

Midwest Pooled Fund Research Program Fiscal Years 2017-2020 (Years 28 through 31) Research Project Number TPF-5(193) Supplement #120 NDOT Sponsoring Agency Code RPFP-18-MGS-1

MASH EVALUATION OF THE STEEL-POST,

TRAILING-END ANCHORAGE SYSTEM

Submitted by

Karla A. Lechtenberg, M.S.M.E. Research Engineer

Ronald K. Faller, Ph.D., P.E. Research Professor & MwRSF Director

Preston Noll Former Undergraduate Research Assistant Mojdeh Asadollahi Pajouh, Ph.D., P.E. Research Assistant Professor

Jessica L. Lingenfelter, M.S.M.E. Former Graduate Research Assistant

James C. Holloway, M.S.C.E. Research Engineer & Assistant Director – Physical Testing Division

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 **Outdoor Test Site** 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

MIDWEST POOLED FUND PROGRAM

Nebraska Department of Transportation 1500 Nebraska Highway 2 Lincoln, Nebraska 68502

MwRSF Research Report No. TRP-03-370b-20

December 17, 2020

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.		
TRP-03-370b-20				
4. Title and Subtitle MASH Evaluation of the Steel-Post, Trailing-End Anchorage System		5. Report Date December 17, 2020		
MASH Evaluation of the Steel-Post, Training-End Anchorage System		6.		
7. Author(s) Lechtenberg, K.A., Asadollahi Pajo Noll, P., and Holloway, J.C.	uh, M., Faller, R.K., Lingenfelter, J.L.,	8. Performing Organization Report No. TRP-03-370b-20		
9. Performing Organization Name Midwest Roadside Safety Facility (I Nebraska Transportation Center University of Nebraska-Lincoln		10. Work Unit No.		
Main Office: Prem S. Paul Research Center at WI Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	hittier School Outdoor Test Site: 4630 N.W. 36th Street Lincoln, Nebraska 68524	11. Contract TPF-5(193) Supplement #120		
12. Sponsoring Agency Name and	Address	13. Type of Report and Period Covered		
Midwest Pooled Fund Program		Final Report: 2016 – 2020		
Nebraska Department of Transportation 1500 Nebraska Highway 2 Lincoln, Nebraska 68502		14. Sponsoring Agency Code RPFP-18-MGS-1		
15. Supplementary Notes Prepared in cooperation with U.S. D	Department of Transportation, Federal High	way Administration.		
16. Abstract				

16. Abstract

A research study was conducted to develop and evaluate a steel-post, trailing-end, anchorage system for the Midwest Guardrail System (MGS) as an alternative to the existing wood-post, trailing-end anchorage system with BCT posts. Following the design and development of the steel-post, trailing-end anchorage system for the MGS, two full-scale crash tests, test nos. SPTA-1 and SPTA-2, were performed according to the American Association of State Highway and Transportation Officials' (AASHTO) Manual for Assessing Safety Hardware, Second Edition (MASH 2016) test designation nos. 3-37a and 3-37b, respectively. The steel-post, trailing-end anchorage system included the following components: two breakaway steel posts, two steel foundation tubes, a steel compression ground line strut, one steel anchor cable, and a T-shaped, breaker bar attached to the end anchor post. In test no. SPTA-1, the 5,074-lb (2,302-kg) pickup truck impacted the MGS at a speed of 62.1 mph (99.9 km/h) and an angle of 25.0 degrees and was captured and redirected. The vehicle remained upright and stable throughout the test, and all vehicle decelerations and occupant compartment deformations were within the allowable MASH 2016 limits. In test no. SPTA-2, the 2,429-lb (1,102-kg) small car impacted the system at a speed of 63.3 mph (101.9 km/h) and an angle of 25.2 degrees near the anchorage system. The vehicle gated through the system but remained upright and stable throughout the test, and all vehicle decelerations and occupant compartment deformations were within the allowable MASH 2016 limits. The MGS with the steel-post, trailing-end anchorage system performed adequately. Therefore, test nos. SPTA-1 and SPTA-2 were determined to satisfy the safety performance criteria for MASH 2016 test designation nos. 3-37a and 3-37b, respectively. Recommendations were provided for the installation of steel-post, trailing-end anchorage system when used in combination with the MGS.

17. Key Words Highway Safety, Crash Test, Roadside Appurtenances, Compliance Test, MASH 2016, Trailing-End Anchorage System, Guardrail, Midwest Guardrail System (MGS), Guardrail		18. Distribution Statement No restrictions. Document available from: National Technical Information Services, Springfield, Virginia 22161	
End Terminal, and Trailing-End Terminal			
19. Security Classification (of this report)20. Security Classific (of this page)		21. No. of Pages	22. Price
Unclassified	Unclassified	302	

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

DISCLAIMER STATEMENT

This material is based upon work supported by the Federal Highway Administration, U.S. Department of Transportation and the Midwest Pooled Fund Program under TPF-5(193) Supplement #120. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Nebraska-Lincoln, state highway departments participating in the Midwest Pooled Fund Program, nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names, which may appear in this report, are cited only because they are considered essential to the objectives of the report. The United States (U.S.) government and the State of Nebraska do not endorse products or manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Scott Rosenbaugh, Research Engineer

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) the Midwest Pooled Fund Program funded by the California Department of Transportation, Florida Department of Transportation, Georgia Department of Transportation, Hawaii Department of Transportation, Illinois Department of Transportation, Indiana Department of Transportation, Iowa Department of Transportation, Kansas Department of Transportation, Kentucky Department of Transportation, Minnesota Department of Transportation, Missouri Department of Transportation, Nebraska Department of Transportation, New Jersey Department of Transportation, North Carolina Department of Transportation, Ohio Department of Transportation, Utah Department of Transportation, Virginia Department of Transportation, Wisconsin Department of Transportation, and Wyoming Department of Transportation for sponsoring this project; and (2) MwRSF personnel for constructing the barriers and conducting the crash tests.

Acknowledgement is also given to the following individuals who contributed to the completion of this research project.

Midwest Roadside Safety Facility

J.D. Reid, Ph.D., Professor R.W. Bielenberg, M.S.M.E,. Research Engineer S.K. Rosenbaugh, M.S.C.E., Research Engineer J.D. Rasmussen, Ph.D., P.E., Research Associate Professor C.S. Stolle, Ph.D., Research Assistant Professor J.S. Steelman, Ph.D., P.E., Associate Professor A.T. Russell, B.S.B.A., Testing and Maintenance Technician II E.W. Krier, B.S., Construction and Testing Technician II S.M. Tighe, Construction and Testing Technician I D.S. Charroin, Construction and Testing Technician I R.M. Novak, Construction and Testing Technician I T.C. Donahoo, Construction and Testing Technician I J.T. Jones, Construction and Testing Technician I J.E. Kohtz, B.S.M.E., CAD Technician E.L. Urbank, B.A., Research Communication Specialist Z.Z. Jabr, Engineering Technician Undergraduate and Graduate Research Assistants

California Department of Transportation

Bob Meline, Chief, Roadside Safety Research Branch David Whitesel, P.E., Transportation Engineer John Jewell, P.E., Senior Transportation Engineer, Specialist

Florida Department of Transportation

Derwood C. Sheppard, Jr., P.E., Design Standards Publication Manager, Roadway Design Engineer

Georgia Department of Transportation

Brent Story, P.E., State Design Policy Engineer Frank Flanders IV, P.E., Assistant State Design Policy Engineer

Hawaii Department of Transportation

James Fu, P.E., State Bridge Engineer Dean Takiguchi, P.E., Engineer, Bridge Design Section Kimberly Okamura, Engineer, Bridge Design Section

Illinois Department of Transportation

Filiberto Sotelo, Safety Evaluation Engineer Martha Brown, P.E., Safety Evaluation Unit Chief

Indiana Department of Transportation

Katherine Smutzer, P.E., Standards Engineer Elizabeth Phillips, P.E., Standards and Policy Manager

Iowa Department of Transportation

Chris Poole, P.E., Roadside Safety Engineer Brian Smith, P.E., Methods Engineer Daniel Harness, P.E., Transportation Engineer Specialist Stuart Nielsen, P.E., Transportation Engineer Administrator, Design Elijah Gansen, P.E., Geometrics Engineer

Kansas Department of Transportation

Ron Seitz, P.E., Director of Design Scott King, P.E., Road Design Bureau Chief Thomas Rhoads, P.E., Road Design Leader, Bureau of Road Design

Brian Kierath Jr., Engineering Associate III, Bureau of Road Design

Kentucky Department of Transportation

Jason J. Siwula, P.E., Assistant State Highway Engineer Kevin Martin, P.E., Transportation Engineer Specialist Gary Newton, Engineering Tech III, Design Standards

Minnesota Department of Transportation

Michael Elle, P.E., Design Standards Engineer Michelle Moser, P.E., Assistant Design Standards Engineer

Missouri Department of Transportation

Sarah Kleinschmit, P.E., Policy and Innovations Engineer

Nebraska Department of Transportation

Phil TenHulzen, P.E., Design Standards Engineer Jim Knott, P.E., Construction Engineer Mike Owen, P.E., State Roadway Design Engineer Mick Syslo, P.E., Materials and Research Engineer & Division Head

Mark Fischer, P.E., PMP, Research Program Manager Lieska Halsey, Research Project Manager Angela Andersen, Research Coordinator David T. Hansen, Internal Research Coordinator Jodi Gibson, Former Research Coordinator

New Jersey Department of Transportation

Hung Tang, Senior Engineer, Transportation Joseph Warren, Assistant Engineer, Transportation

North Carolina Department of Transportation

Neil Mastin, P.E., Manager, Transportation Program Management – Research and Development

D. D. "Bucky" Galloway, P.E., CPM, Field Operations Engineer

Brian Mayhew, P.E., State Traffic Safety Engineer Joel Howerton, P.E., Plans and Standards Engineer

Ohio Department of Transportation

Don Fisher, P.E., Roadway Standards Engineer

South Carolina Department of Transportation

J. Adam Hixon, P.E., Design Standards Associate Mark H. Anthony, P.E., Letting Preparation Engineer Henry Cross, P.E., Design Standards Engineer Jason Hall, P.E., Engineer

South Dakota Department of Transportation

David Huft, P.E., Research Engineer Randy Brown, Standards Engineer Bernie Clocksin, P.E., former Standards Engineer

Utah Department of Transportation

Shawn Debenham, Traffic and Safety Specialist Glenn Blackwelder, Operations Engineer

Virginia Department of Transportation

Charles Patterson, P.E., Standards/Special Design Section Manager

Andrew Zickler, P.E., Complex Bridge Design and ABC Support Program Manager

Wisconsin Department of Transportation

Erik Emerson, P.E., Standards Development Engineer Rodney Taylor, P.E., Roadway Design Standards Unit Supervisor

Wyoming Department of Transportation

William Wilson, P.E., Architectural and Highway Standards Engineer

Federal Highway Administration

David Mraz, Division Bridge Engineer, Nebraska Division Office

TABLE OF CONTENTS

DISCLAIMER STATEMENTii
UNCERTAINTY OF MEASUREMENT STATEMENTii
INDEPENDENT APPROVING AUTHORITYii
ACKNOWLEDGEMENTSiii
LIST OF FIGURES
LIST OF TABLES
1 INTRODUCTION 1 1.1 Background 1 1.1.1 Wood-Post, Trailing-End Anchorage System 1 1.1.2 Universal Steel Breakaway Post Development 3 1.1.3 Steel-Post, Trailing-End Anchorage Concept Design Development 4 1.1.4 Steel-Post, Trailing-End Anchorage Final Design Development 6 1.2 Objective 9 1.3 Scope 9
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 10 2.1 Test Requirements 10 2.2 Evaluation Criteria 11 2.3 Soil Strength Requirements 13
3 TEST CONDITIONS.143.1 Test Facility.143.2 Vehicle Tow and Guidance System143.3 Test Vehicles.143.4 Simulated Occupant243.5 Data Acquisition Systems243.5.1 Accelerometers.243.5.2 Rate Transducers243.5.3 Retroreflective Optic Speed Trap.243.5.4 Load Cells253.5.5 Digital Photography25
4 DESIGN DETAILS – TEST NO. SPTA-1
5 FULL-SCALE CRASH TEST NO. SPTA-1645.1 Static Soil Test645.2 Weather Conditions645.3 Test Description645.4 Barrier Damage745.5 Vehicle Damage82

5.6 Occupant Risk	37
5.7 End Anchor Loads	38
5.8 Discussion	39
	1
6 DESIGN DETAILS – TEST NO. SPTA-2	1
7 FULL-SCALE CRASH TEST NO. SPTA-2	23
7.1 Static Soil Test	23
7.2 Weather Conditions	
7.3 Test Description	23
7.4 Barrier Damage	
7.5 Vehicle Damage	
7.6 Occupant Risk 14	
7.7 Discussion	
8 FINAL DESIGN FOR STEEL-POST, TRAILING-END ANCHORAGE SYSTEM 14	14
9 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 16	51
10 IMPLEMENTATION GUIDELINES	54
10.1 Guideline for Shielding Hazards Near Steel-Post, Trailing-End Anchorage	
System	54
10.2 MGS Height Tolerances16	55
10.3 MGS Configurations and Special Applications16	
10.3.1 MGS in Combination with Curbs	56
10.3.2 MGS with an Omitted Post 16	56
10.3.3 MGS Adjacent to Slopes16	56
10.3.4 MGS with 8-in. Deep Blockouts	57
10.3.5 MGS without Blockouts	
11 MASH EVALUATION	58
12 REFERENCES	70
12 ADDENIDICES	72
13 APPENDICES	
Appendix A. Vehicle Center of Gravity Determination	
Appendix B. Material Specifications	
Appendix C. Static Soil Tests	
Appendix D. Vehicle Deformation Records	
Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. SPTA-1 26	
Appendix F. Load Cell Data, Test No. SPTA-1	
Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. SPTA-228	35

LIST OF FIGURES

Figure 1. MGS Trailing-End Anchorage System	2
Figure 2. TxDOT Trailing-End Anchorage System	
Figure 3. UBSP Utilized in Thrie Beam Bullnose System	
Figure 4. Steel-Post, Trailing-End Anchorage System Prototype	4
Figure 5. Candidate Design Concepts	
Figure 6. Final Design Concept for Steel-Post, MGS Trailing-End Anchorage System	7
Figure 7. Ground Line Strut Design Concepts	9
Figure 8. Test Vehicle, Test No. SPTA-1	
Figure 9. Test Vehicle's Interior Floorboards and Undercarriage, Test No. SPTA-1	17
Figure 10. Vehicle Dimensions, Test No. SPTA-1	
Figure 11. Test Vehicle, Test No. SPTA-2	
Figure 12. Test Vehicle's Interior Floorboards and Undercarriage, Test No. SPTA-2	20
Figure 13. Vehicle Dimensions, Test No. SPTA-2	
Figure 14. Target Geometry, Test No. SPTA-1	22
Figure 15. Target Geometry, Test No. SPTA-2	
Figure 16. Camera Locations, Speeds, and Lens Settings, Test No. SPTA-1	
Figure 17. Camera Locations, Speeds, and Lens Settings, Test No. SPTA-2	
Figure 18. Test Installation Layout, Test No. SPTA-1	
Figure 19. Splice and Post Detail, Test No. SPTA-1	
Figure 20. Upstream End Section Detail, Test No. SPTA-1	32
Figure 21. Downstream End Section Detail, Test No. SPTA-1	
Figure 22. End Section Details, Test No. SPTA-1	34
Figure 23. Downstream End Section Detail, Test No. SPTA-1	35
Figure 24. Upstream End Section Detail, Test No. SPTA-1	
Figure 25. Downstream Anchor Post Assembly, Test No. SPTA-1	
Figure 26. Downstream Anchor Post Assembly Details, Test No. SPTA-1	
Figure 27. Downstream Anchor Post and Foundation Tube Details, Test No. SPTA-1	
Figure 28. Downstream Anchor Post Components, Test No. SPTA-1	
Figure 29. Post Nos. 3 through 27 Components, Test No. SPTA-1	
Figure 30. Upstream Anchor Post and Foundation Tube Detail, Test No. SPTA-1	
Figure 31. Downstream Ground Strut Components, Test No. SPTA-1	
Figure 32. Upstream Ground Strut Details, Test No. SPTA-1	
Figure 33. Breaker Arm Assembly, Test No. SPTA-1	
Figure 34. Breaker Arm Details, Test No. SPTA-1	
Figure 35. Breaker Arm Components, Test No. SPTA-1	
Figure 36. Anchor Cable Assembly, Test No. SPTA-1	
Figure 37. Anchor Cable and Load Cell Assembly, Test No. SPTA-1	
Figure 38. Modified Anchor Cable, Test No. SPTA-1	
Figure 39. Shackle and Eye Nut Detail, Test No. SPTA-1	
Figure 40. Anchor Post Components and Anchor Bracket, Test No. SPTA-1	
Figure 41. Bearing Plate Assembly and Components, Test No. SPTA-1	53
Figure 42. Rail Section Details, Test No. SPTA-1	
Figure 43. Hardware, Test No. SPTA-1	
Figure 44. Hardware, Test No. SPTA-1	
Figure 45. Bill of Materials, Test No. SPTA-1	57

Figure 46.	Bill of Materials, Test No. SPTA-1	58
Figure 47.	Bill of Materials, Test No. SPTA-1	59
Figure 48.	Test Installation Photographs – Trailing-End Anchorage System, Test No.	
	SPTA-1	
Figure 49.	Test Installation Photographs, Test No. SPTA-1	61
	Test Installation Photographs, Test No. SPTA-1	
-	Test Installation Photographs – Test No. SPTA-1	
	Impact Location, Test No. SPTA-1	
	Sequential Photographs, Test No. SPTA-1	
	Additional Sequential Photographs, Test No. SPTA-1	
	Documentary Photographs, Test No. SPTA-1	
Figure 56.	Documentary Photographs, Test No. SPTA-1	72
Figure 57.	Vehicle Final Position and Trajectory Marks, Test No. SPTA-1	73
	System Damage, Test No. SPTA-1	
Figure 59.	System Damage, Test No. SPTA-1	76
Figure 60.	System Damage, Test No. SPTA-1	77
Figure 61.	System Damage, Test No. SPTA-1	78
Figure 62.	System Damage, Post Nos. 24, 25, 26, and 27, Test No. SPTA-1	79
	System Damage, Post Nos. 28 and 29, Test No. SPTA-1	
Figure 64.	System Damage – Upstream End Anchorage System, Test No. SPTA-1	81
Figure 65.	Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No.	
-	SPTA-1	82
Figure 66.	Vehicle Damage, Test No. SPTA-1	84
	Vehicle Damage, Test No. SPTA-1	
Figure 68.	Occupant Compartment and Undercarriage Damage, Test No. SPTA-1	86
Figure 69.	Upstream Anchor Cable Load, Test No. SPTA-1	89
Figure 70.	Summary of Test Results and Sequential Photographs, Test No. SPTA-1	90
Figure 71.	Test Installation Layout, Test No. SPTA-2	92
	Splice and Post Detail, Test No. SPTA-2	
Figure 73.	Upstream End Section Detail, Test No. SPTA-2	94
Figure 74.	Downstream End Section Detail, Test No. SPTA-2	95
Figure 75.	End Section Details, Test No. SPTA-2	96
Figure 76.	Downstream End Section Detail, Test No. SPTA-2	97
	Upstream End Section Detail, Test No. SPTA-2	
Figure 78.	Downstream Anchor Post Assembly, Test No. SPTA-2	99
Figure 79.	Downstream Anchor Post Assembly Details, Test No. SPTA-2	100
Figure 80.	Downstream Anchor Post and Foundation Tube Details, Test No. SPTA-2	101
Figure 81.	Downstream Anchor Post Components, Test No. SPTA-2	102
Figure 82.	Post Nos. 3 through 27 Components, Test No. SPTA-2	103
Figure 83.	Upstream Anchor Post and Foundation Tube Detail, Test No SPTA-2	104
Figure 84.	Downstream Ground Strut Components, Test No. SPTA-2	105
Figure 85.	Upstream Ground Strut Details, Test No. SPTA-2	106
	Breaker Arm Assembly, Test No. SPTA-2	
Figure 87.	Breaker Arm Details, Test No. SPTA-2	108
Figure 88.	Breaker Arm Components, Test No. SPTA-2	109
	Anchor Cable Assembly, Test No. SPTA-2	
Figure 90.	Anchor Post Components and Anchor Bracket, Test No. SPTA-2	111

Figure 91. Bearing Plate Assembly and Components, Test No. SPTA-2	112
Figure 92. Rail Section Details, Test No. SPTA-2	113
Figure 93. Hardware, Test No. SPTA-2	114
Figure 94. Hardware, Test No. SPTA-2	115
Figure 95. Bill of Materials, Test No. SPTA-2	116
Figure 96. Bill of Materials, Test No. SPTA-2	117
Figure 97. Test Installation Photographs – Trailing-End Anchorage System, Test No.	
	118
Figure 98. Test Installation Photographs – Trailing-End Anchorage System, Test No. SPTA-2	119
Figure 99. Test Installation Photographs – Trailing-End Anchorage System, Test No. SPTA-2	
Figure 100. Test Installation Photographs – Trailing-End Anchorage System, Test No.	120
	121
Figure 101. Test Installation Photographs – Upstream End Anchorage System, Test No. SPTA-2	
Figure 102. Impact Location, Test No. SPTA-2	
Figure 103. Sequential Photographs, Test No. SPTA-2	
Figure 104. Additional Sequential Photographs, Test No. SPTA-2	
Figure 105. Documentary Photographs, Test No. SPTA-2	
Figure 106. Documentary Photographs, Test No. SPTA-2	
Figure 107. Vehicle Final Position and Trajectory Marks, Test No. SPTA-2	
Figure 108. System Damage, Test No. SPTA-2	
Figure 109. System Damage, Test No. SPTA-2	
Figure 109. System Damage, Test No. SI TA-2 Figure 110. System Damage – Post Nos. 28 and 29, Test No. SPTA-2	
Figure 110. System Damage – Fost Nos. 28 and 29, Test No. ST TA-2 Figure 111. System Damage – Upstream End Anchorage System, Test No. SPTA-2	
Figure 112. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. SPTA-2	
SPTA-2 Figure 113. Vehicle Damage, Test No. SPTA-2	
Figure 114. Vehicle Damage, Test No. SPTA-2 Figure 115. Occupant Compartment Damage, Test No. SPTA-2	
Figure 115. Occupant Compartment Damage, Test No. SPTA-2 Figure 116. Undercarriage Damage, Test No. SPTA-2	
Figure 117. Summary of Test Results and Sequential Photographs, Test No. SPTA-2	
Figure 118. Steel-Post Trailing End Anchorage, System Layout	
Figure 119. Steel-Post Trailing End Anchorage, Downstream End Section Detail	
Figure 120. Steel-Post Trailing End Anchorage, End Section Details	
Figure 121. Steel-Post Trailing End Anchorage, Downstream Anchor Post Assembly	148
Figure 122. Steel-Post Trailing End Anchorage, Downstream Anchor Post Assembly	140
Details	
Figure 123. Steel-Post Trailing End Anchorage, Downstream Anchor Post and Foundation	
Tube Details	
Figure 124. Steel-Post Trailing End Anchorage, Downstream Anchor Post Components	
Figure 125. Steel-Post Trailing End Anchorage, Downstream Ground Strut Components	
Figure 126. Steel-Post Trailing End Anchorage, Breaker Arm Assembly	
Figure 127. Steel-Post Trailing End Anchorage, Breaker Arm Components	
Figure 128. Steel-Post Trailing End Anchorage, Anchor Cable Assembly	155

Figure 129. Steel-Post Trailing End Anchorage, Anchor Post Components and Anchor	
Bracket	
Figure 130. Steel-Post Trailing End Anchorage, Bearing Plate Assembly and Components	157
Figure 131. Steel-Post Trailing End Anchorage, Rail Section Details	158
Figure 132. Steel-Post Trailing End Anchorage, Hardware	159
Figure 133. Steel-Post Trailing End Anchorage, Bill of Materials	160
Figure 134. Proposed MGS Placement Guideline for Shielding Hazards Near Trailing-End	
Anchorage System – Wood-Post and Steel-Post Systems	165
Figure 135. Recommended Distance between Omitted Posts and Steel-Post Trailing-End	
Anchorage System	166
Figure A-1. Vehicle Mass Distribution, Test No. SPTA-1	175
Figure A-2. Vehicle Mass Distribution, Test No. SPTA-2	
Figure B-1. 12-ft 6-in. (3.8-m) W-Beam MGS Section, Test Nos. SPTA-1 and SPTA-2	184
Figure B-2. 12-ft 6-in. (3.8-m) W-Beam MGS Section and End Section, Test Nos. SPTA-1	
and SPTA-2	185
Figure B-3. 6-ft 3-in. (1.9-m) W-Beam MGS Section, Test Nos. SPTA-1 and SPTA-2	
Figure B-4. W6x8.5 Steel Post, Test Nos. SPTA-1 and SPTA-2	
Figure B-5. W6x8.5 Steel Post, Test Nos. SPTA-1 and SPTA-2	
Figure B-6. 6-in. x 12-in. x 14 ¹ / ₄ -in. Timber Blockout, Test Nos. SPTA-1 and SPTA-2	
Figure B-7. 6-in. x 12-in. x 14 ¹ / ₄ -in. Timber Blockout, Test No. SPTA-2	
Figure B-8. W6x9 Steel Post, Test Nos. SPTA-1 and SPTA-2	
Figure B-9. W6x9 Steel Post, Test No. SPTA-2	
Figure B-10. TS8x6x ³ / ₁₆ Foundation Tube, Test Nos. SPTA-1 and SPTA-2	
Figure B-11. 5%-in. (16-mm) Steel Plate, Test Nos. SPTA-1 and SPTA-2	
Figure B-12. ³ / ₄ -in. (19-mm) Steel Plate, Test No. SPTA-1	
Figure B-13. ³ / ₄ -in. (19-mm) Steel Plate, Test No. SPTA-2	196
Figure B-14. BCT Timber Post, Test No. SPTA-1	
Figure B-15. BCT Timber Post, Test No. SPTA-2	
Figure B-16. TS8x6x ³ / ₁₆ Foundation Tube, Test Nos. SPTA-1 and SPTA-2	
Figure B-17. ¹ / ₄ -in. (6-mm) Steel Plate and Bent Steel Plate (Test Nos. SPTA-1 and	
SPTA-2) and Gusset (Test No. SPTA-1)	200
Figure B-18. 10-gauge (3.4-mm) Bent Steel Channel Strut, Test Nos. SPTA-1 and SPTA-2	201
Figure B-19. ¹ / ₂ -in. (13-mm) Steel Plate, Test Nos. SPTA-1 and SPTA-2	202
Figure B-20. HSS21/2x21/2x1/4 Square Tube, Test Nos. SPTA-1 and SPTA-2	203
Figure B-21. HSS3x3x ¹ /4 Square Tube, Test No. SPTA-1	
Figure B-22. HSS3x3x ¹ /4 Square Tube, Test No. SPTA-2	205
Figure B-23. ³ / ₈ -in. (10-mm) Plate, Test No. SPTA-2	206
Figure B-24. Gusset, Test No. SPTA-2	
Figure B-25. ³ / ₄ -in. (19-mm) Wire Rope and Anchor Cable Swaged Fitting, Test No.	
SPTA-1	208
Figure B-26. Anchor Bracket Assembly and Anchor Bearing Plate, Test Nos. SPTA-1 and	
SPTA-2	209
Figure B-27. Anchor Bracket Assembly, Test No. SPTA-1	210
Figure B-28. Upstream Ground Line Strut, Page 1, Test Nos. SPTA-1 and SPTA-2	
Figure B-29. Upstream Ground Line Strut, Page 2, Test No. SPTA-2	212
Figure B-30. Anchor Cable Assembly, Test No. SPTA-2	
Figure B-31. Bearing Plate Base, Test Nos. SPTA-1 and SPTA-2	214

Figure B-32. Bearing Plate Flange, Test Nos. SPTA-1 and SPTA-2	215
Figure B-33. BCT Post Sleeve, Test No. SPTA-2	
Figure B-34. 14-in. (356-mm) Long Guardrail Bolt, Test Nos. SPTA-1 and SPTA-2	
Figure B-35. ⁵ / ₈ -in. (16-mm) Diameter Nut, Test Nos. SPTA-1 and SPTA-2	
Figure B-36. 10-in. (254-mm) Long Guardrail Bolt, Test Nos. SPTA-1 and SPTA-2	
Figure B-37. 1 ¹ / ₄ -in. (32-mm) Long Guardrail Bolt	220
Figure B-38. 8-in. (203-mm) Long Guardrail Bolt, Test Nos. SPTA-1 and SPTA-2	
Figure B-39. 8 ¹ / ₂ -in. (216-mm) Long Bolt, Test No. SPTA-1	
Figure B-40. ⁷ / ₈ -in. (22-mm) Hex Nut, Test No. SPTA-1	
Figure B-41. 7/8-in. (22-mm) Hex Nut, Test Nos. SPTA-1 and SPTA-2	
Figure B-42. 8 ¹ / ₂ -in. (216-mm) Long Bolt, Test No. SPTA-2	
Figure B-43. ⁷ / ₈ -in. (22-mm) Hex Nut, Test No. SPTA-2	
Figure B-44. 10-in. (254-mm) Long Bolts, Test Nos. SPTA-1 and SPTA-2	
Figure B-45. ⁵ / ₈ -in. (16-mm) Diameter Nuts, Test Nos. SPTA-1 and SPTA-2	
Figure B-46. 1 ¹ / ₂ -in. (38-mm) Long Bolt, Test Nos. SPTA-1 and SPTA-2	
Figure B-47. 2-in. (51-mm) Long Bolt, Test No. SPTA-1	
Figure B-48. 2-in. (51-mm) Long Bolt, Test No. SPTA-2	
Figure B-49. ¹ / ₂ -in. (13-mm) Diameter Nuts, Test No. SPTA-2	
Figure B-50. 1 ¹ / ₂ -in. (38-mm) Long Bolts, Test No. SPTA-1	
Figure B-51. ¹ / ₂ -in. (14-mm) Dia. Nuts, Test No. SPTA-1	
Figure B-52. 1 ¹ / ₂ -in. (38-mm) Long Bolts, Test No. SPTA-2	
Figure B-53. 2 ¹ / ₂ -in. (64-mm) Long Bolts, Test Nos. SPTA-1 and SPTA-2	
Figure B-54. ⁷ / ₁₆ -in. (11-mm) Diameter Nuts, Test Nos. SPTA-1 and SPTA-2	
Figure B-55. 1-in. (25-mm) Diameter Nuts, Test No. SPTA-2	
Figure B-56. 16D Double Head Nail, Test Nos. SPTA-1 and SPTA-2	
Figure B-57. 1-in. (25-mm) Diameter Round Washer, Test No. SPTA-1	
Figure B-58. ⁷ / ₈ -in. (22-mm) Diameter Round Washer, Test No. SPTA-2	
Figure B-59. ¹ / ₂ -in. (13-mm) Diameter Round Washer, Test No. SPTA-2	
Figure B-60. ¹ / ₂ -in. (13-mm) Diameter Round Washer, Test No. SPTA-1	
Figure B-61. ⁷ / ₁₆ -in. (11-mm) Diameter Round Washer, Test Nos. SPTA-1 and SPTA-2	
Figure B-62. Anchor Bracket Assembly, Test No. SPTA-1	
Figure B-63. Post Sleeve, Test No. SPTA-1	
Figure C-1. Soil Strength, Initial Calibration Test, Test Nos. SPTA-1 and SPTA-2	
Figure C-2. Static Soil Test, Test No. SPTA-1	
Figure C-3. Static Soil Test, Test No. SPTA-2.	
Figure D-1. Floor Pan Deformation Data – Set 1, Test No. SPTA-1	
Figure D-2. Floor Pan Deformation Data – Set 2, Test No. SPTA-1	
Figure D-3. Occupant Compartment Deformation Data – Set 1, Test No. SPTA-1	
Figure D-4. Occupant Compartment Deformation Data – Set 2, Test No. SPTA-1	
Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. SPTA-1	
Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. SPTA-1	
Figure D-7. Maximum Occupant Compartment Deformation, Test No. SPTA-1	
Figure D-8. Floor Pan Deformation Data – Set 1, Test No. SPTA-2	
Figure D-9. Floor Pan Deformation Data – Set 2, Test No. SPTA-2	
Figure D-10. Occupant Compartment Deformation Data – Set 1, Test No. SPTA-2	
Figure D-11. Occupant Compartment Deformation Data – Set 2, Test No. SPTA-2	
Figure D-12. Exterior Vehicle Crush (NASS) – Front, Test No. SPTA-2	203

Figure D-13. Exterior Vehicle Crush (NASS) – Side, Test No. SPTA-2	264
Figure D-14. Maximum Occupant Compartment Deformation, Test No. SPTA-2	265
Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. SPTA-1	267
Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. SPTA-1	268
Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No. SPTA-1	269
Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. SPTA-1	270
Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. SPTA-1	271
Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. SPTA-1	272
Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. SPTA-1	273
Figure E-8. Acceleration Severity Index (SLICE-1), Test No. SPTA-1	274
Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. SPTA-1	275
Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. SPTA-1	276
Figure E-11. Longitudinal Occupant Displacement (SLICE-2), Test No. SPTA-1	277
Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. SPTA-1	278
Figure E-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. SPTA-1	279
Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. SPTA-1	280
Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. SPTA-1	281
Figure E-16. Acceleration Severity Index (SLICE-2), Test No. SPTA-1	282
Figure F-1. Load Cell Data from Upstream Cable Anchor, Test No. SPTA-1	284
Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. SPTA-2	286
Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. SPTA-2	287
Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. SPTA-2	
Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. SPTA-2	289
Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. SPTA-2	290
Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. SPTA-2	291
Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. SPTA-2	292
Figure G-8. Acceleration Severity Index (SLICE-1), Test No. SPTA-2	293
Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. SPTA-2	294
Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. SPTA-2	295
Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. SPTA-2	296
Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. SPTA-2	297
Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. SPTA-2	298
Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. SPTA-2	299
Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. SPTA-2	
Figure G-16. Acceleration Severity Index (SLICE-2), Test No. SPTA-2	301

LIST OF TABLES

Table 1. Performance Comparison of Steel-Post, Trailing-End Design Concepts and Wood-	
Post Trailing-End Anchorage System	6
Table 2. MASH 2016 TL-3 Crash Test Conditions for Gating End Terminals	10
Table 3. MASH 2016 TL-3 Crash Tests for Trailing-End Anchorage Systems	11
Table 4. MASH 2016 Evaluation Criteria for Gating End Terminals	12
Table 5. Weather Conditions, Test No. SPTA-1	64
Table 6. Sequential Description of Impact Events, Test No. SPTA-1	66
Table 7. Sequential Description of Impact Events, Test No. SPTA-1, Cont	67
Table 8. Sequential Description of Impact Events, Test No. SPTA-1, Cont	68
Table 9. Maximum Occupant Compartment Intrusion by Location, Test No. SPTA-1	87
Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. SPTA-1	88
Table 11. Weather Conditions, Test No. SPTA-2	123
Table 12. Sequential Description of Impact Events, Test No. SPTA-2	125
Table 13. Maximum Occupant Compartment Intrusion by Location, Test No. SPTA-2	141
Table 14. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. SPTA-2	142
Table 15. Summary of Safety Performance Evaluation, Test Nos. SPTA-1 and SPTA-2	163
Table B-1. Bill of Materials, Test No. SPTA-1	178
Table B-2. Bill of Materials, Test No. SPTA-1, Cont.	179
Table B-3. Bill of Materials, Test No. SPTA-1, Cont	180
Table B-4. Bill of Materials, Test No. SPTA-2	181
Table B-5. Bill of Materials, Test No. SPTA-2, Cont	182
Table B-6. Bill of Materials, Test No. SPTA-2, Cont.	183

1 INTRODUCTION

1.1 Background

1.1.1 Wood-Post, Trailing-End Anchorage System

Most state departments of transportation use adaptations of crashworthy guardrail end terminals as trailing-end anchorage systems, which typically include breakaway posts and an anchor cable. Breakaway Cable Terminal (BCT) anchorage systems and their derivatives have often been used as an economical means of providing tensile anchorage to a W-beam guardrail system. In 2013, a non-proprietary, trailing-end anchorage system with BCT wood posts was developed by the Midwest Roadside Safety Facility (MwRSF) for use with the Midwest Guardrail System (MGS) [1-3]. This trailing-end anchorage system has been successfully crash tested and adequately met the TL-3 safety requirements set forth in the *Manual for Assessing Safety Hardware* (MASH) [4-5]. This system consisted of the following components: (1) two breakaway wood posts (BCT posts); (2) two steel foundation tubes with an attached steel soil plate; (3) a steel compression ground line strut between the two steel foundation tubes; and (4) one steel anchor cable connecting the W-beam rail to the base of the end post, as shown in Figure 1.

The two steel foundation tubes within the trailing-end anchorage system enhance the postsoil resistance by distributing the tensile load from the rail in a more homogenous manner, while allowing for easier wood post replacement if fractured. The soil resistance can be further increased by attaching vertical steel bearing plates (soil plates) to the foundation tubes, which increases the area of the tube that is exposed to the soil. A compression ground line strut between the two foundation tubes is used to maximize the soil resistance by coupling the two foundation tubes [6]. For common crashworthy guardrail end terminals, steel anchor cables have been used to develop the tensile strength of the rail for impacts occurring beyond the length-of-need (LON) of the barrier. For the downstream end of longitudinal guardrail systems, the end of the LON has been previously defined as a downstream critical impact point (CIP) at which the end anchorage system would no longer redirect an errant vehicle but instead gate and permit the vehicle to encroach behind the system [1-3]. In crashworthy guardrail end terminals, one end of the cable is anchored to the base of the upstream end post and foundation tube near the ground line. The other end of the cable is connected to the back of the rail near the second post using a steel mounting bracket and is designed to quickly release away from the rail during end-on impact events.

A second trailing-end anchorage system was developed for the Texas Department of Transportation (TxDOT) [7]. The TxDOT end anchorage system also utilized two BCT wood posts embedded into steel foundation tubes along with a cable anchor and two C3x5 channel sections that connect the two foundation tubes to one another, as shown in Figure 2. The W-beam rail was supported at the downstream end post with a steel, shelf-angle bracket. Texas A&M Transportation Institute researchers conducted one full-scale, reverse-direction, crash test using an 1100C small car to evaluate the safety performance of the trailing-end anchorage system. This end anchorage system was successfully crash tested in combination with a 31-in. (787-mm) tall, 8-in. (203-mm) blocked MGS under MASH 2009 [4] modified test designation no. 3-37 conditions, later defined as test designation no. 3-37b conditions in MASH 2016 [5].

Figure 1. MGS Trailing-End Anchorage System [1-3]

Figure 2. TxDOT Trailing-End Anchorage System [7]

In both the MwRSF and TTI wood-post, trailing-end anchorage systems, the two BCT wood posts were designed to break away in a controlled manner, allowing an impacting vehicle to pass through the barrier without a sudden deceleration or rapid change in trajectory. This release behavior minimized the risk of vehicle rollover and/or snag on the cable anchorage system during near-end impact events.

Wood has historically been selected for use in breakaway posts due to it being readily available, relatively low cost, its brittle fracture behavior, and its ability to control load duration and fracture energy with holes drilled through the post at the ground level. However, wood posts also have notable drawbacks. First, the structural properties and performance of graded wood posts can still vary due to the presence of small knots, checks, and splits, thus often requiring enhanced grading and inspection. Second, the breakaway holes drilled near the ground line of BCT posts expose the interior of the wood post to the environment, which may accelerate deterioration. Further, the chemical preservatives used to treat the breakaway wood posts have been deemed harmful to the environment by some government agencies. Thus, treated wood posts may require special disposal considerations.

Due to these concerns, a critical need existed for a non-wood, trailing-end anchorage for W-beam guardrail systems, and this motivated the development of a new, steel-post, trailing-end anchorage system for use with the MGS.

1.1.2 Universal Steel Breakaway Post Development

In 2010, MwRSF developed the UBSP with fracturing bolts as a replacement for timber controlled-release terminal (CRT) posts used in the thrie beam bullnose system [8]. The UBSP was designed to break away under lateral load when applied bending moment at the base plate connection causes tensile fracture of the four vertical bolts. The UBSP consisted of an ASTM A36 W6x8.5 top section, and a 6-in. x 8-in. x $^{3}/_{16}$ -in. (152-mm x 203-mm x 4.8-mm) ASTM A500 Grade B steel tube bottom section, as shown in Figure 3. The two post sections were welded to the base plates and connected by four $^{7}/_{16}$ -in. (11-mm) diameter, ASTM A325 hex-head bolts. Different strong- and weak-axis capacities were generated by altering the spacing of the base plate connection bolts. During the development of the UBSP, three successful full-scale crash tests were performed on the thrie beam bullnose barrier with UBSPs according to the TL-3 criteria provided in NCHRP Report No. 350 [8-9]. The satisfactory crash performance of UBSPs demonstrated that the UBSP was a suitable alternative for the wood CRT posts used in the original thrie beam bullnose system.

In another research study involving component testing of UBSPs, the average strong- and weak-axis peak forces for the UBSP were found to be 14.6 kips and 7.9 kips (64.9 kN and 35.1 kN), respectively, comparable to the performance of the CRT posts [10]. Thus, it was concluded that the use of the modified UBSP could be expanded to other systems with CRT posts. Although the UBSP was designed to replace CRT posts, BCT posts have an identical material, similar cross section, and weakening holes placed at and/or near the ground line. Thus, it was believed that the UBSP could be adapted for use in BCT post applications and offer similar performance.

Figure 3. UBSP Utilized in Thrie Beam Bullnose System [8]

1.1.3 Steel-Post, Trailing-End Anchorage Concept Design Development

In 2016, an MwRSF research project was initiated by the Midwest Pooled Fund Program to develop a prototype for a non-proprietary, steel-post, trailing-end anchorage system [11]. This project consisted of a literature review of current end anchorage systems and a review of patents associated with end terminal posts and guardrail anchorages. The literature review and initial engineering analysis revealed that a modification of the Universal Breakaway Steel Post (UBSP) [8] could be a viable option to replicate the breakaway performance of the BCT wood posts.

Three design concepts were developed for the steel-post, trailing-end anchorage system [11], all of which incorporated a modified UBSP and used the same cable anchorage and ground line strut hardware as the existing, trailing-end anchorage system, as shown in Figure 4.

Figure 4. Steel-Post, Trailing-End Anchorage System Prototype

The three design concepts differed primarily in how the anchorage cable was secured to the end post. Concept no. 1 passed the cable through the bottom of the top W6x8.5 steel post, concept no. 2 passed the cable through the top of the foundation tube, and concept no. 3 passed the cable through an angled plate welded to the foundation tube, as shown in Figure 5. Several dynamic bogie pull tests were conducted to evaluate the impact performance of the steel-post anchorage system concepts. Based on results from the initial bogie testing, concept no. 1 with a raised bearing plate height. Concept no. 5 was based on concept no. 3 with a modified bearing plate angle and the introduction of a brass keeper rod. The results from the dynamic component testing program demonstrated that concept nos. 2, 4, and 5 developed sufficient tensile strength, and would perform adequately for impacts at the guardrail system's LON while providing the desired breakaway performance.

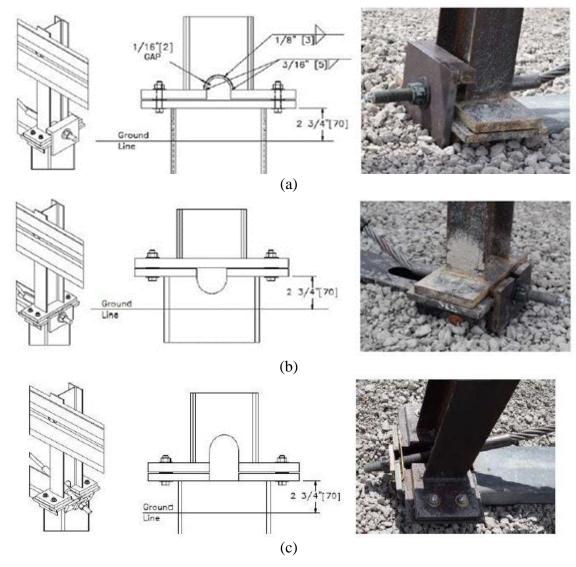


Figure 5. Candidate Design Concepts: (a) Concept Nos. 1&4 – Cable Through Upper Post, (b) Concept No. 2 – Cable Through Foundation Tube, and (c) Concept Nos. 3&5 – Anchor Cable Through Foundation Tube with Angled Bearing Plate

Design concept nos. 1 and 4 pass the cable through a welded base plate and a vertical slot at the bottom of the steel W6x8.5 post, as shown in Figure 5a, allowing the cable to release when the post disengages from the foundation tube. Design concept no. 2 included a slot in the foundation tube that forms the lower post and an opening in the bottom plate to facilitate the cable release, as shown in Figure 5b. Design concept nos. 3 and 5 were similar to design concept no. 2, but used an angled bearing plate welded to the foundation tube to restrain the cable, as shown in Figure 5c. Design concept no. 5 added a brass keeper rod to better anchor the bearing plate. The peak tensile force, energy, and overall behavior of breakaway post concept nos. 2, 4, and 5, as documented in the component tests, were compared with the component test results from the wood-post, trailing-end anchorage system, as presented in Table 1. Design concept no. 2 generated to the wood-post trailing-end anchorage system. All of the steel-post anchor design concepts showed the ability to cleanly breakaway and release the cable during the component testing.

Performance Criteria	Steel-Post Design Concepts			Wood Post Trailing-	
I erformance Criteria	No. 2	No. 4	No. 5	End Anchorage	
Peak Tensile Force, kips	44.0	49.5	49.4	35.0	
(kN)	(195.7)	(220.2)	(219.7)	(155.7)	
Energy Dissipated at Peak Force	49.6	50.6	81.2	16.8	
kip-in. (kN-m)	(5.6)	(5.7)	(9.2)	(1.9)	
Breakaway Behavior	Yes	Yes	N/A*	Yes	
Anchor Cable Release	Yes	Yes	N/A*	Yes	

Table 1. Performance Comparison of Steel-Post, Trailing-End Design Concepts and Wood-Post Trailing-End Anchorage System [11]

* Anchor cable broke at load exceeding tensile strength

1.1.4 Steel-Post, Trailing-End Anchorage Final Design Development

The design and performance details of concept nos. 2, 4, and 5 were presented to the Midwest Pooled Fund Program member states. Member states gave input on a preferred final concept for full scale crash testing. Based on this input, a modified version of concept no. 4, as shown in Figure 6, was selected as the final design for use in full-scale vehicle crash testing. Modifications to the system included the addition of a T-shaped, breaker bar assembly attached to the end anchor post to facilitate the release and rotation of the end post as well as the subsequent release of the cable anchor for impacts occurring upstream from the anchor post. The T-shaped, breaker bar assembly was bolted to the web of the upper end post stub to ensure a controlled release of the anchor as well as reduce the potential for vehicle instability and/or unacceptable ridedown decelerations.

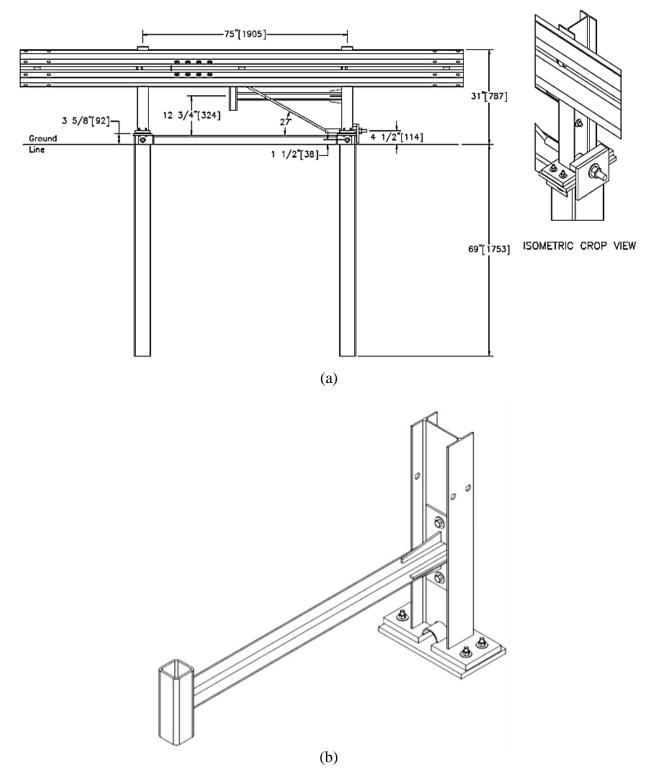


Figure 6. Final Design Concept for Steel-Post, MGS Trailing-End Anchorage System (a) Design Concept No. 4 and (b) T-Shaped Breaker Bar Design

Another modification involved reconfiguring the ground line strut that connected the two foundation tubes. For field installations of the MGS wood-post, trailing-end anchorage system, the ground line strut can be installed before or after the installation of the two breakaway wood posts. For the current prototypes of the steel-post, trailing-end anchorage system, the steel base plates are welded to the top and bottom ends of the adjoining sections, making installation of the ground line strut difficult. Therefore, modifications were necessary to facilitate the ground line strut installation procedure. A total of four ground line strut design concepts were developed, as shown in Figure 7, including:

- (1) Bolted yoke placed outside strut, in which two 17-in. x 3-in. x ¹/₄-in. (432-mm x 76-mm x 6-mm) ASTM A36, bent steel plates were placed outside of a 66¹/₂-in. x 11³/₄-in. x 10-gauge (1,689-mm x 298-mm x 3.4-mm) ASTM A36 steel C-channel (C6x8.2) and bolted to the strut using one 7/8-in. diameter, 8¹/₂-in. long hex-head bolt at each end, as shown in Figure 7a. At the location of the anchor and second posts, a 17-in. x 2³/₄-in. x ¹/₂-in. (432-mm x 76-mm x 6-mm) steel bent plate was placed outside of the strut and bolted to the strut using one 7/8-in. diameter, 8¹/₂-in. long hex head bolt. The steel bent plate was bolted to the strut using one 7/8-in. thick, 7-in. x 2³/₄-in. steel plate and the foundation tube using two ¹/₂-in. diameter, 2-in. long hex-head bolts. To secure the connection between the steel plate and foundation tube, the heads of the bolts were designed to be welded inside the foundation tube using a ³/₁₆-in. (5-mm) weld.
- (2) Bolted yoke placed inside strut, which was similar to the ground line strut design concept no. 1, except the two 15³/₈-in. x 3-in. x ¹/₄-in (391-mm x 76-mm x 6-mm) steel bent plates were placed inside the C-channel ground line strut, as shown in Figure 7b.
- (3) Welded yoke placed outside strut, in which two 17-in. x 3-in. x ¼-in. (432-mm x 76-mm x 6-mm) steel bent plates placed outside the C-channel strut and bolted to the strut using one 7/8-in. diameter, 8½-in. long hex-head bolt at each end. Two 7-in. x 2¾-in. x ½-in. (178-mm x 70-mm x 13-mm) steel plates welded to the steel bent plate and the foundation tube with a 3/16-in. (5-mm) weld at the location of the anchor and second posts, as shown in Figure 7c.
- (4) Welded yoke placed inside strut, which was similar to the ground line strut design concept no. 3 except the two 15³/₈-in. x 3-in. x ¹/₄-in. (391-mm x 76-mm x 6-mm) steel bent plates placed inside the C-channel strut and bolted to the strut using one 7/8-in. diameter, 8¹/₂-in. long hex-head bolt at each end, as shown in Figure 7d. Two 7-in. x 2³/₄-in. x ¹/₂-in. (178-mm x 70-mm x 13-mm) steel plates welded to the steel bent plate and the foundation tube with a ³/₁₆-in. (5-mm) weld at the location of the anchor and second posts.

The ground line strut design concepts were discussed with the Midwest Pooled Fund Program member states. Using a survey, a majority of the member states desired ground line strut concept no. 1, where the bolted yoke was placed outside the ground line strut, as shown in Figure 7a, due to its increased ease of installation over the other concepts.

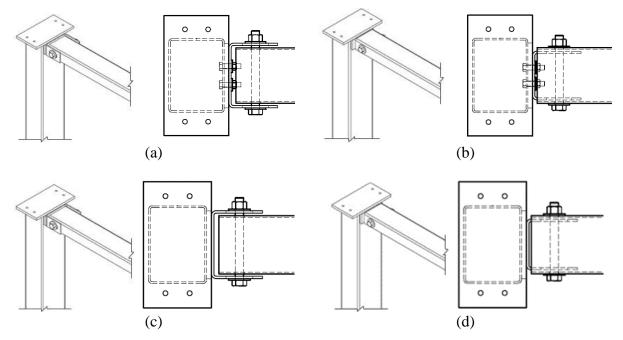


Figure 7. Ground Line Strut Design Concepts: (a) No. 1 - Bolted Yoke Outside Strut, (b) No. 2 - Bolted Yoke Inside Strut, (c) No. 3 - Welded Yoke Outside Strut, and (d) No. 4 - Welded Yoke Inside Strut

1.2 Objective

The objective of this research study was to evaluate the crashworthiness of the steel-post, trailing-end anchorage system developed during the research and development effort. This system was to be evaluated according to the MASH 2016 TL-3 safety performance criteria.

1.3 Scope

Earlier research developed concepts, conducted dynamic component testing, and made recommendations for a future full-scale vehicle crash testing program. A final design concept was selected based on the results from the dynamic component testing program and the input from the Midwest Pooled Fund Program member states. In the current research, that final anchorage configuration was evaluated through full-scale vehicle crash testing under the TL-3 safety performance criteria outlined in MASH 2016.

MwRSF constructed the new steel-post, trailing-end anchorage system at MwRSF's Outdoor Testing Facility. Two full-scale crash tests were conducted, documented, and evaluated by MwRSF personnel in accordance with MASH 2016 TL-3 guidelines. Following the full-scale crash testing program, a summary report was compiled, which detailed the new steel-post, trailing-end anchorage system, the full-scale crash tests, and recommendations for the implementation of the new trailing-end anchorage system.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Guardrail end terminals, such as trailing-end anchorage systems, must satisfy impact safety standards to be declared eligible for federal reimbursement by the Federal Highway Administration for use on the National Highway System. For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016. According to TL-3 of MASH 2016, W-beam guardrail terminals must be subjected to up to ten full-scale vehicle crash tests, as summarized in Table 2.

Test Article	Test	Test Vehicle	Vehicle	Impact Co	Evaluation	
	Designation No.		Weight lb (kg)	Speed Mph (km/h)	Angle deg.	Criteria ¹
	3-30	1100C	2,420 (1,100)	62 (100)	0	C,D,F,H,I,N
	3-31	2270P	5,000 (2,270)	62 (100)	0	C,D,F,H,I,N
	3-32	1100C	2,420 (1,100)	62 (100)	5-15	C,D,F,H,I,N
	3-33	2270P	5,000 (2,270)	62 (100)	5-15	C,D,F,H,I,N
Gating	3-34	1100C	2,420 (1,100)	62 (100)	15	C,D,F,H,I,N
End Terminal	3-35	2270P	5,000 (2,270)	62 (100)	25	A,D,F,H,I
	3-36	2270P	5,000 (2,270)	62 (100)	25	A,D,F,H,I
	3-37a	2270P	5,000 (2,270)	62 (100)	25	C,D,F,H,I,N
	3-37b	1100C	2,420 (1,100)	62 (100)	25	C,D,F,H,I,N
	3-38	1500A	3,300 (1,500)	62 (100)	0	C,D,F,H,I,N

¹ Evaluation criteria explained in Table 4.

The steel-post trailing-end anchorage system is to be used only in locations where vehicles impacting the anchorage head on are not a concern (e.g., one-way roadways or outside the clear zone of opposing traffic headed toward the middle of the MGS). As such, the trailing-end anchorage system would only be impacted by vehicles exiting the guardrail installation, which are traditionally described as reverse direction impacts. Within the gaiting end terminal test matrix end terminals, only MASH test designation nos. 3-37a and 3-37b involve reverse-direction impacts, and would be necessary in evaluating the trailing-end anchorage system. All of the other tests within the matrix involve head-on or normal direction impacts, and therefore, were not applicable in the evaluation of the trailing-end anchorage system. The reduced test matrix selected for the evaluation of the trailing-end anchorage system is shown in Table 3.

MASH 2016 test designation no. 3-37a with a 2270P vehicle is normally required to evaluate vehicle snag on crash cushions. However, in this research, this test was conducted to evaluate the downstream LON with the steel-post, trailing-end anchorage system connected to the MGS. MASH 2016 test designation no. 3-37b with an 1100C vehicle was required to evaluate vehicle snag, vehicle instabilities, and occupant risk criteria resulting from the interaction with the trailing-end anchorage.

	Test		Vehicle	Impact Co		
Test Article	Designation No.	Test Vehicle	Weight, lb (kg)	Speed mph (km/h)	Angle degrees	Evaluation Criteria ¹
Gating End Terminal	3-37a	2270P	5,000 (2,270)	62 (100)	25	C,D,F,H,I,N
	3-37b	1100C	2,420 (1,100)	62 (100)	25	C,D,F,H,I,N

¹ Evaluation criteria explained in Table 4.

The research team discussed whether full-scale crash testing was required to evaluate the tensile load capacity of the steel-post, trailing-end anchorage system during redirective impacts on the MGS (i.e., conducting a MASH 3-11 test on the MGS with the new steel-post anchorage system at both ends of the installation). The steel-post, trailing-end anchorage system was derived from the BCT end anchorage that has been used in a wide variety of full-scale crash testing programs for decades. As such, the steel-post, trailing-end anchorage system would be expected to possess a similar load bearing capacity in such crash testing programs. Additionally, dynamic component testing of the steel-post design concepts indicated greater tensile load capacity as compared to the wood-post, trailing-end anchorage system [11]. Thus, it was not believed that a separate anchor capacity crash test would be required for the steel-post, trailing-end anchorage system.

The steel-post, trailing-end anchorage system was developed to mimic the capacity and performance of the original BCT, wood-post, trailing-end anchorage system [1-3]. Thus, the CIPs for each full-scale crash test were selected to be the same as those used during the MASH TL-3 evaluation of the BCT, trailing-end anchorage system [1]. For test no. SPTA-1 (test designation no. 3-37a), the CIP was determined to be at the center of post no. 24, or the sixth post upstream from the downstream end of the barrier. For test no. SPTA-2 (test designation no. 3-37b), the CIP was determined to be the midspan between post nos. 27 and 28, or midspan between the second and third posts upstream from the downstream end of the barrier.

It should be noted that any tests deemed non-critical for evaluation may eventually need to be evaluated based on additional knowledge gained over time or additional FHWA eligibility letter requirements.

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for

structural adequacy are intended to evaluate the ability of the end anchorage to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 4 and defined in greater detail in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV, and ASI is provided in MASH 2016.

Table 4. MASH 2016 Evaluation Criteria for Gating End Terminals

Structural Adequacy	C.	Acceptable test article performance may be redirection, controlled penetration, or controlled stopping of the vehicle.								
	D.	Detached elements, fragments or other debris from the test at should not penetrate or show potential for penetrating the occu compartment, or present an undue hazard to other traffic, pedestr or personnel in a work zone. Deformations of, or intrusions into occupant compartment should not exceed limits set forth in Sec 5.3 and Appendix E of MASH.								
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.								
	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.3 of MASH for calculation procedure) should satisfy the following limits:								
Occupant										
Risk		Occupant Impact Velocity Limits								
		Component Preferred Maximu								
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)						
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix Section A5.3 of MASH for calculation procedure) should satisfy following limits:								
		Occupant Rideo	Occupant Ridedown Acceleration Limits							
		Component	Preferred	Maximum						
		Longitudinal and Lateral 15.0 g's 20.49 g's								
Vehicle Trajectory	N.	Vehicle trajectory behind the test article is acceptable.								

2.3 Soil Strength Requirements

In accordance with Chapter 3 and Appendix B of MASH 2016, foundation soil strength must be verified before any full-scale crash testing can occur. During the installation of a soil dependent system, W6x16 posts are installed near the impact region utilizing the same installation procedures as the full-scale system. Prior to full-scale testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips (33.4 kN) at post deflections between 5 and 20 in. (127 and 508 mm) measured at a height of 25 in. (635 mm). If dynamic testing near the system is not desired, MASH 2016 permits a static test to be conducted instead and compared against the results of a previously established baseline test. In this situation, the soil must provide a resistance of at least 90 percent of the static baseline test at deflections of 5, 10, and 15 in. (127, 254, and 381 mm). Further details can be found in Appendix B of MASH 2016.

3 TEST CONDITIONS

3.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

3.2 Vehicle Tow and Guidance System

A reverse-cable tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distances traveled and the speed of the tow vehicle were one-half that of the test vehicles. The test vehicles were released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicles' impact speed.

A vehicle guidance system developed by Hinch [12] was used to steer the test vehicles. A guide flag that was attached to the left-front wheel, and the guide cable was sheared off before impact with the barrier system. The $\frac{3}{8}$ -in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but the guide flag struck and knocked each stanchion to the ground as the vehicles were towed down the line.

3.3 Test Vehicles

For test no. SPTA-1, a 2011 Dodge Ram 1500 crew cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,121 lb (2,323 kg), 5,074 lb (2,302 kg), and 5,236 lb (2,375 kg), respectively. The 2270P test vehicle is shown in Figures 8 and 9, and vehicle dimensions are shown in Figure 10.

For test no. SPTA-2, a 2011 Hyundai Accent was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,505 lb (1,136 kg), 2,429 lb (1,102 kg), and 2,590 lb (1,175 kg), respectively. The 1100C test vehicle is shown in Figures 11 and 12, and vehicle dimensions are shown in Figure 13. Note that both test vehicles were within six model years of the 2017 research project contract date.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [13] was used to determine the vertical component of the c.g. for the pickup truck. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The vertical component of the c.g. for the 1100C vehicle was determined utilizing a procedure published by SAE [14]. The location of the final c.g. is shown in Figures 10 and 14 for test no. SPTA-1 and Figures 13 and 15 for test no. SPTA-2. Data used to calculate the location of the c.g. and ballast information are shown in Appendix A.

Square, black- and white-checkered targets were placed on the vehicles for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figures 14 and 15. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicles.

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted on the vehicles' right-side windshield wipers and was signaled by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. Radio-controlled brake systems were installed in the test vehicles so the vehicles could be brought safely to a stop after the tests.

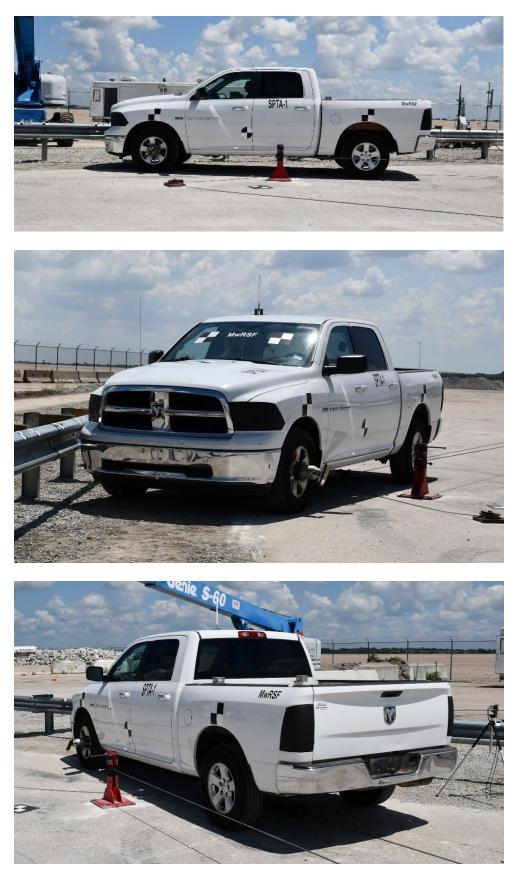


Figure 8. Test Vehicle, Test No. SPTA-1

Figure 9. Test Vehicle's Interior Floorboards and Undercarriage, Test No. SPTA-1

Date:	7/31/201	18		Test Name	:SP'	TA-1	VIN No:	1D7RE	B1CT2BS582	287
Year:	2011			Make	:Do	dge	Model:		Ram 1500	
Tire Size:	265/70 R	817	Tire Inflat	ion Pressure	:40	Psi	Odometer:		152215	
		0					Vehicle G Target Range	eometry - in s listed below	n. (mm)	
			Test Inerti			T T	A: 76 1/2 78±2 (11 C: 229 1/8 237±13 (6 E: 140 3/8 148±12 (3 G: 28 1/2 min: 28	(5820) [(020±325) (3566) [(760±300) (724) H 3 (710)	D: <u>37 1/2</u> 39±3 (10 F: <u>46 7/8</u> H: <u>61 3/4</u> 63±4 (15	(1191) (1568) ^{75±100)}
				s 1		B 	$I: 11 1/2$ $K: 20 1/2$ $M: 67 1/2 = 67 \pm 1.5 (7)$ $O: 44 = 43 \pm 4 (1)$ $Q: 31 = 10$	(521) (1715) ^(700±38) (1118) ⁽¹¹¹⁸⁾	67±1.5 (1	(629) (743) (1715) ^{700±38)} (127) (470)
-	5						S:15	(381)	T: 76	(1930)
Mass Distrib	ution lb (kg)						U (ii	mpact width	n): <u>77 7/8</u>	(1978)
Gross Static			R <u>1494</u> R <u>1156</u>	(678) (524)			Cle	Wheel Cent Height (Fron Wheel Cent Height (Rea Wheel We earance (Fron	t): <u>14 3/4</u> :er r): <u>15</u> ell	(375) (381) (876)
Weights lb (kg)	Cu	rb	Test l	nertial	Gross	s Static	CI	Wheel We earance (Rea		(959)
W-front W-rear	2898 2223	(1315) (1008)	2842 2232	(1289) (1012)	2934 2302	(1331) (1044)		Bottom Fran Height (Front Bottom Fran Height (Rea	t): <u>9 3/4</u> ne	(248) (508)
W-total	5121	(2323)	5074	(2302)	5236	(2375)		Engine Type	e: Gaso	oline
			5000±110	(2270±50)	5165±110) (2343±50)		Engine Size	e: 5.7L	. V8
GVWR Rating	gs Ib		Surrogate	Occupant D	ata		Transr	nission Type	e: Autor	natic
Front	3700			Type:	Hybrid	11		Drive Type	e: RV	VD
Rear	3900			Mass:	162	b		Cab Style	e: Crew	Cab
Total	6700		Seat	Position:	Right/Pas	senger		Bed Lengtl	h: <u>67</u>	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Note ar	ny damage prio	or to test:		right re	ar fender i	s scraped a	and dented be	hind rear tir	re	

Figure 10. Vehicle Dimensions, Test No. SPTA-1

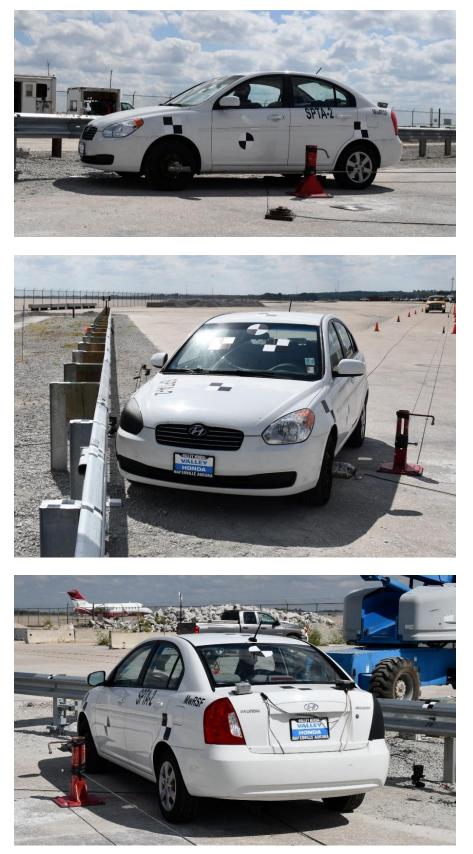


Figure 11. Test Vehicle, Test No. SPTA-2

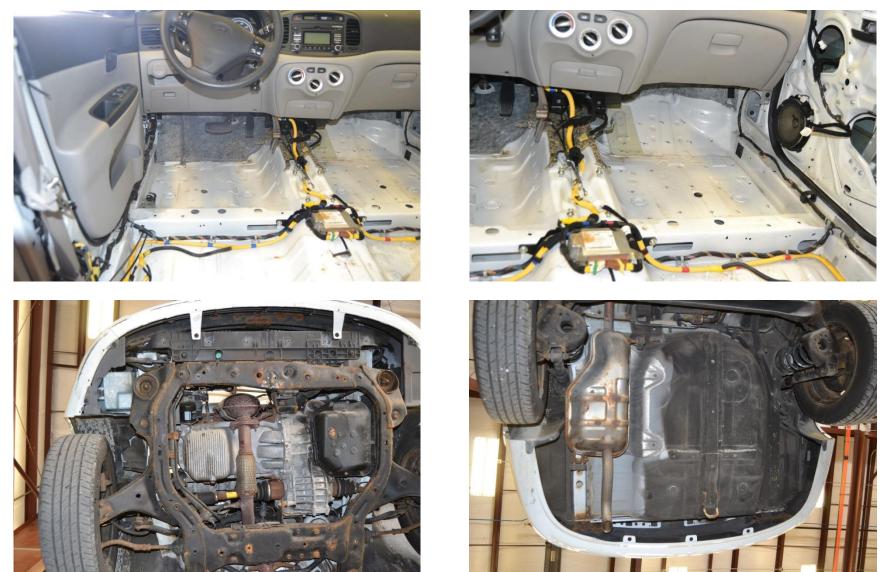


Figure 12. Test Vehicle's Interior Floorboards and Undercarriage, Test No. SPTA-2

Date:	9/12/2018	Test Name	: SPTA-2	VIN No:	kmhcn4a	c2bu618362	
Year:	2011	Make	e:Hyundai	Model:	el: Accent		
Tire Size:	185/65p14	Tire Inflation Pressure	e:32 Psi	Odometer:	15	7090	
				Vehicle Ge Target Ranges	ometry - in. (m listed below	ım)	
	M			A: <u>65 5/8</u> 65±3 (165	(1667) B:B:	57 1/2 (1461)	
				C: <u>168 1/2</u> 169±8 (430	0±200)	33 1/2 (851) 35±4 (900±100)	
				E: 98 98±5 (2500	(2489) F:	36 (914)	
		Test Inertial CG		G: 22 11/16	(576) H: <u>3</u>	5 5/16 (897) 39±4 (990±100)	
	- Q -			l: 7 7/8	(200) J:	23 1/2 (597)	
P				K: <u>11 1/2</u>	(292) L:	25 5/8 (651)	
		S C		M: <u>57 3/4</u> 56±2 (142	(1467) N:	57 3/4 (1467) 56±2 (1425±50)	
		- 1	1	O: 27 1/4 24±4 (600	(692) P:	1 (25)	
	- D - ►	E	F	Q: 22 3/4	(578) R:	15 1/2 (394)	
		C	-1	S: 11 3/8	(289) T:	63 3/8 (1610)	
Mass Distribu	ution Ib (kg)			U (im	pact width): _	28 5/8 (727)	
Gross Static) RF 810 (367)		Top of	radiator core support:	28 (711)	
	LR 454 (206) RR 499 (226)			Wheel Center leight (Front):	10 5/8 (270)	
					Wheel Center Height (Rear):	10 7/8 (276)	
Weights Ib (kg)	Curb	Test Inertial	Gross Static	Clea	Wheel Well rance (Front):	26 (660)	
W-front)1554 (705)	1637 (743)	Clea	Wheel Well arance (Rear):	26 1/2 (673)	
W-rear	908 (412) 875 (397)	953 (432)		Bottom Frame leight (Front):	5 7/8 (149)	
W-total	2505 (113)		2590 (1175)		Bottom Frame Height (Rear):	7 3/8 (187)	
		2420±55 (1100±25)	2585±55 (1175±50)	E	ngine Type:	Gasoline	
GVWR Rating	js Ib	Surrogate Occupant D	lata	E	Engine Size:	1.4L 4 cyl	
Front	1918	Туре:	Hybrid II	Transmi	ssion Type:	Automatic	
Rear	1874	Mass:	161 lb	-	Drive Type:	FWD	
Total	3638	Seat Position:	Right/Passenger	-			
Note an	y damage prior to te	st:					

Figure 13. Vehicle Dimensions, Test No. SPTA-2

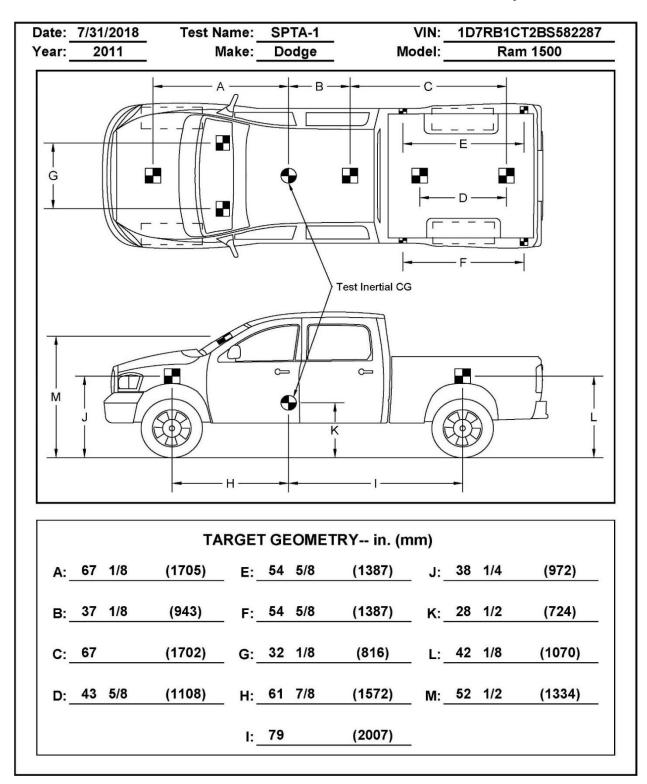


Figure 14. Target Geometry, Test No. SPTA-1

Figure 15. Target Geometry, Test No. SPTA-2

3.4 Simulated Occupant

For test nos. SPTA-1 and SPTA-2, a Hybrid II 50th-Percentile, Adult Male Dummy that was equipped with footwear, was placed in the right-front seat of each test vehicle with the seat belt fastened. The simulated occupant had a final weight of 162 lb (73.5 kg) and 161 lb (73.0 kg) for test nos. SPTA-1 and SPTA-2, respectively. As recommended by MASH 2016, the simulated occupant was not included in calculating the c.g. locations.

3.5 Data Acquisition Systems

3.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometer systems were mounted near the c.g. of the test vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [15].

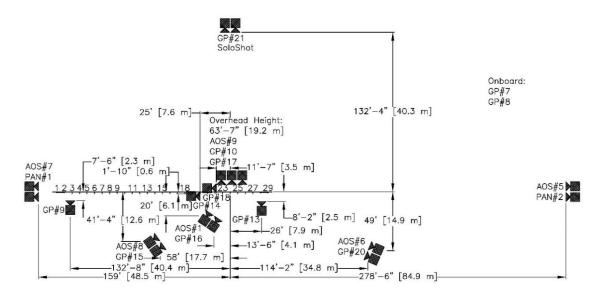
The two systems, the SLICE-1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-2 unit was designated as the primary system for test no. SPTA-1, and the SLICE-1 unit was designated as the primary system for test no. SPTA-2. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) antialiasing filter. The "SLICEWare" computer software programs and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

3.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

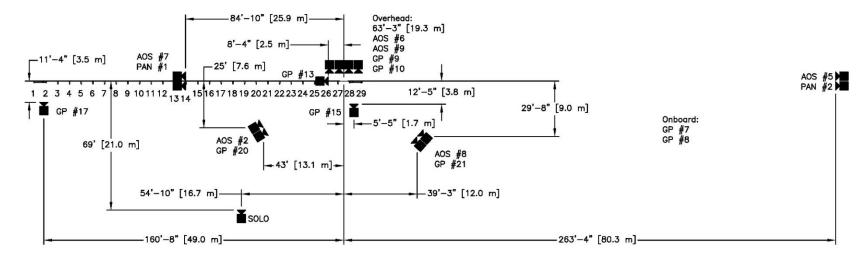
3.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicles before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, were applied to the sides of the vehicles. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.


3.5.4 Load Cells

A load cell was installed on the upstream anchorage cable for test no. SPTA-1 to obtain peak tensile forces during a dynamic impact. Data from the full-scale crash test was compared to data from previous component tests [11] and wood post tests [1-3]. The load cell was Transducer Techniques model no. TLL-50K with a load range up to 50 kips (222 kN). During testing, output voltage signals were sent from the transducers to a National Instruments PCI-6071E data acquisition board, acquired with LabView software, and stored on a personal computer at a sample rate of 10,000 Hz.

3.5.5 Digital Photography


Six AOS high-speed digital video cameras, 12 GoPro digital video cameras, two Panasonic digital video cameras, and one Soloshot digital video camera were utilized to film test no. SPTA-1. Note that GoPro no. 7 experienced technical difficulties. Six AOS high-speed digital video cameras, nine GoPro digital video cameras, two Panasonic digital video cameras, and one Soloshot digital video camera were utilized to film test no. SPTA-2. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system for test nos. SPTA-1 and SPTA-2 are shown in Figures 16 and 17, respectively.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and posttest conditions for all tests.

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-1	AOS Vitcam	500	Sigma 28-70 #1	70
AOS-5	AOS X-PRI	500	100mm Fixed	-
AOS-6	AOS X-PRI	500	Cosmicar 50mm Fixed	-
AOS-7	AOS X-PRI	500	Fujinon 75mm Fixed	-
AOS-8	AOS S-VIT 1531	500	Fujinon 50mm Fixed	-
AOS-9	AOS TRI-VIT 2236	1000	KOWA 12mm Fixed	-
GP-7	GoPro Hero 4	30		
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-10	GoPro Hero 4	120		
GP-13	GoPro Hero 4	120		
GP-14	GoPro Hero 4	240		
GP-15	GoPro Hero 4	240		
GP-16	GoPro Hero 4	240		
GP-17	GoPro Hero 4	120		
GP-18	GoPro Hero 6	120		
GP-20	GoPro Hero 6	240		
GP-21	GoPro Hero 6	120		
PAN-1	Panasonic	60		
PAN-2	Panasonic	60		
SoloShot	SoloShot	120		

Figure 16. Camera Locations, Speeds, and Lens Settings, Test No. SPTA-1

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-2	AOS Vitcam	500	Sigma 28-70 #2	70
AOS-5	AOS X-PRI Gigabit	500	100mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	KOWA 16mm	-
AOS-7	AOS X-PRI Gigabit	500	Fujinon 50mm	-
AOS-8	AOS S-VIT 1531	500	Sigma 28-70 #1	50
AOS-9	AOS TRI-VIT	1000	KOWA 12mm	-
GP-7	GoPro Hero 4	120		
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	240		
GP-10	GoPro Hero 4	240		
GP-13	GoPro Hero 4	240		
GP-15	GoPro Hero 4	240		
GP-17	GoPro Hero 4	240		
GP-20	GoPro Hero 6	120		
GP-21	GoPro Hero 6	120		
PAN-1	Panasonic HC-V770	60		
PAN-2	Panasonic HC-V770	60		
SoloShot	SoloShot	120		

Figure 17. Camera Locations, Speeds, and Lens Settings, Test No. SPTA-2

4 DESIGN DETAILS – TEST NO. SPTA-1

In test no. SPTA-1, the test installation consisted of 12-gauge AASHTO M180 standard W-beam guardrail, W6x8.5 steel posts with timber blockouts, a tangent non-proprietary, wood-post, trailing-end anchorage system at the upstream end, and a steel-post, trailing-end anchorage system at the downstream end, as shown in Figures 18 through 47. The total system length was 182 ft $-3\frac{1}{2}$ in. (55.6 m). Photographs of the test installation are shown in Figures 48 through 51. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

Post nos. 3 through 27 were standard 72-in. (1,829-mm) long, W6x8.5 ASTM A992 steel posts, embedded to a depth of 40 inches (1,016 mm). Post nos. 1 and 2 were wood BCT posts inserted into steel foundation tubes embedded to a depth of 70 in. (1,778 mm), while post nos. 28 and 29, comprising the steel-post, trailing-end anchorage system, were embedded to a depth of 69 in. (1,753 mm). All posts were embedded in coarse, crushed limestone, alternatively classified as well-graded gravel according to the Unified Soil Classification System, and spaced 75 in. (1,905 mm) on center. Timber blockouts, measuring 6 in. x 12 in. x 14¹/₄ in. (152 mm x 305 mm x 362 mm), were used to block the rail away from the front face of each steel line post. The W-beam guardrail was mounted with a top rail height of 31 in. (787 mm), as measured from the surface of the roadway. Splice joints located between posts were oriented with the leading edge of the downstream W-beam rail covered by the trailing edge of the upstream rail to provide a proper overlap for normal-direction traffic and reduce vehicle snag concerns.

The downstream end of the guardrail installation was configured with the non-proprietary, steel-post, trailing-end anchorage system that was designed in the Phase I research project [11]. The end anchor posts (post nos. 28 and 29) were two-part breakaway steel posts. The top portion of the post consisted of a 27½ in. (699 mm) long, W6x8.5 ASTM A992 steel post welded to a 5½-in. x 5½-in. x 3⁄4-in. (140-mm- x 140-mm x 19-mm), ASTM 36 steel base plate. The bottom portion of the post was a HSS 6-in. x 8-in. x 3 /₁₆ -in. (152-mm x 203-mm x 5-mm) ASTM A500 Grade B steel tube welded to a 13-in. x 7-in. x 5 /₈-in. (330-mm- x 178-mm x 16-mm), ASTM 36 steel base plate. The top and bottom base plates were connected using four 7 /₁₆-in. (11-mm) diameter, ASTM A325 bolts.

The two foundation tubes were connected with a $66\frac{1}{2}$ -in. (1,689-mm) long, modified ground line strut, (i.e., bolted yoke placed outside strut), as shown in Figures 33 through 35. At the location of the anchor and second posts, two 17-in. x $2\frac{3}{4}$ -in. x $\frac{1}{2}$ -in. (432-mm x 70-mm x 13-mm) bent steel plates were placed outside of the strut and bolted to the strut using one $\frac{7}{8}$ -in. (22-mm) diameter, $\frac{8}{2}$ -in. (216-mm) long hex-head ASTM A307 bolt. The steel bent plate was bolted to the $\frac{1}{2}$ -in. (13-mm) thick, 7-in. x $2\frac{3}{4}$ -in. (178-mm x 70-mm) steel plate and the foundation tubes using two $\frac{1}{2}$ -in. (13-mm) diameter, 2-in. (51-mm) long hex-head ASTM A307 bolts. To secure the connection between the steel plate and foundation tube, the heads of the bolts were designed to be welded inside the foundation tube using a $\frac{3}{16}$ -in. (5-mm) weld.

The anchor cable assembly consisted of an anchor bearing plate, an anchor bracket mounted on the rail, an end plate, and a steel cable which was secured against the end anchor post on one end. The other end of the cable was connected to the back of the rail through a steel mounting bracket, which would quickly release away from the rail during end-on impact event. More details on the system design are provided in reference 11. The bearing plate assembly consisted of a vertical, 8-in. x $6\frac{1}{4}$ -in. x $\frac{5}{8}$ -in. (203-mm x 159-mm x 16-mm) steel bearing plate was welded to an 8-in. x $1\frac{1}{2}$ -in. x 1-in. (203-mm x 38-mm x 25-mm) compression block. The bearing plate assembly was secured against the end anchor post through anchor cable, as shown in Figure 23.

The upstream end of the guardrail installation was configured with a non-proprietary, tensile end anchorage system utilizing BCT posts and hardware [1-3]. The upstream guardrail anchorage system consisted of two BCT timber posts, foundation tubes, an anchor cable and connection hardware, a bearing plate, a rail bracket, and a channel strut.

A T-shaped, breaker bar was attached to the end anchor post (i.e., post no. 29) with a mounting height of 15³/₄ in. (400 mm). The T-shaped, breaker bar consisted of a horizontal 40-in. (1,016-mm) long, 2¹/₂-in. x 2¹/₂-in x ¹/₄-in. (64-mm x 64-mm x 6-mm) ASTM A500 Grade B steel square tube welded to a vertical 9-in. (229-mm) long, 3-in. x 3-in. x ¹/₄-in. (76-mm x 76-mm x 6-mm) steel square tube. The attachment to post no. 29, as shown in Figure 50, consisted of a 10-in. x 4¹/₂-in. x ¹/₄-in. (254-mm x 114-mm x 6-mm) ASTM A36 steel plate along with two 6-in. x ³/₄-in. x ¹/₄-in. (152-mm x 19-mm x 6-mm) and two 6-in. x 1¹/₄-in. x ¹/₄-in. ASTM (152-mm x 32-mm x 6-mm) A36 steel gusset plates to facilitate cable anchor disengagement and mitigate vehicle snag under the anchor cable.

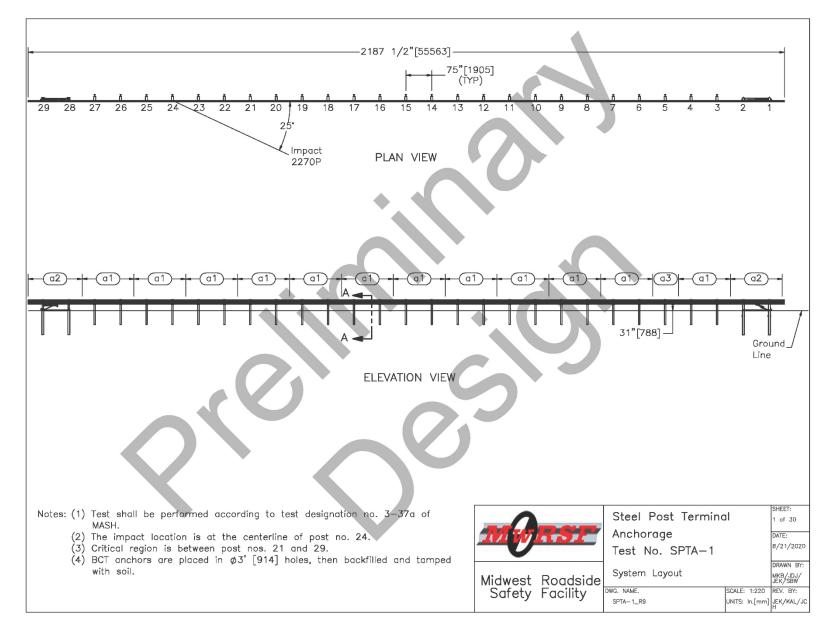
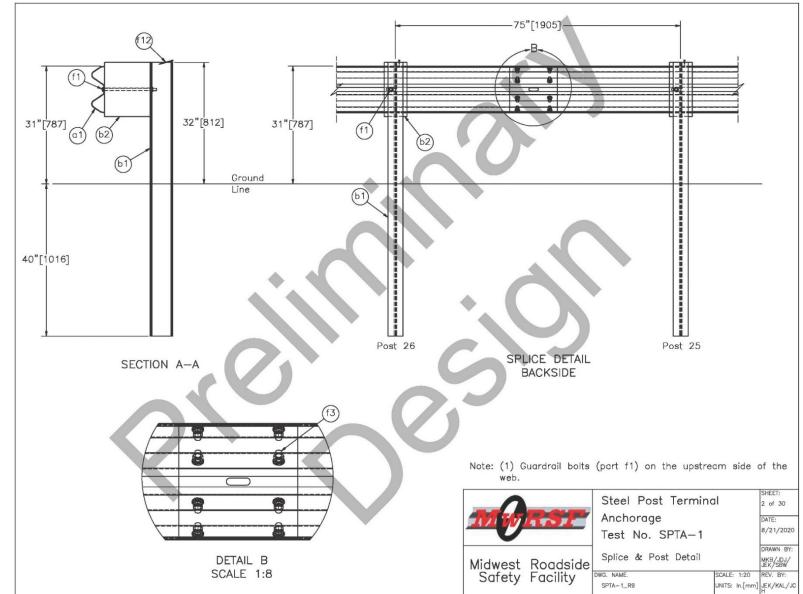



Figure 18. Test Installation Layout, Test No. SPTA-1

December 17, 2020 MwRSF Report No. TRP-03-370b-20

Figure 19. Splice and Post Detail, Test No. SPTA-1

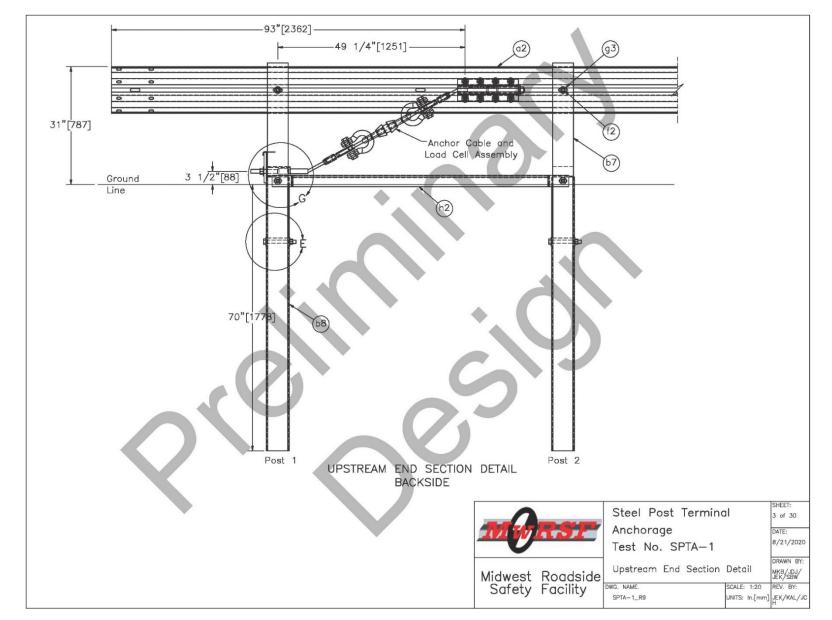


Figure 20. Upstream End Section Detail, Test No. SPTA-1

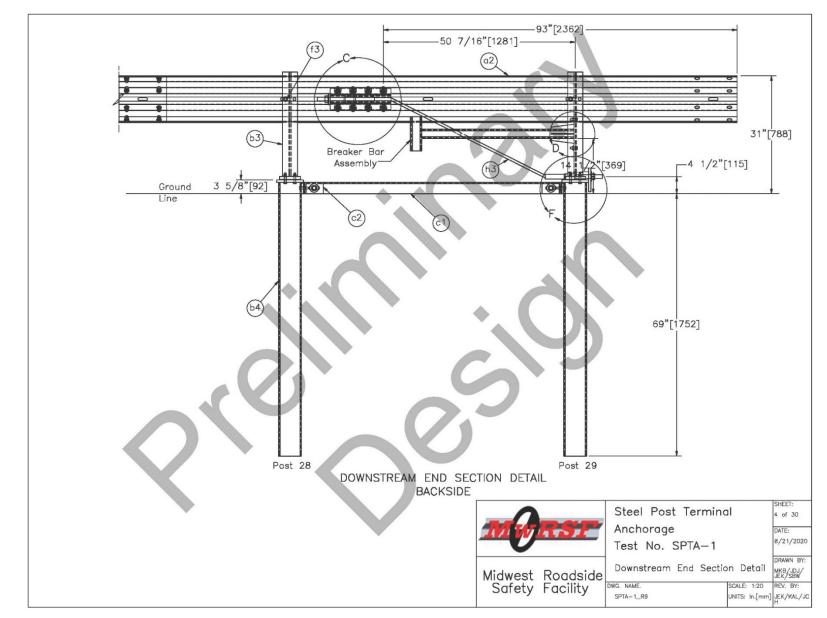


Figure 21. Downstream End Section Detail, Test No. SPTA-1

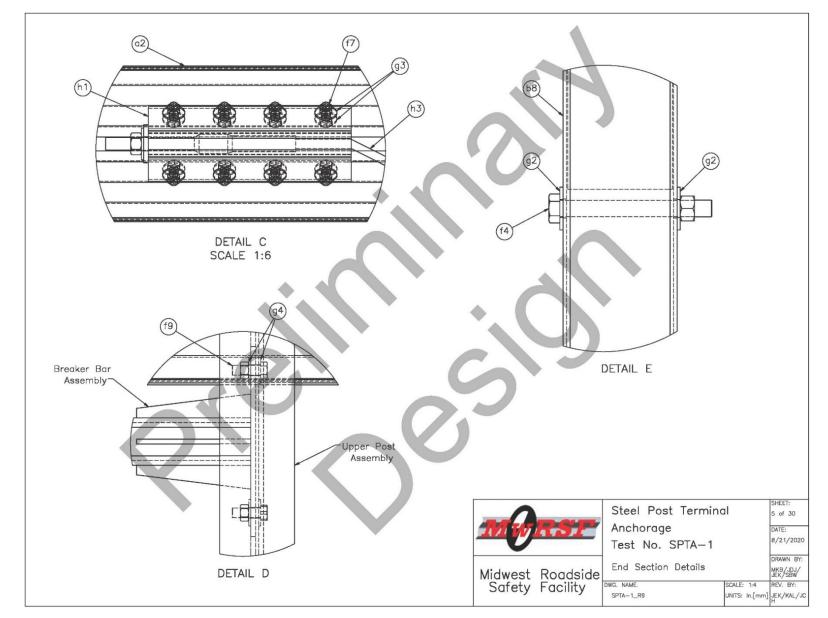


Figure 22. End Section Details, Test No. SPTA-1

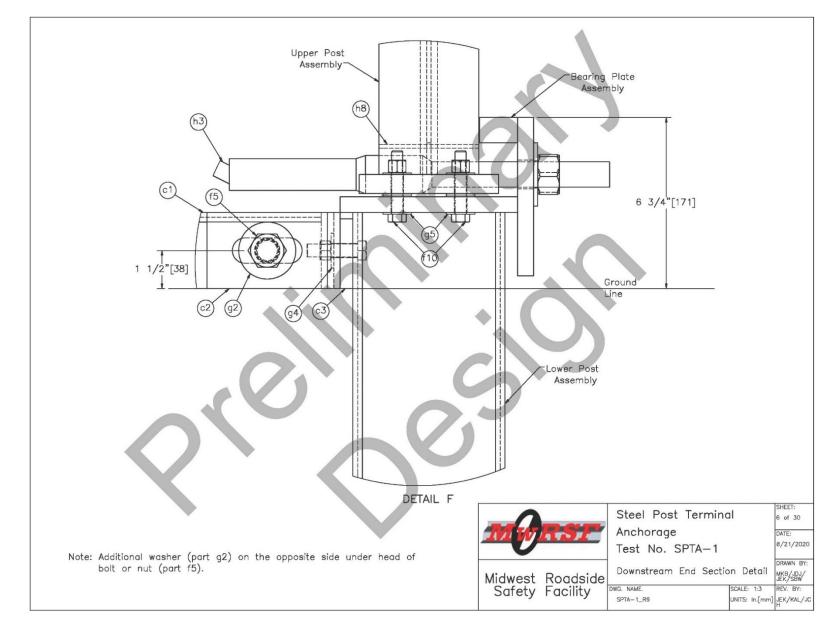


Figure 23. Downstream End Section Detail, Test No. SPTA-1

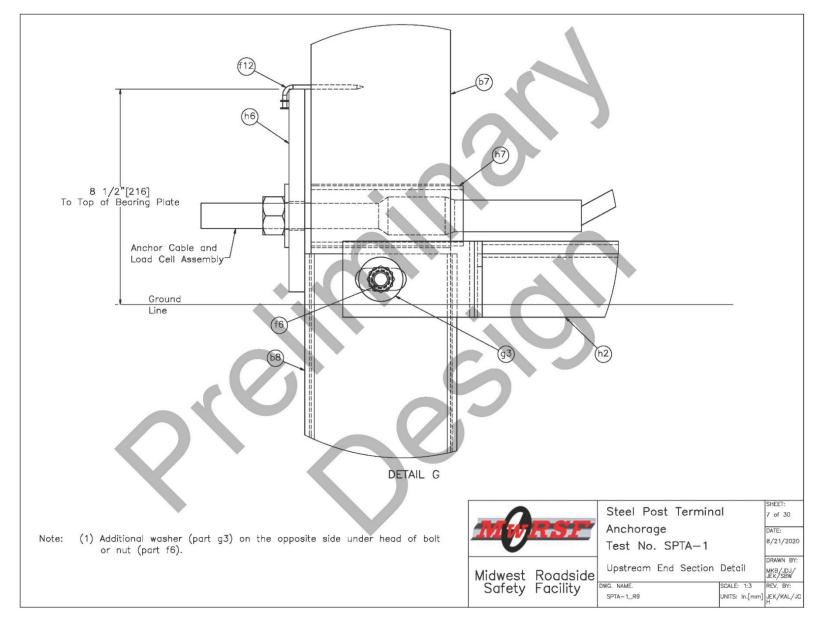


Figure 24. Upstream End Section Detail, Test No. SPTA-1

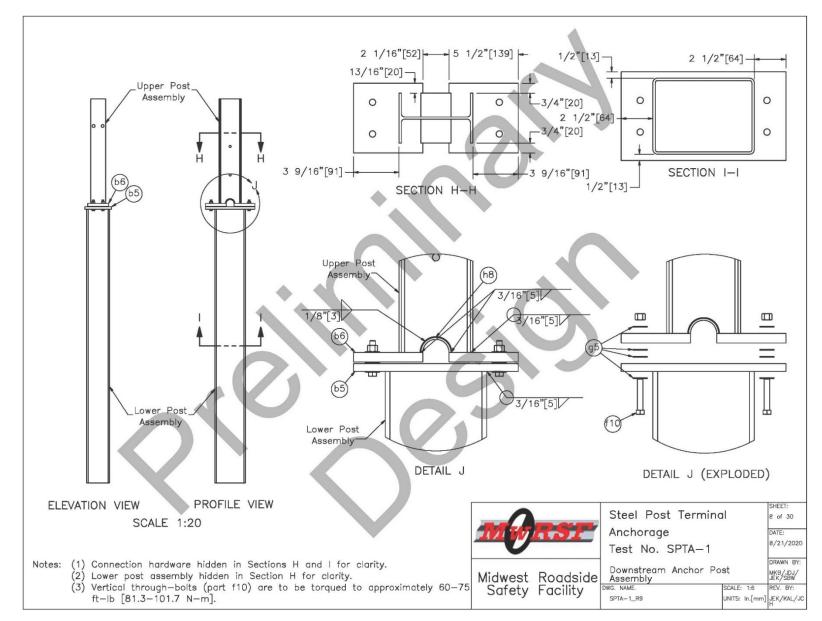


Figure 25. Downstream Anchor Post Assembly, Test No. SPTA-1

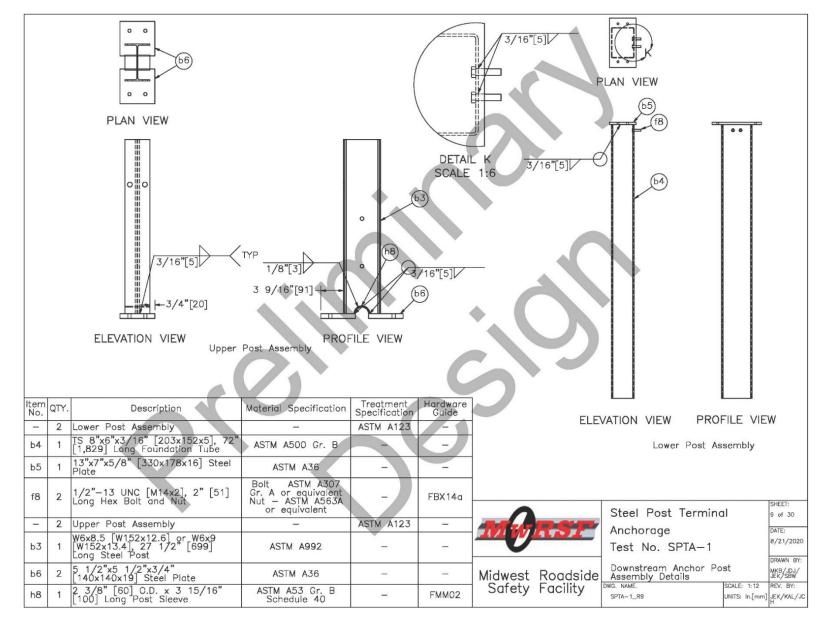


Figure 26. Downstream Anchor Post Assembly Details, Test No. SPTA-1

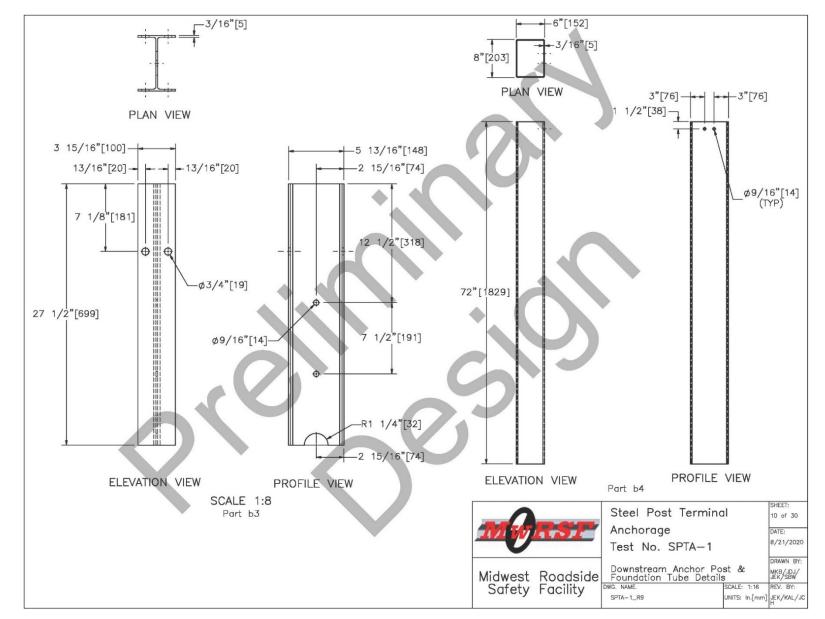


Figure 27. Downstream Anchor Post and Foundation Tube Details, Test No. SPTA-1

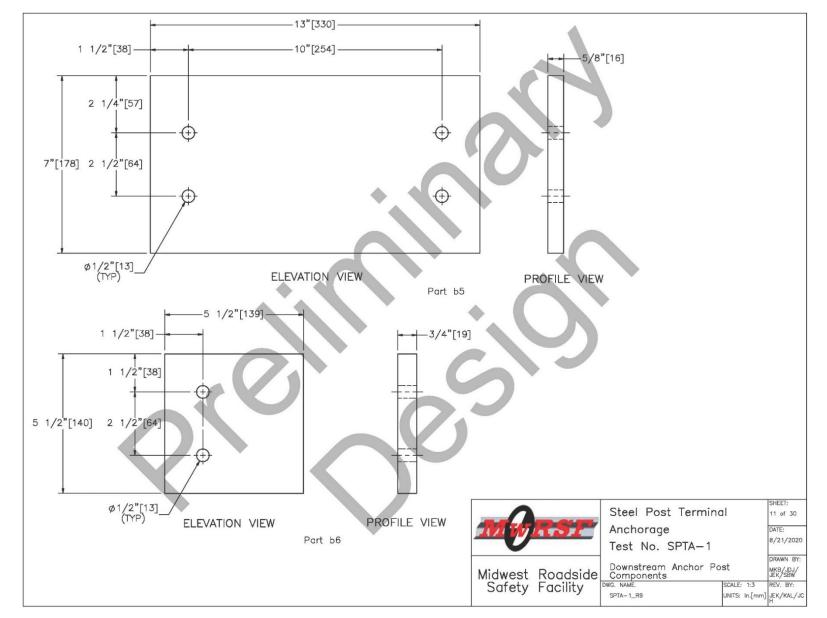


Figure 28. Downstream Anchor Post Components, Test No. SPTA-1

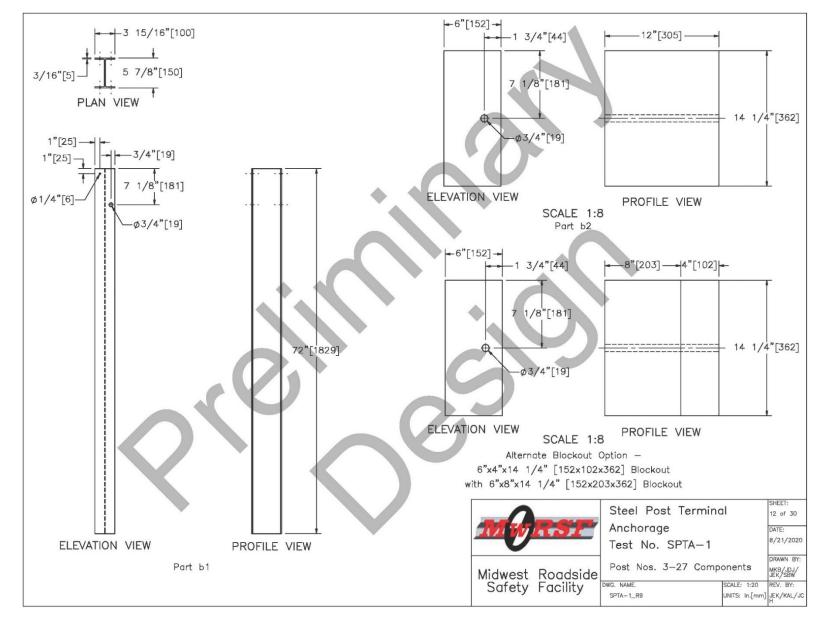


Figure 29. Post Nos. 3 through 27 Components, Test No. SPTA-1

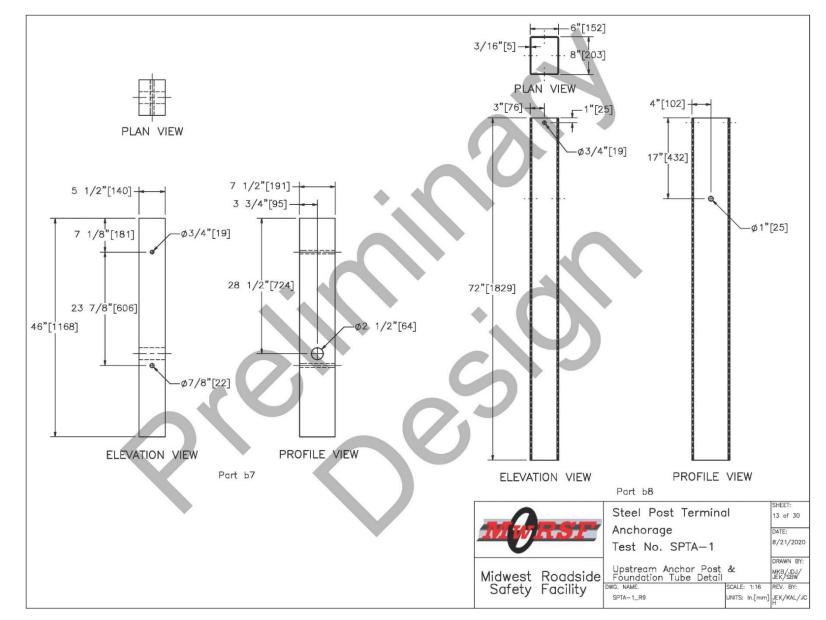


Figure 30. Upstream Anchor Post and Foundation Tube Detail, Test No. SPTA-1

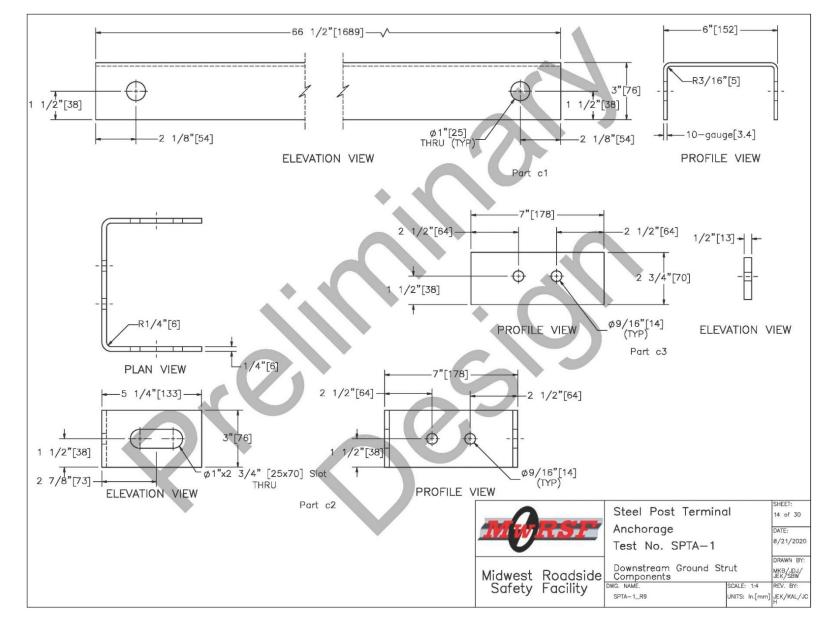


Figure 31. Downstream Ground Strut Components, Test No. SPTA-1

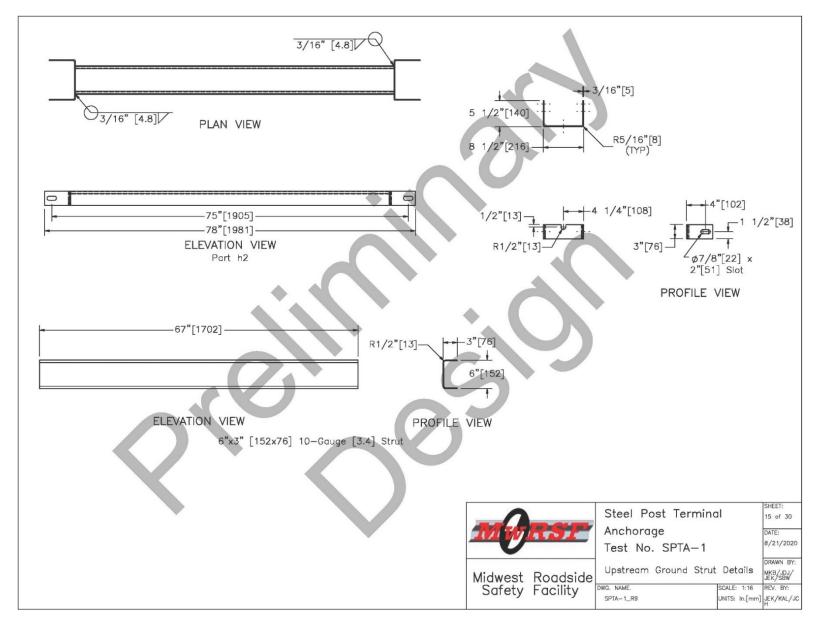


Figure 32. Upstream Ground Strut Details, Test No. SPTA-1

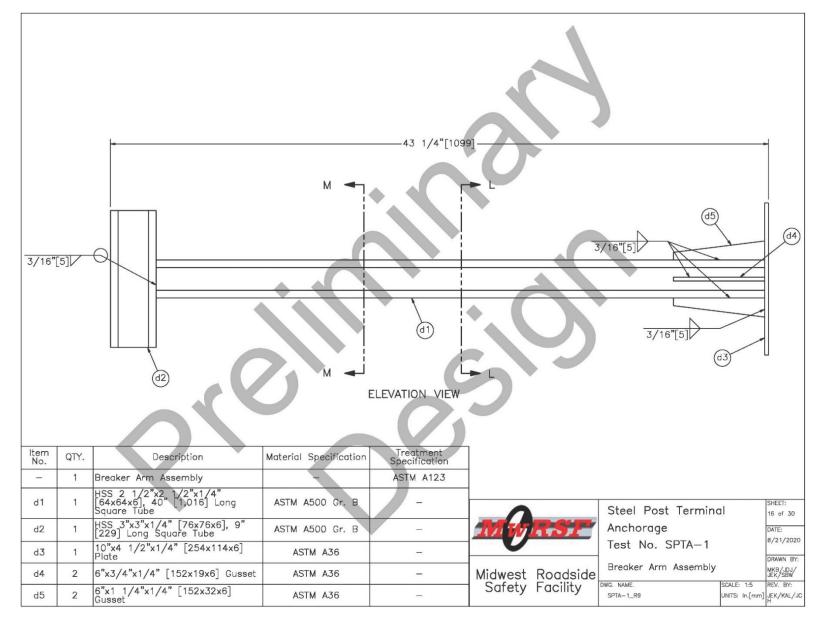


Figure 33. Breaker Arm Assembly, Test No. SPTA-1

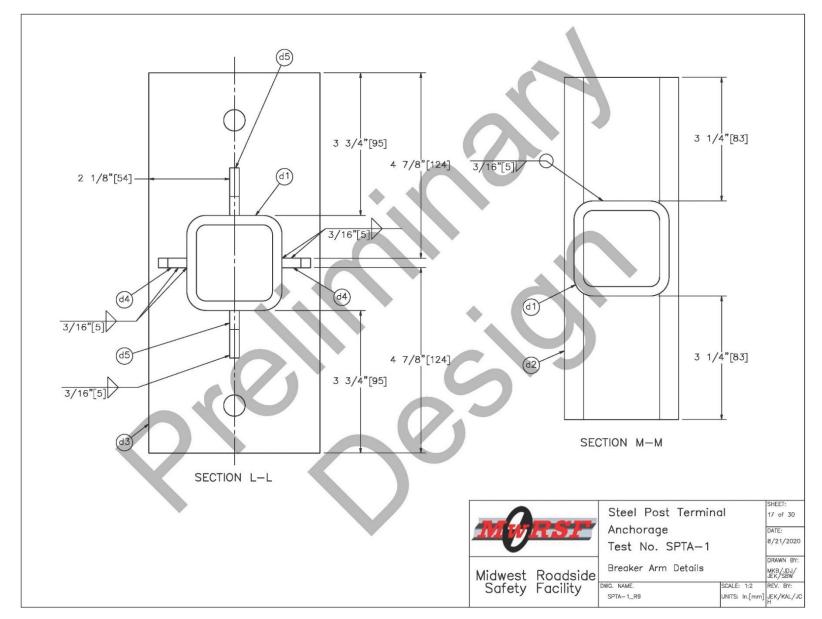


Figure 34. Breaker Arm Details, Test No. SPTA-1

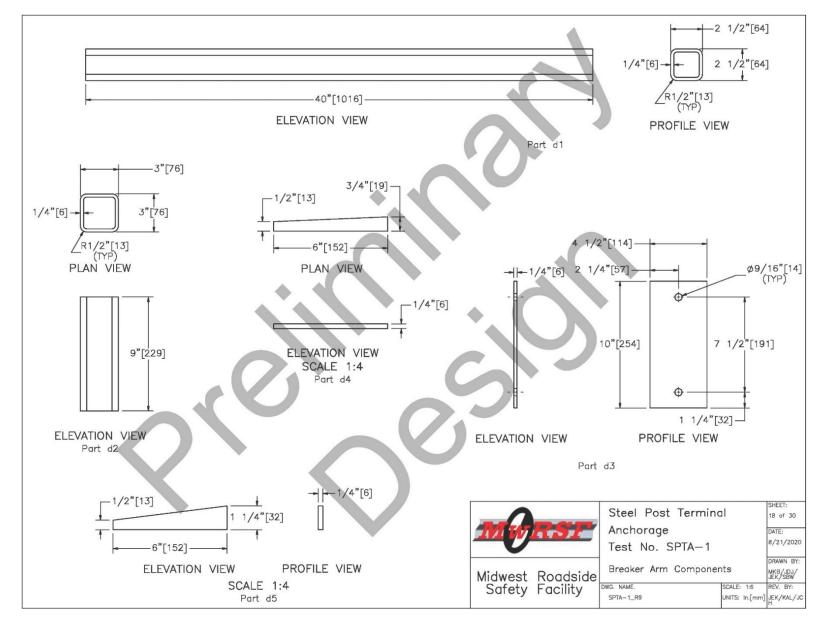


Figure 35. Breaker Arm Components, Test No. SPTA-1

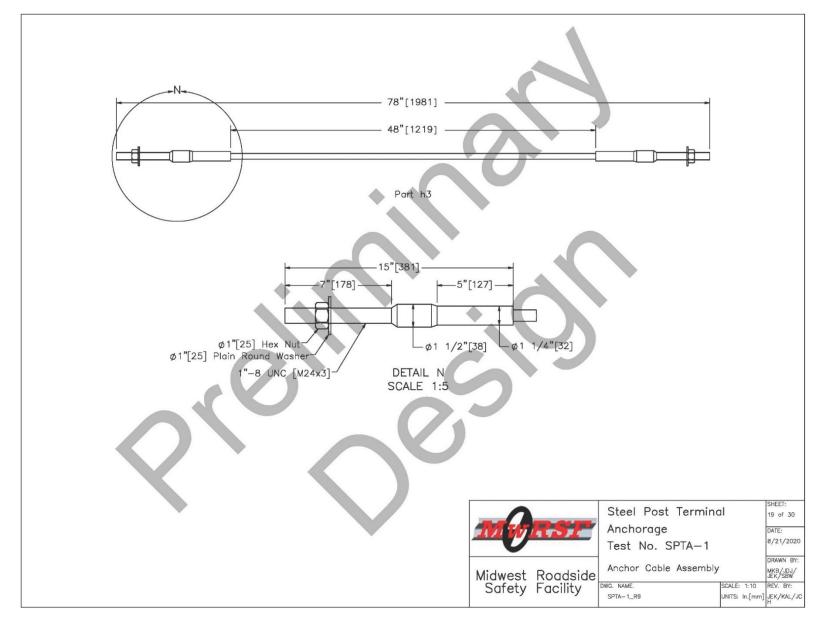


Figure 36. Anchor Cable Assembly, Test No. SPTA-1

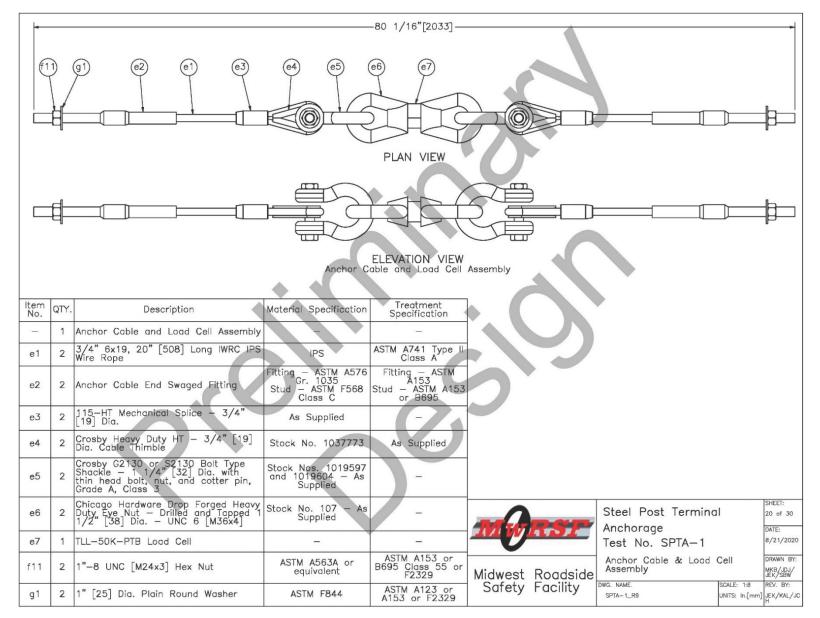
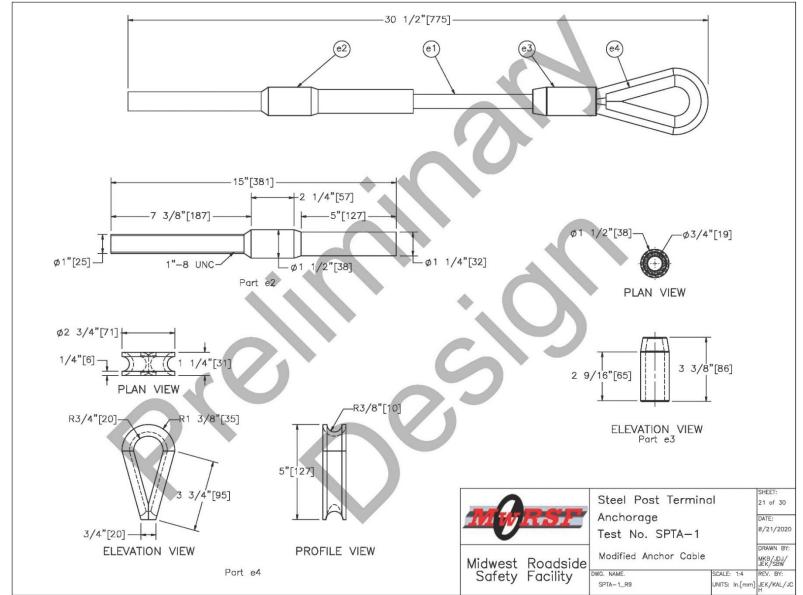



Figure 37. Anchor Cable and Load Cell Assembly, Test No. SPTA-1

SCALE: 1:4 UNITS: In.[mm]

Figure 38. Modified Anchor Cable, Test No. SPTA-1

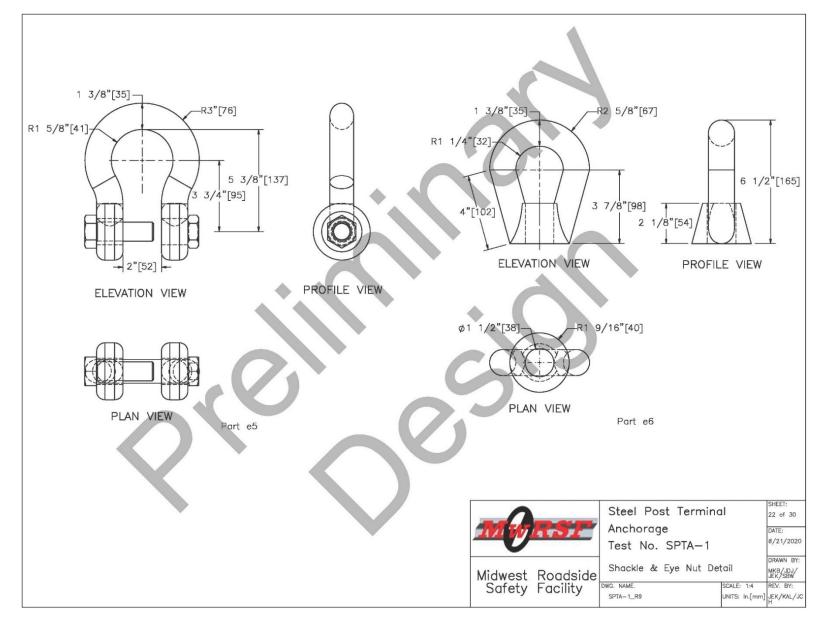


Figure 39. Shackle and Eye Nut Detail, Test No. SPTA-1

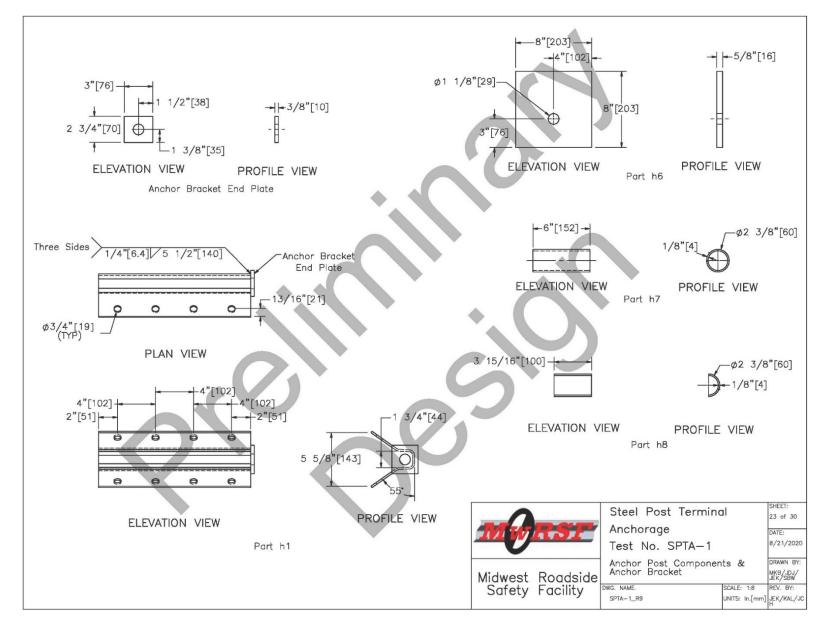


Figure 40. Anchor Post Components and Anchor Bracket, Test No. SPTA-1

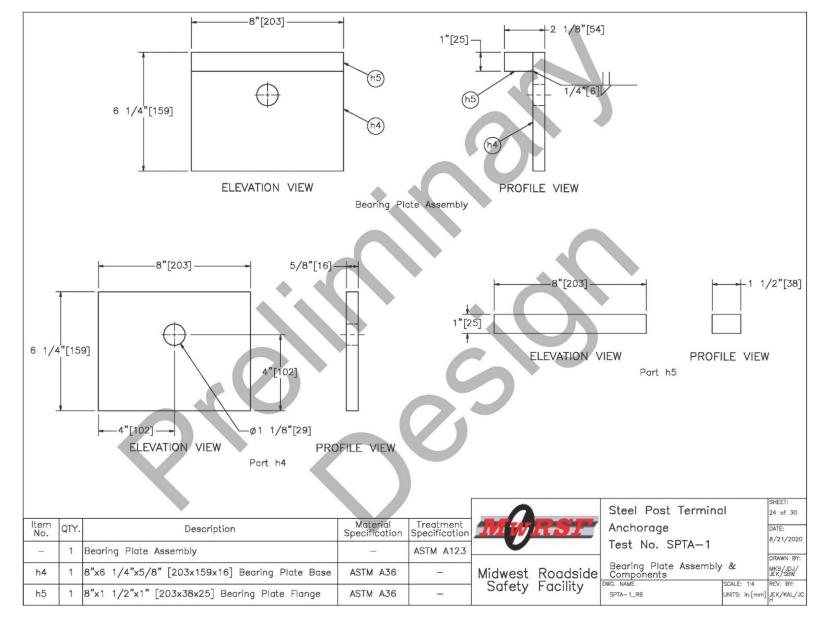


Figure 41. Bearing Plate Assembly and Components, Test No. SPTA-1

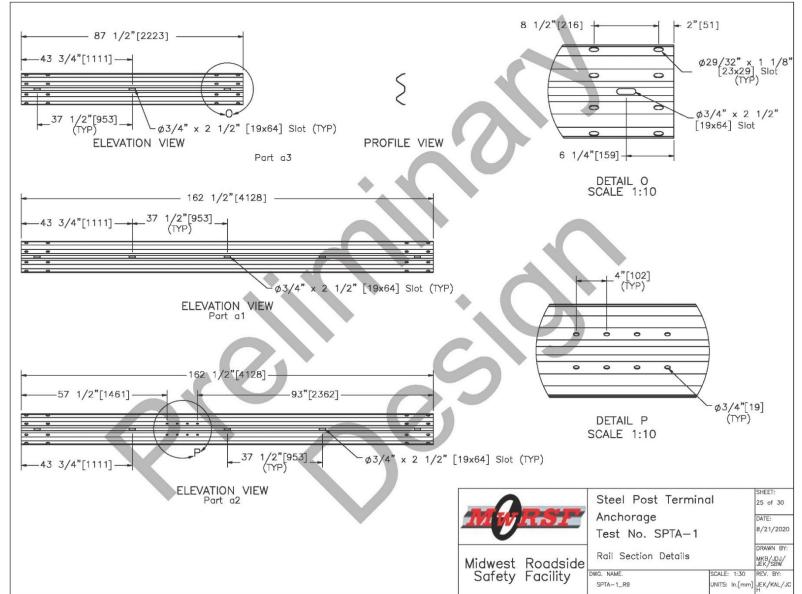


Figure 42. Rail Section Details, Test No. SPTA-1

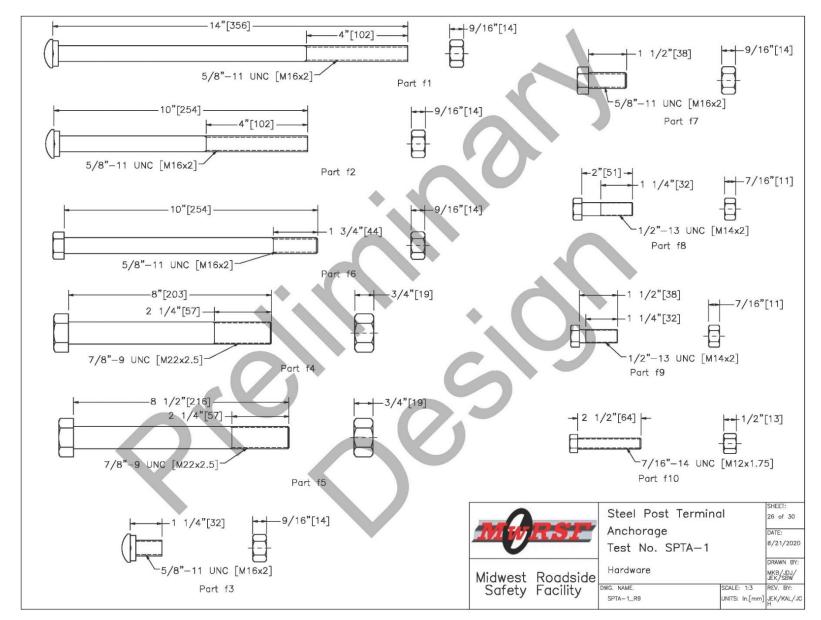


Figure 43. Hardware, Test No. SPTA-1

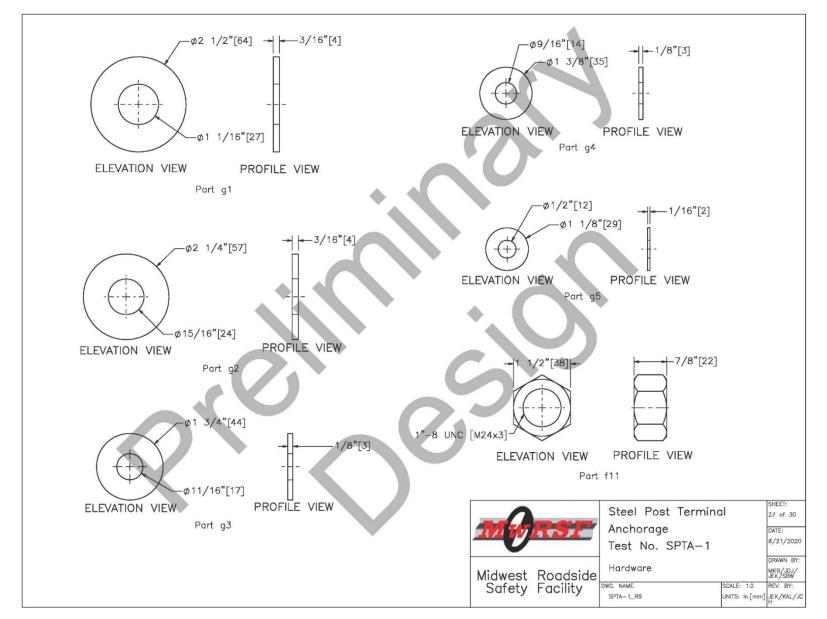


Figure 44. Hardware, Test No. SPTA-1

ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
a1	12	12'-6" [3,810] 12-gauge [2.7] W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
a2	2	12'-6" [3,810] 12-gauge [2.7] W-Beam MGS End Section	AASHTO M180	ASTM A123 or A653	-
aЗ	1	6'—3" [1,905] 12—gauge [2.7] W—Beam MGS Section	AASHTO M180	ASTM A123 or A653	-
ь1	25	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" Long [1,829] Steel Post	ASTM A992	ASTM A123	PWE06
ь2	25	6"x12"x14 1/4" [152x305x368] Timber Blockout	SYP Grade No.1 or better	_	PDB10a
b3	2	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 27 1/2" [699] Long Steel Post	ASTM A992	-	-
b4	2	TS 8"x6"x3/16" [203x152x5], 72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	-	-
Ь5	2	13"x7"x5/8" [330x178x16] Steel Plate	ASTM A36	-	-
ь6	4	5 1/2"x5 1/2"x3/4" [140x140x19] Steel Plate	ASTM A36	-	-
b7	2	BCT Timber Post – MGS Height	SYP Grade No. 1 or better (No knots 18" [457] above or below ground tension face)	-	PDF01
b8	2	TS 8"x6"x3/16" [203x152x5], 72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
c1	1	66 1/2"x11 3/4"x10-gauge [1,689x298x3.4] Bent Steel Channel Strut	ASTM A36	ASTM A123	-
c2	2	17"x3"x1/4" [432x76x6] Bent Steel Plate	ASTM A36	ASTM A123	-
c3	2	7"x2 3/4"x1/2" [178x70x13] Steel Plate	ASTM A36	ASTM A123	-
d1	1	HSS 2 1/2"x2 1/2"x1/4" [64x64x6], 40" [1,016] Long Square Tube	ASTM A500 Gr. B	-	-
d2	1	HSS 3"x3"x1/4" [76x76x6], 9" [229] Long Square Tube	ASTM A500 Gr. B	-	-
d3	1	10"x4 1/2"x1/4" [254x114x6] Plate	ASTM A36	-	-
d4	2	6"x3/4"x1/4" [152x19x6] Gusset	ASTM A36	-	-
d5	2	6"x1 1/4"x1/4" [152x32x6] Gusset	ASTM A36	-	-
			Midwest Roc Safety Fac	ility DWG. NAME. SC	SHEET: 28 of 30 DATE: 8/21/2020 DRAWN EY: MKB/JDJ/ MKB/JDJ/ JEK/SBW NLE: None REV. BY: TTS: In.[mm] JEK/KAL/JC

Figure 45. Bill of Materials, Test No. SPTA-1

ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
e1	2	3/4" 6x19, 20" [508] Long IWRC IPS Wire Rope	IPS	ASTM A741 Type II Class A	_
e2	2	Anchor Cable End Swaged Fitting	Fitting – ASTM A576 Gr. 1035 Stud – ASTM F568 Class C	Fitting – ASTM A153 Stud – ASTM A153 or B695	-
e3	2	115-HT Mechanical Splice - 3/4" [19] Dia.	As Supplied	-	-
e4	2	Crosby Heavy Duty HT — 3/4" [19] Dia. Cable Thimble	Stock No. 1037773	As Supplied	_
e5	2	Crosby G2130 or S2130 Bolt Type Shackle — 1 1/4" [32] Dia. with thin head bolt, nut, and cotter pin, Grade A, Class 3	Stock Nos. 1019597 and 1019604 - As Supplied	-	-
e6	2	Chicago Hardware Drop Forged Heavy Duty Eye Nut — Drilled and Tapped 1 1/2" [38] Dia. — UNC 6 [M36x4]	Stock No. 107 – As Supplied	-	-
e7	1	TLL-50K-PTB Load Cell		-	-
f1	25	5/8"—11 UNC [M16x2], 14" [356] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB06
f2	2	5/8"—11 UNC [M16x2], 10" [254] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB03
f3	114	5/8"—11 UNC [M16x2], 1 1/4" [32] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB01
f4	2	7/8"—9 UNC [M22x2.5], 8" [203] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A or equivalent Nut – ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	-
f5	2	7/8"-9 UNC [M22x2.5], 8 1/2" [216] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A or equivalent Nut – ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	-
f6	2	5/8"—11 UNC [M16x2], 10" [254] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A or equivalent Nut – ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX16a
f7	16	5/8"-11 UNC [M16x2], 1 1/2" [38] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A or equivalent Nut – ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX16a
f8	4	1/2"-13 UNC [M14x2], 2" [51] Long Hex Bolt and Nut	Bolt ASTM A307 Gr. A or equivalent Nut – ASTM A563A or equivalent	-	FBX14a
f9	2	1/2"-13 UNC [M14x2], 1 1/2" [38] Long Hex Bolt and Nut	Bolt ASTM A307 Gr.A or equivalent Nut – ASTM A563A or equivalent	ASTM A153 OR B695 Class 55 or F2329	FBX14a
f10	8	7/16"-14 UNC [M12x1.75], 2 1/2" [64] Long Fully Threaded Hex Tap Bolt and Nut	Bolt - ASTM A449 or equivalent Nut - ASTM A563DH or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX12b
f11	2	1"-8 UNC [M24x3] Hex Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX24a
f12	26	16D Double Head Nail	-	_	-
Note:	(1) 6x25 IWRC IPS cables meet the minimum breaki kips [190 kN] and may be substituted for the 6	ng strength of 42.7 ix19 IWRC IPS cables. Midwest Roc Safety Fac	Ility DWG. NAME. SCALE	SHEET: 29 of 30 DATE: 8/21/2020 DRAWN BY: MKB/JDJ/ KSSW None REV. BY: In.[mm] JEK/KAL/J

Figure 46. Bill of Materials, Test No. SPTA-1

ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
g1	2	1" [25] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC24a
g2	8	7/8" [22] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	-
g3	38	5/8" [16] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC16a
g4	8	1/2" [13] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC14a
g5	32	7/16" [11] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC12a
h1	2	Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01
h2	1	Upstream Ground Strut	ASTM A36	ASTM A123	-
h3	1	Anchor Cable Assembly	• • •	-	FCA01
h4	1	8"x6 1/4"x5/8" [203x159x16] Bearing Plate Base	ASTM A36	-	-
h5	1	8"x1 1/2"x1" [203x38x25] Bearing Plate Flange	ASTM A36	-	-
h6	1	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
h7	1	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
h8	1	2 3/8" [60] O.D. x 3 15/16" [100] Long Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	-
					SHEET:
			Midwest	Roadside Bill of Materials Bill Of Materials Bill Of Materials	SHELI: 30 of 30 DATE: 8/21/2020 DRAWN BY: MKB/JDJ/ JE//SBW

Figure 47. Bill of Materials, Test No. SPTA-1

Figure 48. Test Installation Photographs – Trailing-End Anchorage System, Test No. SPTA-1

Figure 49. Test Installation Photographs, Test No. SPTA-1

Figure 50. Test Installation Photographs, Test No. SPTA-1

62

Figure 51. Test Installation Photographs – Test No. SPTA-1

5 FULL-SCALE CRASH TEST NO. SPTA-1

5.1 Static Soil Test

Before full-scale crash test no. SPTA-1 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results demonstrated a soil resistance above the baseline test limits, as shown in Appendix C. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

5.2 Weather Conditions

Test no. SPTA-1 was conducted on July 31, 2018 at approximately 2:00 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 5.

Temperature	84°F
Humidity	40%
Wind Speed	6 mph
Wind Direction	0° True North
Sky Conditions	Clear
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.11 in.
Previous 7-Day Precipitation	0.41 in.

Table 5. Weather Conditions, Test No. SPTA-1

5.3 Test Description

Initial vehicle impact was to occur at the center of post no. 24, as shown in Figure 52, which matched the impact point used in the evaluation of the wood-post trailing anchorage system and was selected to evaluate the downstream length-of-need point on the installation. The 5,074lb (2,302-kg) vehicle impacted the guardrail installation at a speed of 62.1 mph (99.9 km/h) and at an angle of 25.0 degrees. The actual point of impact was 3.9 in. (99 mm) downstream from post no. 24. During the impact event, the vehicle was captured and redirected by the guardrail system. As the vehicle approach the downstream end of the installation, a guardrail pocket formed just upstream of post no 28, or the interior breakaway steel anchor post. The lateral load in the rail caused post no. 28 to cleanly break away from its foundation tube base. At about the same time, the rail released from the attachment bolt at post no. 29, though the cable anchorage remained intact. Subsequently, the guardrail dropped vertically and translated laterally toward the back side of the installation. The lateral motion of the rail caused the anchor cable to contact the T-shaped breaker bar and push the bar backward. The dropping W-beam covered the face of the T-shaped breaker bar, and prevented the vehicle from impacting the upstream face of the breaker bar, as intended. Eventually, the vehicle's right tire overrode the guardrail as the vehicle's bumper impacted post no. 29, or the downstream most anchor post. The front two attachment bolts on post no. 29 fractured, but the back two bolt remained intact. The vehicle overrode post no. 29 and bent the post downstream. The vehicle remained stable throughout the impact event and came to rest 201 ft – 6 in. (61.4 m) downstream from the point of impact after brakes were applied. A detailed description of the sequential impact events is contained in Table 6. Sequential photographs are shown in Figures 53 and 54. Documentary photographs of the crash test are shown in Figures 55 and 56. The vehicle trajectory and final position are shown in Figure 57.

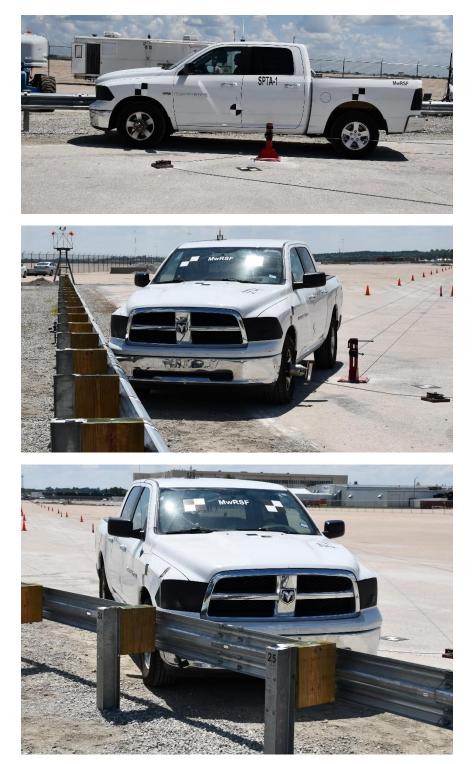


Figure 52. Impact Location, Test No. SPTA-1

TIME	EVENT
(sec) 0.000	Vehicle's front bumper contacted rail 3.9 in. (99 mm) downstream from post no. 24.
0.004	Post no. 24 deflected backward, vehicle's front bumper deformed, and vehicle's right fender contacted rail.
0.006	Vehicle's right fender deformed.
0.010	Vehicle's right headlight contacted rail.
0.012	Post no. 25 deflected backward and vehicle's right headlight deformed.
0.020	Vehicle's grille contacted rail.
0.022	Post no. 24 rotated backward, and vehicle's grille deformed.
0.026	Vehicle yawed away from system.
0.027	Post no. 24 twisted clockwise.
0.028	Post no. 23 rotated clockwise.
0.032	Post no. 22 rotated clockwise.
0.034	Post nos. 6 through 21 rotated clockwise due to rail movement.
0.040	Post no. 25 rotated backward.
0.042	Post no. 28 deflected upstream, and vehicle's right-front tire contacted rail.
0.044	Post no. 29 deflected upstream.
0.048	Vehicle's right-front rim contacted rail.
0.054	Post no. 26 deflected backward.
0.056	Post no. 25 twisted counterclockwise.
0.068	Post no. 26 twisted counterclockwise.
0.070	Vehicle's right headlight contacted blockout at post no. 25 and shattered.
0.072	Rail disengaged from bolt at post no. 25.
0.077	Post no. 27 rotated counterclockwise.
0.078	Post no. 25 bent backward.
0.086	Post no. 26 rotated backward.
0.090	Vehicle's right-front tire contacted post no. 25.
0.096	Post no. 28 twisted counterclockwise.
0.098	Vehicle's right-front door contacted rail.
0.104	Post no. 27 twisted counterclockwise.
0.106	Rail disengaged from bolt at post no. 26.
0.108	Post no. 27 deflected backward.
0.116	Post no. 26 rotated downstream.
0.120	Post no. 27 rotated backward.
0.130	Post no. 28 deflected downstream.
0.138	Post no. 28 deflected backward.
0.142	Vehicle rolled toward system.

 Table 6. Sequential Description of Impact Events, Test No. SPTA-1

TIME	EVENT					
(sec)						
0.148	Blockout disengaged from post no. 26.					
0.150	Post no. 27 rotated downstream.					
0.152	Post no. 26 bent backward, and post no. 29 twisted counterclockwise.					
0.156	Vehicle's front bumper contacted post no. 26.					
0.176	Post no. 27 bent backward.					
0.178	Rail disengaged from bolt at post no. 27.					
0.186	Vehicle's right-front quarter panel contacted rail and deformed.					
0.194	Vehicle's rear bumper contacted rail.					
0.197	Post no. 23 deflected backward.					
0.212	Vehicle's rear bumper deformed.					
0.224	Vehicle's front bumper contacted post no. 27, and post nos. 6 through 21 rotated					
	counterclockwise due to rail movement.					
0.230	Post no. 27 bent downstream.					
0.240	Post no. 28 rotated backward, rail disengaged from bolt at post no. 29, and top of post no. 28 detached from base.					
0.260	Vehicle pitched downward.					
0.274	Post no. 29 deflected backward.					
0.276	Blockout disengaged from post no. 27.					
0.282	Rail disengaged from bolt at post no. 28.					
0.306	Vehicle was parallel to system at a speed of 43.6 mph (70.2 km/h).					
0.332	Vehicle pitched upward.					
0.364	Vehicle rolled away from system.					
0.388	Post no. 29 deflected downstream.					
0.390	Vehicle's front bumper contacted post no. 29, and right-front wheel overrode rail.					
0.392	Post no. 29 twisted clockwise.					
0.400	Vehicle's left-front tire became airborne.					
0.402	Post no. 29 bent downstream.					
0.464	Vehicle's right-front tire contacted post no. 29.					
0.466	Vehicle's right-front tire became airborne.					
0.498	Vehicle's right-rear tire contacted rail.					
0.502	Vehicle yawed toward system.					
0.616	Vehicle pitched downward.					
0.620	Vehicle's right-rear tire became airborne, and right-rear wheel overrode rail. Vehicle exited system at a speed of 37.0 mph (59.6 km/h) and an angle of 10.6 degrees.					
0.826	Vehicle's left-front tire regained contact with ground.					
0.924	Vehicle yawed away from system.					

Table 7. Sequential Description of Impact Events, Test No. SPTA-1, Cont.

TIME (sec)	EVENT			
0.928	Vehicle rolled toward system.			
1.072	Vehicle pitched upward.			
1.100	Vehicle's right-front tire regained contact with ground.			
1.124	Vehicle's right-rear tire regained contact with ground.			
1.202	Vehicle's left-front tire became airborne.			
1.258	Vehicle rolled away from system.			
1.336	Vehicle's left-front tire regained contact with ground.			
1.382	Vehicle pitched downward.			
1.522	Vehicle pitched upward.			
1.524	Vehicle rolled toward system.			
1.554	System came to rest.			
1.620	Vehicle's right-front tire deflated.			
1.832	Vehicle rolled away from system.			
1.848	Vehicle pitched downward.			
1.894	Vehicle yawed toward system.			

Table 8. Sequential Description of Impact Events, Test No. SPTA-1, Cont.

0.000 sec

0.100 sec

0.200 sec

0.306 sec

0.400 sec

0.500 sec

Figure 53. Sequential Photographs, Test No. SPTA-1

0.000 sec

0.100 sec

0.200 sec

0.306 sec

0.400 sec

0.500 sec

0.000 sec

0.100 sec

0.200 sec

0.306 sec

0.400 sec

0.500 sec

0.000 sec

0.100 sec

0.200 sec

0.306 sec

0.400 sec

0.500 sec

Figure 54. Additional Sequential Photographs, Test No. SPTA-1

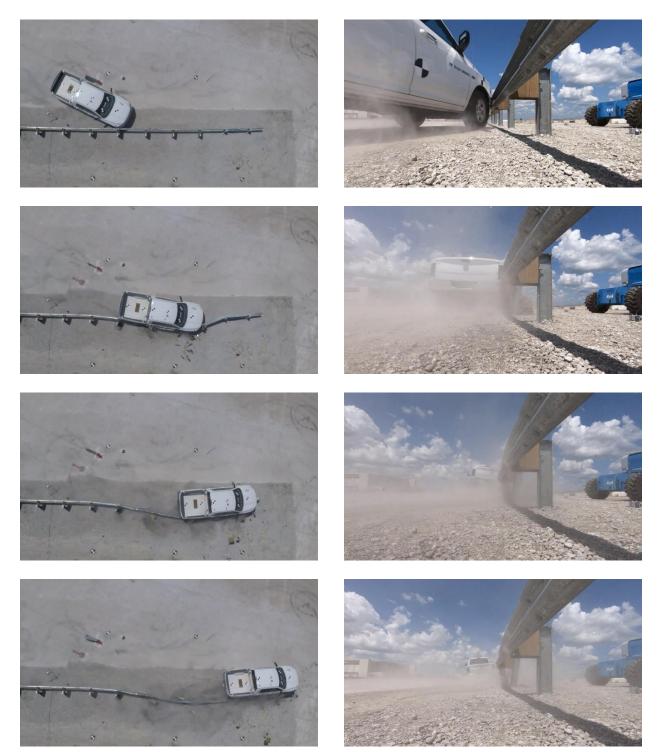


Figure 55. Documentary Photographs, Test No. SPTA-1

Figure 56. Documentary Photographs, Test No. SPTA-1

Figure 57. Vehicle Final Position and Trajectory Marks, Test No. SPTA-1

5.4 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 58 through 64. Barrier damage consisted of deformation and twisting of the rail; deflection, twisting, and rotation of posts; disengagement of rail and wood blockouts from the posts; fracture of the breakaway bolts in the steel anchor posts; and deformation and flange tearing at the base of post no. 29. The length of vehicle contact along the barrier was approximately 35 ft - 1 in. (10.7 m), which spanned from 2 in. (51 mm) upstream from post no. 24 to the downstream end of the rail.

The guardrail experienced bending, flattening, denting, kinking, and scraping beginning just upstream from post no. 24 and extending to the end of the system. The guardrail bolts pulled out of the rail at post nos. 25 through 29, and the rail disengaged at these posts. The rail buckled 2 in. (51 mm) upstream from post no. 24 through the entire cross section of guardrail.

Post nos. 10, 11, and 13 through 23 were rotated slightly downstream from their original orientations. The blockout at post no. 20 fractured along the front top edge. Post no. 24 twisted to face downstream. Post nos. 25 through 29 sustained local bending, scraping, and gouging on their traffic-side flanges. Post no. 25 bent backward and downstream approximately 39½ in. (1,003 mm) from its original position and twisted to face upstream. The blockout at post no. 25 was fractured on the back downstream corner, and the bolt connecting it to the post was deformed but still in place. Post no. 26 bent backward 10⁷/₈ in. (276 mm), bent downstream, and twisted to face upward and upstream. The blockout at post no. 26 completely detached from the post, and the bolt pulled out of the post. Post no. 27 twisted upstream and bent backward 6.5 in. (165 mm) and downstream approximately 40 in. (1,016 mm) from its original position. The blockout at post no. 27 completely detached from the post, and the bolted connection at the post failed by shear rupture of the post flange.

All four bolts fractured at the breakaway connection in post no. 28 as the upper portion of the post disengeaged from its foundation, as intended. The post-to-rail bolt remained in post no. 28. In post no. 29, the two traffic-side bolts fractured, but the other two non-traffic-side bolts remained intact. The base of post no. 29 was bent and twisted, and the post leaned downstream. The upstream side of the back flange in post no. 29 was torn, and the web of the post was twisted. The post-to-rail bolt remained in the post. The weld between the T-shaped, breaker bar baseplate and the top gusset plate ruptured, the top bolt fastening the baseplate to post no. 29 fractured, and the baseplate was bent. The T-shaped, breaker bar was rotated back away from the impact. The cable anchor remained intact, and the baseplate maintained its position adjacent to the downstream face of the foundation tube.

Figure 58. System Damage, Test No. SPTA-1

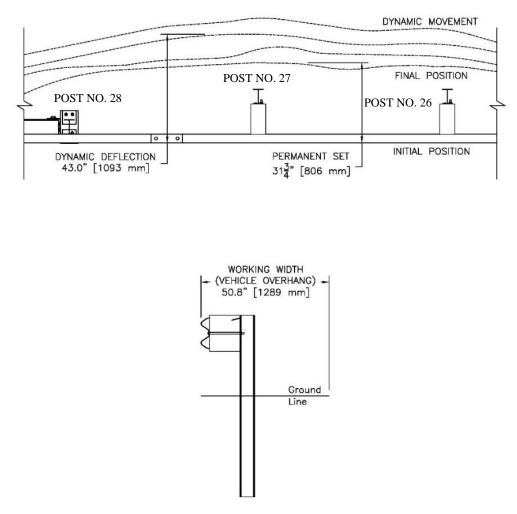
Figure 59. System Damage, Test No. SPTA-1

Figure 61. System Damage, Test No. SPTA-1

GAL SFYERE

88888888

Figure 62. System Damage, Post Nos. 24, 25, 26, and 27, Test No. SPTA-1



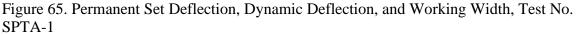

Figure 63. System Damage, Post Nos. 28 and 29, Test No. SPTA-1

Figure 64. System Damage – Upstream End Anchorage System, Test No. SPTA-1

The maximum lateral permanent set of the rail was 31³/4 in. (806 mm) and occurred downstream from post no. 27. The maximum lateral permanent set of the posts was 23⁵/₈ in. (600 mm) at post no. 25. Permanent sets were determined from field measurements. The maximum dynamic rail deflection was 43.0 in. (1,093 mm) at the rail at the center of post no. 27, and the maximum post dynamic deflection was 32.7 in. (831 mm) at the centerline of post no. 28. The rail and post dynamic deflections were determined from high-speed, digital video analysis. The working width of the system was found to be 50.8 in. (1,289 mm), also determined from high-speed, digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 65.

5.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 66 through 68. The maximum occupant compartment intrusions are listed in Table 9 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in

Appendix D. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. Interior occupant compartment deformations were minimal with a maximum of 0.2 in., which did not violate the limits established in MASH 2016. Outward deformations, which are denoted as negative numbers in Appendix D, are not considered crush toward the occupant and are not evaluated by MASH 2016 criteria.

Most of the damage was concentrated on the right-front corner and right side of the vehicle where impact occurred. The right headlight disengaged from the vehicle. The right-front bumper was crushed and bent toward the engine housing, and the right-front tire was punctured. The right fender was crushed from approximately the center of the wheel to the door. Scraping and denting continued along the right-front door, right-rear door, and right quarter panel. The right corner of the rear bumper was crushed inward. The anti-roll bar shifted to the right side of the vehicle. The right-front upper and lower control arms and right-front joints shifted backward. The floor pan sustained minor scraping. The roof, left-side panels, windshield, and window glass remained undamaged.

Figure 66. Vehicle Damage, Test No. SPTA-1

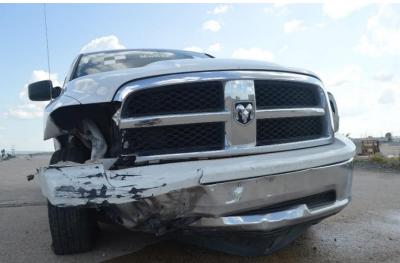


Figure 67. Vehicle Damage, Test No. SPTA-1

Figure 68. Occupant Compartment and Undercarriage Damage, Test No. SPTA-1

LOCATION	MAXIMUM MASH 2016 ALLOWA INTRUSION INTRUSION in. (mm) in. (mm)		
Wheel Well & Toe Pan	0.1 (3)	≤ 9 (229)	
Floor Pan & Transmission Tunnel	0.1 (3)	≤ 12 (305)	
A-Pillar	0.2 (5)	≤ 5 (127)	
B-Pillar	0.1 (3)	≤ 5 (127)	
A-Pillar (Lateral)	0.1 (3)	≤ 3 (76)	
B-Pillar (Lateral)	0.1 (3)	≤ 3 (76)	
Side Front Panel (in Front of A-Pillar)	0.1 (3)	≤ 12 (305)	
Side Door (Above Seat)	0.1 (3)	≤ 9 (229)	
Side Door (Below Seat)	0.2 (5)	≤ 12 (305)	
Roof	0.2 (5)	≤ 4 (102)	
Windshield	0.0 (0)	≤ 3 (76)	
Side Window	Intact	No shattering resulting from contact with structural member of test article	
Dash	0.1 (3)	N/A	

Table 9. Maximum Occupant Compartment Intrusion by Location, Test No. SPTA-1

N/A – No MASH 2016 criteria exist for this location

5.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ride down accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 10. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 10. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix E.

Evaluation Criteria		Trans	MASH 2016	
		SLICE-1	SLICE-2 (primary)	Limits
ΟΙV	Longitudinal	-15.40 (-4.69)	-14.31 (-4.36)	±40 (12.2)
ft/s (m/s)	Lateral	-13.75 (-4.19)	-14.49 (-4.42)	±40 (12.2)
ORA	Longitudinal	-5.88	-6.02	±20.49
g's	Lateral	-8.13	-7.78	±20.49
MAXIMUM	Roll	-20.2	-22.6	±75
ANGULAR DISPLACEMENT	Pitch	6.3	6.8	±75
degrees	Yaw	-30.4	-30.8	not required
THIV ft/s (m		19.68 (6.00)	19.50 (5.94)	not required
PHD g's)	9.73	9.58	not required
ASI		0.66	0.63	not required

Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. SPTA-1

5.7 End Anchor Loads

The pertinent data from the load cell at the upstream anchorage system was extracted from the bulk signal and analyzed using the transducer's calibration factor. The recorded data and analyzed results are shown in Figure 69 and detailed in Appendix F. The exact moment of impact could not be determined from the transducer data as impact may have occurred a few milliseconds prior to observing a measurable signal increase in the data. Thus, the extracted data curves should not be taken as precise time after impact, but rather a general timeline between events within the data curve itself.

The peak tensile force of 16.7 kip (74.3 kN) was measured in the upstream cable anchor, as shown in Figure 69. Note, in test no. WIDA-1, which involved a pickup vehicle impacting the wood-post, trailing-end anchorage system under MASH test designation no. 3-37a, a peak load of 18.5 kip (82.3 kN) was measured in the upstream cable anchor [1].

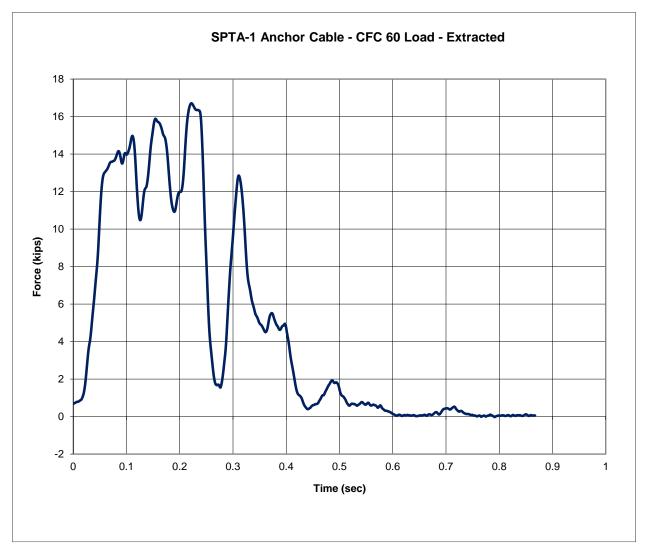


Figure 69. Upstream Anchor Cable Load, Test No. SPTA-1

5.8 Discussion

The analysis of the test results for test no. SPTA-1 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 70. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix E, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 10.6 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. SPTA-1 satisfied all of the safety performance criteria of MASH 2016 test designation no. 3-37a.

5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	N N N N N N N N N N N N N N N N N N N			(T			
0.000 sec	0.100 sec	0.250 sec		0.350	sec	0.450) sec
	Evit Box 23.0° (10.0 m]+ 18°-8° [5.1 m] 19 19 20 21 22 23 24 25 26° 27 28 29			E	Ground Eine	* **** /**	31"[787]
	25 26 27 28 29	201'-6" [61.4 m]		-			
6.1							
Date		7/31/2018					
MASH 2016 Test Designation No							
Test Article	MGS with steel-post, trailing-end anchorag	ge system •					
Total Length		. (55.6 m)					
Key Component – W-Beam Rail					on		
				Article Deflectior			Wiouera
Key Component – Line Posts (Nos.							313/ in (806 mm
• •	70 : (1			Permanent Set 31¾ in. (806 mm Dynamic 43.0 in. (1.093 mm			
			2				()
Key Component – Steel-Post, Trail		•	Transducer Dat	a			
		. W6x8.5			Trans	ducer	MASH 2016
Foundation Tube Section 8-	in. x 6-in. x 3/16-in. (203-mm x 152-mm x 5-n 	nm) Tube	Evaluation	on Criteria	SLICE-1	SLICE-2 (primary)	Limit
			OIV	Longitudinal	-15.40 (-4.69)	-14.31 (-4.36)	±40 (12.2)
	Coarse, crushed limestone (well-grade		ft/s (m/s)	Lateral	-13.75 (-4.19)	-14.49 (-4.42)	±40 (12.2)
			ORA	Longitudinal	-5.88	-6.02	±20.49
		. 0,	g's	Lateral	-8.13	-7.78	±20.49
Impact Conditions		(2,373Kg)	MAXIMUM				
1	km/h), MASH 2016 limit: 62 ±2.5 mph (100 ±4	4.0 km/h)	ANGULAR	Roll	-20.2	-22.6	±75
Angle		5 degrees	DISPLACE	Pitch	6.3	6.8	±75
-			MENT	Yaw	-30.4	-30.8	not required
Exit Conditions	(130.0 M) > 100 Mp-it (144 M) minit from MP	.511 2010	degrees				1
		9.6 km/h)		ft/s (m/s)	19.68 (6.00)	19.50 (5.94)	not required
			PHE	-g's	9.73	9.58	not required
Exit Box Criterion		Pass		SI	0.66	0.63	not required
	Sa		F	101	0.00	0.05	not required
Vehicle Stopping Distance		wnstream					

 $^{4 \}text{ ft} - 8 \text{ in.} (1.4 \text{ m})$ laterally in front

Figure 70. Summary of Test Results and Sequential Photographs, Test No. SPTA-1

6 DESIGN DETAILS – TEST NO. SPTA-2

The test installation in test no. SPTA-2, as shown in Figures 71 through 96, was identical to the installation used for test no. SPTA-1 with a few exceptions. First, the system was raised 1 in. from its nominal 31-in. (787-mm) rail height to evaluate the potential for the small car to extend under the W-beam rail within standard construction tolerances. Thus, post nos. 3 through 27 were embedded to a depth of 39 in. (991 mm), and the W-beam guardrail was mounted with a top rail height of 32 in. (813 mm).

Modifications were also made to the T-shaped breaker bar. In test no. SPTA-1, the T-shaped, breaker bar was ineffective to facilitate the end anchor post breaking away from its foundation. First, as the guardrail deformed laterally backwards, the anchor cable pressed against the breaker bar and rotated it away from the vehicle's path. Second, the long length of the breaker bar accentuated the lateral displacement of its upstream end as the breaker bar rotated. Thus, in test no. SPTA-2, the T-shaped, breaker bar was modified to use a shorter tube, and the breaker bar was mounted at a slightly lower height to avoid contact with the anchor cable and backside of the guardrail. For test no. SPTA-2, the T-shaped, breaker bar was a 15-in. (381-mm) long, $2\frac{1}{2}$ -in. x $2\frac{1}{2}$ -in

Further, weld failures and bolt rupture was observed at the attachment of the T-shaped, breaker bar and the downstream anchor post during test no. SPTA-1. The premature failure of this connection made it easier for the bar breaker to deflect away from the impacting vehicle. Therefore, for test SPTA-2, the strength of the joint between the breaker bar and the downstream anchor post was increased by using a thicker, 3/8-in. (10-mm) steel attachment plate. The same gusset plates were used.

Finally, in test no. SPTA-1, the downstream anchor post was bent over instead of breaking away when the vehicle impacted the post. To prevent plastic deformations and tearing in the post, 1/4-in. (6-mm) thick steel plates were welded between the flanges on both the upstream and downstream sides of the anchor posts. Slots similar to those cut in the web of the post were cut into the bottom of these steel plate stiffeners to fit over the cable anchor. Note, the additional plates were placed on both breakaway posts in the trailing end anchorage system for simplicity.

These modifications were not expected to affect the performance of the steel-post, trailingend anchorage system relative to the previous successful MASH 2016 crash test (i.e., test no. SPTA-1 under test designation no. 3-37a). It was determined that the previous test would not need to be rerun if the proposed modifications were successful. Photographs of the test installation are shown in Figures 97 through 101. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix B.

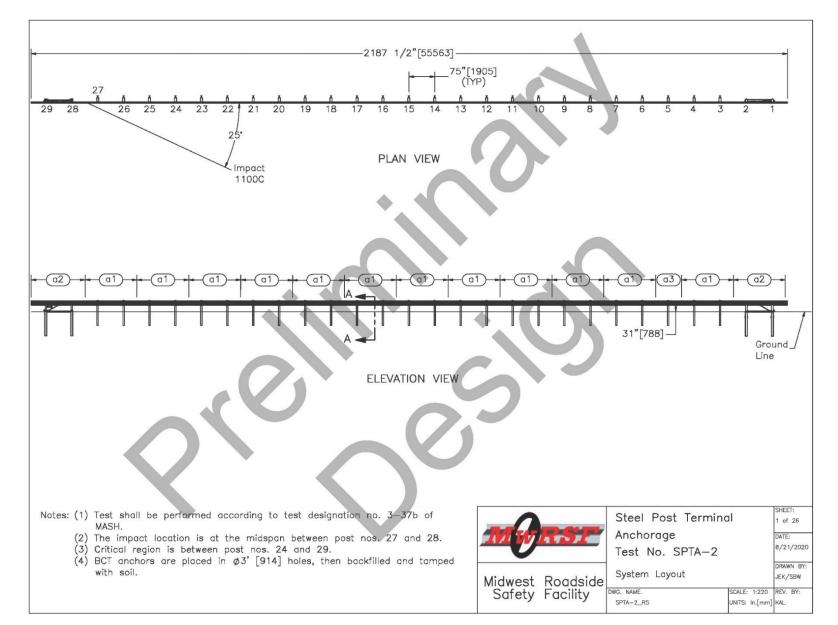


Figure 71. Test Installation Layout, Test No. SPTA-2

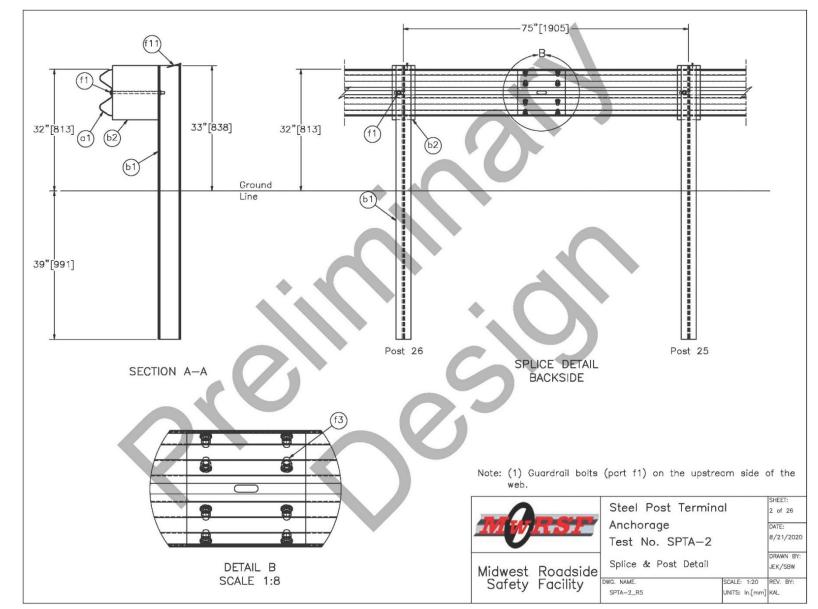


Figure 72. Splice and Post Detail, Test No. SPTA-2

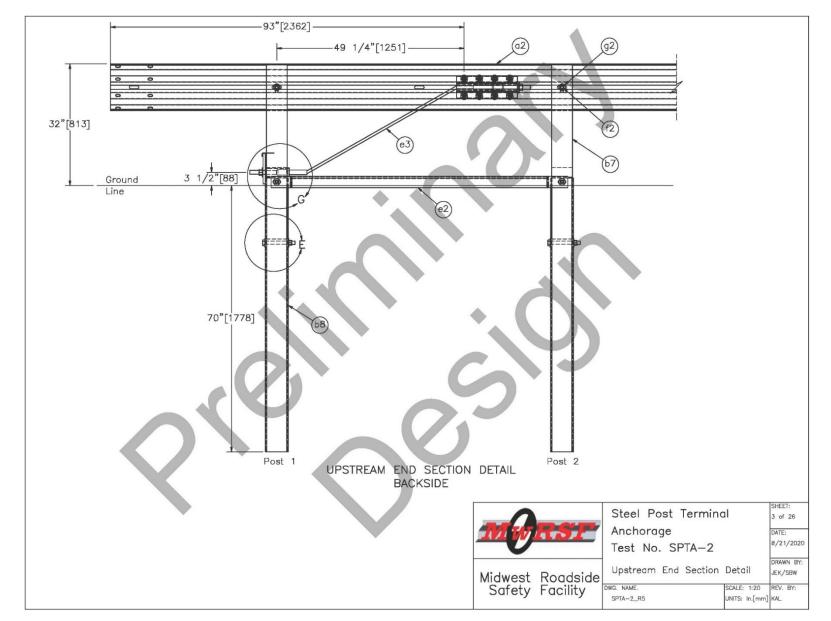


Figure 73. Upstream End Section Detail, Test No. SPTA-2

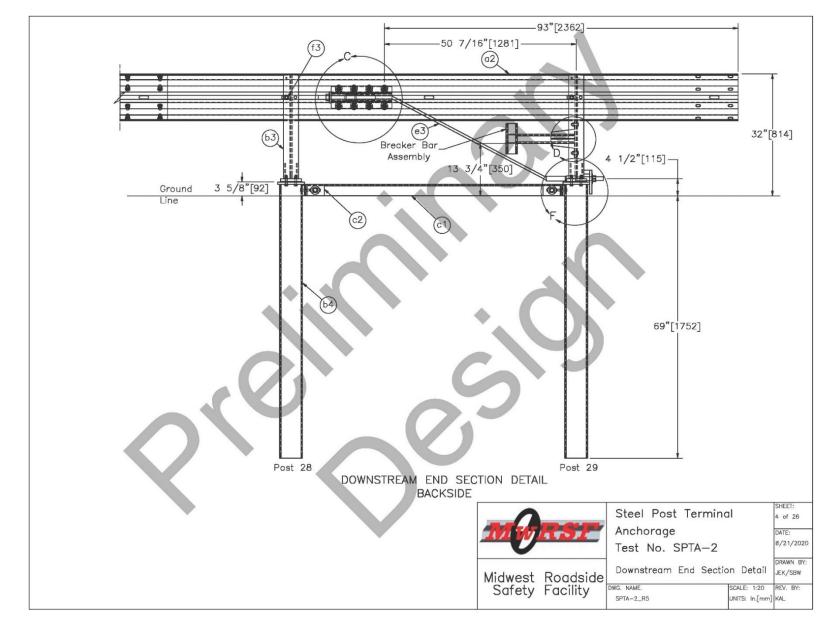


Figure 74. Downstream End Section Detail, Test No. SPTA-2

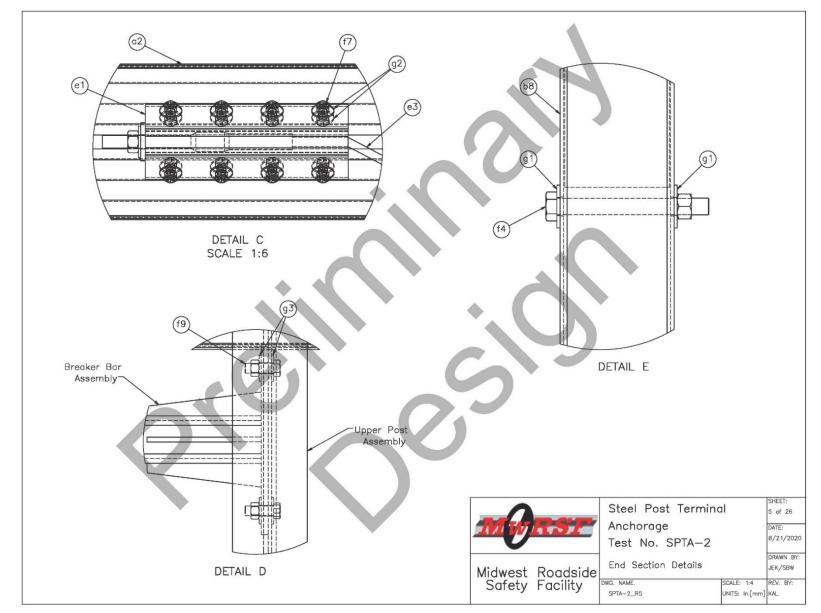


Figure 75. End Section Details, Test No. SPTA-2

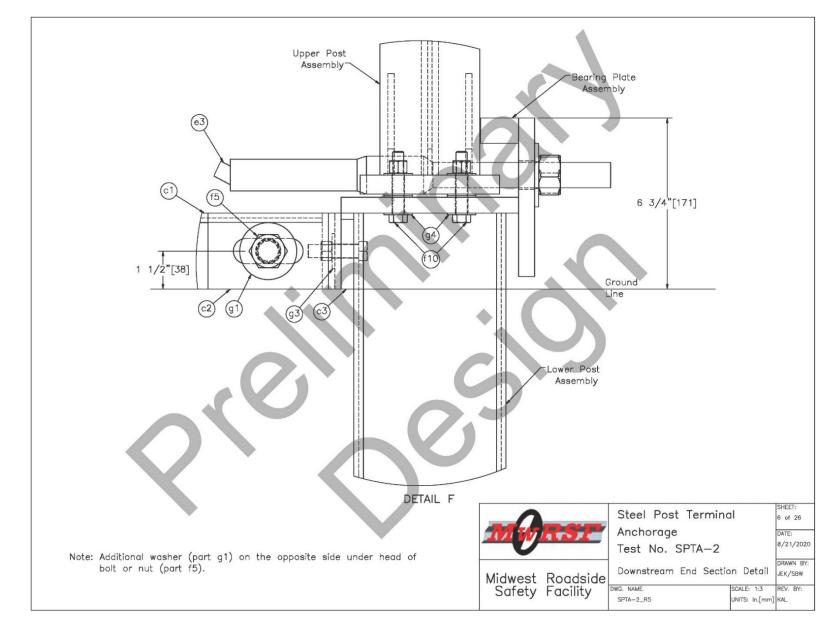


Figure 76. Downstream End Section Detail, Test No. SPTA-2

97

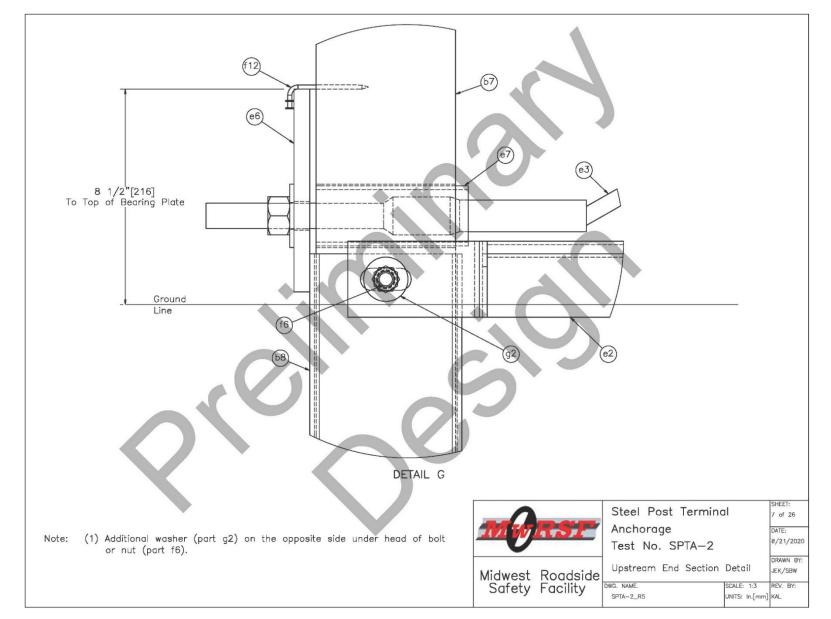


Figure 77. Upstream End Section Detail, Test No. SPTA-2

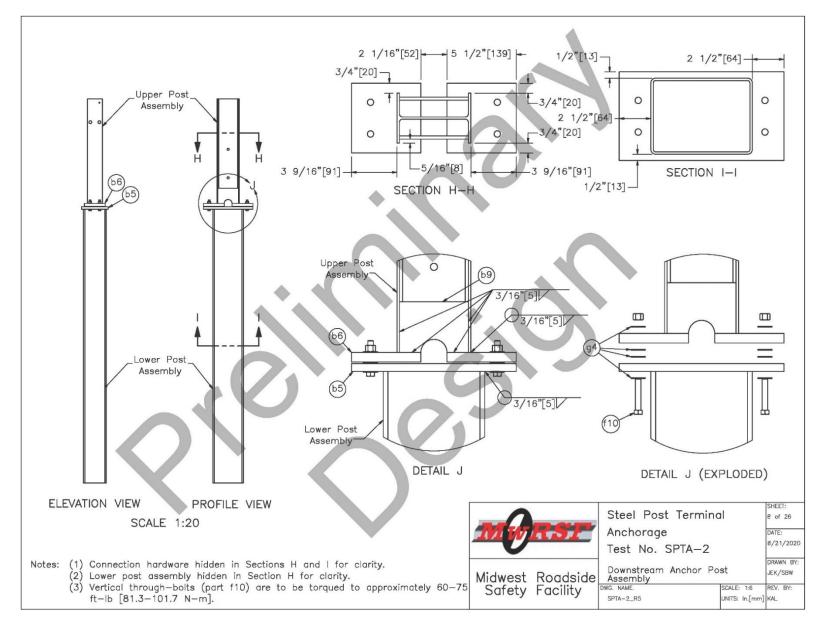


Figure 78. Downstream Anchor Post Assembly, Test No. SPTA-2

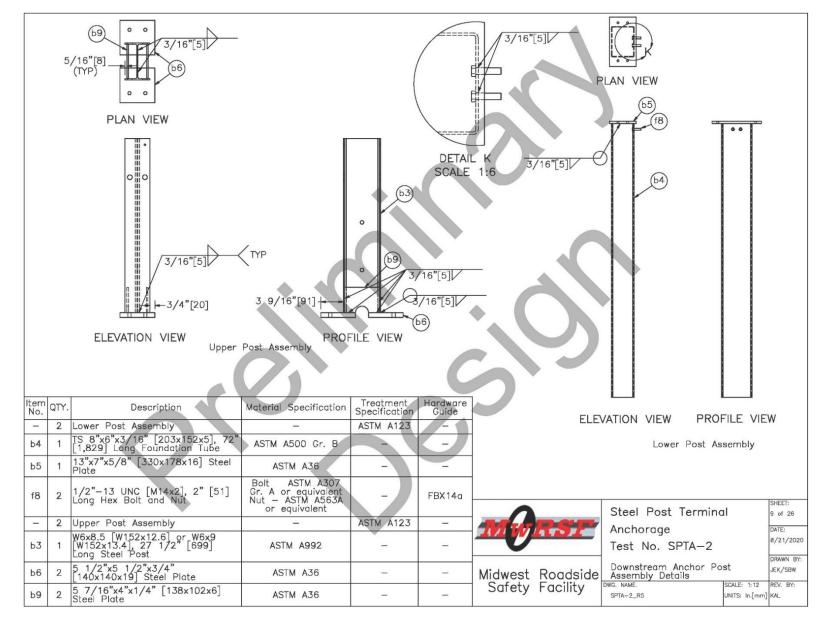


Figure 79. Downstream Anchor Post Assembly Details, Test No. SPTA-2

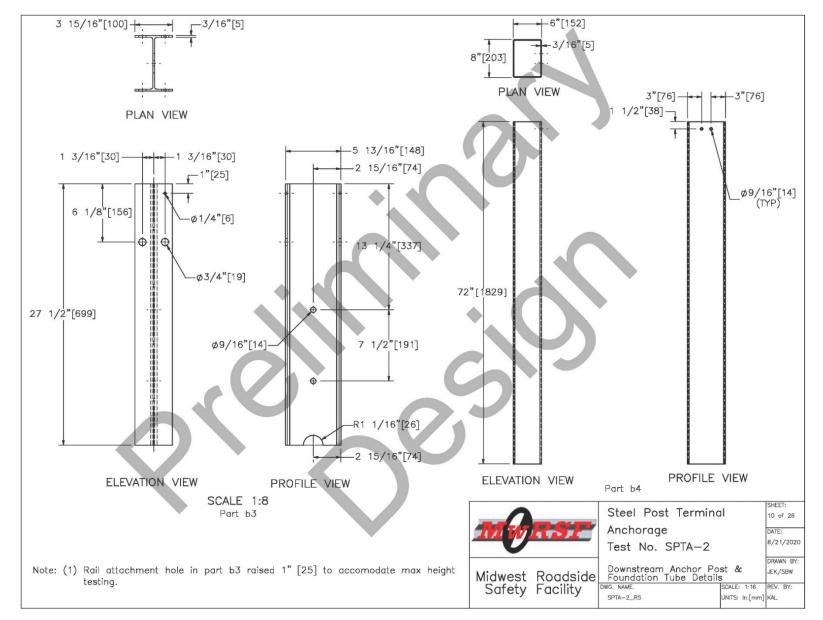


Figure 80. Downstream Anchor Post and Foundation Tube Details, Test No. SPTA-2

101

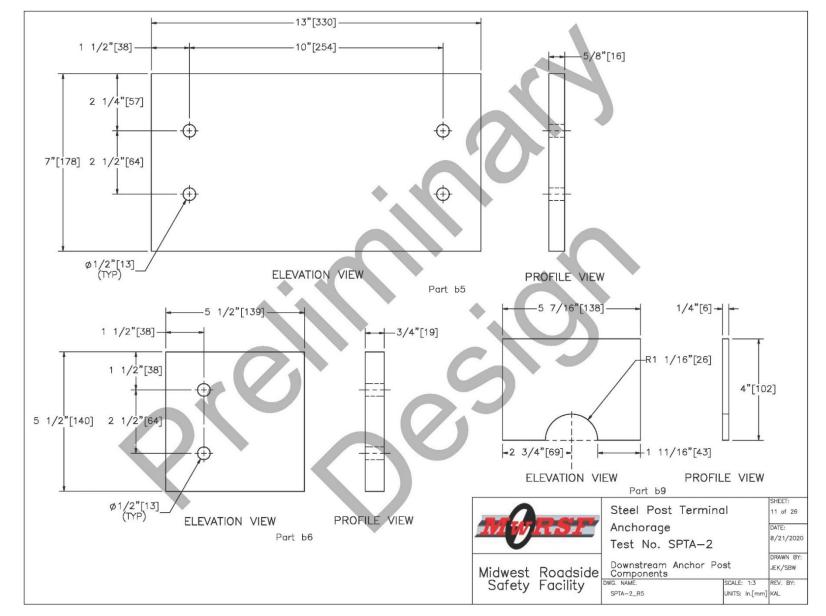


Figure 81. Downstream Anchor Post Components, Test No. SPTA-2

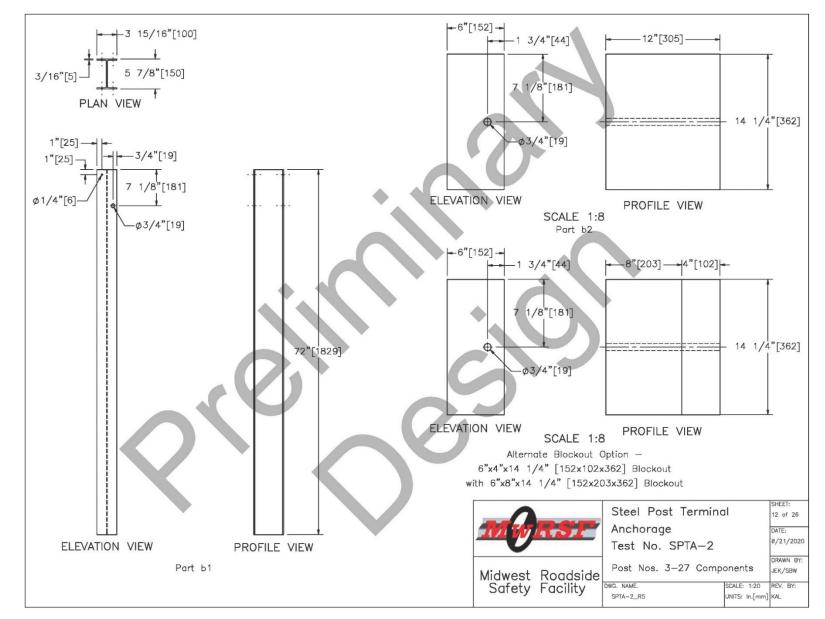


Figure 82. Post Nos. 3 through 27 Components, Test No. SPTA-2

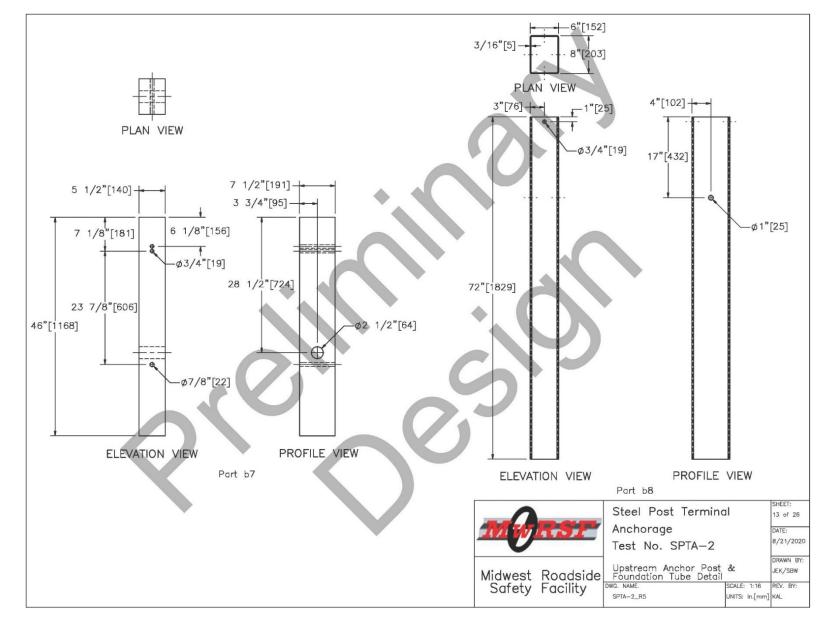


Figure 83. Upstream Anchor Post and Foundation Tube Detail, Test No SPTA-2

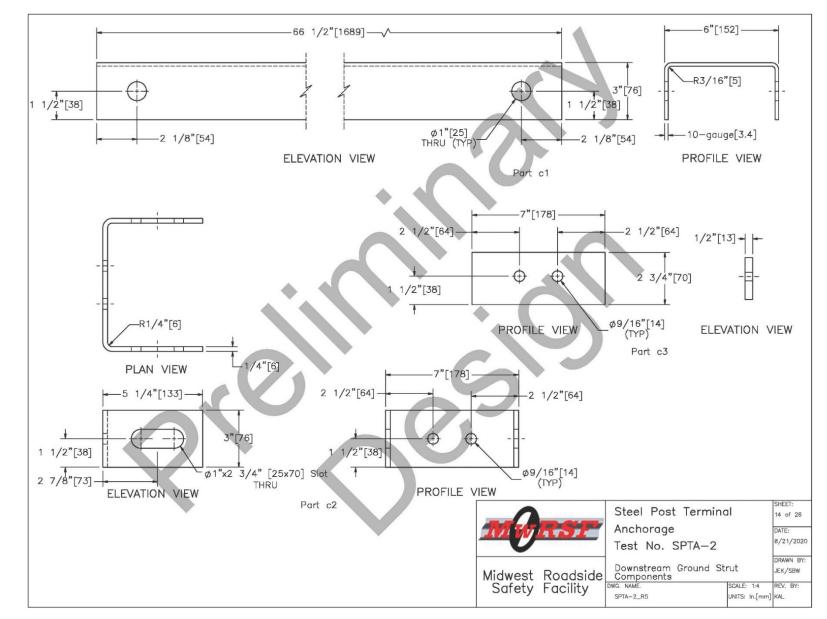


Figure 84. Downstream Ground Strut Components, Test No. SPTA-2

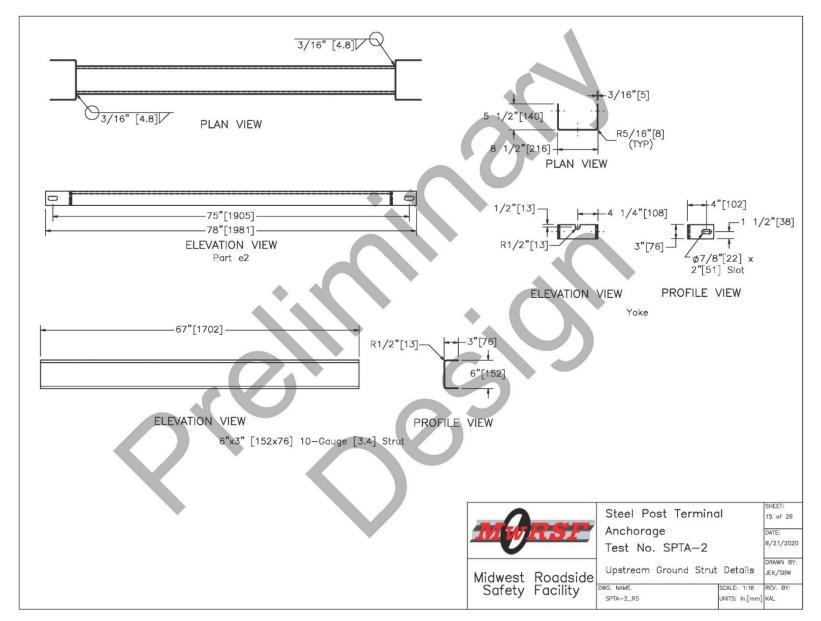


Figure 85. Upstream Ground Strut Details, Test No. SPTA-2

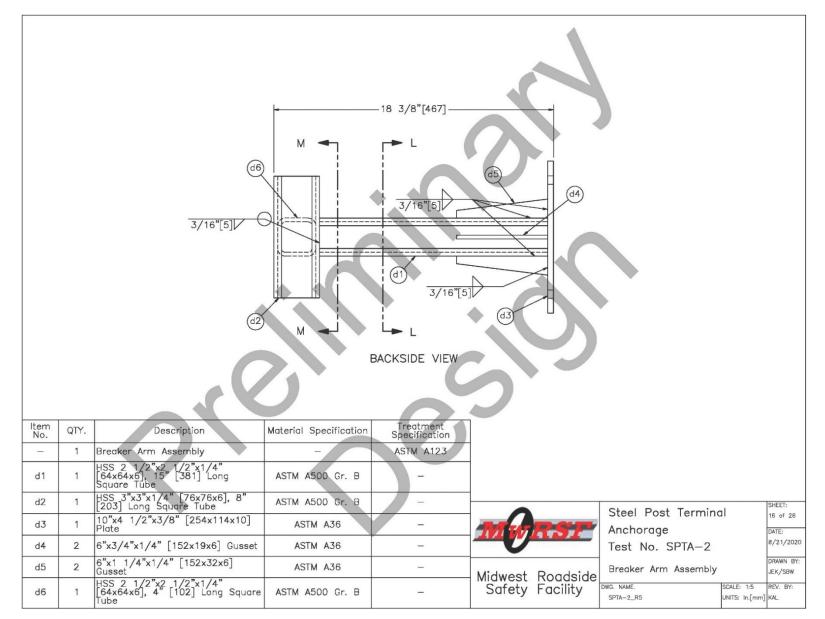


Figure 86. Breaker Arm Assembly, Test No. SPTA-2

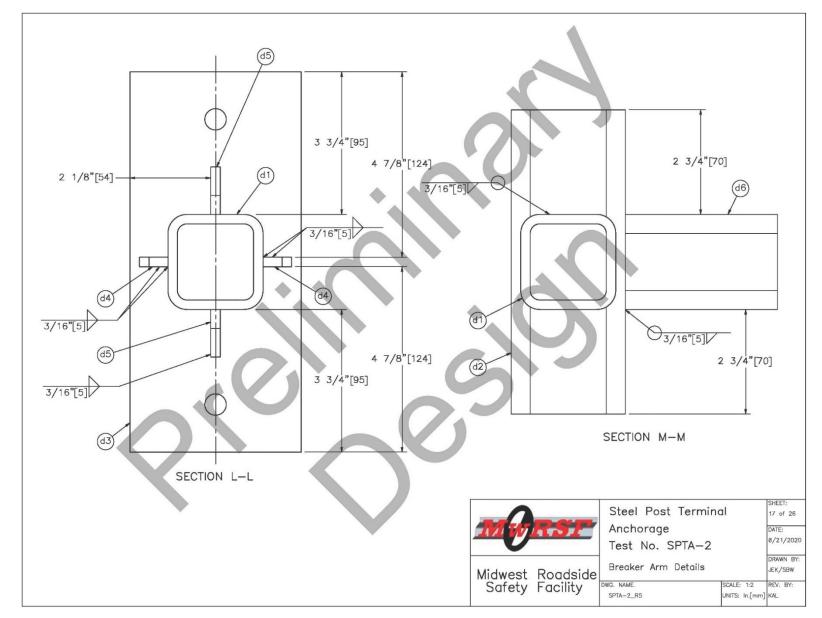


Figure 87. Breaker Arm Details, Test No. SPTA-2

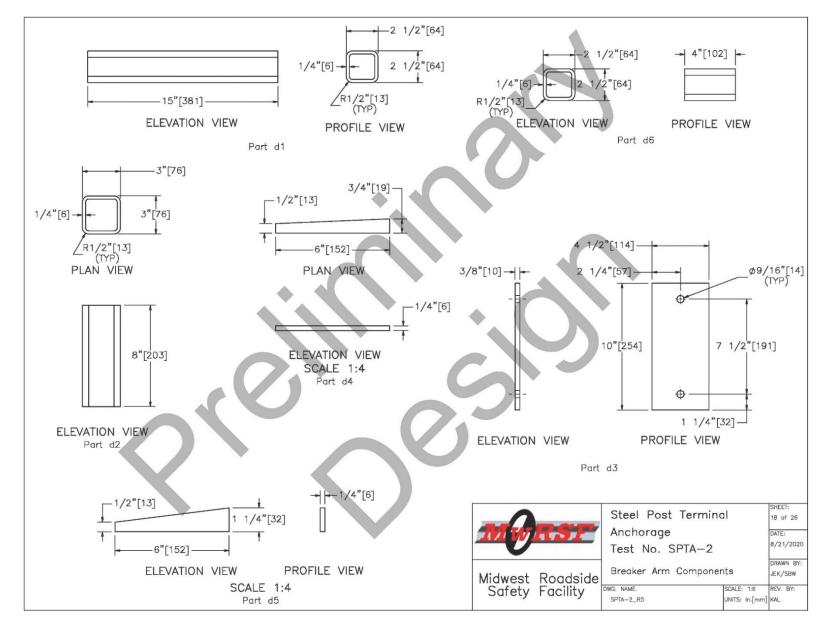


Figure 88. Breaker Arm Components, Test No. SPTA-2

109

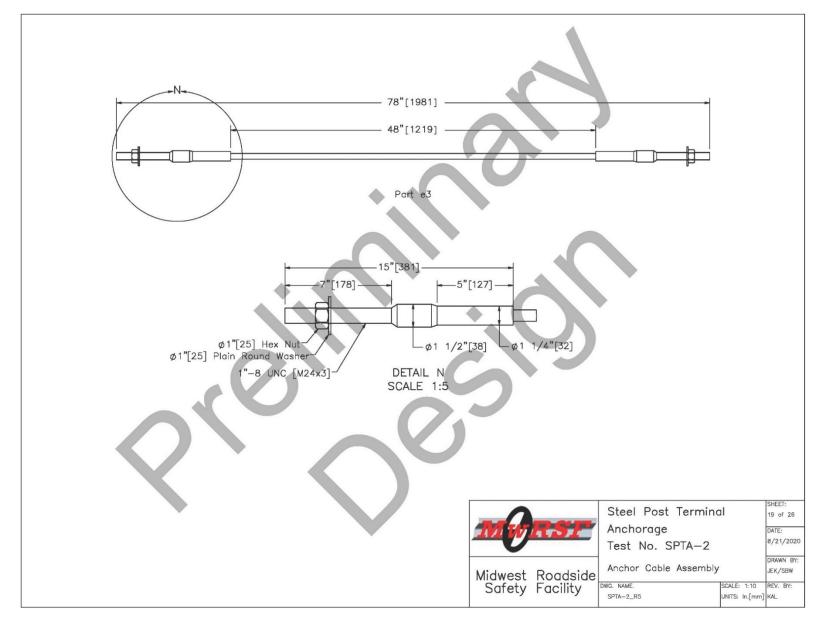


Figure 89. Anchor Cable Assembly, Test No. SPTA-2

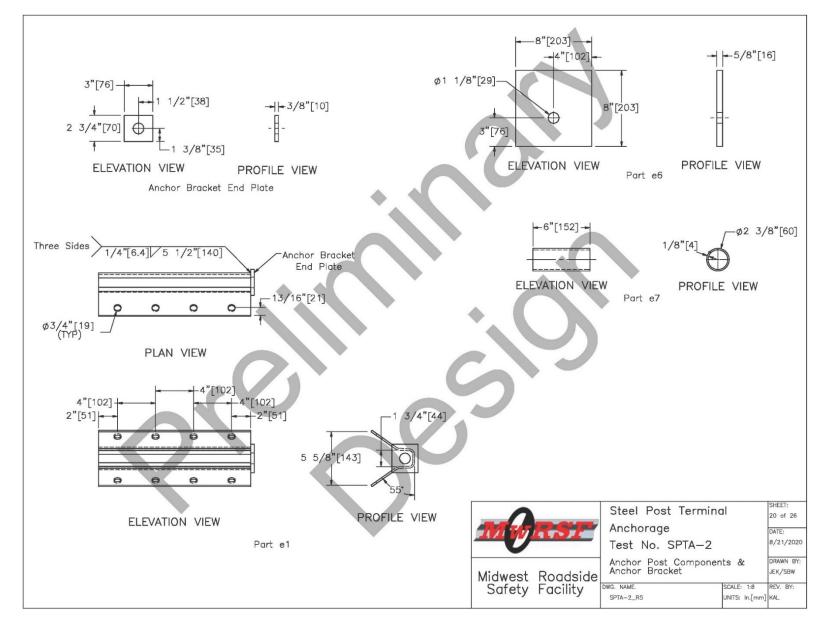


Figure 90. Anchor Post Components and Anchor Bracket, Test No. SPTA-2

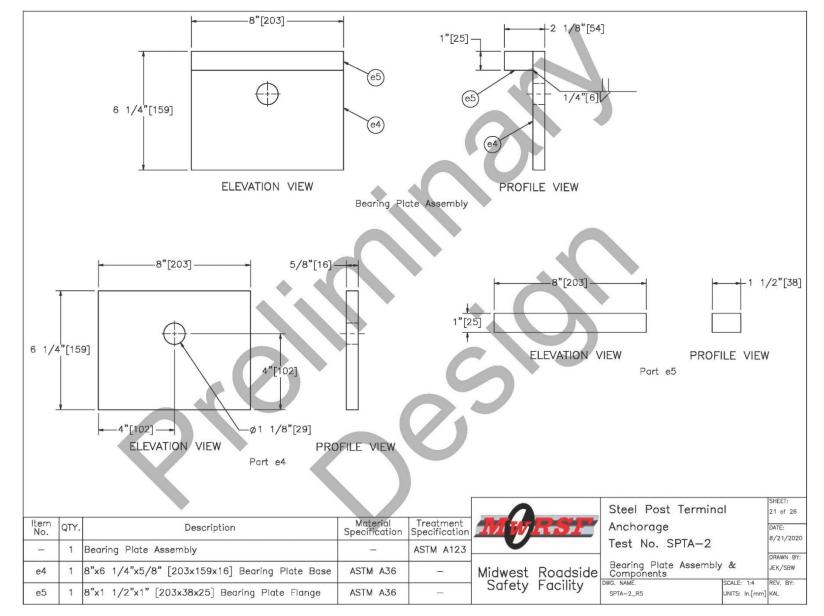


Figure 91. Bearing Plate Assembly and Components, Test No. SPTA-2

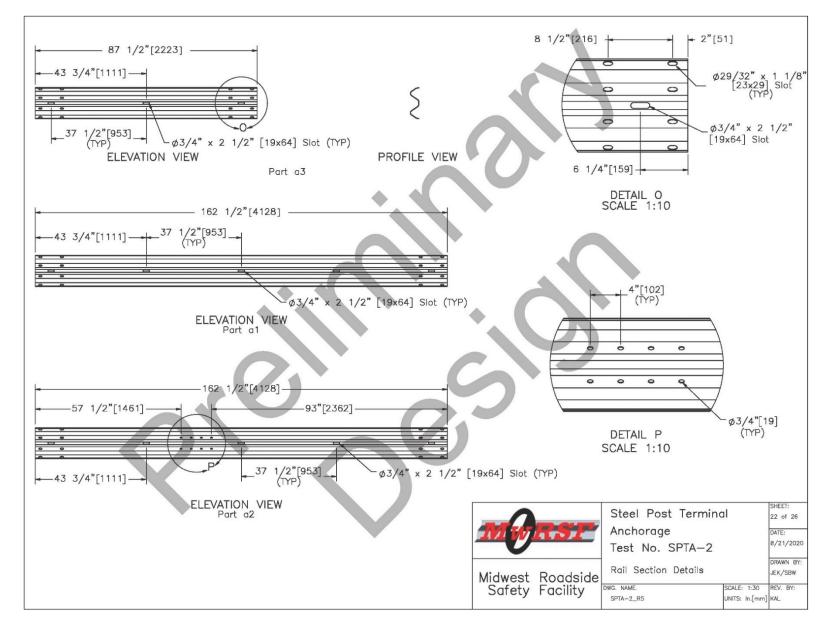


Figure 92. Rail Section Details, Test No. SPTA-2

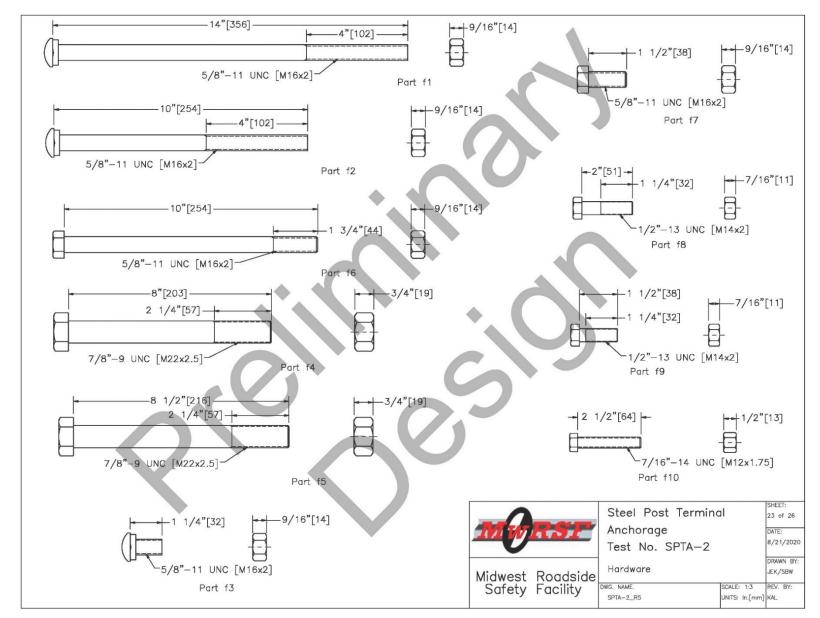


Figure 93. Hardware, Test No. SPTA-2

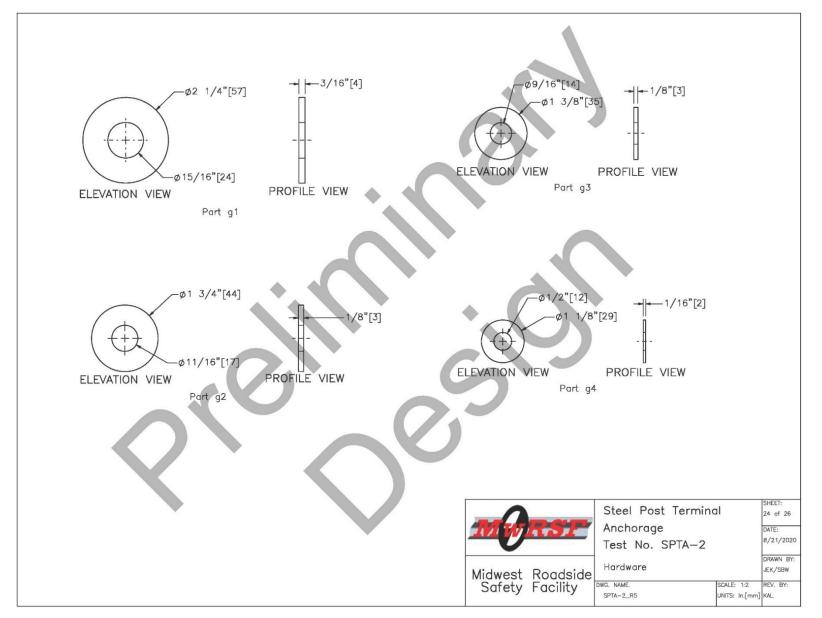
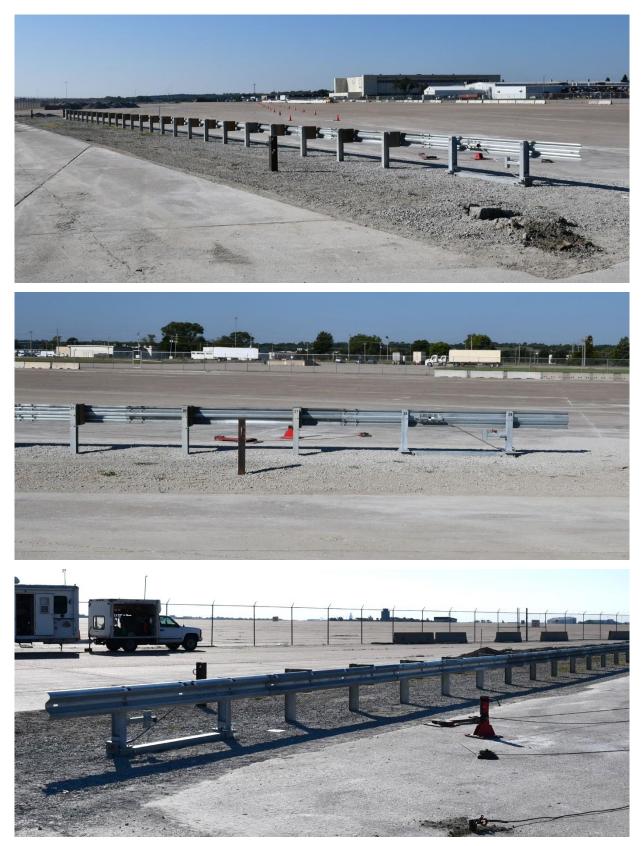



Figure 94. Hardware, Test No. SPTA-2

ltem No.	QTY.	Description	Material Specification	Treatment Specification	lardware Guide
a1	12	12'-6" [3,810] 12-gauge [2.7] W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
a2	2	12'-6" [3,810] 12-gauge [2.7] W-Beam MGS End Section	AASHTO M180	ASTM A123 or A653	-
a3	1	6'-3" [1,905] 12-gauge [2.7] W-Beam MGS Section	AASHTO M180	ASTM A123 or A653	-
b1	25	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" Long [1,829] Steel Post	ASTM A992	ASTM A123	PWE06
b2	25	6"x12"x14 1/4" [152x305x368] Timber Blockout	SYP Grade No.1 or better	-	PDB10a
bЗ	2	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 27 1/2" [699] Long Steel Post	ASTM A992	-	-
Ь4	2	TS 8"x6"x3/16" [203x152x5], 72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	_	_
Ь5	2	13"x7"x5/8" [330x178x16] Steel Plate	ASTM A36	-	-
b6	4	5 1/2"x5 1/2"x3/4" [140x140x19] Steel Plate	ASTM A36	-	-
ь7	2	BCT Timber Post – MGS Height	SYP Grade No. 1 or better (No knots 18" [457] above or below ground tension face)	-	PDF01
b8	2	TS 8"x6"x3/16" [203x152x5], 72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
b9	4	5 7/16"x4"x1/4" [138x102x6] Steel Plate	ASTM A36	-	-
c1	1	66 1/2"x11 3/4"x10-gauge [1,689x298x3.4] Bent Steel Channel Strut	ASTM A36	ASTM A123	-
c2	2	17"x3"x1/4" [432x76x6] Bent Steel Plate	ASTM A36	ASTM A123	-
c3	2	7"x2 3/4"x1/2" [178x70x13] Steel Plate	ASTM A36	ASTM A123	-
d1	1	HSS 2 1/2"x2 1/2"x1/4" [64x64x6], 15" [381] Long Square Tube	ASTM A500 Gr. B	-	-
d2	1	HSS 3"x3"x1/4" [76x76x6], 8" [203] Long Square Tube	ASTM A500 Gr. B	-	-
d3	1	10"x4 1/2"x3/8" [254x114x10] Plate	ASTM A36	-	_
d4	2	6"x3/4"x1/4" [152x19x6] Gusset	ASTM A36	-	-
d5	2	6"x1 1/4"x1/4" [152x32x6] Gusset	ASTM A36	-	
d6	1	HSS 2 1/2"x2 1/2"x1/4" [64x64x6], 4" [102] Long Square Tube	ASTM A500 Gr. B	-	_
			Midwest Roo Safety Fac	Steel Post Terminal Anchorage Test No. SPTA-2 Bill of Materials	SHEET: 25 of 26 DATE: 8/21/2020 DRAWN BY: JEK/SBW we REV. BY:

ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
e1	2	Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01
e2	1	Upstream Ground Strut	ASTM A36	ASTM A123	PFP02
e3	2	Anchor Cable Assembly	-	-	FCA01
e4	1	8"x6 1/4"x5/8" [203x159x16] Bearing Plate Base	ASTM A36	-	FPB01
e5	1	8"x1 1/2"x1" [203x38x25] Bearing Plate Flange	ASTM A36	-	-
e6		8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
e7	1	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
f1	25	5/8"—11 UNC [M16x2], 14" [356] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 o F2329	r FBB06
f2	2	5/8"—11 UNC [M16x2], 10" [254] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 o F2329	r FBB03
f3	114	5/8"—11 UNC [M16x2], 1 1/4" [32] Long Guardrail Bolt and Nut	Bolt ASTM A307 Gr. A Nut ASTM A563A	ASTM A153 or B695 Class 55 o F2329	r FBB01
f4	2	7/8"—9 UNC [M22x2.5], 8" [203] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A or equivalent Nut – ASTM A563A or equivalent	ASTM A153 or B695 Class 55 o F2329	r _
f5	2	7/8"–9 UNC [M22x2.5], 8 1/2" [216] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	ASTM A153 or B695 Class 55 o F2329	r _
f6	2	5/8"—11 UNC [M16x2], 10" [254] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A or equivalent Nut – ASTM A563A or equivalent	ASTM A153 or B695 Class 55 o F2329	r FBX16a
f7	16	5/8"-11 UNC [M16x2], 1 1/2" [38] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	ASTM A153 or B695 Class 55 o F2329	r FBX16a
f8	4	1/2"—13 UNC [M14x2], 2" [51] Long Hex Bolt and Nut	Bolt ASTM A307 Gr. A or equivalent Nut – ASTM A563A or equivalent	-	FBX14a
f9	2	1/2"—13 UNC [M14x2], 1 1/2" [38] Long Hex Bolt and Nut	Bolt ASTM A307 Gr.A or equivalent Nut – ASTM A563A or equivalent	ASTM A153 OR B695 Class 55 c F2329	FBX14a
f10	8	7/16"—14 UNC [M12x1.75], 2 1/2" [64] Long Fully Threaded Hex Tap Bolt and Nut	Bolt — ASTM A449 or equivalent Nut — ASTM A563DH or equivalent	ASTM A153 or B695 Class 55 o F2329	r FBX12b
f11	26	16D Double Head Nail		-	-
g1	8	7/8" [22] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	_
g2	38	5/8" [16] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC16a
g3	8	1/2" [13] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC14a
g4	32	7/16" [11] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC12a
			Midwest Ro		DATE: 8/21/2 DRAWN JEK/SB
			Safety Fac	cility DWG. NAME. SPTA-2_R5	CALE: None REV. B NITS: In.[mm] KAL

Figure 96. Bill of Materials, Test No. SPTA-2

 $Figure \ 97. \ Test \ Installation \ Photographs-Trailing-End \ Anchorage \ System, \ Test \ No. \ SPTA-2$

Figure 98. Test Installation Photographs – Trailing-End Anchorage System, Test No. SPTA-2

Figure 99. Test Installation Photographs – Trailing-End Anchorage System, Test No. SPTA-2

Figure 100. Test Installation Photographs – Trailing-End Anchorage System, Test No. SPTA-2

Figure 101. Test Installation Photographs – Upstream End Anchorage System, Test No. SPTA-2

7 FULL-SCALE CRASH TEST NO. SPTA-2

7.1 Static Soil Test

Before full-scale crash test no. SPTA-2 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results demonstrated a soil resistance above the baseline test limits, as shown in Appendix C. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

7.2 Weather Conditions

Test no. SPTA-2 was conducted on September 12, 2018 at approximately 1:30 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 11.

Temperature	82° F	
Humidity	51%	
Wind Speed	18 mph	
Wind Direction	180° from True North	
Sky Conditions	Partly Cloudy	
Visibility	10 Statute Miles	
Pavement Surface	Dry	
Previous 3-Day Precipitation	0.00 in.	
Previous 7-Day Precipitation	0.10 in.	

Table 11. Weather Conditions, Test No. SPTA-2

7.3 Test Description

Initial vehicle impact was to occur at the midspan between post nos. 27 and 28, or 37.5 in. (953 mm) upstream of the steel-post trailing end anchorage system, as shown in Figure 102. This impact point matched that used during the evaluation of the wood-post trailing end anchorage system and was selected to maximize vehicle snag on the cable anchorage. The actual point of impact was 1.3 in. (34 mm) upstream from the targeted impact point. The 2,429-lb (1,102-kg) small car impacted the guardrail system at a speed of 63.3 mph (101.9 km/h) and at an angle of 25.2 degrees. During the impact event, the vehicle gated through the system and remained upright and stable. Both of the breakaway anchor posts cleanly fractured away from their foundation tubes. The vehicle directly impacted post no. 28 and caused it to break away. The breaker bar remained in place as the guardrail and anchor cable deflected backward. The vehicle impacted the upstream end of the breaker bar and caused post no. 29 (the downstream anchor post) to breakaway. Subsequently, the anchor cable was released, the downstream end of the W-beam guardrail swung back and away from the vehicle, and the vehicle rolled over the remaining anchorage hardware consisting of post stubs and the ground line strut. The vehicle eventually came to rest 171 ft - 3in. (52.2 m) downstream from the point of impact and 74 ft (22.6 m) laterally behind the system after brakes were applied.

A detailed description of the sequential impact events is contained in Table 12. Sequential photographs are shown in Figures 103 and 104. Documentary photographs of the crash test are shown in Figures 105 and 106. The vehicle trajectory and final position are shown in Figure 107.

Figure 102. Impact Location, Test No. SPTA-2

TIME (sec)	EVENT		
0.000	Vehicle's front bumper contacted rail 1.3 in. (34 mm) upstream from the midspan between post nos. 27 and 28.		
0.004	Vehicle's right headlight contacted rail.		
0.006	Vehicle's right fender contacted rail.		
0.008	Vehicle's right fender deformed.		
0.010	Post nos. 27 and 28 deflected backward, and vehicle's right headlight deformed.		
0.012	Vehicle's hood contacted rail.		
0.014	Vehicle's hood deformed.		
0.020	Vehicle's right headlight shattered.		
0.022	Vehicle's front bumper contacted post no. 28.		
0.028	Post no. 27 rotated clockwise, post no. 28 bent backward, and vehicle's grille and right- front door contacted rail.		
0.030	Post no. 28 bent downstream, and rail disengaged from bolt at post no. 28.		
0.036	Right portion of vehicle's front bumper tore and disengaged.		
0.038	Post no. 29 deflected backward.		
0.040	Post no. 28 disengaged from base.		
0.044	Post no. 29 rotated counterclockwise.		
0.046	Post no. 26 rotated clockwise.		
0.056	Vehicle yawed away from barrier.		
0.061	Vehicle's hood buckled.		
0.078	Vehicle's front bumper contacted post no. 29.		
0.080			
0.086	Rail disengaged from bolt at post no. 29.		
0.090	090 Vehicle's left headlight contacted rail.		
0.096			
0.098	Post no. 29 disengaged from base.		
0.102	Vehicle left headlight shattered.		
0.120	Vehicle's right-front tire deflated.		
0.150	Vehicle exited system at a speed of 44.9 mph (72.3 km/h) and an angle of 20.1 degrees.		
0.176	Vehicle's right-rear tire became airborne.		
0.200	Post no. 27 rotated counterclockwise.		
0.222	Vehicle's left-rear tire became airborne.		
0.224	Vehicle's right-rear tire regained contact with ground.		
0.228	Vehicle's grille disengaged.		
0.242	Remainder of vehicle's front bumper disengaged.		
0.304	Vehicle pitched upward.		
0.366	Vehicle's left-rear tire regained contact with ground.		

Table 12. Sequential Description of Impact Events, Test No. SPTA-2

0.000 sec

0.050 sec

0.100 sec

0.150 sec

0.200 sec

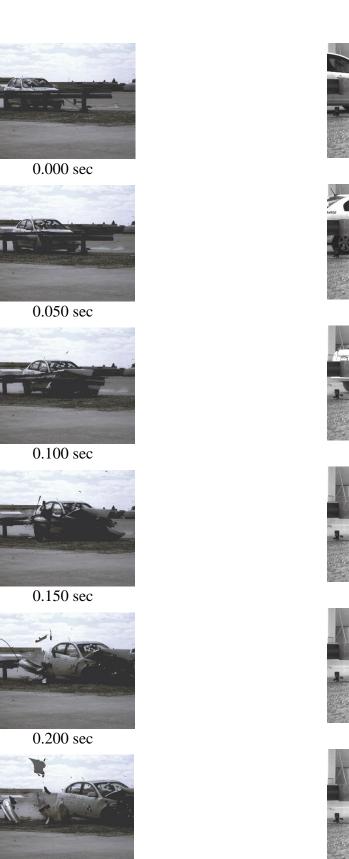
0.250 sec

Figure 103. Sequential Photographs, Test No. SPTA-2 126

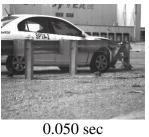
0.000 sec

0.050 sec

0.100 sec


0.150 sec

0.200 sec


0.250 sec

0.250 sec

0.000 sec

ME STA

0.100 sec

0.150 sec

0.200 sec

0.250 sec

Figure 104. Additional Sequential Photographs, Test No. SPTA-2

December 17, 2020 MwRSF Report No. TRP-03-370b-20

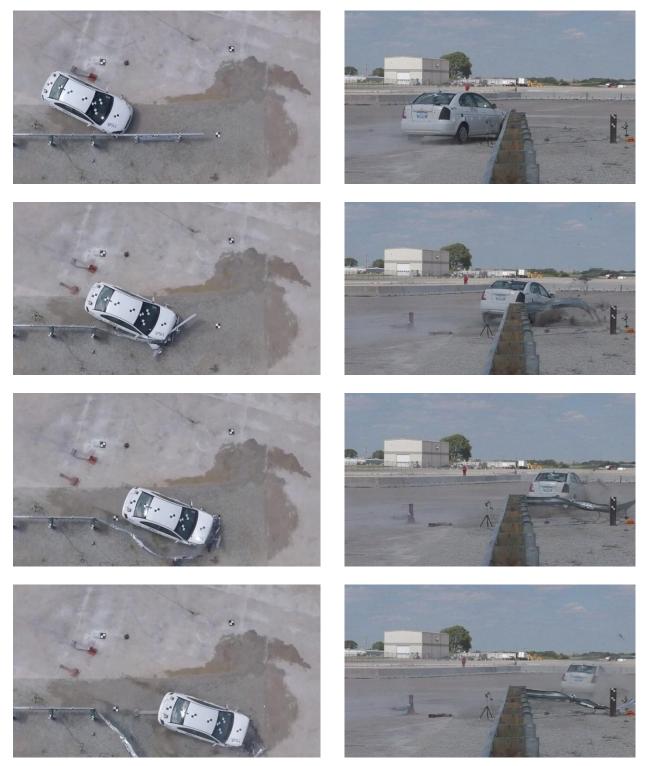


Figure 105. Documentary Photographs, Test No. SPTA-2

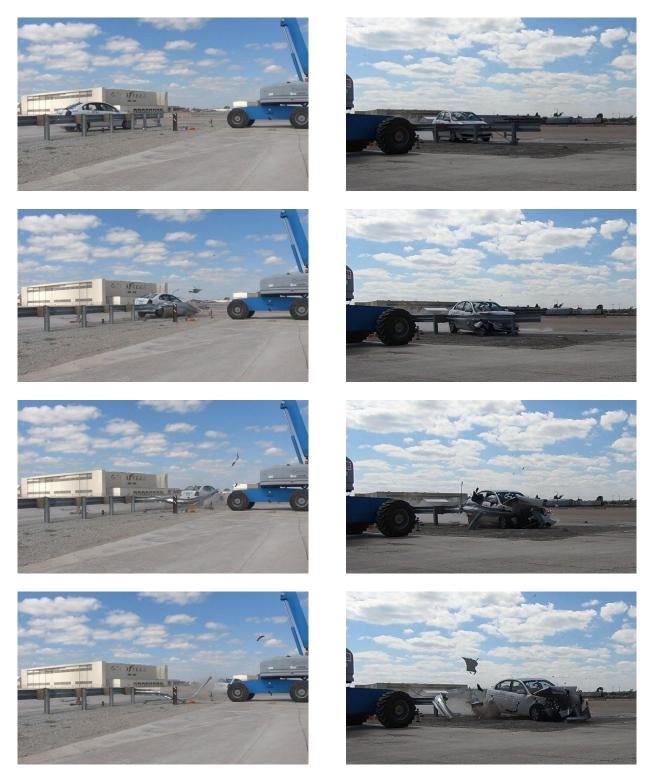


Figure 106. Documentary Photographs, Test No. SPTA-2

Figure 107. Vehicle Final Position and Trajectory Marks, Test No. SPTA-2

7.4 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 108 through 111. Barrier damage consisted of deformation and twisting of the rail assembly; deflection, twisting, and rotation of posts; and lease of both trailing-end anchorage breakaway steel posts. The length of vehicle contact along the barrier was approximately 13 ft -7 in. (4.1 m), which spanned from 44 in. (1,118 mm) upstream from post no. 28 to the downstream end of the system.

The guardrail experienced various degrees of bending, flattening, denting, kinking, and scraping extending from 44 in. (1,118 mm) upstream from post no. 28 to the downstream end of the system. The post-to-rail bolts pulled through the rail at post nos. 27, 28, and 29, and the rail disengaged from these posts. The W-beam was bent backward at a 90-degree angle around post no. 27. Flattening of the top W-beam corrugation began 38 in. (965 mm) downstream from post no. 28 and ended 3 in. (76 mm) downstream from post no. 29. Flattening of the bottom W-beam corrugation began 6 in. (152 mm) downstream from post no. 28 and ended 18 in. (457 mm) upstream from post no. 29. Additional flattening of the bottom W-beam edge began 16 in. (406 mm) upstream from the end of rail and extended through the end of the system. Additional buckles and kinks were found on the W-beam throughout the impact region.

Post no. 27 twisted counterclockwise to face upstream and the post-to-rail bolt remained in the post. All bolts in the base of post nos. 28 and 29 fractured and the top portions of the posts were disengaged from their base plates. The post-to-rail bolts remained in both breakaway anchor posts. Post no. 28 was twisted counterclockwise and the traffic-side flange had a 12-in. (305-mm) long by 2-in. (51-mm) deep dent. Post no. 29 twisted counterclockwise and had multiple kinks in the upstream front and back flanges. Contact marks were present on the foundation base plates of post nos. 28 and 29. The T-shaped, breaker bar assembly remained attached to post no. 29 with both bolts intact. The corners of the breaker bar attachment plate were bent. The cable anchor was released from post no. 29 but remained attached to the guardrail.

The maximum lateral permanent set of the rail was 142¼ in. (3,613 mm) at the downstream end of the rail as determined from field measurements. The maximum dynamic rail deflection was 183.0 in. (4,648 mm) at the end of the rail, as determined from high-speed, digital video analysis. The working width of the system coincided with the dynamic deflection, which was 183.0 in. (4,648 mm). Note, working width measurements did not include vehicle position since the terminal gated and the vehicle was not redirected. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 112.

Figure 108. System Damage, Test No. SPTA-2

Figure 109. System Damage, Test No. SPTA-2

Figure 110. System Damage – Post Nos. 28 and 29, Test No. SPTA-2

Figure 111. System Damage – Upstream End Anchorage System, Test No. SPTA-2

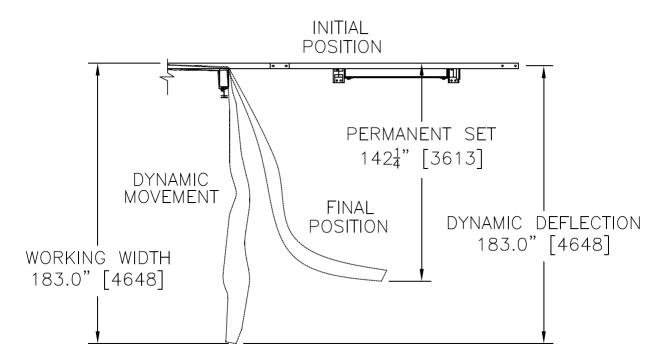


Figure 112. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. SPTA-2

7.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 113 through 116. The maximum occupant compartment deformations are listed in Table 13 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix D. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. Interior occupant compartment deformations were minimal with a maximum of 0.3 in., which did not violate the limits established in MASH 2016. Outward deformations, which are denoted as negative numbers in Appendix D, are not considered crush toward the occupant and are not evaluated by MASH 2016 criteria.

Most of the damage was concentrated on the right-front corner of the vehicle where impact occurred. The front bumper cover was disengaged from the vehicle. The middle of the front bumper was crushed inward into the radiator. The hood, left headlight, right-front fender, and right wheel well crushed inward. The hood buckled upward. The right headlight disengaged from the vehicle.

Damage to the vehicle undercarriage was moderate. Most significantly, the steering gear box disengaged from its mounts. The transmission oil pan was punctured. The front engine and transmission mounts were fractured, and the cross members were bent. The left-side frame fractured, and the frame horn was bent up and backward into the engine compartment. The underside floor pan was scraped in multiple locations. The exhaust bracket fractured. The roof, windshield, and window glass remained undamaged.

Figure 113. Vehicle Damage, Test No. SPTA-2

Figure 115. Occupant Compartment Damage, Test No. SPTA-2

December 17, 2020 MwRSF Report No. TRP-03-370b-20

Figure 116. Undercarriage Damage, Test No. SPTA-2

LOCATION	MAXIMUM INTRUSION in. (mm)	MASH 2016 ALLOWABLE INTRUSION in. (mm)
Wheel Well & Toe Pan	0.2 (5)	≤ 9 (229)
Floor Pan & Transmission Tunnel	0.0 (0)	≤ 12 (305)
A-Pillar Maximum	0.3 (8)	≤ 5 (127)
A-Pillar (Lateral)	0.1 (3)	≤ 3 (76)
B-Pillar Maximum	0.2 (5)	≤ 5 (127)
B-Pillar (Lateral)	0.1 (3)	≤ 3 (76)
Side Front Panel (in Front of A-Pillar)	0.1 (3)	≤ 12 (305)
Side Door (Above Seat)	0.1 (3)	≤ 9 (229)
Side Door (Below Seat)	0.1 (3)	≤ 12 (305)
Roof	0.2 (5)	≤ 4 (102)
Windshield	0.0 (0)	≤ 3 (76)
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	0.4 (10)	N/A

Table 13. Maximum Occupant Compartment Intrusion by Location, Test No. SPTA-2

N/A – No MASH 2016 criteria exists for this location

7.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ride down accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 14. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 14. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix G.

Evaluation Criteria		Transducer		MASH 2016	
		SLICE-1 (primary)	SLICE-2	Limits	
OIV	Longitudinal	-24.76 (-7.55)	-24.38 (-7.43)	±40 (12.2)	
ft/s (m/s)	Lateral	-7.66 (-2.33)	-7.65 (-2.33)	±40 (12.2)	
ORA	Longitudinal	4.56	3.53	±20.49	
g's	Lateral	-3.72	-3.69	±20.49	
MAXIMUM	Roll	4.0	4.1	±75	
ANGULAR DISPLACEMENT	Pitch	-3.6	-3.2	±75	
degrees	Yaw	-7.6	-7.9	not required	
THIV ft/s (m/s)		25.32 (7.72)	25.33 (7.72)	not required	
PHD g's		5.75	5.09	not required	
ASI		0.89	0.87	not required	

Table 14. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. SPTA-2

7.7 Discussion

The analysis of the test results for test no. SPTA-2 showed that the system performed adequately and allowed the 1100C vehicle to safely gate through the system. The test results and sequential photographs are summarized in Figure 117. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle gated through the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix G, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. As such, the gating action was safe and controlled and did not pose a risk to occupants. Gating through the system, the vehicle continued traveling downstream at an angle of 20.1 degrees relative to the barrier's original position. Therefore, test no. SPTA-2 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-37b.

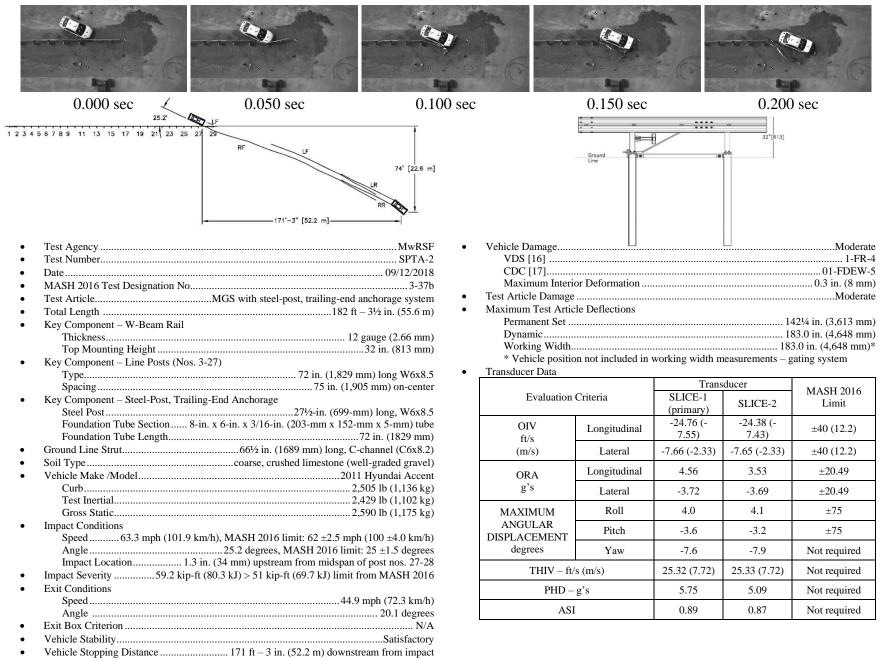


Figure 117. Summary of Test Results and Sequential Photographs, Test No. SPTA-2

143

December 17, 2020 MwRSF Report No. TRP-03-370b-20

8 FINAL DESIGN FOR STEEL-POST, TRAILING-END ANCHORAGE SYSTEM

The final design for the non-proprietary, steel-post, trailing-end anchorage system was nearly identical to that of the as-tested system evaluated in test no. SPTA-2. However, test no. SPTA-2 was conducted with a 32-in. (813-mm) rail height to maximize the risk of vehicle snag on the anchor cable below the rail. Thus, the final recommended design lowered the bolt holes in the anchor posts to allow for the nominal 31-in. (787-mm) rail mounting height of the MGS. No other design changes were made.

The final recommended design includes: (1) two breakaway steel posts; (2) two steel foundation tubes; (3) a steel compression ground line strut between the two steel foundation tubes; (4) one steel anchor cable connecting the W-beam rail to the base of the end post; and (5) a T-shaped, breaker bar attached to the end anchor post to initiate fracture of the end post and release of the anchor cable. Details for the final steel-post, trailing end MGS anchorage system are shown in Figures 118 through 133. Note, the details herein include a shortened section of W-beam located at the downstream end of the installation such that the guardrail ends at the end post. However, longer guardrail segments extending past the end post (similar to the as-tested installations) or the use of curved guardrail end segments downstream of the end post should also be considered crashworthy.

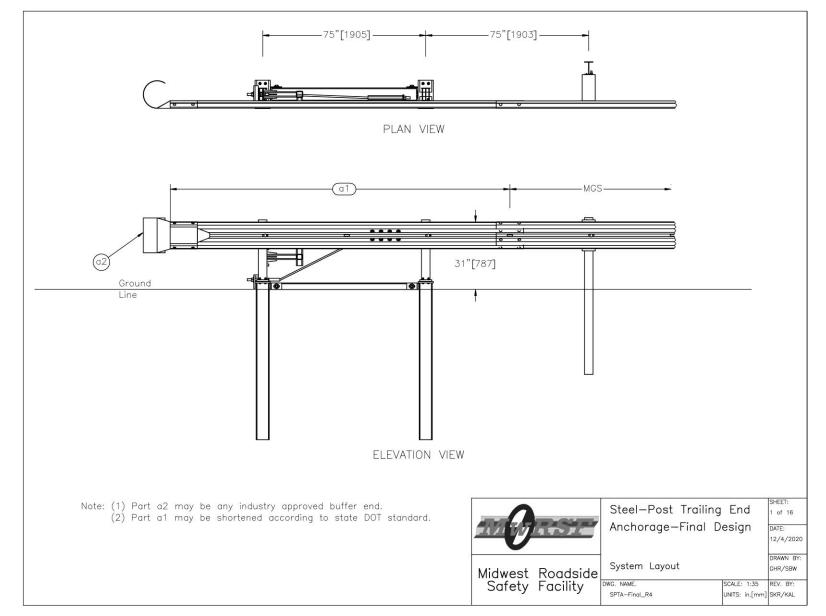


Figure 118. Steel-Post Trailing End Anchorage, System Layout

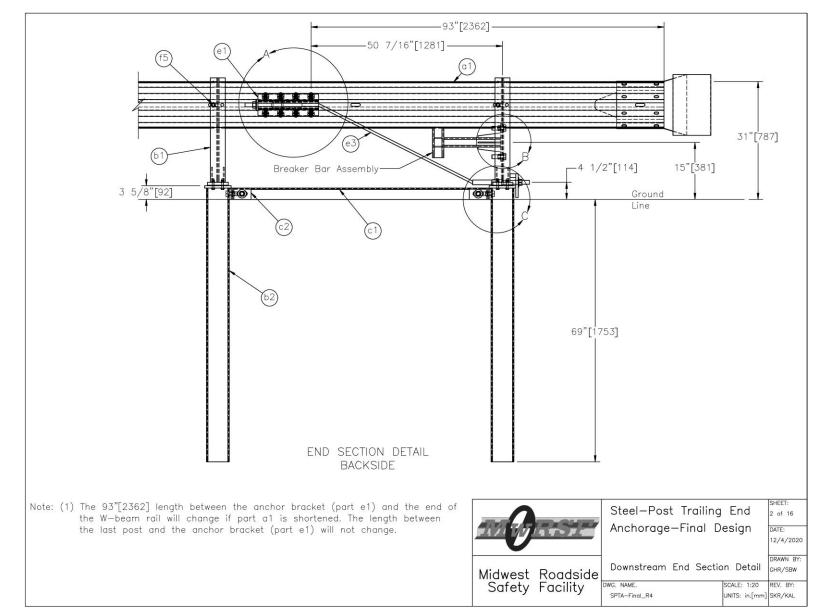


Figure 119. Steel-Post Trailing End Anchorage, Downstream End Section Detail

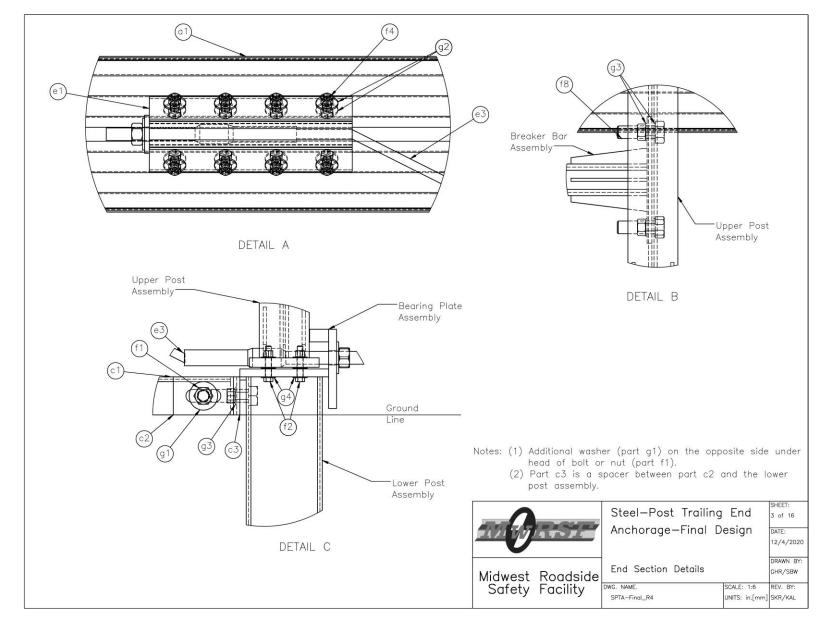


Figure 120. Steel-Post Trailing End Anchorage, End Section Details

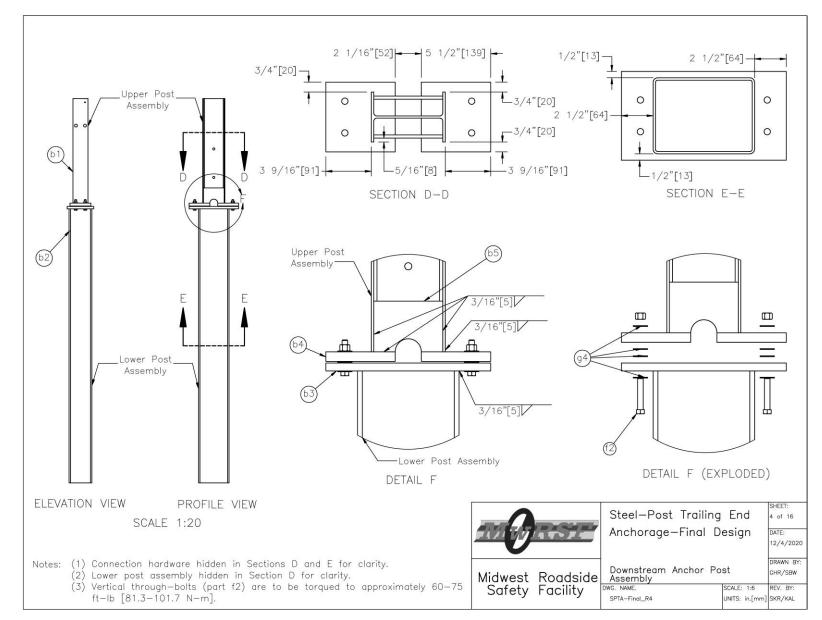


Figure 121. Steel-Post Trailing End Anchorage, Downstream Anchor Post Assembly

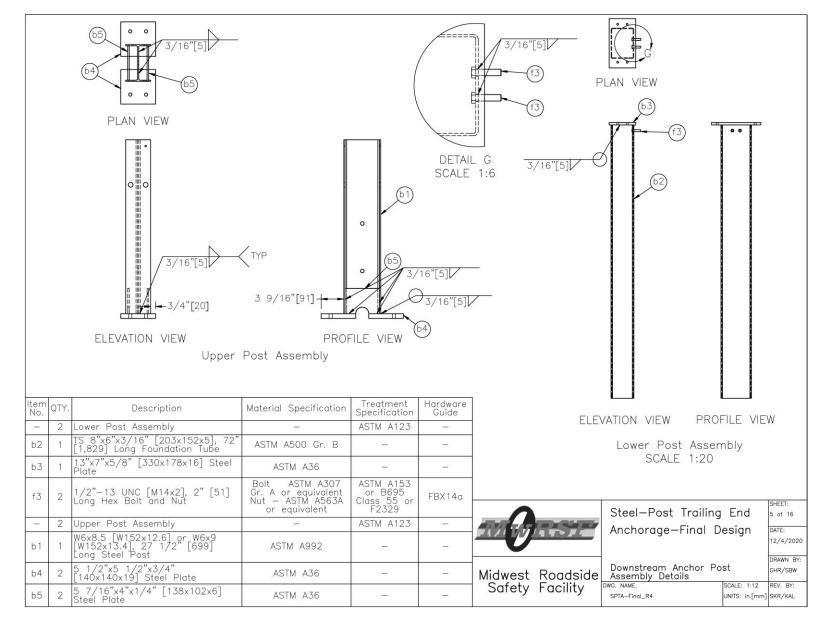


Figure 122. Steel-Post Trailing End Anchorage, Downstream Anchor Post Assembly Details

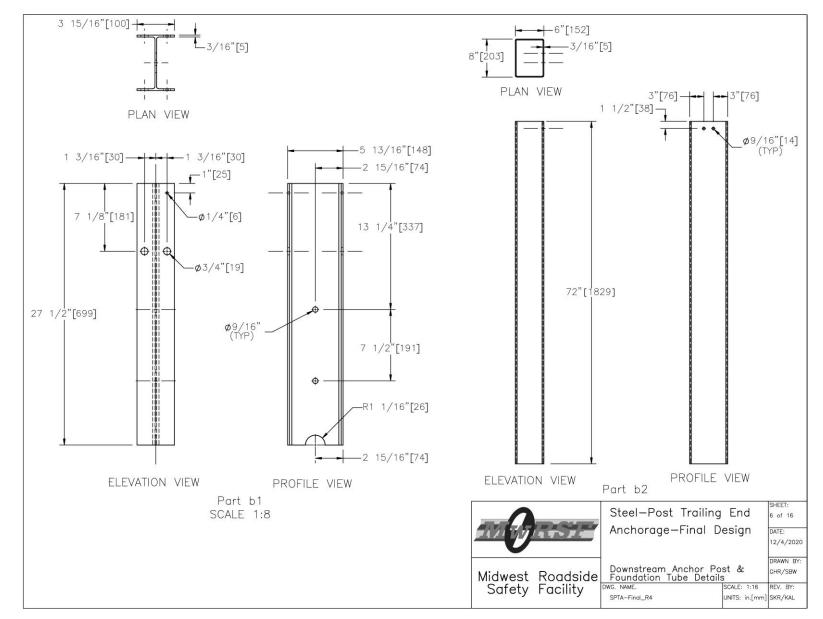


Figure 123. Steel-Post Trailing End Anchorage, Downstream Anchor Post and Foundation Tube Details

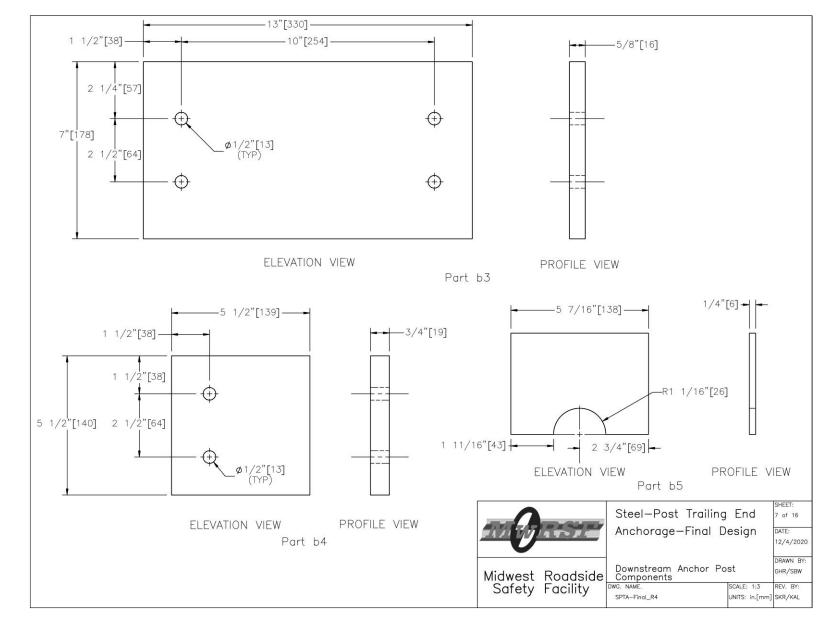


Figure 124. Steel-Post Trailing End Anchorage, Downstream Anchor Post Components

151

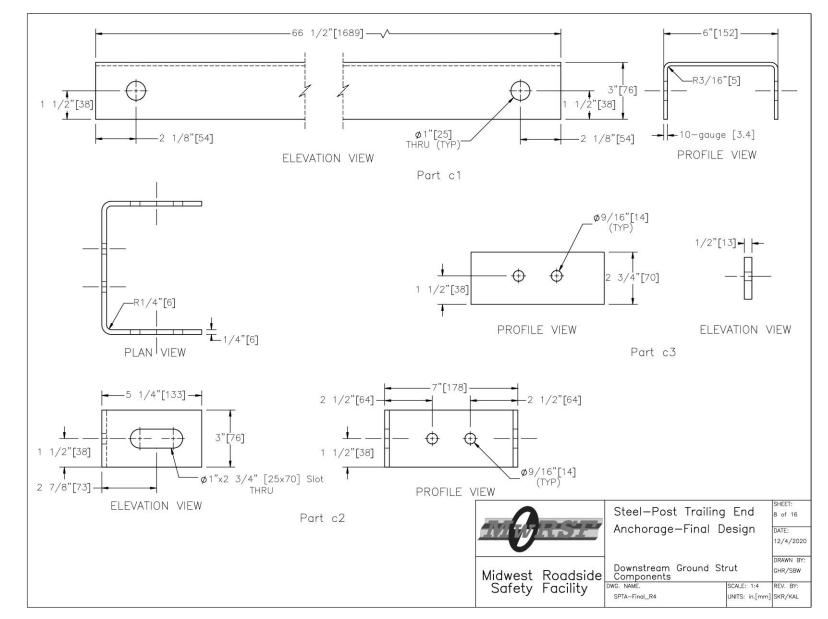


Figure 125. Steel-Post Trailing End Anchorage, Downstream Ground Strut Components

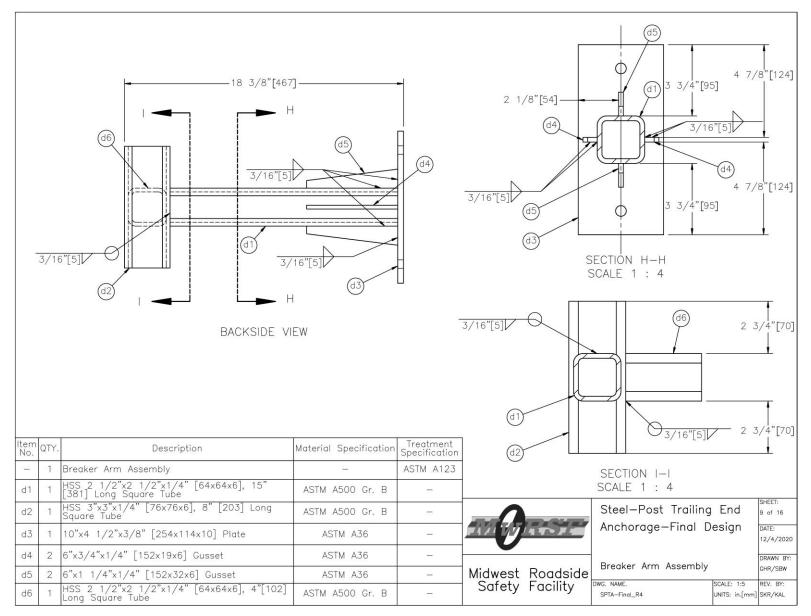


Figure 126. Steel-Post Trailing End Anchorage, Breaker Arm Assembly

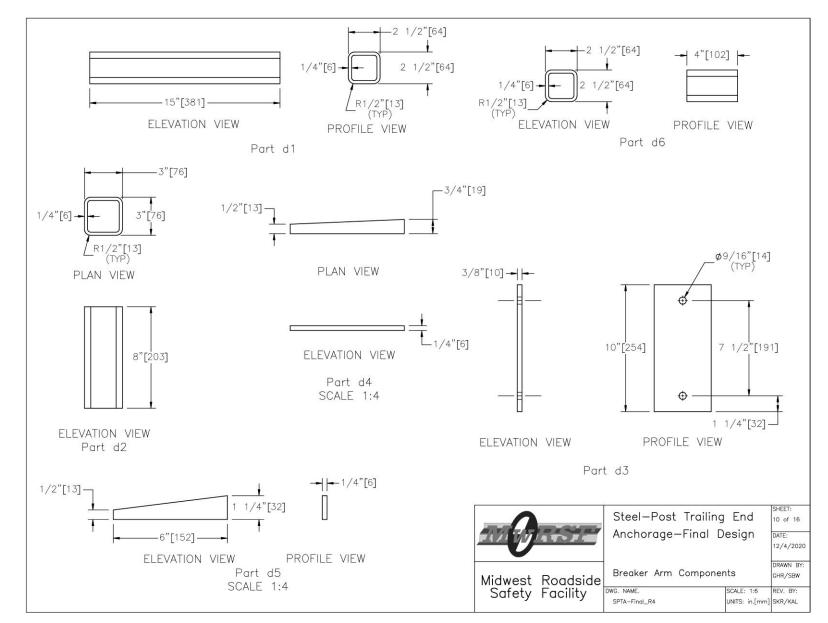


Figure 127. Steel-Post Trailing End Anchorage, Breaker Arm Components

154

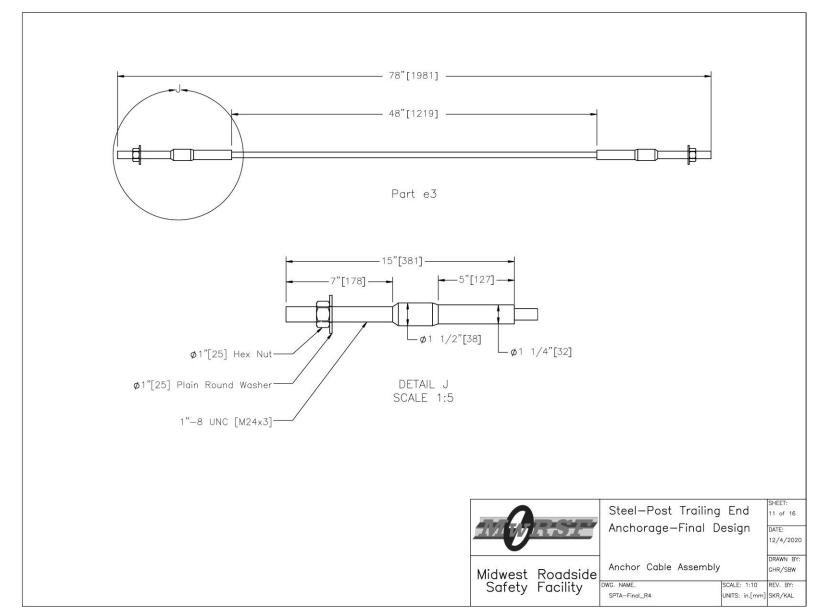


Figure 128. Steel-Post Trailing End Anchorage, Anchor Cable Assembly

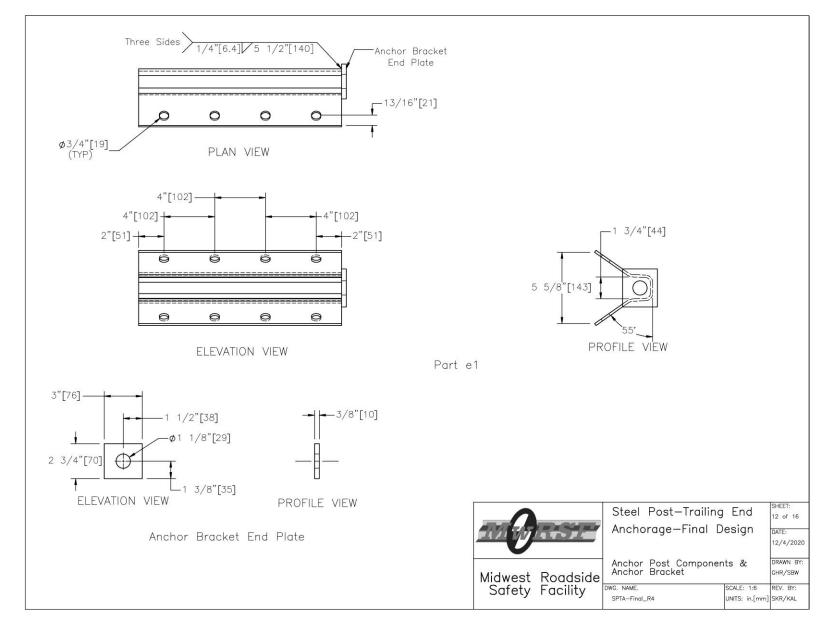


Figure 129. Steel-Post Trailing End Anchorage, Anchor Post Components and Anchor Bracket

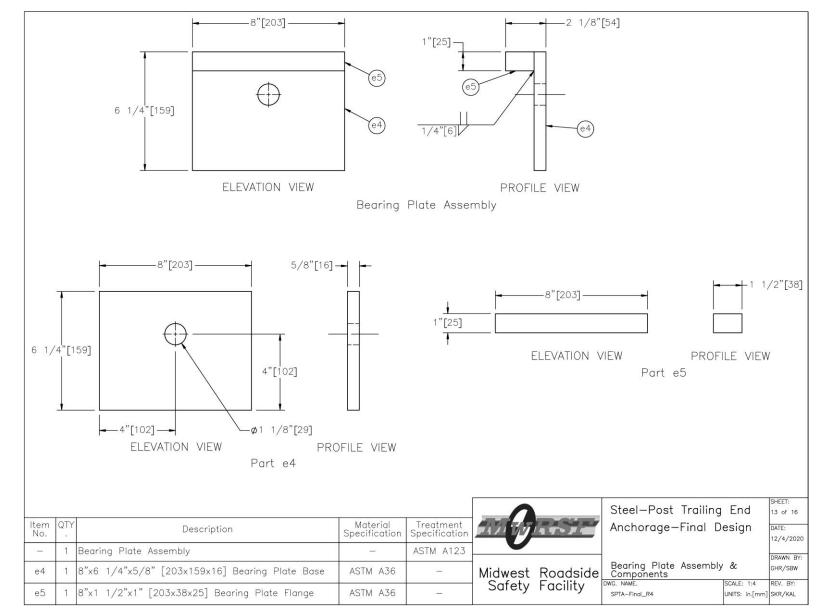


Figure 130. Steel-Post Trailing End Anchorage, Bearing Plate Assembly and Components

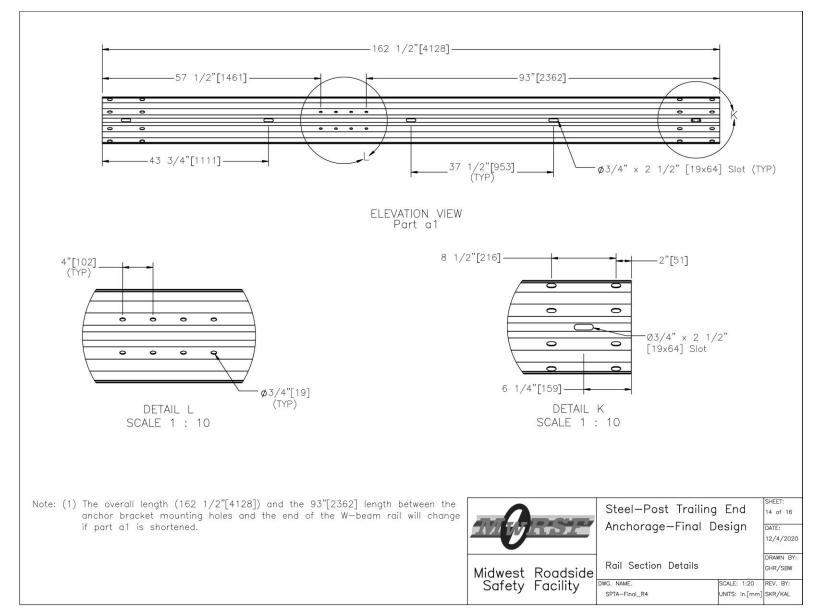


Figure 131. Steel-Post Trailing End Anchorage, Rail Section Details

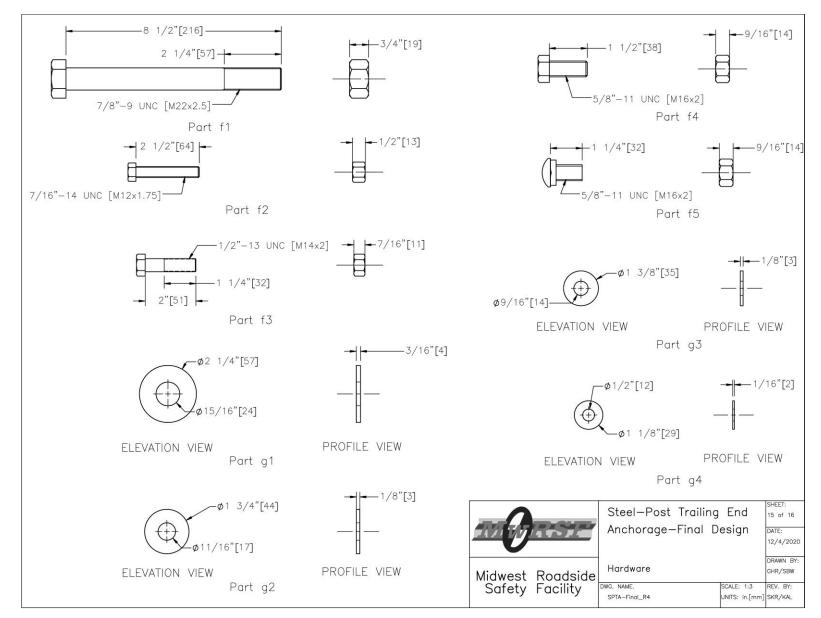


Figure 132. Steel-Post Trailing End Anchorage, Hardware

ltem No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide	
a1	1	12'-6" [3,810] 12-gauge [2.7] W-Beam MGS End Section	AASHTO M180	ASTM A123 or A653	-	
o2	1	W-Beam Rounded End Section 12-gauge [2.7]	12 gauge [2.7] AASHTO M180		RWE03a	
b1	2	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 27 1/2" [699] Long Steel Post	ASTM A992	(-	
b2	2	TS 8"x6"x3/16" [203x152x5], 72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	100		
b3	2	13"x7"x5/8" [330x178x16] Steel Plate	ASTM A36			
b4	4	5 1/2"x5 1/2"x3/4" [140x140x19] Steel Plate	ASTM A36	-		
b5	4	5 7/16"x4"x1/4" [138x102x6] Steel Plate	ASTM A36	100	·	
c1	1	66 1/2"x11 3/4"x10-gauge [1,689x298x3.4] Bent Steel Channel Strut	ASTM A36	ASTM A123	-	
c2	2	17"x3"x1/4" [432x76x6] Bent Steel Plate	ASTM A36	ASTM A123		
с3	2	7"x2 3/4"x1/2" [178x70x13] Steel Plate	ASTM A36	ASTM A123		
d1	1	HSS 2 1/2"x2 1/2"x1/4" [64x64x6], 15" [381] Long Square Tube	ASTM A500 Gr. B		-	
d2	1	HSS 3"x3"x1/4" [76x76x6], 8" [203] Long Square Tube	ASTM A500 Gr. B	-	-	
d3	1	10"x4 1/2"x3/8" [254x114x10] Plate	ASTM A36	1.000		
d4	2	6"x3/4"x1/4" [152x19x6] Gusset	ASTM A36	-	-	
d5	2	6"x1 1/4"x1/4" [152x32x6] Gusset	ASTM A36	-		
d6	1	HSS 2 1/2"x2 1/2"x1/4" [64x64x6], 4"[102] Long Square Tube	ASTM A500 Gr. B		-	
e1	1	Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01	
e2	2	Anchor Cable End Swaged Fitting	Fitting — ASTM A576 Gr. 1035 Stud — ASTM F568 Class C	Fitting – ASTM A153 Stud – ASTM A153 or B695		
еЗ	1	Anchor Cable Assembly	<u></u>	-	FCA01	
e4	1	8"x6 1/4"x5/8" [203x159x16] Bearing Plate Base	ASTM A36		FPB01	
e5	1	8"x1 1/2"x1" [203x38x25] Bearing Plate Flange	ASTM A36	-	-	
f1	2	7/8"-9 UNC [M22x2.5], 8 1/2" [216] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A or equivalent Nut – ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	-	
f2	8	7/16"-14 UNC [M12x1.75], 2 $1/2"$ [64] Long Fully Threaded Hex Tap Bolt and Nut	Bolt — ASTM A449 or equivalent Nut — ASTM A563DH or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX12b	
f3	6	1/2"-13 UNC [M16x2], 2" [51] Long Hex Bolt and Nut	ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FNX24a	
f4	8	5/8"-11 UNC [M16x2], 1 1/2" [38] Long Hex Head Bolt and Nut	Bolt — ASTM A307 Gr. A or equivalent Nut — ASTM A563A or equivalent	ASTM A153 or B695 Class 55 or F2329	FBX16a	
f5	2	5/8"-11 UNC [M16x2], 1 1/4" [32] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB01	
g1	2	1" [25] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC24a	
g1	4	7/8" [22] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	-	
g2	16	5/8" [16] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC16a	
g3	8	1/2" [13] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC14a	
g4	32	7/16" [11] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC12a	

	Steel-Post	Trailing End SHEET: 16 of 16
and the second	Anchorage-	Final Design DATE: 12/4/2020
Midwest Road	Bill of Materia	Is DRAWN BY:
Safety Faci		SCALE: None REV. BY: UNITS: in.[mm] SKR/KAL

Figure 133. Steel-Post	Frailing End Anchorage,	Bill of Materials
------------------------	-------------------------	-------------------

9 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The project objective was to develop and evaluate a MASH 2016 TL-3 crashworthy, steelpost, trailing-end anchorage system for use with the MGS. Following the prototype design of the steel-post, trailing-end anchorage system, five candidate design concepts were subjected to dynamic component testing, and three of these designs proved to be viable options. Based on the component testing results and consideration for ease of fabrication and installation of the design concepts, a singular design configuration was selected for full-scale vehicle crash testing. The selected design concept utilized breakaway anchor posts consisting of a W6x8.5 top portion and a 6-in. x 8-in. x 3 /₁₆-in. (76-mm x 203-mm x 5-mm) steel foundation tube. The top portion of the post incorporated a slot through the base plate and the web so that the anchor cable could pass through the post and be supported by the downstream face of the post and foundation tube. A Tshaped, breaker bar assembly was attached to the end anchor post and configured to initiate fracture of the post attachment bolts and release of the anchor cable, thus reducing the potential for vehicle snag on the anchor. Finally, a new ground line strut and yolk design was developed for the new anchorage system to avoid conflicts with the breakaway hardware in the posts.

Two full-scale crash tests, test nos. SPTA-1 and SPTA-2, were performed according to the MASH 2016 test designation nos. 3-37a and 3-37b, respectively. In test no. SPTA-1, the 5,074-lb (2,302-kg) pickup truck impacted the system 31.25 ft (9.5 m) from the end post (6th post from the end) at a speed of 62.1 mph (99.9 km/h) and an angle of 25.0 degrees. The 2270P was safely contained and redirected, and all vehicle decelerations and occupant compartment deformations were within the allowable MASH 2016 limits. Thus, test no. SPTA-1 satisfied the MASH 2016 safety requirements for test designation no. 3-37a.

However, during test no. SPTA-1, the lateral displacement of the guardrail and anchor cable pushed the T-shaped breaker bar backward and away from impact. Subsequently, the vehicle did not contact the breaker bar as intended and instead directly impacted the end post. Additionally, the end post did not break away and the anchor cable was not released. Although these behaviors did not result in a test failure, the breaker bar was modified to avoid contact with the anchor cable and promote a clean breakaway of the end post. As such, in test no. SPTA-2, the T-shaped, breaker bar was modified to incorporate a shorter length tube, a lower mounting height on the end anchor post, and a thicker steel attachment plate at the bolted connection to the end post. Additionally, stiffening plates were welded between the flanges on both the upstream and downstream sides of the anchor posts to prevent bending prior to bolt fracture.

In test no. SPTA-2, the 2,429-lb (1,102-kg) small car impacted the system at the midspan between the 2nd and 3rd post from the end of the system at a speed of 63.3 mph (101.9 km/h) and an angle of 25.2 degrees. The small car impacted the upstream end of the breaker bar causing the end post to break cleanly away and the anchor cable to be released. The vehicle gated through the system and remained upright and stable throughout the test. All vehicle decelerations and occupant compartment deformations were within the allowable MASH 2016 limits. Thus, test no. SPTA-2 satisfied all MASH 2016 safety requirements for test designation no. 3-37b. A summary of both test evaluations is shown in Table 15.

As demonstrated in test no. SPTA-2, the modifications to breaker bar resulted in the vehicle impacting the upstream end of the breaker bar and causing a clean release of the end post and anchor cable. The additional stiffening plates at the base of the W6x8.5 breakaway post also

prevented bending of the posts prior to breaking away. If the modified breaker bar and posts had been used during test no. SPTA-1, similar behavior is likely to have occurred with the pickup truck impacting the breaker bar and causing the end post and anchor cable to be cleanly released. Subsequently, the pickup would have not impacted and bent over the end post, and decelerations to the pickup would have been reduced. The pickup truck was already being redirected out of the system by the time it reached the location of the breaker bar, so the modified design would not have affected the containment or redirection of the vehicle. Therefore, the modified breaker bar and post stiffening plates would only improve the performance of the steel-post, trailing end anchorage system, and rerunning MASH 2016 test designation 3-37a was unnecessary. With the successful completion of test nos. SPTA-1 and SPTA-2 and the improved performance of the modified breaker bar, the final design for the steel-post trailing end anchorage system was deemed crashworthy to MASH 2016 TL-3 criteria.

Similar to the previous wood-post trailing end system, the steel-post trailing end anchorage system was not designed for and would not likely be crashworthy when impacted head-on. It is to be installed only in locations where it will only be impacted by vehicles exiting the MGS installation in traditional reverse-direction impacts. Typical trailing-end anchorage installations would include one-way roadways or at locations were they are outside of the clear zone for traffic headed in the opposite direction.

Since the full-scale crash testing program was successful according to the MASH 2016 TL-3 criteria and two other trailing-end anchorage concepts (concept no. 2 - cable passing through foundation tube, and concept no. 5 – cable passing through foundation tube with angled bearing plate) were similar in design and met the desired tensile capacity, it is possible that all three steelpost design concepts are crashworthy. However, the two alternative designs were investigated only through tensile component testing and their breakaway post and cable release behavior remain unknown in actual crash tests. Further analysis and/or evaluation is necessary prior to either of the two alternative steel-post, trailing-end guardrail anchorage concepts being deemed crashworthy.

Due to conflicts between typical ground strut attachment hardware and the breakaway hardware of the steel anchor posts, four alternative strut and yolk designs were presented in Section 1.1.4 herein. All four designs utilized the same basic concept and similarly-sized components. The differences between the design alternatives was only in the yolk fitting inside or outside of the strut and whether the yolk was welded or bolted to the lower foundation tubes of the anchor posts. The welded and bolted connections were designed to have similar strengths. Thus, it is believed that all four of the ground strut and yolk alternatives could be used within the crashworthy, steel-post, trailing-end anchorage developed herein.

Finally, results from steel-post, trailing-end anchorage were compared to the results from the evaluation of the previous wood-post trailing-end system. The steel-post system showed increased strength and reduced dynamic deflections and working widths as compared to the wood-post system. Thus, the previously-recommended acceptable hazard zone envelope for the wood-post system represented conservative and safe guidelines for the steel-post, trailing-end anchorage system in combination with the MGS.

Evaluation Factors	Evaluation Criteria			Test No. SPTA-1	Test No. SPTA-2	
Structural Adequacy	А.	A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.				S
	 D. 1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. 2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016. 				S	S
					S	S
	F.	F. The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.			S	S
Occupant Risk	H.	H. Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				
		Occupant Impact Velocity Limits			S	S
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)		
	I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:					
		Occupant Ridedown Acceleration Limits			S	S
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		
MASH 2016 Test Designation No.				3-37a	3-37b	
Final Evaluation (Pass or Fail)				Pass	Pass	

Table 15. Summary of Safety Performance Evaluation, Test Nos. SPTA-1 and SPTA-2

S-Satisfactory U-Unsatisfactory NA-Not Applicable

10 IMPLEMENTATION GUIDELINES

10.1 Guideline for Shielding Hazards Near Steel-Post, Trailing-End Anchorage System

In a previous MwRSF study [1-3], the combination of full-scale crash testing and computer simulations were conducted on the trailing-end anchorage system with BCT wood posts to determine the downstream end of the guardrail system's LON and investigate the path of the 2270P vehicle during impacts near the downstream end of the system. A shielding window for hazards placed behind the MGS in close proximity to the wood-post, trailing-end anchorage system was proposed, as shown in Figure 134. These guidelines were based on MASH TL-3 impacts at each post location along the MGS through the trailing-end anchorage system. Simulations with impact points at the ninth, eighth, and seventh posts predicted a complete redirection with maximum vehicle working widths typical of the MGS at about 60 in. (1,524 mm. Therefore, a conservative safe distance of 60 in. (1,524 mm) was proposed for locations upstream from the fifth post. For impacts at the sixth post and further downstream, the vehicle working widths increased and terminal began to gate.

The results from the new LON test with the pickup truck on the steel-post, trailing-end anchorage system, test no. SPTA-1, were added to the envelope to determine if any adjustments were necessary. The vehicle working width from test no. SPTA-1 revealed a lower lateral vehicle trajectory as compared to test no. WIDA-1 and the previous simulations, as shown in Figure 134. This reduction in vehicle working width is likely due to the increased tensile capacity of the steelpost, trailing-end anchorage system. Because the steel-post system reduced deflections and working widths, the previously-recommended acceptable hazard zone envelope for the wood-post, trailing-end anchorage system can be conservatively and safely utilized for the steel-post, trailing-end anchorage system. The acceptable hazard zone envelope could be modified to reflect the reduced deflections observed with the steel-post system. However, further analysis would be needed to define this modified envelope.

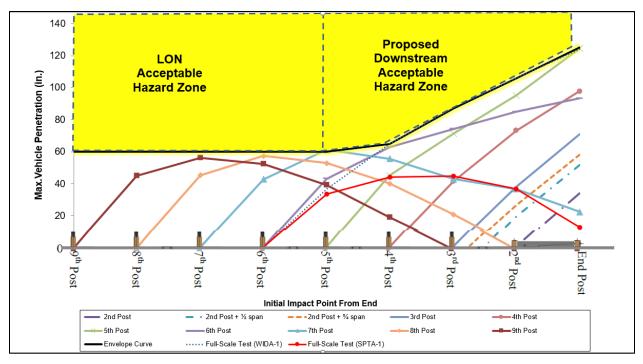


Figure 134. Proposed MGS Placement Guideline for Shielding Hazards Near Trailing-End Anchorage System – Wood-Post and Steel-Post Systems

10.2 MGS Height Tolerances

The breakaway steel posts used in the trailing-end anchorage system are detailed with specific heights and guardrail bolt hole locations, so the only height variance related to construction tolerances should be related to the embedment of the lower foundation tubes. Test no. SPTA-2 was conducted with the rail artificially raised 1 in (25-mm) to demonstrate crashworthiness with a practical worst-case upper installation tolerance resulting in a rail height of 32 in. (813 mm). Rail heights significantly lower than the nominal 31 in. (787 mm) would be difficult to achieve as the strut and yolk would be below the ground line – an unlikely installation. As such, it is anticipated that installations of the steel-post, trailing-end anchorage system developed herein would have rail mounting heights at or near the nominal 31-in. (787-mm) height. If other rail mounting heights were desired, further analysis would be necessary to evaluate the modified system.

10.3 MGS Configurations and Special Applications

The research and testing detailed herein demonstrated that the steel-post, trailing-end anchorage system was crashworthy according to the TL-3 safety standards of MASH 2016 in combination with the standard MGS. However, variations of the MGS developed for special applications may raise concern if installed along with the steel-post, end-trailing anchorage system. The following sections provide implementation guidance and recommendations regarding various MGS configurations installed in combination with the steel-post, trailing-end anchorage system.

10.3.1 MGS in Combination with Curbs

To date, no guardrail anchorage system has been evaluated to MASH criteria when placed adjacent to curbs. As such, the system performance of the steel-post, trailing-end anchorage system in combination with curbs is unknown, and therefore it is not recommended for use until further evaluation has been conducted. Further, the only successfully MASH TL-3 tested configuration of the MGS in combination with curbs was with the MGS when placed 6 in. (152 mm) behind a 6-in. (152-mm) tall AASHTO Type B curb [18]. However, this configuration utilized soil backfill, which would prevent proper installation of the breakaway steel posts in the trailing-end anchorage as the strut, yolk, and post-to-foundation tube attachment bolts would be located below ground line. Therefore, use of the steel-post, trailing-end anchorage system would require either the development of a modified system with a shorter rail height relative to the ground line or the successful evaluation of the MGS positioned farther behind the curb and with a 31-in. (787-mm) rail height relative to the ground.

10.3.2 MGS with an Omitted Post

Omitting a post near guardrail anchorages may degrade system performance by leading to increased deflections, increased rail loads, and increased pocketing. In the previous evaluation of the wood-post, trailing-end anchorage system, simulation results indicated that impacts farther than 43.75 ft (13.3 m) upstream from the downstream end post resulted in consistent redirection and working widths [1-3]. Within the evaluation of MGS with an omitted post, it was conservatively recommended that an omitted post not fall within this 43.75 ft (13.3 m) or the adjacent 12.5 ft (3.8 m) of MGS [19]. Since the steel-post, trailing-end anchorage system was shown to perform similarly to the wood-post system, the same recommendations can be applied to the steel-post system. Thus, it is recommended that the location of the first allowable omitted post be 62.5 ft (19.1 m) from the downstream anchorage post, or the 11th post of the installation, as shown in Figure 135.

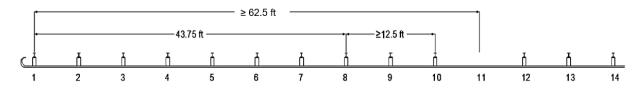


Figure 135. Recommended Distance between Omitted Posts and Steel-Post Trailing-End Anchorage System

10.3.3 MGS Adjacent to Slopes

Multiple versions of the MGS have been successfully evaluated to MASH TL-3 when placed adjacent to steep roadside slopes [20-25]. However, the guardrail trailing-end system developed and evaluated herein is a gating system, so traversable terrain must be located directly behind and downstream from the anchorage system. Further, placement of guardrail anchorages adjacent to slopes may reduce the soil resistance forces and negatively affect the tensile capacity and movement of the anchors. Until further research and evaluation is conducted, we recommended following the guidelines presented in the AASHTO *Roadside Design Guide* [26]

regarding grading surrounding end terminals based on previous Federal Highway Administration (FHWA) memos [27, 28].

10.3.4 MGS with 8-in. Deep Blockouts

Although a reduction in blockout depth has been associated with increased snag potential, the performance of 8-in. and 12-in. blockouts have been shown to be similar for installations on level terrain [29], so the performance of either blockout type should also be similar when placed adjacent to the trailing-end anchorage system. Thus, it is recommended to utilize the same implementation guidance and restrictions presented herein for the steel-post, trailing-end anchorage system placed adjacent to MGS installations incorporating 8-in. (203-mm) blockouts.

10.3.5 MGS without Blockouts

Previously, full-scale crash testing was successfully performed on the MGS without blockouts. The installation utilized standard steel guardrail posts and 12-in. (305-mm) long backup plates to prevent contact between the rail and the posts and reduce the probability of rail tearing. The system was successfully crash tested to MASH TL-3 [30]. However, the omission of blockouts in guardrail systems has been shown to increase vehicle snag on the system posts. Although the steel-post, trailing-end system limited vehicle snag on the anchor cable and breakaway posts and proved crashworthy to MASH TL-3, the combined effects of vehicle snag on the anchorage system and increased vehicle snag on the posts just upstream of the anchorage is unknown. There are concerns that increased snag on the upstream posts may alter t* times and the resulting OIV and ORAs calculated as part of the flail space model occupant risk evaluation required by MASH 2016. As such, it is not recommended to install the steel-post, trailing-end anchorage system adjacent to non-blocked MGS installations until further evaluation is conducted.

If there is a desire to install a steel-post, trailing-end anchorage system on a non-blocked MGS installation, the four posts adjacent to the anchorage system (i.e., 3^{rd} through 6^{th} posts upstream from end anchor post, as shown in Figure 134) should incorporate standard blockouts. Note, the 6^{th} post upstream from the end post represented the transition point between standard redirection and gating behavior of the end terminal.

11 MASH EVALUATION

The steel-post, trailing-end anchorage system was developed as a crashworthy downstream anchorage system for use with the MGS. The system consists of two breakaway steel anchorage posts bolted to embedded steel foundation tubes. The foundation tubes are connected through a modified yolk and strut design that avoids conflicts with the breakaway hardware while still transferring load between the two foundation tubes. A standard guardrail anchor cable is attached to the rail between the anchor posts, passed through a slot cut into the bottom of the breakaway steel post, and attached to a bearing plate that rest against the downstream face of the end post and foundation tube. An 18³/₈-in. (467-mm) T-shaped breaker bar is bolted to the upstream side of the web of the end anchor post. The system was designed such that a vehicle would impact the breaker bar, causing the end post to breakaway and the anchor cable to release prior to the vehicle snagging on these components.

The steel-post, trailing-end anchorage system was designed for use only in locations where vehicles impacting the anchorage head-on are not a concern (e.g., one-way roadways or outside the clear zone of opposing traffic headed toward the middle of the MGS installation). As such, the trailing-end anchorage system would only be impacted by vehicles exiting the guardrail installation, which are traditionally described as reverse direction impacts. Within the gaiting end terminal test matrix end terminals, only MASH test designation nos. 3-37a and 3-37b involve reverse-direction impacts, and they would be necessary in evaluating the trailing-end anchorage system. All of the other tests within the matrix involve head-on or normal direction impacts and were therefore not applicable in the evaluation of the trailing-end anchorage system.

MASH 2016 test designation no. 3-37a with a 2270P vehicle is normally required to evaluate vehicle snag on crash cushions. However, in this research, this test was conducted to evaluate the downstream LON with the steel-post, trailing-end anchorage system connected to the MGS. MASH 2016 test designation no. 3-37b with an 1100C vehicle was required to evaluate vehicle snag, vehicle instabilities, and occupant risk criteria resulting from the interaction with the trailing-end anchorage.

The research team discussed whether full-scale crash testing was required to evaluate the tensile load capacity of the steel-post, trailing-end anchorage system during redirective impacts on the MGS (i.e., conducting a MASH 3-11 test on the MGS with the new steel-post anchorage system at both ends of the installation). The steel-post, trailing-end anchorage system was derived from the BCT end anchorage that has been used in a wide variety of full-scale crash testing programs for decades. As such, the steel-post, trailing-end anchorage system would be expected to possess a similar load bearing capacity in such crash testing programs. Additionally, dynamic component testing of the steel-post design indicated greater tensile load capacity as compared to the wood-post, trailing-end anchorage system. Thus, it was not believed that a separate anchor capacity crash test would be required for the steel-post, trailing-end anchorage system.

The steel-post, trailing-end anchorage system was developed to mimic the capacity and performance of the original BCT, wood-post, trailing-end anchorage system. Thus, the CIPs for each full-scale crash test were selected to be the same as those used during the MASH TL-3 evaluation of the BCT, trailing-end anchorage system. For test no. SPTA-1 (test designation no. 3-37a), the CIP was determined to be at the center of the sixth post upstream from the downstream

end of the barrier. For test no. SPTA-2 (test designation no. 3-37b), the CIP was determined to be the midspan between the 2^{nd} and 3^{rd} posts upstream from the downstream end of the barrier.

In test no. SPTA-1, the 2270P pickup truck was successfully contained and smoothly redirected. The vehicle remained upright and stable through the test, and all vehicle decelerations and occupant compartment deformations were within the allowable MASH 2016 limits. Test no. SPTA-1 satisfied all the safety performance requirements for MASH 2016 test designation no. 3-37a.

However, during test no. SPTA-1, the lateral displacement of the guardrail and anchor cable pushed the T-shaped breaker bar backward and away from impact. Subsequently, the vehicle did not contact the breaker bar as intended and instead directly impacted the end post. Additionally, the end post bent over and twisted upon impact with the vehicle and the anchor cable was not released. Although these behaviors did not result in a test failure, the breaker bar was modified to avoid contact with the anchor cable and promote a clean breakaway of the end post. As such, prior to test no. SPTA-2, the T-shaped, breaker bar was modified to incorporate a shorter length tube, a lower mounting height on the end anchor post, and a thicker steel attachment plate at the bolted connection to the end post. Additionally, stiffening plates were welded between the flanges on both the upstream and downstream sides of the anchor posts to prevent bending prior to bolt fracture. Slots similar to those cut in the web of the post were cut into the bottom of these steel plate stiffeners to fit over the cable anchor. Note, the additional plates were placed on both breakaway posts in the trailing end anchorage system for simplicity.

In test no. SPTA-2, the 1100C small car impacted the upstream end of the breaker bar, which caused the end post to break cleanly away and the anchor cable to be released. The vehicle gated through the system and remained upright and stable throughout the test. All vehicle decelerations and occupant compartment deformations were within the allowable MASH 2016 limits. Thus, test no. SPTA-2 satisfied all MASH 2016 safety requirements for test designation no. 3-37b.

As demonstrated in test no. SPTA-2, the modifications to breaker bar resulted in the vehicle impacting the upstream end of the breaker bar and causing early release of the end post and anchor cable. The additional stiffening plates at the base of the W6x8.5 breakaway post also prevented bending of the posts prior to it breaking away. If the modified breaker bar and posts had been used during test no. SPTA-1, similar behavior is likely to have occurred. Thus, the pickup truck would not have impacted and bent over the end post, and decelerations to the pickup would have been reduced. The pickup truck was already being redirected out of the system by the time it reached the location of the breaker bar, so the modified breaker bar and post stiffening plates would only improve the performance of the steel-post, trailing-end anchorage system and rerunning MASH 2016 test designation 3-37a was unnecessary. With the successful completion of test nos. SPTA-1 and SPTA-2 and the improved performance of the modified breaker bar, the final design for the steel-post, trailing-end anchorage system was deemed crashworthy to MASH 2016 TL-3 criteria.

12 REFERENCES

- Mongiardini, M., Faller, R.K., Reid, J.D., Sicking, D.L., Stolle, C.S., and Lechtenberg, K.A., *Downstream Anchoring Requirements for the Midwest Guardrail System*, Report No. TRP-03-279-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 28, 2013.
- 2. Mongiardini M., Faller, R.K., Reid, J.D., and Sicking, D.L., Dynamic Evaluation and Implementation Guidelines for a Non-Proprietary W-Beam Guardrail Trailing-End Terminal, Paper No. 13-5277, Transportation Research Record No. 2377, *Transportation Research Record: Journal of the Transportation Research Board*, TRB AFB20 Committee on Roadside Safety Design, Transportation Research Board, Washington D.C., January 2013, pp. 61-73.
- 3. Stolle, C.S., Reid, J.D., Faller, R.K., and Mongiardini, M., *Dynamic Strength of a Modified W-Beam BCT Trailing-End Termination*, Paper No IJCR 886R1, International Journal of Crashworthiness, Taylor & Francis, Vol. 20, Issue 3, 2015, pp. 301-315.
- 4. *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 5. *Manual for Assessing Safety Hardware, Second Edition, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.*
- 6. Bronstad, M.E., Mayer, J.B., Jr., Hatton, J.H., Jr., and Meczkowski, L.C., Crash Test Evaluation of Eccentric Loader Guardrail Terminals, *Transportation Research Record 1065*, *Transportation Research Board*, Washington, D.C., 1986.
- 7. Arrington, D.R., Bligh, R.P, and Menges, W.L., *MASH Test 3-37 of the TxDOT 31-inch Wbeam Downstream Anchor Terminal*, Test Report No. 9-1002-6, Texas Transportation Institute, December 2011.
- Schmidt, J.D., Sicking, D.L., Faller, R.K., Reid, J.D., Bielenberg, R.W., and Lechtenberg, K.A., *Investigating the Use of a New Universal Breakaway Steel Post-Phase 2*, Report No. TRP-03-230-10, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, August 9, 2010.
- 9. Ross, H.E., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *Recommended Procedures for the Safety Performance Evaluation of Highway Features*, National Cooperative Highway Research Program (NCHRP) Report 350, Transportation Research Board, Washington, D.C., 1993.
- Price, C.W., Schmidt, T.L., Bielenberg, R.W., Lechtenberg, K.A., Faller, R.K., and Reid, J.D., *Universal Breakaway Steel Post for Other Applications*, Report No. TRP-03-288-14, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, April 1, 2014.

- Yosef, T.Y., Lechtenberg, K.A., Asadollahi Pajouh, M., Faller, R.K., and Holloway, J.C., Steel-Post Version of Trailing-End Anchorage System – Phase I, Report No. TRP-03-370-20, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, 2020.
- 12. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 13. Center of Gravity Test Code SAE J874 March 1981, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 14. MacInnis, D., Cliff, W., and Ising, K., *A Comparison of the Moment of Inertia Estimation Techniques for Vehicle Dynamics Simulation*, SAE Technical Paper Series 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.
- 15. Society of Automotive Engineers (SAE), Instrumentation for Impact Test Part 1 Electronic Instrumentation, SAE J211/1 MAR95, New York City, NY, July 2007.
- 16. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.
- Ronspies, K.B., Rosenbaugh, S.K., Bielenberg, R.W., Faller, R.K., and Stolle, C.S., *Evaluation of the MGS Placed 6-in. behind a 6-in. tall AASHTO Type B Curb to MASH TL-3*, Report No. TRP 03-390-20, Midwest Roadside Safety Facility, University of Nebraska Lincoln, Lincoln, Nebraska, August 27, 2020.
- Lingenfelter, J.L., Rosenbaugh, S.K., Bielenberg, R.W., Lechtenberg, K.A., Faller, R.K., and Reid, J.D., *Midwest Guardrail System (MGS) with an Omitted Post, Final Report to the Midwest State's Pooled Fund Program*, Report No. TRP 03-326-16, Project No.: TPF-5(193) Supplement #80, Midwest Roadside Safety Facility, University of Nebraska Lincoln, Lincoln, Nebraska, February 22, 2016.
- Wiebelhaus, M.J., Lechtenberg, K.A., Faller, R.K., Sicking, D.L., Bielenberg, R.W., Reid, J.D., Rohde, J.R., and Dey, Gopi, *Development and Evaluation of the Midwest Guardrail System (MGS) Placed Adjacent to A 2:1 Fill Slope*, Research Report No. TRP-03-185-10, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, February 24, 2010.
- Polivka, K.A., Faller, R.K., Sicking, D.L., and Bielenberg, R.W., Midwest Guardrail System Adjacent to a 2:1 Slope, *Transportation Research Record: Journal of the Transportation Research Board*, *No. 2060*, Transportation Research Board of the National Academies, Washington D.C., 2008, p. 74-83.

- 22. Abu-Odeh, A.Y., Ha, K, Liu, I., and Menges, W.L., *MASH TL-3 Testing and Evaluation of the W-beam Guardrail on Slope*, Test Report No. 405160-20, Texas A&M Transportation Institute, College Station, TX, March 2013.
- McGee, M.D., Faller. R.K., Rohde, J.R., Lechtenberg, K.A., Sicking, D.L., and Reid, J.D., Development of an Economical Guardrail System for Use on Wire-Faced, MSE Walls, Research Report No. TRP-03-235-11, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, February 2012.
- Lechtenberg, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., and Reid, J.D., Non-blocked Midwest Guardrail System for Wire-Faced Walls of Mechanically Stabilized Earth, *Transportation Research Record: Journal of the Transportation Research Board*, No. 2262, Transportation Research Board of the National Academies, Washington D.C., 2011, p. 94-106.
- Haase, A.J., Kohtz, J.E., Lechtenberg, K.A., Bielenberg, R.W., Reid, J.D., and Faller, R.K., *Midwest Guardrail (MGS) with 6-ft Posts Adjacent to a 1V:2H Fill Slope*, Research Report No. TRP-03-320-16, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, August 22, 2016.
- 26. *Roadside Design Guide, 4th Edition, 2011*, American Association of State Highway and Transportation Official (AASHTO), Washington, DC, 2011.
- 27. Baxter, J.R., Supplementary Guidance for the Selection of W-Beam Barrier Terminals, Memorandum No. HSA-10, November 17, 2005.
- 28. Baxter, J.R., *Guidelines for the Selection of W-Beam Barrier Terminals*, Memorandum No.HSA-10-10, October 26, 2004.
- 29. Dobrovolny, C.S., White, K.M., and Bligh, R.P., Synthesis of System/Vehicle Interaction Similarities/Dissimilarities with 12-Inch vs 8-Inch Blockouts with 31-Inch Mounting Height, Mid-Span Splices, Program Report No. 601621, Texas Transportation Institute, Texas A&M University, College Station, Texas, July 2014.
- Schrum, K.D., Lechtenberg, K.A., Bielenberg, R.W., Rosenbaugh, S.K., Faller, R.K., Reid, J.D., and Sicking, D.L., *Safety Performance Evaluation of the Non-Blocked Midwest Guardrail System (MGS)*, Report No. TRP-03-262-12, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, January 24, 2013.

13 APPENDICES

Appendix A. Vehicle Center of Gravity Determination

	te: 7/31/2018		SPTA-1	VIN:	ALCO 8. 24 VIII ALCO 1	B1CT2BS58	2201
Yea	ar: 2011	Make:	Dodge	Model:		Ram 1500	
Vehicle C	G Determinatio	on					
				Weight	Vertical CG	Vertical M	
VEHICLE	Equipment			(lb.)	(in.)	(lbin.)	
+		Truck (Curb)		5121	28.225884	144544.75	
+	Hub	(ourb)		19	14.75	280.25	
+	10 S C 2007	ation cylinder &	frame	8	26 3/4	214	
+		ank (Nitrogen)		22	27 1/2	605	
+	Strobe/Brak			5	26 1/2	132.5	
+ + + +	Brake Rece			5	52 1/8	260.625	
+		cluding DAS		50	31 1/2	1575	
-	Battery			-47	39 1/4	-1844.75	
	Oil			-7	15 3/4	-110.25	
-	Interior			-98	36	-3528	
_	Fuel			-194	17 1/2	-3395	
- - - +	Coolant			-134	37 1/4	-447	
	Washer fluid	4		-8	38 1/2	-308	
+		st (In Fuel Tank)	0	0	0	
• +		pplemental Bat		12	27 3/4	333	
	Smart Barrie		lery	9	24 1/2	220.5	
	Ballast Plate				Account Conception	a service and the service of the ser	
Note: (+) is ad	lded equipment to v	vehicle, (-) is remove Estimated Total	Weight (lb.)	4986	33 7/8	3421.375 141954	
	lded equipment to v	vehicle, (-) is remov Estimated Total Vertical CG L	Weight (lb.) .ocation (in.)	rom vehicle	337/8		
Vehicle Di	Ided equipment to v	vehicle, (-) is remov Estimated Total Vertical CG L C.G. Calculatio	Weight (lb.) .ocation (in.) ns	rom vehicle 4986 28.4705]	141954	
	Ided equipment to v	vehicle, (-) is remov Estimated Total Vertical CG L	Weight (lb.) ₋ ocation (in.) ns Front Tr	ack Width:	67.5	141954 in.	
Vehicle Di	Ided equipment to v	vehicle, (-) is remov Estimated Total Vertical CG L C.G. Calculatio	Weight (lb.) ₋ ocation (in.) ns Front Tr	rom vehicle 4986 28.4705	67.5	141954	
Vehicle Di	Ided equipment to v	vehicle, (-) is remov Estimated Total Vertical CG L C.G. Calculatio	Weight (lb.) ₋ ocation (in.) ns Front Tr	ack Width:	67.5	141954 in.	
Vehicle Di i Wheel Bas	Ided equipment to v mensions for (se: <u>140.375</u>	vehicle, (-) is remov Estimated Total Vertical CG L <u>C.G. Calculatio</u> in.	Weight (Ib.) ₋ ocation (in.) n <u>s</u> Front Tr Rear Tr	ack Width:	67.5	141954 in. in.	Difference
Vehicle Dir Wheel Bas Center of 0	Ided equipment to v mensions for (se: <u>140.375</u> Gravity	vehicle, (-) is remov Estimated Total Vertical CG L C.G. Calculatio	Weight (Ib.) .ocation (in.) n <u>s</u> Front Tr Rear Tr H Targets	ack Width:	67.5 67.5	141954 in. in.	Difference 74.
Vehicle Dia Wheel Bas Center of C Test Inertia	Ided equipment to v mensions for (se: <u>140.375</u> Gravity Il Weight (lb.)	vehicle, (-) is remov Estimated Total Vertical CG L C.G. Calculatio in. 2270P MAS	Weight (lb.) .ocation (in.) ns Front Tr Rear Tr <u>H Targets</u> 110	ack Width:	67.5 67.5 Test Inertia	141954 in. in.	Differenc 74.
Vehicle Dia Wheel Bas Center of (Test Inertia Longitudina	Ided equipment to v mensions for (se: <u>140.375</u> Gravity Il Weight (lb.) al CG (in.)	vehicle, (-) is remove Estimated Total Vertical CG L C.G. Calculatio in. 2270P MAS 5000 ± 63 ±	Weight (lb.) .ocation (in.) ns Front Tr Rear Tr <u>H Targets</u> 110	ack Width:	67.5 67.5 Test Inertia 5074 61.749507	141954 in. in.	74. -1.2504
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG	Ided equipment to v mensions for (se: <u>140.375</u> Il Weight (lb.) al CG (in.) (in.)	vehicle, (-) is remove Estimated Total Vertical CG L C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA	Weight (lb.) Location (in.) ns Front Tr Rear Tr H Targets 110 4	ack Width:	67.5 67.5 Test Inertia 5074 61.749507 -0.226153	141954 in. in.	74.0 -1.25049 N/
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG	Ided equipment to v mensions for (se: <u>140.375</u> Il Weight (lb.) al CG (in.) (in.) S (in.)	vehicle, (-) is remove Estimated Total Vertical CG L C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 o	Weight (lb.) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater	ack Width:	67.5 67.5 Test Inertia 5074 61.749507	141954 in. in.	74.0 -1.25049 N/
Vehicle Din Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C	Ided equipment to v mensions for (se: <u>140.375</u> Il Weight (lb.) al CG (in.) (in.) CG is measured from	vehicle, (-) is remove Estimated Total Vertical CG L C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA	Weight (lb.) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater /ehicle	ack Width: ack Width:	67.5 67.5 Test Inertia 5074 61.749507 -0.226153 28.47	141954 in. in.	74.0 -1.25049 N/
Vehicle Din Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C	Ided equipment to v mensions for (se: <u>140.375</u> Il Weight (lb.) al CG (in.) (in.) CG is measured from	vehicle, (-) is remove Estimated Total Vertical CG L C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 o m front axle of test ve	Weight (lb.) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater /ehicle	ack Width: ack Width:	67.5 67.5 Test Inertia 5074 61.749507 -0.226153 28.47	141954 in. in.	74.0 -1.25049 N/
Vehicle Din Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C	Ided equipment to v mensions for (se: 140.375 I Weight (lb.) al CG (in.) (in.) CG is measured from CG measured from	vehicle, (-) is remove Estimated Total Vertical CG L C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 o m front axle of test ve	Weight (lb.) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater /ehicle	ack Width: ack Width:	67.5 67.5 Test Inertia 5074 61.749507 -0.226153 28.47) side	141954 in. in.	74. -1.2504 N/ 0.4705
Vehicle Din Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral	Ided equipment to v mensions for (se: 140.375 I Weight (lb.) al CG (in.) (in.) CG is measured from CG measured from	vehicle, (-) is remove Estimated Total Vertical CG L C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 o m front axle of test ve	Weight (lb.) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater /ehicle	ack Width: ack Width:	67.5 67.5 Test Inertia 5074 61.749507 -0.226153 28.47) side	141954 in. in.	74. -1.2504 N/ 0.4705
Vehicle Din Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral	Ided equipment to v mensions for (se: 140.375 I Weight (lb.) al CG (in.) (in.) CG is measured from CG measured from	vehicle, (-) is remove Estimated Total Vertical CG L C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 o m front axle of test v n centerline - positiv	Weight (lb.) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater /ehicle	ack Width: ack Width:	67.5 67.5 Test Inertia 5074 61.749507 -0.226153 28.47) side	141954 in. in.	74. -1.2504 N/ 0.4705 T (Ib.)
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI	Ided equipment to v mensions for (se: 140.375 Gravity Il Weight (lb.) al CG (in.) (in.) CG is measured from CG measured from IGHT (lb.) Left	vehicle, (-) is remove Estimated Total Vertical CG L C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 o m front axle of test w in centerline - positiv Right	Weight (lb.) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater /ehicle	ack Width: ack Width:	67.5 67.5 Test Inertia 5074 61.749507 -0.226153 28.47) side	141954 in. in. TIAL WEIGH	74. -1.2504 N/ 0.4705 IT (Ib.)
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI Front	Ided equipment to v mensions for (se: 140.375 Gravity Il Weight (lb.) al CG (in.) (in.) CG is measured from CG measured from CG measured from IGHT (lb.) Left 1459	Right 1439	Weight (lb.) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater /ehicle	ack Width: ack Width:	67.5 67.5 Test Inertial 5074 61.749507 -0.226153 28.47) side TEST INER Front	141954 in. in. TIAL WEIGH Left 1430	74. -1.2504 N/ 0.4705 IT (Ib.) Right 1412
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI	Ided equipment to v mensions for (se: 140.375 Gravity Il Weight (lb.) al CG (in.) (in.) CG is measured from CG measured from IGHT (lb.) Left	vehicle, (-) is remove Estimated Total Vertical CG L C.G. Calculatio in. 2270P MAS 5000 ± 63 ± NA 28 o m front axle of test w in centerline - positiv Right	Weight (lb.) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater /ehicle	ack Width: ack Width:	67.5 67.5 Test Inertial 5074 61.749507 -0.226153 28.47) side TEST INER	141954 in. in. TIAL WEIGH	74. -1.2504 N/ 0.4705 IT (Ib.)
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI Front Rear	mensions for (se: 140.375 Gravity Il Weight (lb.) al CG (in.) (in.) CG is measured from CG measured from CG measured from IGHT (lb.) Left 1459 1116	Right 1107	Weight (lb.) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater /ehicle	ack Width: ack Width:	67.5 67.5 Test Inertia 5074 61.749507 -0.226153 28.47) side TEST INER Front Rear	141954 in. in. TIAL WEIGH Left 1430 1124	74. -1.2504 N/ 0.4705 IT (Ib.) Right 1412 1108
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI Front	Ided equipment to v mensions for (se: 140.375 Gravity Il Weight (lb.) al CG (in.) (in.) CG is measured from CG measured from CG measured from IGHT (lb.) Left 1459	Right 1439	Weight (lb.) Location (in.) ns Front Tr Rear Tr H Targets 110 4 r greater /ehicle	ack Width: ack Width:	67.5 67.5 Test Inertial 5074 61.749507 -0.226153 28.47) side TEST INER Front	141954 in. in. TIAL WEIGH Left 1430 1124 2842	74. -1.2504 N/ 0.4705 IT (Ib.) Right 1412

Figure A-1. Vehicle Mass Distribution, Test No. SPTA-1

Date: <u>9/12</u> Year: 20	2/2018 Test Name 011 Make		VIN: Model:	KIII	Accent	618362
		nyunuu			Accont	
Vehicle CG Deter	mination					
Veniele e e petet.	lination			Weight		
Vehic	cle Equipment			(lb.)		
+	Unballasted	Car (Curb)		2505		
+	Hub			19		
+		ation cylinder & f	frame	8		
+		ank (Nitrogen)		22	_	
+	Strobe/Brak			5	-	
+	Brake Recei			6 13	-	
<u> </u>	Battery	cluding DAS		-31	-	
-	Oil			-7	-	
-	Interior			-62	-	
-	Fuel			-23	-	
-	Coolant			-5	-	
-	Washer fluid	t		-5	1	
+		st (In Fuel Tank))			
+		pplemental Batt	-			
+	Smart Barrie			9	1	
		· · · · · · · · · · · · · · · · · · ·				
	Spare tire+J (+) is added equipment to	Jack				
Note: Note: Vehicle Dimension Wheel Base: 9	Spare tire+J (+) is added equipment to Es ns for C.G. Calculat 28.0 in.	Jack o vehicle, (-) is remo stimated Total W tions		from vehicle 2426 57.75]] in.	_
Note: Note: Vehicle Dimension Wheel Base: 9	Spare tire+J (+) is added equipment to Es ns for C.G. Calculat	Jack o vehicle, (-) is remo stimated Total W tions Front Tra	/eight (Ib.)	from vehicle]	_
Note: Vehicle Dimension Wheel Base: 9 Roof Height: 5	Spare tire+J (+) is added equipment to Es ns for C.G. Calcular 28.0 in. 27.5 in.	Jack o vehicle, (-) is remo stimated Total W tions Front Tra Rear Tra	/eight (Ib.)	from vehicle 2426 57.75 57.75	in. in.	
Note: Note: Wheel Base: 9 Roof Height: 5 Center of Gravity	Spare tire+J (+) is added equipment to Es ns for C.G. Calcular 08.0 in. 07.5 in. 1100C M/	Jack o vehicle, (-) is remo stimated Total W tions Front Tra Rear Tra ASH Targets	/eight (Ib.)	from vehicle 2426 57.75 57.75 est Inertia	in. in.	Differen
Note: Note: Wheel Base: 9 Roof Height: 5 Center of Gravity Test Inertial Weight	Spare tire+J (+) is added equipment to Es ns for C.G. Calculat 08.0 in. 07.5 in. 1100C M/ t (lb.) 2420	Jack o vehicle, (-) is remo stimated Total W tions Front Tra Rear Tra ASH Targets 0 ± 55	/eight (Ib.)	from vehicle 2426 57.75 57.75 est Inertia 2429	in. in.	
Note: Note: Wheel Base: 9 Roof Height: 5 Center of Gravity Test Inertial Weight Longitudinal CG (ir	Spare tire+J (+) is added equipment to Es ns for C.G. Calculat 08.0 in. 57.5 in. 1100C M/ t (lb.) 2420 n.) 30	Jack o vehicle, (-) is remo stimated Total W tions Front Tra Rear Tra ASH Targets 0 ± 55 9 ± 4	/eight (Ib.)	from vehicle 2426 57.75 57.75 est Inertia 2429 35.303	in. in.	-3.6
Note: Section Base: 9 Roof Height: 5 Center of Gravity Test Inertial Weight Longitudinal CG (ir Lateral CG (in.)	Spare tire+J (+) is added equipment to Es ns for C.G. Calculat 08.0 in. 57.5 in. 1100C M/ t (lb.) 2420 n.) 30	Jack o vehicle, (-) is remo stimated Total W tions Front Tra Rear Tra ASH Targets 0 ± 55 9 ± 4 A	/eight (Ib.)	from vehicle 2426 57.75 57.75 est Inertia 2429	in. in.	-3.6
Note: State of Center of Gravity Test Inertial Weight Longitudinal CG (in Lateral CG (in.) Vertical CG (in.)	Spare tire+J (+) is added equipment to Es ns for C.G. Calculat 88.0 in. i7.5 in. 1100C M/ t (lb.) 2420 N/ N/	Jack o vehicle, (-) is remo stimated Total W tions Front Tra Rear Tra ASH Targets 0 ± 55 9 ± 4 A A	/eight (Ib.)	from vehicle 2426 57.75 57.75 57.75 est Inertia 2429 35.303 -0.63	in. in.	-3.6
Vehicle Dimension Wheel Base: 9 Roof Height: 5 Center of Gravity Test Inertial Weight Longitudinal CG (ir.) Vertical CG (in.) Note: Long. CG is meas	Spare tire+J (+) is added equipment to Es ns for C.G. Calculat 08.0 in. 57.5 in. 1100C M/ t (lb.) 2420 n.) 30	Jack o vehicle, (-) is remo stimated Total W tions Front Tra Rear Tra ASH Targets 0 ± 55 9 ± 4 A A A A A A	Veight (Ib.)	from vehicle 2426 57.75 57.75 57.75 est Inertia 2429 35.303 -0.63 22.701	in. in.	-3.6
Vehicle Dimension Wheel Base: 9 Roof Height: 5 Center of Gravity Test Inertial Weight Longitudinal CG (ir.) Vertical CG (in.) Note: Long. CG is meas	Spare tire+J (+) is added equipment to Es <u>ns for C.G. Calcular</u> <u>88.0</u> in. <u>57.5</u> in. <u>1100C M/</u> t (Ib.) 2420 n.) 39 N/ sured from front axle of te ured from centerline - pos	Jack o vehicle, (-) is remo stimated Total W tions Front Tra Rear Tra ASH Targets 0 ± 55 9 ± 4 A A A A A A	Veight (Ib.)	from vehicle 2426 57.75 57.75 est Inertia 2429 35.303 -0.63 22.701 de	in. in.	-3.6
Vehicle Dimension Wheel Base: 9 Roof Height: 5 Center of Gravity Test Inertial Weight Longitudinal CG (ir.) Vertical CG (in.) Vertical CG (in.) Note: Long. CG is meas Vertical CG is meas Long. CG is meas Note: Long. CG is meas Note: Long. CG is meas CURB WEIGHT (Ib) Long. CG is meas	Spare tire+J (+) is added equipment to Es ns for C.G. Calcular 08.0 in. 57.5 in. 1100C M/ t (Ib.) 2420 n.) 39 N/ sured from front axle of te ured from centerline - pos	Jack o vehicle, (-) is remo stimated Total W tions Front Tra Rear Tra ASH Targets 0 ± 55 9 ± 4 A A A A A A	Veight (Ib.)	from vehicle 2426 57.75 57.75 est Inertia 2429 35.303 -0.63 22.701 de	in. in. al	-3.6 -3.6 GHT (Ib.)
Vehicle Dimension Wheel Base: 9 Roof Height: 5 Center of Gravity Test Inertial Weight Longitudinal CG (ir.) Vertical CG (in.) Vertical CG (in.) Note: Long. CG is meas Note: Long. CG meas Note: Long. CG meas Loteral CG WEIGHT (Ib	Spare tire+J (+) is added equipment to Es ns for C.G. Calcular 08.0 in. 57.5 in. 1100C M/ t (Ib.) 2420 n.) 30 N/ sured from front axle of te ured from centerline - pos D.) _eft Right	Jack o vehicle, (-) is remo stimated Total W tions Front Tra Rear Tra ASH Targets 0 ± 55 9 ± 4 A A A A A A	Veight (Ib.)	from vehicle 2426 57.75 57.75 57.75 2429 35.303 -0.63 22.701 de EST INEF	in. in. al RTIAL WEIG	-3.6 GHT (Ib.) Right
Vehicle Dimension Wheel Base: 9 Roof Height: 5 Center of Gravity Test Inertial Weight Longitudinal CG (ir.) Vertical CG (in.) Vertical CG (in.) Note: Long. CG is meas Note: Lateral CG measu CURB WEIGHT (Ib Front 8	Spare tire+J (+) is added equipment to Es ns for C.G. Calculat 08.0 in. 07.5 in. 1100C M/ t (lb.) 2420 n.) 30 N/ sured from front axle of te ured from centerline - pos D.) Left Right 319 778	Jack o vehicle, (-) is remo stimated Total W tions Front Tra Rear Tra ASH Targets 0 ± 55 9 ± 4 A A A A A A	Veight (Ib.)	from vehicle 2426 57.75 57.75 57.75 est Inertia 2429 35.303 -0.63 22.701 de EST INEF	in. in. al RTIAL WEIG Left 812	-3.6 GHT (Ib.) Right 742
Vehicle Dimension Wheel Base: 9 Roof Height: 5 Center of Gravity Test Inertial Weight Longitudinal CG (ir.) Vertical CG (in.) Vertical CG (in.) Note: Long. CG is meas Note: Lateral CG measu CURB WEIGHT (Ib Front 8	Spare tire+J (+) is added equipment to Es ns for C.G. Calcular 08.0 in. 57.5 in. 1100C M/ t (Ib.) 2420 n.) 30 N/ sured from front axle of te ured from centerline - pos D.) _eft Right	Jack o vehicle, (-) is remo stimated Total W tions Front Tra Rear Tra ASH Targets 0 ± 55 9 ± 4 A A A A A A	Veight (Ib.)	from vehicle 2426 57.75 57.75 57.75 2429 35.303 -0.63 22.701 de EST INEF	in. in. al RTIAL WEIG	-3.6 GHT (Ib.) Right
Vehicle Dimension Wheel Base: 9 Roof Height: 5 Center of Gravity Test Inertial Weight Longitudinal CG (ir.) Vertical CG (in.) Vertical CG (in.) Note: Lateral CG measu CURB WEIGHT (Ib Front 4 Rear 4	Spare tire+J (+) is added equipment to Es ns for C.G. Calculat 28.0 in. 57.5 in. 1100C M/ t (Ib.) 2420 n.) 39 t (Ib.) 2420 n.) 39 sured from front axle of te ured from centerline - pos 5.) Left Right 319 778 451 457	Jack o vehicle, (-) is remo stimated Total W tions Front Tra Rear Tra ASH Targets 0 ± 55 9 ± 4 A A A A A A	Veight (Ib.)	from vehicle 2426 57.75 57.75 57.75 est Inertia 2429 35.303 -0.63 22.701 de EST INEF Front Rear	in. in. AI RTIAL WEIG Left 812 429	-3.6 GHT (Ib.) Right 742 446
Vehicle Dimension Wheel Base: 9 Roof Height: 5 Center of Gravity Test Inertial Weight Longitudinal CG (ir.) Vertical CG (in.) Vertical CG (in.) Note: Lateral CG measu CURB WEIGHT (Ib Front 8 Rear 4 FRONT 15	Spare tire+J (+) is added equipment to Es ns for C.G. Calculat 08.0 in. 07.5 in. 1100C M/ t (lb.) 2420 n.) 30 N/ sured from front axle of te ured from centerline - pos D.) Left Right 319 778	Jack o vehicle, (-) is remo stimated Total W tions Front Tra Rear Tra ASH Targets 0 ± 55 9 ± 4 A A A A A A	Veight (Ib.)	from vehicle 2426 57.75 57.75 57.75 est Inertia 2429 35.303 -0.63 22.701 de EST INEF	in. in. al RTIAL WEIG Left 812	-3.6 GHT (Ib.) Right 742

Figure A-2. Vehicle Mass Distribution, Test No. SPTA-2

Appendix B. Material Specifications

Item No.	Description	Material Specification	Reference No.
al	12'-6" [3,810] 12-gauge [2.7] W-Beam MGS Section	AASHTO M180	HT#1207 H#C85187
a2	12'-6" [3,810] 12-gauge [2.7] W-Beam MGS End Section	AASHTO M180	HT#8534 H#9411949
a3	6'-3" [1,905] 12-gauge [2.7] W-Beam MGS Section	AASHTO M180	HT#9830 H#9513565
b1	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" Long [1,829] Steel Post	ASTM A992	H#55044251 H#1702406
b2	6"x12"x14¼" [152x305x368] Timber Blockout	SYP Grade No.1 or better	Ch#18379
b3	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 27 ¹ / ₂ " [699] Long Steel Post	ASTM A992	H#A134873
b4	TS 8"x6"x ³ / ₁₆ " [203x152x5], 72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	H#M24919
b5	13"x7"x5/8" [330x178x16] Steel Plate	ASTM A36	H#A8C352
b6	5 ¹ /2"x5 ¹ /2"x ³ /4" [140x140x19] Steel Plate	ASTM A36	H#B8E678
b7	BCT Timber Post - MGS Height	SYP Grade No. 1 or better (No knots 18" [457] above or below ground tension face)	Ch#24233
b8	TS 8"x6"x ³ / ₁₆ " [203x152x5], 72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	R#15-0157 Green Paint
c1	66½"x11¾"x10-gauge [1,689x298x3.4] Bent Steel Channel Strut	ASTM A36	H#17044641
c2	17"x3"x¼" [432x76x6] Bent Steel Plate	ASTM A36	H#18040241
c3	7"x2¾"x½" [178x70x13] Steel Plate	ASTM A36	H#A8C269
d1	HSS 2 ¹ / ₂ "x2 ¹ / ₂ "x ¹ / ₄ " [64x64x6], 40" [1,016] Long Square Tube	ASTM A500 Gr. B	H#A710851
d2	HSS 3"x3"x¼" [76x76x6], 9" [229] Long Square Tube	ASTM A500 Gr. B	H#A804182
d3	10"x4½"x¼" [254x114x6] Plate	ASTM A36	H#18040241
d4	6"x¾"x¼" [152x19x6] Gusset	ASTM A36	H#18040241

Table B-1	. Bill of	Materials,	Test No.	SPTA-1
-----------	-----------	------------	----------	--------

Item No.	Description	Description Material Specification			
d5	6"x1¼"x¼" [152x32x6] Gusset	ASTM A36	H#18040241		
e1	³ ⁄4" 6x19, 20" [508] Long IWRC IPS Wire Rope	IPS	R#17-700		
e2	Anchor Cable End Swaged Fitting	Fitting - ASTM A576 Gr. 1035 Stud - ASTM F568 Class C	R#17-700		
e3	115-HT Mechanical Splice - ³ ⁄4" [19] Dia.	As Supplied	n/a		
e4	Crosby Heavy Duty HT - ¾" [19] Dia. Cable Thimble	Stock No. 1037773	n/a		
e5	Crosby G2130 or S2130 Bolt Type Shackle - 1 ¹ /4" [32] Dia. with thin head bolt, nut, and cotter pin, Grade A, Class 3	Stock Nos. 1019597 and 1019604 - As Supplied	n/a		
e6	Chicago Hardware Drop Forged Heavy Duty Eye Nut - Drilled and Tapped 1 ¹ / ₂ " [38] Dia UNC 6 [M36x4]	Stock No. 107 - As Supplied	n/a		
e7	TLL-50K-PTB Load Cell	-	n/a		
f1	⁵ / ₈ "-11 UNC [M16x2], 14" [356] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolts: H#DL17100590 Nuts: H#10508780		
f2	⁵ / ₈ "-11 UNC [M16x2], 10" [254] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolts: H#20351510 Nuts: H#10508780		
f3	%"-11 UNC [M16x2], 1¼" [32] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#10435580 Nut: H#10508780		
f4	7/8"-9 UNC [M22x2.5], 8" [203] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolt: H#2038622 Nut: H#NF12101054		
f5	⁷ / ₈ "-9 UNC [M22x2.5], 8 ¹ / ₂ " [216] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolts: H#NF16102579 Nuts: H#75062745		
f6	5%"-11 UNC [M16x2], 10" [254] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolts: DL15107048 Nuts: C#210101523 COC		
f7	5/8"-11 UNC [M16x2], 11/2" [38] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolts: H#816070039 Nuts: C#210101523 COC		
f8	¹ ⁄2"-13 UNC [M14x2], 2" [51] Long Hex Bolt and Nut	Bolt – ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolt and Nut: Midwest Steel COC		

Table B-2. Bi	l of Materials,	Test No. S	SPTA-1, Cont.
---------------	-----------------	------------	---------------

Item No.	Description	Description Material Specification			
f9	¹ ⁄2"-13 UNC [M14x2], 1 ¹ ⁄2" [38] Long Hex Bolt and Nut	Bolt – ASTM A307 Gr.A or equivalent Nut - ASTM A563A or equivalent	Bolts: L#XY3005140047 Nuts: H#180036		
f10	 ⁷/₁₆"-14 UNC [M12x1.75], 2¹/₂" [64] Long Fully Threaded Hex Tap Bolt and Nut 	Bolt - ASTM A449 or equivalent Nut - ASTM A563DH or equivalent	Bolts: H#1708007009 Nuts: H#17101400-3		
f11	1"-8 UNC [M24x3] Hex Nut	ASTM A563A or equivalent	H#DL15105591		
f12	16D Double Head Nail	-	McMaster Carr PO#E000548963		
g1	1" [25] Dia. Plain Round Washer	ASTM F844	L#16H-168236-30		
g2	7∕8" [22] Dia. Plain Round Washer	ASTM F844	n/a		
g3	5⁄8" [16] Dia. Plain Round Washer	ASTM F844	n/a		
g4	½" [13] Dia. Plain Round Washer	ASTM F844	L#542160900006		
g5	⁷ / ₁₆ " [11] Dia. Plain Round Washer	ASTM F844	P#M-SWE041885-18 L#33183 PO#220024002		
h1	Anchor Bracket Assembly	ASTM A36	North: H#4153095 South: H#JK16101488		
h2	Upstream Ground Strut	ASTM A36	H#195070 H#A82292 H#645887 H#15056184		
h3	Anchor Cable Assembly	-	CGLP#256284		
h4	8"x6¼"x5%" [203x159x16] Bearing Plate Base	ASTM A36	H#A8C352		
h5	8"x1 ¹ /2"x1" [203x38x25] Bearing Plate Flange	ASTM A36	H#B8B522		
h6	8"x8"x ⁵ / ₈ " [203x203x16] Anchor Bearing Plate	ASTM A36	H#DL15103543		
h7	2 ³ / ₈ " [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	H#E86298		
h8	2 ³ / ₈ " [60] O.D. x 3 ¹⁵ / ₁₆ " [100] Long Post Sleeve	ASTM A53 Gr. B Schedule 40	H#B712810		

Table B-3. Bill of Materials, Test No. SPTA-1, Cont.

Item No.	Description	Material Specification	Reference No.
a1	12'-6" [3,810] 12-gauge [2.7] W-Beam MGS Section AASHTO M180		HT#1207 H#C85187
a2	12'-6" [3,810] 12-gauge [2.7] W-Beam MGS End Section	AASHTO M180	HT#8534 H#9411949
a3	6'-3" [1,905] 12-gauge [2.7] W-Beam MGS Section	AASHTO M180	HT#9830 H#9513565
b1	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 72" Long [1,829] Steel Post	ASTM A992	H#55044251 H#1702406
b2	6"x12"x14¼" [152x305x368] Timber Blockout	SYP Grade No.1 or better	Ch#18379 Ch#23888
b3	W6x8.5 [W152x12.6] or W6x9 [W152x13.4], 27½" [699] Long Steel Post	ASTM A992	H#A134873 H#59077955/03
b4	TS 8"x6"x ³ / ₁₆ " [203x152x5], 72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	H#M24919
b5	13"x7"x5/8" [330x178x16] Steel Plate	ASTM A36	H#A8C352
b6	5½"x5½"x¾" [140x140x19] Steel Plate	ASTM A36	H#A8D843
b7	BCT Timber Post - MGS Height	SYP Grade No. 1 or better (No knots 18" [457] above or below ground tension face)	Ch#25033
b8	TS 8"x6"x ³ / ₁₆ " [203x152x5], 72" [1,829] Long Foundation Tube	ASTM A500 Gr. B	R#15-0157 Green Paint
b9	5 ⁷ / ₁₆ "x4"x ¹ /4" [138x102x6] Steel Plate	ASTM A36	H#18040241
c1	66½"x11¾"x10-gauge [1,689x298x3.4] Bent Steel Channel Strut	ASTM A36	H#17044641
c2	17"x3"x¼" [432x76x6] Bent Steel Plate	ASTM A36	H#18040241
c3	7"x2¾"x½" [178x70x13] Steel Plate	ASTM A36	H#A8C269
d1	HSS 2 ¹ / ₂ "x ² / ₂ "x ¹ / ₄ " [64x64x6], 15" [381] Long Square Tube	ASTM A500 Gr. B	H#A710851
d2	HSS 3"x3"x¼" [76x76x6], 8" [203] Long Square Tube	ASTM A500 Gr. B	H#V3726

Table B-4	Bill of Materia	als. Test No	SPTA-2
	Diff of Materia	115, 1050110	. DI 1/1 2

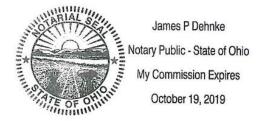
Item No.	Description	Material Specification	Reference No.
d3	10"x4½"x3%" [254x114x10] Plate ASTM A36		H#18072721
d4	6"x¾"x¼" [152x19x6] Gusset	ASTM A36	H#B809345
d5	6"x1¼""x¼" [152x32x6] Gusset	ASTM A36	H#B809345
d6	HSS 2 ¹ / ₂ "x2 ¹ / ₂ "x ¹ / ₄ " [64x64x6], 4" [102] Long Square Tube	ASTM A500 Gr. B	H#A710851
e1	Anchor Bracket Assembly	ASTM A123	H#JK16101488
e2	Upstream Ground Strut	ASTM A123	H#195070 H#A82292 H#645887 H#15056184
e3	Anchor Cable Assembly	-	CGLP#256284
e4	8"x6¼"x5%" [203x159x16] Bearing Plate Base	-	H#A8C352
e5	8"x1 ¹ / ₂ "x1" [203x38x25] Bearing Plate Flange	-	H#B8B522
еб	8"x8"x5%" [203x203x16] Anchor Bearing Plate	ASTM A123	H#DL15103543
e7	2 ³ / ₈ " [60] O.D. x 6" [152] Long BCT Post Sleeve"	ASTM A123	R#15-0626 H#E86298
f1	⁵ / ₈ "-11 UNC [M16x2], 14" [356] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolts: H#DL17100590 Nuts: H#10508780
f2	⁵ / ₈ "-11 UNC [M16x2], 10" [254] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolts: H#20351510 Nuts: H#10508780
f3	5/8"-11 UNC [M16x2], 11/4" [32] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolt: H#10435580 Nut: H#10508780
f4	7/8"-9 UNC [M22x2.5], 8" [203] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolt: H#2038622 Nut: H#NF12101054
f5	⁷ / ₈ "-9 UNC [M22x2.5], 8 ¹ / ₂ " [216] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolts: C#120139589 H#331200696 Nuts: H#G16-7344
f6	5%"-11 UNC [M16x2], 10" [254] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolts: DL15107048 Nuts: C#210101523 COC
f7	%"-11 UNC [M16x2], 1 ¹ / ₂ " [38] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolts: H#816070039 Nuts: C#210101523 COC
f8	¹ ⁄2"-13 UNC [M14x2], 2" [51] Long Hex Bolt and Nut	Bolt – ASTM A307 Gr. A or equivalent Nut - ASTM A563A or equivalent	Bolt: H#18200477-3 Nut: C#210165954 COC

Table B-5. Bill of Materials, Test No. SPTA-2, Cont.

Item No.	Description	Material Specification	Reference No.
f9	¹ ⁄2"-13 UNC [M14x2], 1 ¹ ⁄2" [38] Long Hex Bolt and Nut	Bolt – ASTM A307 Gr.A or equivalent Nut - ASTM A563A or equivalent	Bolts: H#Q195/180196 Nuts: C#210165954 COC
f10	 ⁷/₁₆"-14 UNC [M12x1.75], 2¹/₂" [64] Long Fully Threaded Hex Tap Bolt and Nut 	Bolt - ASTM A449 or equivalent Nut - ASTM A563DH or equivalent	Bolts: H#1708007009 Nuts: H#17101400-3
f11	16D Double Head Nail	-	McMaster Carr PO#E000548963
g1	⅔" [22] Dia. Plain Round Washer	ASTM F844	P#33187 L#M-SWE0410533-5
g2	%" [16] Dia. Plain Round Washer	ASTM F844	n/a
g3	¹ ⁄2" [13] Dia. Plain Round Washer	ASTM F844	P#33184 PO#170081147 COC
g4	⁷ / ₁₆ " [11] Dia. Plain Round Washer	ASTM F844	P#M-SWE041885-18 L#33183 PO#220024002

Table B-6. Bill of Materials, Test No. SPTA-2, Cont.

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710


Customer:	UNIVERSITY OF NEBRASKA-LINCOLN 401 CANFIELD ADMIN BLDG P O BOX 880439						Test Report Ship Date: Customer P O: Shipped to: Project:	1/26/2018 36263 UNIVERSITY OF NEBRASKA-LINCOLN					
	LINCOLN,NE,68	588-0439					GHP Order No.:	319AA					
					S.	Si.	Tensile	Yield	Elong.	Quanity	Class	Туре	Description 12GA 12FT6IN/3FT1 1/2IN WB T2
HT # code 1207	Heat # C85187	C. 0.2	MN. 0.48	P. 0.008	0.003	0.03	80433	59371	16.35	150	A	2	12GA 12F 16IN/3F 11 1/2IN WO 12

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-653 All Galvanizing has occurred in the United States All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Steel used meets Title 23CFR 635.410 - Buy America All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4.

& Guover

By: Jeffery Grover, VP of Highway Products Sales & Marketing Gregory Highway Products, Inc.

STATE OF OHIO: COUNTY OF STARK Sworn to and subscribed before me, a Notary/Public, by Jeffery Grover this 29 day of January 2018 1 Notary Public, State of Ohio

December 17, 2020 MwRSF Report No. TRP-03-370b-20

Figure B-1. 12-ft 6-in. (3.8-m) W-Beam MGS Section, Test Nos. SPTA-1 and SPTA-2

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

Customer:	UNIVERSITY OF 401 CANFIELD / P O BOX 660436	ADMIN BLDG					Test Report Ship Date: Customer P.O.: Shipped to:	7/9/2015 4500274709/ 07/0 UNIVERSITY OF		COLN			
	LINCOLN, NE, 68	588-0439					Project: GHP Order No.:	TESTING COIL 183306					
HT # code	Heat #	C.	Mn.	Ρ.	s.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
8534	9411949	0.21	0.75	0.01	0.006	0.01	75774	56527	27.15	10	A	2	12GA 25FT WB T2 MGS ANCHOR PANEL
8534	9411949	0.21	0.75	0.01	0.006	0.01	75774	56527	27.15	100	A	2	12GA 12FT6IN/3FT1 1/2IN WB T2
8534	9411949	0.21	0.75	0.01	0.006	0.01	75774	56527	27.15	20	A	2	12GA 25FT0IN 3FT1 1/2IN WB T2

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-133 & ASTM-653 All Galvanizing has occurred in the United States All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All steel used mets Tille 32OFR 636.410 - Buy America All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Depentment of Transportation All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4.

alla

By: Andrew Artar, VP of Sales & Marketing Gregory Highway Products, Inc.

MEETING DAWN R. BATTON THUNHARD THE NOTARY PUBLIC STATE OF OHIO: COUNTY OF Swom to and subscribed before fire STATE OF OHIO his 17 day omm. Expires harch 03, 2018 Public, State of Ohio Recorded in 2 Portage County ATE OF OV ATE OF O'

Figure B-2. 12-ft 6-in. (3.8-m) W-Beam MGS Section and End Section, Test Nos. SPTA-1 and SPTA-2

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

Customer:	MIDWEST MACI P. O. BOX 703 MILFORD, NE, 68		PPLY CO.				Ship Date; Customer P O Shipped to: Project GHP Order No.:	11/15/2016 3356 MIDWEST MACH INVENTORY 202136	IINERY & SUPP	LY CO.			
HT # code	Heat #	c.	MN.	P.	S.	Si.	Tensile	Yield	Elong.	Quanity	Class	Туре	Description
9830	9513565	0.21	0.3	0.01	0.008	0.01	76639	56644	25.65	80	А	1	12GA 12FT6IN/3FT1 1/2IN WB T1
9827	9513566	0.22	0.76	0.011	0.008	0.01	79453	59412	28.02	з	A	2	12GA 12FT6IN/3FT1 1/2IN WB T2
9818	31639313	0.19	0.62	0.01	0.005	0.03	77300	56000	27	3	A	2	12 GA 12FT6IN WB T2 FLEAT-SKT COMBO PAN
9828	9513569	0.23	0.78	0.009	0.008	0.01	78281	58917	24,96	170	A	1	12GA 25FT0IN 3FT1 1/2IN WB T1
9818	31639313	0.19	0.82	0.01	0.005	0.03	77300	56000	27	з	A	2	12GA 9FT4 1/2IN 3FT1 1/2IN WB T2
9830	9513565	0.21	0.3	0.01	0.008	0.01	76639	56644	25.65	40	A	1	12GA 6FT 3IN WB T1 HS@ 3FT 1.5IN

R#17-410 HT Code#9830 H#9513565

6'3" W-Beam Yellow Paint Feb 2017 SMT

Bolts comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-123 & ASTM-653 All Galvanizing has occurred in the United States All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All Gauardrail and "reminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Bolts and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A608, Type 4.

-2

Andrew Artar, VP of Sales & Marketing Gregory Highway Products, Inc.

KARA J CARPENTER Notary Public In and for the State of Ohio My Commission Expires February 16, 2021

STATE OF OHIO: COUNTY OF STARK Sworn to and subscribed before-me, a Notary Public, by Andrew Artar this 16 day of November, 2016 Aptary Public, State of Ohio

Figure B-3. 6-ft 3-in. (1.9-m) W-Beam MGS Section, Test Nos. SPTA-1 and SPTA-2

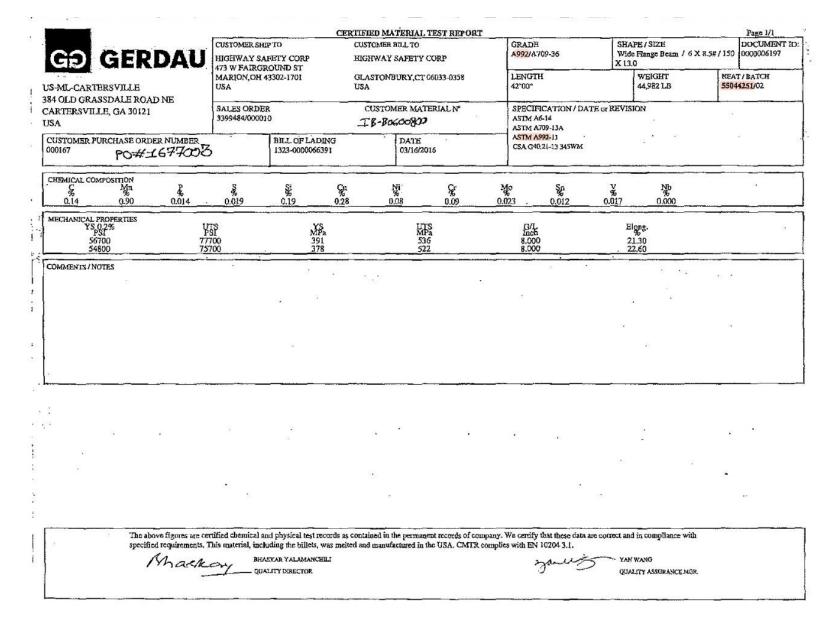


Figure B-4. W6x8.5 Steel Post, Test Nos. SPTA-1 and SPTA-2

P.O. Box 2259 Mt. Pleasant, Phone: (843)	S.C. 29464	H#	1702	2406	CERTIFI	ED MILL T		H. Fi	ll beams p olled to a	roduced fully k	by Nucor- illed and	UFACTURED Berkeley a fine grai	17 16:13:20 IN IBE USA ine cast and in practice, is material,
Sold Ioi	BIGHWAY SAFET Po Box 358	^{r cor} Sta	mpe	d "A"	Shi	<u>p Toi</u> BIG 473	HWAY SAFI West Fai	TY CORP RGROUND ST	IREET			H.I 352 POI 17220	07
	GLASTONBURY,	CT 0603	3			MAR	ION, DH	43301					MOS: T
ASME : SA- ASTM : A99	270_345M270_5 36 13 2-11(15:/A36_ 21_50w/G40.21	14/R529_1	4-50/R5 150WMT	572 5015	/8709_5	D16a					IB	-B060080	0
													========
	BeatH	Yield/		Tensile		C	Mn	P	5	Si	Cu	Ni	CE1
Description Part #	BeatH Grade(5) Test/Heat JW	Yield/ Tensile Ratio	Yield (PSI) (MPa)	Tensile (PSI) (MPa)	Elong †	C Cr XXXXXX	Mn Mo Ti	p Su xxxxxx	5 B X X X X X X	Si V N	Cu Nb XXXXXX	NI XXXXXX CI	CE1 CE2 Pcm
Part # W5 X8,5	Grade(5) Test/Heat JW 1702434	Iensile	(PSI) (MPa) 60300	(PSI) (MPa) 73200		X X X X X X X	Mo Ti .86	.007	.015	V N .19	ND XXXXXXX ,14	*****	CE2 Pcm
Part # W5X8,5 0427 D0.00	Grade(5) Test/Heat JW 1702434	Tensile Ratio	(PSI) (MPa) 60300 416	(PSI) (MPa) 73200 505	Elong † 27.74	X X X X X X	Mo Ti .86 .01	*****		V N .19 .003	ВЪ ХХХХХХ	****** CI ,05	CE2 Pcm , 24 , 2701
Part # W5 X8,5	Grade(5) Test/Heat JW 1702434	Tensile Ratio	(PSI) (MPa) 60300	(PSI) (MPa) 73200	Elong †	.07 .03	Mo Ti .86	.007	.015	V N .19	ND XXXXXXX ,14	XXXXXX CI	CE2 Pcm ,24 ,2701 ,1288

2 Heat(s) for this MTR.

I hereby certify that the contents of this report are accurate and correct, All test results and operations performed by the material manufacturer are in compliance with material specifications, and when designated by the Purchaser, meet applicable specifications.

CE1 = C+(Mn/6)+((Cr+Mo+V)/5)+((Ni+Cu)/15) CE2 = C+((Mn+5i)/6)+((Cr+Mo+V+Cb)/5)+((Ni+Cu)/15)

Bruce A, Work Metallurgist, palle

Figure B-5. W6x8.5 Steel Post, Test Nos. SPTA-1 and SPTA-2

			CENTRAL NEBRAS WOOD	KA PRESERVE	RS, INC.				
			P. C	Pone 402	Sutton, NE 689 -773-4319 -773-4513	179			
							WNP Invoice Shipped To Customer PO	Swest-Milfal)
		C	entral Ne Cer		Wood Pr n of Insp		s, Inc.		
	Date:		4/23/14						
			ray Construct						
Charge #	Date Treated	Grade	Materia Length &		# Pieces	White Moisture Readings	Penetration # of Borings & % Conforming	Actual Retentions % Conforming	
18379	4/16/14	*1	6412-14"	Blogs	756	19	60 95%	1 0	
18379	4/16/14	akt	618-22"	Blocks	84	19	62 95%	.651 pet	
Statem		ove refe	d and reason rence materia			ected in acc	ordance with th	above	
0	dres, Gene		0		4/.	3/14			
	ood B	lock	outs 6x	12x14	" R#14	-0554			

Figure B-6. 6-in. x 12-in. x 14¹/₄-in. Timber Blockout, Test Nos. SPTA-1 and SPTA-2

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: <u>Midwest Machinery and Supply</u> BOL# <u>100588715</u> Customer PO# <u>3528</u> Preservative: <u>CCA - C 0.60D pcf AWPA UC4B</u>

Part #	Physical Description	# of Pieces	Charge #	Tested Retention
4075Ъ	6x8-14" Block	126	24683	.665
6120b	6x12-14" Block	84	(23888)	.678
GS6806.5 PST	5.5x7.5-6.5' Rub Post	84	24604	.652
GS6806.5 PST	5.5x7.5-6.5' Rub Post	42	24603	.643
GS6814 BLK	5.5x7.5-14' Block	126	24194	.633

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168 standards. VA: Iowa Wood Preservers certifies that the treated wood products listed above have been treated in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and retention requirements.

Nick Sowl, General Counsel

<u>1/11/2018</u> Date

Figure B-7. 6-in. x 12-in. x 14¹/₄-in. Timber Blockout, Test No. SPTA-2

R	Long Pi Steams (260) 6: Quality and M ecycled o	roducts Gro 25-8100 • Steel 1 anufact content: F		950 FAX Melted ne USA Pl = 18.0%		Ship to: Steel & F 401 New Ca New Centur Attn: Recei	Pipe Sup entury Par by KS, 660	pply rkway	AND AND	AILL TE			E E E E E E E E E E E E E E E E E E E	55 Poynt PO Box 1 Manhattar	Pipe Su Iz Avenue 688 n KS, 665 id Chizek	05 US			ed: 04 / 30 / 20
	roduct	Wide Fla W6X9	TION ange Beam	SPEC	100000000000000000000000000000000000000	TIONS Standards 1 A6/A6M - 1				Grade	5		SHIPMEN Bundle	ASN #		th pcs		st PO	1 - 8640.00 lbs Recv PO Jo
	umber tion(s)	As-Roll Fine Gi Fully K	73 ed rained	,	ASTMA ASTMA AASHTO CS/	A992/A992M 709/A709M A572/A572M M270M/M2 A G40.21-13 A36/A36M	- 16a - 15 70 - 12			A992 / A99 A709 gr50/g A572 gr50/g M270 gr345/ 50WM/345\ A36 / A36	r345 r345 gr50 VM								
CHEM C .06	ICAL AI Mn .95	NALYSI P .016	-	ercent) Si Cu 23 .37			Mo .051	Sn .012	V .021	Nb/Cb <.001	AI .001	N .0121	B .0002	* C1 .29	* C2 .33	* C3 .27	* PC .15	* 5.93	Analysis Ty Heat
Test 1 2 3 4	NICAL Yield (Streng ksi / M 56 / 3 57 / 3	gth IPa 86	IG Tensile (f Strengtl ksi / MPa 70 / 483 71 / 490	n' fy a r	y / fu atio .80 .80	% Elong. {8" gage} 28 28	CHA Test 1 2 3 4 5 6 7	Те		T TESTS (a Absorbed En Specimen 1	ergy	e only w ft-lbf / J simen 2	hen speci		ime of o Average		nimum		
I hereby d	CE1 {IIW}=0	the materi	Mo+V)/5+(Ni+C al described	u)/15 CE2 (AV herein has b	VS)=C+(Mn+		ex (I) I (A V)/5+(Ni+Cu) cable)/15 CE3		Cu)+3 88(Ni)+1 20(+ (Mn/6) + (Si/24) ABS	+ (Cr/5) + (4) + (V/14) P			20+Cu/20+	Ni/60+Cr/20)*mo/15+V/*	10+5B
with the r Signed		its of Ame	rican Bureau	of Shipping	Rules wit	h satisfactor	y results.												
	s perform	ed by this	material m	anufacturer	are in co	nd correct. A Impliance w Irchaser des	ith the		ents				ounty of V day of	•				ed befo	ore me
requireme	-		Bas		12002302														

Figure B-8. W6x9 Steel Post, Test Nos. SPTA-1 and SPTA-2

CUITOMER SHIP TO TSTELL A PIE SUPPLY CO INC IN PIE CENTRY NY DISA CUITOMER SHIP TO TSTELL A PIE SUPPLY CO INC IN PIE CENTRY NY DISA CUITOMER METER SUPPLY CO INC IN PIE CENTRY NY DISA Second Second Second										·	5	
SML-MIDLOTHIAN WARK ROAD IDCOTHIAN, TX 76065 New CENTURY XS 56051422 USA MARIATTANXS 66051688 LENCTH Rest 748ACH MEET/FARCES (ASO LB) M	GÐ GER	DAU	CUSTOMER SHIP STEEL & PIPE 401 NEW CEN	SUPPLY CO	DINC ST		Y CO INC			w	ide Flange Beam /	6 X 9# / 150 X 0000201334
DID_COTLAN, TX 70065 SALES ORDER CUSTOMER MATERIAL IN COMPOSITION SEECHICATION / DATE or REVISION ASTMACH / IN SECHICATION / DATE or REVISION SA DELCORE LESCORE DATE 000000000700020 SEECHICATION / DATE or REVISION SSTA AND-17 DATE 000000000700020 DATE 00142018 SEECHICATION / DATE or REVISION SIGNATION L SECHICATION / DATE or REVISION SECHICATION / DATE or REVISION SIGNATION L SECHICATION / DATE or REVISION SECHICATION / DATE or REVISION SIGNATION L SECHICATION / DATE or REVISION SECHICATION / DATE or REVISION SIGNATION L SECHICATION / DATE or REVISION SECHICATION / DATE or REVISION SIGNATION L SECHICATION / DATE or REVISION SECHICATION / DATE or REVISION CERMAGE NUMBER SECHICATION / DATE or REVISION SECHICATION / DATE or REVISION SECHICATION / DATE or REVISION SIGNATION / DATE or REVISION L SECHICATION / DATE or REVISION SECHICATION / DATE or REVISION CERMAGE AT ANADOLING SECHICATION / DATE or REVISION SECHICATION / DATE or REVISION SECHICATION / DATE or REVISION CERMAGE TO SECHICATION / DATE or REVISION SECHICATION	-ML-MIDLOTHIAN		NEW CENTUR		-1127 MA		05-1688					
USI TUBLE PURCHASE UNDER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER SIGNA 572 Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER SIGNA 572 Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER SIGNA 572 Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under NUMBER Image: State Purchase Under N	DLOTHIAN, TX 76065								ASTM A6-17 ASTM A709-17		ISION	
0.09 0.016 0.038 0.24 0.34 0.10 0.18 0.022 0.007 0.002 0.013 0.003 THEMACL CONSTRINT CERNAGE 0.34 0.10 0.18 0.022 0.007 0.002 0.013 0.003 CERNAGE 0.31 0.34 0.10 0.18 0.022 0.007 0.002 0.013 0.003 CERNAGE 0.31 0.34 0.10 0.18 0.022 0.007 0.002 0.013 0.003 CERNAGE VIEW VIEW <td></td> <td>ER NUMBER</td> <td></td> <td></td> <td></td> <td></td> <td>18</td> <td></td> <td></td> <td></td> <td></td> <td></td>		ER NUMBER					18					
CEgrAd Image: CegrAd OBJ Image: CegrAd VS 27% VT cati VS 2000 2000	S Mn	0.016	\$ 0.038	\$j 0.24	Сµ 0.34	Ni 0.10	Cr 0.18	Mc 0.0			Nb 0.013	Al 0.003
60845 75978 420 222 0.800 8.000 AECLANICAL PROPERTIES Lange 422 329 0.800 8.000 Tim 2000 24.00 2000 24.90 9 OMMENTS / NOTES Image: Control of the second as contained in the permanent records of company. We certify that these data are correct and in compliance with specified requirements. This material, including the billets, was nelied and manufactured in the USA. CMTR complex with EM 10204 3.1. Machine Machin	CEgyA6	<u>18</u>							}			
MECHANICAL PROPERTIES G/L TIM 200.0 24.00 5 200.0 24.90 5 COMMENTS / NOTES COMMENTS / NOTES COM	60845	75	5978		YS MPa 420 422	UT MP 52 52	S 1a 4 9		0.800		8.000	
The above figures are certified chemical and physical test records as contained in the permanent records of company. We certify that these data are correct and in compliance with specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1. MARMAN BHASKAR YALAMANCHILI MARMAN QUALITY DIRECTOR MARMAN QUALITY DIRECTOR MARMAN QUALITY DIRECTOR	MECHANICAL PROPERTIES	24	4.00	4								
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1. BHASKAR YALAMANCHILI BHASKAR YALAMANCHILI QUALITY DIRECTOR QUALITY DIRECTOR QUALITY ASURANCE MGR.	OMMENTS / NOTES			ţ								
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1. BHASKAR YALAMANCHILI BHASKAR YALAMANCHILI QUALITY DIRECTOR QUALITY DIRECTOR QUALITY SURANCE MGR.				* * 3					ĺ			
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1. BHASKAR VALAMANCHILI BHASKAR VALAMANCHILI QUALITY DIRECTOR QUALITY DIRECTOR QUALITY DIRECTOR QUALITY ASSURANCE MGR.							245					
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1. BHASKAR VALAMANCHILI BHASKAR VALAMANCHILI QUALITY DIRECTOR QUALITY DIRECTOR QUALITY DIRECTOR QUALITY ASURANCE MGR.												
specified requirements. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1. BHASKAR YALAMANCHILI BHASKAR YALAMANCHILI QUALITY DIRECTOR QUALITY DIRECTOR QUALITY ASURANCE MGR.				1 1								
QUALITY DIRECTOR QUALITY ASSURANCE MGR.	specifi	ied requirements.	. This material, incl	cluding the bill	lets, was melted a	tained in the perman- ind manufactured in t	int records of co the USA, CMTF	ompany. W R complies	ve certify that these with EN 10204 3.	1.		lh
Phone: (409) 769-1014 Email: Bhaskar. Yalamanchili@gerdau.com Phone: 972-779-3118 Email: Wade.Lumpkins@gerdau.com	/	Mack	0						Wal			L

Figure B-9. W6x9 Steel Post, Test No. SPTA-2

		T B C T	CERT	IFICA	ГЕ	No: MA	AR 464882	
	6226 W. 74T	E TUBE CORPORATION H STREET		P/O NO 4500 Rel	0271090 312450-001			
	CHICAGO, IL Tel: 708-49	60638 6-0380 Fax: 708-5	53-1950	B/L NO MAR Inv No	181804-001	Shp Inv	11Augl6	
	Sold To: STEEL & PIE SOUTH SMITH JONESBURG,	PE SUPPLY H ROAD	H)	Ship To: STEEL & PI 310 SMITH JONESBURG,	PE SUPPLY ROAD			
		2						
		88-5999 Fax: 314 4						1
		CERTIFICATE OF AN	ALYSIS and	TESTS	Cert.	NO: MA	R 464882 09Aug16	
	Part No TUBING A500 GRAI 8" X 6" X 3/16"	DE B(C) X 48'					Wgt 14,757	
	Heat Number M24919	Tag No 44516 YLD=59270/TEN	-71290/FL	3		Pcs 6	Wgt 4,919	
	M24919 M24919	44517 44523	- 1 22 2 6 7 222		1	6 6	4,919 4,919	
		*** Chemical C=0.2200 Mn=0.830 Cu=0.0200 Cr=0.04 Cb=0.0010 Sn=0.00 MELTED AND MANUFA	0 P=0.0160 00 Mo=0.00 20 N=0.003	0 S=0.0100 S 040 V=0.0010 30 B=0.0001	Ni=0.0100			
	INDEPENDENCE TU AND INSPECTED II MATERIAL IDENTI	FACTURE ALL OUR PR BE PRODUCT IS MANU N ACCORDANCE WITH FIED AS A500 GRADE B AND A500 GRADE	FACTURED, ASTM STANI B(C) MEE	TESTED, DARDS. ES BOTH				
ł	CURRENT STANDARI A252-10 A500/A500M-13				•		-	×
	A513-13 ASTM A53/A53M-12 A847/A847M-14 A1085/A1085M-15	2 ASME SA-53/SA-	53M-13	a.				3

Page: 1 Last

4

•

Figure B-10. $TS8x6x^{3/_{16}}$ Foundation Tube, Test Nos. SPTA-1 and SPTA-2

.

193

Ŭ	SSAB	p Boulevard, Mu	iscarine, IA 52			inary			tific	ate		Form T(C1: Rev	ision 3:	Date	e 7 F	Feb 2	018	
Customer;	1110 5111 5111	p boule lard, int	Customer P.						Mill Ord	ler No.: 4	1-53	0763-01	Shi	ipping I	Mani	fest	: M	Г34289	7.
			Product Des	cription:	ASTM AS			ASME SA30	5(17)	<u> </u>		hip Date Cert Date						061701 xf 1)	178
KS 66502					10 00	W 040	. / .			-	1								
	Tested Piec	PPS	Size: 0.62	15 X	Tensil		11) 0	1	1		Char	py Impa	ct Tests	5					
Heat Id	Piece Id	Tested Thickness	Ts Loc		UTS (KSI)	%RA Elong	% Tst Sin Dir	Hardness		nergy(FTL 3 Av	JB) /g		hear 3 A	Avg T		Tst Dir			VTT %Shr
8C352 8C352	C22 C26	0.623 (DISCI 0.747 (DISCI		46 47	70 70	33 29	T					×							
Heat						Chemical			T .		N								OR
Id 8C352	<u> </u>			$\frac{(A)}{32}$				<u>сь v</u> 001 .004		в .0001.0	N NORE	5)						USA
PRODUCTS																			
A8C352	C23	ſ	PCES: 14	, LBS:	428	382		÷											
A8C352	C23	ſ	PCES: 14	, LBS:	428	882		Å	ł										
A8C352	C23	ſ	PCES: 14	, LBS:	428	882		÷	ż										
A8C352	C23		PCES: 14	, LES:	428	382		·	č.			198							

Figure B-11. 5/8-in. (16-mm) Steel Plate, Test Nos. SPTA-1 and SPTA-2

N

				15762					70000								27/15	*		0.000
S	SAB	Declassed Ma							t Cer	tif	icat	e	Fo	orm T	C1: Revis	ion 3:	Date	e 7 Feb	2018	\$
Customer:	1770 Bill Sharp	Boulevard, Mu	Customer P.				al copy to	tollo	W**	Mail	Order No		2270	00.01	0.					2
MANHATTAN KS 66502	1		Product Desc	ription:		36(14)		/)36/	ASME SA36		Juer No	.: 41-	Ship) Date	: 29 Ma : 29 Ma	y 18	Ce	fest: M ert No: Page 1	061711	1969
		88. 	Size: 0,75	0 X '	72.00	X 2	40.0	(IN)											
	Tested Piece	s			Tensil					T		Ch	arpy	Impa	ct Tests			<u>.</u>		
Heat Id	Piece Id	Tested Thickness	Tst Loc	YS (KSI)	UTS (KSI)	%RA	Elong % 2in 8in		Hardness	Abs. 1	Energy 2 3	(FTLB) Avg)		hear 3 Av	g Tst		Tst Tst Dir Siz	Tmp	WTT %Shr
B8E678 B8E678	A40 A41	0.748 (DISCR 0.748 (DISCR	T) L	53 54	75		34	T												
OF THIS PRO MTR EN 102	NOT A METAI DDUCT, 04:2004 INSE D AND MANUFA	LURGICAL (PECTION CE) ACTURED IN	COMPONENT RTIFICATE THE USA.		IE STEE		ID NO MI			1.023		2 <u>].008</u>			JRING 5: 10			IUFACT 367		USA
														5						
^{ity} Cu	st Part # : 7224	72240			TESTE	D IN A	CCORDAN	NCE V	THIS MATE VITH, AND N PPROPRIATE	IEETS	THE	n —			SENIOR M	IETALLU	JRGIS	T - PRODU	ст	

Figure B-12. ³/₄-in. (19-mm) Steel Plate, Test No. SPTA-1

Preliminary Test Certificate

Form TC1: Revision 3: Date 7 Feb 2018

v 1

1770 Bill Sharp Boulevard, Muscatine, IA 52761-9412, US **Official copy to follow** Customer: Customer P.O. No.: 4500308540 Mill Order No.: 41-540918-01 Shipping Manifest : MT349854 STEEL & PIPE SUPPLY Product Description: ASTM A36(14)/A709(17)36/ASME SA36(17) P.O. BOX 1688 Ship Date: 22 Jun 18 Cert No: 061716530 AASHTO M270(15)36 Cert Date: 22 Jun 18 (Page 1 of 1) MANHATTAN KS 66502 Size: 0.750 X 72.00 X 240.0 (IN) Tested Pieces Tensiles Charpy Impact Tests Heat Piece Tested Tst UTS %RA Elong % Tst YS Abs. Energy(FTLB) % Shear Tst Tst Tst BDWTT Id Id Thickness Loc (KSI) (KSI) 2in 8in Dir Hardness 1 2 3 Avg 2 3 Avg Tmp Dir Siz Tmp %Shr A8D843 D30 0.751 (DISCRT) 1 54 67 40 Heat **Chemical Analysis** ld Mn P Si Tot Al Cu Ni S Cr Cb Mo ٧ Ti ORGN B N A8D843 .05 1.18 .011 .003 .05 .024 .32 .11 .10 .03 .019 .021 .006 .0003 .0091 USA KILLED STEEL MERCURY IS NOT A METALLURGICAL COMPONENT OF THE STEEL AND NO MERCURY WAS INTENTIONALLY ADDED DURING THE MANUFACTURE OF THIS PRODUCT. MTR EN 10204:2004 INSPECTION CERTIFICATE 3.1 COMPLIANT 100% MELTED AND MANUFACTURED IN THE USA. PRODUCTS SHIPPED: A8D843 D30 PCES: 5, LBS: 18375 WE HEREBY CERTIFY THAT THIS MATERIAL WAS TESTED IN ACCORDANCE WITH, AND MEETS THE REQUIREMENTS OF, THE APPROPRIATE SPECIFICATION (11) Cust Part # : 722472240 SENIOR METALLURGIST - PRODUCT

Figure B-13. ¾-in. (19-mm) Steel Plate, Test No. SPTA-2

1098 East Maple St Sutton, NE 68979 Phone: 402,773,4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: <u>Midwest Machinery and Supply</u> BOL# <u>10057594</u> Customer PO# <u>3475</u> Preservative: <u>CCA - C 0.60D pcf AWPA UC4B</u>

Part #	Physical Description	# of Pieces	Charge #	Tested Retention	
GR6806PS		1			
Т	6x8-6' Thrie Beam Post	70	24232	.636	
GS6846PS	E				mar
Т	5.5x7.5-46' BCT	42	24233	.627	ora
GR61219B					mar orau Ta
LK	6x12-19" Thrie OCD Block	168	24230	.638	
GR61222B					
LK	6x12-22" Thrie OCD Block	56	24089	.673	-
GR6814BL					
K	6x8-14" OCD Block	126	24195	.648	

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168 standards.

Nicholas Sowl, General Counsel

VA: Iowa Wood Preservers certifies that the treated wood products listed above have been treated in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and retention requirements.

> <u>8/25/2017</u> Date

Figure B-14. BCT Timber Post, Test No. SPTA-1

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: <u>Midwest Machinery and Supply</u> BOL# <u>N02529</u> Customer PO# <u>3560</u> Preservative: <u>CCA - C 0.60D pcf AWPA UC4B</u>

Part #	Physical Description	# of Pieces	Charge #	Tested Retention
GR6806.5				
CRT	6x8-6.5 CRT	70	25008	.740
GS6846				
PST	5.5x7.5-46" BCT	84	25033	.864
GR6814				1001
BLKTAP	6x8-14" Tapered Block	90	25041	.892
GR668				
3HB	6x6-8" 3 Hole Block	56	25033	.864
GR6819				
BLK	6x8-19" OCD Block	168	25024	.941
GR61219				
BLK	6x12-19" Thrie Block	168	25033	.864
GR61219				
BLK	6x12-19" Trans Block	56	25042	.733
GR61222				
BLK	6x12-22" Block	112	25042	.733

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168 VA: Iowa Wood Preservers certifies that the treated wood products listed above have been treated in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and retention requirements.

standards

Nick Sowl, General Counsel

4/18/18 Date

Figure B-15. BCT Timber Post, Test No. SPTA-2

					Certi	ified Analy	sis					1	AHighnay	- Source	SE
Trinity H	ighway Pi	roducts, LLC			2 % .							¢.			
550 East H	Robb Ave				C	Order Number: 1215324	4 Pro	od Ln Grp: 9-E	nd Tern	ninals (Do	m)			•	
Lima, OH	45801					Customer PO: 2884	in.					Asof: 4	/14/14		
Customer:	MIDW	EST MACH.& SUPPLY C	ю.			BOL Number: 80821		Ship Date:							
	P. O. B	OX 703				Document #: 1 Shipped To: NE		undati							
Project:	MILFO STOCI	RD, NE 68405 Ç				Use State: KS	R#1	15-015	7 5	Sept	emb	er .	201	4	SM
04	Part #	Description	Spec	CL	TY Heat Code/ He	at Yield	TS	Elg C	Mn	ъе	Si	Cu Cb	Cr	Vn A	CW
Qty 10	701A	.25X11.75X16 CAB ANC	A-36	CL	A3V3361	48,600	69,000	29.1 0.180 (State of the second	010 0.005			Since a line		4
	701A		A-36		JJ4744	50,500	71,900	30.0 0.150 1	L.060 0.0	010 0.035	0.240 0.2	70 0.002	0.090 0	.021 •	4
12	729G	TS 8X6X3/16X8'-0" SLEEVE	A-500		0173175	55,871	74,495	31.0 0.160 (0.610 0.0	012 0.009	0.010 0.0	30 0.000	0.030 0	.000	4
15	736G	57TUBE SL/.188"X6"X8"FLA	A-500		0173175	55,871	74,495	31.0 0.160 (0.610 0.0	012 0.009	0.010 0.0	30 0.000	0.030 0	.000	4
12	749G	TS 8X6X3/16X6'-0" SLEEVE	A-500	_	0173175	55,871	74,495	31,0 0.160 (0.610 0.0	012 0.009	0.010 0.0	30 0.000	0.030 0	.000	4
5	783A.	5/8X8X8 BEAR PL 3/16 STP	A-36		10903960	56,000	79,500	28.0 0.180 0	0.810 0.0	009 0.005	0.020 0.1	00 0.012	0.030 0	.000	4
	783A		A-36		DL13106973	57,000	72,000	22.0 0.160 (0.720 0.4	012 0.022	0.190 0.3	60 0.002	0.120 0	.050	4
20	3000G	CBL 3/4X6'6/DBL	HW		99692										
25	4063B	WD 60 POST 6X8 CRT	HW		43360										
15	4147B	WD 3'9 POST 5.5"X7.5"	HW		2401										
20	15000G	6'0 SYT PST/8.5/31" GR HT	A-36		34940	46,000	66,000	25.3 0.130	0.640 0.	012 0.043	0.220 0.3	10 0.001	0.100 0).002	4
10	19948G	.135(10Ga)X1.75X1.75	HW		P34744										
2	33795G	SYT-3"AN STRT 3-HL 6'6	A-36		JJ6421	53,600	73,400	31.3 0.140	1.050 0.	009 0.028	0.210 0.2	80 0.000	0.100 0).022	4
4	34053A	SRT-31 TRM UP PST 2'6.625	A-36		JJ5463	56,300	77,700	31.3 0.170	1.070 0.	009 0.016	0.240 0.2	20 0.002	0.080 0).020	4
														3	

Figure B-16. TS8x6x $^{3}/_{16}$ Foundation Tube, Test Nos. SPTA-1 and SPTA-2

	Z	STEEL AND PIPE SUPPLY
--	---	--------------------------

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015

METALLURGICAL TEST REPORT

 PAGE
 1 of
 1

 DATE
 06/05/2018
 1

 TIME
 06:40:36
 0

 USER
 WF-BATCH

S 13716 H Kansas City Warehouse P 401 New Century Parkway T NEW CENTURY KS

S O L D	
T O	66031-1127

laterial No. 0872120TM			TEMPERF	PASS STPMLF		i antity 16	Weight 9,801.600		r Part	0	Customer PO		nip Date 6/04/2018
10					Chemical A	nalysis							
	Vendor B	IG RIVER ST	TEEL LLC		DOMESTIC		Mill	BIG RIVER S	TEEL LLC		Melted and Mar	nufactured ir	n the USA
												Produced	
												2020 To 12 12 12 12 12 12 12 12 12 12 12 12 12	Tin
0.0080	0.0030	0.0400	0.0500	0.0500	0.0130	0.0001	0.1100	0.0320	0.0010	0.0040	0.0010	0.0067	0.0049
				Mecha	nical / Physi	cal Prope	rties						
41-06													
Yield		Elong	Rckwl	c	Grain	Charpy	1	Charpy Dr	Cł	narpy Sz	Tempera	iture	Olsen
46400.000		32.00				0		NA					
42800.000		35.80				0		NA					
43400.000		30.00				0		NA					
48200.000		33.00				0		NA					
	e Phosphorus 0 0.0080 41-06 Yield 46400.000 42800.000 43400.000	1/4 7 Vendor B Phosphorus Sulphur 0 0.0080 0.0030 41-06 Yield 46400.000 42800.000 43400.000	Vendor BIG RIVER ST e Phosphorus Sulphur Silicon 0 0.0080 0.0030 0.0400 41-06 Yield Elong 46400.000 32.00 42800.000 35.80 43400.000 30.00 30.00 30.00	Your 200872120TM 1/4 72 X 120 A36 TEMPERF Vendor BIG RIVER STEEL LLC Vendor BIG RIVER STEEL LLC e Phosphorus Sulphur Silicon Nickel 0 0.0080 0.0030 0.0400 0.0500 41-06 Yield Elong Rckwl 46400.000 32.00 42800.000 35.80 43400.000 30.00 30.00 30.00	Vendor BIG RIVER STEEL LLC e Phosphorus Sulphur Silicon Nickel Chromium 0 0.0080 0.0030 0.0400 0.0500 0.0500 41-06 Yield Elong Rckwl C 46400.000 32.00 42800.000 35.80 43400.000 30.00	Yendor Sulphur Silicon Nickel Chemical Ar 0 0.0080 0.0030 0.0400 0.0500 0.0130 Mechanical / Physic Mechanical / Physic 41-06 Yield Elong Rckwl Grain 46400.000 32.00 42800.000 35.80 43400.000 30.00	V0872120TM 1/4 72 X 120 A36 TEMPERPASS STPMLPL 16 Chemical Analysis Chemical Analysis Vendor BIG RIVER STEEL LLC DOMESTIC e Phosphorus Sulphur Silicon Nickel Chromium Molybdenum Boron 0 0.0080 0.0030 0.0400 0.0500 0.0130 0.0001 Mechanical / Physical Prope 41-06 Yield Elong Rckwl Grain Charpy 46400.000 32.00 0 <td< td=""><td>Prosphorus Sulphur Silicon Nickel Chemical Analysis 0 0.0030 0.0030 0.0400 0.0500 0.0130 0.0001 0.1100 Mill Mill Mill Mill Boron Copper Copper 0 0.0030 0.0400 0.0500 0.0130 0.0001 0.1100 Mechanical / Physical Properties Mill Mechanical / Physical Properties 41-06 Yield Elong Rckwl Grain Charpy 46400.000 32.00 0 0 0 0 42800.000 35.80 0 0 0 43400.000 30.00 0 0 0</td><td>Prospective 1/4 72 X 120 A36 TEMPERPASS STPMLPL 16 9,801.600 Chemical Analysis Chemical Analysis Mill BIG RIVER STEEL LLC DOMESTIC Mill BIG RIVER STEEL LLC Phosphorus Sulphur Silicon Nickel Chromium Molybdenum Boron Copper Aluminum 0 0.0080 0.0030 0.0400 0.0500 0.0130 0.0001 0.1100 0.0320 Mechanical / Physical Properties 41-06 Yield Elong Rckwl Grain Charpy Charpy Dr 46400.000 32.00 0 NA 0 NA 43400.000 30.00 0 NA NA</td><td>Yobstrate 1/4 72 X 120 A36 TEMPERPASS STPMLPL 16 9,801.600 Chemical Analysis Chemical Analysis Mill BIG RIVER STEEL LLC Mill BIG RIVER STEEL LLC Phosphorus Sulphur Silicon Nickel Chromium Molybdenum Boron Copper Aluminum Titanium 0 0.0030 0.0400 0.0500 0.0130 0.0001 0.1100 0.0320 0.0010 Mechanical / Physical Properties 41-06 Yield Elong Rckw/l Grain Charpy Charpy Dr Ct 46400.000 32.00 0 NA 0 NA 0 NA 43400.000 30.00 0 0 NA 0 NA 0</td><td>Yead I/4 T2 X 120 A36 TEMPERPASS STPMLPL 16 9,801.600 Chemical Analysis Mill BIG RIVER STEEL LLC DOMESTIC Mill BIG RIVER STEEL LLC Phosphorus Sulphur Silicon Nickel Chromium Molybdenum Boron Copper Aluminum Titanium Vanadium 0 0.0080 0.0030 0.0400 0.0500 0.0130 0.0001 0.1100 0.0320 0.0010 0.0040 Yield Elong Rckwl Grain Charpy Charpy Dr Charpy Sz 46400.000 32.00 0 0 NA 0 NA 43400.000 30.00 0 0 NA 0 NA</td><td>1/4 72 X 120 A36 TEMPERPASS STPMLPL 16 9,801.600 Chemical Analysis Chemical Analysis Mill BIG RIVER STEEL LLC Melted and Mar e Phosphorus Sulphur Silicon Nickel Chromium Molybdenum Boron Copper Aluminum Titanium Vanadium Columbium 0 0.0080 0.0030 0.0400 0.0500 0.0130 0.0001 0.1100 0.0320 0.0010 0.0010 Vield Elong Rckwl Grain Charpy Charpy Dr Charpy Sz Tempera 46400.000 32.00 0 NA 0 NA 0 NA 43400.000 30.00 0 0 NA 0 NA 0 NA</td><td>1/4 72 X 120 A36 TEMPERPASS STPMLPL 16 9,801.600 06 </td></td<>	Prosphorus Sulphur Silicon Nickel Chemical Analysis 0 0.0030 0.0030 0.0400 0.0500 0.0130 0.0001 0.1100 Mill Mill Mill Mill Boron Copper Copper 0 0.0030 0.0400 0.0500 0.0130 0.0001 0.1100 Mechanical / Physical Properties Mill Mechanical / Physical Properties 41-06 Yield Elong Rckwl Grain Charpy 46400.000 32.00 0 0 0 0 42800.000 35.80 0 0 0 43400.000 30.00 0 0 0	Prospective 1/4 72 X 120 A36 TEMPERPASS STPMLPL 16 9,801.600 Chemical Analysis Chemical Analysis Mill BIG RIVER STEEL LLC DOMESTIC Mill BIG RIVER STEEL LLC Phosphorus Sulphur Silicon Nickel Chromium Molybdenum Boron Copper Aluminum 0 0.0080 0.0030 0.0400 0.0500 0.0130 0.0001 0.1100 0.0320 Mechanical / Physical Properties 41-06 Yield Elong Rckwl Grain Charpy Charpy Dr 46400.000 32.00 0 NA 0 NA 43400.000 30.00 0 NA NA	Yobstrate 1/4 72 X 120 A36 TEMPERPASS STPMLPL 16 9,801.600 Chemical Analysis Chemical Analysis Mill BIG RIVER STEEL LLC Mill BIG RIVER STEEL LLC Phosphorus Sulphur Silicon Nickel Chromium Molybdenum Boron Copper Aluminum Titanium 0 0.0030 0.0400 0.0500 0.0130 0.0001 0.1100 0.0320 0.0010 Mechanical / Physical Properties 41-06 Yield Elong Rckw/l Grain Charpy Charpy Dr Ct 46400.000 32.00 0 NA 0 NA 0 NA 43400.000 30.00 0 0 NA 0 NA 0	Yead I/4 T2 X 120 A36 TEMPERPASS STPMLPL 16 9,801.600 Chemical Analysis Mill BIG RIVER STEEL LLC DOMESTIC Mill BIG RIVER STEEL LLC Phosphorus Sulphur Silicon Nickel Chromium Molybdenum Boron Copper Aluminum Titanium Vanadium 0 0.0080 0.0030 0.0400 0.0500 0.0130 0.0001 0.1100 0.0320 0.0010 0.0040 Yield Elong Rckwl Grain Charpy Charpy Dr Charpy Sz 46400.000 32.00 0 0 NA 0 NA 43400.000 30.00 0 0 NA 0 NA	1/4 72 X 120 A36 TEMPERPASS STPMLPL 16 9,801.600 Chemical Analysis Chemical Analysis Mill BIG RIVER STEEL LLC Melted and Mar e Phosphorus Sulphur Silicon Nickel Chromium Molybdenum Boron Copper Aluminum Titanium Vanadium Columbium 0 0.0080 0.0030 0.0400 0.0500 0.0130 0.0001 0.1100 0.0320 0.0010 0.0010 Vield Elong Rckwl Grain Charpy Charpy Dr Charpy Sz Tempera 46400.000 32.00 0 NA 0 NA 0 NA 43400.000 30.00 0 0 NA 0 NA 0 NA	1/4 72 X 120 A36 TEMPERPASS STPMLPL 16 9,801.600 06

THE CHEMICAL, PHYSICAL, OR MECHANICAL TESTS REPORTED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECORDS OF THE CORPORATION. The material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1

Figure B-17. ¼-in. (6-mm) Steel Plate and Bent Steel Plate (Test Nos. SPTA-1 and SPTA-2) and Gusset (Test No. SPTA-1)

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015		METALLU TEST RE		TIME	2 of 2 * 06/23/2017 13:52:25 GIANGRER
		H Kar P 40	716 nsas City Warehouse 1 New Century Parkway W CENTURY KS 66031-1	1127	
Order Material No. 40287943-0020 801060120TM	Description 10GA 60 X 120 A1011-	Quantity CS-TYB TEMP HS 35	Weight Customer Part 9,843.750	Custome	r PO Ship Date 06/23/20
Heat No. 17044641 Carbon Manganese Phosphorus 0.0800 0.3700 0.0070	Vendor BIG RIVER STEEL LLC Sulphur Silicon Nickel 0.0010 0.0500 0.0400	Chemical Analysis DOMESTIC Chromium Molybdenum Boron 0.0400 0.0120 0.0001	Mill BIG RIVER STEEL LLC Copper Aluminum Titaniun 0.1200 0.0300 0.0000	n Vanadium Colu	nd Manufactured in the US mbium Nitrogen T 0.0010 0.0085 0.006
				8 U ⁸	
Mill Coil No. 17044641-05	45 50	Mechanical / Physical Prope	rties		5 5 ⁴
Mill Coil No. 17044641-05 Tensile Yield	Elong Rckwl	Mechanical / Physical Prope Grain Charpy		Charpy Sz	Temperature Ols
			Charpy Dr	Charpy Sz h 0004821927 35 EA	
Tensile Yield		Grain Charpy	Charpy Dr		
Tensile Yield		Grain Charpy	Charpy Dr		
Tensile Yield		Grain Charpy	Charpy Dr		
Tensile Yield		Grain Charpy	Charpy Dr		

Figure B-18. 10-gauge (3.4-mm) Bent Steel Channel Strut, Test Nos. SPTA-1 and SPTA-2

Z	STEEL AND PIPE SUPPLY
	all Deservation Tales

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015

METALLURGICAL TEST REPORT

 PAGE
 1 of
 1

 DATE
 06/18/2018
 1

 TIME
 08:43:38
 1

 USER
 WF-BATCH
 1

S 13716 H Kansas City Warehouse P 401 New Century Parkway T NEW CENTURY KS

T 66031-1127

S O L D

Order 40308865		Naterial No. 01672240TM	Descrij 1/2		TEMPERF	PASS STPML		antity 2	Weight 4,900.800		r Part	с 	ustomer PO		hip Date 6/15/2018
							Chemical An	alysis							
Heat No.	A8C269	Vend	or SSAB - N	ONTPELIER	WORKS		DOMESTIC		Mill SSAB -	MONTPELIE	R WORKS		Melted and Mar	nufactured in	n the USA
														Produced	from Coil
Carbon	Manganes	e Phosphorus	Sulphur	Silicon	Nickel	Chromium	Molybdenum	Boron	Copper	Aluminum	Titanium	Vanadium	Columbium	Nitrogen	Tin
0.1600	0.840	0.0080	0.0040	0.0300	0.1200	0.1000	0.0300	0.0001	0.2900	0.0370	0.0060	0.0030	0.0010	0.0087	0.0000
						Mecha	nical / Physic	al Prope	erties						
	o. A8C269	G(707)G)			2201025-22		20 - 85	120080			1.00		18 19 1		79032
	ensile	Yield		Elong	Rckwl		Grain	Charpy	10	Charpy Dr	CI	narpy Sz	Tempera	iture	Olsen
7670	0.000	59300.000		24.20				0		NA					
7320	000.00	55400.000		26.20				0		NA					
7090	000.00	50500.000		33.90				0		NA					
7160	00.000	51400.000		31.60				0		NA					
Ba	atch 00053-	12674 2 EA 4,900	0.800 LB			Batch 0005	342658 4 EA 9,	801.600 LE	3		Batch 0	005342672 4	EA 9,801.600 I	LB	

December 17, 2020 MwRSF Report No. TRP-03-370b-20

THE CHEMICAL, PHYSICAL, OR MECHANICAL TESTS REPORTED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECORDS OF THE CORPORATION. The material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1

Figure B-19. ¹/₂-in. (13-mm) Steel Plate, Test Nos. SPTA-1 and SPTA-2

\$

1000 BURLINGTON STREET, NORTH KANSAS CITY, MO 64116 1-816-474-5210 TOLL FREE 1-800-892-TUBE

'

STEEL VENTURES, LLC dba EXLTUBE Certified Test Report

Customer:			Size: 02.50X	02.50	Customer Order No: 4500298385	v	Date: 01/04/201	8.
SPS - New Centu 401 New Centu NEW CENTURY			Gauge: 1/4	у к . т	Delivery No:83076 Load No:396399			
*		i.	Specification ASTM	: A500-13 Gr.B/	c			
е И				,				ň
Heat No	Yield KSI	Ten KSI 65.	%	ngation 2 Inch).00				. •
A710851	` _. 57.5	00.						
-	ţ.							
				S1	CU		CR MO	V 0.0040
Heat No A710851	C 0.0600	MN F 0.7200 0	.0130 0	.0040 0.03		0.0400 . (0.0600 0.0200	0.0040
*								
				:			· ·	
2		κ.						
ж. 1	÷.,	1		n	e x			
Coil Producing	was melted & ma g Mill: STEEL DYN	AIVIICS COLOINI		BUS, MS			All test	ing and
We hereby company	ertify that all test	to A.S.T.M. par	this report ameters enc	are correct as ompassed with	ur purchase order	cquirenter	company. All test s denoted in the s	
This material	has not come into	o direct contact	with mercur	y, any of its c	ompounds, or any	mercury bearing	ng devices during o	our manufacturin
This material	is in compliance	with EN 10204	Section 4.1	Inspection Cert	ificate Type 3.1			
Tensile test	completed using te	est specimen wit	h 3/4" reduc	ced area.		NTURES, LL	.C dba EXLTUB	E
3	t.	· .			prot	dellap		
				i	v		-	
					Jonathan Quality (Wolfe Assurance Mar	nager	

Figure B-20. HSS2¹/₂x2¹/₂x¹/₄ Square Tube, Test Nos. SPTA-1 and SPTA-2

Atlas Tube (Alabama), Inc. 171 Cleage Dr Birmingham, Alabama, USA 35217 Tel: Fax:

MATERIAL TEST REPORT

Sold to Steel & Pipe Supply Company PO Box 1688 MANHATTAN KS 66505 USA

Shipped to Steel & Pipe Supply Company 401 New Century Parkway NEW CENTURY KS 66031 USA

Ref.B/L: 80819500 Date: 05.11.2018 Customer: 179

Material:	2.0x1.	0x083x2	4'0"0(5×1	0).A51	3		Mat	erial No:	02001	008324	00-B				Made in: Melted in		
		070654					Pur	chase O	rder: 4	500307	729	Cus	st Mater	a station and	2001008		
Sales ord			Р	s	Si	AI	Cu	Сь	Mo	Ni	Cr	v	ті	в	N	CA	
Heat No	C	Mn		0.004	0.020	0.029	0.090	0.002	0.020	0.030	0.050	0.000	0.001	0:0000	0.0060	0.0020	
B804732	0.050	0.320	Yield	0.004	Tensile		.2in				Certific	ation				CE: 0.13	
Bundle N		PCs				/6				ASTM	A513, TY	PE 1		it i			
MC00025		50	000000 P	SI	PSI 7	/0								a			
Material I Sales Or.							_		_					•			
Materia <mark>l:</mark>	3.0x3	.0x250x	48'0"0(4x4	!).			Mat	terial No	: 0300	302504	800-B				Made in Melted i		
Sales or	der: 1	279621					Pu	rchase C	order: 4	4500307	7900	Cu	st Mater	rial.#: 6	53002504	48	
Heat No	С	Mn	Р	S	Si	AI	Cu	Cb	Мо	Ni	Cr	V	Ti	в	N	CA	
A804182	0.210			0.002	0.020	0.026	0,100	0.000	0.010	0.030	0.060	0.001	0.001	0.0000	0.0070	0.0020	
Bundle N	_	PCs	Yield		Tensile	El	n.2in	Rb			Certific	ation				CE: 0.31	
			054240 1		069516 F	 Dei	26 %	93			ASTM	A500-13	GRAD	E B&C			
MA00016		16	0542401	-51	0033107	31	20 /0						120	ų,			
Material Sales Or											<u> </u>			<u>.</u>			
Material:	: 3.0x3	3.0x250x	48'0"0(4x	4).			Ма	terial No	b: 0300	302504	800-B			1		i: USA in: USA	
Sales or	dar	1070621					Pu	irchase (Order:	450030	7900	CL	ist Mate	rial #: 6	5300250	48	
	C	1279021 Mn	Р	s	Si	AI	Cu	СЪ	Мо	NI	Cr	v	ті	B	N	CA	
Heat No	0.21			0.00		0.026	0.100		0.010	0.030	0.060	0.001	0.001	0.0000	0.0070	0.0020	
A804182 Bundle		PCs	Yield	0.00	Tensile		n.2in	Rb			Certific	cation		:		CE: 0.31	
Buildie														lı –			
MA0001	6462	16	054240	Psi	069516	Psi	26 %	93			ASTM	A500-1	3 GRAD	EB&C			
Material					21												
Sales O	r.Note):												i			
						n '1	1							H.			
	and her	Outlit			farm									İ.			
The res	ults re	ported	Assuran	port r	epresent	the act	ual attı	ributes o	of the m	aterial	furnishe	d and i	ndicate	full com	pliance	with all applicable	·
specific	ation	and cor	tract req	D1.1 n	ents. nethod.							~					
\bigcirc		stit	ite			15		Page : 3	Of 5			8) Meta	ls Servi	ice Cen	ter Institute	
<i>1</i> 0	OFN	ORTH AM	BRICA					-						8			

Figure B-21. HSS3x3x1/4 Square Tube, Test No. SPTA-1

Atlas	Tube Corporation
1855	East 122nd Street
Chica	go, Illinois, USA
60633	
Tel:	773-646-4500
Fax:	773-646-6128

Ref.B/L: 80807322 Date: 02.20.2018 Customer: 179

MATERIAL TEST REPORT

Sold to Steel & Pipe Supply Company PO Box 1688 MANHATTAN KS 66505 USA

Shipped to

Steel & Pipe Supply Company 310 Smith Road JONESBURG MO 63351 USA

Material: 3.0x	3.0x250x	40'0"0(6x3).			Ma	aterial No	: 300302	504000				Made in Melted i	i: USA		
Sales order:	1256602				Pu	irchase C	order: 45	00302878	В	Cust Mat	erial #: 6				
Heat No	с	Mn	P	s	Si	AI	Cu	Сь	Мо	Ni	Cr	v	Ti	в	N
V3726	0.040	0.760	0.011	0.007	0.020	0.030	0.170	0.023	0.020	0.070	0.090	0.003	0.002	0.000	0.008
Bundle No	PCs	Yield	Ter	nsile	Eln.2in			Ce	ertificati	on			CE: 0.21		
M800750088	18	076262 Ps	i 082	496 Psi	24 %			AS	STM A50	0-13 GRAD	DE B&C				
Material Note Sales Or.Note															
Material: 3.0x	3.0x250x	40'0"0(6x3).			Ma	aterial No	: 300302	504000				Made in Melted	i: USA in: USA		
Sales order:	1256602				Pu	Irchase C	Order: 45	0030287	В	Cust Mat	erial #: 6	5300250	40		
Heat No	С	Mn	Р	S	Si	AI	Cu	Cb	Мо	Ni	Cr	v	Ti	В	N
V3726	0.040	0.760	0.011	0.007	0.020	0.030	0.170	0.023	0.020	0.070	0.090	0.003	0.002	0.000	0.008
Bundle No	PCs	Yield	Ter	nsile	Eln.2in			Ce	ertificati	on			CE: 0.21		
M800750087	18	076262 Ps	i 082	496 Psi	24 %			AS	STM A50	0-13 GRAD	DE B&C				
Material Note Sales Or.Note Material: 3.0x	Ð:	(40'0"0(6x3).			M	aterial No	: 300302	504000				Made in	: USA		_
Sales order:							Order: 45		8	Cust Mat	erial #: 6		in: USA 40		
Heat No	С	Mn	Ρ	S	Si	AI	Cu	Cb	Мо	Ni	Cr	v	Ti	в	N
V3726	0.040	0.760	0.011	0.007	0.020	0.030	0.170	0.023	0.020	0.070	0.090	0.003	0.002	0.000	0.008
Bundle No	PCs	Yield	Ter	nsile	Eln.2in			C	ertificati	on			CE: 0.21		
M800750090	18	076262 Ps	i 082	2496 Psi	24 %			A	STM A50	00-13 GRA	DE B&C				
Material Note															
Sales Or.Not	e:														
Jasona		/													
Jason Rich															
The results	reported	ty Assurance on this rep	oort repr	esent th	e actual a	ttributes	of the ma	terial fui	rnished	and indica	te full co	mpliance	e with all a	applica	ble
CE calculat		the AWS D													

Figure B-22. HSS3x3x1/4 Square Tube, Test No. SPTA-2

STEEL AND PIPE SUPPLY

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015

METALLURGICAL TEST REPORT

PAGE 1 of 1 DATE 08/07/2018 TIME 15:51:50 USER T.HIPP

s o L D T 0 6603	31-1127				(a.)			P 401	sas City \	Warehouse ntury Park RY KS		20		
Order	Ма	terial No.	Descrip	tion			Q	uantity	Weight	Customer	Part	c	ustomer PO	Ship Date
40311347	-0010 70	1272120TM	3/8	72 X 12	0 A36 TEN	IPERPASS S	TPMLPL	6	5,515.200					08/07/2018
Heat No.	18072721	u.	Vendor Bl	ig river s	TEEL LLC		Chemical A DOMESTIC	nalysis	Mill	BIG RIVER S	TEEL LLC	м		ufactured in the USA Produced from Coil untry of Origin: USA
Carbon I	Manganese	Phosphorus	Sulphur	Silicon	Nickel	Chromium	Molybdenum	Boron	Copper	Aluminum	Titanium	Vanadium	Columbium	Nitrogen Tin
0.2000	0.8400	0.0080	0.0040	0.0200	0.0500	0.0400	0.0150	0.0001	0.1100	0.0300	0.0010	0.0030	0.0010	0.0076 0.0053
						Mecha	nical / Phys	ical Prope	rties	i.				
	No. 18072	NUMBER OF STREET						2010	7.5	2010 0 1010 0 <u>2</u> 000				
Te	ensile	Yield		Elong	Rckwl		Grain	Charpy		Charpy Dr	C	harpy Sz	Tempera	ature Olsen
72500	0.000	50500.000		33.80				0		NA				
68400	0.000	45700.000		34.00				0		NA				
Ba	tch 000541	6524 6 EA	5,515.200	LB		Batch 000	05416521 10	EA 9,192	LB			2		

THE CHEMICAL, PHYSICAL, OR MECHANICAL TESTS REPORTED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECORDS OF THE CORPORATION. The material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1

This test report shall not be reproduced, except in full, without the written approval of Steel & Pipe Supply Company, Inc.

Figure B-23. ³/₈-in. (10-mm) Plate, Test No. SPTA-2

Z	STEEL AND PIPE SUPPLY

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015

METALLURGICAL TEST REPORT

 PAGE
 1 of
 1

 DATE
 08/07/2018
 1

 TIME
 07:06:16
 1

 USER
 WF-BATCH

S 13716 H Kansas City Warehouse P 401 New Century Parkway NEW CENTURY KS

S O L D		
T O	66031-1127	

Order 4031343:		aterial No. 872120TM	Descrip 1/4 7		TEMPERF	PASS STPML		antity 9	Weight 5,513.400		r Part	(Customer PO		hip Date 3/06/2018
							Chemical A	nalysis							
Heat No.	B809345	Vendo	r STEEL DY	NAMICS CC	LUMBUS		DOMESTIC	1	AIII STEEL I	DYNAMICS C	OLUMBUS		Melted and Ma		
Carbon	Manganese	Phosphorus	Sulphur	Silicon	Nickel	Chromium	Molybdenum	Boron	Copper	Aluminum	Titanium	Vanadium	Columbium	Produced Nitrogen	Tin
0.0600	0.8100	0.0110	0.0040	0.0200	0.0300	0.0500	0.0100	0.0001	0.1000	0.0310	0.0010	0.0020	0.0020	0.0078	0.0060
						Mecha	nical / Physi	cal Prope	rties						
Mill Coil I	No. 1885020	17					···· · ··· · ··· · ··· · ··· · ···· · ······								
-	Fensile	Yield		Elong	Rckwl	C	Grain	Charpy	į	Charpy Dr	CI	harpy Sz	Temper	ature	Olsen
610	00.000	43800.000		32.50				0		NA					
607	00.000	43100.000		33.20				0		NA					
E	atch 0005411	1781 9 EA 5,510	3.400 LB			Batch 0005	411778 16 EA	9,801.600 L	в		Batch 0	005411779 1	16 EA 9,801.600	LB	

THE CHEMICAL, PHYSICAL, OR MECHANICAL TESTS REPORTED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECORDS OF THE CORPORATION. The material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1

This test report shall not be reproduced, except in full, without the written approval of Steel & Pipe Supply Company, Inc.

Feb 15th 2017

SOLD TO: GREGORY INDUSTRIES, INC. 4100 13TH ST. SW CANTON, OH. 44710

SHIP TO: HIGHWAY - FINISHED GOODS GREGORY INDUSTRIES, INC. ATTN: STEVE PENNINGTON CANTON, OH 44710 R#17-700

CERTIFICATON BCT Cables Yellow Paint

CGLP ORDER# 256284 GREGORY PO# 36454

THIS LETTER AND THE ENCLOSED ATTACHMENTS ARE TO CERTIFY THAT THE FOLLOWING ITEMS WERE 100% MANUFACTURED IN THE UNITED STATES OF AMERICA.

1,330 PCS, PART# 3012G, 3/4IN X 6FT 6IN DOUBLE SWAGE GUARD RAIL ASSEMBLYS.

THEY SHOW THE DOMESTICITY OF ALL MATERIAL USED, 100% MELTED & MANUFACTURED IN THE USA. THESE ITEMS ARE HOT DIPPED GALVANIZED TO ASTM-153 SPECIFICATIONS AND STANDARDS, GALV PROCESS ALSO TOOK PLACE IN THE U.S.A.

ATTACHMENTS:

(WIRE ROPE) WIRECO WORLD GROUP REEL# 428-671806-1; HEAT# .15R582807; 16R584001; 72987C; 16R586548; 73253F; 16R588160; 16R584967; 16R585464; 16R586547; 14R574048; 14R571682; 16R586549; 16R586401; (ROCKY MOUNTAIN STEEL / EVRAZ)

(END FITTINGS) REMLINGER MFG: HEAT#S 75063022; 75062074; 765063075 (GERDAU NORTH AMERICA)

VERY TRULY YOURS

BILL KOTARSKI GEN MGR CLEV OFFICE

HEADQUARTERS

FLINT BRANCH

12801 UNIVERSAL DRIVE TAYLOR, MI 48180 NEW PH# (734) 947-4000 NEW FAX# (734) 947-4004

G2427 E. JUDD ROAD BURTON, MI 48529 PH# (810) 744-4540 FAX# (810) 744-1588

BRANCH 5213 GRANT AVE CLEVELAND, OH 44105 PH# (216) 641-4100 FAX# (216) 641-1814

CLEVELAND

Figure B-25. ³/₄-in. (19-mm) Wire Rope and Anchor Cable Swaged Fitting, Test No. SPTA-1

Certified Analysis

Trinity Hig	hway Products, LLC				
550 East Ro	bbb Ave.	Order Number:	1269489	Prod Ln Grp: 3-Guardrail (Dom)	
Lima, OH 45	5801 Phn:(419) 227-1296	Customer PO:	3346		Asof: 11/7/16
Customer:	MIDWEST MACH.& SUPPLY CO.	BOL Number:	97457	Ship Date:	11301.11/110
	P. O. BOX 703	Document #:	1		
		Shipped To:	NE		
	MILFORD, NE 68405	Use State:	NE	2	
Project:	RESALE				

Qty	Part #	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	С	Mn	Р	S	Si	Cu	Cb	Cr	Vn	ACV
	701A	ANCHOF Box	A-36			JK16101488	56,172	75,460	25.0	0.160	0.780	0.017	0.028	0.200	0.280	0.001	0.140	0.028	4
	701A		A-36			535133	43,300	68,500	33.0	0.019	0.460	0.013	0.016	0.013	0.090	0.001	0.090	0.002	4
4	729G	TS 8X6X3/16X8'-0" SLEEVE	A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
20	738A	5'TUBE SL.188X6X8 1/4 /PL	A-36		2	4182184	45,000	67,900	31.0	0.210	0.760	0.012	0.008	0.010	0.050	0.001	0.030	0.002	4
	738A		A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
6	749G	TS 8X6X3/16X6'-0" SLEEVE	A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
6	782G	5/8"X8"X8" BEAR PL/OF	A-36			DL15103543	58,000	74,000	25.0	0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	4
20	783A	5/8X8X8 BEAR PL 3/16 STP	A-36			PL14107973	48,167	69,811	25.0	0.160	0.740	0.012	0.041	0.190	0.370	0.000	0.220	0.002	4
	783A		A-36			DL15103543	58,000	74,000	25.0	0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	4
45	3000G	CBL 3/4X6'6/DBL	HW			(119048)													
7,000	3340G	5/8" GR HEX NUT	HW			0055551-116146													
4,000	3360G	5/8"X1.25" GR BOLT	HW			0053777-115516													
450	3500G	5/8"X10" GR BOLT A307	HW			28971-В													
1,225	3540G	5/8"X14" GR BOLT A307	HW			29053-В													
																	2 .	of 5	

Figure B-26. Anchor Bracket Assembly and Anchor Bearing Plate, Test Nos. SPTA-1 and SPTA-2

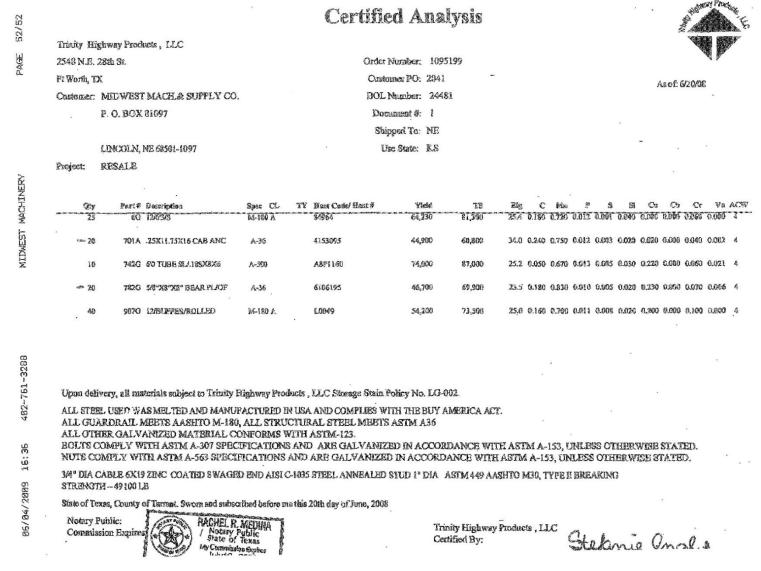


Figure B-27. Anchor Bracket Assembly, Test No. SPTA-1

210

						Cert	ified Analys	15								The	-Sinner	ay Prod	F
rinity Hi	ighway P	roducts, LLC															1		
50 East F	lobb Ave						Order Number: 1275017	Prod Ln	Grp	: 3-0	Juard	ail (E)om)						
ma, OH 4	45801 Ph	n:(419) 227-1296					Customer PO: 3400								A	As of: 3	3/22/17	,	
ustomer:	MIDW	EST MACH.& SUPPLY	CO.				BOL Number: 99202	Sh	ip Da	ate:									
	P. O. B	OX 703					Document #: 1												
							Shipped To: NE												
	MILFO	RD, NE 68405					Use State: NE												
oject:	RESAL	E																	_
Qty	Part #	Description	Spec	CL	TY	Heat Code/ He		TS I	Elg	С	Mn	Р	S	Si	Cu	Cb	Cr	Vn	ACW
400	3380G	5/8"X1.5" HEX BOLT A307	HW			0052429-113200													
600	3400G	5/8"X2" GR BOLT	HW			29221													
500	3480G	5/8"X8" GR BOLT A307	HW			29369													
450	3500G	5/8"X10" GR BOLT A307	HW			29550 - B													
700	3540G	5/8"X14" GR BOLT A307	HW			29567													
300	3580G	5/8"X18" GR BOLT A307	HW			29338													
600	4235G	3/16"X1.75"X3" WSHR	HW			C7001													
10	9852A	STRUT & YOKE ASSY	A-36			195070	52,940 69	9,970 3	1.1 (0.190	0.520	0.014	0.004	0.020	0.110	0.000	0.050	0.000	4
	9852A		A-36			A82292	54,000 73	,300 3	1.0 (0.200	0.460	0.010	0.003	0.020	0.150	0.000	0.060	0.001	4
	9852A		A-36			645887	39,900 62	2,500 3:	2.0	0.190	0.400	0.009	0.015	0.009	0.054	0.001	0.038	0.001	4
	9852A		A-36			645887	39,900 63	2,500 3:	2.0	0.190	0.400	0.009	0.015	0.009	0.054	0.001	0.038	0.001	4
	9852.A.		HW			15056184													
20	12173G	T12/6'3/4@1'6.75"/S			2	L35216											3		
			M-180	A	2	209331				0.190			3 0.002					0.002	
			M-180	A	2	209332		1,290 2 0,050 2		0.190			4 0.003					0 0.001	

Figure B-28. Upstream Ground Line Strut, Page 1, Test Nos. SPTA-1 and SPTA-2

×.	\uparrow	Ce	ertified_analysi	is	ay Products
Frinity Hi	ghway Products, LLC				
550 East R	obb Ave.		Order Number: 1275956	Prod Ln Grp: 3-Guardrail (Dom)	
Lima, OH 4	5801 Phn:(419) 227-1296		Customer PO: 3415		As of: 3/22/17
Customer:	MIDWEST MACH.& SUPPLY CO.		BOL Number: 99204	Ship Date:	
	P. O. BOX 703		Document #: 1		
			Shipped To: NE		
	MILFORD, NE 68405		Use State: NE		
Project:	RESALE				

Qty	Part #	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	С	Mn	P S	Si	Cu	Cb (Cr	Vn A	CW
			M-180	А	2	208318	64,140	81,540	24.5	0.190	0.720	0.011 0.003	0.020	0.110	0.000 0.0	060 0	0.000	4
			M-180	Α	2	208674	63,250	82,410	22.7	0.190	0.730	0.011 0.003	0.020	0.100	0.000 0.0	060 0).002	4
			M-180	A	2	208675	62,100	81,170	22.7	0.190	0.730	0.012 0.004	0.020	0.090	0.000 0.0	050 0	0.001	4
			M-180	A	2	208676	62,920	82,040	25.4	0.190	0.720	0.012 0.004	0.010	0.100	0.000 0.0	060 0	0.002	4
	12365G				2	L35216												
			M-180	A	2	209331	62,090	81,500	28.1	0.190	0.720	0.013 0.00	2 0.020	0.110	0.000 0.	070 (0.002	4
			M-180	A	2	209332	61,400	81,290	25.3	0.190	0.730	0.014 0.00	3 0.020	0.120	0.000 0.	060 (0.001	4
			M-180	A	2	209333	61,200	80,050	25.8	0.200	0.740	0.016 0.00	5 0.010	0.120	0.000 0.	070 (0.002	4

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy QMS-LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT, 23 CFR 635.410. ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED.

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT", 23 CFR 635.410.

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 (US DOMESTIC SHIPMENTS)

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 & ISO 1461 (INTERNATIONAL SHIPMENTS)

FINISHED GOOD PART NUMBERS ENDING IN SUFFIX B,P, OR S, ARE UNCOATED

BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.

NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. WASHERS COMPLY WITH ASTM F-436 SPECIFICATION AND/OR F-844 AND ARE GALVANIZED IN ACCORDANCE WITH ASTM F-2329. 3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA ASTM 449 AASHTO M30, TYPE II BREAKING STRENGTH – 46000 LB

Figure B-29. Upstream Ground Line Strut, Page 2, Test No. SPTA-2

Feb 15th 2017

SOLD TO: GREGORY INDUSTRIES, INC. 4100 13TH ST. SW CANTON, OH. 44710 SHIP TO: HIGHWAY – FINISHED GOODS GREGORY INDUSTRIES, INC. ATTN: STEVE PENNINGTON CANTON, OH 44710

CERTIFICATON

CGLP ORDER# 256284 GREGORY PO# 36454

THIS LETTER AND THE ENCLOSED ATTACHMENTS ARE TO CERTIFY THAT THE FOLLOWING ITEMS WERE 100% MANUFACTURED IN THE UNITED STATES OF AMERICA.

1,330 PCS, PART# 3012G, 3/4IN X 6FT 6IN DOUBLE SWAGE GUARD RAIL ASSEMBLYS.

THEY SHOW THE DOMESTICITY OF ALL MATERIAL USED, 100% MELTED & MANUFACTURED IN THE USA. THESE ITEMS ARE HOT DIPPED GALVANIZED TO ASTM-153 SPECIFICATIONS AND STANDARDS, GALV PROCESS ALSO TOOK PLACE IN THE U.S.A.

ATTACHMENTS:

(WIRE ROPE) WIRECO WORLD GROUP REEL# 428-671806-1; HEAT# .15R582807; 16R584001; 72987C; 16R586548; 73253F; 16R588160; 16R584967; 16R585464; 16R586547; 14R574048; 14R571682; 16R586549; 16R586401; (ROCKY MOUNTAIN STEEL / EVRAZ)

(END FITTINGS) REMLINGER MFG: HEAT#S 75063022; 75062074; 765063075 (GERDAU NORTH AMERICA)

VERY TRULY YOURS.

BILL KOTARSKI GEN MGR CLEV OFFICE

FLINT

CLEVELAND

BRANCH

12801 UNIVERSAL DRIVE TAYLOR, MI 48180 NEW PH# (734) 947-4000 NEW FAX# (734) 947-4004

HEADQUARTERS

G2427 E. JUDD ROAD BURTON, MI 48529 PH# (810) 744-4540 FAX# (810) 744-1588

BRANCH

5213 GRANT AVE CLEVELAND, OH 44105 PH# (216) 641-4100 FAX# (216) 641-1814

Figure B-30. Anchor Cable Assembly, Test No. SPTA-2

Customer:			Customer P.0	5 1996 - W - K - K - K - K - K - K - K - K - K	and the second second					Mill Order N	lo.: 41-	30763-01	Ship	ping M	anifest	: MT	342897
STEEL & I P.O. BOX MANHATI KS 66502			Product Desc		ASTM A3 AASHTO			36/A	SME SA36	(17)		Ship Date Cert Date				No: O ge 1 of	51701178 1)
K3 00302			Size: 0.62	5 X 7	2.00	X 24	10.0 (IN))		1						
	Tested Piece	es			Tensil	es					Cha	rpy Impa	ct Tests				_
Heat Id	Piece Id	Tested Thickness	Tst Loc	YS (KSI)	UTS (KSI)		Elong % 2in 8in I		Hardness	Abs. Energ 1 2 3	y(FTLB) Avg		hear 3 Av	g Tst Tm		Tst Siz (mm)	BDWTT Tmp %S
A8C352 A8C352	C22 C26	0.623 (DISCI 0.747 (DISCI	RT) L	46 47	70		33	T									
OF THIS MTR EN 1 100% MEL	IS NOT A METAL PRODUCT. 0204:2004 INS TED AND MANUFL SHIPPED:	PECTION CE ACTURED IN	RTIFICATE	3.1 C	OMPLIA	NT	O NO ME	RCU	RY WAS I	NTENTION	ALLY 3	NDED D	URING	THE I	4ANU)	FACTU	RE
MERCURY OF THIS MTR EN 1 100% MEL PRODUCTS	IS NOT A METAL PRODUCT. 0204:2004 INS TED AND MANUFL SHIPPED:	PECTION CE ACTURED IN	RTIFICATE	3.1 C	OMPLIA	NT	O NO ME	RCU	RY WAS I	NTENTION	ITTA :	ם כשססג	URING	THE I	(ANU)	FACTU	RE

Figure B-31. Bearing Plate Base, Test Nos. SPTA-1 and SPTA-2

N

STEEL & PIPE SUPPLY P.O. BOX 1688 Product Description: ASTM A36(14)/A709(17)36/ASME SA36(17) State 10 mpone Treated Notice 100 mpone Treated Notin 100 mpone Treated Notice 100 mpone Treated Notice 100 mpone Tre	Customer:	1770 Bill Sharp	boule fulle, fille		NAME OF 18 19	o.: 450030		an copy to			Mill O	rder No	: 41-	528480	02	Shinni	ng Ma	nifest	MT340	015
MANHATTAN Size: 1.000 X 72.00 X 240.0 (IN) Size: 1.000 X 72.00 X 240.0 (IN) Size: 1.000 X 72.00 X 240.0 (IN) Charpy Impact Tests Heat Id Tested Tst YS UTS %RA Elong % Tst Abs. Energy(FTLB) % Shear Tst Tst Tst BDWTI Id Tested Tst YS UTS %RA Elong % Tst Abs. Energy(FTLB) % Shear Tst Tst Tst BDWTI Tmp %d Size: 1.000 (DISCRT) L 42 66 25 T Abs. Energy(FTLB) % Shear Tst Tst Tst BDWTI Size: Tmp %d SB522 B45 1.000 (DISCRT) L 42 65 25 T T T T Tmp %d B648 / E36 1.001 (DISCRT) L 42 65 25 7 T B N C B648 Colspan="2">IS 000 (DISCRT) L 42 65 25 18 T				Product I	escripti				7)36/	ASME SA3				Ship D	ate:	05 Mar	18	Cert N	o: 0616	5070
Tested Pieces Tensiles Charpy Impact Tests Heat Piece Tested Tst YS UTS % RA Elong % Tst Abs. Energy(FTLB) % Shear Tst T		ĨAN						-						Certi	ate:	05 Mar	10	(rage	101 1	,
Heat Id Tested Id Tested Thickness Tst Loc YS (KSI) UTS (KSI) %RA (KSI) Elong % Is Tst Lin Abs. Energy(FTLB) % Shear Abs. Energy(FTLB) Tst % Shear Tst Tmp Tst Siz Dir Siz Tst Tmp Tst Siz Tst Tmp Siz Tot AI Cu Ni Cr Mo Cb V Ti B N C Heat C Nin P S Siz Tot AI Cu Ni Cr Mo Cb V Ti B N C U Siz Co Cb V Ti B N C Cb V Ti B N C Cb V Ti B N C Cb Cb V Ti B N <td< th=""><th></th><th>Tested Piece</th><th>5</th><th>Size: 1.</th><th>000 2</th><th></th><th></th><th>240.0</th><th>(IN</th><th>1)</th><th><u> </u></th><th></th><th></th><th>arny In</th><th>nact</th><th>Toste</th><th></th><th></th><th>·</th><th></th></td<>		Tested Piece	5	Size: 1.	000 2			240.0	(IN	1)	<u> </u>			arny In	nact	Toste			·	
Id Id Thickness Loc (KSI) (KSI) 2in 8in Dir Hardness 1 2 3 Avg Tmp Dir Siz Tmp %3 SB522 B45 1.000 (DISCRT) L 42 66 25 T 1 2 3 Avg Tmp Dir Siz Tmp %3 SB522 B47 1.123 (DISCRT) L 42 65 25 T 1	Heat				Tst Y			Elong %	Tst		Abs.	Energy(·	·	Tst	Tst	Tst Bl	OWT
Heat Chemical Analysis 1d C No P S Si Tot Al Cu Ni Cr Mo Cb V Ti B N C 3B522 .15 .84 .013 .006 .04 .025 .25 .12 .19 .04 .002 .003 .006 .0001 .0082 U 3B542 .17 1.10 .013 .004 .03 .029 .30 .10 .15 .03 .001 .034 .006 .0001 .0082 U XILLED STEEL MERCURY IS NOT A METALLURGICAL COMPONENT OF THE STEEL AND NO MERCURY WAS INTENTIONALLY ADDED DURING THE MANUFACTURE OF THIS PRODUCT. MTR EN 10204 : 2004 INSPECTION CERTIFICATE 3.1 COMPLIANT 1004 MELTED AND MANUFACTURED IN THE USA. PRODUCTS SHIPPED:	Particular Contractor				_	_		2in 8in	Dir	Hardness	1 2	2 3	Avg					Dir	Siz Tm	
Heat C Nn P S Si Tot AI Cu Ni Cr Mo Cb V Ti B N 3B522 15 .84 .013 .006 .04 .025 .25 .12 .19 .04 .002 .003 .006 .0001 .0082 U 3B542 .17 1.10 .013 .004 .033 .029 .30 .10 .15 .03 .001 .034 .006 .0001 .0082 U KILLED STEEL MERCURY IS NOT A METALLURGICAL COMPONENT OF THE STEEL AND NO MERCURY WAS INTENTIONALLY ADDED DURING THE MANUFACTURE .006 .0001 .0088 U MTR EN 10204 : 2004 INSPECTION CERTIFICATE 3.1 COMPLIANT 100% MELTED AND MANUFACTURED IN THE USA. PRODUCTS SHIPPED:	BB522	B45 B47	1.123 (DISCR	T)	L 42 L 42	66		25 25	T											
Id C Nn P Si TotAL Cu Ni Cr Mo Cb V Ti B N B522 15 .84 .013 .006 .04 .025 .25 .12 .19 .04 .002 .003 .006 .0001 .0082 U B648 .17 1.10 .013 .004 .03 .029 .30 .10 .15 .03 .001 .034 .006 .0001 .0082 U U KILLED STEEL MERCURY IS NOT A METALLURGICAL COMPONENT OF THE STEEL AND NO MERCURY WAS INTENTIONALLY ADDED DURING THE MANUFACTURE 0F THIS PRODUCT. MTR EN 10204:2004 INSPECTION CERTIFICATE 3.1 COMPLIANT 100% MELTED AND MANUFACTURED IN THE USA. PRODUCTS SHIPPED: PRODUCTS SHIPPED: PT	0040	1.50	1.001 (DISCK	1)	<u>L 34</u>	170	_	10	<u> </u>	I	_			_						
B522 15 84 013 006 04 025 25 12 19 04 002 003 006 0001 0082 B648 .17 1.10 .013 .004 .03 .029 .30 .10 .15 .03 .001 .034 .006 .0001 .0082 U KILLED STEEL MERCURY IS NOT A METALLURGICAL COMPONENT OF THE STEEL AND NO MERCURY WAS INTENTIONALLY ADDED DURING THE MANUFACTURE OF THIS PRODUCT. MTR EN 10204:2004 INSPECTION CERTIFICATE 3.1 COMPLIANT 100% MELTED AND MANUFACTURED IN THE USA. PRODUCTS SHIPPED:						V														
B648 .17 1.10 .013 .004 .03 .029 .30 .10 .15 .031 .0034 .0006 .00001 .00088 .0088 .00001 .0088 .0088 .00001 .0088 .0088 .00001 .0088 .00001 .0088 .0088 .00001 .0088 .0088 .00001 .0088 .0088 .00001 .0088 .0088 .00001 .0088 .0088 .00001 .0088 .0088 .00001 .0088 .0088 .00001 .0088 .0088 .00001 .0088 .0088 .00001 .0088 .0088 .00001 .0088 .0088 .00001 .0088 .00001 .0088 .0088 .00001 .0088 .00001 .0088 .00001 .0088 .00001 .0088 .00001 .0088 .00001 .0088 .00001 .0088 .00001 .0088 .00001 .0088 .00001 .0088 .00001 .0088 .00001 .0088 .00001 .0088 .00001 .0088 .00001 .0088 .00001 .0088 .00001 .			P S		025		-		_			B 000		22						
MERCURY IS NOT A METALLURGICAL COMPONENT OF THE STEEL AND NO MERCURY WAS INTENTIONALLY ADDED DURING THE MANUFACTURE OF THIS PRODUCT. MTR EN 10204:2004 INSPECTION CERTIFICATE 3.1 COMPLIANT 100% MELTED AND MANUFACTURED IN THE USA. PRODUCTS SHIPPED:	B648	1.10	.013 .004	1 .03	.029	.30 .10	.1.	5 .03		01 .034	.006	.000	1.00	88						
	MERCURY OF THIS MTR EN 1	IS NOT A METAL PRODUCT. 0204:2004 INSP	ECTION CER	TIFICA	TE 3.1			ID NO M	IERCU	JRY WAS	INTEN	TIONA	LLY)	DDED	DUI	RING T.	HE M	ANUFJ	ACTURE	

Figure B-32. Bearing Plate Flange, Test Nos. SPTA-1 and SPTA-2

09Mar 15 13:22 CERTIFICATE TEST INDEPENDENCE TUBE CORPORATION P/0 No 4500240795 6226 W. 74TH STREET Re1 CHICAGO, IL 60638 S/0 No MAR 280576-001 Tel: 708-496-0380 Fax: 708-563-1950 B/L NO MAR 163860-003 Shp 09Mar 15 Inv No Inv

Sold To: (5016) Ship To: (1) STEEL & PIPE SUPPLY STEEL & PIPE SUPPLY 1003 FORT GIBSON ROAD 1003 FORT GIBSON ROAD CATODSA, OK 74015 CATOOSA, OK 74015

Tel: 918-266-6325 Fax: 918 266-4652

	CERTIFICATE of ANALYSIS and TESTS	Cert. No: MAR	268339 05Mar 15
Part No 0010			
ROUND A500 GR	ADE B(C)	Pcs	Wgt
2.375"0D (2"N	PS) X SCH40 X 21'	111	8,508
-leat Number	Tag No	Pcs	Wgt
E86298	927111	37	2,836
	YLD=69600/TEN=79070/ELG=24.2		
	927113	37	2,836
E86298			

*** Chemical Analysis *** Heat Number C=0.1700 Mn=0.5100 P=0.0100 S=0.0110 Si=0.0190 A1=0.0450 E86298-Cu=0.0300 Cr=0.0300 Mo=0.0030 V=0.0010 Ni=0.0100 Cb=0.0010 MELTED AND MANUFACTURED IN THE USA

WE PROUDLY MANUFACTURE ALL OF OUR HSS IN THE USA. INDEPENDENCE TUBE PRODUCT IS MANUFACTURED, TESTED, AND INSPECTED IN ACCORDANCE WITH ASTM STANDARDS.

CURRENT STANDARDS:

MATERIAL IDENTIFIED AS ASOO GRADE B(C) MEETS BOTH ASTM A500 GRADE B AND A500 GRADE C SPECIFICATIONS.

Page: 1 Last

Figure B-33. BCT Post Sleeve, Test No. SPTA-2

No: MAR 268339

R#15-0626 H#E86298

BCT Pipe Sleeves

June 2015 SMT

CERTIFICATE OF COMPLIANCE

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

CUSTOMER NAME: TRINITY INDUSTRIES

CUSTOMER PO: 187087

SHIPPER #: 061972 DATE SHIPPED: 11/06/2017

82.70

LOT#: 30361-P

SPECIFICAT	ION:	ASTM A307, GRADE	E A MILD CARBON ST	FEEL BOLTS
TENSILE:	SPEC:	60,000 psi*min	RESULTS:	66,566
HARDNESS:		100 max		66,832 82.60

Pounds Per Square Inch.

COATING: ASTM SPECIFICATION F-2329 HOT DIP GALVANIZE ROGERS GALVANIZE: 30361-P

CHEMICAL COMPOSITION

GRADE	HEAT#	С	Mn	Р	S	Si
1010	DL17100590	.10	.41	.005	.005	.05

QUANTITY AND DESCRIPTION:

4,825 PCS 5/8" X 14" GUARD RAIL BOLT P/N 3540G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS

emer

da Micomas

11161 DATE

OFFICIAL SEAL MERRY F. SHANE NOTARY PUBLIC - STATE OF ILLINOIS MY COMMISSION EXPIRES OCTOBER 3, 2018

Figure B-34. 14-in. (356-mm) Long Guardrail Bolt, Test Nos. SPTA-1 and SPTA-2

CHARTER STEEL	A Division of	ARTER EL				EMAIL					1658 Cold Springs I kville, Wisconsin 53 (262) 269-2 1-800-437-6	1080 1400 1769
Melted in US				СНА	RTER S	TEEL TE	ST RE	PORT			Fax (262) 268-2	570
Deck	er Manufa	cturing Cor				Cust P.O. omer Part # Sales Order Heat # Ship Lot # Grade				1010 A .	50366-17 1.125 10 301379 105087 44861 AK FG RHQ 1-	010 947 780 179 1/8
703 N	I. Clark St n,MI-4922		þ,			Process Finish Size Ship date					HR 1- 27-AUG	1/8
hereby certify the hese requirement	at the materia its. The recor	al described her ding of false, fic	ein has bei titious and	nauouients	tured in accor tatements or solts of Heat	entres on th	is docume	cations and a ant may be p	standards lie unishable a	sted below a s a felony u	and the second s	and it
Lab Code; 7388 Chem XVV	C ,09 AL .022	MN .47 N .0070	P .006 B .0001	5 .008 TI .001	SI .080 NB .001	NI .04	CR .08	MO .01	CU .08	SN .006	V .001	
OCKWELL B (HR OD SIZE (Inch) OD OUT OF ROU		# of Tests 3 16 8		Test res Min Value 59 1.122 .003	ults of Rollin	g Lot # 12212 Max Value 61 1.131 .008	251	Mean 50 1.127 .905	Value	RU	LAB = 0358-02	-
REDUCTION	RATID=30:1											
					and the second second	are seen to be						_
	Char deter Meel Cust	ufactured per (ter Steel certif ctors in place s customer sp omer Documen	ies this pro o measure scification	oduct is ind for the pre- s with any	listinguishal	ole from bac flation withi harter Steel	kground	icess & proi				=
petilications: dditional Comme	Char deter Meel Cust	ter Steel certif ctors in place i s customer sp	ies this pro o measure scification	oduct is ind for the pre- s with any	listinguishal sence of rad applicable C	ole from bac flation withi harter Steel	kground n our pro exceptio	icess & proi				
	Char deter Meel Cust	ter Steel certif ctors in place i s customer sp	ies this pro o measure scification	oduct is ind for the pre- s with any	listinguishal sence of rad applicable C	ole from bac liation vithi fharter Steel n = 16 Dab	kground n our pro exceptio ed = 01-t	icess & pro- ma for the fi JEC-f6	ducts. Ollowing cu	y dated MT		

Figure B-35. 5%-in. (16-mm) Diameter Nut, Test Nos. SPTA-1 and SPTA-2

R#16-692 5/8"x10" GR Bolt
Orange Paint H#20351510 L#150424L

TRINITY HIGHWAY PRODUCTS, LLC 425 East O'Connor Ave. Lima, Ohio 45801 419-227-1296

					MATE	RIAL	CERT	IFIC/	ATIO	N					
Custo	omer:		Stock	(-			Date:	Dece	mber 16	6, 2015				
							ice Nu		THE OWNER			-			
						L	.ot Nu	mber:	1	50424	4L				
Part Nun	nber:		35000	3		-	Qua	antity:	1	16,70	2	Pcs.			2
Descrip	tion.	5/8"	x 10"	G.R.	Heat		203	51510	16,	702					
Beeding	, and the second		Bolt		Numbers	s:			1		1				
Spe	ecifica	ation:	ASTN	<u>/ A30</u>	7-A / A153			BATCUT	DV.	Ì	H	123	25 /	13	
					IVIA	TERIA	LCHE	IVIIST	KX					1.1	
Heat	C	MN	P	S	SI NI	CR	MO	CU	SN	V	AL	N	В	TI	NB
00054540	00		007	000			0.4	00	004	0.04	000	007	0004	004	004

TIOCIL																
20351510	.09	.33	.007	.002	.06	.04	.05	.01	.06	.004	.001	.028	.007	.0001	.001	.001

PLATING OR PROTECTIVE COATING

HOT DIP GALVANIZED (Lot Ave. Thickness / Mils)

2,52 (2.0 Mils Minimum)

**** THIS PRODUCT WAS MANUFACTURED IN THE UNITED STATES OF AMERICA****

THE MATERIAL USED IN THIS PRODUCT WAS MELTED AND MANUFACTURED IN THE U.S.A. WE HEREBY CERTIFY THAT TO THE BEST OF OUR KNOWLEDGE ALL INFORMATION CONTAINED HEREIN IS CORRECT.

RINITY HIGHWAY PRODUCTS LLC

STATE OF OHIO, COUNTY OF ALLEN SWORN AND SUBSCRIBED BEFORE ME THIS

127 -17-15

NOTARY PUBLIC

425 E. O'CONNOR AVENUE

LIMA, O

MONIQUE 91827/12396 Notary Public, State of Ohio My Commission Expires July 5, 2020

Figure B-36. 10-in. (254-mm) Long Guardrail Bolt, Test Nos. SPTA-1 and SPTA-2

3606

AZZ GALVANIZING-HAMILTON 7825 S. HOMESTEAD DRIVE HAMILTON, IN 46742 TEL: (260) 488-4477 FAX: (260) 488-4499

ELGIN FASTENER GROUP 1415 S BENHAM RD VERSAILLES IN 47042

8/17/16

MATERIAL CERTIFICATION

DESCRIPTION Misc. Fabricated Steel

P. O./ JOB# 114381/0053014/AAJ

GALVANIZED WEIGHT# 43,369

AZZ JOB #: 43534234

HEAT # 10435580

<u>CERTIFICATION:</u> AZZ GALVANIZING-HAMILTON CERTIFIES THAT THE ABOVE REFERENCED MATERIALS HAVE BEEN GALVANIZIED IN ACCORDANCE WITH THE ASTM-123 AND OR ASTM-153 SPECIFICATION STANDARD AND MEET THE CRITERIA THEREIN. THIS PRODUCT HAS BEEN GALVANIZED IN THE USA.

AVERAGE MIL THICKNESS: 2.94

y Karey Beverly Laney Ouality

Figure B-37. 1¹/₄-in. (32-mm) Long Guardrail Bolt

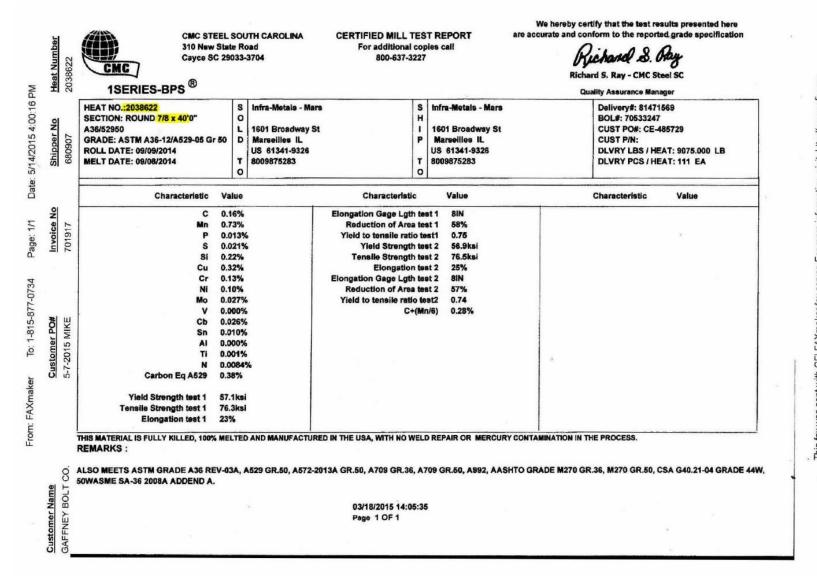


Figure B-38. 8-in. (203-mm) Long Guardrail Bolt, Test Nos. SPTA-1 and SPTA-2

Web: www.portlandbolt.com | Email: sales@portlandbolt.com

Phone: 800-547-6758 | Fax: 503-227-4634

3441 NW Guam Street, Portland, OR 97210

| CERTIFICATE OF CONFORMANCE |

÷-----÷

 For: CASH SALE

 PB Invoice#: 96359

 Cust PO#:
 MIDWEST ROADSIDE

 Date:
 2/08/2017

 Shipped:
 2/10/2017

We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.

Description: 7/8 X 8-1/2 GALV ASTM F3125 GRADE A325 HEAVY HEX BOLT

Heat#: NF16102579	Base Steel: 414	0 Diam: 7/8	
Source: KREHER STEEL C) LLC	Proof Load: 39,250 I	ıBF
C: .420 Mn: .930	P: .013	Hardness: 269 HBN	
s : .025 si: .250	Ni: .080	Tensile: 57,700 LBF	RA: .00%
Cr: .910 Mo: .180	Cu: .190	Yield: 0	Elon: .00%
Pb: .000 V : .009	Cb: .000	Sample Length: 0	
N : .000	CE: .6702	Charpy:	CVN Temp:
LOT#18344			

Nuts:

ASTM A563DH HVY HX

Coatings:

ITEMS HOT DIP GALVANIZED PER ASTM F2329/A153C

Other:

ALL ITEMS MELTED & MANUFACTURED IN THE USA

By: Certification Department Quality Assurance Dane McKinnon

R#17-414 NY DOT BOX BEAM 7/8" BOLTS AND NUTS

Figure B-39. 8¹/₂-in. (216-mm) Long Bolt, Test No. SPTA-1

MICROCLEANLINESS SPECIFICATION ASTM E45 METH A A B C D T H T H T H T H T H AVERAGE 1.7 0.5 1.3 0.0 0.8 0.1 0.8 0.2 MACROSTRUCTURAL TEST PER - ASTM E381 PLATE I PLATE II S R C FRONT 1 1 1 1 NONE MIDDLE 1 1 1 NONE PAGE 1 We certify that these data are correct and in compliance with specified requirements. Gerdau Monroe	GƏ GERDAL		¢	GEI 559 JAC	RDAU SPECIAL S 1 MORRILL ROA KSON, MICHIGA	STEEL NORTH D N 49201	HAMERICA	
E005973-2 B1045SC1.1250 T5062745 75062745 Nome Margin 301668 101 5/23/16 5/23/16 NEWOW TO 210mm Billet 210mm Billet 5/23/16 NUMYTITE INC ONE UNNTITE DRIVE UNYTITE, INC LASALLE PLANT 325 CIVIC RD LASALLE, IL 61301 04465 1 1/8" RN 24' 10 1/2" 04465 1 1/8" RN 24' 10 1/2" 04465 1 1/8" RN 24' 10 1/2" 0446 1 0.85 1 1/8" RN 24' 10 1/2" 0440 1.015 0.012 0.028 0.25 0.11 0.16 0.04 0.18 0.001 0.003 V V Nb 0.055 0.001 SPECIFICATION ASTM E112 FINE GRAIN 5-8 MICROCLEANLINESS SPECIFICATION ASTM E12 FINE GRAIN 5-8 MICROCLEANLINESS SPECIFICATION ASTM E45 METH A A A B C D AVERAGE 1.7 0.5 1.3 0.0 0.8 0.1 0.8 0.2 MACROSTRUCTURAL PLATE I PLATE II PLATE II SR C NONE NONE FRONT 1 1 NONE		the second se	the second se	TREPORT				
210mm Billiet Mereor to UNYTITE INC ONE UNYTITE DRIVE UNYTITE INC ONE UNYTITE DRIVE DERU , IL 61354-9710 ORDERED CONDERED CONDENSE SECURIC RD LASALLE , IL 61301 ORDERED CONTORE SECURICATION ASTME 0/28/06 CHEMICAL ANALYSIS CHEMICAL ANALYSIS C Mn P S Si Ni Cr Mo Cu Sn Al 0.044 0.73 0.012 0.028 0.25 0.11 0.16 0.04 0.18 0.001 0.003 V ND 0.055 0.001 GRAIN SIZE SPECIFICATION ASTM E112 FINE GRAIN 5-8 MICROCLEANLINESS SPECIFICATION ASTM E12 FINE GRAIN 5-8 MICROCLEANLINESS SPECIFICATION ASTM E12 FINE GRAIN 5-8 MICROCLEANLINESS SPECIFICATION ASTM E12 FINE GRAIN 5-8 MACROSTRUCTURAL FRONT 1 <td co<="" td=""><td></td><td></td><td>MBER</td><td></td><td></td><td></td><td></td></td>	<td></td> <td></td> <td>MBER</td> <td></td> <td></td> <td></td> <td></td>			MBER				
UNYTITE INC ONE UNYTITE DRIVE UNYTITE, INC LASALLE PLANT PERU, IL 61354-9710 325 CIVIC RD LASALLE, IL 61301 ORDERED CHEMICAL ANALYSIS C Mn P S Si Ni Cr Mo Cu Sn Al O.12 0.028 0.25 0.11 0.16 0.04 0.18 0.001 0.003 NACC MICROCLEANLINESS SPECIFICATION ASTM E45 METH A A MACROSTRUCTURAL TEST PER - AS	REPORT TO	10-						
PERU , IL 61354-9710 LASALLE , IL 61301 ORDERED SAME 1045 Lawarm CURTOWER SPECIFICATION SAE 1045; ASTM E381-01; RMS 021 DATED 9/28/06 CURTOWER SPECIFICATION CHEMICAL ANALYSIS C Mn P S Si Ni Cr Mo Cu Sn Al 0.44 0.73 0.012 0.028 0.25 0.11 0.16 0.04 0.18 0.001 0.003 V Nb 0.055 0.001 GRAIN SIZE SPECIFICATION ASTM E112 FINE GRAIN 5-8 MICROCLEANLINESS SPECIFICATION ASTM E112 FINE GRAIN 5-8 MICROSTRUCTURAL TEST PER - ASTM E381 PLATE I PLATE I PLATE I PLATE II PLATE II MICROSTRUCTURAL TEST PER - ASTM E381 PLATE II PLATE I PLATE I MICROSTRUCTURAL ME conthymone <th colspan<="" td=""><td></td><td>VE</td><td></td><td>UNYTITE, II</td><td>1C</td><td></td><td></td></th>	<td></td> <td>VE</td> <td></td> <td>UNYTITE, II</td> <td>1C</td> <td></td> <td></td>		VE		UNYTITE, II	1C		
SEADE SEZE RIND LEMOTM 1045 1 1/8" RND 24' 10 1/2" CURTOWER SPECIFICATIONS SAE 1045; ASTM E381-01; RMS 021 DATED 9/28/06 CHEMICAL ANALYSIS C Mn P S Si Ni Cr Mo Currower SPECIFICATION C Mn P S Si Ni Cr Mo Currower SPECIFICATION V Nb 0.012 0.028 0.25 0.11 0.16 0.04 0.18 0.001 0.003 V Nb 0.055 0.001 0.028 0.25 0.11 0.16 0.04 0.18 0.001 0.003 V Nb 0.055 0.001 SECIFICATION ASTM E112 FINE GRAIN 5-8 MICROCLEANLINESS SPECIFICATION ASTM E45 METH A A B C D D 0.2 MACROSTRUCTURAL TEST PER - ASTM E381 PLATE II PLATE II NONE MIDDLE 1	PERU , IL 61354-	-9710						
1045 1 1/9" RND 24' LNN Currower spectrocations SAE 1045; ASTM E381-01; RMS 021 DATED 9/28/06 CHEMICAL ANALYSIS C Mn P S Si Ni Cr Mo Cu Sn Al 0.44 0.73 0.012 0.028 0.25 0.11 0.16 0.04 0.18 0.001 0.003 V Nb 0.055 0.001 0.028 0.25 0.11 0.16 0.04 0.18 0.001 0.003 V Nb 0.055 0.001 0.055 0.001 0.001 0.003 GRAIN SIZE SPECIFICATION ASTM E112 FINE GRAIN 5-8 MICROCLEANLINESS SPECIFICATION ASTM E45 METH A AVERAGE 1.7 0.5 1.3 0.0 0.8 0.1 0.9 0.2 MACROSTRUCTURAL TEST PER - ASTM E381 PLATE II PLATE II NONE MIDDLE 1 1 NONE NONE NONE	GRADE	80	the second s					
SAE 1045; ASTM E381-01; RMS 021 DATED 9/28/06 C Mm P S Si Ni Cr Mo Cu Sn Al 0.44 0.73 0.012 0.028 0.25 0.11 0.16 0.04 0.18 0.001 0.003 V Nb 0.055 0.001 0.055 0.001 0.055 0.001 GRAIN SIZE SPECIFICATION ASTM E112 FINE GRAIN 5-8 MICROCLEANLINESS SPECIFICATION ASTM E45 METH A A B C D AVERAGE 1.7 0.5 1.3 0.0 0.8 0.1 0.8 0.2 MACROSTRUCTURAL TEST PER - ASTM E381 PLATE I PLATE II PLATE II FRONT 1 1 1 NONE MIDDLE 1 1 NONE NONE PAGE 1 We certify that these data are correct and in compliance with specified requirements.		1 1/8"	RNI					
CHEMICAL ANALYSIS C Mn P S Si Ni Cr Mo Cu Sn Al 0.44 0.73 0.012 0.028 0.25 0.11 0.16 0.04 0.18 0.001 0.003 V Nb 0.055 0.001 GRAIN SIZE SPECIFICATION ASTM E112 FINE GRAIN 5-8 MICROCLEANLINESS SPECIFICATION ASTM E45 METH A A B C D T H T H T H T H T H T H AVERAGE 1.7 0.5 1.3 0.0 0.8 0.1 0.8 0.2 MACROSTRUCTURAL TEST PER - ASTM E381 PLATE I PLATE II S R C FRONT 1 1 1 1 NONE MIDDLE 1 1 1 1 NONE MIDDLE 1 1 1 1 NONE MCCONT 1 1 1 1 M	SAE 1045; ASTM E38	31-01; RMS 021 I	DATED 9/28/	s 06				
0.44 0.73 0.012 0.028 0.25 0.11 0.16 0.04 0.18 0.001 0.003 V Nb 0.055 0.001 GRAIN SIZE SPECIFICATION ASTM E112 FINE GRAIN 5-8 MICROCLEANLINESS SPECIFICATION ASTM E45 METH A A B C D AVERAGE 1.7 0.5 1.3 0.0 0.8 0.1 0.8 0.2 MACROSTRUCTURAL TEST PER - ASTM E381 PLATE II S R C NONE MIDDLE 1 1 1 NONE NONE NONE NONE We certify that these data are correct and in compliance with specified requirements.		CHEN	ICAL ANALYS	SIS				
0.44 0.73 0.012 0.028 0.25 0.11 0.16 0.04 0.18 0.001 0.003 V Nb 0.055 0.001 GRAIN SIZE SPECIFICATION ASTM E112 FINE GRAIN 5-8 MICROCLEANLINESS SPECIFICATION ASTM E45 METH A A B C D AVERAGE 1.7 0.5 1.3 0.0 0.8 0.1 0.8 0.2 MACROSTRUCTURAL TEST PER - ASTM E381 PLATE II S R C FRONT 1 1 1 NONE NONE NONE MIDDLE 1 1 1 NONE NONE NONE	C Mn	P S S	Si Ni	Cr Mo	o Cu	Sn	Al	
V ND 0.055 0.001 GRAIN SIZE SPECIFICATION ASTM E112 FINE GRAIN 5-8 MICROCLEANLINESS SPECIFICATION ASTM E45 METH A A B C D D T H T H T H T H T H T H AVERAGE 1.7 0.5 1.3 0.0 0.8 0.1 0.8 0.2 MACROSTRUCTURAL TEST PER - ASTM E381 PLATE I PLATE II S R C FRONT 1 1 1 1 NONE MIDDLE 1 1 1 NONE MIDDLE 1 1 1 NONE PAGE 1 We certify that these data are correct and in compliance with specified requirements. Gerdau Monroe	0.44 0.73 0.	012 0.028 0.2	25 0.11	0.16 0.04	0.18	0.001		
GRAIN SIZE SPECIFICATION ASTM E112 FINE GRAIN 5-8 MICROCLEANLINESS SPECIFICATION ASTM E45 METH A A B C D T H T H T AVERAGE 1.7 0.5 1.3 0.0 0.8 0.1 0.8 0.2 MACROSTRUCTURAL TEST PER - ASTM E381 PLATE II PLATE II FRONT 1 1 1 NONE NONE MIDDLE 1 1 1 NONE NONE PAGE 1 We certify that these data are correct and in compliance with specified requirements. Minute	V Nb						0.005	
GRAIN SIZE SPECIFICATION ASTM E112 FINE GRAIN 5-8 MICROCLEANLINESS SPECIFICATION ASTM E45 METH A A B C D T H T H T AVERAGE 1.7 0.5 1.3 0.0 0.8 0.1 0.8 0.2 MACROSTRUCTURAL TEST PER - ASTM E381 PLATE II PLATE II FRONT 1 1 1 NONE NONE MIDDLE 1 1 1 NONE NONE PAGE 1 We certify that these data are correct and in compliance with specified requirements. Minute	0.055 0.001							
MICROCLEANLINESS SPECIFICATION ASTM E45 METH A A B C D T H T H T H T H T H AVERAGE 1.7 0.5 1.3 0.0 0.8 0.1 0.8 0.2 MACROSTRUCTURAL TEST PER - ASTM E381 PLATE I PLATE II S R C FRONT 1 1 1 1 NONE MIDDLE 1 1 1 NONE MIDDLE 1 1 1 NONE PAGE 1 We certify that these data are correct and in compliance with specified requirements. Gerdau Monroe								
A B C D T H T H T H T H AVERAGE 1.7 0.5 1.3 0.0 0.8 0.1 0.8 0.2 MACROSTRUCTURAL TEST PER - ASTM E381 PLATE I PLATE II S R C FRONT 1 1 1 NONE MIDDLE 1 1 1 NONE MIDDLE 1 1 1 NONE MIDDLE 1 1 1 NONE	GRAIN SIZE	SPECIFICATION A	ASTM E112	FINE GRA	IN 5-8			
T H O O Inclusion	MICROCLEANLINESS	SPECIFICATION A	STM E45 MET	H A				
PLATE I PLATE II S R C FRONT 1 1 MIDDLE 1 1 PAGE 1 We certify that these data are correct and in compliance with specified requirements. Gerdau Monroe Image: Additional state in the section of	Т	н т н	т н т	н				
S R C FRONT 1 1 1 MIDDLE 1 1 1 PAGE 1 We certify that these data are correct and in compliance with specified requirements. Gerdau Monroe Image: Additional systems	MACROSTRUCTURAL	TEST PER - A	STM E381					
FRONT 1 1 1 NONE MIDDLE 1 1 1 NONE PAGE 1 We certify that these data are correct and in compliance with specified requirements. Gerdau Monroe	PLATE I		PLA	TE II				
We certify that these data are correct and in compliance with specified requirements.	FRONT 1 1	1						
We certify that these data are correct and in compliance with specified requirements.			1.					
Gerdau Monroe		hat these data are corre	ect and in complia	ince with specifie	d requirement	S.		
3000 East Front Street Monroe, MI 48161 Outlity Assurance Representative	Gerdau Monroe 3000 East Front Street		ę		flunderf.	Qabriela Falipe		

Figure B-40. 7/8-in. (22-mm) Hex Nut, Test No. SPTA-1

NUCOR -!-NUCOR CORPORATION NUCOR STEEL NEBRASKA

Mill Certification 4/5/2012

911 East Nucor Road IORFOLK, NE 68701 (402) 644-0200 Fax: (402) 644-0329

SHINSHO AMERICAN CORP 26200 TOWN CENTER DR NOVI, MI 48375 (860) 793-1232 Fax: (248) 675-5575 Sold To:

Ship To: UNYTITE, INC ONE UNYTITE DRIVE PERU, IL 61354 (815) 224-2221

Bar Quality AT Magnetic Flux Leai 00) Round 00) Round 25 0° 1045k AT					Part Number Lot #		0300XHL0		
00) Round 00) Round 25 0" 1045#					Lot #	NF12101	05451		
00) Round 25 0" 1045M	ALAT				1040		NF1210105451		
	ALAT			Heat # NF12101054					
AT					B.L. Number	N1-2242	54		
	045MLAT						54		
				Ci	Customer Part #				
ribed herein has been manufact	ured in accordance	ce with the specific	ations and stand	lards lisled above	e and that it satisfies t	hose requirem	ents.		
-B accreditation V Si	s	Р	Cu	Cr	Ni	Mo	AI	Cb	
0.000% 0.24% Ca As	0.020% N	0.015% "NICR	0.09%	0.08%	0.04%	0.00%	0.021%	0.000%	
0.0008% 0.0000%	66 ppm	0.12							
	*MAGN	ETIC FLUX L	EAKAGE OK	:				:03.3mm)	
: 1 *Center: 2				8					
st) Alumina: T: 0.5 H: 0.	0 Silicates	: T: 0.0 H:	0.0 Globu	ular: T:0.5	H: 0.0				
	0.000% 0.24% Ca As 0.0008% 0.0000% a) 0 per ASTM E112-9 s: 1 *Center: 2 st) Alumina: T: 0.5 H: 0. sees of the steel material:	V Si S 0.000% 0.24% 0.020% Ca As N 0.0008% 0.0000% 66 ppm a) *Tensile *MAGN 0 per ASTM E112-9 6*Reduct s: 1<*Center:	V Si S P 0.000% 0.24% 0.020% 0.015% Ca As N *NICR 0.0008% 0.0000% 66 ppm 0.12 a) *Tensile 1: 102223psi *MAGNETIC FLUX LI 0 per ASTM E112-9 6*Reduction Ratio 56 s: 1<*Center:	V Si S P Cu 0.000% 0.24% 0.0015% 0.015% 0.09% Ca As N *NICR 0.09% 0.0008% 0.0000% 66 ppm 0.12 a) *Tensile 1: 102223psi (705MPa) *MAGNETIC FLUX LEAKAGE OK 0 per ASTM E112-9 6*Reduction Ratio 56 :1 s: 1 *Center: 2 st) Alumina: T: 0.5 H: 0.0 Silicates: T: 0.0 H: 0.0 Globu	V Si S P Cu Cr 0.000% 0.24% 0.020% 0.015% 0.09% 0.08% Ca As N *NICR 0.09% 0.08% 0.0008% 0.0000% 66 ppm 0.12 a) *Tensile 1: 102223psi (705MPa) *MAGNETIC FLUX LEAKAGE OK 0 per ASTM E112-9 6*Reduction Ratio 56 :1 s: 1 *Center: 2 st) *Center: 2 st) Alumina: T: 0.5 H: 0.0 Silicates: T: 0.0 H: 0.0 Globular: T: 0.5	V Si S P Cu Cr Ni 0.000% 0.24% 0.020% 0.015% 0.09% 0.08% 0.04% Ca As N *NICR 0.09% 0.08% 0.04% 0.0008% 0.0000% 66 ppm 0.12 * * * a) *Tensile 1: 102223psi (705MPa) * * * * * a) *Tensile 1: 102223psi (705MPa) *	V Si S P Cu Cr Ni Mo 0.000% 0.24% 0.0015% 0.015% 0.00% 0.08% 0.04% 0.00% Ca As N *NICR 0.09% 0.08% 0.04% 0.00% 0.0008% 0.0000% 66 ppm 0.12 *Elongation 20% *MAGNETIC FLUX LEAKAGE OK *Machined Strai a) *Tensile 1: 102223psi (705MPa) *Elongation 20% *Machined Strai 0 per ASTM E112-9 6*Reduction Ratio 56 :1 *Machined Strai *Machined Strai s: 1 *Center: 2 * * st) Alumina: T: 0.5 H: 0.0 Silicates: T: 0.0 H: 0.0 Globular: T: 0.5 H: 0.0	V Si S P Cu Cr Ni Mo Al 0.000% 0.24% 0.020% 0.015% 0.09% 0.08% 0.04% 0.00% 0.021% Ca As N *NICR 0.09% 0.08% 0.04% 0.00% 0.021% 0.0008% 0.0000% 66 ppm 0.12 *Elongation 20% in 8"(% in 2 a) *Tensile 1: 102223psi (705MPa) *Elongation 20% in 8"(% in 2 *MAGNETIC FLUX LEAKAGE OK *Machined Straightened OK 0 per ASTM E112-9 6"Reduction Ratio 56 :1 s: 1 *Center: 2 st) Alumina: T: 0.5 H: 0.0 Silicates: T: 0.0 ses of the steel materials in this product, including melting, have been performed weld free	

Jim Hill Division Metallurgist

Page 1 of 1

Figure B-41. 7/8-in. (22-mm) Hex Nut, Test Nos. SPTA-1 and SPTA-2

ľ

JINAN STAR FASTENER CO., LTD

NO.75 CUIPING STREET PINGYIN JINAN CHINA TEL: 0086 531 87896380 FAX: 0086 531 87871032 E-mail: zhangyuhua@star-fastener.com

CERTIFICATE OF INSPECTION

Manufacturering Date:2012-7-1						DA	TE: 2	2012-7	-12	
Customer Part Number客户产品代号			92	006				11 - 12		
Customer Control (PO) Number 좀 ሥ 지 마.			1201	39589					8	
Product Description产品描述		7/8	3-9x8-1	/2 A307	Ġ					
Surface Condition表面处理		1	Н	DG						
Head Marking头部标记		3	07A a	nd 01F	۱L.					
Lot Size (QTY Shipped):装运数量		700pcs								
Lot Number订单号	FAS1251									
Mechanical properties机械性能要求		SAE	J429	-2011 3	807A					
Material type:	241411	LY	He	at Numi	ber	331	200	200696		
	C%	Mn%	Si%	S%	P%	Ni%	Cr%	Cu	1%	
Chemical composition:	0.05	ayo	014	0.046	0.023					
Sampling Plan Used 使 用的抽样方案	Dimensional & A			69-2000 5 AC=1		ical AC	QL= 0.(65 AC=	0	
Specification技术要求:	Test method 檢測标准	Standard 标准	单位	Test value 实测值				ACC 合格	RE、 不全 格	
Width across Flat对边尺寸	ASME B18.2.1-2010	1.269-1.312	in	1.29	5-1.299	50/1		50	0	
Width across Corners对角尺寸	ASME B18.2.1-2010	1.447-1.516	in	1.484-1.489		50/1		50	0	
Height高度	ASME B18.2.1-2010	0.531-0.604	in	0.54	3-0.549	50/1		50	0	
Body Dia杆径	ASME B18.2.1-2010	0.852-0.895	in	0.86	4-0.866	50)/1	50	0	
Thread length螺纹长度	ASME B18.2.1-2010	min:2,25	in	2.3	2-2.34	50)/1	50	0	
Length总长度	ASME B18.2.1-2010	8.3-8.66	in	8.4	8-8.52	50	D/1	50	0	
Major 大径	ASME B18.2.1-2010	0.859-0.873	in	0.862	25-0.866	50	D/1	50	0	
74	ANSI B1.1-2003	GO			GO	5)/1 ·	50	0	
Thread 螺纹	ANSI B1.1-2003	NO GO		N	D.GO	5	D/1	50	0	
Surface hardness表面硬度	ASTM F606-2011		30N			-5	/0	- 5-	-0	
Core Hardness芯部硬度	ASTM F606-2011	69-100	HR	9t-	-96.7	5	i/0	5	0	
Tensile Strength抗拉强度	ASTM F606-2011	60	KSI	924	-93.9	5	i/0	5	0	
Proof Load保证载荷	ASTM F606-2011		KSL			1	40		-0	
- Docarburized脱储	ASTM F606-2011		. in				/0 ~	-1-	- 0-	
Appearance外别	ASTM F788-2008	Visual	20		OK	5	0/1	50	0	

Signature: Fu Yan Jun

Ţ

Figure B-42. 8¹/₂-in. (216-mm) Long Bolt, Test No. SPTA-2

CERTIFIED MATERIAL TEST REPORT FOR ASTM A563, GRADE A FIN HEX NUTS

FACTORY: JIAXIN GUANGMING HARDWARE CO.,LTD.. DATE:2017.8.15 ADDRESS DALIU INDUSTRY ZONE,WUYUAN TOWN,HAIYAN,ZHEJIANG,CHINA. MFG LOT NUMBER D705JS111

CUSTOM/INFASCO DISTRIBUTION

PO NUMBER: PO#229695 PART NO NFJ1U-56000G01V

SAMPLE SIZE : ACC. TO ASME B18, 18-2011 SIZE: 7/8-9 HDG T/0.022" QNTY: 4800 PCS

STEEL PROPERTIES STEEL GRADE: C1008

HEAT NUMBER: G16-7344

MANU.DATE:2017.5.15

CHEMISTRY SPEC:	C %*100	Mn%*100	P %*1000	S %*1000
	0.55max	min	0.12max	0.15max
TEST:	0.06	0.28	0.028	0.013

DIMENSIONAL INSE	PECTIONS	SPECIFIC	ATION: ASME/ANSI	B18.2.2-20	10
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
*****	******	*******	* * * * * * * * * * * * * * * * * * * *	*****	******
APPEARANCE	ASTM F812-07		PASSED	100	0
THREAD	ASME B1.3		PASSED	32	0
ACROSS FLATS		1.269-1.312	1.289-1.301	32	0
WIDTH A/C		1.447-1.516	1.451-1.502	8	0
HEIGHT		0.724-0.776	0.731-0.769	8	0
MINOR DIA.					
MARK	NO MARKING		PASSED	100	0
MECHANICAL PROP	PERTIES: 1/4"thru1"	SPECIFIC	ATION: ASTM A563-	07a GR-A	
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
*****	******	*****	* ***************	******	******
HARDNESS :	ASTM F606-10a	B 68-32 HRC	HRC21-HRC23	8	0
PROOF LOAD:	ASTM F606-10a	MIN 68000 PSI	68020PSI	4	0
CHARACTERISTIC:	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
******	******	****	*****	******	******
HOT DIP GALVANI	ASTM F 2329-05	MIN 0.0017"	0.0019 IN"	5	0
ALL TESTS IN AG	CCORDANCE WITH	THE METHOD	S PRESCRIBED IN T	THE APP	LICABLE
ASTM OR SAE SPEC	IFICATION. WE CER	TIFY THATTHIS D	ATA IS A TRUE REL	LSENT/	TION OF
INFORMATION PRO	VIDED BY THE M	ATERIAL SUPPLE	於出明五會對於有醫行	G LABC	RATORY
All parts meet the requ	irements of FQA and	records of compline	CHEGOGRAMONTING INANOMARE CO., L	11.	
Maker's ISO#626012Q)11102ROS				

(SIGNATURE OF Q.A.A.A.M.R.) (NAME OF MANUAL (NEW)

Figure B-43. 7/8-in. (22-mm) Hex Nut, Test No. SPTA-2

		C	Birmi		lanufacturii 23 35202			
Customer	Midwe	est Machir	iery	r	Date Shipp	ed _	06/16	6/2016
Customer Ord	ler Number	32	.75	E	3FM Order	Number	1338859	
			ltem	Descript	tion			
Description		ŧ	5/8"-11 x 10"	Hex Bolt			Qty	157
Lot #	208977	Sp	ecification	ASTM A307	7-14 Gr A	Finish .	ASTM	F2329
Heat#	D	L15107048	Raw Ma	terial Ar	nalysis			
Chemical Co C 0.22	omposition (v Mn 0.82	vt% Heat A P 0.007	Analysis) By S 0.010	Material Si Si 0.27	upplier Cu 0.20	Ni 0.06	Cr 0.10	Мо 0.015
			Mechan	ical Pro	perties			
Sample # 1 2 3 4 5	Hardness 91 HRBW		Tensile Str 21,7	rength (Ibs) 700		Tensile Sti 97,		ii)
customer or	tion represent ler. The sam ed and manur	ples tested	conform to t	sis of the pr he ASTM st	oduct supp andard list	blied on the sed above.	stated	
Authorized Signature:		13 Irian Hugh			Date:	6/16/	2016	

Figure B-44. 10-in. (254-mm) Long Bolts, Test Nos. SPTA-1 and SPTA-2

R#16-0217

BCT Hex Nuts

December 2015 SMT

Control# 210101523

Fastenal part#36713

22979 Stelfast Parkway Strongsville, Ohio 44149

STELFAST°INC.

CERTIFICATE OF CONFORMANCE

DESCRIPTION OF MATERIAL AND SPECIFICATIONS

- Sales Order #: 129980
- Part No: AFH2G0625C
- Cust Part No: 36713
- Quantity (PCS): 1200
- Description: 5/8-11 Fin Hx Nut Gr2 HDG/TOS 0.020
- Specification: SAE J995(99) GRADE 2 / ANSI B18.2.2
- Stelfast I.D. NO: 595689-O201087
- Customer PO: 210101523
- Warehouse: DAL

The data in this report is a true representation of the information provided by the material supplier certifying that the product meets the mechanical and material requirements of the listed specification. This certificate applies to the product shown on this document, as supplied by STELFAST INC. Alterations to the product by our customer or a third party shall render this certificate void.

This document may only be reproduced unaltered and only for certifying the same or lesser quantity of the product specified herein. Reproduction or alteration of this document for any other purpose is prohibited.

Stelfast certifies parts to the above description. The customer part number is only for reference purposes.

David Biss

Quality Manager

December 07, 2015

Page 1 of 1

Figure B-45. ⁵/₈-in. (16-mm) Diameter Nuts, Test Nos. SPTA-1 and SPTA-2

CERTIFIED MATERIAL TEST REPORT ASTM A307, GRADE A - MACHINE BOLTS FOR

FACTORY: NINGBO ECONOMIC & TECHNICAL DEVELOPMENT REPORT DATE:2016/12/29 ZONE YONGGANG FASTENERS CO., LTD. R#17-507 H#816070039

FuShan South Road No.17, BeiLun NingBo China BCT Cable Bracket Bolts ADDRESS: MANUFACTURE DATE:2016/12/2

TEL#(852)25423366

MFG LOT NUMBER:M-2016HT927-9

CUSTOMER: FASTENAL SAMPE SIZE: ACC.TO Dimension:ASME B18.18-11;Mechanical Properties:ASTM F1470-12 SHIPPED QTY: 4800PCS MANU QTY: 4800PCS SIZE: 5/8-11X1 1/2 HDG HEADMARKS: 307A PLUS NY

PO NUMBER: 220023115 PART NO:1191919

STEEL PROPERTIES:

MATERIAL TYPE:Q195

HEAT NUMBER: 816070039

	r		T			
CHEMISTRY SPEC:	C %*100	Mn%*100	P %*1000	S %*1000		
Grade A ASTM A307-12	0.29max	1.20 max	0.04max	0.15max		
TEST:	0.07	0.28	0.016	0.003		
DIMENSIONAL INSPECT	TIONS Unit:	inch		SPECIFICATION:	ASME B18.2.1	- 2012
CHARACTERISTICS	SPEC	IFIED		ACTUAL RESU	LT ACC.	REJ.
************	******	*******	***	****	*** *******	******
VISUAL	ASTM F78	8-2013		PASSED	22	0
THREAD	ASME B1.	1-2003,3A G	O,2A NOGO	PASSED	15	· 0
WIDTH FLATS	0.906	5-0.938		0.915-0.928	4	0
WIDTH A/C	1.033	3-1.083		1.048-1.057	4	0
HEAD HEIGHT	0.378	3-0.444		0.394-0.424	4	0
THREAD LENGTH	1.420)-1.560		1.435-1.541	15	0
LENGTH	1.420)-1.560		1.435-1.541	15	0
MECHANICAL PROPERT	TIES:		SPECIFICA	TION: ASTM A307	-2012 GR-A	
CHARACTERISTICS	TEST METHOD	SPEC	CIFIED	ACTUAL RESU	LT ACC.	REJ.
******	****	******	*******	*****	*** *******	******
CORE HARDNESS :	ASTM F606-2014	69-10	0 HRB	76-79 HRB	4	0
WEDGE TENSILE:	ASTM F606-2014	Min	60 KSI	65-69 KSI	4	0
CHARACTERISTICS	TEST METHOD	SPEC	CIFIED	ACTUAL RESU	LT ACC.	REJ.
COATINGS OF ZINC:		SPECIFIAT	'ION:ASTM I	F2329-2013		
HOT DIP GALVANIZED	ASTM B568-98(2104)	Min C	.0017"	0.0017" -0.0018	<u> </u>	0
ALL TESTS IN ACCC	RDANCE WITH 7	HE METH	ODS PRESC	CRIBED IN THE	APPLICABLE	
ASTM SPECIFICATION	-			TRUE REPRESE		
INFORMATION PROVID Maker's ISO#	DED BY THE MATE	RIAL SUPP	LIER AND	OUR TESTING L	ABORATORY	
Maker's ISO#	00109Q16722R3M/33	02 11	CONTRACTANT A			
		N IAL 7054	an clamato e E voncerte l'a	STERE CO., L'ID	17	
		Loui		VILLAND Verrain		

(SIGNATURE R.) (NAME OF MANUFACTURER)

Figure B-46. 1¹/₂-in. (38-mm) Long Bolt, Test Nos. SPTA-1 and SPTA-2

Certificate of Compliance

Sold To: Midwest Steel

Part# 307-050200 (1/2 x 2 A307 HHC PLAIN)

Qty: 62

Purchase Order: 8894

Invoice: 583078

Invoice Date: 07/14/18

THIS IS TO CERTIFY THAT WE HAVE SUPPLIED YOU WITH THE FOLLOWING PARTS, THESE PARTS WERE PURCHASED TO THE FOLLOWING SPECIFICATIONS.

ASTM A307 - 14

Standard Specification for Carbon Steel Bolts, Studs, and Threaded Rod 60000 PSI Tensile Strength

This is to certify that the above document is true and accurate to the best of my knowledge.

Nuts & Bolts Representative

Boyd Rydel

Printed Name

08/16/18

Figure B-47. 2-in. (51-mm) Long Bolt, Test No. SPTA-1

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z.,JIASHAN,ZHEJIANG,P.R.CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 210154443 COMMODITY : HEX MACHINE BOLT GR-A SIZE : 1/2-13X2 NC LOT NO : 1B1832558 SHIP QUANTITY : 8, 400 PCS LOT QUANTITY 21, 199 PCS HEADMARKS : CYI & 307A

MANUFACTURE DATE : 2018/05/09

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2018/08/23 PACKING NO: GEM180524005 INVOICE NO: GEM/FNL-180606ED PART NO: 91887 SAMPLING PLAN: ASME B18.18-2011(Category. 2)/ASTM F1470-2012 HEAT NO: 18200477-3 MATERIAL: X1008A FINISH: HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

Chemistry	AL%	C%	MN%	P%	S%	SI%	
Spec. : MIN. MAX.		0.3300	1.2500	0.0410			
Test Value	0.0300	0.0600	0.2800	0.0100	0.0090	0. 0200	

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 2. 1-2012

		SAMPLEL	DBY: FCHUN		
INSPECTIONS ITEM	SAMPLE	SPECIFIED	ACTUAL RESULT	ACC.	REJ
THREAD LENGTH	15 PCS	1.2500 inch	1.2500-1.2540 inch	15	0
MAJOR DIAMETER	15 PCS	0.4870-0.4980 inch	0.4910-0.4930 inch	15	0
BODY DIAMETER	4 PCS	0.4820-0.5150 inch	0.4910-0.4910 inch	4	0
WIDTH ACROSS CORNERS	4 PCS	0.8260-0.8660 inch	0.8380-0.8410 inch	4	0
HEIGHT	4 PCS	0.3020-0.3640 inch	0.3250-0.3270 inch	4	0
NOMINAL LENGTH	15 PCS	1.9400-2.0400 inch	1.9750-1.9780 inch	15	0
WIDTH ACROSS FLATS	4 PCS	0.7360-0.7500 inch	0.7400-0.7420 inch	4	0
SURFACE DISCONTINUITIES	29 PCS	ASTM F788-2013	PASSED	29	0
AND IS MATCHED WITH THE REAMING NUT AFTER PLATING	29 PCS	nut	PASSED	29	0

MECHANICAL PROPERTIES : ACCORDING TO ASTM A 307-2014

SAMPLED BY : GDAN LIAN

CAMPLED BY . DOUDT

INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	15 PCS	ASTM F606-2016		Max. 100 HRB	82–83 HRE	15	C
TENSILE STRENGTH	4 PCS	ASTM F606-2016		Min. 60 KSI	76-79 KSI	4	C
PLATING THICKNESS(µm)	5 PCS	ASTM B568-1998		>=53	80. 36-87. 57	5	C

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER WE CERTIFY THAT ALL PRODUCTS WE SUPPLIED ARE IN COMPLIANCE WITH DIN EN 10204 3.1 CONTENT

page 1 of 2

Figure B-48. 2-in. (51-mm) Long Bolt, Test No. SPTA-2

22979 Stelfast Parkway Strongsville, Ohio 44149

CERTIFICATE OF CONFORMANCE

DESCRIPTION OF MATERIAL AND SPECIFICATIONS

- Sales Order #: 173821
- Part No: AFH2G0500C
- Cust Part No: 36709
- Quantity (PCS): 16800
 - Description: 1/2-13 Fin Hx Nut Gr2 HDG/TOS 0.018
- Specification: SAE J995(99) GRADE 2 / ANSI B18.2.2
- Stelfast I.D. NO: 676197-O202987
- Customer PO: 210165954
- Warehouse: DAL

The data in this report is a true representation of the information provided by the material supplier certifying that the product meets the mechanical and material requirements of the listed specification. This certificate applies to the product shown on this document, as supplied by STELFAST INC. Alterations to the product by our customer or a third party shall render this certificate void.

This document may only be reproduced unaltered and only for certifying the same or lesser quantity of the product specified herein. Reproduction or alteration of this document for any other purpose is prohibited.

Stelfast certifies parts to the above description. The customer part number is only for reference purposes.

David Biss

Quality Manager

August 13, 2018

Page 1 of 1

Figure B-49. ¹/₂-in. (13-mm) Diameter Nuts, Test No. SPTA-2

连云港兴怡紧固件有限公司 LIANYUNGANG XINGYI FASTENERS CO.,LTD.

ADDRESS: Industrial Assembly Zone,Haizhon Bay,Haitou Town,Ganyu County, Lianyungang City Tel:0574-86505922 Fax:0574-86505904

检测报告 TEST REPORT

					DATE (E)	图):MAR.2014	4	
PURCHASER(客户): BRIGHTON-BEST	INTERNATI	ONAL(TAIW	AN)INC.	ISO NO .	(ISO号码):01(4Q17660R1N	M/3302	
CONTRACT NO.(合同号):U15838	LA PAR	Г NO.:49:	5053	SIZE(規格)	:1/2-13*1-1	/2		
MANUFACTURING DATE(生产	- 日期):2014-	01-20		QUANTI	TIES(数量):64	4800PCS		
COMMODITY(显名):A307A HE2	X BOLTS			FINISH(#	码别):HDG			
MATERIAL(材料):A3				LOT NO.	(批号):XY300	05140047		
DIMENSIONAL INSPECTION ACCO	RDING TO	ASME B18.2	2.1-2010	SAMPLING	GACCORDIN	IG TO ASME B	18.2.1-2010	
SAMPLING DATE(抽检日期):2014-0	-20		SAMPLEE	BY :WANG	JUAN	S	AMPLES ()	市样数): 20件
INSPECTION ITEM		STA	NDARD	(長)准估)	ACTU	AL RESULT (3	:澗(荷)	RESULT
(检测项目)		511		(475) (EIL)	more		sovint)	
APPEARANCE外观			OK			OK		OK
HEAD MARK 标记		Х	YLX &30			OK		OK
MAJOR DIA牙大径			0.4891-0.	5	_	0.491-0.493		OK
WIDTH ACROSS FLATS 对边			0.725-0.7	5		0.741-0.746		OK
WIDTH ACROSS CORNERS *	角	0.826-0.866 0.845-0.855						OK
HEAD HEIGHT 头部厚度		0.302-0.364			0.315-0.342			OK
BODY DIAMETER 析径			F/T			F/T		OK
LENGTH 长度			1.44-1.54	•		1.45-1.52		OK
THREAD LENGTH 螺纹长度			F/T			F/T		OK
GO-GAGE 通规		GO			GO			OK
NO-GO-GAGE止规			NO-GO		NO-GO			OK
ZINC THICKNESS 锌层厚度(ASTMF-	2329)		0.0017MI	N		0.002		OK
CHEMICAL COMPOSITION ACCOR	DING TO A	STM A307 2	2010					
SAMPLING DATE(抽检日期):2014-0	-15		SAMPLEI	BY :LIUYC	NGJIAN	Н	EAT NO .炉	号:180135
CHEMICAL C Mn	Р	S	Si					
化学元素(%) 碳 锰	磷	硊	硅					
TEST RESI 0.06 0.38	0.016	0.033	0.12					
实测值								
MECHANICAL PROPERTIES ACCORDIN		A307 2010				ACCORDING		
SAMPLING DATE(抽检日期):2014-0:	-20		SAMPLED	BY :CHEN	WENTAO	S	AMPLES (a样数):3件
TEST ITEM		STA	NDARD	(标准值)	ACTU	AL RESULT	(实测值)	RESULT
				999999, 999 (1995) (1995)				
IIARDNESS SURFACE 表面			100MAX			00.00		OV
硬度(HRB) CORE 志部			(0) (D)			80-89		OK
TENSILE STRENGTII 抗拉强度(Psi)			60MIN			81-84		OK

ADDRESS: Industrial Assembly Zone, Haizhon Bay, Haitou Town, Ganyu County, Lianyungang City

FROM:Sunny wang TEL:0574-86508138

(SIGNATURE)

Figure B-50. 1¹/₂-in. (38-mm) Long Bolts, Test No. SPTA-1

HAIYAN YUXING NUTS CO., LTD.

CHANGQIAN TOWN, HAIYAN COUNTY ZHEJIANG ,314304 CHINA

QUALITY CERTIFICATE COUNTRY OF ORIGIN-CHINA

CUSTOMER:BRIGHTON-BEST INTERNATIONAL,INC. SIZE:1/2-13 GOODS: GRADE 2 FINISHED HEX NUT (INCH) HOT DIP GALVANIZED ASTM F2329

ORDERNO.: U29216 PART NO.: 323200 LOT NO.: HY1534005G MATERIAL TYPE: Q195 DATE: AUG:15,2015 INV NO.:00607179 LOT SIZE: 43.20MPCS HEAT NO.:180036

MAIERIAL I IFE	. Q195				ILAI NO	
	SEPCIFICAT	STANDA		RE	SULT	ACCEPT
CHARACTERISTIC WIDTH ACROSS FLATS SAMPLE SIZE N=32		(MIM) MAX-I 19.05-1	MIN		AAX-MIN 9.03-18.72	ок
WIDTH ACROSS CORNER SAMPLE SIZE N=32	ASME/ANSI B18.2.2-10	MAX- 22.00-			AX-MIN 1.97-21.37	ок
HEIGHT SAMPLE SIZE N=32		MAX-MIN 11.38-10.85			AX-MIN 1.35-10.89	ок
THREAD 'GO"SAMPLE SIZE N=32	ASMEB1.1-03	2B +0.018			ок	ок
THREAD "NO GO" SAMPLE SIZE N=32	ASSEDI.1-05	2B +0.0)18	I8 OK		ок
PROOF LOAD SAMPLE SIZE N=4	ASTM	MII 56934			56934N	ок
HARDENESS SAMPLE SIZE N=8	A563-2007a	HRC M 32	IAX.	16-17		ок
PLATING THICKNESS SAMPLE SIZE N=8	ASTM F2329	MIN 3MY			3MY	ок
	С	Mn	Si		Р	S
CHEMICAL ANALYSIS	0.08	0.37	0.10		0.020	0.033

THIS CERTIFICATE CONFIRMING B18.2.2-2010 / ASTM A563-2007a FACTORY INSPECTOR: 黄伟明

QUALIFICATION TO ASME

8

DIRECTOR: 沈家华

海盐字星编辑有限责任公司 HMAYAN YUXING NUTS CO., LTD.

沈家华

Figure B-51. ¹/₂-in. (14-mm) Dia. Nuts, Test No. SPTA-1

FNL PART#91885 FNL PO#110272208

ZHEJIANG LAIBAO PRECISION TECHNOLOGY CO.,LTD NO.668 DONGHAI ROAD,XITANGQIAO TOWN,HAIYAN,ZHEJIANG,CHINA TEL: +86-573-86813788 FAX:+86-573-86811201 <u>QUALITY CERTIFICATE</u>

Customer Name :	BRIGHTO	N - BEST	INTERN	ATIONAL	(TAIWAN), INC.	Count	ry of (origin:		China		
INV.NO.:	В	BBT1983 QUANTITY: 5.400 MPcs										
P.O.NO.:	τ	J53338		TES	ST DATE:			05.10	,2018			
S/C NO.:	В	BI1814	6	ON	BOARD:			05.12	,2018			
PART NO.:		495053			SIZE:	1/2-13×1-1/2						
LOT NO.:	180	0310760)1									
PRODUCTION DATE:	03	.14,201	8	DESC	CRIPTION:	A30'	7 GRA	DE A H	EX BC	DLT H.	D.G	
Size: ASME B18.2.1	2012											
Material and Mecha	nical prop	erties:	ASTM A	A 307-201	4 GR.A							
Zinc Coatings: ASTN	A F2329-1	3										
1.Chemical Composi	tion Of M	aterial	(%)									
STEEL GRADE /HEAT NO:	DIA. (mm)	С	Si	Mn	Р	s	Al	Мо				
Q195/180196	14	0.07	0.1	0.32	0.015	0.024						
2.Dimension												
INS	PECTION	ITEM	[SPECIF	ICATIC	N	RES	ULT	SAMPL	e size	
]	Head Mar	king			LB307A			LB3	07A	1		
Wie	dth A/F	(inch)		0.725-0.750			0.730-0.735		9		
	dth A/C	(inch)		0.826-0.866			0.832-0.844		9		
	d Height	(inch)			0.302	2-0.364			-0.316	9		
12222	y Dia	(inch)				2-0.515			-0.490	3		
	al Length	(inch			1. Comme)-1.540		-	-1.503	9		
	ead Lengt					4 1.25		STREET, STREET	-1.275	9		
	or Dia	(inch)		17 CONTRACTOR OF BUILDING	-0.5000	+0.40	1797-52965377565	-0.495	3		
	O Ring G	-			THE NUT OF U	ALCONDE VIENE MORE	10 V18507	1. 1.56005	K	3		
	GO Ring					/2-13 2A		77821-	K	3		
	dness	(HRB			1	X 100			-82	2		
Паг	Visual		,			<u>л 100</u>)К		100000	Contractory .	2		
S	Salt Spray					/		<u>ОК</u> /		23		
	: Thicknes)		МГ	N 53		57.9		9		
Zint	- intennee	- (hun	,									

We hereby certify that the material described herein has been manufactured and tested with satisfactory

results in accordance with the requirement of the above material/dimensional specifications.

Figure B-52. 1¹/₂-in. (38-mm) Long Bolts, Test No. SPTA-2

CERTIFIED MATERIAL TEST REPORTFORSAE J429 GRADE 5 HEX TAP BOLTS

SUPPLIER'S NAME:ZHEJIA ADDRESS: XITANGQI CONTACT INFORMATIC CUSTOMER: FASTENAI	AO HAIYAN Z)N: JACK /(86)-(HEJIAN()573-868	G CHINA 62565	MANUFACI			2018-1-18 2017-12-25	
SAMPLING PLAN PER A DESCRIPTION: HEX TA	AP BOLTS GRA	DE 5 ZI	NC PLAT	ED		R:	171223SM0 220026125	1
SIZE: 7/16-14X2- HEADMARKS: NDF+THI	-		16450	PCS	PART NO:	0144506		
STEEL PROPERTIES: STEEL GRADE:1035					HEAT NUM	BER:	H170800700	99
CHEMISTRY SPEC:	C % N	In% P	%	S %]			
	0.25~0.55 п	in 0.	025max	0.025max				
TEST:		. 78	0.025	0.01				
DIMENSIONAL INSPECT	TIONS				SPECIFICA'	FION: ASME	B18.2.1-201	2
CHARACTERISTICS		SPECIF	TED		ACTUAL		ACC.	REJ.
*****	******	******	******	******	*******	*****	******	*****
APPEARANCE	ASTM F788	/F788M-	13		PASSED		100	0
THREAD	ASME B1.1-	08 2A			PASSED		32	0
WIDTH FLATS	0.625 " - 0.6	03 "			0.615 " -	0.621 "	8	0
WIDTH A/C	0.722 " - 0.	587 "			0.699 " -	0.715 "	8	0
HEAD HEIGHT	0.316 " - 0.2	.72 "			0.279 " -	0.303 "	8	0
MAJOR DIA	0.436 " - 0.4	26 "			0.433 " -	0.435 "	8	0
LENGTH	2.54 " - 2	.44 "			2.48 " -	2.51 "	8	0
MECHANICAL PROPER	FIES: 1/4"thru1"				SPECIFICA'	FION: SAE J4	29-2014 GR	-5
CHARACTERISTICS	TEST METH	OD	SPEC	CIFIED	ACTUAL	RESULT	ACC.	REJ.
*****	******	****	*******	*******	*******	****	*****	******
CORE HARDNESS:	ASTM F606-14	ł.	25-	34 HRC	28 -	31 HRC	8	0
SURFACE HARDNESS :	ASTM F606-14	Ļ	30N	54 MAX	48 -	50	8	0
WEDGE TENSILE:	ASTM F606-14	L.	MIN	120000 PSI	132563 - 1	33441 PSI	4	0
PROOF LOAD	ASTM F606-14	l.	MIN	85000 PSI	PASS		1	0
DECARBURIZATION	ASTM F2328-	14			PASSE	ED	1	0
CHARACTERISTICS	TEST METI	HOD	SPEC	IFIED	ACTUAL RES	ULT	ACC.	REJ.
*****	******				******	**	******	******
ZINC PLATED	ASTM F1941-1	5 (Clear Zind	FE/Zn 3A	N			
Thickness	ASTM B568-9		Min3 I		4.8-5.5 µm		8	0
Calt Comment	A CTM D117 1		urs NO WI	nite	DAGG		8	0
Salt Spray Corrosion	ASTM B117-1		ours NO 1	Red Rust	PASS		8	0

ALL TESTS IN ACCORDANCE WITH THE METHODS PRESCRIBED IN THE APPLICABLE SAE SPECIFICATION. WE CERTIFY THAT THIS DAIA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. All parts meet the requirements of FQA and records of compliance are on file Maker's ISO#CN11/20818

(SIGNATURE (SIGNATURE)) (SIGNATURE (SIGNATURE)) (SIGNATURE) (SIGNATURE COLLTD)

Figure B-53. 2¹/₂-in. (64-mm) Long Bolts, Test Nos. SPTA-1 and SPTA-2

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER : GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD, E.D.Z., JIASHAN, ZHEJIANG, P.R. CHINA PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 210135286

COMMODITY : FINISHED HEX NUT GR-5 SIZE : 7/16-14 NC LOT NO : 1N1760174 SHIP QUANTITY : 22,500 PCS LOT QUANTITY 152,179 PCS HEADMARKS : GENIUS SYMBOL & 2 ARC LINES (120 DEGREE) MANUFACTURE DATE : 2017/07/25

COUNTRY OF ORIGIN : CHINA

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2017/08/15 PACKING NO: GEM170731007 INVOICE NO: GEM/FNL-170816ED-1 PART NO: 1136308 SAMPLING PLAN: ASME B18. 18-2011 (Category. 2) /ASTM F1470-2012 HEAT NO: 17101400-3 MATERIAL: X1015A FINISH: Fe/Zn 3AN ASTM F1941/F1941M-2016

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO SAE J995-2012 Chemistry AL% C% MN% **P% S%** SI% Spec. : MIN. 0.3000 MAX. 0.5500 0.0500 0.1500 **Test Value** 0.0300 0.1400 0.3700 0.0120 0.0060 0.0400

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 2. 2-2015

			SAMPLE	DBY: HXNAN		
INSPECTIONS ITEM	SAMPLE	SP	ECIFIED	ACTUAL RESULT	ACC.	REJ.
WIDTH ACROSS CORNERS	6 PCS		0.7680-0.7940 inch	0.7730-0.7760 inch	6	0
FIM	15 PCS	ASME B18. 2. 2-2015	Max. 0.0180 inch	0.0160-0.0180 inch	15	0
THICKNESS	6 PCS		0.3650-0.3850 inch	0.3750-0.3760 inch	6	0
WIDTH ACROSS FLATS	6 PCS		0.6750-0.6880 inch	0.6790-0.6800 inch	6	0
SURFACE DISCONTINUITIES	29 PCS		ASTM F812-2012	PASSED	29	0
THREAD	15 PCS		GAGING SYSTEM 21	PASSED	15	0

MECHANICAL PROPERTIES : ACCORDING TO SAE J 995-2012

	SAMPLED BY : TANGHAO							
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.	
CORE HARDNESS	15 PCS	ASTM F606-2014		Max. 32 HRC	28-29 HRC	15	0	
PROOF LOAD	6 PCS	ASTM F606-2014		Min. 120,000 PSI	OK	6	0	
PLATING THICKNESS(µm)	29 PCS	ASTM B568-1998		>=3	3. 2-4. 77	29	0	
SALT SPRAY TEST	15 PCS	ASTM B117-16	1. I.	6 HOURS NO WHITE RUST, 12 HOURS NO RED RUST	ОК	15	0	

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

griv

page 1 of 1

Figure B-54. ⁷/₁₆-in. (11-mm) Diameter Nuts, Test Nos. SPTA-1 and SPTA-2

NUCC		LOT NO.			Post Office Box 6100
I I had had be	3 F 15	371123B			Saint Joe, Indiana 46785
FASTENER L	IVISION				Telephone 260/337-1600
CUSTOMER NO/NAME					
8001 FASTENAL COMPANY- TEST REPORT SERIAL#		NUCOR ORDER # CUST PART #	978943 38210		
TEST REPORT ISSUE DATE	3/04/16		00210		
DATE SHIPPED		CUSTOMER P.O. #		DH	
NAME OF LAB SAMPLER: *****************CERTIFI	SANDRA NEUMANN-PLUM				X
NUCOR PART NO QUANT		ESCRIPTION			
	600 371123B 1-8				/
MANUFACTURE DATE 1/07/1	6 HE	EX NUT H.D.G./GR	EEN LUBE	<u>\</u>	
CHEMISTRY	MATERIAL GR	ADE -1045L			
MATERIAL HEAT	**CHEMISTRY COMPO		T ANALYSIS) BY M		
NUMBER NUMBER RM030412 DL15105591	C MN P .44 .64 .01	S SI 05 .020 .20		NUCOR STEE	L - SOUTH C aro l
RM030412 DE15105591	.44 .64 .00	.020 .20			
MECHANICAL PROPERTIES SURFACE CORE	IN ACCORDANCE WITH PROOF LOAD		STRENGTH		
HARDNESS HARDNESS	90900 LBS		G-WEDGE		
(R30N) (RC)		(LBS)	STRESS (PSI)		
N/A 26.6 N/A 27.0	PASS	N/A N/A	N/A N/A		
N/A 27.0 N/A 27.6	PASS		N/A		
N/A 28.9	PASS	NZA	N/A		
N/A 26.7	PASS	NZA	N/A		
AVERAGE VALUES FRDM TEST 27.4	S				
PRODUCTION LOT SIZE	90800 PCS				
VISUAL INSPECTION IN A	CCORDANCE WITH AST	1 A563-07a		80 PCS. SAMPLED	LOT PASSED
COATING - HOT DIP GALV	ANIZED TO ASTM F232	29-13 - GALVANIZ	ING PERFORMED IN	THE U.S.A.	
1. 0.00294 2. 0.00					. 0.00353
8. 0.00322 9. 0.00	406 10. 0.00269	9 11. 0.00275	12. 0.00315	13. 0.00487 1	4. 0.00253
15. 0.00416 AVERAGE THICKNESS FROM 1	5 TESTS .00318				
HEAT TREATMENT - AUSTENI		& TEMPERED (MI	N 800 DEG F)		
DIMENSIONS PER ASME B1					
	#SAMPLES TESTED	MINIMUM MA	XIMUM		
Width Across Corner	s 8	1.824	1.844		
Thickness	32	0.980	1.001		
			ž.		
ALL TESTS ARE IN ACCORD	ANCE WITH THE LATES	ST REVISIONS OF	THE METHODS PRES	RIBED IN THE APPL	ICABLE SAE AND ASTM
SPECIFICATIONS. THE SA	MPLES TESTED CONFOR	RM TO THE SPECIF	ICATIONS AS DESCH	RIBED/LISTED ABOVE	AND WERE MANUFACTURED R LEAD WERE USED IN THE
STEEL USED TO PRODUCE T	HIS PRODUCT.				
THE STEEL WAS MELTED AN PRODUCT COMPLIES WITH D	D MANUFACTURED IN 1 FARS 252,225-7014.	WE CERTIFY THA	HE PRODUCT WAS MA	ANUFACTURED AND TE	STED IN THE U.S.A. ON OF INFORMATION
PRODUCT COMPLIES WITH D Provided by the materia to the items listed on	L SUPPLIER AND OUR	TESTING LABORAT	ORY. THIS CERTIN	IED MATERIAL TEST	REPORT RELATES ONLY
	THIS DOCUMENT AND I	IST NOT DE REPRU	DOUED ENCERT IN I	VLL.	

MECHANICAL FASTENER CERTIFICATE NO. A2LA 0139.01 EXPIRATION DATE 12/31/17

NUCOR FASTENER A DIVISION OF NUCOR CORPORATION

Legueen WW JOHN W. FERGUSON QUALITY ASSURANCE SUPERVISOR

Page 1 of 1

Figure B-55. 1-in. (25-mm) Diameter Nuts, Test No. SPTA-2

Certificate of Compliance

	Inty Line Rd IL 60126-2081	University of Nebraska Midwest Roadside Safety Facility	Purchase Order E000548963		Page 1 of 1
630-600-3 chi.sales@	600)mcmaster.com	M W R S F 4630 Nw 36TH St Lincoln NE 68524-1802	Order Placed By Shaun M Tighe		08/02/2018
		Attention: Shaun M Tighe Midwest Roadside Safety Facility	McMaster-Carr Number 7204107-01		
Line	Product		Ordered	Shipped	
1 97812	2A109 Raised-Head Ren	novable Nails, 16D Penny Size, 3" Long, Packs of 5	5 Packs	5	

Certificate of compliance

This is to certify that the above items were supplied in accordance with the description and as illustrated in the catalog. Your order is subject only to our terms and conditions, available at www.mcmaster.com or from our Sales Department.

Sal Weich

Sarah Weinberg Compliance Manager

Figure B-56. 16D Double Head Nail, Test Nos. SPTA-1 and SPTA-2

Certified Material Test Report to BS EN ISO 10204-2004 3.1

FOR USS FLAT WASHER HDG

COUNTRY OF ORIGIN: CHINA CUSTOMER: FASTENAL FACTORY NAME: IFI & MORGAN LTD. FACTORY ADDRESS: Chang'an North Road, Wuyuan Town, Haiyan, Zhejiang, China

DESCRIPTION: 1	DATE: 2016-10-08
INVOICE NBR: TD16680155	ORDER NBR. 210114135
PART NBR.: 33188	QUANTITY:3240PCS
LOT NO.: 16H-168236-30	

DIMENSIONS

(UNIT:INCH)

			RESULT							
	STANDARD	1	2	3	4	5 -				
INSIDE DIA	1.055-1.092	1.068	1.068	1.067	1.069	1.068				
OUTSIDE DIA	2.493-2.530	2.514	2.513	2.514	2.514	2.511				
THICKNESS	0.136-0.192	0.146	0.149	0.152	0.152	0.147				

WE HEREBY CERTIFY THAT THIS WAS PRODUCED AS PER CUSTOMER'S REQUIREMENT.

CHARACTERISTICS SPECIFIED ACTUAL RESULT ACC. REJ. HOT DIP GALVANIZED ASTM F2329

Min 43 um 48-64 um 8 0

NOTE

Figure B-57. 1-in. (25-mm) Diameter Round Washer, Test No. SPTA-1

TEST REPORT

ι	JSS	FL	AT	W	AS	HER	, HDG
_					_		

CUSTOMER:			DATE: 2013-04-0	05	
PO NUMBER: 110129471		MFG LOT	NUMBER: M-SWEO	410533-5	
SIZE: 7/8		I	PART NO: 33187		
HEADMARKS:			QNTY:	10,800	PCS
DIMENSIONAL INSPECTION	IS	SPECIF	CATION: ASME B	8.21.1(20)09)
CHARACTERISTICS	SPECIFIE	ED	ACTUAL RESULT	ACC.	REJ.
*****	***************	******	*****	******	******
APPEARANCE	ASTM F78	8-07	PASSED	100	0
OUTSIDE DIA	2.243-2.2	280	2.253-2.255	8	0
INSIDE DIA	0.931-0.9	968	0.957-0.959	8	0
THICKNESS	0.136-0.1	92	0.141-0.149	8	0
AS HOT DIP GALVANIZED	STM A153 class C. RoHS	Min 0 0047"	Min 0.0018 In		
HOT DIP GALVANIZED	C. ROHS Compliant	Min 0.0017"		8	0
ALL TESTS IN ACCORDANCE WE CERTIFY THAT THIS DAIA SUPPLIER AND OUR TESTING MFG ISO 9001:2015 SGS Certif We hereby certify that abov We here by certify that this	IS A TRUE REPRESE LABORATORY. Ticate # HK04/0105	are in compliance e to DIN EN 1020 (SIGNATL	MATION PROVIDED E	ements o	TERIAL

IFI & MORGAN LTD.

ADDRESS: Chang'an North Road, Wuyuan Town, Haiyan, Zhejiang, China

Figure B-58. 7/8-in. (22-mm) Diameter Round Washer, Test No. SPTA-2

CERTIFIED MATERIAL TEST REPORT FOR USS FLAT WASHERS HDG

	FI & Morgan Ltd Chang'an North Roa	ad, Wuyuan Tov	wn, Haiyan,Zhejia	REPORT DATE: ang, China	26/4/2018	
SAMPLING PLA	AN PER ASME B18.	18-11		PO NUMBER:	170081147	
SIZE: U HEADMARKS:	JSS 1/2 HDG NO MARK	QNTY(Lot size)): 64800PC	S PART NO:	33184	
DIMENSIONAL	_ INSPECTIONS		SPECIFIC	CATION: ASTM B18.	21.1-2011	
CHARACTERIS ************		SPECIFIE ***********	D *****	ACTUAL RESUL' *********		REJ. *****
APPEARANCE		ASTM F844		PASSED	100	0
OUTSIDE DIA		1.368-1.405		1.370-1.378	10	0
INSIDE DIA		0.557-0.577		0.567-0.575	10	0
THICKNESS		0.086-0.132		0.086-0.102	10	0
CHARACTERIS *********		1ETHOD *********	SPECIFIED ******	ACTUAL RESUL* * **************		REJ. ******
HOT DIP GALV	ANIZED ASTM	F2329-13	Min 0.0017"	0.0017-0.0020 i	n 8	0
INFORMATIO	IN ACCORDANCE IFICATION. WE ON PROVIDED B SGS Certificate # H	CERTIFY TH Y THE MATE	A.	IS A TRUE REF MORGAN TESTI 验专用章 LITY CONTROL	APPLICABLE PRESENTAT NG LABOR AB MGR.)	ION OF

Figure B-59. ¹/₂-in. (13-mm) Diameter Round Washer, Test No. SPTA-2

ND7000 THE STRUCTURAL BOLT CO., LLC 2140 CORNHUSKER HWY LINCOLN NE 68521

Date : 7/27/2018

This is to certify that the LOW CARBON FLAT WASHERS (LBS) stated below conforms to the requirements and specifications per

ASME B18.21.1, Type-A, ASTM F2329 H.D.G.

or the revision in effect at the time of manufacture.

Item code 345005 Size 1/2" Description LOW CARBON FLAT WASHERS (LBS)

Lot# (LBS) 54216090006 Country Of Origin CHINA

Stephen Metalls.

Stephen McFalls Quality Control Manager

Figure B-60. ¹/₂-in. (13-mm) Diameter Round Washer, Test No. SPTA-1

TEST REPORT

USS FLAT WASHER, HDG

CUSTOMER:			DATE: 2017-04-05		
PO NUMBER: 220024002		MFG LOT	NUMBER: 33183		
SIZE: 7/16			PART NO: M-SWE041	1885-18	
HEADMARKS:			QNTY:	24,600	PCS
DIMENSIONAL INSPECTION	S	SPECI	FICATION: ASME B18.	.21.1(2009)
CHARACTERISTICS	SPECI	FIED	ACTUAL RESULT	ACC.	REJ.
****	*************	******	*************	******	******
APPEARANCE	ASTM F	788-07	PASSED	100	0
OUTSIDE DIA	1.243-	1.280	1.249-1.252	8	0
INSIDE DIA	0.495-	0.515	0.506-0.508	8	0
THICKNESS	0.064-	0.104	0.068-0.072	8	0
AS HOT DIP GALVANIZED	TM A153 class C. RoHS	Min 0.0017"	Min 0.0019 In	8	0
	Compliant				
ALL TESTS IN ACCORDANCE W WE CERTIFY THAT THIS DAIA I SUPPLIER AND OUR TESTING	S A TRUE REPRES LABORATORY.				
MFG ISO 9001:2015 SGS Certific	cate # HK04/0105		A WORGAN 检验专用章		
			QUANLITY CONTROL		
			TURE OF Q.A LAB I		

IFI & MORGAN LTD.

ADDRESS: Chang'an North Road, Wuyuan Town, Haiyan, Zhejiang, China

Figure B-61. ⁷/₁₆-in. (11-mm) Diameter Round Washer, Test Nos. SPTA-1 and SPTA-2

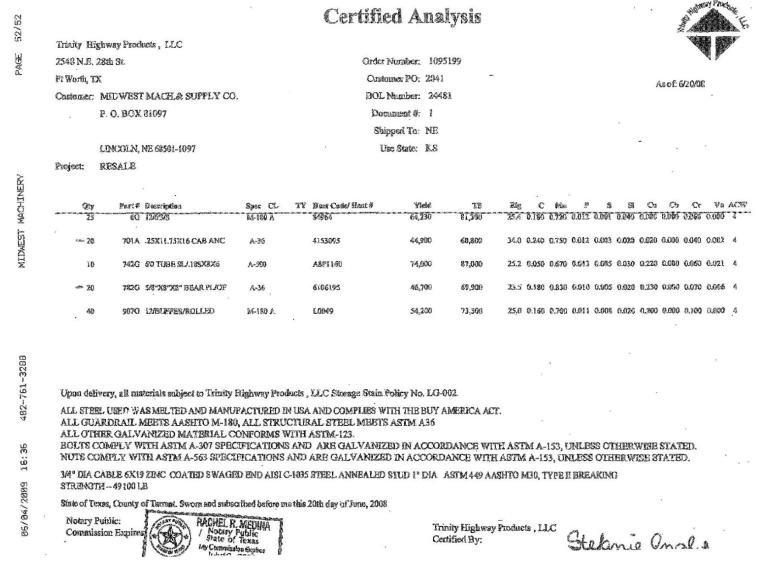


Figure B-62. Anchor Bracket Assembly, Test No. SPTA-1

245

Atlas Tube (Alabama), Inc. 171 Cleage Dr Birmingham; Alabama, USA 35217 Tel: Fax:

Ref.B/L: 80791452 Date: 11.10.2017 Customer: 179

MATERIAL TEST REPORT

Sold to

Steel & Pipe Supply Compan PO Box 1688 MANHATTAN KS 66505 USA

Shipped to

Steel & Pipe Supply Compan 401 New Century Parkway NEW CENTURY KS 66031 USA

Material: 3.0	x2.0x18	8x40'0"0	(5x4).		I	Material N	lo: 030	0201884	000-в			Made i			
Sales order:	12269	76			F	ourchase	Order:	4500296	656	Cust Ma	aterial #:		in: USA 2001884		
Heat No	С	Mn	Р	s	Si	AI	Cu	СЬ	Мо	Ni	Cr	v	Ti	В	N
B704212	0.200	0.450	0.010	0.004	0.020	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Bundle No	PCs	Yield	Т	ansile	Elm	.2in			Ce	rtification				CE: 0.2	
40867002 Material Note Sales Or.Not		064649	Psi O	37652 Psi		%		Ā	STM A	00-13 GF	ADE B&	c			
Material: 2.3	75x154)	<mark>(42'0"0(3</mark> 4	4x1).		Ν	Aaterial N	o: RO2:	3751544	200	<u> </u>		Made in	n: USA in: USA		
Sales order:	12269	76			P	urchase (Order: 4	5002966	656	Cust Ma	terial #:			•	
Heat No	С	Mn	Р	S	Si	AI	Cu	СЬ	Мо	Ni	Cr	v	Ti	в	N
B712810	0.210	0.460	0.012	0.002	0.020	0.024	0.100	0.002	0.020	0.030	0.060	0.004	0.002	0.000	0.00
Bundle No	PCs	Yield		nsile	Ein	.2in	Rb		Ce	rtification			c	E: 0.3	
MC00006947 Material Note Sales Or.Note	:	063688		3220 Psi	25 %	91		A:	STM A5	00-13 GR	ADE B&	C			
Material: 2.37 Sales order:			x1).			laterial No urchase C						Made in Melted	in: USA		
Heat No	С	Mn	Р	S	Si	AI				Cust Mat		642004			
7037261	0.210	0.810	0.005	0.004	0.020	0.000	Cu	Сь	Mo	Ni	Cr	v	Ti	B	N
Bundle No	PCs	Yield		nsile	Eln.		0.000	0.000		0.000	0.000	0.000	0.000		
1532001	34	066144		2159 Psi				AS		tification	ADE B&C	;	С	E: 0.3	;
Material Note: Sales Or.Note															

Authorized by Quality Assurance: The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contract requirements.

Page: 3 Of 4

Metals Service Center Institute

Figure B-63. Post Sleeve, Test No. SPTA-1

Appendix C. Static Soil Tests

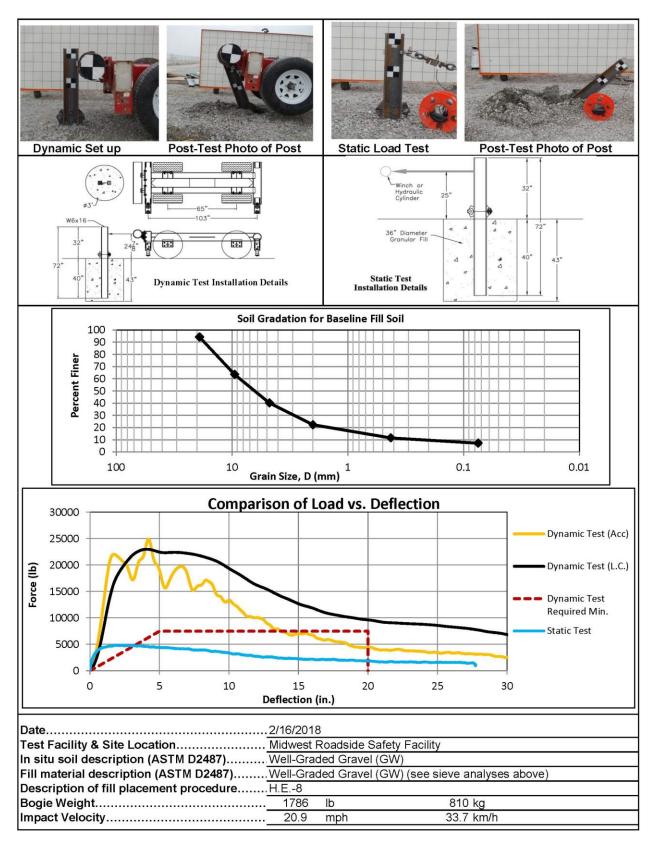


Figure C-1. Soil Strength, Initial Calibration Test, Test Nos. SPTA-1 and SPTA-2

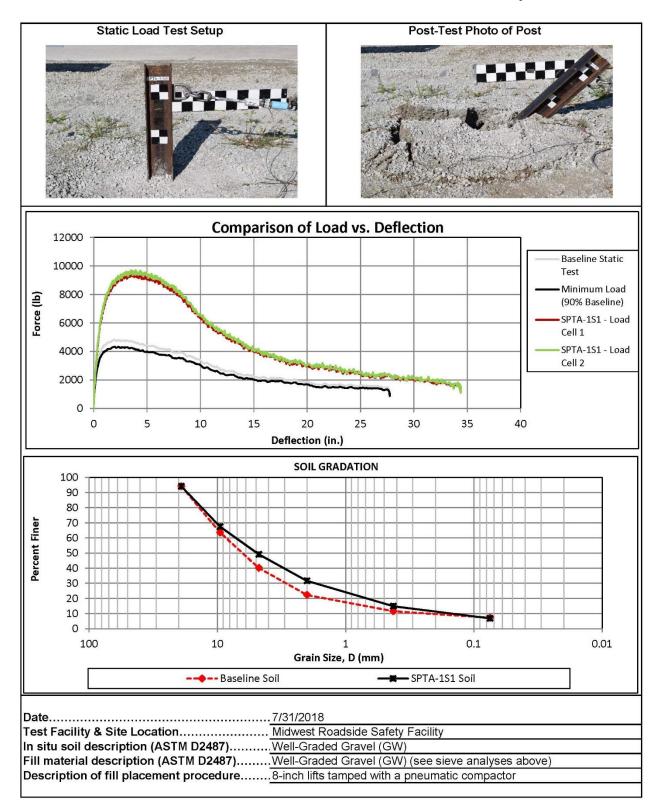


Figure C-2. Static Soil Test, Test No. SPTA-1

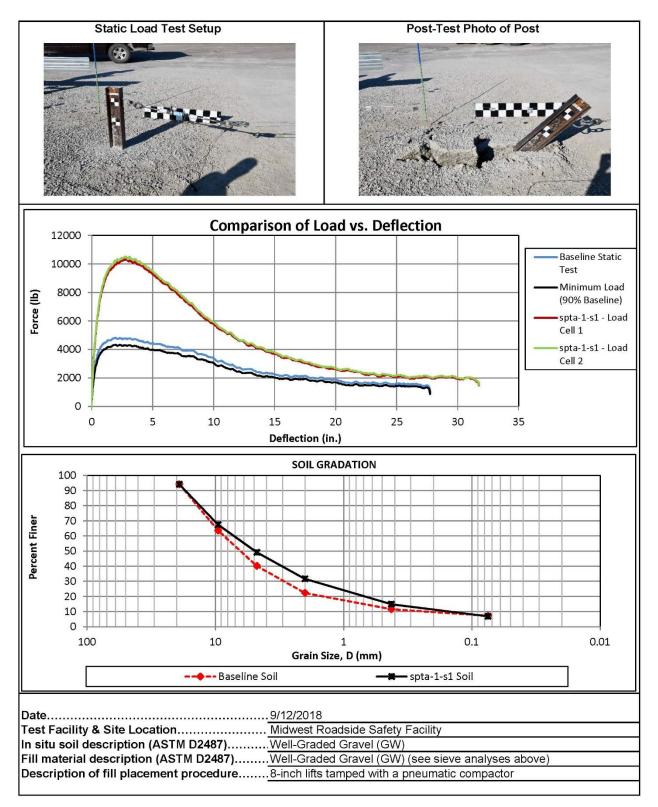


Figure C-3. Static Soil Test, Test No. SPTA-2

Appendix D. Vehicle Deformation Records

					VE		FORMATIO						
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	∆Y ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^C
	1	58.8522	32.9904	2.3025	59.1705	32.8977	2.2427	-0.3183	0.0927	0.0598	0.3369	0.0598	Z
	2	59.0225	29.9464	2.2410	59.3289	29.9849	2.1635	-0.3064	-0.0385	0.0775	0.3184	0.0775	Z
[3	59.0012	27.3135	2.2478	59.2882	27.3036	2.1914	-0.2870	0.0099	0.0564	0.2927	0.0564	Z
żų L	4	59.0601	24.2675	2.1978	59.3383	24.1989	2.1639	-0.2782	0.0686	0.0339	0.2885	0.0339	Z
	5	58.6132	21.6686	1.6529	58.9233	21.6406	1.6131	-0.3101	0.0280	0.0398	0.3139	0.0398	Z
4 E 🗵 🖊 🗌	6	54.9137	32.8702	4.5516	55.2436	32.8392	4.4658	-0.3299	0.0310	0.0858	0.3423	0.0858	Z
MHEEL WELL (X, Z)	7	54.9409	29.6206	4.5298	55.2458	29.5574	4.4503	-0.3049	0.0632	0.0795	0.3214	0.0795	Z
>	8	54.9692	27.1991	4.5109	55.2894	27.1626	4.4315	-0.3202	0.0365	0.0794	0.3319	0.0794	Z
	9	55.0045	24.4471	4.4855	55.3127	24.3841	4.4192	-0.3082	0.0630	0.0663	0.3215	0.0663	Z
	10	54.7796	21.4167	4.0378	55.0703	21.4012	4.0160	-0.2907	0.0155	0.0218	0.2919	0.0218	Z
	11	49.7178	33.0608	5.1498	50.0173	33.0570	5.0854	-0.2995	0.0038	0.0644	0.3064	0.0644	Z
_	12	49.7371	29.5441	5.1476	50.0314	29.5633	5.0830	-0.2943	-0.0192	0.0646	0.3019	0.0646	Z
	13	49.6421	25.0800	5.1413	49.9542	25.0163	5.0833	-0.3121	0.0637	0.0580	0.3238	0.0580	Z
	14	49.6242	21.1651	5.1480	49.9522	21.1455	5.0991	-0.3280	0.0196	0.0489	0.3322	0.0489	Z
-	15	49.4412	17.6977	4.8238	49.7992	17.8068	4.8045	-0.3580	-0.1091	0.0193	0.3748	0.0193	Z
-	16 17	46.5911	33.3234 29.1120	5.3824	46.8900	33.3201	5.3210 5.3194	-0.2989 -0.2922	0.0033	0.0614	0.3052	0.0614	Z
. –	17	46.8512 46.8013	29.1120	5.3817 5.3852	47.0933	29.0602 24.3783	5.3194	-0.2922	0.0518	0.0623	0.3032	0.0535	Z
2 -	19	46.5442	20.3092	5.3834	46.7770	20.3439	5.3373	-0.2328	-0.0347	0.0335	0.2398	0.0333	Z
FLOOR PAN (Z)	20	46.5347	16.7482	5.3912	46.8442	16.7266	5.3573	-0.3095	0.0216	0.0339	0.3121	0.0339	Z
KØ –	20	42.6669	33.4437	5.3729	42.9524	33.4148	5.3134	-0.2855	0.0210	0.0595	0.2931	0.0595	Z
ğ F	22	42.3334	28.4088	5.3542	42.6787	28,4037	5.2964	-0.3453	0.0051	0.0578	0.3501	0.0578	Z
	23	42.4749	24.3271	5.3532	42.8156	24.2905	5.3006	-0.3407	0.0366	0.0526	0.3467	0.0526	Z
	24	42.2632	20.2332	5.3715	42.5153	20.2927	5.3234	-0.2521	-0.0595	0.0481	0.2635	0.0481	Z
	25	41.9553	16.2270	5.3908	42.3149	16.2348	5.3551	-0.3596	-0.0078	0.0357	0.3615	0.0357	Z
	26	38.4843	33.4949	5.0605	38.7879	33.5124	5.0046	-0.3036	-0.0175	0.0559	0.3092	0.0559	Z
	27	38.3179	28.3155	4.9514	38.6303	28.3702	4.9111	-0.3124	-0.0547	0.0403	0.3197	0.0403	Z
	28	38.1568	23.6420	4.8433	38.4428	23.6375	4.7966	-0.2860	0.0045	0.0467	0.2898	0.0467	Z
	29	38.2916	20.3479	4.9586	38.5561	20.3383	4.9051	-0.2645	0.0096	0.0535	0.2700	0.0535	Z
	30	38.3290	16.2530	5.0052	38.6469	16.2679	4.9941	-0.3179	-0.0149	0.0111	0.3184	0.0111	Z

Figure D-1. Floor Pan Deformation Data – Set 1, Test No. SPTA-1

C

0

.

Date: Year:		/2018 011	-	8	Test Name: Make:		TA-1 odge			VIN: Model:		RB1CT2BS5 Ram 1500	
							FORMATIC AN - SET 2						
ſ		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Directions for
	POINT	X (in.)	Y (in.)	Z (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
	1	62.1057	14.2585	-2.0396	62.1452	14.4018	-1.8066	-0.0395	-0.1433	-0.2330	0.2764	0.0000	NA
, j	2	62.3020	11.2160	-2.0978	62.3447	11.4915	-1.8870	-0.0427	-0.2755	-0.2108	0.3495	0.0000	NA
/	3	62.3036	8.5830	-2.0875	62.3418	8.8099	-1.8603	-0.0382	-0.2269	-0.2272	0.3234	0.0000	NA
żų į	4	62.3887	5.5376	-2.1337	62.4356	5.7062	-1.8892	-0.0469	-0.1686	-0.2445	0.3007	0.0000	NA
TOE PAN - WHEEL WELL (X, Z)	5	61.9626	2.9342	-2.6740	62.0571	3.1426	-2.4415	-0.0945	-0.2084	-0.2325	0.3262	0.0000	NA
Ш Ш К	6	58.1749	14.1072	0.2212	58.2180	14.2869	0.4137	-0.0431	-0.1797	-0.1925	0.2668	0.0000	NA
CH L	7	58.2301	10.8579	0.2034	58.2664	11.0055	0.3967	-0.0363	-0.1476	-0.1933	0.2459	0.0000	NA
3	8	58.2793	8.4367	0.1876	58.3437	8.6116	0.3768	-0.0644	-0.1749	-0.1892	0.2656	0.0000	NA
, J	9	58.3383	5.6851	0.1655	58.4062	5.8337	0.3632	-0.0679	-0.1486	-0.1977	0.2565	0.0000	NA
	10	58.1384	2.6523	-0.2777	58.2061	2.8479	-0.0415	-0.0677	-0.1956	-0.2362	0.3141	0.0000	NA
	11	52.9793	14.2537	0.8344	52.9886	14.4308	1.0296	-0.0093	-0.1771	-0.1952	0.2637	-0.1952	Z
ļ	12	53.0290	10.7373	0.8365	53.0520	10.9377	1.0256	-0.0230	-0.2004	-0.1891	0.2765	-0.1891	Z
ļ	13	52.9726	6.2726	0.8362	53.0389	6.3900	1.0238	-0.0663	-0.1174	-0.1876	0.2310	-0.1876	Z
ļ ļ	14	52.9885	2.3576	0.8480	53.0914	2.5196	1.0377	-0.1029	-0.1620	-0.1897	0.2698	-0.1897	Z
, , , , , , , , , , , , , , , , , , ,	15	52.8347	-1.1117	0.5288	52.9856	-0.8209	0.7415	-0.1509	0.2908	-0.2127	0.3906	-0.2127	Z
ļ ļ	16	49.8512	14.4896	1.0758	49.8578	14.6497	1.2630	-0.0066	-0.1601	-0.1872	0.2464	-0.1872	Z
ļ ļ	17	50.1476	10.2806	1.0797	50.1712	10.3938	1.2596	-0.0236	-0.1132	-0.1799	0.2139	-0.1799	Z
~	18	50.1383	5.5882	1.0893	50.1871	5.7117	1.2698	-0.0488	-0.1235	-0.1805	0.2241	-0.1805	Z
AL	19	49.9168	1.4754	1.0935	49.9276	1.6732	1.2732	-0.0108	-0.1978	-0.1797	0.2675	-0.1797	Z
R N	20	49.9381	-2.0855	1.1059	50.0457	-1.9428	1.2916	-0.1076	0.1427	-0.1857	0.2577	-0.1857	Z
FLOOR PAN (Z)	21	45.9260	14.5759	1.0776	45.9193	14.6889	1.2526	0.0067	-0.1130	-0.1750	0.2084	-0.1750	Z
1 5	22	45.6361	9.5383	1.0663	45.7162	9.6745	1.2331	-0.0801	-0.1362	-0.1668	0.2298	-0.1668	Z
, ^u	23	45.8128	5.4580	1.0701	45.9110	5.5636	1.2356	-0.0982	-0.1056	-0.1655	0.2195	-0.1655	Z
, J	24	45.6366	1.3624	1.0942	45.6670	1.5620	1.2563	-0.0304	-0.1996	-0.1621	0.2589	-0.1621	Z
, J	25	45.3634	-2.6462	1.1195	45.5237	-2.4983	1.2859	-0.1603	0.1479	-0.1664	0.2743	-0.1664	Z
, J	26	41.7422	14.5905	0.7774	41.7541	14.7280	0.9408	-0.0119	-0.1375	-0.1634	0.2139	-0.1634	Z
. I	27	41.6204	9.4097	0.6754	41.6690	9.5842	0.8448	-0.0486	-0.1745	-0.1694	0.2480	-0.1694	Z
, J	28	41.4993	4.7349	0.5737	41.5482	4.8494	0.7280	-0.0489	-0.1145	-0.1543	0.1983	-0.1543	Z
, I	29	41.6630	1.4422	0.6928	41.7079	1.5521	0.8351	-0.0449	-0.1099	-0.1423	0.1853	-0.1423	Z
, , ,	30	41.7359	-2.6521	0.7446	41.8559	-2.5167	0.9223	-0.1200	0.1354	-0.1777	0.2536	-0.1777	Z

compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment. ^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

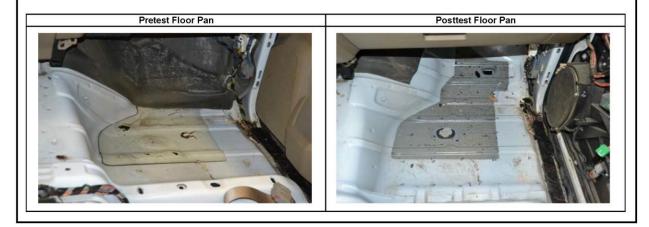


Figure D-2. Floor Pan Deformation Data – Set 2, Test No. SPTA-1

Year:		011			Make:	13	edge EFORMATIO			Model:		Ram 1500	
							RUSH - SE						
ſ		Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔY ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction
	POINT	(in.)	(in.)	(in.)	15-201225-5	10000000 j	a August a g	12 - 12 - 12 - 12 - 12 - 12 - 12 - 12 -	1.241.014		1910000		Crush ^C
	2	49.5197 48.1720	29.7915 18.0587	-26.3396 -26.4800	49.5615 48.1794	29.8428 18.0851	-26.3878 -26.4990	-0.0418 -0.0074	-0.0513 -0.0264	-0.0482 -0.0190	0.0819	0.0819	X, Y, Z X, Y, Z
DASH (X, Y, Z)	3	48.1720	4.3652	-26.4800	48.1794	4.3843	-26.4990	-0.0074	-0.0264	-0.0190	0.0334	0.0334	X, Y, Z X, Y, Z
SAC Y	4	45.3473	34.9112	-15.8473	45.3439	34.9426	-15.8823	0.0034	-0.0314	-0.0350	0.0313	0.0313	X, Y, Z
L X	5	44.2308	19.2507	-15.9431	44.2559	19.2553	-15.8630	-0.0251	-0.0046	0.0801	0.0841	0.0841	X, Y, Z
	6	42.1546	4.1412	-17.0413	42.1753	4.1316	-17.0065	-0.0207	0.0096	0.0348	0.0416	0.0416	X, Y, Z
шЦ Л	7	54.2835	36.4501	-4.3289	54.2646	36.4095	-4.2751	0.0189	0.0406	0.0538	0.0700	0.0406	Y
SIDE PANEL (Y)	8	54.2596	36.4431	0.0115	54.2237	36.4242	0.0467	0.0359	0.0189	0.0352	0.0537	0.0189	Y
	9	57.2717	36.3428	-1.3113	57.2932	36.3421	-1.2558	-0.0215	0.0007	0.0555	0.0595	0.0007	Y
н	10 11	43.2937 32.3703	38.8675 39.1289	-15.9379 -16.0208	43.2105 32.3065	38.7815 39.1280	-15.9263 -16.0354	0.0832	0.0860	0.0116	0.1202	0.0860	Y Y
N A	12	22.2156	39.4283	-15.9699	22.1901	39.4805	-15.9450	0.0038	-0.0522	0.0249	0.0632	-0.0522	Y
3 Oct	13	44.0978	37.3540	-6.5529	44.0277	37.1837	-6.5413	0.0701	0.1703	0.0116	0.1845	0.1703	Y
IMPACT SIDE DOOR (Y)	14	34.4939	39.7634	-3.5420	34.4561	39.6850	-3.5551	0.0378	0.0784	-0.0131	0.0880	0.0784	Y
2	15	24.0323	39.0440	-2.7107	24.0009	39.0260	-2.6889	0.0314	0.0180	0.0218	0.0423	0.0180	Y
	16	32.8491	24.7275	-44.4477	32.8153	24.6427	-44.4560	0.0338	0.0848	-0.0083	0.0917	-0.0083	Z
ļ	17	34.0092	20.1779	-44.6440	34.0584	20.0953	-44.6247	-0.0492	0.0826	0.0193	0.0981	0.0193	Z
ļ	18	34.7593	16.2162	-44.7503	34.7276	16.2040	-44.7447	0.0317	0.0122	0.0056	0.0344	0.0056	Z
	19 20	35.3865 35.6674	11.6075 6.2449	-44.8210 -44.8941	35.4186 35.7144	11.6156 6.2147	-44.7915 -44.8586	-0.0321 -0.0470	-0.0081 0.0302	0.0295	0.0443	0.0295	Z
~	20	23.2898	26.1893	-44.8941	23.2597	26.1486	-44.6066	0.0301	0.0302	0.0355	0.0662	0.0355	Z
ROOF - (Z)	22	23.4528	20.2282	-46.2454	23.4468	20.1400	-46.2078	0.0060	0.0407	0.0287	0.0608	0.0287	Z
ч.	23	23.6508	14.6562	-46.4953	23.6519	14.6139	-46.4581	-0.0011	0.0423	0.0372	0.0563	0.0372	Z
So I	24	23.8258	9.9253	-46.6970	23.8264	9.8892	-46.6729	-0.0006	0.0361	0.0241	0.0434	0.0241	Z
Ľ	25	23.8837	6.2544	-46.7514	23.8916	6.2515	-46.7158	-0.0079	0.0029	0.0356	0.0366	0.0356	Z
ļ	26	15.1733	25.4055	-46.2981	15.1590	25.3577	-46.2691	0.0143	0.0478	0.0290	0.0577	0.0290	Z
ļ	27 28	15.7238 16.1873	19.8483 15.1756	-46.6792 -46.8885	15.7129 16.2256	19.7849 15.2463	-46.6461 -46.8430	0.0109	0.0634	0.0331	0.0723	0.0331	Z
ļ	28	16.1873	10.2051	-40.8880	16.5886	10.2463	-46.9834	0.0867	-0.0707	0.0455	0.0924	0.0455	Z
ļ	30	16.7147	6.5949	-47.0826	16.7518	6.6204	-47.0315	-0.0371	-0.0255	0.0511	0.0681	0.0513	Z
	31	54.2331	35.2977	-28.7962	54.2416	35.3028	-28.8191	-0.0085	-0.0051	-0.0229	0.0250	0.0000	NA
ΨĒŃ	32	51.2769	34.6561	-31.0780	51.3487	34.6668	-31.0583	-0.0718	-0.0107	0.0197	0.0752	0.0197	Z
Y. Y	33	48.7424	34.1098	-33.0512	48.7592	34.0997	-33.0516	-0.0168	0.0101	-0.0004	0.0196	0.0101	Y
A-PILLAR Maximum (X, Y, Z)	34	45.7071	33.4339	-35.1289	45.7752	33.4378	-35.1482	-0.0681	-0.0039	-0.0193	0.0709	0.0000	NA
₹ ≥	35 36	42.8496 38.9203	32.8524 32.0087	-37.2897 -39.5726	42.8417 38.9000	32.8356 31.9758	-37.3347 -39.5910	0.0079	0.0168	-0.0450 -0.0184	0.0487	0.0186	X, Y X, Y
	30	54.2331	35.2977	-28.7962	54.2416	35.3028	-28.8191	-0.0085	-0.0051	-0.0184	0.0428	-0.0051	A, T
КС	32	51.2769	34.6561	-31.0780	51.3487	34.6668	-31.0583	-0.0718	-0.0107	0.0197	0.0250	-0.0107	Y
A-PILLAR Lateral (Y)	33	48.7424	34,1098	-33.0512	48,7592	34.0997	-33.0516	-0.0168	0.0101	-0.0004	0.0196	0.0101	Y
PIL	34	45.7071	33.4339	-35.1289	45.7752	33.4378	-35.1482	-0.0681	-0.0039	-0.0193	0.0709	-0.0039	Y
-A-	35	42.8496	32.8524	-37.2897	42.8417	32.8356	-37.3347	0.0079	0.0168	-0.0450	0.0487	0.0168	Y
	36	38.9203	32.0087	-39.5726	38.9000	31.9758	-39.5910	0.0203	0.0329	-0.0184	0.0428	0.0329	Y
AR Mum	37	12.5919	32.0019	-39.7501	12.5472	31.9360	-39.7943	0.0447	0.0659	-0.0442	0.0911	0.0796	X, Y
B-PILLAR Maximum (X, Y, Z)	38	10.4274	34.4835	-33.2969	10.4799	34.4304 35.6784	-33.3123	-0.0525	0.0531	-0.0154	0.0762	0.0531	Y X, Y
B-PILLAR Maximum (X, Y, Z)	39 40	10.8423	35.7187 36.2470	-28.4049 -23.9958	13.9094 10.8003	36.2236	-28.4566 -23.9891	0.1237	0.0403	0.0067	0.1400	0.1301	X, Y, Z
	37	12.5919	32.0019	-39.7501	12.5472	31.9360	-39.7943	0.0447	0.0659	-0.0442	0.0911	0.0659	Υ
EAF	38	10.4274	34.4835	-33.2969		34.4304	-33.3123	-0.0525	0.0531	-0.0154	0.0762	0.0531	Y
B-PILLAR Lateral (Υ)	39	14.0331	35.7187	-28.4049		35.6784	-28.4566	0.1237	0.0403	-0.0517	0.1400	0.0403	Y
La:	40	10.8423	36.2470	-23.9958		36.2236	-23.9891	0.0420	0.0234	0.0067	0.0485	0.0234	Y
Positive v	alues denot	e deformatic	on as inward	toward the	e occupant c	ompartmen'	nt, negative va	alues denot	e deformatir	ons outward	away from	the occupar	nt
compartme	nt.												

Figure D-3. Occupant Compartment Deformation Data – Set 1, Test No. SPTA-1

Date: Year:		2018 111			Test Name: Make:		TA-1 dge			VIN: Model:	1D7R	B1CT2BS5 Ram 1500	
							FORMATI	5.5.5.					
,					IN1	ERIOR C	RUSH - SE	Т 2				~	·
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	∆Y ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for
	POINT 1	(III.) 52.4930	(in.) 10.7120	-30.6233	52.9003	10.7390	-30.4859	-0.4073	-0.0270	0.1374	0.4307	0.4307	Crush ^c X, Y, Z
0	2	51.2422	-1.0316	-30.7530	51,6111	-1.0294	-30.5877	-0.3689	0.00270	0.1653	0.4042	0.4042	X, Y, Z
DASH (X, Y, Z)	3	48.0879	-14.7518	-30.7996	48.4691	-14.7555	-30.6267	-0.3812	-0.0037	0.1729	0.4186	0.4186	X, Y, Z
AX.	4	48.3074	15.8035	-20.1225	48.6298	15.8151	-19.9903	-0.3224	-0.0116	0.1322	0.3486	0.3486	X, Y, Z
0	5 6	47.3205 45.3665	0.1342	-20.2059 -21.2893	47.6656	0.1197	-19.9576	-0.3451 -0.3393	0.0145	0.2483	0.4254	0.4254	X, Y, Z
	7	45.3665	17.4235	-21.2893	45.7058 57.5246	-15.0210 17.3631	-21.0895 -8.3737	-0.3393	-0.0283 0.0604	0.2562	0.3948	0.3948	X, Y, Z Y
SIDE PANEL (Y)	8	57.2507	17.4233	-4.2895	57.4784	17.3814	-4.0520	-0.2020	0.0376	0.2375	0.3312	0.0376	Y
PA ,	9	60.2599	17.3428	-5.6206	60.5499	17.3223	-5.3507	-0.2900	0.0205	0.2699	0.3967	0.0205	Ý
ш	10	46.2209	19.7426	-20.2098	46.4663	19.6369	-20.0405	-0.2454	0.1057	0.1693	0.3163	0.1057	Y
IMPACT SIDE DOOR (Y)	11	35.2956	19.9134	-20.2625	35.5600	19.8973	-20.1631	-0.2644	0.0161	0.0994	0.2829	0.0161	Y
385	12	25.1389	20.1287	-20.1835	25.4411	20.1701	-20.0852	-0.3022	-0.0414	0.0983	0.3205	-0.0414	Y
AD DA	13 14	47.0635 37.4484	18.2416 20.5732	-10.8262 -7.7900	47.2846 37.6900	18.0543 20.4829	-10.6530 -7.6807	-0.2211 -0.2416	0.1873	0.1732	0.3376	0.1873	Y
Σ	15	26.9955	19.7677	-6.9292	27.2393	19.7421	-6.8265	-0.2410	0.0256	0.1033	0.2658	0.0303	Y
	16	35.8148	5.4988	-48.6820	36.2176	5.3901	-48.5694	-0.4028	0.1087	0.1126	0.4321	0.1126	Z
	17	37.0121	0.9589	-48.8789	37.4968	0.8525	-48.7324	-0.4847	0.1064	0.1465	0.5174	0.1465	Z
	18	37.7947	-2.9965	-48.9848	38.1968	-3.0335	-48.8479	-0.4021	-0.0370	0.1369	0.4264	0.1369	Z
	19	38.4598 38.7849	-7.5999	-49.0545 -49.1253	38.9241	-7.6164	-48.8896	-0.4643	-0.0165	0.1649	0.4930	0.1649	Z
	20 21	26.2398	-12.9600 6.8806	-49.1253	39.2625 26.6521	-13.0148 6.8193	-48.9513 -49.9649	-0.4776 -0.4123	-0.0548 0.0613	0.1740	0.5113 0.4313	0.1740	Z
N.	22	26.4512	0.9208	-50.4509	26.8867	0.8528	-50.3284	-0.4355	0.0680	0.1225	0.4575	0.11225	Z
Ч	23	26.6947	-4.6495	-50.6980	27.1360	-4.7126	-50.5732	-0.4413	-0.0631	0.1248	0.4629	0.1248	Z
700F - (Z)	24	26.9083	-9.3789	-50.8974	27.3480	-9.4359	-50.7834	-0.4397	-0.0570	0.1140	0.4578	0.1140	Z
uL I	25 26	26.9965 18.1289	-13.0493 6.0293	-50.9497 -50.4838	27.4420 18.5584	-13.0730 5.9641	-50.8228 -50.4045	-0.4455 -0.4295	-0.0237 0.0652	0.1269	0.4638	0.1269	Z
	20	18.7245	0.4766	-50.8630	19.1567	0.3955	-50.7756	-0.4293	0.0852	0.0793	0.4418	0.0793	Z
	28	19.2261	-4.1922	-51.0709	19.7054	-4.1392	-50.9676	-0.4793	0.0530	0.1033	0.4932	0.1033	Z
	29	19.7549	-9.1586	-51.2020	20.1081	-9.1387	-51.1029	-0.3532	0.0199	0.0991	0.3674	0.0991	Z
	30	19.8240	-12.7684	-51.2613	20.2999	-12.7607	-51.1474	-0.4759	0.0077	0.1139	0.4894	0.1139	Z
~ -	31	57.1538	16.2556	-33.0962	57.5401	16.2335	-32.9166	-0.3863	0.0221	0.1796	0.4266	0.1810	Y, Z
A-PILLAR Maximum (X, Y, Z)	32 33	54.1968 51.6614	15.5881 15.0195	-35.3695 -37.3353	54.6551 52.0725	15.5726 14.9832	-35.1587 -37.1546	-0.4583 -0.4111	0.0155	0.2108	0.5047	0.2114	Y, Z Y, Z
	34	48.6260	14.3173	-39.4042	49.0963	14.2958	-39.2542	-0.4703	0.0215	0.1500	0.4941	0.1515	Y, Z
A-A M	35	45.7675	13.7108	-41.5566	46.1704	13.6684	-41.4437	-0.4029	0.0424	0.1129	0.4206	0.1206	Y, Z
	36	41.8390	12.8331	-43.8281	42.2383	12.7755	-43.7040	-0.3993	0.0576	0.1241	0.4221	0.1368	Y, Z
	31	57.1538	16.2556	-33.0962	57.5401	16.2335	-32.9166	-0.3863	0.0221	0.1796	0.4266	0.0221	Y
A-PILLAR Lateral (Y)	32 33	54.1968 51.6614	15.5881 15.0195	-35.3695 -37.3353	54.6551 52.0725	15.5726 14.9832	-35.1587 -37.1546	-0.4583 -0.4111	0.0155	0.2108	0.5047	0.0155	Y Y
era	34	48.6260	14.3173	-39.4042	49.0963	14.3032	-39.2542	-0.4703	0.0215	0.1500	0.4903	0.0303	Y
A-F Lat	35	45.7675	13.7108	-41.5566	46.1704	13.6684	-41.4437	-0.4029	0.0424	0.1129	0.4206	0.0424	Y
	36	41.8390	12.8331	-43.8281	42.2383	12.7755	-43.7040	-0.3993	0.0576	0.1241	0.4221	0.0576	Y
B-PILLAR Maximum (X, Y, Z)	37	15.5112	12.6082	-43.9325	15.8870	12.5275	-43.9390	-0.3758	0.0807	-0.0065	0.3844	0.0807	Y
,≺ä F	38	13.3441	15.0757	-37.4748	13.7922	15.0116	-37.4618	-0.4481	0.0641	0.0130	0.4528	0.0654	Y, Z Y
X, X,	39 40	16.9530 13.7701	16.3438 16.8483	-32.5936 -28.1759	17.2058 14.0871	16.2911 16.8159	-32.6032 -28.1399	-0.2528 -0.3170	0.0527	-0.0096 0.0360	0.2584	0.0527	Y,Z
	37	15.5112	12.6082	-43.9325	15.8870	12.5275	-43.9390	-0.3758	0.0807	-0.0065	0.3844	0.0807	Y
al C	38	13.3441	15.0757	-37.4748	13.7922	15.0116	-37.4618	-0.4481	0.0641	0.0130	0.4528	0.0641	Ý
B-PILLAR _ateral (Y)	39	16.9530	16.3438	-32.5936	17.2058	16.2911	-32.6032	-0.2528	0.0527	-0.0096	0.2584	0.0527	Y
	40	13.7701	16.8483	-28.1759	14.0871	16.8159	-28.1399	-0.3170	0.0324	0.0360	0.3207	0.0324	Y
compartme	nt.						t, negative va						

Figure D-4. Occupant Compartment Deformation Data – Set 2, Test No. SPTA-1

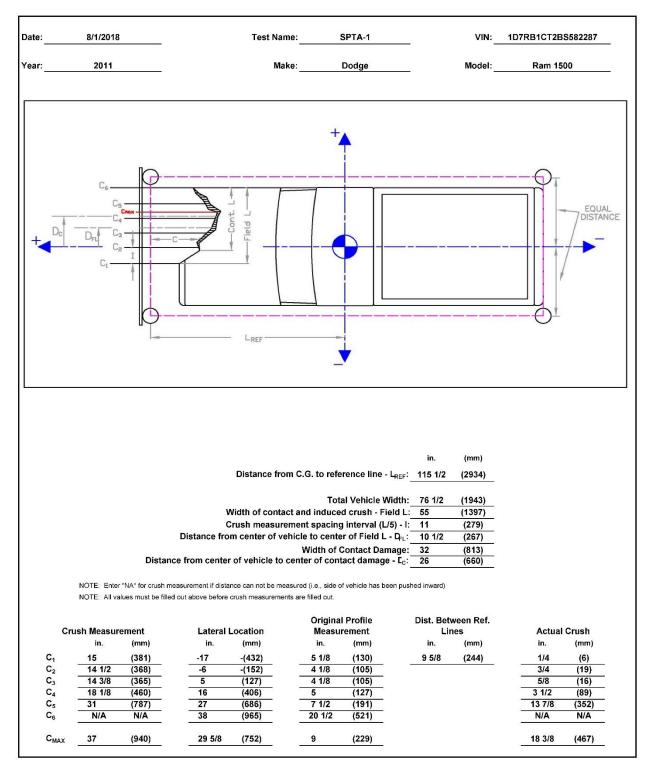


Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. SPTA-1

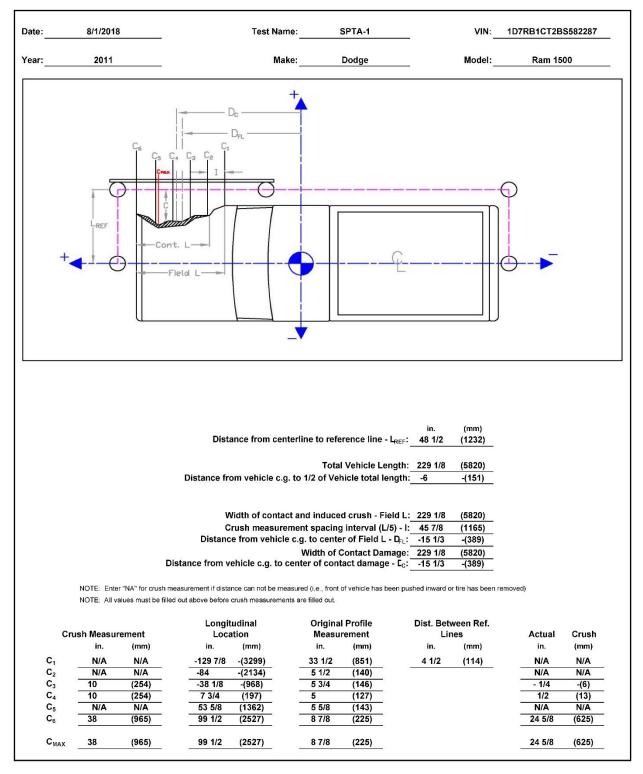


Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. SPTA-1

Date: Year:	7/31/2018 2011	-	Test Name: _ Make:	SPTA-1 Dodge	VIN: Model:					
Toal.	2011	-	Marce.	Douge	Wodel.	Kam	1300			
	Reference Se	et 1		Reference Set 2						
Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C			
Roof	0.1	≤ 4	Z	Roof	0.2	≤ 4	Z			
Vindshield ^D	0.0	≤ 3	X, Z	Windshield ^D	NA	≤ 3	X, Z			
A-Pillar Maximum	0.0	≤ 5	X, Y	A-Pillar Maximum	0.2	≤ 5	Y, Z			
A-Pillar Lateral	0.0	≤ 3	Y	A-Pillar Lateral	0.1	≤ 3	Y			
3-Pillar Maximum	0.1	≤ 5	Х, Ү	B-Pillar Maximum	0.1	≤ 5	Y			
3-Pillar Lateral	0.1	≤ 3	Y	B-Pillar Lateral	0.1	≤ 3	Y			
Toe Pan - Wheel Well	0.1	≤ 9	Z	Toe Pan - Wheel Well	0.0	≤ 9	NA			
Side Front Panel	0.0	≤ 12	Y	Side Front Panel	0.1	≤ 12	Y			
Side Door (above seat)	0.1	≤ 9	Y	Side Door (above seat)	0.1	≤ 9	Y			
Side Door (below seat)	0.2	≤ 12	Y	Side Door (below seat)	0.2	≤ 12	Y			
Floor Pan	0.1	≤ 12	Z	Floor Pan	-0.1	≤ 12	Z			
Dash - no MASH requirement	0.1	NA	X, Y, Z	Dash - no MASH requirement	0.1	NA	X, Y, Z			
For Toe Pan - Wheel Well the and Z directions. The direction ntruding into the occupant com	ation as inward to direction of defrom of deformation for partment. If directi	ward the occupant o ation may include > Toe Pan -Wheel We on of deformation is	compartment, negat K and Z direction. Fo ell, A-Pillar Maximun s "NA" then no intrus	ive values denote deformations out or A-Pillar Maximum and B-Pillar Max n, and B-Pillar Maximum only include sion is recorded and deformation wil sured posttest with an examplar veh	imum the directio components whe	n of deformation ma ere the deformation	ay include X, Y, is positive and			

Figure D-7. Maximum Occupant Compartment Deformation, Test No. SPTA-1

Date: Year:		/2018 011			Test Name: Make:		TA-2 undai			VIN: Model:		cn4ac2bu61 Accent	18362
							FORMATIC AN - SET 1						
	DOINT	Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	∆Y ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for
	POINT 1	(in.) 60.0115	(in.) 38.9026	(in.) 2.8526	59.7735	38.8028	3.2019	0.2380	0.0998	-0.3493	0.4343	0.2380	Crush ^c X
	2	61.1422	36.1405	4.2877	60.9434	36.1692	4.5914	0.1988	-0.0330	-0.3037	0.3641	0.1988	X
TOE PAN - WHEEL WELL (X, Z)	3	60.9368	32.5848	4.4677	60.8214	32.5007	4.7220	0.1154	0.0841	-0.2543	0.2916	0.1154	Х
	4	61.1490	29.1709	4.6719	60.9109	29.0978	4.9608	0.2381	0.0731	-0.2889	0.3814	0.2381	X
	5	61.2756 58.0519	25.0985 39.8720	4.6986 5.9874	61.1620 57.8480	25.0153 39.7967	5.0279 6.3320	0.1136	0.0832	-0.3293 -0.3446	0.3581	0.1136	X
ВЩС	7	57,7947	36.4047	6.3458	57.6113	36.2386	6.6676	0.1834	0.1661	-0.3440	0.4074	0.2039	X
N.	8	57.7272	32.7870	6.2617	57.5546	32.6043	6.5701	0.1726	0.1827	-0.3084	0.3978	0.1726	X
	9	58.0283	29.1097	6.5839	57.9428	29.1163	6.8481	0.0855	-0.0066	-0.2642	0.2778	0.0855	X
	10	58.1498	26.0574	6.5599	57.9846	25.9450	6.8832	0.1652	0.1124	-0.3233	0.3801	0.1652	X
	11	52.6403	40.9697	7.5224	52.4782	40.9579	7.8456	0.1621	0.0118	-0.3232	0.3618	-0.3232	Z
	12	52.5261	36.5399	7.5811	52.4125	36.4740	7.8813	0.1136	0.0659	-0.3002	0.3277	-0.3002	Z
	13 14	52.2332 52.1146	32.5854 28.2274	7.4276	52.1048 51.9804	32.5086 28.1789	7.7331 7.8297	0.1284	0.0768	-0.3055 -0.0895	0.3402	-0.3055	Z
	15	52.2757	24.2810	7.7423	52.1335	24.1816	8.0174	0.1422	0.0403	-0.2751	0.3252	-0.2751	Z
	16	47.6965	41.2375	7.8308	47.5458	41.1541	8.1496	0.1507	0.0834	-0.3188	0.3624	-0.3188	Z
	17	47.3524	36.5085	8.0535	47.1987	36.3713	8.3373	0.1537	0.1372	-0.2838	0.3507	-0.2838	Z
z	18	47.2680	32.2112	7.6085	47.0768	32.1652	7.9270	0.1912	0.0460	-0.3185	0.3743	-0.3185	Z
FLOOR PAN (Z)	19	47.3707	28.6821	7.8196	47.1706	28.5574	8.0029	0.2001	0.1247	-0.1833	0.2986	-0.1833	Z
NC (Z)	20 21	47.7993 42.1883	24.3660 40.9582	8.3566 7.9732	47.6305 42.0410	24.2855 40.8251	8.6328 8.2342	0.1688	0.0805	-0.2762 -0.2610	0.3336	-0.2762	Z
ŏ	21	41.7448	36.0777	8.1303	41.5245	35.9429	8.4167	0.2203	0.1348	-0.2864	0.3857	-0.2864	Z
Ē	23	41.3895	32.4147	7.8436	41.2117	32.2596	8.1027	0.1778	0.1551	-0.2591	0.3504	-0.2591	Z
	24	41.7121	28.2630	7.9050	41.5313	28.1417	8.1605	0.1808	0.1213	-0.2555	0.3357	-0.2555	Z
	25	41.5722	24.4431	8.3728	41.3967	24.3261	8.6271	0.1755	0.1170	-0.2543	0.3304	-0.2543	Z
	26 27	37.2061	40.6335	7.9269	37.0313	40.4174	8.1551	0.1748	0.2161	-0.2282	0.3596	-0.2282	Z
	28	37.2623 37.6604	35.5387 31.9294	7.8991 7.9370	37.0930 37.4780	35.3962 31.8343	8.1653 8.1842	0.1693	0.1425	-0.2662 -0.2472	0.3462	-0.2662 -0.2472	Z
	29	38.1841	28.0841	7.9050	38.0359	27.9574	8.2151	0.1482	0.1267	-0.3101	0.3663	-0.3101	Z
	30	38.5403	24.0742	7.7557	38.4710	23.9299	8.0077	0.0693	0.1443	-0.2520	0.2985	-0.2520	Z
eforming i	culations that nward towa	rd the occup	ant compart	ment.			onents that an						ponent is
		Pre	test Floor	Pan					Pos	ttest Floor	Pan		
					Rect Rect Rect Rect Rect Rect Rect Rect		The second	C		1	0		

Figure D-8. Floor Pan Deformation Data – Set 1, Test No. SPTA-2

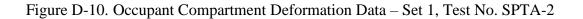
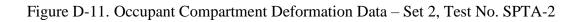

Date: Year:		/2018)11	:	9	Test Name: Make:		TA-2 Indai			VIN: Model:	kmho	cn4ac2bu61 Accent	8362
					VE		FORMATIC AN - SET 2						
		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	∆X ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Directions for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
	1	53.2031	37.2400	-5.2116	53.2070	37.1471	-4.9596	-0.0039	0.0929	-0.2520	0.2686	0.0000	NA
-	2	54.0792 53.6095	34.4262 30.8979	-3.7011 -3.4825	54.1283 53.7173	34.4410 30.7942	-3.5230 -3.3767	-0.0491	-0.0148 0.1037	-0.1781 -0.1058	0.1853	0.0000	NA NA
TOE PAN - WHEEL WELL (X, Z)	4	53.5656	27.4812	-3.2264	53.5347	27.3966	-3.1175	0.0309	0.0846	-0.1089	0.1413	0.0309	X
DAI V	5	53.3946	23.4112	-3.1423	53.4651	23.3075	-3.0217	-0.0705	0.1037	-0.1206	0.1740	0.0000	NA
ШX	6	51.2112	38.3971	-2.1619	51.2765	38.3110	-1.8919	-0.0653	0.0861	-0.2700	0.2908	0.0000	NA
MH VH	7 8	50.6901 50.3626	34.9635 31.3593	-1.7680 -1.8074	50.7539 50.4172	34.7847 31.1651	-1.5447 -1.6246	-0.0638	0.1788	-0.2233 -0.1828	0.2931	0.0000	NA NA
-	9	50.3840	27.6753	-1.4269	50.5244	27.6598	-1.3172	-0.1404	0.0155	-0.1020	0.1788	0.0000	NA
	10	50.2839	24.6221	-1.4069	50.3182	24.4951	-1.2641	-0.0343	0.1270	-0.1428	0.1942	0.0000	NA
	11	45.8436	39.9067	-0.8364	45.9726	39.8973	-0.5406	-0.1290	0.0094	-0.2958	0.3228	-0.2958	Z
	12	45.4055	35.4981	-0.7243	45.5569	35.4324	-0.4833	-0.1514	0.0657	-0.2410	0.2921	-0.2410	Z
	13	44.8313	31.5732	-0.8367	44.9456	31.5019	-0.6195	-0.1143	0.0713	-0.2172 0.0318	0.2556	-0.2172	Z
	14 15	44.3851 44.2586	27.2405 23.2934	-0.4720	44.4816	27.1958 23.2002	-0.5038 -0.2906	-0.0965 -0.0590	0.0447	-0.1223	0.1110	0.0318	ZZ
	16	40.9246	40.5357	-0.7090	41.0637	40.4784	-0.3807	-0.1391	0.0573	-0.3283	0.3611	-0.3283	Z
	17	40.2300	35.8479	-0.4373	40.3400	35.7386	-0.1780	-0.1100	0.1093	-0.2593	0.3021	-0.2593	Z
z	18	39.8487	31.5615	-0.8292	39.9026	31.5517	-0.5695	-0.0539	0.0098	-0.2597	0.2654	-0.2597	Z
PA	19	39.6870	28.0379	-0.5687	39.7130	27.9482	-0.4719	-0.0260	0.0897	-0.0968	0.1345	-0.0968	Z
FLOOR PAN (Z)	20 21	39.7815 35.4092	23.7111 40.6573	0.0393	39.8207 35.5499	23.6583 40.5787	0.1936	-0.0392	0.0528	-0.1543 -0.3067	0.1677	-0.1543 -0.3067	ZZ
LO	22	34.6066	35.8246	-0.5560	34.6497	35.7530	-0.2607	-0.0431	0.0716	-0.2953	0.3069	-0.2953	Z
ш	23	33.9959	32.1928	-0.8077	34.0601	32.1028	-0.5642	-0.0642	0.0900	-0.2435	0.2674	-0.2435	Z
	24	34.0134	28.0302	-0.6808	34.0562	27.9731	-0.4755	-0.0428	0.0571	-0.2053	0.2173	-0.2053	Z
	25	33.5797	24.2380	-0.1687	33.6116	24.1831	0.0071	-0.0319	0.0549	-0.1758	0.1869	-0.1758	Z
	26 27	30.4211 30.1075	40.6926 35.6073	-0.9813 -0.9409	30.5279 30.1980	40.5609 35.5503	-0.6759 -0.6375	-0.1068	0.1317	-0.3054 -0.3034	0.3493	-0.3054 -0.3034	ZZ
	28	30.2405	31.9797	-0.8418	30.3038	31.9695	-0.5887	-0.0633	0.0102	-0.2531	0.2611	-0.2531	Z
	29	30.4838	28.1066	-0.8050	30.5570	28.0613	-0.5212	-0.0732	0.0453	-0.2838	0.2966	-0.2838	Z
	30	30.5524	24.0796	-0.8894	30.6828	24.0108	-0.6947 , negative va	-0.1304	0.0688	-0.1947	0.2442	-0.1947	Z
deforming i	culations that nward towa	rd the occup	ant compart	ment.			onents that ar						ponent is
		Pre	test Floor	Pan					Pos	ttest Floor	Pan		
					R K O		The second	* C					P

Figure D-9. Floor Pan Deformation Data – Set 2, Test No. SPTA-2

					١		FORMATIC	אר					
							RUSH - SE						
	POINT	Pretest X	Pretest Y	Pretest Z	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔΥ ^Α (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for
	1	(in.)	(in.)	(in.)								. ,	Crush ^c X, Y, Z
0.0	2	48.3445	28.3969	-20.5979	48.0209	28.5643	-20.8591	0.3236	-0.1674	-0.2612	0.4483	0.4483	X, Y, Z
DASH ^D (X, Y, Z)	3	49.1121	19.0603	-21.3512	48.8812	19.2638	-21.6400	0.2309	-0.2035	-0.2888	0.4221	0.4221	X, Y, Z
	4	45.7575	41.0807	-9.3760	45.6325	41.3390	-9.5680	0.1250	-0.2583	-0.1920	0.3453	0.3453	X, Y, Z
10	5	45.0626	23.5706	-8.3315	44.8918	23.7717	-8.5982	0.1708	-0.2011	-0.2667	0.3752	0.3752	X, Y, Z
	6	43.1688	16.4213	-9.4013	43.0365	16.6300	-9.5857	0.1323	-0.2087	-0.1844	0.3083	0.3083	X, Y, Z
ANEL (Y)	7 8	51.7272 51.6732	43.5475 43.5400	1.5015	51.6347 51.6068	43.8439 43.8226	1.1779	0.0925	-0.2964 -0.2826	-0.3236 -0.3775	0.4485	-0.2964 -0.2826	Y
SIDE PANEL	9	56.6415	43.8880	1.3440	56.5120	44.1915	1.1258	0.1295	-0.3035	-0.2182	0.3956	-0.3035	Y
	10	42.8782	44.5200	-16.1782	42.6553	44.7155	-16.4929	0.2229	-0.1955	-0.3147	0.4324	-0.1955	Y
Dia a	11	30.2461	43.7776	-16.1325	30.0785	43.9639	-16.3156	0.1676	-0.1863	-0.1831	0.3104	-0.1863	Y
S LI S	12	19.7240	42.8584	-17.2330	19.4980	43.0152	-17.4249	0.2260	-0.1568	-0.1919	0.3354	-0.1568	Y
POO C	13	42.4583	44.4022	-4.5691	42.3391	44.6806	-4.8960	0.1192	-0.2784	-0.3269	0.4456	-0.2784	Y
IMPACT SIDE DOOR (Y)	14 15	33.8499 24.4264	44.4944 43.3711	-1.6087 -1.0565	33.7663 24.3274	44.7702 43.6183	-1.8571 -1.2657	0.0836	-0.2758	-0.2484 -0.2092	0.3805	-0.2758 -0.2472	Y
	15	26.5478	32.3433	-37,7370	26.3123	32.4263	-37.8468	0.2355	-0.2472	-0.2092	0.3366	-0.2472	Z
-	17	27.2943	26.8387	-38.1468	27.0022	26.9430	-38.2629	0.2333	-0.1043	-0.1161	0.3312	-0.1161	Z
3	18	27.6958	23.5121	-38.2990	27.4029	23.6171	-38.4115	0.2929	-0.1050	-0.1125	0.3309	-0.1125	Z
	19	28.1402	19.6829	-38.3969	27.8405	19.8207	-38.5085	0.2997	-0.1378	-0.1116	0.3482	-0.1116	Z
	20	28.3909	15.1942	-38.4457	28.1644	15.3306	-38.5413	0.2265	-0.1364	-0.0956	0.2812	-0.0956	Z
Ŕ	21	23.3448	31.5328	-38.2731	23.0821	31.6381	-38.3740	0.2627	-0.1053	-0.1009	0.3005	-0.1009	Z
ROOF - (Z)	22	23.6225 24.5124	27.8834	-38.5812 -38.7387	23.5510	28.0074 24.2817	-38.6526	0.0715	-0.1240	-0.0714	0.1600	-0.0714	Z
Q	23 24	24.5124	24.1015 20.0079	-38.8584	24.4561 25.0360	20.2481	-38.8005 -38.9124	0.0563	-0.1802	-0.0618 -0.0540	0.1986	-0.0618	Z
RO	25	25.6254	15.5605	-38.8811	25.5554	15.7640	-38.9399	0.0700	-0.2035	-0.0588	0.2231	-0.0588	Z
3	26	20.4064	31.1662	-38.5963	20.2936	31.2733	-38.6701	0.1128	-0.1071	-0.0738	0.1722	-0.0738	Z
	27	21.0004	27.6635	-38.8641	20.9682	27.7636	-38.9308	0.0322	-0.1001	-0.0667	0.1245	-0.0667	Z
	28	21.5910	23.9941	-39.0592	21.5035	24.1521	-39.1246	0.0875	-0.1580	-0.0654	0.1921	-0.0654	Z
9	29	22.3720	20.0242	-39.1671	22.3160	20.1547	-39.2274	0.0560	-0.1305	-0.0603	0.1543	-0.0603	Z
	30	22.6291	15.7704	-39.2298	22.6160	15.9635	-39.2888	0.0131	-0.1931	-0.0590	0.2023	-0.0590	Z
~ ~ ~ ~	31 32	50.3539 46.6222	42.2377 41.2213	-23.7994 -26.1572	50.3105 46.5634	42.3759 41.3552	-23.9635 -26.2787	0.0434	-0.1382 -0.1339	-0.1641 -0.1215	0.2189	0.0434	X
AL	33	43.9813	40.4733	-27.6970	43.9214	40.5880	-27.8726	0.0599	-0.1333	-0.1756	0.2181	0.0599	X
PIL xin	34	40.7327	39.5475	-29.6504	40.6887	39.6617	-29.8268	0.0440	-0.1142	-0.1764	0.2147	0.0440	X
A-PILLAR Maximum (X, Y, Z)	35	38.4832	38.8993	-30.8484	38.3334	38.9964	-30.9916	0.1498	-0.0971	-0.1432	0.2289	0.1498	Х
8	36	36.2753	38.2746	-31.9151	36.1852	38.3794	-32.0692	0.0901	-0.1048	-0.1541	0.2070	0.0901	X
	31	50.3539	42.2377	-23.7994	50.3105	42.3759	-23.9635	0.0434	-0.1382	-0,1641	0.2189	-0.1382	Y
A-PILLAR Lateral (Y)	32	46.6222	41.2213	-26.1572	46.5634	41.3552	-26.2787	0.0588	-0.1339	-0.1215	0.1901	-0.1339	Y
all	33 34	43.9813 40.7327	40.4733 39.5475	-27.6970 -29.6504	43.9214 40.6887	40.5880 39.6617	-27.8726 -29.8268	0.0599	-0.1147 -0.1142	-0.1756 -0.1764	0.2181	-0.1147 -0.1142	Y
A-P Late	35	38.4832	38.8993	-30.8484	38.3334	38.9964	-30.9916	0.0440	-0.0971	-0.1764	0.2147	-0.0971	Y
	36	36.2753	38.2746	-31.9151	36.1852	38.3794	-32.0692	0.0901	-0.1048	-0.1541	0.2070	-0.1048	Y
ΨEΩ	37	12.6630	35.9238	-33.3123	12.6151	36.0501	-33.4214	0.0479	-0.1263	-0.1091	0.1736	0.0479	X
B-PILLAR Maximum (X, Y, Z)	38	10.8313	39.6701	-23.4231	10.7730	39.8375	-23.5233	0.0583	-0.1674	-0.1002	0.2036	0.0583	X
A,)	39	15.6227	40.7215	-18.1912	15.5833	40.9099	-18.2557	0.0394	-0.1884	-0.0645	0.2030	0.0394	X
	40	12.0366	40.6231	-14.6114	12.0054	40.8110	-14.7085	0.0312	-0.1879	-0.0971	0.2138	0.0312	X
-PILLAR iteral (Y)	37	12.6630	35.9238	-33.3123	12.6151	36.0501	-33.4214	0.0479	-0.1263	-0.1091	0.1736	-0.1263	Y
B-PILL/ Lateral	38	10.8313	39.6701	-23.4231	10.7730	39.8375	-23.5233	0.0583	-0.1674	-0.1002	0.2036	-0.1674	Y
B-P _ate	39 40	15.6227 12.0366	40.7215 40.6231	-18.1912 -14.6114	15.5833 12.0054	40.9099 40.8110	-18.2557 -14.7085	0.0394	-0.1884 -0.1879	-0.0645 -0.0971	0.2030	-0.1884 -0.1879	Y
		e deformatio											


^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

^D Dash point 1 - post test data was in error showing a deformation of >28". Post-test photos show virtually 0 deformation. Data point has been omitted.

Date: Year:		/2018)11			Test Name: Make:		TA-2 Indai			VIN: Model:	kmh	Accent	18362
					VE		FORMATI	ON					
							RUSH - SE						
[POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	∆Y ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^c
	1		()										X, Y, Z
• Ñ	2	41.5917	27.4591	-29.0474	41.5770	27.3875	-28.9977	0.0147	0.0716	0.0497	0.0884	0.0884	X, Y, Z
DASH ^D (X, Y, Z)	3	41.6927	18.0814	-29.6628	41.7883	18.0428	-29.6921	-0.0956	0.0386	-0.0293	0.1072	0.1072	X, Y, Z
	4	39.5957 37.5804	40.4586 23.0633	-18.0688 -16.8362	39.7234 37.6783	40.3969 22.9378	-17.8755 -16.8285	-0.1277 -0.0979	0.0617	0.1933	0.2397	0.2397	X, Y, Z X, Y, Z
	6	35.1996	16.0573	-17.8802	35.3465	15.9405	-17.8394	-0.1469	0.1255	0.0408	0.1921	0.1921	X, Y, Z
	7	45.3871	42.6379	-7.0346	45.5083	42.5534	-6.9365	-0.1212	0.0845	0.0981	0.1774	0.0845	Y
PANEL (Y)	8	45.4134	42.5973	-9.6085	45.5717	42.5118	-9.5633	-0.1583	0.0855	0.0452	0.1855	0.0855	Y
	9	50.3157	42.6152	-7.0373	50.3968	42.5476	-6.8160	-0.0811	0.0676	0.2213	0.2452	0.0676	Y
<u>ш</u>	10	37.1923	44.0012	-25.0015	37.2449	43.9205	-24.9224	-0.0526	0.0807	0.0791	0.1246	0.0807	Y
MPACT SIDE DOOR (Y)	11	24.5445	44.1868	-25.3550	24.6482	44.0802	-25.1912	-0.1037	0.1066	0.1638	0.2212	0.1066	Y
(3) ACT SI	12	14.0231	44.0250	-26.7839	14.0725	43.8883	-26.6730	-0.0494	0.1367	0.1109	0.1828	0.1367	Y
ĂΖ,	13 14	36.4012 27.7344	44.0817 44.8469	-13.4115 -10.7321	36.5179 27.8723	44.0072	-13.3443 -10.6149	-0.1167 -0.1379	0.0745	0.0672	0.1539	0.0745	Y
ž	14	18.2411	44.4249	-10.4712	18.3597	44.2787	-10.3551	-0.1379	0.1462	0.1172	0.2090	0.1462	Y
	16	20.6929	32.7441	-46.9283	20.8182	32.6617	-46.7745	-0.1253	0.0824	0.1538	0.2148	0.1538	Z
	17	21.0443	27.1942	-47.2473	21.1234	27.1396	-47.1331	-0.0791	0.0546	0.1142	0.1493	0.1142	Z
1	18	21.2042	23.8453	-47.3463	21.2870	23.7922	-47.2475	-0.0828	0.0531	0.0988	0.1394	0.0988	Z
[19	21.3682	19.9928	-47.3835	21.4516	19.9735	-47.3063	-0.0834	0.0193	0.0772	0.1153	0.0772	Z
	20	21.2889	15.4976	-47.3701	21.4504	15.4716	-47.3008	-0.1615	0.0260	0.0693	0.1777	0.0693	Z
Ñ	21 22	17.4572 17.4748	32.1627 28.4987	-47.5578 -47.8126	17.5600 17.7743	32.1043 28.4470	-47.4124 -47.6525	-0.1028 -0.2995	0.0584	0.1454	0.1874	0.1454	Z
i.	22	18.0882	24.6599	-47.8957	18.4117	24.6645	-47.7458	-0.2995	-0.0046	0.1499	0.3566	0.1499	Z
ROOF - (Z)	24	18.3448	20.5353	-47.9480	18.7015	20.5988	-47.8129	-0.3567	-0.0635	0.1351	0.3867	0.1351	Z
й М	25	18.5729	16.0592	-47.8991	18.8954	16.0888	-47.7951	-0.3225	-0.0296	0.1040	0.3401	0.1040	Z
[26	14.5114	32.0077	-47.9713	14.7646	31.9392	-47.8060	-0.2532	0.0685	0.1653	0.3100	0.1653	Z
I	27	14.8538	28.4674	-48.1775	15.1920	28.3879	-48.0216	-0.3382	0.0795	0.1559	0.3808	0.1559	Z
	28	15.1783	24.7622	-48.3091	15.4707	24.7456	-48.1746	-0.2924	0.0166	0.1345	0.3223	0.1345	Z
ŀ	29 30	15.6677 15.6126	20.7446	-48.3439 -48.3469	15.9947 15.9923	20.6993	-48.2246 -48.2502	-0.3270 -0.3797	0.0453	0.1193	0.3510	0.1193	Z
	31	44.7146	41.0679	-32.3491	44.9692	40.9709	-32.1001	-0.2546	0.0970	0.2490	0.3691	0.2672	Y.Z
α E O	32	40.9939	40.2937	-34.8138	41.2421	40.2037	-34.5419	-0.2482	0.0970	0.2490	0.3790	0.2864	Y, Z
A TUR	33	38.3547	39.7191	-36.4289	38.6093	39.6157	-36.2248	-0.2546	0.1034	0.2041	0.3423	0.2288	Y,Z
A-PILLAR Maximum (X, Y, Z)	34	35.1095	39.0057	-38.4750	35.3891	38.9085	-38.2879	-0.2796	0.0972	0.1871	0.3502	0.2108	Y, Z
Υ×Ο	35	32.8571	38.5068	-39.7372	33.0342	38.4051	-39.5324	-0.1771	0.1017	0.2048	0.2892	0.2287	Y, Z
	36	30.6436	38.0302	-40.8670	30.8864	37.9356	-40.6825	-0.2428	0.0946	0.1845	0.3193	0.2073	Y, Z
~~	31	44.7146	41.0679	-32.3491	44.9692	40.9709	-32.1001	-0.2546	0.0970	0.2490	0.3691	0.0970	Y
A-PILLAR Lateral (Y)	32 33	40.9939 38.3547	40.2937 39.7191	-34.8138 -36.4289	41.2421 38.6093	40.2037 39.6157	-34.5419 -36.2248	-0.2482 -0.2546	0.0900	0.2719	0.3790	0.0900	Y Y
era	34	35.1095	39.0057	-38.4750	35.3891	38.9085	-38.2246	-0.2546	0.0972	0.2041	0.3423	0.0972	Y
A-F Lat	35	32.8571	38.5068	-39.7372	33.0342	38.4051	-39.5324	-0.1771	0.1017	0.2048	0.2892	0.1017	Y
	36	30.6436	38.0302	-40.8670	30.8864	37.9356	-40.6825	-0.2428	0.0946	0.1845	0.3193	0.0946	Y
K E G L	37	6.9778	37.3953	-42.9980	7.2720	37.3023	-42.8641	-0.2942	0.0930	0.1339	0.3364	0.1630	Y, Z
L' l'	38	5.1180	41.4078	-33.2191	5.3609	41.2969	-33.0610	-0.2429	0.1109	0.1581	0.3103	0.1931	Y, Z
B-PILLAR Maximum (X, Y, Z)	39	9.8075	42.1807	-27.8482	10.0474	42.0640	-27.6309	-0.2399	0.1167	0.2173	0.3441	0.2467	Y,Z
	40	6.1134	42.3968	-24.3853	6.3488	42.2539	-24.2136	-0.2354	0.1429	0.1717	0.3245	0.2234	Y, Z
B-PILLAR Lateral (Y)	37 38	6.9778 5.1180	37.3953 41.4078	-42.9980 -33.2191	7.2720 5.3609	37.3023 41.2969	-42.8641 -33.0610	-0.2942 -0.2429	0.0930	0.1339	0.3364	0.0930	Y
eral	38	9.8075	41.4078	-33.2191	10.0474	41.2969	-33.0610	-0.2429	0.1109	0.1581	0.3103	0.1109	Y
B-P	40	6.1134	42.3968	-24.3853	6.3488	42.2539	-24.2136	-0.2354	0.1429	0.1717	0.3245	0.1429	Y
							t, negative v						

deforming inward toward the occupant comportents will deform the cush calculations. If "NA" then no intrusion is recorded, and Crush will be 0. ^D Dash point 1 - post test data was in error showing a deformation of >28". Post-test photos show virtually 0 deformation. Data point has been omitted.

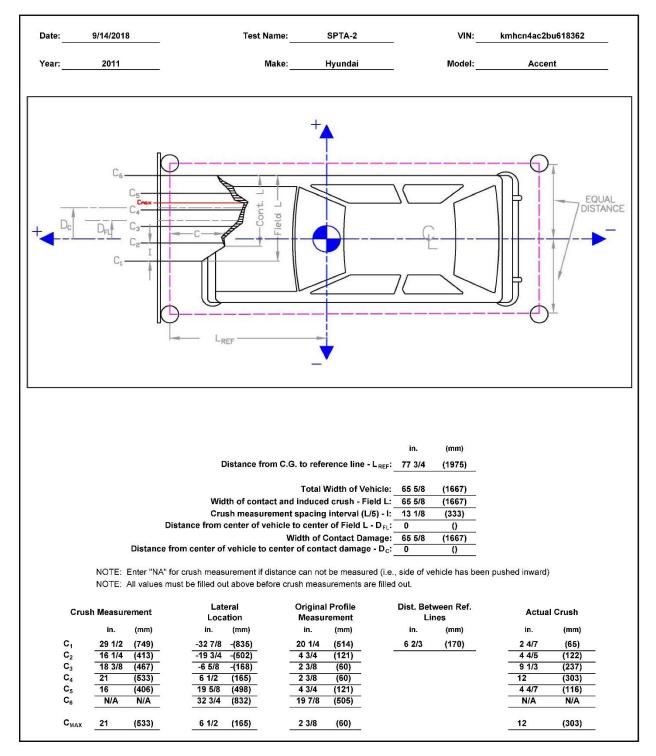


Figure D-12. Exterior Vehicle Crush (NASS) - Front, Test No. SPTA-2

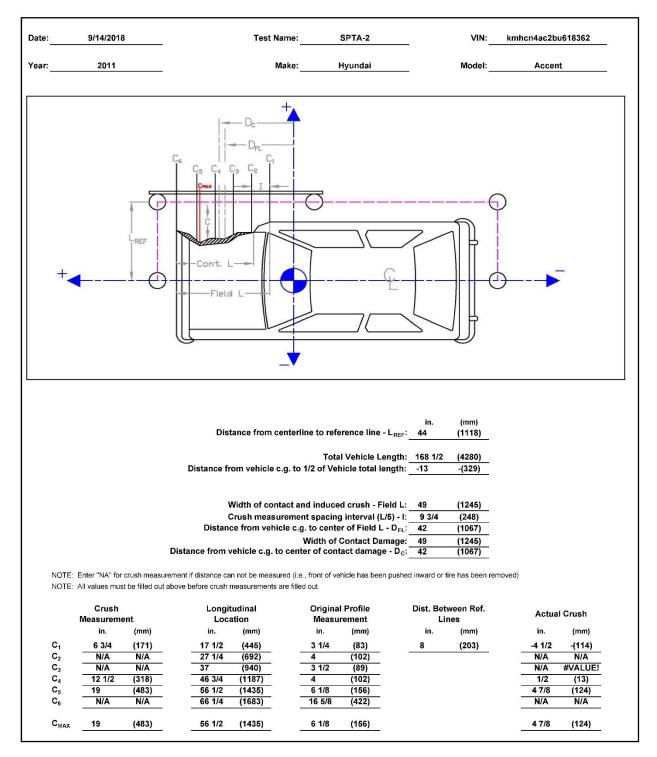


Figure D-13. Exterior Vehicle Crush (NASS) - Side, Test No. SPTA-2

Date: _ Year: _	9/12/2018 2011	-	Test Name: _ Make: _	SPTA-2 Hyundai	VIN: Model:					
	Reference Se	t 1		Reference Set 2						
Location	Maximum Deformation ^{A,B} (in.) -0.1	MASH Allowable Deformation (in.) ≤ 4	Directions of Deformation ^C Z	Location	Maximum Deformation ^{A,B} (in.) 0.2	MASH Allowable Deformation (in.) ≤ 4	Directions of Deformation ^C Z			
	-			Windshield ^D	-					
Vindshield ^D A-Pillar Maximum	0.0	≤ 3 ≤ 5	X, Z X	A-Pillar Maximum	NA 0.3	≤3 ≤5	<u>X, Z</u> Y, Z			
A-Pillar Lateral	-0.1	≤ 3 ≤ 3	Y	A-Pillar Lateral	0.3	≤ 3 ≤ 3	Υ Υ			
3-Pillar Maximum	-0.1	<u>≤</u> 5	X	B-Pillar Maximum	0.1	≤5	Y, Z			
3-Pillar Lateral	-0.1	<u>≤</u> 3	Y	B-Pillar Lateral	0.2	<u>≤</u> 3	Y			
Foe Pan - Wheel Well	0.2	<u>≤</u> 9	X	Toe Pan - Wheel Well	0.0	<u>≤</u> 9	X			
Side Front Panel	-0.3	≤ 12	Y	Side Front Panel	0.1	≤ 12	Y			
Side Door (above seat)	-0.2	≤ 9	Y	Side Door (above seat)	0.1	≤ 9	Y			
Side Door (below seat)	-0.2	<u> </u>	Y	Side Door (below seat)	0.1	<u> </u>	Y			
Floor Pan	-0.1	<u> </u>	Z	Floor Pan	0.0	<u> </u>	Z			
Dash - no MASH requirement	0.4	NA	X, Y, Z	Dash - no MASH requirement	0.2	NA	X, Y, Z			
For Toe Pan - Wheel Well the di and Z directions. The direction o ntruding into the occupant comp	ation as inward to lirection of defrom of deformation for partment. If directi	ward the occupant o ation may include > Toe Pan -Wheel We on of deformation is	compartment, negat (and Z direction. Fo ell, A-Pillar Maximum s "NA" then no intrus	ive values denote deformations out or A-Pillar Maximum and B-Pillar Max n, and B-Pillar Maximum only include sion is recorded and deformation wi sured posttest with an examplar veh	imum the directio components whe ll be 0.	n of deformation ma ere the deformation	ay include X, Y, is positive and			

Figure D-14. Maximum Occupant Compartment Deformation, Test No. SPTA-2

Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. SPTA-1

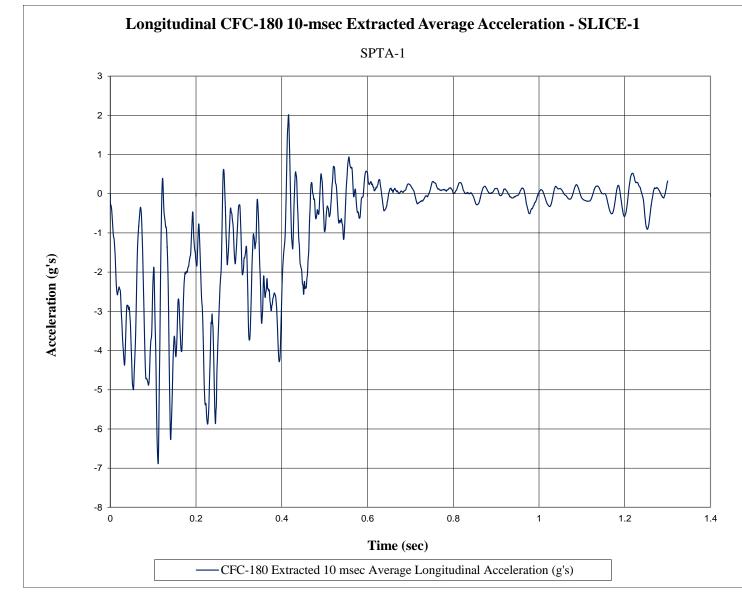


Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. SPTA-1

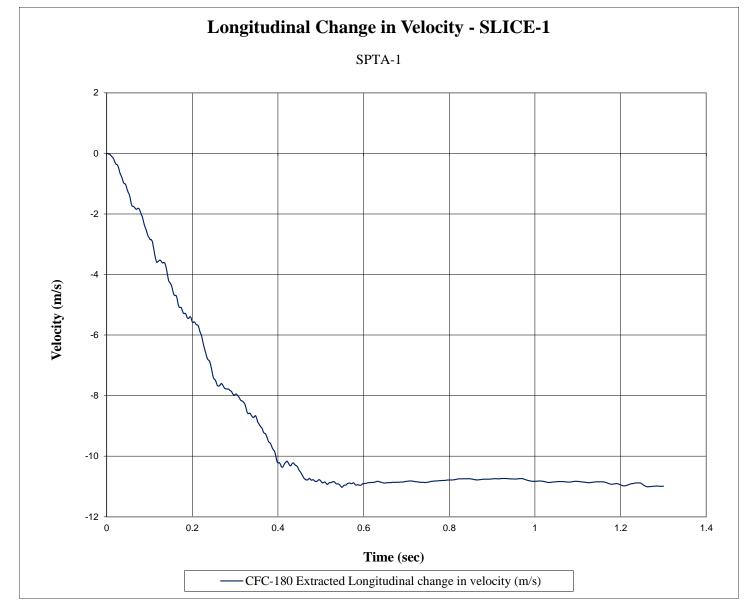


Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. SPTA-1

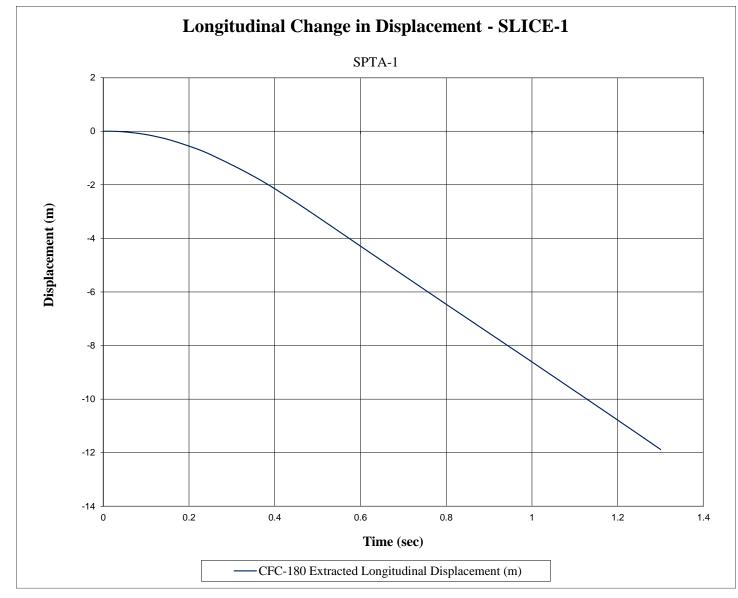


Figure E-3. Longitudinal Occupant Displacement (SLICE-1), Test No. SPTA-1

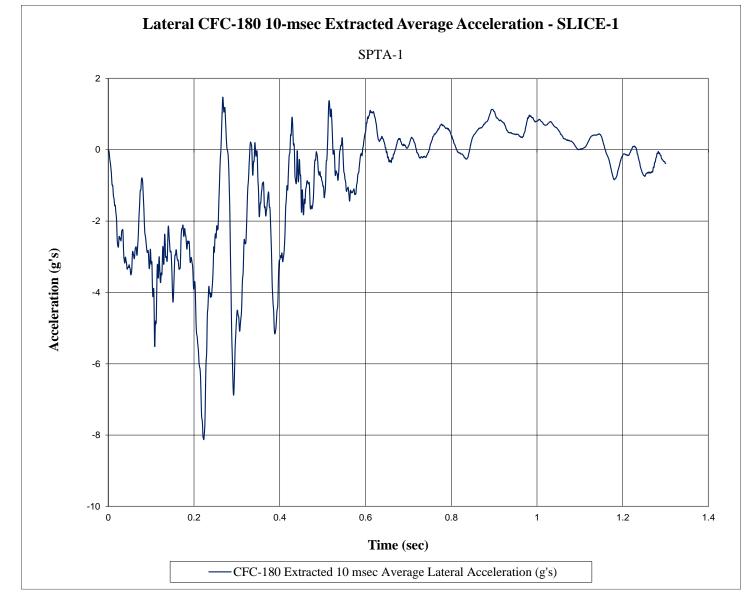


Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. SPTA-1

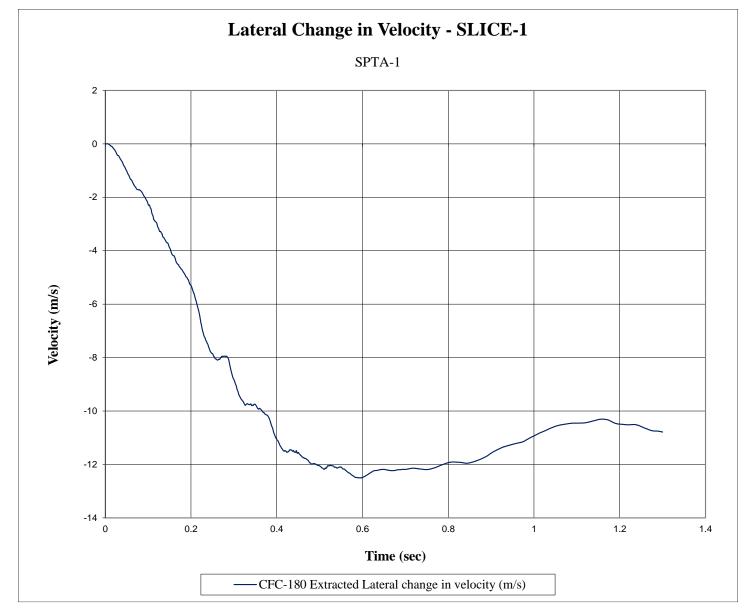


Figure E-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. SPTA-1

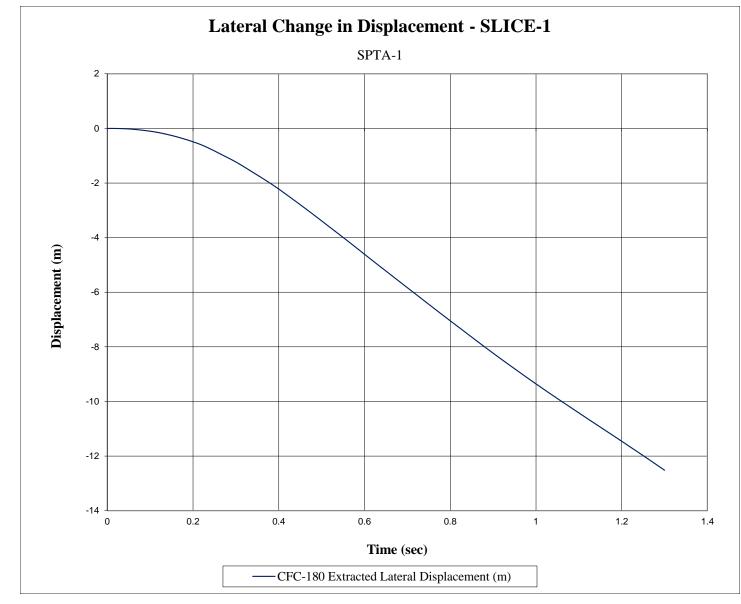


Figure E-6. Lateral Occupant Displacement (SLICE-1), Test No. SPTA-1

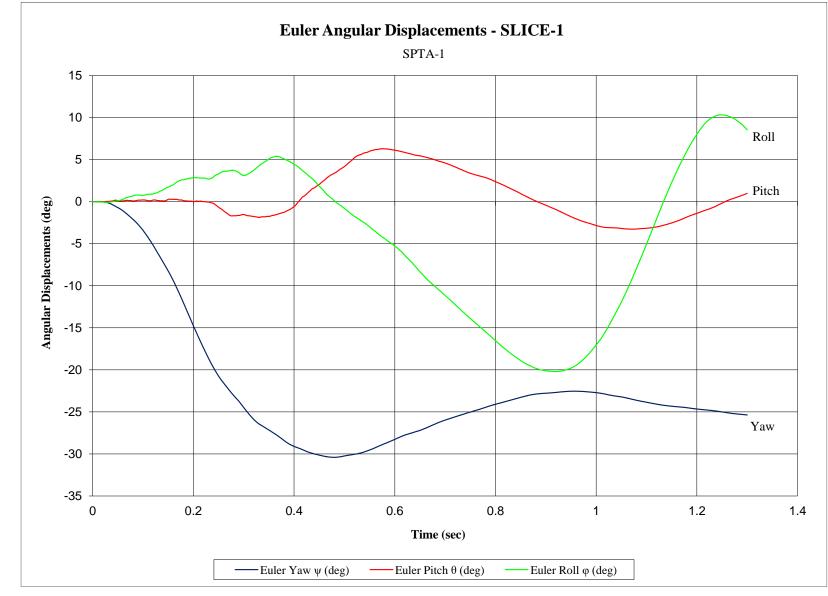


Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. SPTA-1

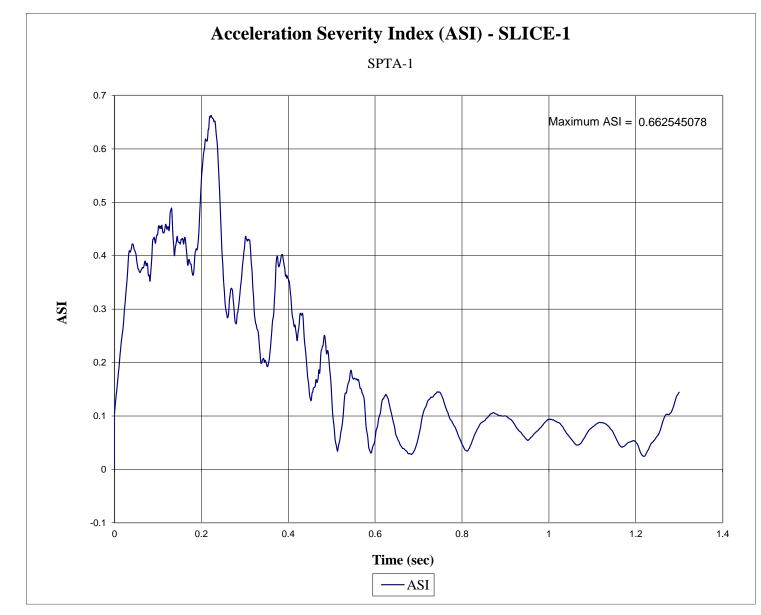


Figure E-8. Acceleration Severity Index (SLICE-1), Test No. SPTA-1

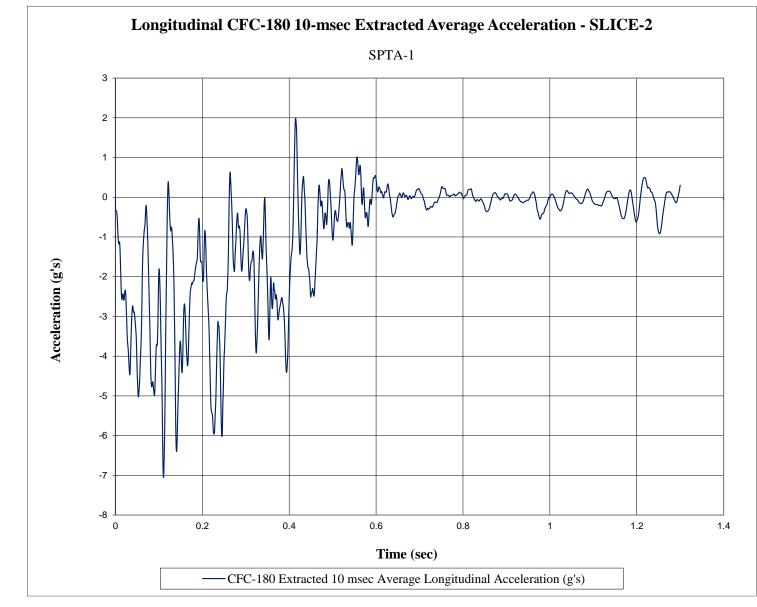


Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. SPTA-1

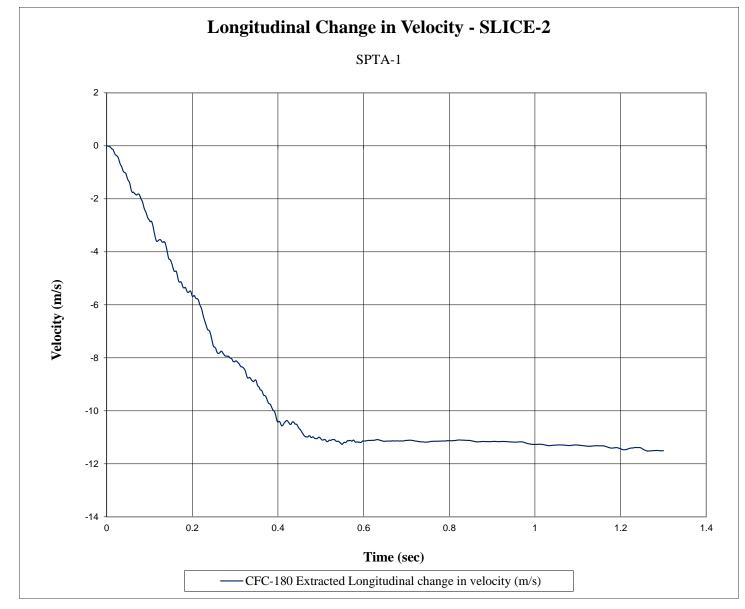


Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. SPTA-1

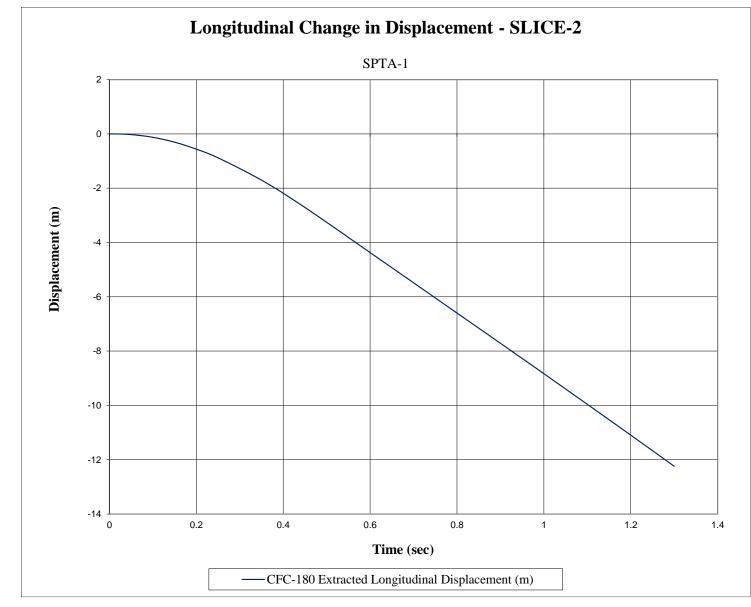


Figure E-11. Longitudinal Occupant Displacement (SLICE-2), Test No. SPTA-1

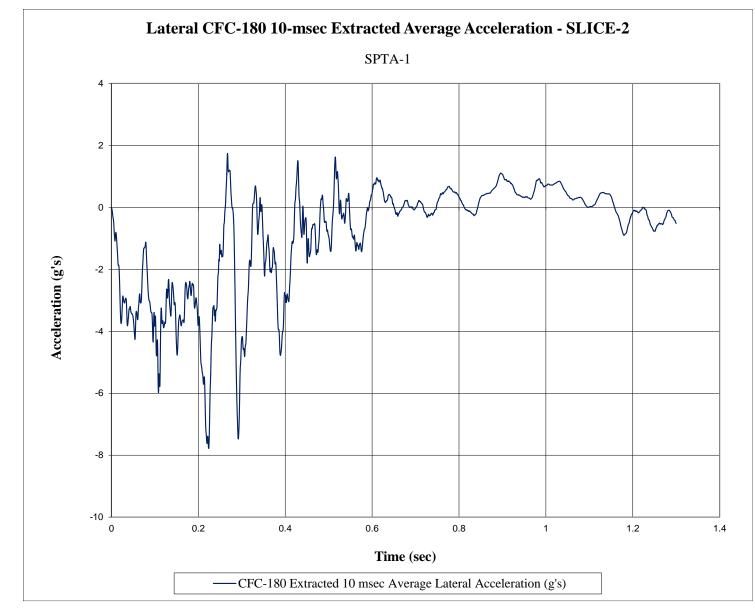


Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. SPTA-1

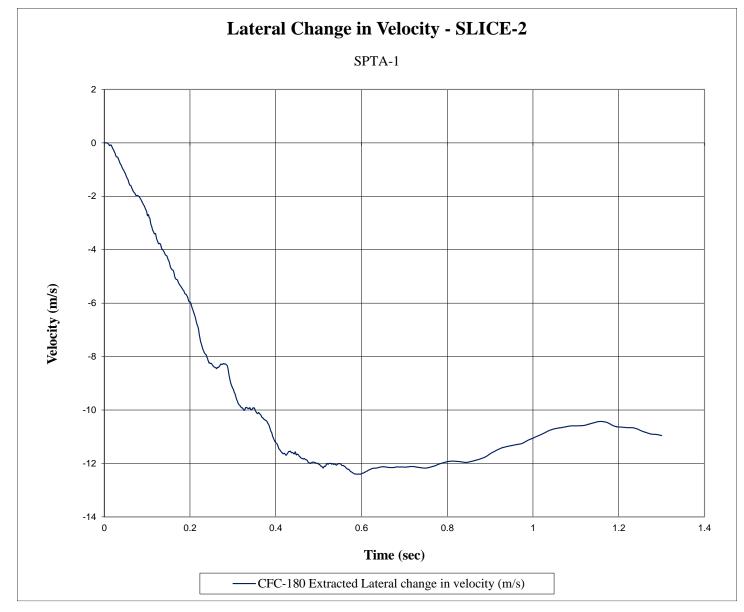


Figure E-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. SPTA-1

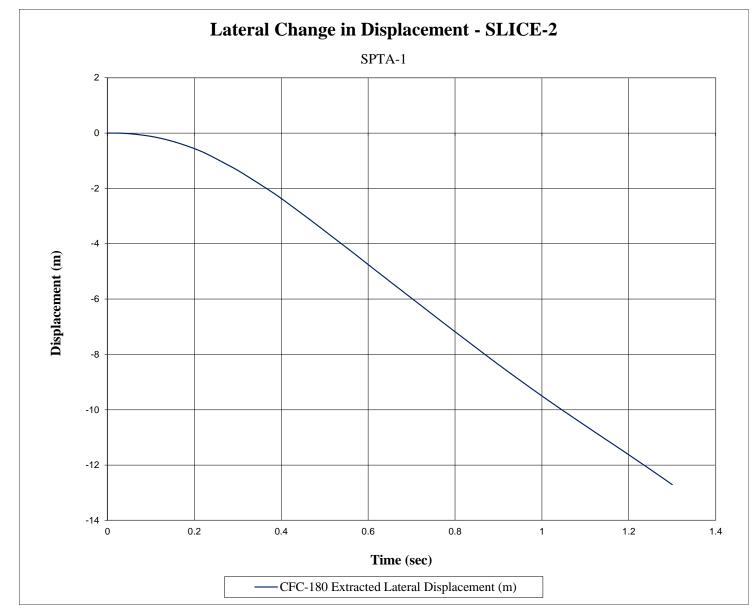


Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. SPTA-1

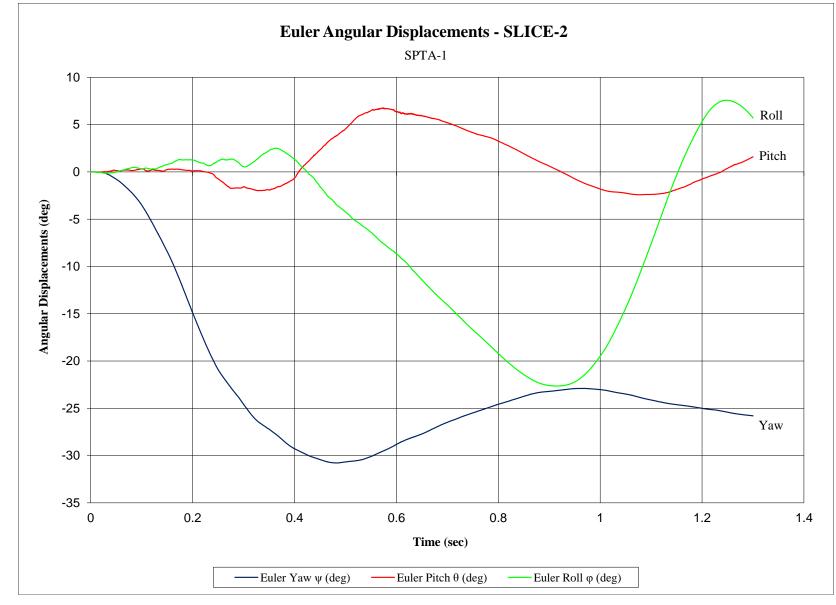


Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. SPTA-1

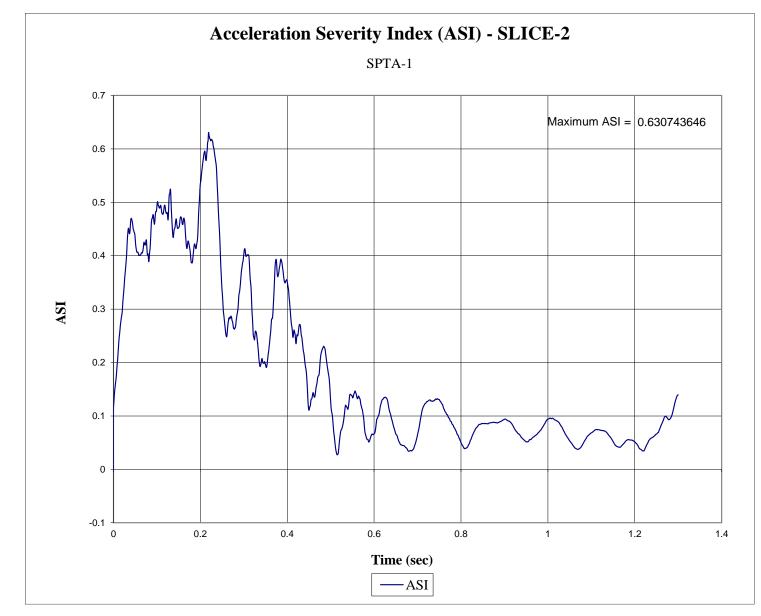


Figure E-16. Acceleration Severity Index (SLICE-2), Test No. SPTA-1

Appendix F. Load Cell Data, Test No. SPTA-1

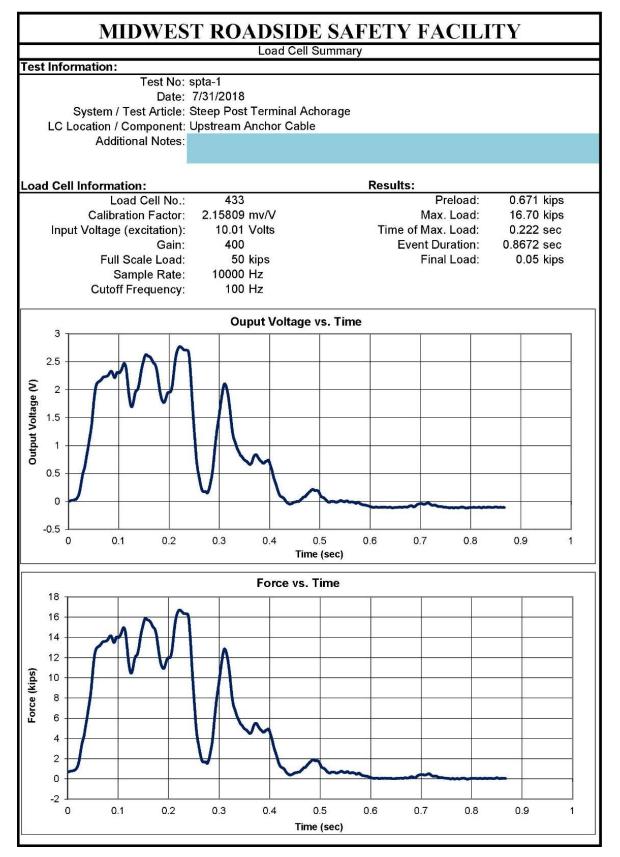


Figure F-1. Load Cell Data from Upstream Cable Anchor, Test No. SPTA-1

Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. SPTA-2

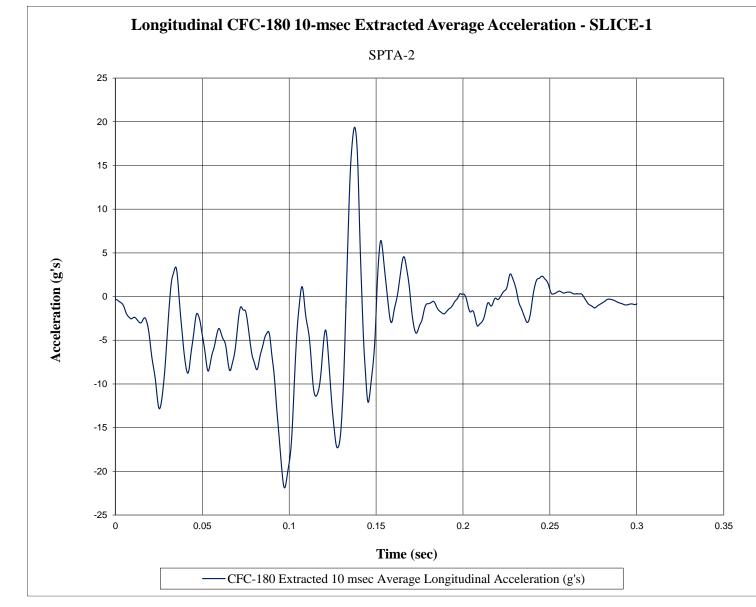


Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. SPTA-2

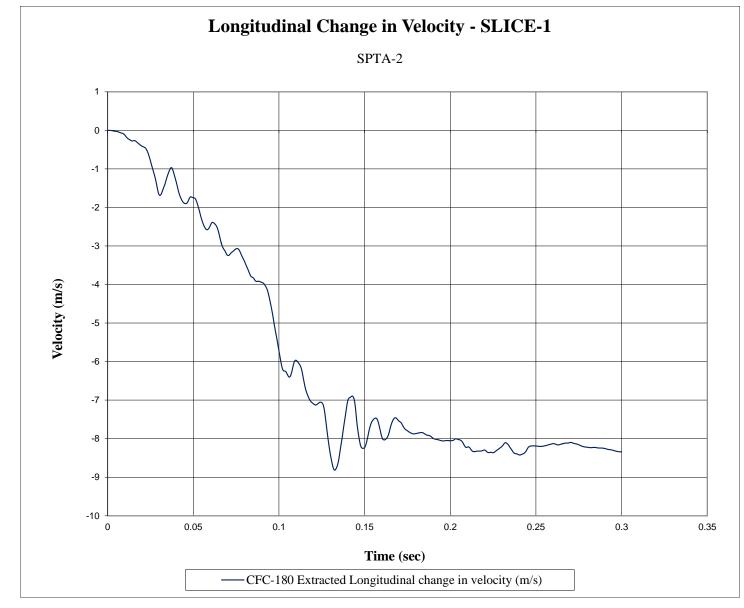


Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. SPTA-2

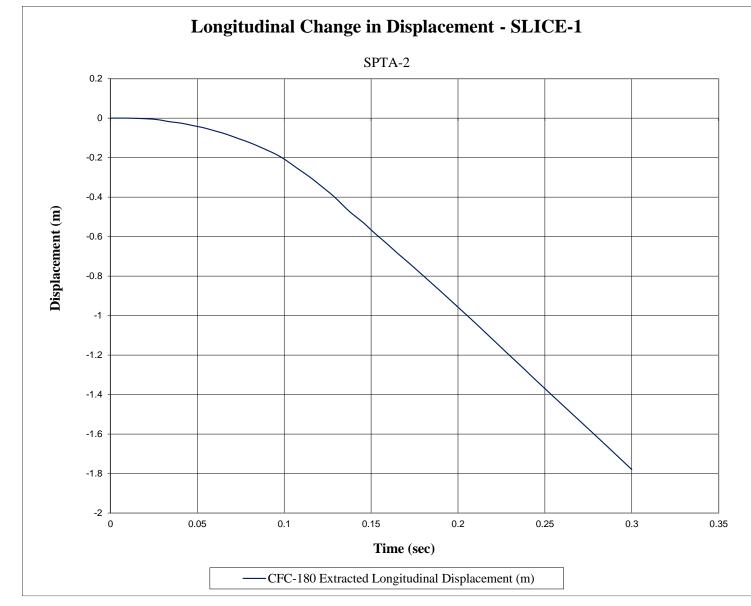


Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. SPTA-2

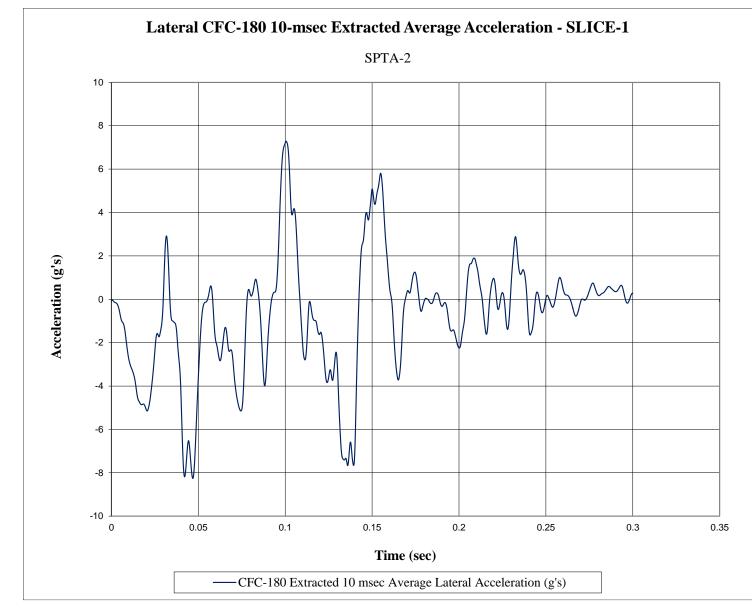


Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. SPTA-2

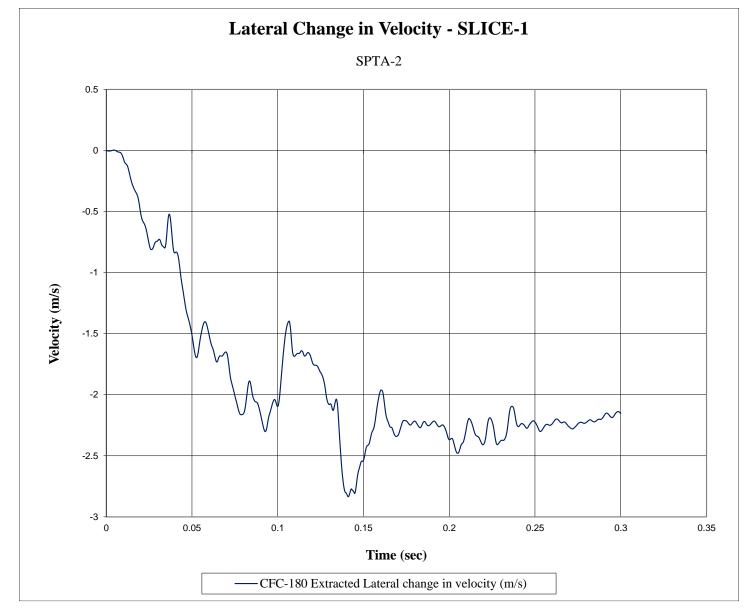


Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. SPTA-2

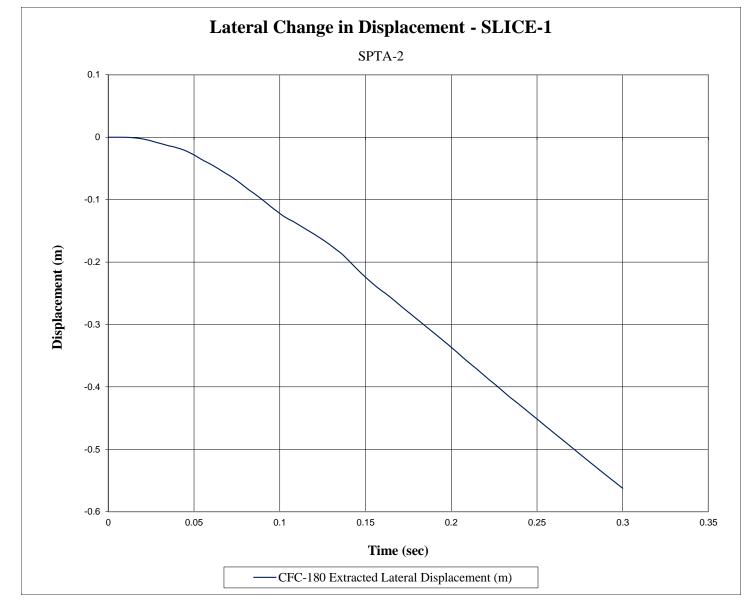


Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. SPTA-2

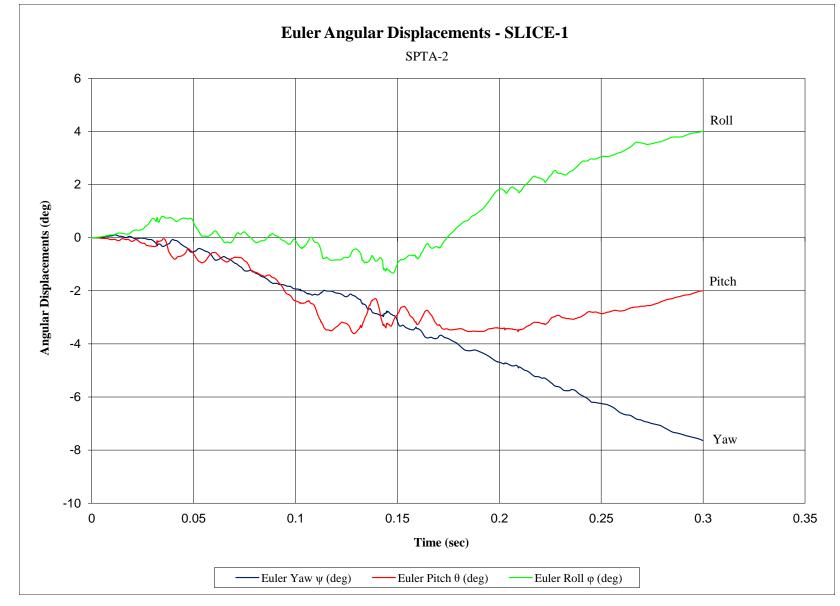


Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. SPTA-2

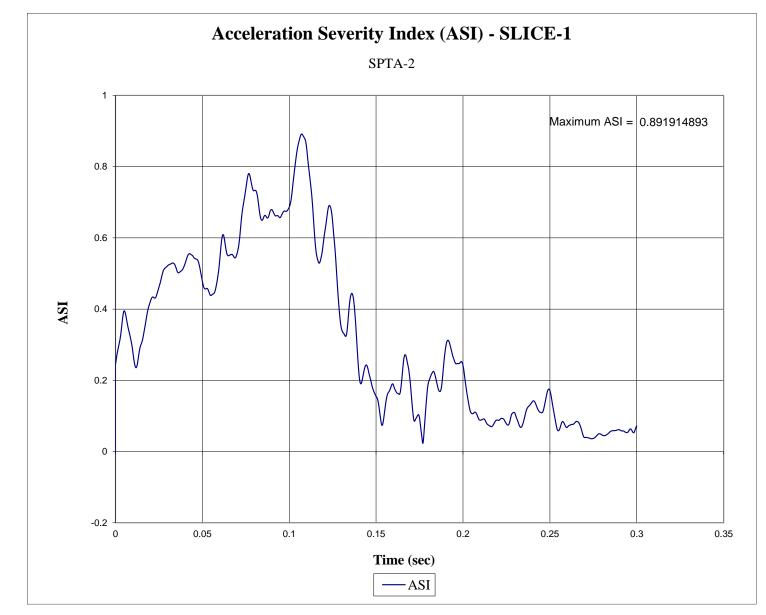


Figure G-8. Acceleration Severity Index (SLICE-1), Test No. SPTA-2

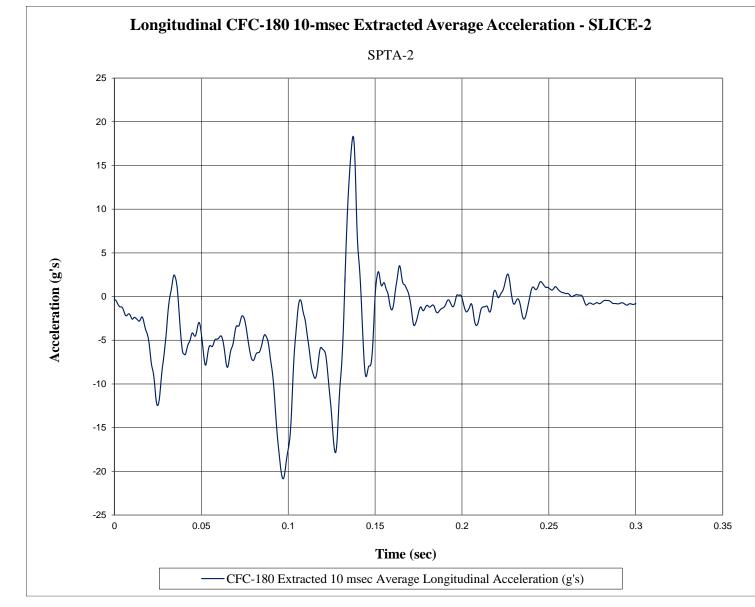


Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. SPTA-2

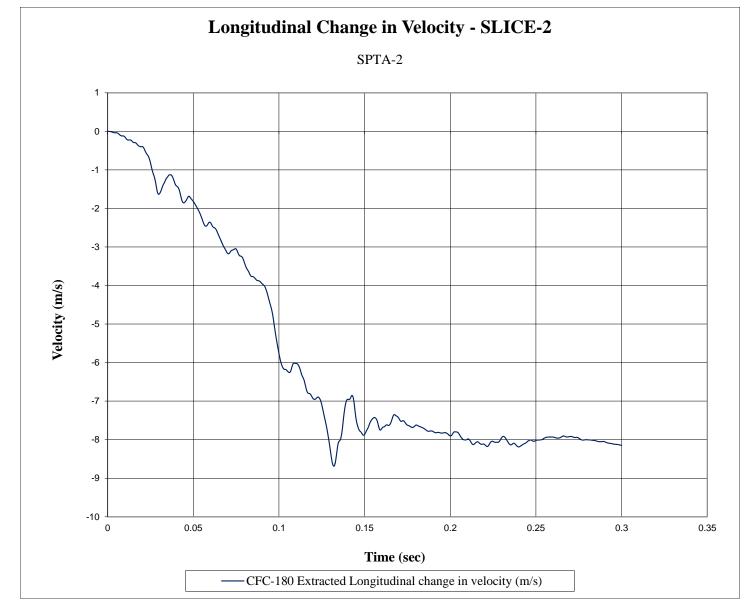


Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. SPTA-2

Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. SPTA-2

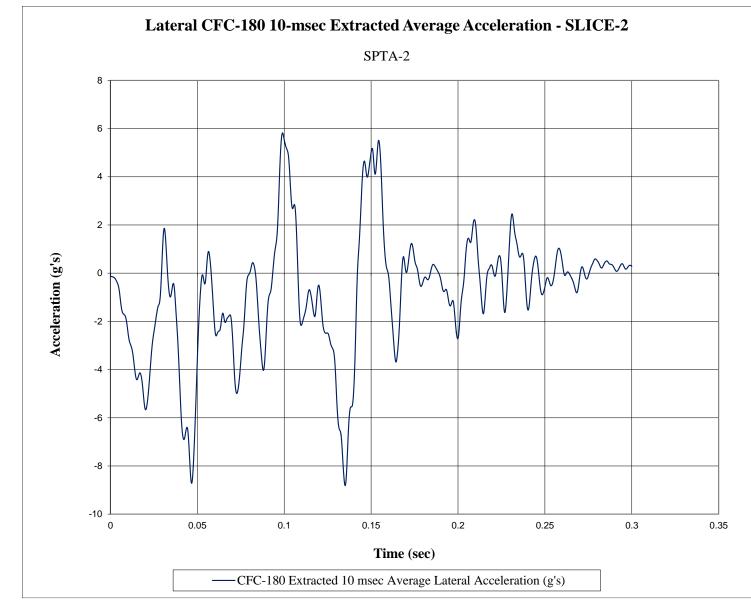


Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. SPTA-2

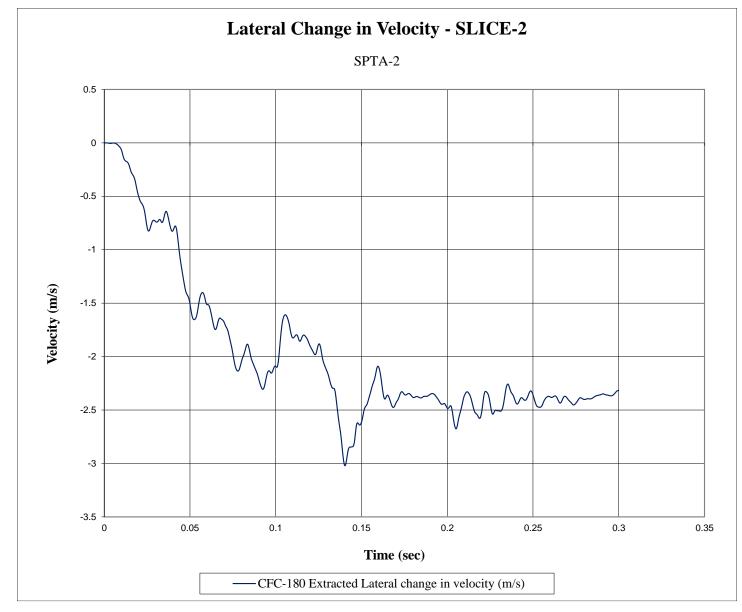


Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. SPTA-2

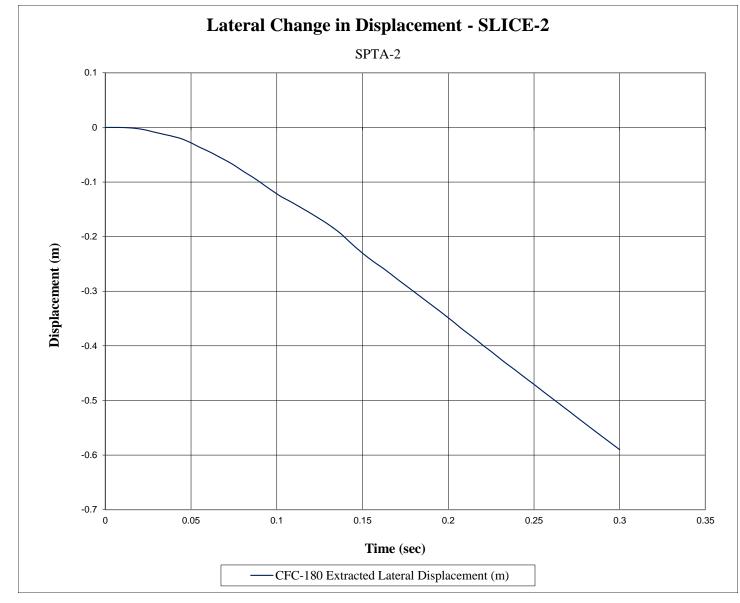


Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. SPTA-2

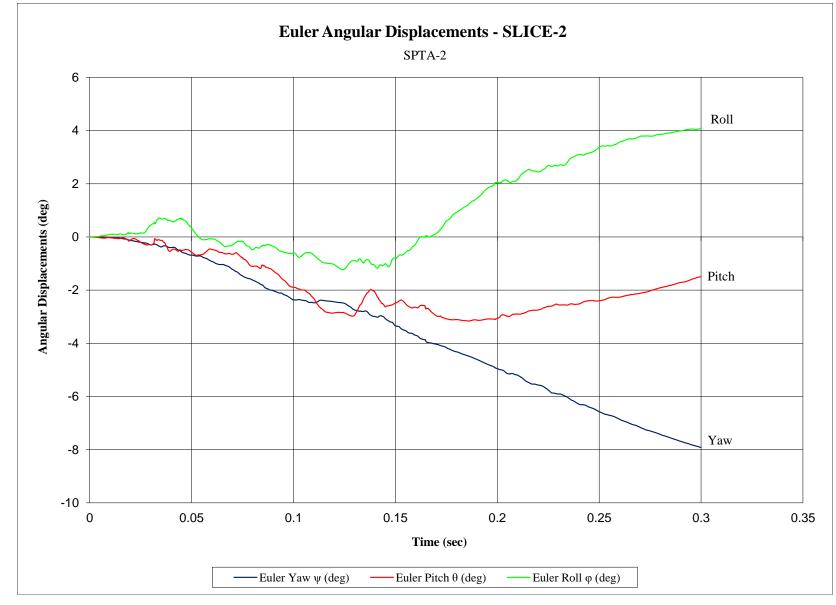


Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. SPTA-2

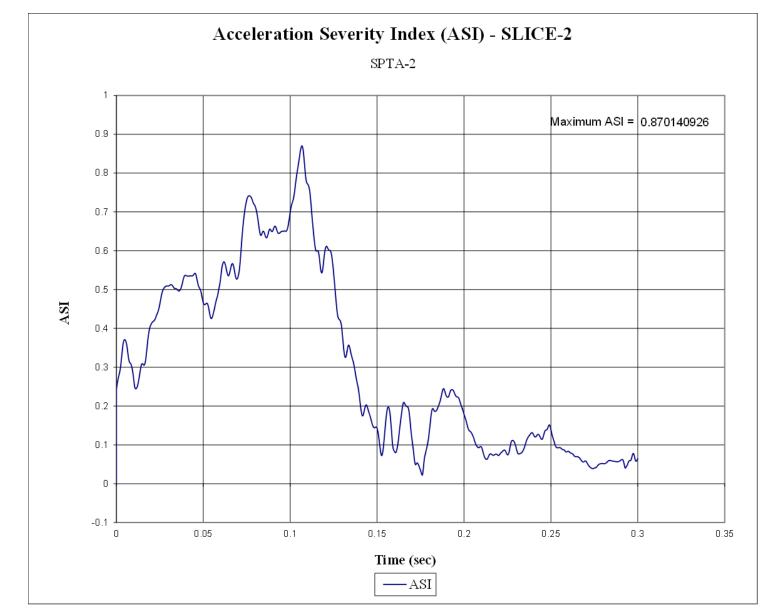


Figure G-16. Acceleration Severity Index (SLICE-2), Test No. SPTA-2

END OF DOCUMENT