		
Order Material No. 40320870-0010 72896240A2	Description 1/4 96 X 240 A572GR50 MILL PLAT	Quantity E 2 3,	Weight Customer Part 267.200	Customer PO	Ship Date 11/29/2018
Heat No. E81347 Vendo Carbon Manganese Phosphorus 0.1600 1.0100 0.0070	r SSAB - MONTPELIER WORKS Sulphur Silicon Nickel Chromin 0.0040 0.0300 0.1200 0.07	Chemical Analysis DOMESTIC Mill um Molybdenum Boron C 700 0.0400 0.0000 (SSAB - MONTPELIER WORKS opper Aluminum Titanium 0.2100 0.0370 0.0010	Melted and Manufa Pi Vanadium Columbium Ni 0.0210 0.0000	ctured in the USA roduced from Coil trogen Tin 0.0000 0.0000
	Med	chanical / Physical Propertie	S		
Yield Tensile Yield 78500.000 59700.000 75600.000 56900.000 77700.000 59600.000 78500.000 60400.000	Elong Rckwl 27.40 32.40 29.60 25.00	Grain Charpy 56 50 43 0	Charpy Dr Cl Longitudinal Longitudinal NA	harpy Sz Temperatur 5.0 -20 l 5.0 -20 l 5.0 -20 l 5.0 -20 l	e Olsen
Batch 0005571830 2 EA 3,267.	200 LB DR MECHANICAL TESTS REPORTED ABO	VE ACCURATELY REFLECT INFOR	MATION AS CONTAINED IN THE	RECORDS OF THE CORPORAT	ION.

This test report shall not be reproduced, except in full, without the written approval of Steel & Pipe Supply Company, Inc.

Figure A-44. 3-in. x 3-in. x ¹/₄-in. Square Washer Plate, Test Nos. HWTT-1 and HWTT-2

Tulsa, OK 74121 P: 800-879-8000 F: 800-879-7000

Date: 5/15/2019

Customer: UNIVERSITY OF NEBRASKA-LINCOLN

Customer PO: H42BR

Subject: Certificate of Conformance - HIT RE-500 V3 Adhesive

Quantity: 20 PCS / 2123404 / Injectable mortar HIT-RE 500 V3/500/1

To Whom it May Concern:

This is to certify that the HIT-RE 500 V3 provided on the above referenced order is a high-strength, slow cure two-part epoxy adhesive contained in two cartridges separating the resin from the hardener.

Additionally, this certifies that the product has been seismically and cracked concrete qualified as represented in ICC-ES report ESR- 3814.

Sincerely,

B. Mrtchell

B. Mitchell, Certification Specialist

HILTI, Inc. cocRE500 V3

Figure A-45. Hilti HIT RE-500 V3 Epoxy Adhesive, Test Nos. HWTT-1 and HWTT-2

Appendix B. Vehicle Center of Gravity Determination

Date:	7/1/2019	_ Test Name:	HWTT-1	VIN:	KIVIH	UN4ACODU	00100
Year:	2010	Make:	Hyundai	Model:		Accent	
Vehicle CG E	Determinatio	on					
					Weight		
	Vehicle Equ	ipment			(lb)	20	
	+	Unballasted C	ar (Curb)		2475		
	+	Hub			19		
	+	Brake activation	on cylinder & f	rame	7		
	+	Pneumatic tar	ık (Nitrogen)		30		
	+	Strobe/Brake	Battery		5		
	+	Brake Receive	erWires		6		
	+	CG Plate inclu	iding DAQ		13		
	-	Battery			-33		
		Oil			-12	1	
	-	Interior			-65	1	
	-	Fuel			-18	1	
11 11	-	Coolant			-5		
	<u> </u>	Washer fluid			0		
-	+	Water Ballast	(In Fuel Tank))	0		
	<u>+</u>	Onboard Supp	plemental Batt	ery	0		
						1	
	Note: (+) is add	ded equipment to v Esti	ehicle, (-) is remo mated Total V	oved equipme Veight (Ib)	nt from vehicle 2422]	
Vehicle Dime	Note: (+) is add	ded equipment to v Esti C.G. Calculatic	ehicle, (-) is remo mated Total V ons	ved equipme Veight (Ib)	nt from vehicle 2422]	
Vehicle Dime Wheel Base:	Note: (+) is add nsions for (98.75	ded equipment to v Esti C.G. Calculatic in.	ehicle, (-) is remo mated Total V ons Front Tra	ved equipme Veight (Ib)	nt from vehicle 2422 58.0] in.	_
Vehicle Dime Wheel Base: Roof Height:	Note: (+) is add nsions for (98.75 57.75	ded equipment to v Esti <u>C.G. Calculatic</u> in. in.	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra	ved equipme Veight (Ib) ack Width: ack Width:	58.0 57.75] in. in.	_
Vehicle Dime Wheel Base: Roof Height:	Note: (+) is add nsions for (98.75 57.75	ded equipment to v Esti <u>C.G. Calculatic</u> in. in.	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra	ved equipme Veight (Ib) ack Width: ack Width:	58.0 57.75] 	_
Vehicle Dime Wheel Base: Roof Height:	Note: (+) is add nsions for (98.75 57.75	ded equipment to v Esti C.G. Calculatic in. in.	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra	ved equipme Veight (Ib) ack Width: ack Width:	nt from vehicle 2422 58.0 57.75	in. in.	
Vehicle Dime Wheel Base: Roof Height: Center of Gra	Note: (+) is add nsions for (98.75 57.75 Vity (add (b)	ded equipment to v Esti C.G. Calculatic in. in. 1100C MAS	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra 6H Targets	ved equipme Veight (Ib) ack Width: ack Width:	58.0 57.75] _in.]	Differen
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W	Note: (+) is add nsions for (98.75 57.75 vity /eight (lb) G. (in)	ded equipment to v Esti C.G. Calculatic in. in. 1100C MAS 2420	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra SH Targets ± 55	ved equipme Veight (Ib) ack Width: ack Width:	58.0 57.75 Test Inertia 2407] _ in. _ in. I	Differen
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C	Note: (+) is add nsions for (98.75 57.75 wity /eight (lb) G (in.)	ded equipment to v Esti C.G. Calculatic in. in. 1100C MAS 2420 : 39 :	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4	ved equipme Veight (Ib) ack Width: ack Width:	58.0 57.75 Test Inertia 2407 36.267 0.301] in. in. I	Differen -13 -2.73
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (ir	Note: (+) is add nsions for (98.75 57.75 (vity /eight (lb) G (in.) 1.) n	ded equipment to v Esti C.G. Calculatic in. in. 1100C MAS 2420 : 39 : NA	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4	ved equipme Veight (Ib) ack Width: ack Width:	58.0 57.75 Test Inertia 2407 36.267 0.301 22.864	in. in. I	Differen -13 -2.7: N
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (i	Note: (+) is add nsions for (98.75 57.75 vity /eight (lb) G (in.) 1.) n.)	ded equipment to v Esti C.G. Calculatic in. in. 1100C MAS 2420 39 NA NA NA	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4	ved equipme Veight (Ib) ack Width: ack Width:	58.0 57.75 Test Inertia 2407 36.267 0.301 22.864	in. in. I	Differend -13 -2.7;
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (i Note: Long. CG is Note: Long. CG is	Note: (+) is add nsions for (98.75 57.75 vity /eight (lb) G (in.) 1.) n.) s measured from measured from	ded equipment to v Esti C.G. Calculatic in. in. 1100C MAS 2420 : 39 : NA NA n front axle of test	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle	ved equipme Veight (Ib) ack Width: ack Width:	58.0 57.75 Test Inertia 2407 36.267 0.301 22.864] _ in. _ in. I	— — — — — — — — — — — — — — — — — — —
Vehicle Dime Wheel Base: Roof Height: Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (i Note: Long. CG is Note: Lateral CG	Note: (+) is add nsions for (98.75 57.75 ivity /eight (lb) iG (in.) n.) s measured from	ded equipment to v Esti C.G. Calculatic in. in. 1100C MAS 2420 39 39 NA NA n front axle of test i centerline - positiv	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle ve to vehicle right	ved equipme Veight (Ib) ack Width: ack Width: (passenger)	58.0 57.75 Test Inertia 2407 36.267 0.301 22.864 side] _ in. _ I	Differen -13 -2.7: N
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i Note: Long. CG is Note: Lateral CG	Note: (+) is add nsions for (98.75 57.75 Vity /eight (lb) :G (in.) 1.) n.) s measured from measured from IT (lb)	ded equipment to v Esti C.G. Calculatic in. in. 1100C MAS 2420 : 39 : NA NA n front axle of test i centerline - positiv	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle ve to vehicle right	ved equipme Veight (Ib) ack Width: ack Width: (passenger)	58.0 57.75 Test Inertia 2407 36.267 0.301 22.864 side	- in. - in. I	Differen -13 -2.7; N N
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (i Note: Long. CG is Note: Lateral CG	Note: (+) is add nsions for (98.75 57.75 Vity /eight (lb) :G (in.) 1.) n.) s measured from measured from IT (lb)	ded equipment to v Esti C.G. Calculatic in. in. 1100C MAS 2420 : 39 : NA 2420 : 39 : NA NA m front axle of test t centerline - positiv	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle /e to vehicle right	ved equipme Veight (Ib) ack Width: ack Width: (passenger)	nt from vehicle 2422 58.0 57.75 Test Inertia 2407 36.267 0.301 22.864 side TEST INER	in. in. I	— — — — — — — — — — — — — — — — — — —
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i Note: Long. CG is Note: Lateral CG	Note: (+) is add nsions for (98.75 57.75 (vity /eight (lb) :G (in.) 1.) n.) s measured from measured from IT (lb) Left	ded equipment to v Esti C.G. Calculatic in. in. 1100C MAS 2420 : 39 : NA 2420 : 39 : NA NA m front axle of test t centerline - positiv Right	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra BH Targets ± 55 ± 4 vehicle ve to vehicle right	ved equipme Veight (Ib) ack Width: ack Width: (passenger)	nt from vehicle 2422 58.0 57.75 Test Inertia 2407 36.267 0.301 22.864 side TEST INER	in. in. I TIAL WEIG	Differend -13 -2.73 N N SHT (Ib) Right
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (in Vertical CG (i Note: Long. CG is Note: Lateral CG CURB WEIGH	Note: (+) is add nsions for (98.75 57.75 ivity /eight (lb) :G (in.) 1.) n.) s measured from measured from IT (lb) Left 788	ded equipment to v Esti C.G. Calculatic in. in. 1100C MAS 2420 : 39 : NA 2420 : 39 : NA NA m front axle of test t centerline - positiv Right 785	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4	ved equipme Veight (Ib) ack Width: ack Width: (passenger)	nt from vehicle 2422 58.0 57.75 Test Inertia 2407 36.267 0.301 22.864 side TEST INER Front	in. in. I TIAL WEIG Left 738	Differen -13 -2.7 N SHT (Ib) Right 785
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (i Note: Long. CG is Note: Lateral CG CURB WEIGH Front Rear	Note: (+) is add nsions for (98.75 57.75 (vity /eight (lb) G (in.) n.) s measured from measured from 1T (lb) Left 788 464	ded equipment to v Esti C.G. Calculatic in. in. 1100C MAS 2420 : 39 : NA NA m front axle of test t centerline - positiv Right 785 438	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle /e to vehicle right	ved equipme Veight (Ib) ack Width: ack Width: (passenger)	58.0 57.75 57.75 Test Inertia 2407 36.267 0.301 22.864 side TEST INER Front Rear	- in. - in. - I - TIAL WEIG Left - 738 - 453	Differen -13 -2.7: N SHT (Ib) Right 785 431
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (i Vertical CG (i Note: Long. CG is Note: Lateral CG CURB WEIGH Front Rear	Note: (+) is add nsions for (98.75 57.75 (vity /eight (lb) G (in.) 1.) n.) s measured from measured from IT (lb) Left 788 464	ded equipment to v Esti C.G. Calculatic in. in. 1100C MAS 2420 39 NA 2420 39 NA NA m front axle of test 1 centerline - positiv Right 785 438	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle /e to vehicle right	ved equipme Veight (Ib) ack Width: ack Width:	58.0 57.75 Test Inertia 2407 36.267 0.301 22.864 side TEST INER Front Rear	in. in. I ETIAL WEIG Left 738 453	Differend -13 -2.7; N N BHT (Ib) Right 785 431
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (i Vertical CG (i Note: Long. CG is Note: Lateral CG CURB WEIGH Front Rear FRONT	Note: (+) is add nsions for (98.75 57.75 vity /eight (lb) :G (in.) n.) s measured from measured from tT (lb) Left 788 464 1573	ded equipment to v Esti C.G. Calculatic in. in. 1100C MAS 2420 39 NA 2420 39 NA NA m front axle of test 1 centerline - positiv Right 785 438 Ib	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle /e to vehicle right	ved equipme Veight (Ib) ack Width: ack Width:	nt from vehicle 2422 58.0 57.75 Test Inertia 2407 36.267 0.301 22.864 side TEST INER Front Rear FRONT	in. in. I TIAL WEIG Left 738 453 1523	Differend -13 -2.7; N SHT (Ib) Right 785 431
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial W Longitudinal C Lateral CG (ir Vertical CG (i Vertical CG (i Note: Long. CG is Note: Lateral CG CURB WEIGH Front Rear FRONT REAR	Note: (+) is add nsions for (98.75 57.75 vity /eight (lb) CG (in.) 1.) n.) s measured from measured from tT (lb) Left 788 464 1573 902	ded equipment to v Esti C.G. Calculatic in. in. 1100C MAS 2420 39 NA 2420 39 NA NA m front axle of test 1 centerline - positiv Right 785 438 Ib	ehicle, (-) is remo mated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4 vehicle /e to vehicle right	ved equipme Veight (Ib) ack Width: ack Width:	nt from vehicle 2422 58.0 57.75 Test Inertia 2407 36.267 0.301 22.864 side TEST INER Front Rear FRONT REAR	in. in. I TIAL WEIG Left 738 453 1523 884	Differend -13 -2.7; N SHT (Ib) Right 785 431 Ib Ib

Figure B-1. Vehicle Mass Distribution, Test No. HWTT-1

	Dater Throngo Ito	_ rest name.	HVVII-Z	VIN:	1000	INDER TEST	37040
	Year: 2014	Make:	Dodge	Model:		RAM 1500	
Vehicle	e CG Determinati	ion					
				Weight	Vertical CG	Vertical M	
Vehicle	Fauipment			(lb)	(in)	(lb-in)	
+	Unballaster	d Truck (Curb)		4953	28 190339	139626 75	1
+	Hub			19	14 875	282 625	-
+	Brake activ	vation cylinder 8	frame	8	27 5/8	221	
+	Pneumatic	tank (Nitrogen)		30	26 1/2	795	3
+	Strobe/Bra	ke Batterv		5	26 1/4	131.25	
+	Brake Rece	eiverWires		6	52	312	
ł	CG Plate in	Including DAQ		30	31 1/8	933.75	
_	Battery	<u> </u>		-41	41	-1681	
-	Oil			-10	12	-120	
-	Interior			-84	30	-2520	3
	Fuel			-144	16 1/2	-2376	
	Coolant			-12	34 1/4	-411	1
_	Washer flu	id		-7	36	-252	
+	Water Balla	ast (In Fuel Tan	k)	229	20	4580	
÷	Onboard S	upplemental Ba	attery	13	26 1/4	341.25	
30						0	
						~	
Note: (+)	is added equipment to	vehicle, (-) is remo Estimated Tot Vertical CG	ved equipment al Weight (Ib Location (in.	from vehicle) 4995) 28.0007		0 139863.63	3
Note: (+)	is added equipment to	vehicle, (-) is remo Estimated Tot Vertical CG	ved equipment al Weight (Ib Location (in.	from vehicle) 4995) 28.0007		0 139863.63	3
Note: (+) Vehicle	is added equipment to Dimensions for Base: 140,625	vehicle, (-) is remo Estimated Tot Vertical CG <u>C.G. Calculation</u>	ved equipment al Weight (Ib Location (in. ons Front Ti	from vehicle) 4995) 28.0007	68 125	U 139863.63	-
Note: (+) Vehicle Wheel	is added equipment to e Dimensions for Base: <u>140.625</u>	vehicle, (-) is remo Estimated Tot Vertical CG <u>C.G. Calculation</u> in.	ved equipment al Weight (Ib Location (in. ons Front Ti Rear T	from vehicle) 4995) 28.0007 rack Width:	68.125	0 139863.63 in.	-
Note: (+) Vehicle Wheel	is added equipment to Dimensions for Base: <u>140.625</u>	vehicle, (-) is remo Estimated Tot Vertical CG <u>C.G. Calculatio</u> in.	ved equipment al Weight (Ib Location (in. ons Front Ti Rear Ti	from vehicle) 4995) 28.0007 rack Width: rack Width:	68.125 68.125	U 139863.63 in. in.	-
Note: (+) Vehicle Wheel	is added equipment to Dimensions for Base: <u>140.625</u>	vehicle, (-) is remo Estimated Tot Vertical CG <u>C.G. Calculatio</u> in.	ved equipment al Weight (Ib Location (in. ons Front Ti Rear Ti	from vehicle) 4995) 28.0007 rack Width: rack Width:	68.125 68.125	U 139863.63 .in. .in.	-
Vehicle Wheel	is added equipment to Dimensions for Base: 140.625 of Gravity	Estimated Tot Estimated Tot Vertical CG C.G. Calculation in.	ved equipment al Weight (Ib Location (in. ons Front Ti Rear Ti SH Targets	from vehicle) 4995) 28.0007 rack Width: rack Width:	68.125 68.125 Test Inertia	U 139863.63 in. in.	Difference
Vehicle Wheel Center Test Ine	is added equipment to Dimensions for Base: 140.625 of Gravity ertial Weight (lb)	vehicle, (-) is remo Estimated Tot Vertical CG C.G. Calculation in. 2270P MAS 5000	ved equipment al Weight (Ib Location (in. ons Front Ti Rear Ti SH Targets ± 110	from vehicle) 4995) 28.0007 rack Width: rack Width:	68.125 68.125 Test Inertia 5000	U 139863.63 in. in.	Differenc 0.
Note: (+) Vehicle Wheel Center Test Ine Longitud	is added equipment to Dimensions for Base: 140.625 of Gravity ertial Weight (lb) dinal CG (in.)	vehicle, (-) is remo Estimated Tot Vertical CG C.G. Calculation in. 2270P MAS 5000 63	ved equipment al Weight (Ib Location (in. ons Front Ti Rear Ti SH Targets ± 110 ± 4	from vehicle) 4995) 28.0007 rack Width: rack Width:	68.125 68.125 Test Inertia 5000 65.334375	U 139863.63 in. in.	Differenc 0. 2.3343
Note: (+) Vehicle Wheel Test Ine Longitud Lateral	is added equipment to Dimensions for Base: 140.625 of Gravity ertial Weight (Ib) dinal CG (in.) CG (in.)	vehicle, (-) is remo Estimated Tot Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA	ved equipment al Weight (Ib Location (in. ons Front Ti Rear Ti SH Targets ± 110 ± 4	from vehicle) 4995) 28.0007 rack Width: rack Width:	68.125 68.125 Test Inertia 5000 65.334375 -0.476875	U 139863.63 .in. in.	Differenc 0. 2.3343 N.
Note: (+) Vehicle Wheel Test Ine Longitud Lateral Vertical	is added equipment to Dimensions for Base: 140.625 of Gravity ertial Weight (Ib) dinal CG (in.) CG (in.) CG (in.)	Estimated Tot Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28	ved equipment al Weight (Ib Location (in. ons Front Ti Rear Ti SH Targets ± 110 ± 4 or greater	from vehicle) 4995) 28.0007 rack Width: rack Width:	68.125 68.125 Test Inertia 5000 65.334375 -0.476875 28.00	U 139863.63 .in. .in.	Differenc 0. 2.3343 N, 0.0007
Note: (+) Vehicle Wheel Test Ine Longituu Lateral Vertical Vote: Lor	is added equipment to e Dimensions for Base: 140.625 of Gravity ertial Weight (lb) dinal CG (in.) CG (in.) CG (in.) ng. CG is measured from	Estimated Tot Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28 m front axle of test	ved equipment : al Weight (Ib Location (in. ons Front Ti Rear Ti SH Targets ± 110 ± 4 or greater t vehicle	from vehicle) 4995) 28.0007 rack Width: rack Width:	68.125 68.125 Test Inertia 5000 65.334375 -0.476875 28.00	U 139863.63 in. in.	Differenc 0. 2.3343 N, 0.0007
Vote: (+) Vehicle Wheel Center Test Ine Longitud Lateral Vertical Note: Lor Note: Lat	is added equipment to Dimensions for Base: 140.625 of Gravity ertial Weight (Ib) dinal CG (in.) CG (in.) CG (in.) ng. CG is measured fro teral CG measured fro	Estimated Tot Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28 m front axle of test m centerline - positi	ved equipment al Weight (Ib Location (in. ons Front Ti Rear Ti SH Targets ± 110 ± 4 or greater t vehicle ive to vehicle rig	from vehicle) 4995) 28.0007 rack Width: rack Width: ht (passenger)	68.125 68.125 Test Inertia 5000 65.334375 -0.476875 28.00	0 139863.63 in. in.	Differenc 0. 2.3343 N. 0.0007
Vehicle Wheel Wheel Test Ine Longitud Lateral Vertical Note: Lat CLIRB 1	is added equipment to Dimensions for Base: 140.625 of Gravity ertial Weight (lb) dinal CG (in.) CG (in.) CG (in.) ng. CG is measured fro teral CG measured fro	vehicle, (-) is remo Estimated Tot Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28 m front axle of test m centerline - positi	ved equipment al Weight (Ib Location (in. ons Front Ti Rear Ti SH Targets ± 110 ± 4 or greater t vehicle ive to vehicle rig	from vehicle) 4995) 28.0007 rack Width: rack Width: ht (passenger)	68.125 68.125 Test Inertia 5000 65.334375 -0.476875 28.00) side	U 139863.63 in. in.	Differenc 0. 2.3343 N. 0.0007
Note: (+) Vehicle Wheel Center Test Ine Longitud Lateral Vertical Note: Lat Note: Lat	is added equipment to Dimensions for Base: 140.625 of Gravity ertial Weight (Ib) dinal CG (in.) CG (in.) CG (in.) ng. CG is measured fro teral CG measured fro WEIGHT (Ib.)	Estimated Tot Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28 om front axle of test m centerline - positi	ved equipment al Weight (Ib Location (in. ons Front Ti Rear Ti SH Targets ± 110 ± 4 or greater t vehicle ive to vehicle rig	from vehicle) 4995) 28.0007 rack Width: rack Width: ht (passenger)	68.125 68.125 Test Inertia 5000 65.334375 -0.476875 28.00) side TEST INER	U 139863.63 in. in. TIAL WEIG	Differenc 0. 2.3343 N. 0.0007
Note: (+) Vehicle Wheel Test Ine Longitur Lateral I Vertical Note: Lor Note: Lat CURB V	is added equipment to Dimensions for Base: 140.625 of Gravity ertial Weight (Ib) dinal CG (in.) CG (in.) CG (in.) CG (in.) ng. CG is measured fro teral CG measured fro WEIGHT (Ib.) Left	Estimated Tot Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28 om front axle of test m centerline - positi	ved equipment al Weight (Ib Location (in. ons Front Ti Rear Ti SH Targets ± 110 ± 4 or greater t vehicle ive to vehicle rig	from vehicle) 4995) 28.0007 rack Width: rack Width: ht (passenger)	68.125 68.125 Test Inertia 5000 65.334375 -0.476875 28.00) side TEST INER	U 139863.63 in. in. I TIAL WEIG	Differenc 0. 2.3343 N. 0.0007 HT (Ib.) Right
Note: (+) Vehicle Wheel Center Test Ine Longitur Lateral I Vertical Note: Lor Note: Lat CURB V Front	is added equipment to Dimensions for Base: 140.625 of Gravity ertial Weight (Ib) dinal CG (in.) CG (in.) CG (in.) ng. CG is measured fro teral CG measured fro WEIGHT (Ib.) Left 1373	Estimated Tot Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28 om front axle of test m centerline - positi Right 1334	ved equipment al Weight (Ib Location (in. ons Front Ti Rear Ti SH Targets ± 110 ± 4 or greater t vehicle vehicle rig	from vehicle) 4995) 28.0007 rack Width: rack Width: ht (passenger)	68.125 68.125 Test Inertia 5000 65.334375 -0.476875 28.00) side TEST INER	U 139863.63 in. in. TIAL WEIG	Differenc 0. 2.3343 N. 0.0007 HT (Ib.) Right 1321
Note: (+) Vehicle Wheel Center Test Ine Longitud Lateral Vertical Note: Lor Note: Lat CURB V Front Rear	is added equipment to Dimensions for Base: 140.625 of Gravity ertial Weight (lb) dinal CG (in.) CG (in.) CG (in.) ng. CG is measured fro teral CG measured fro WEIGHT (lb.) Left 1373 1140	Estimated Tot Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28 om front axle of test m centerline - positi Right 1334 1106	ved equipment : al Weight (Ib Location (in. ons Front Ti Rear Ti SH Targets ± 110 ± 4 or greater : vehicle : vehicle rig	from vehicle) 4995) 28.0007 rack Width: rack Width: ht (passenger)	68.125 68.125 Test Inertia 5000 65.334375 -0.476875 28.00 side TEST INER Front Rear	U 139863.63 in. in. TIAL WEIG Left 1356 1179	Differenc 0. 2.3343 N. 0.0007 HT (Ib.) Right 1321 1144
Note: (+) Vehicle Wheel Center Test Ine Longitud Lateral Vertical Note: Lor Note: Lat CURB N Front Rear	is added equipment to Dimensions for Base: 140.625 of Gravity ertial V/eight (lb) dinal CG (in.) CG (in.) CG (in.) ng. CG is measured from WEIGHT (lb.) Left 1373 1140	Estimated Tot Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28 m front axle of test m centerline - positi Right 1334 1106	ved equipment al Weight (Ib Location (in. ons Front Ti Rear Ti SH Targets ± 110 ± 4 or greater t vehicle ive to vehicle rig	from vehicle) 4995) 28.0007 rack Width: rack Width: ht (passenger)	68.125 68.125 Test Inertia 5000 65.334375 -0.476875 28.00) side TEST INER Front Rear	U 139863.63 in. in. in. I TIAL WEIG Left 1356 1179	Differenc 0. 2.3343 N/ 0.0007 HT (Ib.) Right 1321 1144
Note: (+) Vehicle Wheel Test Ine Longitud Lateral Vertical Note: Lat CURB V Front Rear FRONT	is added equipment to Dimensions for Base: 140.625 of Gravity ertial Weight (lb) dinal CG (in.) CG (in.) CG (in.) ng. CG is measured fro teral CG measured fro WEIGHT (lb.) Left 1373 1140 2707	Estimated Tot Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28 om front axle of test m centerline - positi Right 1334 1106 Ib	ved equipment al Weight (Ib Location (in. ons Front Ti Rear Ti SH Targets ± 110 ± 4 or greater t vehicle ive to vehicle rig	from vehicle) 4995) 28.0007 rack Width: rack Width: ht (passenger)	68.125 68.125 68.125 Test Inertia 5000 65.334375 -0.476875 28.00 side TEST INER Front Rear FRONT	0 139863.63 in. in. in. TIAL WEIG Left 1356 1179 2677	Differenc 0. 2.3343 N. 0.0007 HT (Ib.) Right 1321 1144
Note: (+) Vehicle Wheel Center Test Ine Longitud Lateral Vertical Note: Lat CURB V Front Rear FRONT REAR	is added equipment to Dimensions for Base: 140.625 of Gravity ertial Weight (lb) dinal CG (in.) CG (in.) CG (in.) ng. CG is measured fro teral CG measured fro WEIGHT (lb.) Left 1373 1140 - 2707 2246	Estimated Tot Vertical CG C.G. Calculation in. 2270P MAS 5000 63 NA 28 m front axle of test m centerline - positi Right 1334 1106 lb lb	ved equipment al Weight (Ib Location (in. ons Front Ti Rear Ti SH Targets ± 110 ± 4 or greater t vehicle ive to vehicle rig	from vehicle) 4995) 28.0007 rack Width: rack Width: ht (passenger)	68.125 68.125 68.125 Test Inertia 5000 65.334375 -0.476875 28.00 side TEST INER Front Rear FRONT REAR	0 139863.63 in. in. TIAL WEIG Left 1356 1179 2677 2323	Differenc 0. 2.3343 N, 0.0007 HT (Ib.) Right 1321 1144 Ib Ib

Figure B-2. Vehicle Mass Distribution, Test No. HWTT-2

Appendix C. Static Soil Tests

Figure C-1. Soil Strength, Initial Calibration Tests

Figure C-2. Static Soil Test, Test No. HWTT-1

Figure C-3. Soil Strength, Initial Calibration Tests

Figure C-4. Static Soil Test, Test No. HWTT-2

Appendix D. Vehicle Deformation Records

The following figures and tables describe all occupant compartment measurements taken on the test vehicles used in full-scale crash testing herein. MASH 2016 defines intrusion as the occupant compartment being deformed and reduced in size with no penetration. Outward deformations, which are denoted as negative numbers within this Appendix, are not considered as crush toward the occupant, and are not subject to evaluation by MASH 2016 criteria.

Date: Year.		2019)10		ş	Test Name: Make:	HW Hyu	TT-1 Indai			VIN: Model:	КМНС	N4AC8BU6 Accent	308788
					VE DRIVEI	HICLE DE R SIDE FL	FORMATIO	ON - SET 1					
		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	∆X ^A (in.)	ΔY ^A (in)	∆Z ^A (in.)	Total ∆ (in)	Crush ^e	Directions for
	POINT	(in.)	(in.)	(in.)	50.0570	5 7 4 2 2	0.54.47	0.4074	4.0747	0.4252	4.4400	0,0000	Crush
	1	58.6707	4.3/15	6.0895	57,8810	5.7432	6.5147	-0.1871	-1.3/1/	-0.4252	1.4482	0.0000	NA V 7
	3	58 1324	-4 6329	7.6552	57.5639	-2.9587	7.8523	0.5685	1.6742	-0.1971	1.7505	0.5555	X
	4	57.6246	-9.5335	7.7209	57.2715	-7.7679	8.6573	0.3531	1.7656	-0.9364	2.0295	0.3531	X
A S	5	56.9505	-15.8906	7.9640	56.6687	-14.1675	8.6784	0.2818	1.7231	-0.7144	1.8865	0.2818	Х
医胆肉	6	53.6529	4.5320	6.0907	53.9663	4.9305	5.7238	-0.3134	-0.3985	0.3669	0.6258	0.3669	Z
AH V	- /	54.1806	0.5271	8.1781	53.5918	2.0514	7.9522	0.5888	-1.5243	0.2259	1.6496	0.6306	X,Z
-	9	53,5608	-4.1000	8 1332	53,1331	-2.6341	8 5945	0.5555	1.5524	-0.2436	1.0000	0.5533	X
	10	52.8341	-15.4657	8.1606	52.5027	-13.7922	8.7733	0.3314	1.6735	-0.6127	1.8127	0.3314	X
	11	49.4446	4.6537	6.1777	49.7034	5.2774	6.0778	-0.2588	-0.6237	0.0999	0.6826	0.0999	Z
	12	50.2568	0.7950	8.7524	49.6320	2.2812	7.5050	0.6248	-1.4862	1.2474	2.0384	1.2474	Z
	13	50.2325	-4.1023	8.1677	49.6817	-2.5968	8.4226	0.5508	1.5055	-0.2549	1.6232	-0.2549	Z
	14	49.5604	-9.2286	8.2217	49.1299	-7.7676	8.7011	0.4305	1.4610	-0.4794	1.5968	-0.4794	Z
	15	48.6413	4.7660	6.3163	48.4316	-13.6144	6 1534	0.2097	0.7622	-0.5966	0.8155	-0.5966	7
	17	46 41 99	1 7637	8.9463	46 1969	1.9122	7.5840	0.2400	-0.1485	1.3623	1.3884	1.3623	7
-	18	46.6802	-3.9656	8.2250	46.1153	-2.6204	8.4664	0.5649	1.3452	-0.2414	1.4788	-0.2414	Z
AP ^C	19	46.0586	-9.0151	8.2557	45.6463	-7.6303	8.6874	0.4123	1.3848	-0.4317	1.5080	-0.4317	Z
R N	20	45.1986	-14.8600	8.5002	44.9537	-13.4052	9.1060	0.2449	1.4548	-0.6058	1.5948	-0.6058	Z
8°	21	42.1481	4.9207	6.2351	42.3986	5.4460	5.9555	-0.2505	-0.5253	0.2796	0.6457	0.2796	Z
Ē	22	42.2281	3,7112	8 7864	42.0777	2.2159	7.6038	0.1504	-0.3096	0.2043	1.1569	-0.2043	
	23	42.0301	-8.5228	8.2902	41.6434	-7.2979	8.7078	0.4383	1.2249	-0.4176	1.3663	-0.4176	Z
	25	41.8735	-14.5183	8.4983	41.6230	-13.2355	9.2874	0.2505	1.2828	-0.7891	1.5268	-0.7891	Z
	26	38.6822	5.1533	5.9925	38.8713	5.8631	5.7216	-0.1891	-0.7098	0.2709	0.7829	0.2709	Z
	27	38.6807	2.0906	8.1899	38.4965	2.7832	7.8577	0.1842	-0.6926	0.3322	0.7899	0.3322	Z
	28	38.3977	-3.0087	8.2589	37.9748	-2.0242	8.2083	0.4229	0.9845	0.0506	1.0727	0.0506	Z
	29	38.0473	-8.1970	8 2/941	37.7968	-11 7881	8.6200	0.3646	1.0652	-0.3259	1.1903	-0.3259	7
compartme ^B Crush cal deforming i ^C Direction	culations that inward towar for Crush co	at use multip rd the occup olumn denoti	le directiona ant compart es which dire	Il componei ment. ections are	nts will disre	gard compo he crush cal	nents that ar	re negative "NA" then r	and only inc	lude positive s recorded,	e values whe	ere the com	oonent is
		Pre	test Floor	Pan				-	Pos	ttest Floor	Pan		
				· · · · · · · · · · · · · · · · · · ·									

Figure D-1. Floor Pan Deformation Data – Set 1, Test No. HWTT-1

					VE DRIVER S	HICLE DE	FORMATI	ON SH - SET 1	í.				
		Pretest	Pretest	Pretest	Postlest X	Posttest V	Posttest 7	۸Х	۸V ^A	۸7 ^A	Total A	Crush ^B	Direction
	POINT	X (in)	Y (in)	Z (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	for Crush ^C
	1	48.8530	9.7381	-20.7490	49.2418	9.7036	-20.8734	-0.3888	0.0345	-0.1244	0.4097	0.4097	X, Y, Z
- 0	2	47.2410	-2.3820	-23.1113	47.5969	-2.3956	-23.0829	-0.3559	-0.0136	0.0284	0.3573	0.3573	X, Y, Z
₹, Z	3	49.6462	-14.7249	-19.9206	49.8976	-14.7713	-19.6378	-0.2514	-0.0464	0.2828	0.3812	0.3812	X, Y, Z
β.	4	44.6635	7.9567	-10.2382	44.9596	8.1/0/	-10.3069	-0.2961	-0.2140	-0.0687	0.3/1/	0.3/1/	X, Y, Z
	6	48.2240	-15.3931	-8.1039	47.9793	-14.9719	-7.9090	0.2447	0.3673	0.0368	0.5247	0.5247	X, Y, Z
<u>и д</u>	7	57.6294	-17.6397	-2.6281	57.3068	-15.9554	-2.2979	0.3226	1.6843	0.3302	1.7464	1.6843	Y
3 A S	8	54.0612	-17.5796	-2.4808	53.8393	-16.5608	-2.0177	0.2219	1.0188	0.4631	1.1409	1.0188	Y
0 A	9	53.1667	-17.5100	1.3482	52.8997	-16.3811	1.8030	0.2670	1.1289	0.4548	1.2460	1.1289	Y
IMPACT SIDE DOOR (Y)	10	19.8332	-17.4014	-18.7944	19.7078	-19.6115	-18.3884	0.1254	-2.2101	0.4060	2.2506	-2.2101	Y
	11	33.8357	-17.8228	-17.5839	33.5724	-19.7875	-17.4847	0.2633	-1.9647	0.4906	2.0421	-1.9647	Y V
	12	23.8789	-18.0389	-1.9913	23.8418	-18.9569	-1.5687	0.0371	-0.9180	0.4226	1.0113	-0.9180	Υ Υ
	14	35.5585	-18.9787	-0.9449	35.3925	-20.0577	-0.4992	0.1660	-1.0790	0.4457	1.1792	-1.0790	Ý
	15	42.2278	-18.7306	-1.4053	42.1039	-20.2541	-0.8770	0.1239	-1.5235	0.5283	1.6173	-1.5235	Y
	16	35.2686	9.6131	-35.4092	35.6796	8.0335	-35.3037	-0.4110	1.5796	0.1055	1.6356	0.1055	Z
R00F - (Z)	17	35.1672	5.3284	-35.2961	35.4176	3.8442	-35.2963	-0.2504	1.4842	-0.0002	1.5052	-0.0002	Z
	18	34.6685	-0.6007	-35.0918	34.8917	-2.1281	-35.0707	-0.2232	-1.5274	0.0211	1.5438	0.0211	Z
	20	33.9843	-5.1392	-34.8405	34.2215	-0.0017	-34.8105	-0.2372	-1.5125	0.0300	1.5313	0.0300	7
	20	28,7965	9.7287	-38.3741	29,1858	8.2524	-38.5406	-0.3893	1.4763	-0.1665	1.5358	-0.1665	Z
	22	28.5043	5.5472	-38.3370	28.8500	4.0344	-38.4691	-0.3457	1.5128	-0.1321	1.5574	-0.1321	z
	23	28.0829	0.1566	-38.1450	28.4095	-1.2965	-38.2140	-0.3266	1.4531	-0.0690	1.4909	-0.0690	Z
	24	27.9223	-4.3379	-37.8112	28.1899	-5.8265	-37.8180	-0.2676	-1.4886	-0.0068	1.5125	-0.0068	Z
	25	27.1918	-8.2957	-37.4982	27.5053	-9.8217	-37.3849	-0.3135	-1.5260	0.1133	1.5620	0.1133	Z
	26	23.0474	5.8030	-39.1167	23.4845	8.4488	-39.3010	-0.4371	1.5934	-0.1843	1.6625	-0.1843	7
	28	22.7056	0.6501	-38.8467	23.1158	-0.9569	-38.8708	-0.4102	1.6070	-0.0241	1.6587	-0.0241	Z
	29	22.2727	-3.3579	-38.5926	22.6266	-4.9124	-38.5554	-0.3539	-1.5545	0.0372	1.5947	0.0372	Z
	30	21.9957	-6.7911	-38.2874	22.2927	-8.2997	-38.1586	-0.2970	-1.5086	0.1288	1.5429	0.1288	Z
A-PILLAR Maximum (X, Y, Z)	31	54.1728	-16.7253	-21.6055	54.4088	-16.9738	-21.2119	-0.2360	-0.2485	0.3936	0.5219	0.3936	Z
	32	51.1993	-16.1473	-23.7271	51.4429	-16.5885	-23.3734	-0.2436	-0.4412	0.3537	0.6157	0.3537	Z
	33	47.3002	-15.2372	-26.2430	47.6060	-16.0292	-26.0612	-0.3058	-0.7920	0.1818	0.8682	0.1818	7
	35	40.8354	-13.5807	-30.0334	41.1589	-14,7121	-29.9768	-0.3235	-1.1314	0.0566	1.1781	0.0566	Z
	36	35.3729	-12.3279	-32.4741	35.6155	-13.7691	-32.4523	-0.2426	-1.4412	0.0218	1.4616	0.0218	Z
1000	31	54.1728	-16.7253	-21.6055	54.4088	-16.9738	-21.2119	-0.2360	-0.2485	0.3936	0.5219	-0.2485	Y
A-PILLAR Lateral (Y)	32	51.1993	-16.1473	-23.7271	51.4429	-16.5885	-23.3734	-0.2436	-0.4412	0.3537	0.6157	-0.4412	Y
	33	47.3002	-15.2372	-26.2430	47.6060	-16.0292	-26.0612	-0.3058	-0.7920	0.1818	0.8682	-0.7920	Y
	34	44.2481	-14.4/9/	-28.0253	44.5944	-15.4820	-21.8946	-0.3463	-1.0023	0.1307	1.0685	-1.0023	Y V
	36	35.3729	-12.3279	-32.4741	35.6155	-13.7691	-32.4523	-0.2426	-1.4412	0.0218	1.4616	-1.4412	Υ Y
це –	37	11.6436	-10.6098	-34.0810	11.8805	-11.9197	-33.9278	-0.2369	-1.3099	0.1532	1.3399	0.1532	Z
B-PILLAI Maximur (X, Y, Z)	38	14.6398	-12.0149	-31.5889	14.9057	-13.2976	-31.3453	-0.2659	-1.2827	0.2436	1.3324	0.2436	Z
	39	12.1520	-13.7201	-27.3254	12.3762	-14.7986	-27.0509	-0.2242	-1.0785	0.2745	1.1352	0.2745	Z
	40	16.2102	-14.8585	-24.1362	16.3436	-15.9102	-23.7511	-0.1334	-1.0517	0.3851	1.1279	0.3851	Z
R AR	37	11.6436	-10.6098	-34.0810	11.8805	-11.9197	-33.9278	-0.2369	-1.3099	0.1532	1.3399	-1.3099	+ Y
eral	39	12 1520	-12.0149	-31.3889	12 3762	-13.2976	-31.3453	-0.2659	-1.2827	0.2436	1.3324	-1.2827	Y Y
La L	40	16.2102	-14.8585	-24.1362	16.3436	-15.9102	-23.7511	-0.1334	-1.0517	0.3851	1.1279	-1.0517	Y
Positive v ompartme Crush calo	alues denot nt. :ulations tha	e deformati at use multip	on as inward	l toward the al compone	occupant c	ompartmen gard compo	t, negative v onents that a	alues denot re negative	e deformationand and only inc	ons outward	away from e values wh	the occupa ere the con	nt nponent is

<form></form>		2010		Test Name: Make:	HWTT-1 Hyundai	VIN: Model:	KMHC	KMHCN4AC8BU608788 Accent		
PERCENTION DEPENDENCIES WINDENIELD OF THE SIDE OF T						-				
Vertical Reference Vertical Reference Lateral Reference Lateral Reference Examplar Test Vehicle Trest Vehicle Cruz 1 31:3/4 Top 12 Drivers 51/8 51/8 51/8 51/8 51/8 66 3 2 27 Top 37:1/2 Pass. 51/8 86/8 3 4 15:3/8 Top 22:1/2 Pass. 51/8 86/8 3 6 22:5/8 Top 23:4 Pass. 51/2 71/4 17 6 22:5/8 Top 39:34 Pass. 51/2 71/2 1 7 13:1/2 Top 39:34 Pass. 51/2 71/2 2 8 12:3/8 Top 43:1/2 Pass. 5:4/4 7:7/8 16: 10 add matchield frame. ide d'windshield frame. 6:3/4 7:7/8 10: ide d'windshield reference typically the top or bottom of the windshield frame. ide ad'windshield fram				VE	HICLE DEFORMATI WINDSHIELD	ON				
POINT Control of dash Endoted and shore 1 313/4 Top 12 Drivers 51/8 51/8 51/8 63/8 3 2 27 Top 371/2 Pass 53/8 7 16 4 153/8 Top 22/12 Pass 53/8 7 16 6 225/8 Top 38/3/4 Pass 51/2 61/2 1 6 225/8 Top 38/3/4 Pass 53/4 7.38 16 7 1312/2 Top 30/3/4 Pass 6/3/4 7.38 16 8 12.3/8 Top 43/1/2 Pass 6/3/4 7.1/8 0.3 ength to vertical reference, top, bottom, passenger, or driver, in which the reference was measured from. ength to lateral reference otherween the driver or passenger side windshield frame. its the drifterence between the driver or passenger side windshield frame. izends hield which is a resultant of the X & Z directions. Examplar Vehicle Description Year 2010 Make: Hyundai </th <th></th> <th>Vertical R Leng</th> <th>Reference gth^A</th> <th>Vertical Reference Side⁸ (Top or Bottom)</th> <th>Lateral Referece Length^c</th> <th>Lateral Reference Side⁸ (Driver or Pass)</th> <th>Examplar Vehicle Measurement</th> <th>Test ∨ehicle Measument</th> <th>Crust (in.)</th>		Vertical R Leng	Reference gth ^A	Vertical Reference Side ⁸ (Top or Bottom)	Lateral Referece Length ^c	Lateral Reference Side ⁸ (Driver or Pass)	Examplar Vehicle Measurement	Test ∨ehicle Measument	Crust (in.)	
1 0 0 1 0	P00	31.	3//	Ton	10	Drivers	5 1/8	5 1/4	0.12	
Image: state of the state	2	2	7	Top	37 1/2	Pass.	5 1/8	85/8	3.5	
Image: Note of the state o	0 3	2	1	Тор	29 3/4	Pass.	5 3/8	7	1.62	
Top 46 Pass. 5 1/2 6 1/2 1 6 22 5/8 Top 39 3/4 Pass. 5 1/2 7 1/2 2 7 13 1/2 Top 30 3/4 Pass. 5 3/4 7 3/8 1.6 8 12 3/8 Top 43 1/2 Pass. 6 3/4 7 1/8 0.3 ength to vertical reference, typically the top or bottom of the windshield frame. is the difference between the driver or passenger, or driver, in which the reference was measured from. is the difference between the test vehicle and examplar vehicle that is the intrusion of the windshield deformation. The intrusion is perpendicular to the place windshield which is a resultant of the X & Z directions. Examplar Vehicle Description Year 2010 Make: Hyundal Model: Accent VIN: KMHCN4AC9AU498042 e windshield Deformation Notes: e windshield frame not from direct contact with anything. The tearing of the windshield caused the glass to sag frow weight.	1 4	15:	3/8	Тор	22 1/2	Pass.	5 1/2	7 1/4	1.75	
6 22 5/8 Top 39 3/4 Pass. 5 1/2 7 1/2 2 7 13 1/2 Top 30 3/4 Pass. 5 3/4 7 3/8 1.6 8 12 3/8 Top 43 1/2 Pass. 6 3/4 7 1/8 0.3 ength to vertical reference, typically the top or bottom of the windshield frame. Image: Comparison of the windshield frame.<	五 5	29	1/8	Тор	46	Pass.	5 1/2	6 1/2	1	
Year 2010 Make: Hyundai Model: Accent VIN: KMHCN4AC9AU498042 ndshield Deformation Notes: weight. Model: Accent VIN: KMHCN4AC9AU498042	6	22 :	5/8	Тор	39 3/4	Pass.	5 1/2	7 1/2	2	
8 12.3/8 Top 43.1/2 Pass. 6.3/4 7.1/8 0.3 ength to vertical reference, typically the top or bottom of the windshield frame. ide of windshield frame, top, bottom, passenger, or driver, in which the reference was measured from. ength to lateral reference either the driver or passenger side windshield frame. rush is the difference between the test vehicle and examplar vehicle that is the intrusion of the windshield deformation. The intrusion is perpendicular to the place windshield which is a resultant of the X & Z directions. Examplar Vehicle Description Year: 2010 Make: Hyundal Model: Accent VIN: KMHCN4AC9AU498042 ndshield Deformation Notes: a a Model: Accent VIN: kMHCN4AC9AU498042 windshield was tom due to movement of the windshield frame not from direct contact with anything. The tearing of the windshield caused the glass to sag frow weight.	X 7	13	1/2	Тор	30 3/4	Pass.	5 3/4	7 3/8	1.62	
In the vertical reference, typically the top or bottom of the windshield frame. Ide of windshield frame, top, bottom, passenger, or driver, in which the reference was measured from. Ingth to lateral reference there the driver or passenger side windshield frame. Insh is the difference between the test vehicle and examplar vehicle that is the intrusion of the windshield deformation. The intrusion is perpendicular to the pl the windshield which is a resultant of the X & Z directions. Examplar Vehicle Description Year: 2010 Make: Hyundal Model: Accent VIN: KMHCN4AC9AU498042 ndshield Deformation Notes: windshield Deformation Notes: windshield frame not from direct contact with anything. The tearing of the windshield caused the glass to sag fro weight.	> 8	123	3/8	Тор	43 1/2	Pass.	6 3/4	7 1/8	0.37	
	Year: <u>2</u>	2 <u>010</u> Make: _	Hyur	Exam	plar Vehicle Descri Model: <u>Ac</u>	iption cent VIN:	КМНС	:N4AC9AU49804:	2	

Figure D-3. Windshield Deformation, Test No. HWTT-1

			Driver Side Maxi	mum Deformations			
	Reference Se	t 1			Reference Se	t 2	
Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C
loof	0.1	≤ 4	Z	Roof	0.0	≤ 4	Z
Vindshield	3.5	≤ 3	X, Z	Windshield	NA	≤ 3	X, Z
-Pillar Maximum	0.4	≤ 5	Z	A-Pillar Maximum	0.0	≤ 5	NA
-Pillar Lateral	-1.4	≤3	Y	A-Pillar Lateral	0.0	≤3	Y
-Pillar Maximum	0.4	≤5	Z	B-Pillar Maximum	0.0	≤5	NA
-Pillar Lateral	-1.4	≤ 3	Y	B-Pillar Lateral	0.0	≤ 3	Y
oe Pan - Wheel Well	0.6	≤ 9	X, Z	Toe Pan - Wheel Well	0.0	≤ 9	NA
ide Front Panel	1.7	≤ 12	Ý	Side Front Panel	0.0	≤ 12	Y
ide Door (above seat)	-2.2	≤ 9	Y	Side Door (above seat)	0.0	≤ 9	Y
ide Door (below seat)	-1.5	≤ 12	Y	Side Door (below seat)	0.0	≤ 12	Y
loor Pan	1.4	≤ 12	Z	Floor Pan	0.0	≤ 12	Z
ash - no MASH requirement	0.5	NA	X, Y, Z	Dash - no MASH requirement	0.5	NA	X, Y, Z
For Toe Pan - Wheel Well the di irections. The direction of deform ccupant compartment. If direction If deformation is observered for the ecorded.	rection of defromation nation for Toe Pan - on of deformation is the windshield then	on may include X and Wheel Well, A-Pillar "NA" then no intrusio the windshield defor	attment, negative var d Z direction. For A-F Maximum, and B-Pill n is recorded and de nation is measured p	Pillar Maximum and B-Pillar Maximum ar Maximum only include components formation will be 0. osttest with an examplar vehicle, there	the direction of defo where the deformation of one set c	ormation may include tition is positive and in f reference is measu	X, Y, and Z truding into the red and

Figure D-4. Maximum Occupant Compartment Deformations by Location, Test No. HWTT-1

Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. HWTT-1

Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. HWTT-1

Date: Year	7/19	/2019)14			Test Name: Make:	HW Do	TT-2 dge			VIN: Model:	1C6R	R6FG1ES2 RAM 1500	37040
					VE DRIVEI	HICLE DE R SIDE FL	FORMATIO	ON - SET 1					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔΧ ^Α (in.)	ΔY ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^e (in.)	Directions for Crush ^C
	1	53.9675	-6.0302	2.3141	53.6879	-6.1075	3.0709	0.2796	-0.0773	-0.7568	0.8105	0.2796	X
	2	54.0989	-10.0342	2.1925	53.8048	-10.1012	3.7011	0.2941	-0.0670	-1.5086	1.5385	0.2941	X
, <u> </u>	3	54.1968	-14.8396	2.1870	51.8753	-13.8721	2.1018	2.3215	0.9675	0.0852	2.5165	2.3231	X,Z
A A A	4 E	54.8303	-19.5799	1 AACE	NA 40.7017	NA	-21.2b71	#VALUE!	#VALUE!	#VALUE!	NA 6 4747	NA.	#VALUE!
	6	50,1412	-23.0476	3 9275	49.7917	-20.6603	-1.311Z / 689/	0.0490	2.3073	_0.7619	0.4747	0.0105	A, 4
ВЩС	7	50.6312	-10.9168	4 0593	50.3513	-10.5563	5.8339	0.2313	0.1400	-1 7746	1.8324	0.2313	X
T	8	50.9659	-15 4682	3.9177	49.4549	-14 6023	4 8298	1 51 10	0.8659	-0.9121	1.9659	1.5110	X
ecce i	9	51.0297	-20.0052	3.9326	47.9992	-18.6335	3.4771	3.0305	1.3717	0.4555	3.3575	3.0645	X.Z
	10	50.9802	-24.0372	4.0052	48.1129	-21.9981	3.2504	2.8673	2.0391	0.7548	3.5985	2.9650	X,Z
	11	46.7043	-6.3761	5.1707	46.4166	-5.9319	5.9058	0.2877	0.4442	-0.7351	0.9058	-0.7351	Z
	12	46.5814	-10.1934	5.1180	46.3159	-9.6693	6.3510	0.2655	0.5241	-1.2330	1.3658	-1.2330	Z
	13	46.5549	-15.0074	5.1240	46.1315	-14.4154	7.2637	0.4234	0.5920	-2.1397	2.2601	-2.1397	Z
	14	46.8679	-19.1032	5.1209	46.2563	-18.3719	7.1742	0.6116	0.7313	-2.0533	2.2638	-2.0533	Z
	15	46.9472	-23.1788	5.1278	45.6523	-22.2184	6.7836	1.2949	0.9604	-1.6558	2.3110	-1.6558	Z
	16	42.3304	-6.4606	5.1717	42.0686	-5.9551	5.7742	0.2618	0.5055	-0.6025	0.8289	-0.6025	Z
1	17	42.1807	-10.5989	5.1451	41.9091	-10.0203	6.4507	0.2716	0.5786	-1.3056	1.4537	-1.3066	<u></u>
N	10	42.2506	19 06/6	5.1433	42.0171	-14.3552	7,1430	0.2335	0.5677	-2.0005	2.0926	-2.0005	7
A _	20	41.9200	-13.0040	5 1655	41.0700	-10.4012	8 2078	0.2000	0.00034	-2.0010	3 1/13	-2.0010	7
R A	20	36 2799	-6 5360	5 1475	36.0379	-6.1517	5 5395	0.2420	0.3843	-0.3920	0.5999	-0.3920	7
LO LO	22	36.1905	-10.4730	5.2373	35.9517	-10.0253	5.9256	0.2388	0.4477	-0.6883	0.8551	-0.6883	Z
ш.	23	36.1953	-14.5248	5.2391	36.0004	-14.0042	6.5345	0.1949	0.5206	-1.2954	1.4096	-1.2954	Z
	24	36.0714	-18.0672	5.2327	35.9074	-17.5868	6.9729	0.1640	0.4804	-1.7402	1.8127	-1.7402	Z
	25	36.0750	-23.1776	5.3014	35.8994	-22.6303	7.5110	0.1756	0.5473	-2.2096	2.2831	-2.2096	Z
	26	32.1944	-6.6626	4.1038	31.9530	-6.3645	4.3508	0.2414	0.2981	-0.2470	0.4562	-0.2470	<u> </u>
	27	32.5266	14 7549	4.4844	32.3557	-10.7497	5.0925	0.1729	0.3506	-0.6081	1.0017	-0.6081	7
	20	32,7000	-18 1032	4.3003	32,0449	-17 7565	5 7431	0.1410	0.2707	-0.3523	1.3053	-0.9525	7
1	30	32.8991	-22.5294	4,4939	32.8303	-22.2160	6.1328	0.0688	0.3134	-1.6389	1.6700	-1.6389	Z
compartme ^B Crush cali deforming i ^C Direction 1	nt. culations tha nward towa for Crush co	at use multip rd the occup olumn denote	ole directiona oant compart es which dire	il componer ment. ections are i	nts will disre	gard compo he crush cal	nents that ar	re negative "NA" then r	and only inc no intrusion i	lude positive is recorded,	e values whe	ere the com vill be 0.	oonent is
		Pre	test Floor	Pan					Pos	ttest Floor	Pan		
						R							XII

Figure D-7. Floor Pan Deformation Data – Set 1, Test No. HWTT-2

Year:	Year: 2014				Make:	Do	dge			Model:		RAM 1500	
					VE DRIVER S	HICLE DE	FORMATI RIOR CRU	ON SH - SET 1	Ĺ				
Γ		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	(m.)	(in.)	(mr.)	(In.)	(in.)	(in.)	(m.)	(in.)	Crush ^C
	1	44.5362	-19.6143	-28.4488	44./154	-19.8/43	-28./483	-0.1792	-0.2600	-0.2995	0.4352	0.4352	X, Y, Z
₩ <u></u>	3	43.5338	5.3393	-28.0234	44.0706	5.1064	-27.9251	-0.5368	0.2329	0.0983	0.5933	0.5933	X, Y, Z
ă⊊ E	4	40.1914	-23.0491	-16.2515	39.7876	-23.2634	-16.8143	0.4038	-0.2143	-0.5628	0.7251	0.7251	X, Y, Z
	5	39.0525	-6.7346	-15.1055	38.9462	-6.8905	-15.3244	0.1063	-0.1559	-0.2189	0.2890	0.2890	X, Y, Z
	7	36.5547	5.1177	-16./889	35.7837	4.8827	-16.8594	-0.2290	0.2350	-0.0705	0.3355	0.3356	A, Y, Z
5 E E E E E E E	8	49.2353	-26.8015	-3.2563	47.8790	-24.6379	-3.5136	1.4565	2.1636	-0.2573	2.6087	2.1636	Y
⊿ Z ⊂ ⊢	9	53.5344	-26.6871	-2.6633	51.4319	-24.1342	-3.2701	2.1025	2.5529	-0.6068	3.3624	2.5529	Ý
ш	10	38.4212	-29.4335	-16.6391	37.4368	-31.7972	-16.2766	0.9844	-2.3637	0.3625	2.5860	-2.3637	Y
ng L	11	27.8086	-29.9096	-16.4004	27.0426	-34.1140	-15.8236	0.7660	-4.2044	0.5768	4.3124	-4.2044	Y
388F	12	15.6769	-29.8296	-15.3337	15.1005	-34.0485	-14.8100	0.5764	-4.2189	0.5237	4.2902	-4.2189	
₹° ⊢	14	31.6166	-30,4698	-3.9573	31.0016	-33,1229	-3,4053	0.6150	-2.6531	0.5520	2.7788	-2.6531	Y
2	15	19.2115	-29.8770	-2.5921	18.5444	-32.3623	-2.1611	0.6671	-2.4853	0.4310	2.6091	-2.4853	Ŷ
	16	25.8200	-17.2419	-45.0428	26.3166	-17.9796	-44.8164	-0.4966	-0.7377	0.2264	0.9176	0.2264	Z
1	17	26.9013	-10.2320	-45.4758	27.3753	-11.0058	-45.2489	-0.4740	-0.7738	0.2269	0.9354	0.2269	Z
÷	18	27.6848	-4.5332	-45.6384	28.3165	-5.2853	-45.3820	-0.6317	-0.7521	0.2564	1.0151	0.2564	
-	20	27.5169	7 4824	-45.7740	28.0268	6 7952	-45.5246	-0.6963	0.6506	0.2492	0.8792	0.2492	7
	21	17.4933	-17.2857	-45.9921	18.0099	-18.0353	-45.7392	-0.5166	-0.7496	0.2529	0.9448	0.2529	Z
2	22	18.5188	-10.6347	-46.3263	19.1787	-11.3842	-46.1438	-0.6599	-0.7495	0.1825	1.0151	0.1825	Z
<u></u> В –	23	18.9401	-3.3080	-46.6068	19.5031	-4.1011	-46.4375	-0.5630	-0.7931	0.1693	0.9872	0.1693	Z
8	24	17.9909	2.4287	-46.8327	18.4965	1.6594	-46.6907	-0.5056	0.7693	0.1420	0.9315	0.1420	
	26	9.6666	-16.6995	-46.3742	10.2382	-17.4293	-46.1216	-0.5716	-0.7298	0.2526	0.9608	0.2526	Z
	27	9.9446	-10.8102	-46.7712	10.5342	-11.6164	-46.6648	-0.5896	-0.8062	0.1064	1.0044	0.1064	Z
	28	9.8568	-4.0479	-47.0536	10.3708	-4.7382	-46.9460	-0.5140	-0.6903	0.1076	0.8673	0.1076	Z
4	29	9.2382	1.8804	-47.1818	9.8462	1.1455	-47.1033	-0.6080	0.7349	0.0785	0.9570	0.0785	
	30	49 0064	-25 5687	-41.1301	49 5661	4.0393	-41.1301	-0.3623	-0.9336	0.0630	1 0902	0.0630	7
¥ E O	32	45.9085	-24.9629	-31.1997	46.5424	-25.9122	-31.2819	-0.6339	-0.9493	-0.0822	1.1444	0.0000	NA
A un N	33	43.4459	-24.3003	-32.6792	44.0478	-25.2088	-32.6551	-0.6019	-0.9085	0.0241	1.0901	0.0241	Z
A laxi	34	40.2478	-23.7086	-35.0931	40.8166	-24.5862	-35.0538	-0.5688	-0.8776	0.0393	1.0465	0.0393	Z
< 2 - -	35	35.9378	-23.0838	-38.5185	36.5397	-23.9713	-38.4611	-0.6019	-0.8875	0.0574	1.0739	0.0574	Z
	31	49.0064	-25 5687	-40.0004	19 5661	-26.5023	-40.3104	-0.5033	-0.0213	0.2200	1 0902	-0.9336	
48 F	32	45.9085	-24.9629	-31.1997	46.5424	-25.9122	-31.2819	-0.6339	-0.9493	-0.0822	1.1444	-0.9493	Ý
al (33	43.4459	-24.3003	-32.6792	44.0478	-25.2088	-32.6551	-0.6019	-0.9085	0.0241	1.0901	-0.9085	Y
ater	34	40.2478	-23.7086	-35.0931	40.8166	-24.5862	-35.0538	-0.5688	-0.8776	0.0393	1.0465	-0.8776	Y
< 1	35	35.9378	-23.0838	-38.5185	36.5397	-23.9713	-38.4611	-0.6019	-0.8875	0.0574	1.0739	-0.8875	
<u>к</u> е –	37	7.8345	-23,6966	-37,8181	8.2291	-24,3809	-37,3341	-0.3946	-0.6843	0.4840	0.9264	0.4840	7
A D L A	38	5.5539	-26.6865	-29.1461	5.7955	-27.2207	-28.8014	-0.2416	-0.5342	0.3447	0.6801	0.3447	z
l Č 🛛 L	39	9.6630	-27.3653	-21.2717	9.9292	-27.8398	-20.6915	-0.2662	-0.4745	0.5802	0.7954	0.5802	Z
άΣO	40	6.0894	-27.6357	-14.8778	6.2196	-28.0179	-14.3763	-0.1302	-0.3822	0.5015	0.6438	0.5015	Z
RE T	37	7.8345	-23.6966	-37.8181	8.2291	-24.3809	-37.3341	-0.3946	-0.6843	0.4840	0.9264	-0.6843	Y V
eral	38	9.6630	-26.6865	-29.1461	9 9292	-27.8398	-28.8014	-0.2416	-0.5342	0.3447	0.6801	-0.5342	Y
E E	40	6.0894	-27.6357	-14.8778	6.2196	-28.0179	-14.3763	-0.1302	-0.3822	0.5015	0.6438	-0.3822	Ý
Positive va mpartmen Crush calcu	38 39 40 lues denot t. ulations tha ward towa	5.5539 9.6630 6.0894 e deformation at use multip rd the occup	-26.6865 -27.3653 -27.6357 on as inwarc ole directiona pant compar	-29.1461 -21.2717 -14.8778 I toward the al compone tment.	5.7955 9.9292 6.2196 occupant c	-27.2207 -27.8398 -28.0179 ompartmen gard compo	-28.8014 -20.6915 -14.3763 t, negative v	-0.2416 -0.2662 -0.1302 alues denot re negative	-0.5342 -0.4745 -0.3822 e deformation and only inc	0.3447 0.5802 0.5015 ons outward	0.6801 0.7954 0.6438 away from values wh	-0.53 -0.47 -0.38 the occ	42 45 22 upa

Date: Year	7/19/ 20	/2019)14	18 10		Test Name: Make:	HW Do	HWTT-2 Dodge				1C6R	R6FG1ES237040 RAM 1500		
					VE DRIVEI	HICLE DE R SIDE FL	FORMATI	ON - SET 2						
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔΥ ^Α (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^e (in.)	Directions for Crush ^C	
	1	55.2846	-25.7115	-1.5439	54.7824	-25.7129	-1.2515	0.5022	-0.0014	-0.2924	0.5811	0.5022	Х	
	2	55.4009	-29.7153	-1.6845	54.8894	-29.7140	-0.6684	0.5115	0.0013	-1.0161	1.1376	0.5115	X	
· 🗄	3	55.4799	-34.5210	-1.7132	52.9497 NA	-33.4609 NA	-2.5112 NA	2.5302 #/ALLIEL	1.0601 #A/ALTIF1	0.5980 #\/ALLIEL	2.8077 NA	2.5999 NA	X,Z #A/ALLIEL	
AN (Z	5	56.3965	-42.7289	-2.4884	50.8476	-40.2032	-5.8030	5.5489	2.5257	3.3146	6.9395	6.4635	X.Z	
「三日」、	6	52.0765	-25.3373	0.0520	51.6329	-25.1319	0.3750	0.4436	0.2054	-0.3230	0.5859	0.4436	X	
0 H	7	51.9186	-30.5933	0.1570	51.4354	-30.1853	1.4602	0.4832	0.4080	-1.3032	1.4485	0.4832	X	
>	8	52.2362	-35.1452	-0.0050	50.5283	-34.2170	0.4090	1.7079	0.9282	-0.4140	1.9874	1.7079	X	
	9	52.2820	-39.6825	-0.0121	49.0619	-38.2282	-0.9905	3.2201	1.4543	0.9784	3.6662	3.3655	X,Z	
-	10	52.2162	-43.7146	0.0403	49.16/0	-41.5902	-1.2568	3.0492	2.1244	1.2971	3.9361	3.3135	X, Z	
	17	48.0030	-26.0426	1.2673	47.5125	-25.5521	1.5880	0.4905	0.4905	-0.3207	1.0789	-0.3207	7	
	13	47.8199	-34 6729	1.1770	47.2063	-34.0502	2.8461	0.6136	0.6227	-1.6691	1.8842	-1.6691	7	
	14	48.1167	-38.7697	1.1556	47.3210	-38.0057	2.7101	0.7957	0.7640	-1.5545	1.9061	-1.5545	Z	
	15	48.1800	-42.8457	1.1429	46.7071	-41.8458	2.2745	1.4729	0.9999	-1.1316	2.1094	-1.1316	Z	
	16	43.6289	-26.1097	1.2415	43.1645	-25.5627	1.4578	0.4644	0.5470	-0.2163	0.7494	-0.2163	Z	
	17	43.4630	-30.2472	1.1937	42.9948	-29.6352	2.0865	0.4682	0.6120	-0.8928	1.1793	-0.8928	Z	
Z	18	43.5159	-34.5/13	1.1709	43.0920	-33.9782	2.7285	0.4239	0.5931	-1.55/6	1.7198	-1.5576	7	
A C	20	43.1775	-42 9219	1.1045	42.7355	-42 1724	3,6965	0.4420	0.0010	-2.1030	2.3230	-2.1030	7	
ЯŎ	21	37.5784	-26.1610	1.1806	37.1332	-25.7412	1.2231	0.4452	0.4198	-0.0425	0.6134	-0.0425	Z	
01	22	37.4729	-30.0980	1.2505	37.0373	-29.6188	1.5637	0.4356	0.4792	-0.3132	0.7194	-0.3132	Z	
u.	23	37.4618	-34.1496	1.2323	37.0761	-33.6048	2.1257	0.3857	0.5448	-0.8934	1.1152	-0.8934	Z	
	24	37.3239	-37.6915	1.2077	36.9741	-37.1920	2.5220	0.3498	0.4995	-1.3143	1.4489	-1.3143	Z	
-	25	37.3070	-42.8021	1.2512	36.9535	-42.2415	3.0007	0.3535	0.5606	-1.7495	1.8708	-1.7495	Z	
	20	33,4900	-26.2662	0.1116	33,0474	-25.9296	0.0336	0.4514	0.3366	-0.2510	0.5665	-0.2510	7	
	28	34.0578	-34.3617	0.4725	33.7189	-34.0552	0.8483	0.3389	0.3065	-0.5678	0.7288	-0.5678	Z	
	29	34.0620	-37.7108	0.4416	33.8058	-37.3392	1.2915	0.2562	0.3716	-0.8499	0.9623	-0.8499	Z	
	30	34.1385	-42.1374	0.4278	33.8849	-41.8032	1.6287	0.2536	0.3342	-1.2009	1.2721	-1.2009	Z	
compartme ^B Crush cal deforming i ^C Direction	ent. culations tha nward towar for Crush co	at use multip rd the occup olumn denoti	ole directiona bant compart es which dire	al componei ment. ections are	nts will disre included in ti	gard compo he crush cal	nents that ar culations. If	re negative : "NA" then r	and only inc to intrusion	lude positive	e values who and Crush v	ere the comp vill be 0.	oonent is	
		Pre	test Floor	Pan					Pos	ttest Floor	[.] Pan			
		·		· · ·		K)) ·						

Figure D-9. Floor Pan Deformation Data – Set 2, Test No. HWTT-2

Year:	20	114	.		Make:	Do	dge			Model:		RAM 1500	
						an a last i battan ana							
					VE	HICLE DE	FORMATI	ON	6				
					DRIVER S	IDE INTER	RIOR CRU	SH - SET 2	2				
Γ.	<i>.</i>	Drotoct	Drotost	Drotact						r			Directio
		X	Y	7	Posttest X	Posttest Y	Posttest Z	ΔΧΑ	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush
	1	45.9990	-39.1217	-32.4743	45.7633	-38.8429	-33.2518	0.2357	0.2788	-0.7775	0.8589	0.8589	X, Y, 2
- G [2	45.7385	-27.0078	-32.8034	45.7246	-26.6968	-33.2324	0.0139	0.3110	-0.4290	0.5301	0.5301	X, Y, 2
DASH X, Y, Z	3	45.1012	-14.1666	-31.9197	45.1877	-13.8723	-32.1260	-0.0865	0.2943	-0.2063	0.3697	0.3697	X, Y, 2
	4	41.5683	-42.6033	-20.3212	40.8334	-42.3626	-21.3565	0.7349	0.2407	-1.0353	1.2922	1.2922	X, Y, .
<u> </u>	5	40.4928	-26.2905	-19.0936	40.0380	-26.0067	-19.6681	0.4548	0.2838	-0.5745	0.7858	0.7858	X, Y, .
u u u u u u u u u u	b 7	38.0557	-14.4186	-20.7273	37.9069	-14.2098	-21.0592	0.1488	0.2088	-0.3319	0.4194	0.4194	λ, Υ, .
	/	50,4885	-46.4939	-1.8729	48.8324	-43.9892	-2.3499	1.6584	2.5047	-0.4770	3.0403	2.5047	Y
SAC	9	54 8161	-46.3721	-6.6756	52 4835	-43 4293	-7.8313	2.3326	2.0230	-1 1557	3 9290	2.0230	Y
	10	39 7731	-48 9779	-20 7538	38 4594	-50 8958	-20 9206	1 3137	-1 9179	-0 1668	2 3307	-1 9179	Y
<u> </u>	11	29.1573	-49.4094	-20.5793	28.0592	-53.1893	-20.4890	1.0981	-3.7799	0.0903	3.9372	-3.7799	Ý
DOOR BOOR	12	17.0201	-49.2826	-19.5827	16.1179	-53.1034	-19.4671	0.9022	-3.8208	0.1156	3.9276	-3.8208	Y
	13	40.3796	-47.8363	-10.3727	38.5969	-48.9316	-10.7530	1.7827	-1.0953	-0.3803	2.1266	-1.0953	Y
	14	32.8902	-50.0530	-8.1175	32.0284	-52.3595	-8.0622	0.8618	-2.3065	0.0553	2.4629	-2.3065	Y
- 20	15	20.4800	-49.4140	-6.8212	19.5742	-51.5798	-6.8009	0.9058	-2.1658	0.0203	2.3477	-2.1658	Y
	16	27.3903	-36.5790	-49.1638	27.3599	-36.7033	-49.2839	0.0304	-0.1243	-0.1201	0.1755	-0.1201	Z
	1/	28.5042	-29.5/16	-49.5525	28.43/6	-29.7278	-49.6327	0.0666	-0.1562	-0.0802	0.1878	-0.0802	<u></u>
	10	29.3131	-23.0734	-49.6/9/	29.3945	-24.0007	-49.6972	-0.0614	-0.1333	-0.0175	0.1572	-0.0175	7
	20	29 1978	-11 8584	-49 7992	29 1378	-11.9255	-49 7889	0.0600	-0.0671	0.0103	0.0906	0.0103	7
	21	19.0692	-36.5817	-50.1617	19.0526	-36.7251	-50.2020	0.0166	-0.1434	-0.0403	0.1499	-0.0403	z
2	22	20.1252	-29.9335	-50.4539	20.2394	-30.0728	-50.5269	-0.1142	-0.1393	-0.0730	0.1944	-0.0730	Z
<u>н</u>	23	20.5795	-22.6073	-50.6923	20.5836	-22.7876	-50.7326	-0.0041	-0.1803	-0.0403	0.1848	-0.0403	Z
õ	24	19.6562	-16.8654	-50.8926	19.5928	-17.0217	-50.9155	0.0634	-0.1563	-0.0229	0.1702	-0.0229	Z
	25	19.8852	-12.2764	-50.8509	19.8559	-12.4014	-50.8540	0.0293	-0.1250	-0.0031	0.1284	-0.0031	Z
	26	11.2474	-35.9596	-50.5861	11.2823	-36.0932	-50.5721	-0.0349	-0.1336	0.0140	0.1388	0.0140	7
	21	11 4959	-23 3055	-51 1958	11 44 93	-23 3935	-51 2430	0.0410	-0.2000	-0.0933	0.2301	-0.0900	7
	29	10.9035	-17.3740	-51.2956	10.9408	-17.5068	-51.3287	-0.0373	-0.1328	-0.0331	0.1419	-0.0331	Z
	30	10.6253	-13.7155	-51.2944	10.6119	-13.8120	-51.3162	0.0134	-0.0965	-0.0218	0.0998	-0.0218	Z
	31	50.4457	-45.0933	-32.8427	50.5957	-45.4836	-33.3376	-0.1500	-0.3903	-0.4949	0.6479	0.0000	NA
≨≣ດ[32	47.3644	-44.4612	-35.2461	47.5721	-44.8547	-35.8595	-0.2077	-0.3935	-0.6134	0.7578	0.0000	NA
- TE	33	44.9133	-43.7800	-36.7363	45.0785	-44.1278	-37.2224	-0.1652	-0.3478	-0.4861	0.6201	0.0000	NA
- Xa -	34	41.7320	-43.1615	-39.1655	41.8477	-43.4674	-39.6114	-0.1157	-0.3059	-0.4459	0.5530	0.0000	NA
< < -	35	31.4441	-42.4997	-42.6124	37.5704	-42.7995	-43.0082	-0.1257	-0.2998	-0.3958	0.5122	0.0000	NA
	36	33.3875	-41.0000	-44.6511	33.4069	-41.7948	-44.8509	-0.0194	-0.2285	-0.1998	0.3042	0.0000	INA V
~ ~	32	17 36//	-45.0933	-32.8427	47 5721	-40.4636	-35,8595	-0.1500	-0.3903	-0.4949	0.6479	-0.3903	r V
SC I	33	44 9133	-43 7800	-36 7363	45 0785	-44 1278	-37 2224	-0.1652	-0.3478	-0.4861	0.7070	-0.3478	Ý
- IL	34	41.7320	-43.1615	-39,1655	41.8477	-43.4674	-39.6114	-0.1157	-0.3059	-0.4459	0.5530	-0.3059	Y
Lat Lat	35	37.4447	-42.4997	-42.6124	37.5704	-42.7995	-43.0082	-0.1257	-0.2998	-0.3958	0.5122	-0.2998	Y
	36	33.3875	-41.5663	-44.6511	33.4069	-41.7948	-44.8509	-0.0194	-0.2285	-0.1998	0.3042	-0.2285	Y
¥ĘΩl	37	9.3354	-42.9948	-42.0788	9.2594	-43.1451	-41.8680	0.0760	-0.1503	0.2108	0.2698	0.2241	X, Z
J m L	38	6.9915	-46.0215	-33.4365	6.8232	-46.0812	-33.3688	0.1683	-0.0597	0.0677	0.1910	0.1814	X, Z
Yax .	39	11.0515	-46.7605	-25.5421	10.9602	-46.8098	-25.2696	0.0913	-0.0493	0.2725	0.2916	0.2874	X, Z
	40	1.4396	-47.0499	-19.1707	7.2539	-47.0540	-18.9547	0.1857	-0.0041	0.2160	0.2849	0.2849	X, Z
RA P	3/	9.3354	-42.9948	-42.0788	9.2594	46.0040	-41.8680	0.0/60	-0.1503	0.0077	0.2698	-0.1503	Y
eral	38	0.9915	-46.0215	-33.4365	10 9602	-46.0812	-33.3688	0.1683	-0.0597	0.0677	0.1910	-0.0597	Y V
at the	40	7.4396	-47.0499	-19.1707	7.2539	-47.0540	-18.9547	0.1857	-0.0041	0.2120	0.2849	-0.0041	Ý

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

			Driver Side Maxi	imum Deformation			
	Reference Se	t 1			Reference Se	t 2	
Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C
Roof	0.3	≤ 4	Z	Roof	0.0	≤ 4	Z
Vindshield ^D	0.0	≤ 3	X, Z	Windshield ^D	NA	≤ 3	X, Z
-Pillar Maximum	0.2	≤ 5	Z	A-Pillar Maximum	0.0	≤ 5	NA
-Pillar Lateral	-0.9	≤ 3	Y	A-Pillar Lateral	-0.4	≤ 3	Y
3-Pillar Maximum	0.6	≤ 5	Z	B-Pillar Maximum	0.3	≤ 5	X, Z
3-Pillar Lateral	-0.9	≤ 3	Ý	B-Pillar Lateral	-0.2	≤ 3	Y
oe Pan - Wheel Well	6.0	≤ 9	X, Z	Toe Pan - Wheel Well	6.5	≤ 9	X, Z
Side Front Panel	2.6	≤ 12	Y	Side Front Panel	2.9	≤ 12	Y
ide Door (above seat)	-4.2	≤ 9	Y	Side Door (above seat)	-3.8	≤ 9	Y
Side Door (below seat)	-2.7	≤ 12	Y	Side Door (below seat)	-2.3	≤ 12	Y
loor Pan	-3.0	≤ 12	Z	Floor Pan	0.1	≤ 12	Z
Dash - no MASH requirement	0.7	NA	X, Y, Z	Dash - no MASH requirement	0.7	NA	X, Y, Z
Positive values denote deformat For Toe Pan - Wheel Well the di lirections. The direction of deforr occupant compartment. If direction If deformation is observered for the econded	ion as inward towar rection of defromati nation for Toe Pan on of deformation is the windshield then	d the occupant comp on may include X and -Wheel Well, A-Pillar "NA" then no intrusio the windshield defori	artment, negative val d Z direction. For A-F Maximum, and B-Pill n is recorded and de nation is measured p	lues denote deformations outward awa Pillar Maximum and B-Pillar Maximum ar Maximum only include components formation will be 0. posttest with an examplar vehicle, there	ay from the occupar the direction of defo where the deforma efore only one set o	it compartment. ormation may include tion is positive and ir f reference is measu	• X, Y, and Z htruding into the red and

Figure D-11. Maximum Occupant Compartment Deformations by Location, Test No. HWTT-2

Figure D-12. Exterior Vehicle Crush (NASS) - Front, Test No. HWTT-2

Figure D-13. Exterior Vehicle Crush (NASS) - Side, Test No. HWTT-2

Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. HWTT-1

Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HWTT-1

Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HWTT-1

Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No. HWTT-1

Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HWTT-1

Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. HWTT-1

Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. HWTT-1

Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. HWTT-1

Figure E-8. Acceleration Severity Index (SLICE-1), Test No. HWTT-1

187

Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HWTT-1

Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HWTT-1

Figure E-11. Longitudinal Occupant Displacement (SLICE-2), Test No. HWTT-1

Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HWTT-1

Figure E-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. HWTT-1

Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. HWTT-1

Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. HWTT-1

Figure E-16. Acceleration Severity Index (SLICE-2), Test No. HWTT-1

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. HWTT-2

Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. HWTT-2

Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. HWTT-2

Figure F-3. Longitudinal Occupant Displacement (SLICE-2), Test No. HWTT-2

Figure F-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. HWTT-2

Figure F-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. HWTT-2

Figure F-6. Lateral Occupant Displacement (SLICE-2), Test No. HWTT-2

Figure F-7. Vehicle Angular Displacements (SLICE-2), Test No. HWTT-2

Figure F-8. Acceleration Severity Index (SLICE-2), Test No. HWTT-2

Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. HWTT-2

Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. HWTT-2

Figure F-11. Longitudinal Occupant Displacement (SLICE-1), Test No. HWTT-2

Figure F-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. HWTT-2

Figure F-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. HWTT-2

Figure F-14. Lateral Occupant Displacement (SLICE-1), Test No. HWTT-2

Figure F-15. Vehicle Angular Displacements (SLICE-1), Test No. HWTT-2

Figure F-16. Acceleration Severity Index (SLICE-1), Test No. HWTT-2

END OF DOCUMENT