

Research Project Number TPF-5(193) Supplement #113 WisDOT Sponsoring Agency Code RPFP-WISC-6

DYNAMIC TESTING AND EVALUATION OF CULVERT-MOUNTED, STRONG-POST MGS TO TL-3 GUIDELINES OF MASH 2016

Submitted by

Mojdeh Asadollahi Pajouh, Ph.D., P.E. Research Assistant Professor

Jennifer D. Rasmussen, Ph.D., P.E. Research Associate Professor

Ronald K. Faller, Ph.D., P.E. Research Professor and MwRSF Director Robert W. Bielenberg, M.S.M.E., E.I.T. Research Engineer

Fengtao Bai, Ph.D. Former Post-Doctoral Research Associate

James C. Holloway, M.S.M.E., E.I.T. Research Engineer & Assistant Director – Physical Testing Division

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 **Outdoor Test Site** 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

WISCONSIN DEPARTMENT OF TRANSPORTATION

4802 Sheboygan Avenue Madison, Wisconsin 53707

MwRSF Research Report No. TRP-03-383-20-R1

November 2, 2020

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-383-20-R1	2. Government Accession No.	3. Recipient's Catalog No.		
4. Title and Subtitle Dynamic Testing and Evaluation TL-3 Guidelines of MASH 2016	5. Report Date November 2, 2020			
1L-3 Guidelines of MASH 2016	6. Performing Organization Code			
	g, R.W., Rasmussen, J.D., Bai, F., Faller,	8. Performing Organization Report No. TRP-03-383-20-R1		
R.K., and Holloway, J.C. 9. Performing Organization Nan Midwest Roadside Safety Facility Nebraska Transportation Center		10. Work Unit No.		
University of Nebraska-Lincoln Main Office: Prem S. Paul Research Center at V Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	Outdoor Test Site: 4630 N.W. 36th Street Lincoln, Nebraska 68524	11. Contract TPF-5(193) Supplement #113		
12. Sponsoring Agency Name an Wisconsin Department of Transpo		13. Type of Report and Period Covered Final Report: 2017-2020		
4802 Sheboygan Avenue Madison, Wisconsin 53707		14. Sponsoring Agency Code RPFP–WISC-6		

15. Supplementary Notes

Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration.

16. Abstract

A modified design of the MGS was evaluated for installation on a low-fill culvert with a strong-post attachment using to the culvert, half-post spacing, and a 12-in. (305-mm) offset from the back of the post to the culvert headwall through full-scale crash testing. A four-cell, concrete culvert with 8-in. (203-mm) thick slab and 9-in. (229-mm) deep soil fill was utilized. The test installation consisted of 182.3-ft (55.6-m) long MGS with a 31-in. (787-mm) top rail height, supported by twenty-three W6x8.5 by 72-in. (1,829-mm) long posts upstream and downstream of the culvert and fourteen W6x9 by 41-in. (1,041-mm) long posts attached to the culvert's top slab using a deformable baseplate and through-bolts.

Two crash tests were conducted according to the American Association of State Highway Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware* 2016 (MASH) Test Level 3 (TL-3) impact safety criteria. In test no. CMGS-1, a 2,428-lb (1,101-kg) car impacted the culvert-mounted MGS at a speed of 61.3 mph (98.7 km/h) and at an angle of 25.1 degrees. In test no. CMGS-2, a 5,013-lb (2,274-kg) pickup truck impacted the MGS attached to the culvert at a speed of 62.8 mph (101.1 km/h) and an angle of 25.7 degrees. In both tests, the vehicle was safely redirected and captured. Both tests were deemed acceptable according to TL-3 safety criteria in MASH. Recommendations were made for the implementation of MGS on low-fill culverts as well as transitioning from the standard MGS to the culvert-mounted MGS.

17. Key Words		18. Distribution Statement		
Highway Safety, Crash Test, Roadside Appurtenances,		No restrictions. Document available from: National		
Compliance Test, MASH 2016, Longitudinal Barrier, Culvert-		Technical Information Services, Springfield, Virginia		
Mounted, TL-3, Strong Post MGS.		22161		
19. Security Classification (of this report)20. Security Classification (of this page)UnclassifiedUnclassified		21. No. of Pages 253	22. Price	

DISCLAIMER STATEMENT

This material is based upon work supported by the Federal Highway Administration, U.S. Department of Transportation and the Nebraska and Wisconsin Departments of Transportation under TPF-5(193) Supplement #113. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the Nebraska or Wisconsin Departments of Transportation nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names, which may appear in this report, are cited only because they are considered essential to the objectives of the report. The United States (U.S.) government and the States of Nebraska and Wisconsin do not endorse products or manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Dr. Cody Stolle, E.I.T., Research Assistant Professor.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) Wisconsin Department of Transportation for sponsoring the project; (2) Nebraska Department of Transportation for management and facilitation of the Midwest Pooled Fund and project; (3) MwRSF personnel for constructing the barriers and conducting the crash tests; and (4) the Holland Computing Center at the University of Nebraska for the high-performance computing resources.

Acknowledgement is also given to the following individuals who contributed to the completion of this research project.

Midwest Roadside Safety Facility

K.A. Lechtenberg, M.S.M.E., E.I.T., Research Engineer S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Engineer C.S. Stolle, Ph.D., E.I.T., Research Assistant Professor J.S. Steelman, Ph.D., P.E., Associate Professor A.T. Russell, B.S.B.A., Testing and Maintenance Technician II E.W. Krier, B.S., Construction and Testing Technician II S.M. Tighe, Construction and Testing Technician I D.S. Charroin, Construction and Testing Technician I R.M. Novak, Construction and Testing Technician I T.C. Donahoo, Construction and Testing Technician I J.T. Jones, Construction and Testing Technician I C.I. Sims, Former Construction and Testing Technician I J.E. Kohtz, B.S.M.E., CAD Technician E.L. Urbank, B.A., Research Communication Specialist Z.Z. Jabr, Engineering Technician Undergraduate and Graduate Research Assistants

Wisconsin Department of Transportation

Jerry Zogg, P.E., Former Chief Roadway Standards Engineer Erik Emerson, P.E., Standards Development Engineer Rodney Taylor, P.E., Roadway Design Standards Unit Supervisor

Nebraska Department of Transportation

Jodi Gibson, Former Research Coordinator Mark Fischer, P.E., Research Program Manager

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	. iii
TABLE OF CONTENTS	. iv
LIST OF FIGURES	. vi
LIST OF TABLES	xii
1 INTRODUCTION 1.1 Background 1.2 Research Objective 1.3 Scope	1 5
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 2.1 Test Requirements 2.2 Evaluation Criteria 2.3 Soil Strength Requirements	6 6
3 DESIGN DETAILS 3.1 Culvert Design and Construction 3.2 Culvert-Mounted, Strong Post MGS	8
4 TEST CONDITIONS. 4.1 Test Facility	51 51 51 61 61 61 61 61
 5 FULL-SCALE CRASH TEST NO. CMGS-1 5.1 Static Soil Test 5.2 Weather Conditions 5.3 Test Description 5.4 Barrier Damage 5.5 Vehicle Damage 	65 65 65 65 74

5.6 Occupant Risk	
5.7 Discussion	89
6 FULL-SCALE CRASH TEST NO. CMGS-2	91
6.1 Static Soil Test	91
6.2 Weather Conditions	91
6.3 Test Description	91
6.4 Barrier Damage	100
6.5 Vehicle Damage	111
6.6 Occupant Risk	117
6.7 Discussion	118
7 STIFFNESS TRANSITION FROM MGS TO CULVERT-MOUNTED MGS	120
7.1 Transition from Half-Post Spacing MGS to Culvert-Mounted MGS	
7.2 Transition from Standard MGS to Half-Post Spacing MGS	
7.2.1 Evaluation of MGS to Half-Post Spacing MGS	
7.2.2 Simulation of Culvert-Mounted Midwest Guardrail System	
7.2.3 Determination of Critical Impact Point	
7.3 Transition Recommendations for Culvert Mounted MGS System	
8 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	143
8.1 Recommendations	
9 MASH EVALUATION	148
9.1 MASH Crash Test Matrix	148
9.2 Full-Scale Crash Testing	148
9.3 MASH 2016 Evaluation	149
10 REFERENCES	150
11 APPENDICES	153
Appendix A. Material Specifications	
Appendix B. Vehicle Center of Gravity Determination	198
Appendix C. Static Soil Tests	201
Appendix D. Vehicle Deformation Records	
Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. CMGS-1	
Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. CMGS-2	

LIST OF FIGURES

Figure 1. Side-Mounted Configuration for Guardrail on Culvert Headwalls [4]	2
Figure 2. NCHRP Report No. 350-Compliant, Modified G4(1S) Guardrail Attachment to	
Low-Fill Culvert [5]	3
Figure 3. MASH-Compliant, MGS Guardrail Attachment to Low-Fill Culvert [8]	4
Figure 4. Culvert System Overview, Test Nos. CMGS-1 and CMGS-2	10
Figure 5. Top Slab and Vertical Support Wall Details, Test Nos. CMGS-1 and CMGS-2	11
Figure 6. Concrete Rebar Connections, Test Nos. CMGS-1 and CMGS-2	12
Figure 7. Concrete Rebar Connections (Cont.), Test Nos. CMGS-1 and CMGS-2	13
Figure 8. Top Slab, Soil Retaining Wall, Interior Vertical Support Wall Details, Test Nos.	
CMGS-1 and CMGS-2	14
Figure 9. Top Slab, Soil Retaining Wall, Right Exterior Vertical Support Wall Details, Test	
Nos. CMGS-1 and CMGS-2	
Figure 10. Concrete Culvert in Ground Details, Test Nos. CMGS-1 and CMGS-2	
Figure 11. Concrete Top Slab Details, Test Nos. CMGS-1 and CMGS-2	
Figure 12. Interior and Exterior Support Wall Details, Test Nos. CMGS-1 and CMGS-2	
Figure 13. Exterior Support Wall Details, Test Nos. CMGS-1 and CMGS-2	
Figure 14. Concrete Soil Retaining Wall Details, Test Nos. CMGS-1 and CMGS-2	
Figure 15. Rebar Details, Test Nos. CMGS-1 and CMGS-2	
Figure 16. Rebar Details (Cont.), Test Nos. CMGS-1 and CMGS-2	
Figure 17. Bill of Materials, Test Nos. CMGS-1 and CMGS-2	
Figure 18. Concrete Culvert Support Walls Framework, Test Nos. CMGS-1 and CMGS-2	24
Figure 19. Concrete Top Slab, Headwall, and Soil Retaining Wall Framework, Test Nos.	~ -
CMGS-1 and CMGS-2	25
Figure 20. Concrete Top Slab and Headwall Construction, Test Nos. CMGS-1 and CMGS-	26
2	26
Figure 21. Concrete Culvert Superstructure, Top Slab, Headwall, and Vertical Supports,	27
Test Nos. CMGS-1 and CMGS-2	
Figure 22. System Layout, Test No. CMGS-1	
Figure 23. System Layout, Test No. CMGS-2 Figure 24. Post Nos. 13 through 15, 17 through 22, and 24 through 26 Details, Test Nos.	
CMGS-1 and CMGS-2	21
Figure 25. Post Nos. 16 and 23 Details, Test Nos. CMGS-1 and CMGS-2	
Figure 26. Splice and Post Details, Test Nos. CMGS-1 and CMGS-2	
Figure 27. End Section Details, Test Nos. CMGS-1 and CMGS-2	
Figure 28. BCT Anchor Details, Test Nos. CMGS-1 and CMGS-2	
Figure 29. Foundation Tube and BCT Timber Post Details, Test Nos. CMGS-1 and CMGS-	
2	36
Figure 30. Post Nos. 1 through 12 and 27 through 41 Component Details, Test Nos.	
CMGS-1 and CMGS-2	37
Figure 31. Post Nos. 13 through 26 Assembly Details, Test Nos. CMGS-1 and CMGS-2	
Figure 32. Post Nos. 13 through 26 Component Details, Test Nos. CMGS-1 and CMGS-2	
Figure 33. BCT Anchor Cable, Test Nos. CMGS-1 and CMGS-2	
Figure 34. BCT Post Components and Anchor Bracket, Test Nos. CMGS-1 and CMGS-2	
Figure 35. Ground Strut and Bearing Plate, Test Nos. CMGS-1 and CMGS-2	
Figure 36. Rail Section Details, Test Nos. CMGS-1 and CMGS-2	

Figure 37. System Hardware Details, Test Nos. CMGS-1 and CMGS-2	44
Figure 38. System Hardware Details, Test Nos. CMGS-1 and CMGS-2	45
Figure 39. Bill of Materials, Test Nos. CMGS-1 and CMGS-2	46
Figure 40. Bill of Materials (Cont.), Test Nos. CMGS-1 and CMGS-2	47
Figure 41. System Installation, Test Nos. CMGS-1 and CMGS-2	48
Figure 42. Posts Attached to Culvert, Test Nos. CMGS-1 and CMGS-2	49
Figure 43. Bottom-Side Steel Post Connection Details and End Anchorage Systems, Test	
Nos. CMGS-1 and CMGS-2	50
Figure 44. Test Vehicle, Test No. CMGS-1	53
Figure 45. Test Vehicle's Undercarriage and Interior Floorboards, Test No. CMGS-1	
Figure 46. Vehicle Dimensions, Test No. CMGS-1	55
Figure 47. Test Vehicle, Test No. CMGS-2	56
Figure 48. Test Vehicle's Undercarriage and Interior Floorboards, Test No. CMGS-2	
Figure 49. Vehicle Dimensions, Test No. CMGS-2	58
Figure 50. Target Geometry, Test No. CMGS-1	59
Figure 51. Target Geometry, Test No. CMGS-2	
Figure 52. Camera Locations, Speeds, and Lens Settings, Test No. CMGS-1	63
Figure 53. Camera Locations, Speeds, and Lens Settings, Test No. CMGS-2	64
Figure 54. Impact Location, Test No. CMGS-1	66
Figure 55. Sequential Photographs, Test No. CMGS-1	
Figure 56. Sequential Photographs, Test No. CMGS-1	70
Figure 57. Additional Sequential Photographs, Test No. CMGS-1	71
Figure 58. Documentary Photographs, Test No. CMGS-1	
Figure 59. Vehicle Trajectory and Final Position, Test No. CMGS-1	73
Figure 60. System Damage, Test No. CMGS-1	
Figure 61. Damage to Post Nos. 15 through 22, Test No. CMGS-1	76
Figure 62. Damage to Post and Base Plate Nos. 17 through 21 (After Removal of Soil Fill	
Post and Base), Test No. CMGS-1	77
Figure 63. Damage to Post and Base Plate Nos. 18 and 19, Test No. CMGS-1	78
Figure 64. Damage to Post and Base Plate No. 21, Test No. CMGS-1	79
Figure 65. Washer Plate Nos. 18 through 22 After Test, Test No. CMGS-1	80
Figure 66. (a) Upstream Anchorage System After Test, and (b) Downstream Anchorage	
System After Test, Test No. CMGS-1	81
Figure 67. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No.	
CMGS-1	
Figure 68. Vehicle Damage, Test No. CMGS-1	
Figure 69. Additional Vehicle Damage, Test No. CMGS-1	84
Figure 70. Vehicle Windshield Damage, (a) on Test Site on Test Day, (b) in Vehicle Shop	
Prior to Measurement, Test No. CMGS-1	
Figure 71. Occupant Compartment Damage, Test No. CMGS-1	
Figure 72. Vehicle Undercarriage Damage, Test No. CMGS-1	
Figure 73. Summary of Test Results and Sequential Photographs, Test No. CMGS-1	90
Figure 74. Impact Location, Test No. CMGS-2	
Figure 75. Sequential Photographs, Test No. CMGS-2	
Figure 76. Additional Sequential Photographs, Test No. CMGS-2	-
Figure 77. Additional Sequential Photographs, Test No. CMGS-2 Figure 78. Documentary Photographs, Test No. CMGS-2	97

Figure	79. Vehicle Trajectory and Final Position, Test No. CMGS-2	99
U	80. System Damage, Test No. CMGS-2.	
	81. Damage to Post Nos. 15 through 21, Test No. CMGS-2	
	82. Guardrail Damage, Post Nos. 15 through 19, Test No. CMGS-2	
Figure	83. Guardrail Damage, Post Nos. 15 through 22, Test No. CMGS-2	.104
Figure	84. Rail Tears at Post No. 16, Test No. CMGS-2	.105
Figure	85. Damage to Base Plates of Post Nos. 17 through 22, Test No. CMGS-2	.106
Figure	86. Damage to Base Plate Nos. 16 through 18 – After Soil Removal, Test No.	
	CMGS-2	.107
Figure	87. Damage to Post Nos. 17 through 22 Damage – After Soil Removal, Test No.	
	CMGS-2	.108
Figure	88. Culvert Deck after Removal of Soil Fill and Posts and Downstream Anchorage	
	System Deformation, Test No. CMGS-2	
	89. Damage to Upstream Anchorage System, Test No. CMGS-2	.110
Figure	90. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No.	
T .'	CMGS-2	
	91. Vehicle Damage, Test No. CMGS-2	
	92. Additional Vehicle Damage, Test No. CMGS-2.	
	93. Vehicle Windshield Damage, Test No. CMGS-2	
-	94. Vehicle Occupant Compartment Damage, Test No. CMGS-2	
-	95. Vehicle Undercarriage Damage, Test No. CMGS-2	
	96. Summary of Test Results and Sequential Photographs, Test No. CMGS-2	
	97. System Sections within Test Installation	.121
Figure	98. (a) Soil Embedment Post Test Nos. MH-1 and MH-4; (b) Concrete-Mounted Post Test No. CGSA-4	100
Figure	99. Load-Deflection Curves Comparison	
-	100. Energy-Deflection Curves Comparison	
	101. System Details and Layout, Test No. MWTSP-2	
	102. (a) System Installation; (b) Impact Location, Test No. MWTSP-2	
	103. Culvert-Mounted MGS Model: (a) Transition from Half-Post Spacing MGS to	.120
Inguie	Culvert-Mounted MGS; and (b) System Installation Model Overview	128
Figure	104. Culvert-Mounted Post Simulation Details	
	105. LS-DYNA Model for Test No. CMGS-2: (a) Isometric View; and (b) Overhead	.120
1 19410	View	.130
Figure	106. Downstream Vehicle Position Comparison, Baseline CMGS Simulation and	1200
8	Test No. CMGS-2	.131
Figure	107. Velocity Comparison, Test and Baseline Simulation (No Wheel	
0	Disengagement): (a) Longitudinal Change in Velocity; (b) Lateral Change in	
	Velocity	.134
Figure	108. Deflection Comparison, Test and Baseline Simulation (No Wheel	
U	Disengagement)	.135
Figure	109. Roll, Pitch and Yaw Angles Comparison, Baseline Simulation	
	110. Simulation without Wheel Disengagement (Left), Simulation with Wheel	
-	Disengaged (Middle), and Test No. CMGS-2 (Right)	.137
Figure	111. Change of Velocity Comparison, Baseline and Wheel Disengaged Models	.138
	112. Illustration of Impact Points at Transition from Standard MGS to Half-Post	
	Spacing MGS with Critical Impact Point Denoted in Blue	.139

Figure A-1. 12-ft – 6-in. (3,810-mm) 12-gauge (2.7-mm) W-Beam MGS Section and End	
Section, Test Nos. CMGS-1 and CMGS-2	.158
Figure A-2. 6-ft – 3-in. (1,905-mm) 12-gauge (2.7-mm) W-Beam MGS Section, Test Nos.	
	.159
Figure A-3. 72-in. (1,829-mm) Long Foundation Tube, Test Nos. CMGS-1 and CMGS-2	.160
Figure A-4. BCT Timber Posts, Test Nos. CMGS-1 and CMGS-2	.161
Figure A-5. W6x8.5 (152x12.6), 72-in. (1,829-mm) Long Steel Posts, Test Nos. CMGS-1	
and CMGS-2	.162
Figure A-6. Timber Blockouts for Steel Posts, Test Nos. CMGS-1 and CMGS-2	.163
Figure A-7. Timber Blockouts for Steel Posts, Test Nos. CMGS-1 and CMGS-2	
Figure A-8. Timber Blockouts for Steel Posts, Test Nos. CMGS-1 and CMGS-2	
Figure A-9. Timber Blockouts for Steel Posts, Test Nos. CMGS-1 and CMGS-2	
Figure A-10. W6x9 (W150x13.5) 40 ¹ / ₂ -in. (1,029-mm) Long Post, Test No. CMGS-1 and	
CMGS-2	.167
Figure A-11. 8 ¹ / ₂ -in. x 12-in. x ¹ / ₂ -in. (216-mm x305-mm x 13-mm) Top Base Plate, Test	
No. CMGS-1 and CMGS-2	.168
Figure A-12. 8 ¹ / ₂ -in. x 11-in. x ¹ / ₄ -in. (216-mm x 280-mm x 6-mm) Bottom Post Plates, Test	
No. CMGS-1	.169
Figure A-13. 8 ¹ / ₂ -in. x 11-in. x ¹ / ₄ -in. (216-mm x 280-mm x 6-mm) Bottom Post Plates, Test	
No. CMGS-2	.170
Figure A-14. ⁵ / ₈ -in. (16-mm) Diameter, 10-in. Hex Head Bolts, Test Nos. CMGS-1 and	
CMGS-2	.171
Figure A-15. 5%-in. (16-mm) Diameter, Hex Head Nuts, Test Nos. CMGS-1 and CMGS-2	.172
Figure A-16. 7/8-in. (22-mm) Diameter, 8-in. (203-mm) Long Hex Head Bolts, Test Nos.	
	.173
Figure A-17. 7/8-in. (22-mm) Diameter, Hex Head Nuts, Test Nos. CMGS-1 and CMGS-2	.174
Figure A-18. 1-in. (25-mm) Diameter, 10 ¹ / ₂ -in. (267-mm) Long Hex Head Bolts, Test Nos.	
CMGS-1 and CMGS-2	.175
Figure A-19. 1-in. (25-mm) Diameter, 10-in. (254-mm) Long Threaded Rod, Test Nos.	
CMGS-1 and CMGS-2	
Figure A-20. 1-in. (25-mm) Diameter Hex Nut, Test Nos. CMGS-1 and CMGS-2	.177
Figure A-21. ⁵ / ₈ -in. (16-mm) Diameter, 1 ¹ / ₂ -in. (38-mm) Long Hex Head Bolts, Test Nos.	
	.178
Figure A-22. ⁵ / ₈ -in. (16-mm) Diameter, 14-in. (356-mm) Long Guardrail Bolts, Test Nos.	1 - 0
CMGS-1 and CMGS-2	
Figure A-23. ⁵ / ₈ -in. (16-mm) Diameter Guardrail Nuts, Test Nos. CMGS-1 and CMGS-2	.180
Figure A-24. ⁵ / ₈ -in. (16-mm) Diameter, 1 ¹ / ₄ in. (32-mm) Long Guardrail Bolt, Test Nos.	101
CMGS-1 and CMGS-2	
Figure A-25. 16D Double Head Nail, Test Nos. CMGS-1 and CMGS-2	.182
Figure A-26. ⁵ / ₈ -in. (16-mm) Diameter, 10-in. (254-mm) Long Guardrail Bolt, Test Nos.	102
CMGS-1 and CMGS-2	
Figure A-27. BCT Anchor Cable, Test Nos. CMGS-1 and CMGS-2	
Figure A-28. BCT Cable Washers, Test Nos. CMGS-1 and CMGS-2	
Figure A-29. BCT Cable Nuts, Test Nos. CMGS-1 and CMGS-2	
Figure A-30. BCT Post Sleeves, Test Nos. CMGS-1 and CMGS-2	.187
Figure A-31. North-Side Anchor Bearing Plate and Anchor Bracket Assembly, Test Nos.	100
CMGS-1 and CMGS-2	.100

Figure A-32. South-Side Anchor Bearing Plate and North-Side Ground Strut Assembly,	
Test Nos. CMGS-1 and CMGS-2	
Figure A-33. South-Side Ground Strut Assembly, Test Nos. CMGS-1 and CMGS-2	
Figure A-34. South-Side Anchor Bearing Plate, Test Nos. CMGS-1 and CMGS-2	.191
Figure A-35. Anchor Bracket Assembly, Test Nos. CMGS-1 and CMGS-2	192
Figure A-36. Concrete Culvert, Test Nos. CMGS-1 and CMGS-2	.193
Figure A-37. Concrete Culvert, Test Nos. CMGS-1 and CMGS-2	194
Figure A-38. Concrete Culvert, Test Nos. CMGS-1 and CMGS-2	
Figure A-39. #4 (#13) Rebar, Test Nos. CMGS-1 and CMGS-2	
Figure A-40. #4 (#13) Bent Rebar, L-Shaped, 4 ft – 6 in. (1,372 mm) Total Length, Unbent,	
Test Nos. CMGS-1 and CMGS-2	197
Figure B-1. Vehicle Mass Distribution, Test No. CMGS-1	
Figure B-2. Vehicle Mass Distribution, Test No. CMGS-2	200
Figure C-1. Soil Strength, Initial Calibration Tests, Test No. CMGS-1	202
Figure C-2. Static Soil Test, Test No. CMGS-1	
Figure C-3. Soil Strength, Initial Calibration Tests, Test No. CMGS-2	204
Figure C-4. Static Soil Test, Test No. CMGS-2	
Figure D-1. Floor Pan Deformation Data – Set 1, Test No. CMGS-1	207
Figure D-2. Floor Pan Deformation Data – Set 2, Test No. CMGS-1	
Figure D-3. Occupant Compartment Deformation Data - Set 1, Test No. CMGS-1	
Figure D-4. Occupant Compartment Deformation Data - Set 2, Test No. CMGS-1	
Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. CMGS-1	
Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. CMGS-1	
Figure D-7. Floor Pan Deformation Data - Set 1, Test No. CMGS-2	
Figure D-8. Floor Pan Deformation Data – Set 2, Test No. CMGS-2	
Figure D-9. Occupant Compartment Deformation Data - Set 1, Test No. CMGS-2	
Figure D-10. Occupant Compartment Deformation Data - Set 2, Test No. CMGS-2	
Figure D-11. Exterior Vehicle Crush (NASS) - Front, Test No. CMGS-2	
Figure D-12. Exterior Vehicle Crush (NASS) - Side, Test No. CMGS-2	
Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. CMGS-1	
Figure E-2. Longitudinal Change in Velocity (SLICE-1), Test No. CMGS-1	
Figure E-3. Longitudinal Change in Displacement (SLICE-1), Test No. CMGS-1	222
Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. CMGS-1	223
Figure E-5. Lateral Change in Velocity (SLICE-1), Test No. CMGS-1	
Figure E-6. Lateral Change in Displacement (SLICE-1), Test No. CMGS-1	
Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. CMGS-1	
Figure E-8. Acceleration Severity Index (SLICE-1), Test No. CMGS-1	
Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. CMGS-1	
Figure E-10. Longitudinal Change in Velocity (SLICE-2), Test No. CMGS-1	
Figure E-11. Longitudinal Change in Displacement (SLICE-2), Test No. CMGS-1	
Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. CMGS-1	
Figure E-13. Lateral Change in Velocity (SLICE-2), Test No. CMGS-1	
Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. CMGS-1	
Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. CMGS-1	
Figure E-16. Acceleration Severity Index (SLICE-2), Test No. CMGS-1	
Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. CMGS-2	
Figure F-2. Longitudinal Change in Velocity (SLICE-2), Test No. CMGS-2	238

Figure F-3. Longitudinal Change in Displacement (SLICE-2), Test No. CMGS-2	239
Figure F-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. CMGS-2	240
Figure F-5. Lateral Change in Velocity (SLICE-2), Test No. CMGS-2	241
Figure F-6. Lateral Change in Displacement (SLICE-2), Test No. CMGS-2	242
Figure F-7. Vehicle Angular Displacements (SLICE-2), Test No. CMGS-2	243
Figure F-8. Acceleration Severity Index (SLICE-2), Test No. CMGS-2	244
Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. CMGS-2	245
Figure F-10. Longitudinal Change in Velocity (SLICE-1), Test No. CMGS-2	246
Figure F-11. Longitudinal Change in Displacement (SLICE-1), Test No. CMGS-2	247
Figure F-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. CMGS-2	248
Figure F-13. Lateral Change in Velocity (SLICE-1), Test No. CMGS-2	249
Figure F-14. Lateral Change in Displacement (SLICE-1), Test No. CMGS-2	250
Figure F-15. Vehicle Angular Displacements (SLICE-1), Test No. CMGS-2	251
Figure F-16. Acceleration Severity Index (SLICE-1), Test No. CMGS-2	252

LIST OF TABLES

Table 1. MASH TL-3 Crash Test Conditions for Longitudinal Barriers	6
Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barrier	7
Table 3. Weather Conditions, Test No. CMGS-1	65
Table 4. Sequential Description of Impact Events, Test No. CMGS-1	67
Table 5. Sequential Description of Impact Events, Test No. CMGS-1	68
Table 6. Maximum Occupant Compartment Deformations by Location, Test No. CMGS-1	88
Table 7. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. CMGS-1	89
Table 8. Weather Conditions, Test No. CMGS-2	91
Table 9. Sequential Description of Impact Events, Test No. CMGS-2	93
Table 10. Sequential Description of Impact Events, Test No. CMGS-2	94
Table 11. Maximum Occupant Compartment Intrusions by Location, Test No. CMGS-2	117
Table 12. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. CMGS-2	118
Table 13. Load-Deflection Comparison	122
Table 14. List of Simulation Model Parts and LS-DYNA Parameters	129
Table 15. Comparison of Test No. CMGS-2 and Simulation Results	132
Table 16. Transition Simulated Impacts Comparison	
Table 17. Transition Simulated Impacts Comparison, Cont	141
Table 18. Summary of Safety Performance Evaluation	
Table A-1. Bill of Materials, Test Nos. CMGS-1 and CMGS-2	155
Table A-2. Bill of Materials, Test Nos. CMGS-1 and CMGS-2, Cont	156
Table A-3. Bill of Materials, Culvert, Test Nos. CMGS-1 and CMGS-2	157

1 INTRODUCTION

1.1 Background

Concrete box culverts are routinely installed under roadways to allow water drainage without affecting the motoring public. The ends of these culverts and their associated drop-offs can also represent a hazard on the roadside when they do not extend outside of the clear zone and often require shielding in the form of roadside barriers. The most common safety barriers utilized to shield these areas are W-beam guardrail systems. However, low-fill culverts with less than 40 in. (1,016 mm) of soil fill prevent the proper installation of standard guardrail posts due to a lack of available embedment depth. Previous crash testing has shown that in some cases W-beam installations with shallow post embedment do not perform adequately and are prone to vehicle override [1]. Therefore, low-fill culverts require specialized guardrail systems to safely treat the hazard. Currently, three types of guardrail systems are being used to treat cross-drainage box culverts: (1) long-span guardrail systems; (2) guardrail systems anchored to the culvert headwall; and (3) guardrail systems anchored to the top slab of the culvert.

Long-span guardrail systems contain unsupported lengths of W-beam rail that span over the top of culverts. These barrier systems do not require attachment to the culvert, thus allowing the culvert and the barrier system to operate independently. One *Manual for Assessing Safety Hardware* (MASH) compliant long-span system, developed at the Midwest Roadside Safety Facility (MwRSF), consists of a single layer of 12-gauge (2.67-mm thick), 31-in. (787-mm) tall W-beam guardrail centered over a 25-ft (7.6-m) unsupported span length [2-3]. The long-span systems do not require additional components for attachment to the culvert and provide a costeffective method for shielding culverts. However, these long-span systems are limited to a maximum unsupported span length of 25 ft (7.6 m).

For low-fill culverts of widths exceeding the maximum unsupported length of long-span systems, few W-beam guardrail designs are available for direct attachment to the culvert's headwalls. One such guardrail system was a side-mounted socket system for weak-post Midwest Guardrail System (MGS) attached to the outside face of culvert headwalls developed by MwRSF in 2014, as shown in Figure 1 [4]. The posts were inserted into side-mounted, steel sockets that would remain undamaged during impacts. The system utilized a top rail height of 31 in. (787 mm) supported by S3x5.7 (S76x8.5) posts, spaced 37¹/₂ in. (953 mm) on center and positioned within HSS4x4x³/₈ steel socket tubes attached to the outside face of the culvert headwall.

Figure 1. Side-Mounted Configuration for Guardrail on Culvert Headwalls [4]

There are many installations where the culvert or roadway geometry is not compatible with the side-mounted system. Additionally, there may be a fill slope between the edge of the roadway and the culvert headwall, and the side-mounted guardrail system was only designed for level terrain applications. Therefore, there was a need for guardrail systems attached to the top slab of the low-fill culverts. One such guardrail system was developed by MwRSF in 2002, as shown in Figure 2 [5]. This system utilized a 27¾-in. (705-mm) top rail height, a 37½-in. (953-mm) post spacing, a deformable ½-in. (13-mm) thick steel plate welded to the bottom of each guardrail post with a $5/_{16}$ -in. (8-mm) three-pass fillet weld on the front (tension) flange and a ¼-in. (6-mm) fillet weld on the web and back (compression) flange. The post assembly was anchored to the culvert slab using four 1-in. (25-mm) diameter through bolts. Finally, the system posts were spaced 3 ft – 1½ in. (953-mm) on centers, and the back side of the posts were offset 18 in. (457 mm) from the inside of the culvert headwall to prevent interaction between the posts and the rigid headwall as the system deflects during an impact event. This system was successfully developed and full-scale crash tested according to the Test Level 3 (TL-3) safety performance guidelines found in National Cooperative Highway Research Program (NCHRP) Report No. 350 [6].

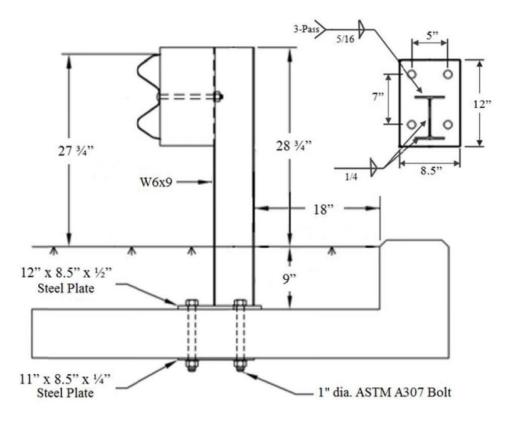


Figure 2. NCHRP Report No. 350-Compliant, Modified G4(1S) Guardrail Attachment to Low-Fill Culvert [5]

During evaluation of the barrier system it was shown that a potential exists for vehicular instabilities or rollover to occur if the guardrail is placed too close to the culvert headwall. This phenomenon was the result of the system's posts being unable to rotate near the base due to contact with the top of the headwall, thus resulting in wheel snag on the posts. From analysis of the crash test results, it was recommended that the back-side face of the steel posts be positioned a minimum of 10 in. (254 mm) away from the front face of the culvert's headwall with a minimum soil fill depth of 9 in. (229 mm) to maintain acceptable barrier performance [5].

For further investigation, an identical culvert-mounted MGS was crash tested with a ³/₄-ton pickup truck according to TL-3 safety performance criteria presented in NCHRP Report No. 350 [5]. For this design, the steel posts were spaced 1 in. (25 mm) away from the front of the culvert's headwall. During vehicle redirection, the pickup truck rolled over and the test was determined to be unacceptable. The vehicle's instability was attributed to the interaction of the vehicle's front tire and suspension with the steel post immediately downstream from impact. The headwall of the culvert prevented the post from continuing to rotate backward, and subsequently caused a snag point for the vehicle's tire.

Following the NCHRP Report No. 350 evaluation of the culvert-mounted guardrail system, a subsequent research effort was undertaken to determine alternatives to the original attachment design [7]. The first objective was to determine if an alternative weld detail could be utilized to simplify the three-pass fillet weld on the front flange of the post. The second objective was to develop an epoxy anchor alternative to bolting through the top slab of the culvert. These system

modifications were evaluated through a series of four dynamic bogie tests conducted under the same impact conditions utilized in the original development study. The study found that proposed changes to the weld details were not feasible, but that epoxy anchorages could be used successfully. This research led to the development of an epoxy anchoring option for the post anchor utilizing 1-in. (25-mm) diameter, ASTM A307 threaded rods and an 8-in. (203-mm) embedment depth. Anchor pullout was encountered for an embedment depth of 6 in. (152 mm), while an 8-in. (203-mm) embedment showed no signs of anchor failure. Thus, an 8-in. (203-mm) minimum embedment depth was recommended for the epoxied anchorage design.

In 2011, the Texas A&M Transportation Institute (TTI) developed and tested a slightly different version of the strong-post culvert attachment for use with a 31-in. (787-mm) tall W-beam guardrail with midspan splices at standard post spacing, as shown in Figure 3 [8]. For this design, W6x9 steel posts were welded to 7_8 -in. (22-mm) thick steel base plates and spaced 6 ft – 3 in. (1,905 mm) on centers with midspan rail splices. The posts were attached to the culvert using four 7_8 -in. (22-mm) diameter rods that were epoxied into the concrete with a 6-in. (152-mm) minimum embedment depth and a Hilti chemical adhesive anchoring system. The posts were also located 18 in. (457 mm) from the culvert headwall. The guardrail system was designed for use with a minimum soil fill depth of 9 in. (229 mm). Testing of this design under the MASH 2009 TL-3 criteria [9] with the 2770P vehicle was successful. However, it should be noted that partial tearing of the rail was observed in the impact region, which indicated that the rail tensile forces were high, and the potential exists for rail rupture. The thicker base plate used in this system may have increased the stiffness of the barrier and led to the increased rail loads.

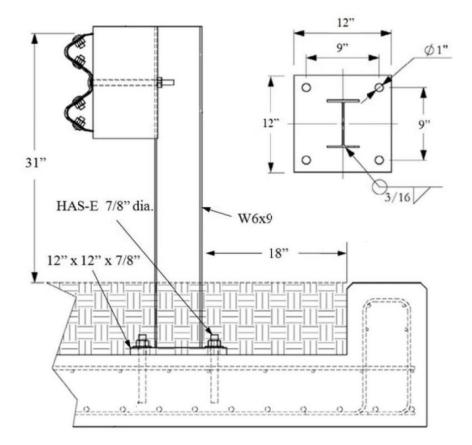


Figure 3. MASH-Compliant, MGS Guardrail Attachment to Low-Fill Culvert [8]

MwRSF provided previous, un-tested guidance on using the MwRSF version of the strongpost attachment to meet MASH 2016 criteria [10] when used with the MGS. Based on the successful testing of the TTI mounting system, it was believed that there would be a good potential for the system to perform safely under the MASH 2016 criteria. However, MwRSF recommended the following if the states wish to use the design: (1) the half-post spacing of the NCHRP Report No. 350 tested system be retained and (2) the minimum offset from the back of the post to the headwall be increased to 18 in. (457 mm).

These recommendations were made to provide a conservative approach to using the MwRSF version of the strong-post attachment based on the original testing of that system and the subsequent testing the TTI design. However, the performance of the MwRSF version of the strong-post attachment under MASH 2016 TL-3 criteria could not be fully determined without full-scale crash testing.

Based on the previous NCHRP Report No. 350 and MASH 2009 testing of similar culvertmounted guardrail systems, Wisconsin Department of Transportation desired to evaluate the MGS installed on a culvert with the MwRSF version of the strong-post attachment, half-post spacing, and a 12-in. (305-mm) offset from the back of the post to the culvert headwall.

1.2 Research Objective

The objective of this research effort was to conduct full-scale crash testing on the MGS installed on a culvert with the MwRSF version of the strong-post attachment using through-bolts and epoxy anchorage, half-post spacing, and a 12-in. (305-mm) offset from the back of the post to the culvert headwall. All tests were performed according to the TL-3 impact safety standards found in MASH 2016 [10]. Additionally, the transition from standard MGS to the culvert-mounted MGS was to be analyzed and recommendations were made regarding the potential performance of the transition.

1.3 Scope

The research began with development of the design details for the modified MGS installed on a low-fill culvert with the MwRSF version of the strong-post attachment with through-bolts and epoxy anchorage, half-post spacing, and a 12-in. (305-mm) offset from the back of the post to the culvert headwall was recommended for full-scale crash testing. MASH 2016 guidance was utilized to determine the critical impact points for full-scale crash testing. Two full-scale crash tests were conducted according to the MASH 2016 test designation nos. 3-10 and 3-11 to evaluate the length-of-need of the designed culvert-mounted, MGS attachment. Finally, the test results were analyzed, evaluated, and documented. Conclusions and recommendations were then made pertaining to the safety performance of the tested version of culvert-mounted, strong-post MGS. Additionally, the transition from the standard MGS to the culvert-mounted MGS was analyzed and recommendations relative to that transition performance were given.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Longitudinal barriers, such as W-beam guardrail systems attached to concrete box culverts, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the Federal Highway Administration (FHWA) for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [10]. Note that there is no difference between MASH 2009 and MASH 2016 for longitudinal barriers such as the system tested in this project, except that additional occupant compartment deformation measurements, photographs, and documentation are required by MASH 2016. According to TL-3 of MASH 2016, longitudinal barrier systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 1.

Critical impact points (CIPs) for both impacts were determined based on calculated post and guardrail beam strengths and the use of MASH 2016 Figures 2-8 and 2-11 for the 1100C and 2270P vehicle impacts, respectively.

	Test		Vehicle	Impact C	onditions	
Test Article	Designation No.	Test Vehicle	Weight, lb (kg)	Speed, mph (km/h)	Angle, deg.	Evaluation Criteria ¹
Longitudinal	3-10	1100C	2,425 (1,100)	62 (100)	25	A,D,F,H,I
Barrier	3-11	2270P	5,000 (2,268)	62 (100)	25	A,D,F,H,I

Table 1. MASH TL-3 Crash Test Conditions for Longitudinal Barriers

¹ Evaluation criteria explained in Table 2.

2.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the culvert-mounted MGS to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH 2016. The full-scale vehicle crash test documented herein was conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI)

were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

	1					
Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.				
	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.				
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.				
Occupant	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				
Risk		Occupant Impact Velocity Limits				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s	40 ft/s		
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				
		Occupant Ridedown Acceleration Limits				
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		

Table 2 MASH 2016 Evaluation	n Criteria for Longitudinal Barrier
Table 2. MASH 2010 Evaluation	I CITIEITA TOI LONGITUUITTAI DAITTEI

2.3 Soil Strength Requirements

In accordance with Chapter 3 and Appendix B of MASH 2016, foundation soil strength must be verified before any full-scale crash testing can occur. During the installation of a soil dependent system, W6x16 (W150x24) posts were installed near the impact region utilizing the same installation procedures as the system itself. Prior to full-scale testing, dynamic impact testing was conducted to verify a minimum dynamic soil resistance of 7.5 kips (33.4 kN) at post deflections between 5 and 20 in. (127 and 508 mm) measured at a height of 25 in. (635 mm) above the ground line. If dynamic testing near the system is not desired, MASH 2016 permits a static test to be conducted instead and compared against the results of a previously established baseline test. In this situation, the soil must provide a resistance of at least 90% of the static baseline test at deflections of 5, 10, and 15 in. (127, 254, and 381 mm). Further details can be found in Appendix B of MASH 2016.

3 DESIGN DETAILS

For test nos. CMGS-1 and CMGS-2, a simulated four-cell concrete box culvert system was constructed at MwRSF's Outdoor Test Site. The four-cell system was selected to ensure that the research results were representative of actual box culvert site conditions. The strong post MGS was then mounted on the culvert. In the following sections, design details for the test installation are provided.

3.1 Culvert Design and Construction

The basic design of the box culvert was based on the design used in the original NCHRP Report No. 350 full-scale testing and evaluation of the strong post culvert attachment for W-beam guardrail [5]. In this study, the researchers reviewed a variety of culvert design used by state DOTs and selected a culvert configuration with a 7-in. (178-mm) thick concrete top slab. Additionally, the simulated test culvert utilized no. 4 steel reinforcement bars spaced on 12-in. (305-mm) centers and placed in two rows throughout the 7-in. (178-mm) thick slab. This combination of slab thickness and steel reinforcement were believed to provide a non-conservative slab design for resisting dead and live loads but still provide sufficient capacity to minimize concrete damage. Therefore, if satisfactory barrier performance were observed in the crash testing program, then comparable barrier performance would be expected for top slab designs with capacities equal to or greater than that used in the crash tests. Review of Wisconsin standard culvert details found that their culvert designs utilized a minimum thickness of 8 in. (203 mm). In order to be consistent with the Wisconsin details while still providing a relatively non-conservative design, the simulated culvert design for the barrier systems evaluated herein was constructed with the same basic layout and reinforcement as the original NCHRP Report No. 350 tested system, but an 8-in. (203-mm) thick slab was utilized to match the Wisconsin standards. Additionally, the vertical support width was increased to 12 in. (305 mm) to provide increased soil bearing beneath the supports.

A soil test pit was excavated to a depth of approximately 66 in. (1,674 mm) to provide enough clearance for constructing the concrete box culvert. After the soil was excavated from the test pit, five reinforced concrete vertical support walls and a soil retaining wall were constructed on the bottom of the test pit, as shown in Figure 4. Design details of the culvert and bill of materials are shown in Figures 4 through 17. Construction photographs of the culvert are shown in Figures 18 through 21.

The three inner concrete vertical supports had a center-to-center spacing of 127 in. (3,226 mm). The vertical supports were constructed perpendicular to the roadway. As shown in Figure 8, the inner vertical supports measured 12 in. (305 mm) wide, 60 in. (1,524 mm) long, and 48 in. (1,219 mm) high. The two exterior concrete vertical supports measured 12 in. (305 mm) wide, 128 in. (3,251 mm) long, and 48 in. (1,219 mm) high, as shown in Figure 9. The soil retaining wall measured 8 in. (203 mm) wide, 43 ft - 4 in. (13.2 m) long, and 48 in. (1,219 mm) high and was constructed on the front of the culvert to prevent the soil from filling in beneath the simulated culvert, as shown in Figure 14.

The top slab measured 68 in. (1,727 mm) wide, 8 in. (203 mm) thick, and 43 ft – 4 in. (13.2 m) long, as shown in Figure 11. The headwall, constructed above the top slab, measured 10 in. (254 mm) wide, 10 in. (254 mm) high, and 43 ft – 4 in. (13.2 m) long and was located at the back

side of the deck. A 9-in. (229-mm) deep soil fill was used to create a level ground surface for testing.

The concrete used for the concrete vertical supports, the soil retaining wall, top slab, and headwall consisted of a Nebraska 47-BD Mix with a minimum compressive strength of 4,000 psi (27.6 MPa). The actual concrete compressive strength of the vertical supports on test day, as determined from concrete cylinder testing, was found to be approximately 4,665 psi (32.1 MPa). A minimum concrete cover of $1\frac{1}{2}$ in. (38 mm) was used for all rebar placed within the concrete vertical supports, soil retaining wall, top slab and headwall. All steel reinforcement was ASTM A615 Grade 60 epoxy-coated rebar.

The steel reinforcement for the vertical supports utilized No. 4 bars for the transverse, vertical, and bent vertical bars, as shown in Figures 5 through 9 and 12 through 16. The transverse bars of the inner vertical wall supports were 76 in. (1,930 mm) long and spaced 15½ in. (394 mm) apart, as shown in Figure 8. The bent vertical bars of the inner vertical supports were 64 in. (1,626 mm) long and spaced 12 in. (305 mm) apart on center, as shown in Figures 9, 11, and 17. The transverse bars of the exterior vertical walls were 130¾ in. (3,321 mm) long and spaced 16¾ in. (425 mm) apart on center, as shown in Figure 9. The vertical dowel bars in the exterior vertical supports were 45 in. (1,143 mm) long and spaced 20 in. (508 mm) apart on center. The long and short bent vertical bars of the two exterior vertical supports were 64 in. (1,626 mm) and 60½ in. (1,537 mm) long, respectively, and they were spaced 18 in. (457 mm) apart on center, as shown in Figure 9.

The steel reinforcement for the soil retaining wall also utilized No. 4 bars for the longitudinal and vertical bars, as shown in Figures 14 through 16. Each of the six longitudinal rebar in the soil retaining wall was 43 ft (13.1 m) long. The length of the longitudinal bar can be varied as long as the minimum lap length of 18 in. (457 mm) is maintained. The vertical dowel bars were 64 in. (1,626 mm) long and spaced 32 in. (813 mm) apart on center, as shown in Figure 14.

The steel reinforcement for the top slab utilized No. 4 bars for the longitudinal and transverse bars, as shown in Figures 5, 11, 15, and 16. Each of the fourteen longitudinal rebar in the top slab was 43 ft (13.1 m) long. The transverse bars in the top slab were 57 in. (1,448 mm) long, and their spacing varied longitudinally. At the outside vertical supports, the loop bars were spaced $11\frac{3}{4}$ in. (298 mm) apart on center, as shown in Figure 5. The loop bar spacing on either side of the inside vertical supports was 10 in. (254 mm) on center. Between the supports, the spacing of the loop bars was 12 in. (305 mm) apart on center. The vertical spacing between the transverse bars was $4\frac{1}{2}$ in. (114 mm) apart on center.

The steel reinforcement for the headwall utilized No. 4 bars for the longitudinal and loop bars. Each of the four longitudinal rebar in the headwall were 43 ft (13.1 m) long. The headwall loop bars were $53\frac{3}{8}$ in. (1,356 mm) long, and their spacing varied longitudinally, as shown in Figures 5, 11, 15, and 16.

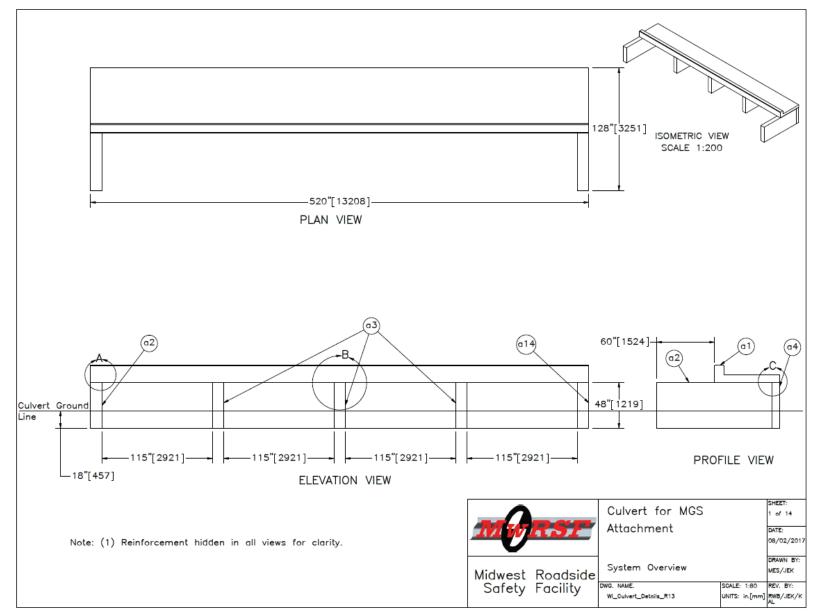


Figure 4. Culvert System Overview, Test Nos. CMGS-1 and CMGS-2

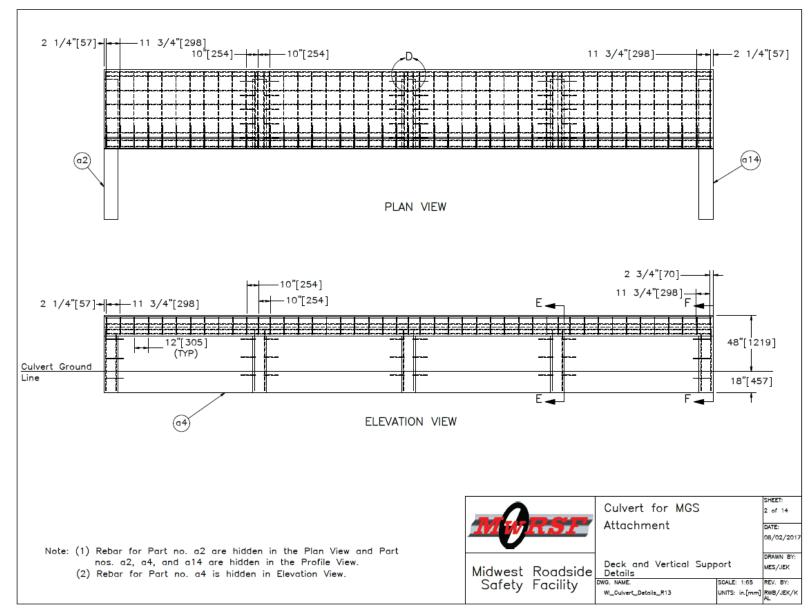


Figure 5. Top Slab and Vertical Support Wall Details, Test Nos. CMGS-1 and CMGS-2

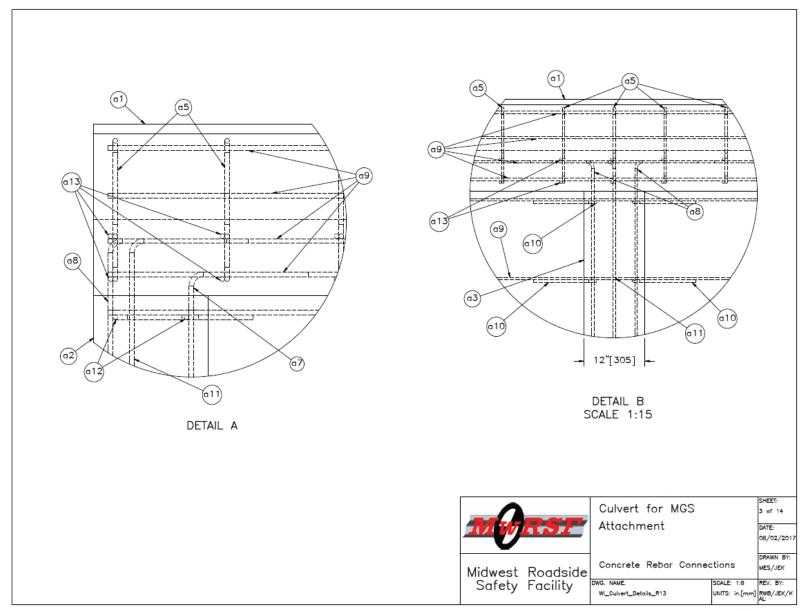


Figure 6. Concrete Rebar Connections, Test Nos. CMGS-1 and CMGS-2

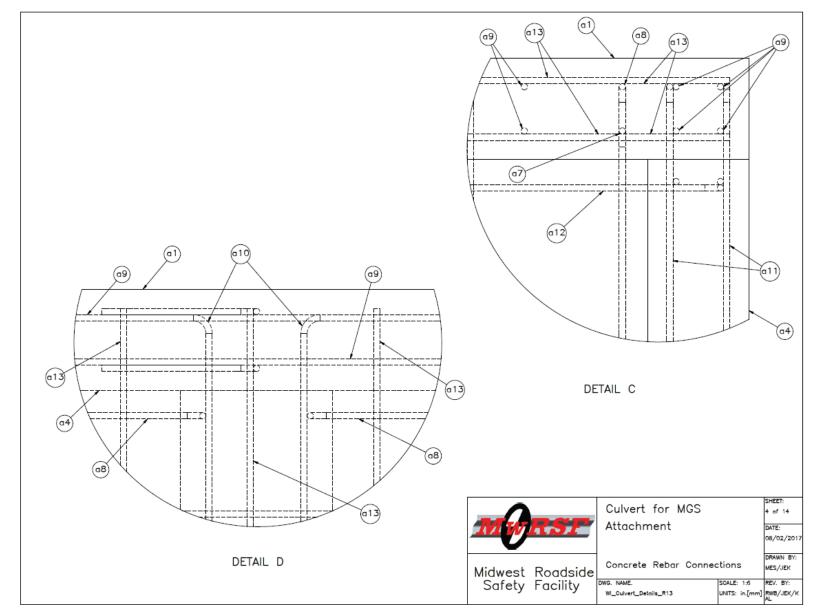


Figure 7. Concrete Rebar Connections (Cont.), Test Nos. CMGS-1 and CMGS-2

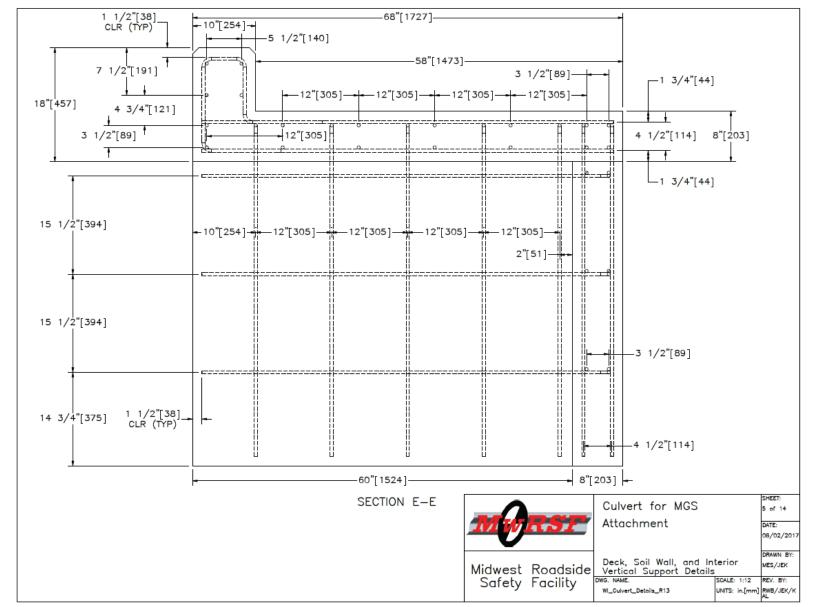


Figure 8. Top Slab, Soil Retaining Wall, Interior Vertical Support Wall Details, Test Nos. CMGS-1 and CMGS-2

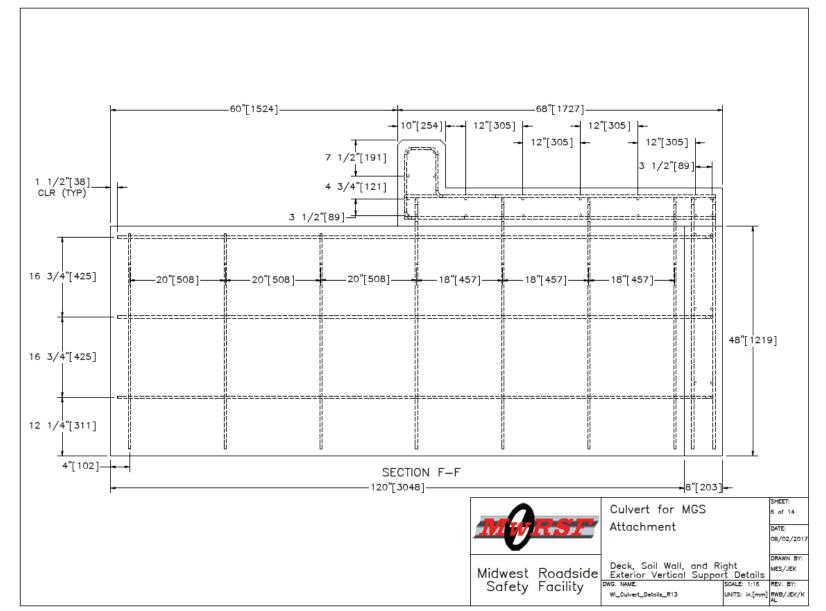


Figure 9. Top Slab, Soil Retaining Wall, Right Exterior Vertical Support Wall Details, Test Nos. CMGS-1 and CMGS-2

15

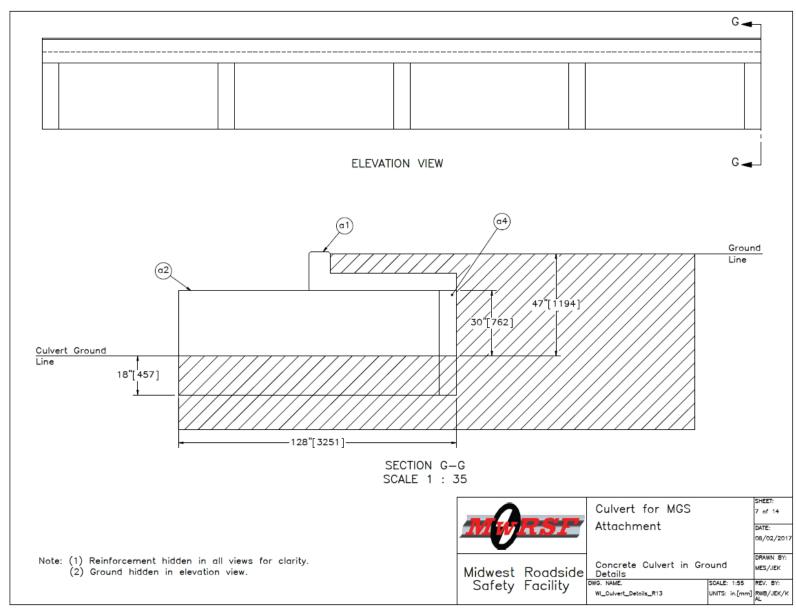


Figure 10. Concrete Culvert in Ground Details, Test Nos. CMGS-1 and CMGS-2

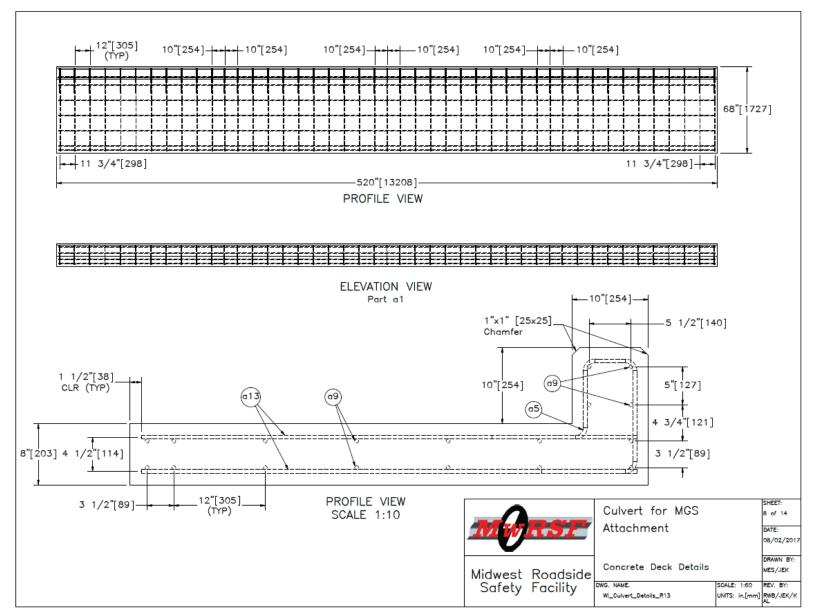


Figure 11. Concrete Top Slab Details, Test Nos. CMGS-1 and CMGS-2

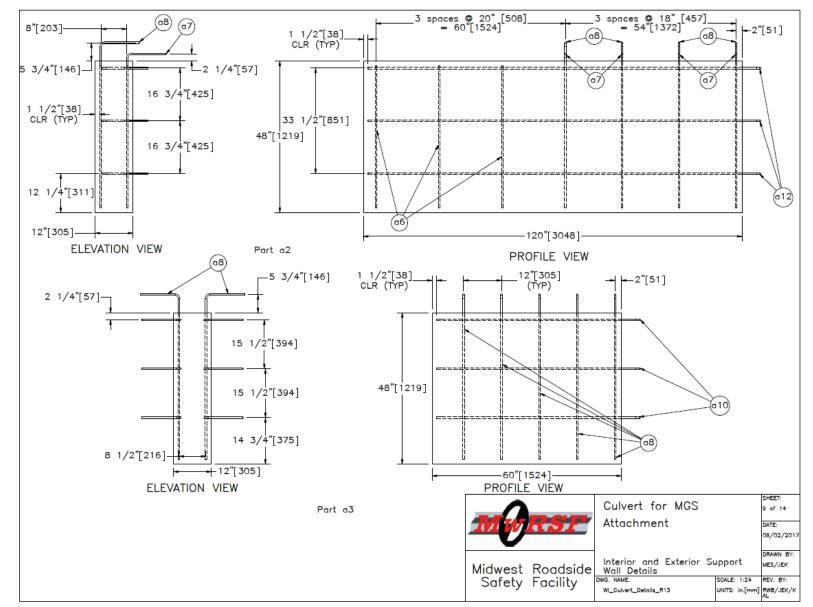


Figure 12. Interior and Exterior Support Wall Details, Test Nos. CMGS-1 and CMGS-2

18

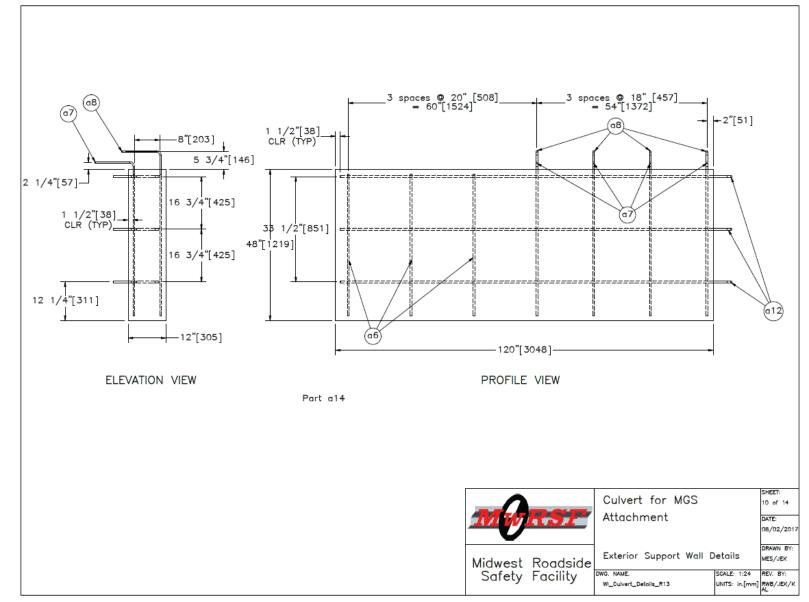


Figure 13. Exterior Support Wall Details, Test Nos. CMGS-1 and CMGS-2

19

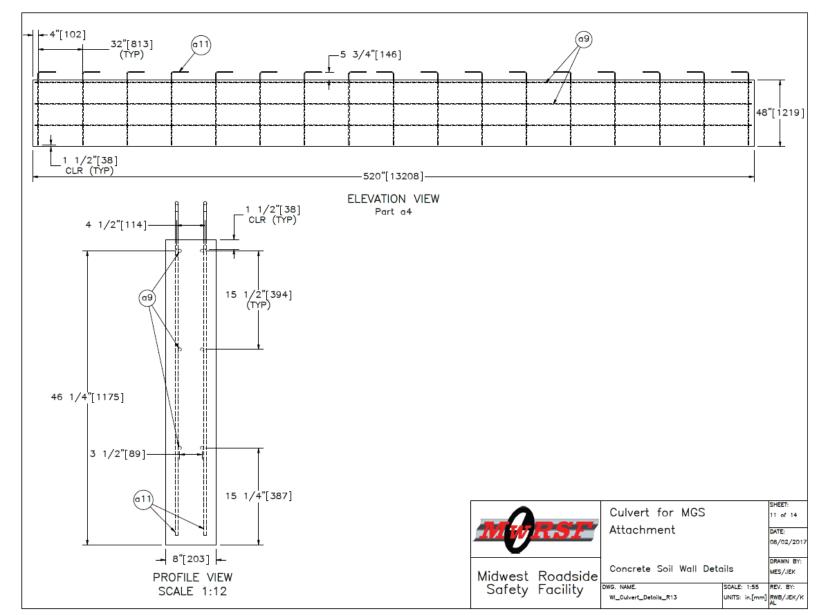


Figure 14. Concrete Soil Retaining Wall Details, Test Nos. CMGS-1 and CMGS-2

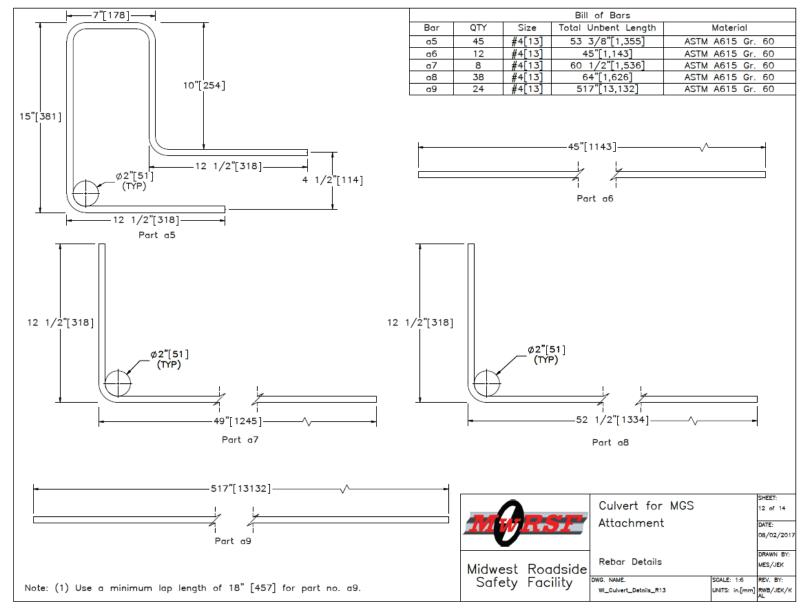


Figure 15. Rebar Details, Test Nos. CMGS-1 and CMGS-2

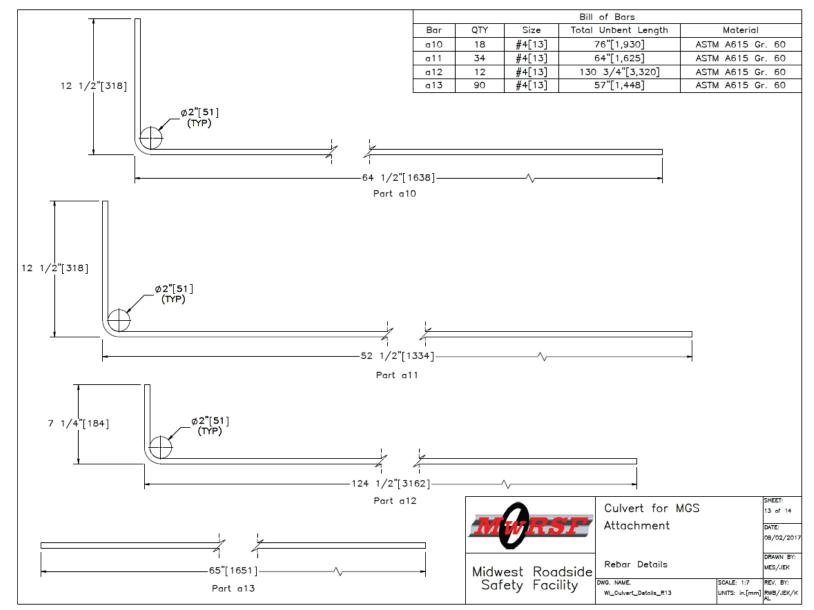


Figure 16. Rebar Details (Cont.), Test Nos. CMGS-1 and CMGS-2

ltem No.	QTY.	Description	Material Spec	Galvanization Spec	;
a1	1	520"x17"x60" [13,208x432x1,524] Reinforce Concrete Culvert Deck/Headwall	Min. f'c = 4,000 psi [27.6 M NE Mix 47BD	Pa] _	
a2	1	12"x48"x120" [305x1,219x3,048] Reinforced Concrete Exterior Support Wall	Min. f'c = 4,000 psi [27.6 M NE Mix 47BD	Pa] _	
a3	3	12"x48"x60" [305x1,219x1,524] Reinforce Concrete Interior Support Wall	Min. f'c = 4,000 psi [27.6 M NE Mix 47BD	Pa] _	
a4	1	8"x48"x520" [203x1,219x13,208] Reinforced Concrete Soil Wall	Min. f'c = 4,000 psi [27.6 M NE Mix 47BD	MPa] _	
a5	45	#4 [#13] Bent Rebar, Vertical Loop, 53 3/8" [1,355] Total Length Unbent	ASTM A615 Gr. 60	Epoxy Coated (ASTM A7 A934)	'75 or
a6	12	#4 [#13] Straight Rebar, 45" [1,143] Long	ASTM A615 Gr. 60	Epoxy Coated (ASTM A7 A934)	'75 or
a7	8	#4 [#13] Bent Rebar, Support Wall Hook, 60 1/2" [1,536] Total Length Unbent	ASTM A615 Gr. 60	Epoxy Coated (ASTM A A934)	775 or
α8	38	#4 [#13] Bent Rebar, Support Wall Hook, 64" [1,626] Total Length Unbent	ASTM A615 Gr. 60	Epoxy Coated (ASTM A7 A934)	'75 or
a9	24	#4 [#13] Straight Rebar, 517" [13,132] Long	ASTM A615 Gr. 60	Epoxy Coated (ASTM A7 A934)	'75 or
a10	18	#4 [#13] Bemt Rebar, Support Wall Hook, 76" [1,930] Total Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A7 A934)	'75 or
a11	34	#4 [#13] Bent Rebar, Soil Wall Hook, 64" [1,625] Total Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A7 A934)	'75 or
a12	12	#4 [13] Bent Rebar, Support Wall Hook, 130 3/4" [3,320] Total Length	ASTM A615 Gr. 60	Epoxy Coated (ASTM A7 A934)	'75 or
a13	90	#4 [#13] Straight Rebar, 65" [1,651] Long	ASTM A615 Gr. 60	Epoxy Coated (ASTM A7 A934)	'75 or
a14	1	12"x48"x120" [305x1,219x3,048] Reinforced Concrete Exterior Support Wall	Min. f'c = 4,000 psi [27.6 M NE Mix 47BD	Pa] _	
				Culvert for MGS SHEET: 14 or 14 Attachment DATE: 08/02/20 DRAWN BY:	
			Midwest Roadside Safety Facility	Bill of Materials G. NAME. SCALE: None WI_Culvert_Details_R13 UNITS: in.[mr	MES/JEK

Figure 17. Bill of Materials, Test Nos. CMGS-1 and CMGS-2

Figure 18. Concrete Culvert Support Walls Framework, Test Nos. CMGS-1 and CMGS-2

Figure 19. Concrete Top Slab, Headwall, and Soil Retaining Wall Framework, Test Nos. CMGS-1 and CMGS-2

Figure 20. Concrete Top Slab and Headwall Construction, Test Nos. CMGS-1 and CMGS-2

Figure 21. Concrete Culvert Superstructure, Top Slab, Headwall, and Vertical Supports, Test Nos. CMGS-1 and CMGS-2

3.2 Culvert-Mounted, Strong Post MGS

The test installation consisted of 182.3 ft (55.6 m) of MGS supported by steel posts with a top mounting rail height of 31 in. (787 mm), as shown in Figures 22 through 40. The test installation is shown in Figures 41 through 43. Test nos. CMGS-1 and CMGS-2 were conducted on the same installation; however, post nos. 14 through 21 were replaced before conducting test no. CMGS-2.

Anchorage systems similar to those used on tangent guardrail terminals were utilized on both the upstream and downstream ends of the guardrail system. The system was constructed using 41 posts. Post nos. 3 through 12 and 27 through 39 were galvanized ASTM A992 steel W6x8.5 sections measuring 72 in. (1,829 mm) long. Post nos. 13 through 26 were ASTM A992 steel W6x9 sections measuring $40\frac{1}{2}$ in. (1,029 mm) long. Post nos. 1, 2, 40, and 41 were BCT posts measuring $5\frac{1}{2}$ in. x $7\frac{1}{2}$ in. x 46 in. (140 mm x 191 mm x 1,168 mm) and were placed in a steel foundation tube. Post nos. 1 through 8 and 32 through 41 were spaced 75 in. (1,905 mm) apart on center. Post nos. 8 through 32 were spaced $37\frac{1}{2}$ in. (952 mm) apart on center, as shown in Figure 22. For post nos. 3 through 12 and 27 through 39, the soil embedment depth was 40 in. (1,016 mm). For post nos. 13 through 26, the soil embedment depth was 9 in. (229 mm). The posts were placed in a compacted, coarse, crushed limestone material with a strength that satisfied MASH 2016 criteria. For all posts, 6-in. x 12-in. x 14¹/4-in. (152-mm x 305-mm x 362-mm) wood blockouts were used to offset the rail away from the front face of the steel posts.

Post nos. 13 through 26 were anchored to the top of the concrete culvert using welded steel plates. A $\frac{1}{2}$ -in. thick x 8 $\frac{1}{2}$ -in. wide x 12-in. long (13-mm thick x 216-mm wide x 305-mm long) ASTM A572 steel plate was welded to the bottom of each post. The thickness of the baseplate was selected to allow some deformation of the base plate and corresponding energy absorption. In order to fully develop the connection between the baseplate and the W6x9 post sections, a special weld detail was utilized that incorporated a 3-pass, $\frac{5}{16}$ -in. (8-mm) fillet weld on the front flange of the post and a $\frac{1}{4}$ -in. (6-mm) fillet weld on the web and back flange of the post. The backside of these posts was positioned 12 in. (305 mm) from the culvert's headwall.

Post nos. 13 through 15, 17 through 22, and 24 through 26 were anchored to the top concrete slab using four through-bolts, as shown in Figure 24. Four 1-in. (25-mm) diameter by 10¹/₂-in. (267-mm) long ASTM A307 hex head bolts were placed through each top base plate and the concrete deck and were held in place with 8¹/₂-in. wide x 12-in. long x ¹/₄-in. (216-mm wide x 305-mm long x 6-mm) thick steel washer plates below the top slab. Note that the one-piece washer plate below the top slab used for testing could be replaced by individual 3¹/₂-in. wide x 3¹/₂-in. long x ¹/₄-in. (89-mm wide x 89-mm long x 6-mm) square washer plates if desired. Post nos. 16 and 23 were anchored using 10-in. (254-mm) long epoxied threaded rods with an 8-in. (203 mm) embedded length due to the presence of the culvert's interior wall support, as shown in Figure 25. This alternative anchorage detail was developed in previous research effort [7].

A concrete culvert, as previously described in Section 3.1, was constructed at the center of the system. The maximum dimensions of the culvert's top slab were 60 in. (1,524 mm) wide and 8 in. (203 mm) thick with a 10-in. (254-mm) wide x 9-in. (229-mm) high headwall positioned flush with the backside of the top slab, as previously described. The length of the culvert was 43 ft – 4 in. (13.2 m) long, and the culvert spanned from 16¹/₄ in. (413 mm) upstream from the center of post no. 13 to 16¹/₄ in. (413 mm) downstream from the center of post no. 26.

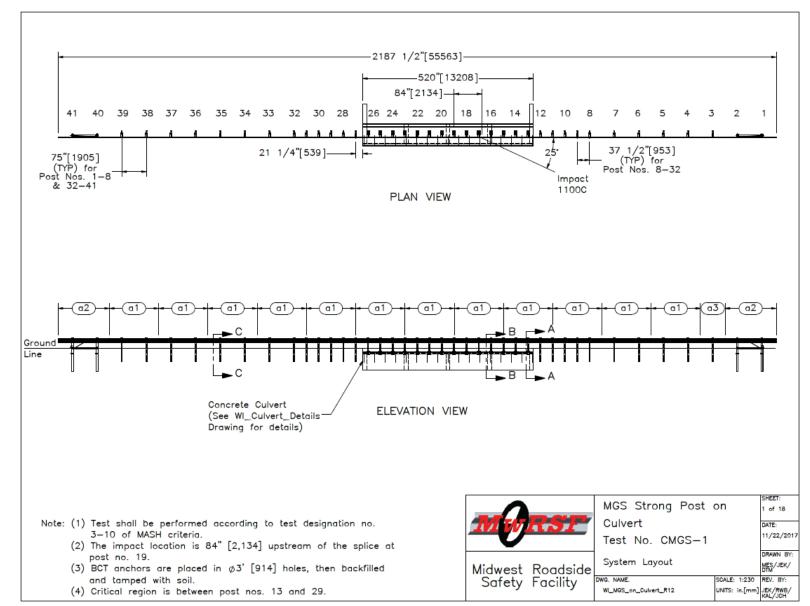


Figure 22. System Layout, Test No. CMGS-1

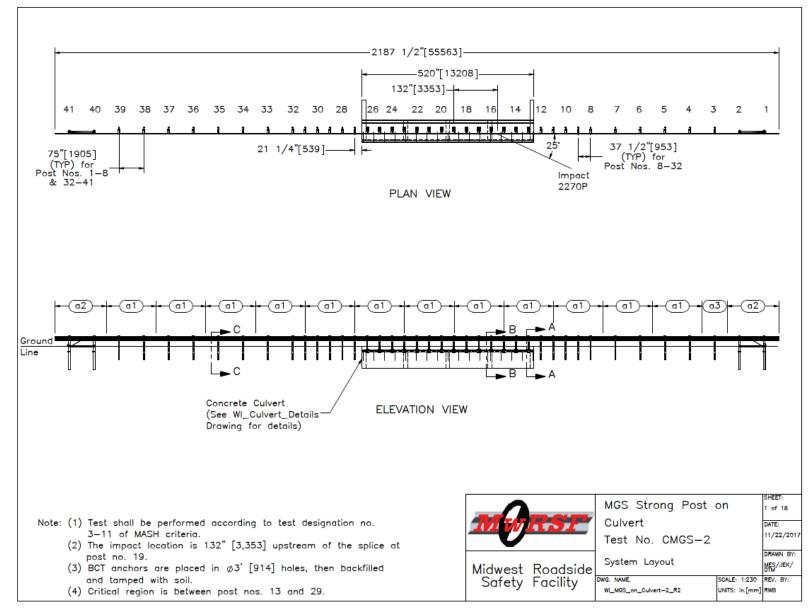


Figure 23. System Layout, Test No. CMGS-2

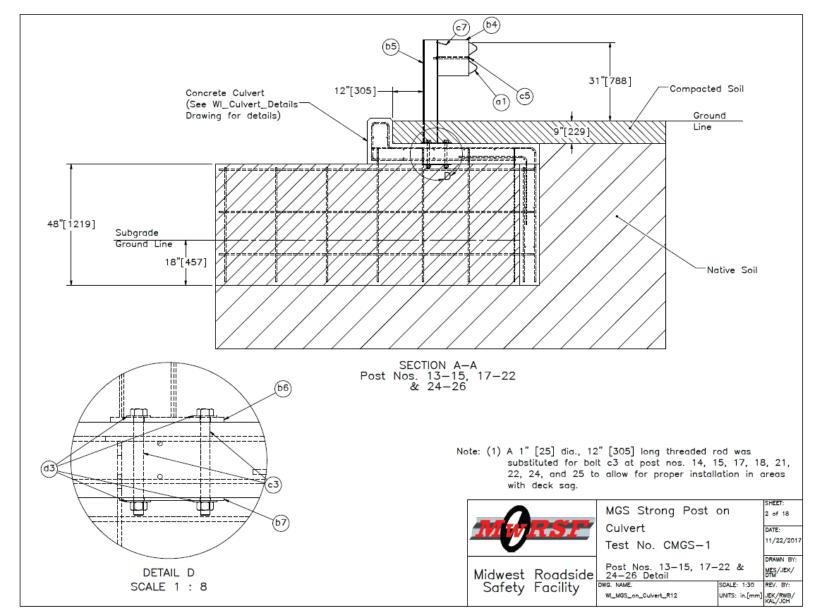


Figure 24. Post Nos. 13 through 15, 17 through 22, and 24 through 26 Details, Test Nos. CMGS-1 and CMGS-2

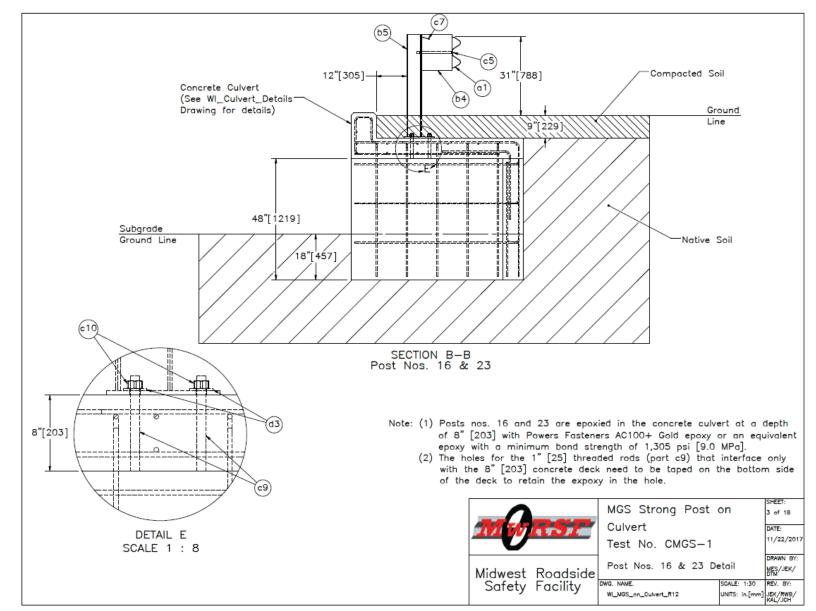


Figure 25. Post Nos. 16 and 23 Details, Test Nos. CMGS-1 and CMGS-2

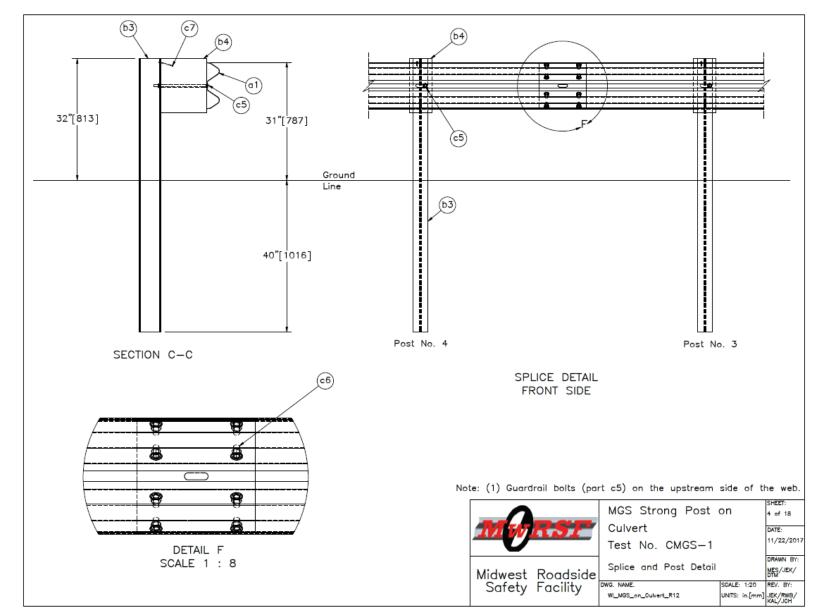


Figure 26. Splice and Post Details, Test Nos. CMGS-1 and CMGS-2

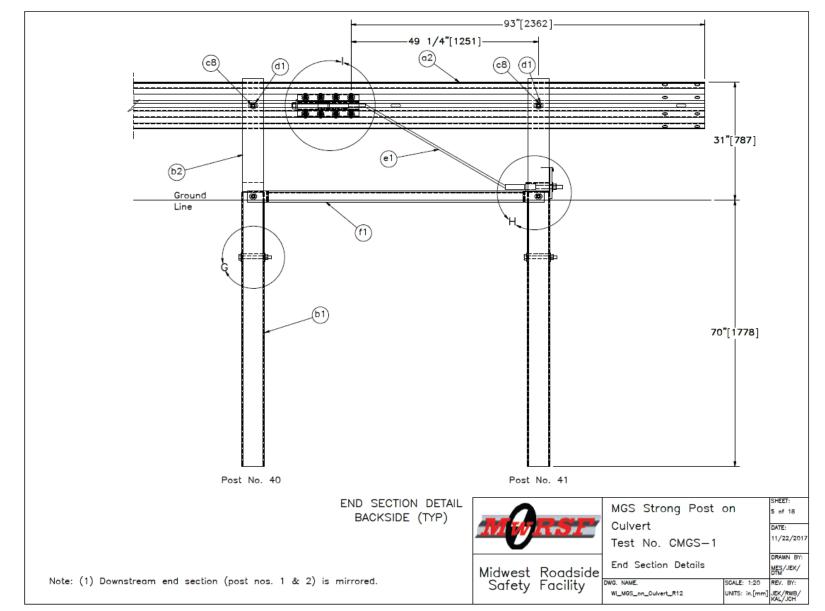


Figure 27. End Section Details, Test Nos. CMGS-1 and CMGS-2

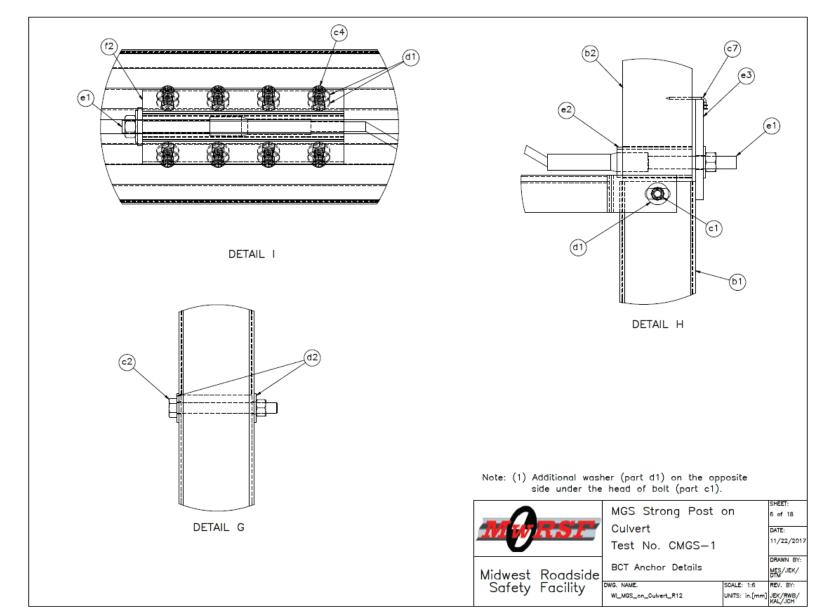


Figure 28. BCT Anchor Details, Test Nos. CMGS-1 and CMGS-2

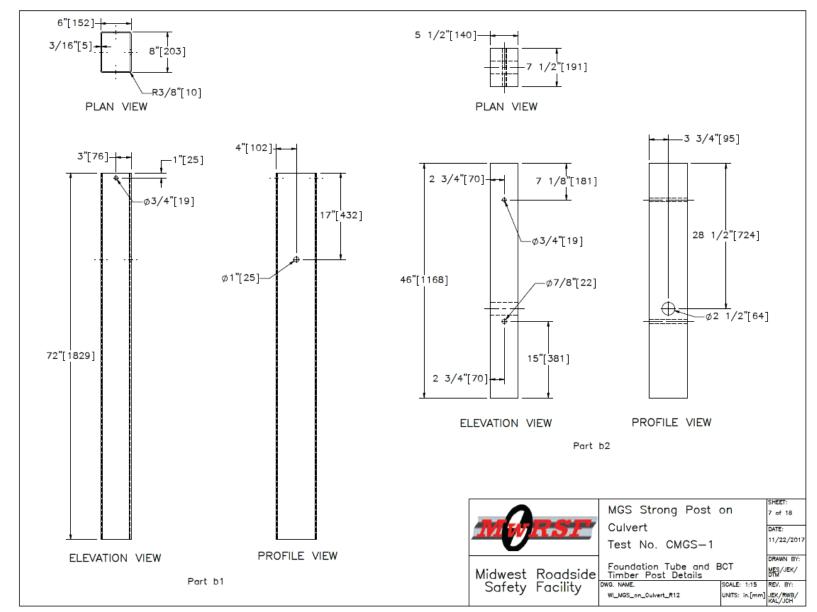


Figure 29. Foundation Tube and BCT Timber Post Details, Test Nos. CMGS-1 and CMGS-2

November 2, 2020 MwRSF Report No. TRP-03-383-20-R1

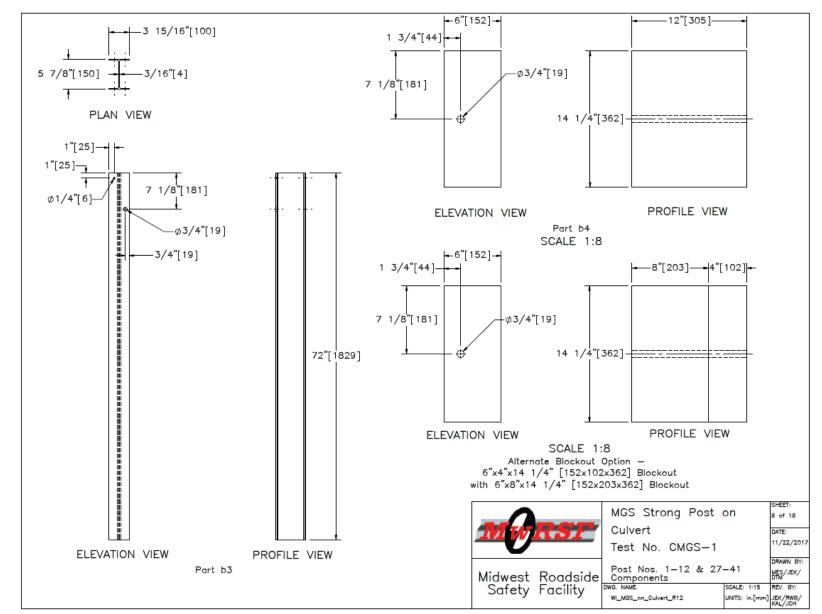


Figure 30. Post Nos. 1 through 12 and 27 through 41 Component Details, Test Nos. CMGS-1 and CMGS-2

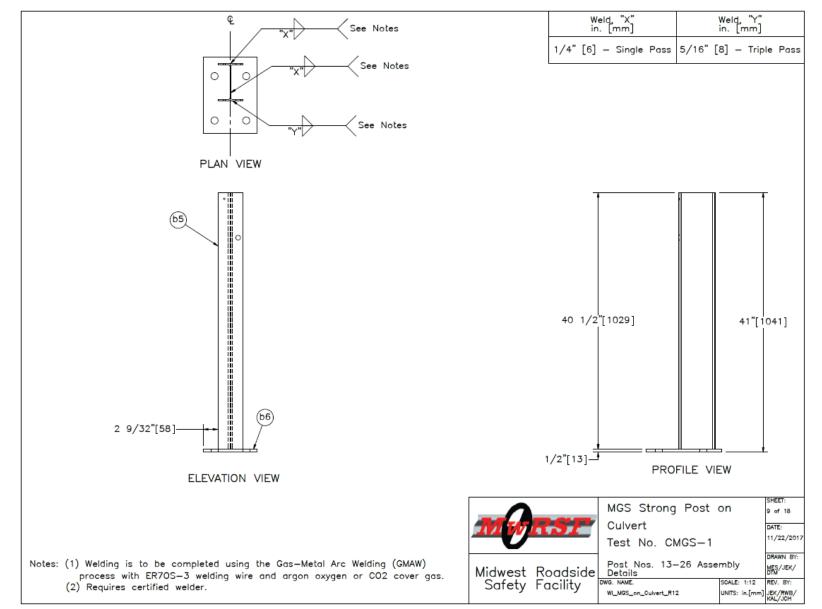


Figure 31. Post Nos. 13 through 26 Assembly Details, Test Nos. CMGS-1 and CMGS-2

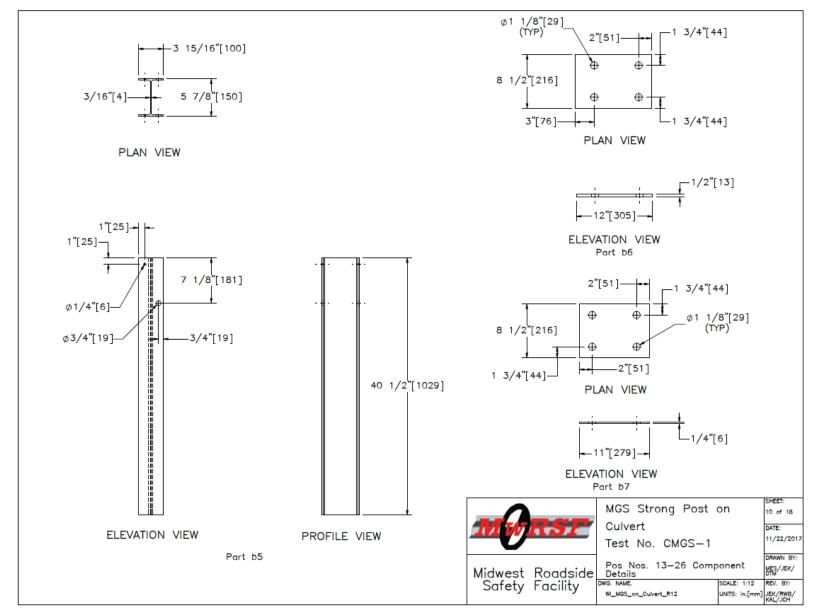


Figure 32. Post Nos. 13 through 26 Component Details, Test Nos. CMGS-1 and CMGS-2

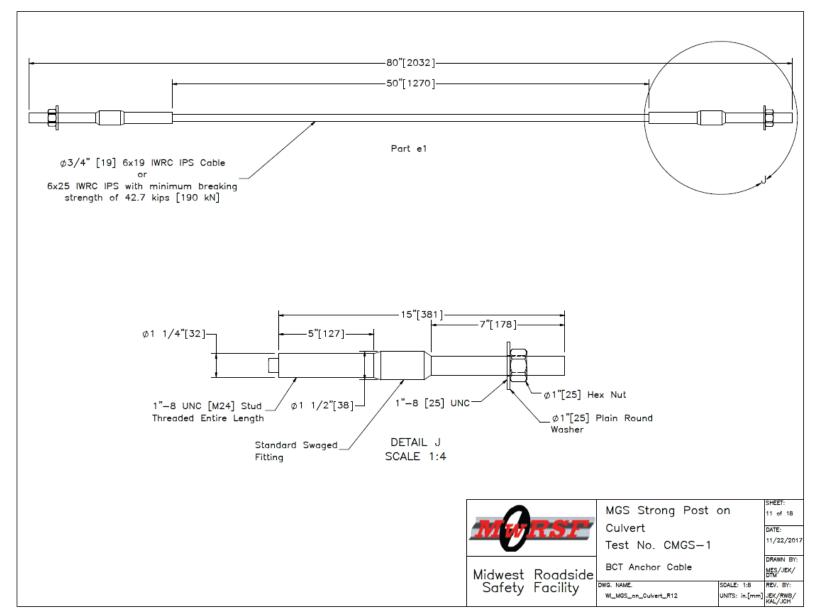


Figure 33. BCT Anchor Cable, Test Nos. CMGS-1 and CMGS-2

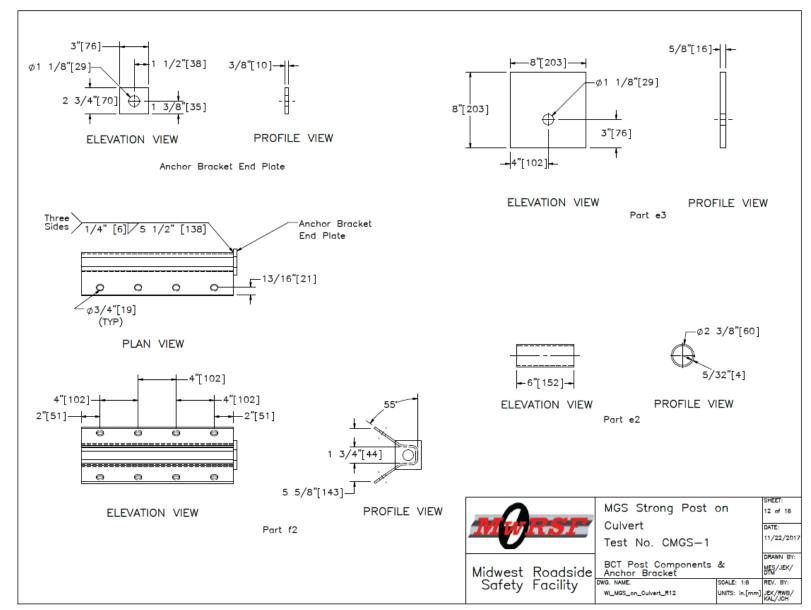


Figure 34. BCT Post Components and Anchor Bracket, Test Nos. CMGS-1 and CMGS-2

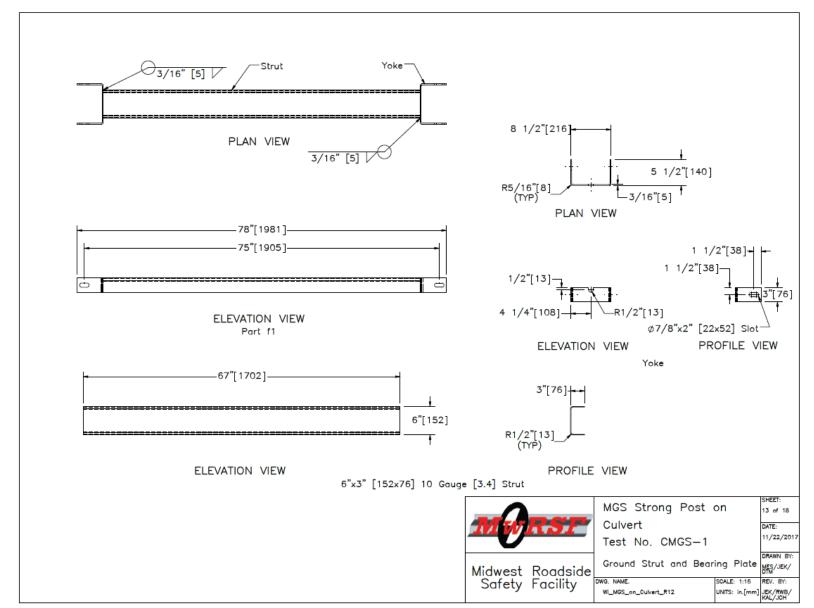


Figure 35. Ground Strut and Bearing Plate, Test Nos. CMGS-1 and CMGS-2

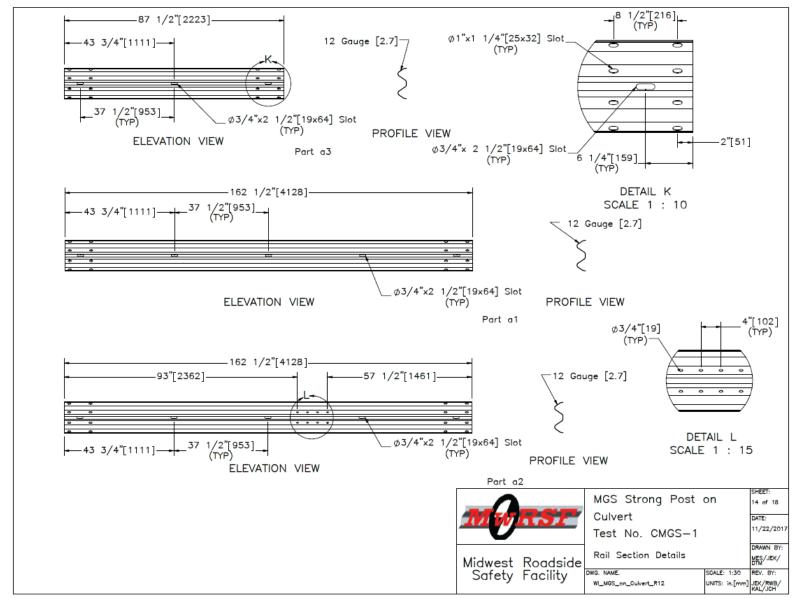


Figure 36. Rail Section Details, Test Nos. CMGS-1 and CMGS-2

Figure 37. System Hardware Details, Test Nos. CMGS-1 and CMGS-2

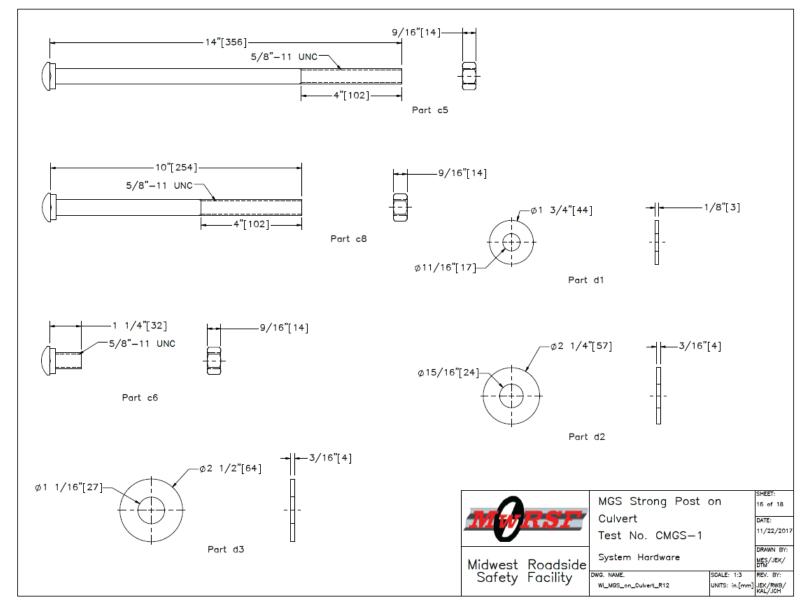


Figure 38. System Hardware Details, Test Nos. CMGS-1 and CMGS-2

ltem No.	QTY.		Material Specification	Galvanization Specification	Hardware Guide
a1	12	12'—6" [3,810] 12 gauge [2.7] W—Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
a2	2	12'-6" [3,810] 12 gauge [2.7] W-Beam MGS End Section	AASHTO M180	ASTM A123 or A653	RWM14a
a3	1	6'—3" [1,905] 12 gauge [2.7] W—Beam MGS Section	AASHTO M180	ASTM A123 or A653	RWM04a
b1	4	72" [1829] Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
b2	4	BCT Timber Post – MGS Height	SYP Grade No. 1 or better (No knots 18" [457] above or below ground tension face)	-	PDF01
b3	23	W6x8.5 [152x12.6] or W6x9 [W152x13.4], 72" [1,829] Long Steel Post	ASTM A992	ASTM A123	PWE06
b4	37	6"x12"x14 1/4" [152x305x368] Timber Blockout for Steel Posts	SYP Grade No. 1 or better	-	PDB10a
b5	14	W6x8.5 [W152x12.6] or W6x9 [W152x13.4] Post, 40 1/2" [1029] Long	ASTM A992	ASTM A123	SGR25
b6	14	8 1/2"x12"x1/2" [216x305x13] Top Base Plate	ASTM A572 Gr. 50	ASTM A123	SGR25
b7		8 1/2"x11"x1/4" [216x280x6] Bottom Post Plate	ASTM A572 Gr. 50	ASTM A123	SGR25
c1	-	5/8" [16] Dia. UNC, 10" [254] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX16a
c2	4	7/8" [22] Dia. UNC, 8" [203] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	-
c3	1	1" [25] Dia. UNC, 10 1/2" [267] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX24a
c4		5/8" [16] Dia. UNC, 1 1/2" [38] Long Hex Head Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX16a
c5	37	5/8" [16] Dia. UNC, 14" [356] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB06
c 6	112	5/8" [16] Dia. UNC, 1 1/4" [32] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB01
c7	39	16D Double Head Nail	-	-	-
c8	4	5/8" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Nut	Bolt – ASTM A307 Gr. A Nut – ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBB03
c 9	4	1" [25] Dia. UNC, 10" [254] Long Threaded Rod	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F2329	FRR24a
:10	8	1" [25] Dia. Hex Nut	ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FNX24a

Note: (1) A 25' [7.6 m] guardrail segment may be used in place of two 12.5' [3.8 m] segments outside of the critical region.

	M	RSF	MGS Strong Post Culvert Test No. CMGS-1	SHEET: 17 of 18 DATE: 11/22/2017	
	Midwest Safety	Roadside	Bill of Materials	SCALE: None	DRAWN BY: MES/JEK/ DTM REV. BY:
		Facility	WI_MGS_on_Culvert_R12	UNITS: in.[mm]	

Figure 39. Bill of Materials, Test Nos. CMGS-1 and CMGS-2

ltem No.	QTY.	Description	Material Specification	Galvanization Specification	Hardware Guide
d1	44	5/8" [16] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC16a
d2	8	7/8" [22] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	-
d3	104	1" [25] Dia. Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC24a
e1	_	BCT Anchor Cable	-	-	FCA01
e2	2	2 3/8" [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
e3	2	8"x8"x5/8" [203x203x16] Anchor Bearing Plate	ASTM A36	ASTM A123	FPB01
f1	2	Ground Strut Assembly	ASTM A36	ASTM A123	PFP01
f2	2	Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01
-	1	Concrete Culvert*	Min. f'c = 4,000 psi [27.6 MPa] NE Mix 47BD	-	-

* See WI_Culvert_Details_as_built drawing for details on concrete culvert.

47

	Ø	RSF	MGS Strong Post Culvert Test No. CMGS-1		SHEET: 18 of 18 DATE: 11/22/2017
Midv	vest	Roadside	Bill of Materials		DRAWN BY: MES/JEK/ DTM
Sa	Safety	Facility	DWG. NAME. WI_MGS_on_Culvert_R12	SCALE: None UNITS: in.[mm]	REV. BY: JEK/RWB/ KAL/JCH

Figure 40. Bill of Materials (Cont.), Test Nos. CMGS-1 and CMGS-2

Figure 41. System Installation, Test Nos. CMGS-1 and CMGS-2

Figure 42. Posts Attached to Culvert, Test Nos. CMGS-1 and CMGS-2

Figure 43. Bottom-Side Steel Post Connection Details and End Anchorage Systems, Test Nos. CMGS-1 and CMGS-2

4 TEST CONDITIONS

4.1 Test Facility

The outdoor test site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles (8.0 km) northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [11] was used to steer the test vehicle. A guide flag, attached to the right-front wheel and the guide cable, was sheared off before impact with the barrier system. The $\frac{3}{8}$ -in. (9.5-mm) diameter guide cable was tensioned to approximately 3,500 lb (15.6 kN) and supported both laterally and vertically every 100 ft (30.5 m) by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicles

For test no. CMGS-1, a 2010 Hyundai Accent was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,471 lb (1,121 kg), 2,428 lb (1,101 kg), and 2,588 lb (1,174 kg), respectively. The test vehicle is shown in Figures 44 and 45, and vehicle dimensions are shown in Figure 46.

For test no. CMGS-2, a 2010 Dodge Ram 1500 Crew Cab was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,292 lb (2,400 kg), 5,013 lb (2,274 kg), and 5,175 lb (2,347 kg), respectively. The test vehicle is shown in Figures 47 and 48, and vehicle dimensions are shown in Figure 49. It should be noted that the test vehicles used were within six years of the research project contract date.

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The vertical component of the c.g. for the 1100C vehicle was determined utilizing a procedure published by SAE [12]. The location of the final c.g. is shown in Figures 46 and 50. Data used to calculate the location of the c.g. and ballast information is shown in Appendix B.

Square, black- and white-checkered targets were placed on the test vehicles for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figures 50 and 51. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicles.

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in value was adjusted to zero so that the vehicle would track properly along the guide cable. A 5B

flash bulb was mounted under the vehicles' right-side and left-side windshield wipers for test nos. CMGS-1 and CMGS-2, respectively, and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A remote-controlled brake system was installed in the test vehicle so the vehicles could be brought safely to a stop after the test.

Figure 44. Test Vehicle, Test No. CMGS-1

Figure 45. Test Vehicle's Undercarriage and Interior Floorboards, Test No. CMGS-1

Date:10/26/2017 Test Number:			CMGS-1	VIN: KMHCN4ACOAU423259			
Year: 2010 Make: _			Hyundai	Model: Accent			
Tire Size:	185\65 R14	Tire Inflation Pressure:	32 Psi	Odometer: 1	40104		
				Vehicle Geometry - in. (Target Ranges listed below	mm)		
			<u>G</u> nt	e: <u>98 3/4 (2508)</u> 98±5 (2500±125) g: <u>23 (584)</u> h:	36 3/4 (933) 33 1/4 (845) 35±4 (900±100) 36 3/8 (924) 39±4 (990±100)		
			Ť		20 3/4 (527) 23 1/4 (591)		
				m: <u>57 3/8 (1457)</u> n:	57 1/4 (1454) 56±2 (1425±50)		
					3 3/4 (95)		
-	f h I → W _{front}	e d c √Wrear		q: <u>23 (584)</u> r:	15 1/2 (394)		
-	Home			s: <u>12 (305)</u> t:	65 (1651)		
Gross Static L	ibution lb. (kg) .F <u>795 (361)</u> R <u>483 (219)</u>			Top of radiator core support: Wheel Center Height (Front): Wheel Center Height (Paar)			
Weights	Curb	Test Inertial	Creas Statio	Height (Rear): Wheel Well			
lb. (kg) W-front	Curb 1582 (718)	1534 (696)	Gross Static	Clearance (Front): Wheel Well	<u>25 3/8 (645)</u> 25 (635)		
	889 (403)	<u> </u>		Clearance (Rear): Bottom Frame			
W-rear W-total	2471 (1121)	2428 (1101)	2588 (1174)	Height (Front): Bottom Frame Height (Rear):	7 1/2 (191) 15 5/8 (397)		
		2420±55 (1100±25)	2585±55 (1175±50)	Engine Type:	Gasoline		
GVWR Ratings	lb.	Dummy Data		Engine Size:	1.4L 4 cyl.		
Front:	1918	Туре:	Hybrid II	Transmission Type:	Automatic		
Rear:	1874	Mass:	160	Drive Type:	FWD		
Total:	3638	Seat Position:	Passenger/Right				
Note any o	damage prior to test:		no	ne			

Figure 46. Vehicle Dimensions, Test No. CMGS-1

Figure 47. Test Vehicle, Test No. CMGS-2

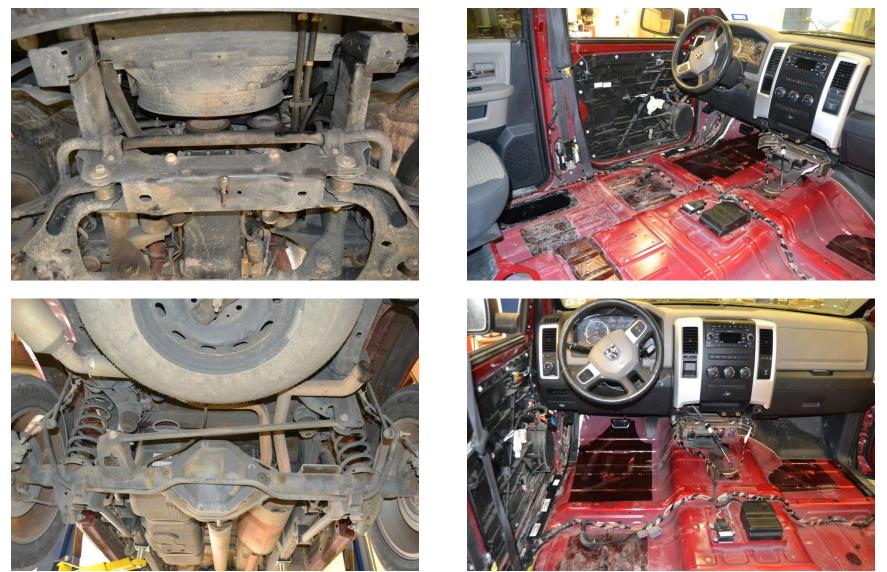


Figure 48. Test Vehicle's Undercarriage and Interior Floorboards, Test No. CMGS-2

Date:	1/3/20	1/3/2018 Test Name:			CMC	GS-2	VIN No: 1D7RB1CTXAS115553			5553
Year:	Year: 2010 Make:		DOI	DGE	Model: RAM 1500 CREW C/		CAB			
Tire Size:	275/60	R20	Tire Infla	tion Pressure:	35	Psi	Odometer:	2	11977	
t Wheel Track					m Wheel Track		Target Ranges a: <u>76 1/8</u> 78±2 (19 c: <u>229 1/4</u> 237±13 (60	(1934) b: 50±50) (5823) d: 020±325)	75	(1905) (1207)
т	est Inertial	см					e: 140 3/8 148±12 (37	(3566) f: 760±300)	41 3/8 39±3 (10	(1051) 000±75)
Test Inertial C.M.					g: <u>29 9/16</u> min: 28 i: <u>13 1/8</u> k: <u>21</u>	(710) (333) j:	60 1/4 63±4 (15 24 3/4 29	(1530) ^{75±100)} (629) (737)		
) s		$-\psi$	i j		m: 68 1/8 67±1.5 (1)		67 1/2 67±1.5 (1	(1715) 1700±38)
			H	·	Ť		o: <u>45 1/4</u> 43±4 (11		4 5/8	(117)
-		7 Wrear	е ——	Wfront f-	-		q: <u>32 1/2</u>	(826) r:	21 1/2	(546)
ŀ	v	1 Eur	— c ———	Thomas and a second sec	-		s: <u>14 1/2</u>	(368) t:	76 1/2	(1943)
Mass Distrib	ution lb. (kg))						Wheel Center Height (Front):	15 5/8	(397)
Gross Static	LF 1480	(671)	RF	(673)				Wheel Center Height (Rear):	15 5/8	(397)
	LR_1069	(485)	RR 1143	(518)			Wheel Well Clearance (Front): <u>35 1/2 (902)</u>			
							Cle	Wheel Well earance (Rear):	38 3/8	(975)
Weights Ib. (kg)	Cı	ırb	Test I	nertial	Gross	Static		Bottom Frame Height (Front):	18 3/4	(476)
W-front	2946	(1336)	2862	(1298)	2963	(1344)		Bottom Frame Height (Rear):	26	(660)
W-rear	2346	(1064)	2151	(976)	2212	(1003)		Engine Type:	8cyl.	Gas
W-total	5292	(2400)	5013	(2274)	5175	(2347)		Engine Size:	5.	7L
			5000±110	(2270±50)	5165±110	(2343±50)	Transm	nission Type:	Auto	matic
GVWR Ratings Ib. Dummy Data		Data				Drive Type:	RV	VD		
Front	3700			Type:	Hybric	111		Cab Style:	Crew	Cab
Rear 3900			Mass: 162 lbs.		s.	Bed Length:67"			7''	
Total	6800		Seat	Position:	Righ	t				
Note ar	Note any damage prior to test: None									

Figure 49. Vehicle Dimensions, Test No. CMGS-2

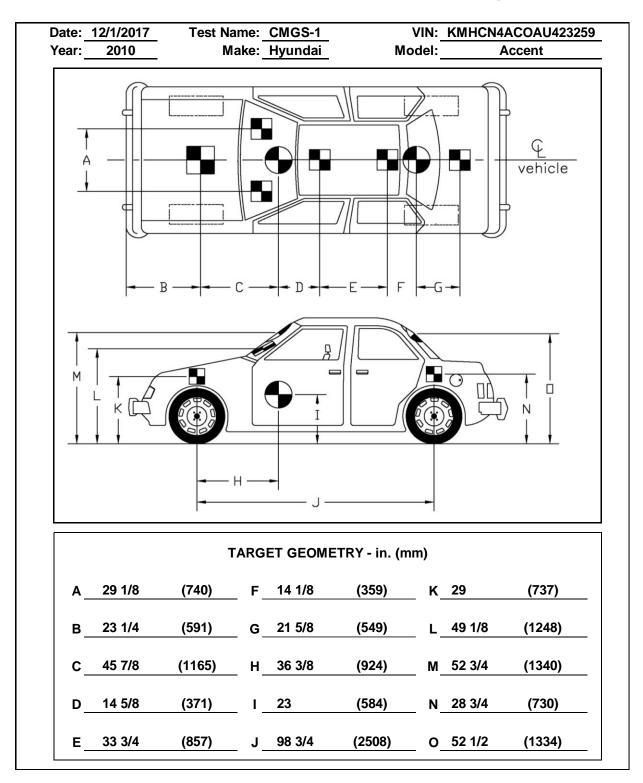


Figure 50. Target Geometry, Test No. CMGS-1

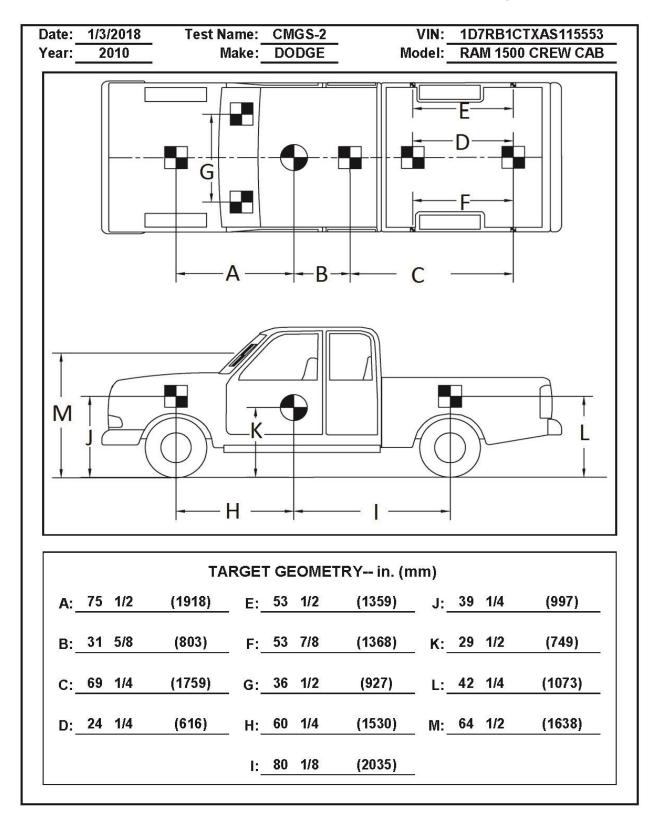


Figure 51. Target Geometry, Test No. CMGS-2

4.4 Simulated Occupant

For test nos. CMGS-1 and CMGS-2, a Hybrid II 50th-Percentile, Adult Male Dummy, equipped with clothing and footwear, was placed in the right-front seat of the test vehicles with the seat belt fastened. The simulated occupant had a final weight of 160 lb (72.6 kg) and 162 (73.5 kg) in test nos. CMGS-1 and CMGS-2, respectively. As recommended by MASH 2016, the simulated occupant was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

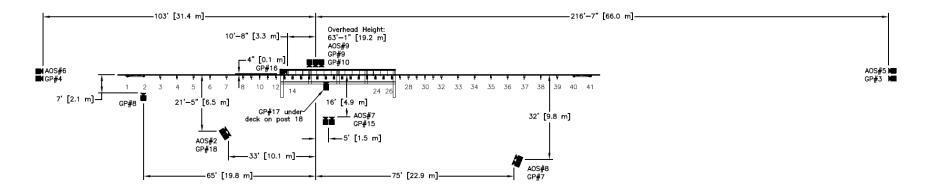
4.5.1 Accelerometers

Two environmental, shock and vibration, sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometer systems were mounted near the c.g. of the test vehicle. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [13].

The two accelerometer systems, the SLICE-1 and SLICE-2 units, were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. In test nos. CMGS-1 and CMGS-2, the SLICE-1 and the SLICE-2 unit was designated as the primary system, respectively. The acceleration sensors were mounted inside the bodies of custom-built SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of \pm 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

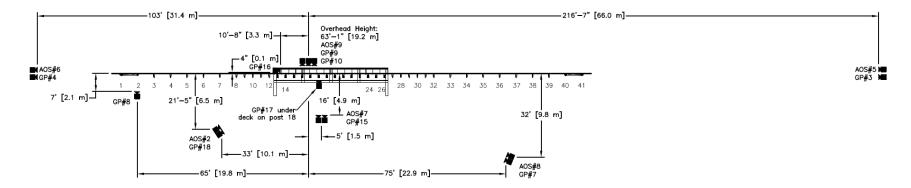
4.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.


4.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicle before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

4.5.4 Digital Photography


Six AOS high-speed digital video cameras and twelve GoPro digital video cameras were utilized to film test nos. CMGS-1 and CMGS-2. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figures 52 and 53.

The high-speed digital videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and post-test conditions for all tests.

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-2	AOS Vitcam CTM	500	Fujinon 35mm Fixed	-
AOS-5	AOS X-PRI Gigabit	500	Fujinon 135mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	Fujinon 50mm Fixed	-
AOS-7	AOS X-PRI Gigabit	500	Kowa 16mm Fixed	-
AOS-8	AOS S-VIT 1531	500	Sigma 28-70	50
AOS-9	AOS TRI-VIT 2236	1000	Kowa 12mm Fixed	-
GP-3	GoPro Hero 3+	120		
GP-4	GoPro Hero 3+	120		
GP-5	GoPro Hero 3+	120		
GP-6	GoPro Hero 3+	120		
GP-7	GoPro Hero 4	240		
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-10	GoPro Hero 4	240		
GP-15	GoPro Hero 4	240		
GP-16	GoPro Hero 4	120		
GP-17	GoPro Hero 4	120		
GP-18	GoPro Hero 4	240		

Figure 52. Camera Locations, Speeds, and Lens Settings, Test No. CMGS-1

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-2	AOS Vitcam CTM	500	Fujinon 35mm Fixed	-
AOS-5	AOS X-PRI Gigabit	500	Fujinon 135mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	Fujinon 50mm Fixed	-
AOS-7	AOS X-PRI Gigabit	500	Kowa 16mm Fixed	-
AOS-8	AOS S-VIT 1531	500	Sigma 28-70	50
AOS-9	AOS TRI-VIT 2236	1000	Kowa 12mm Fixed	-
GP-3	GoPro Hero 3+	120		
GP-4	GoPro Hero 3+	120		
GP-5	GoPro Hero 3+	120		
GP-6	GoPro Hero 3+	120		
GP-7	GoPro Hero 4	240		
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-10	GoPro Hero 4	240		
GP-15	GoPro Hero 4	240		
GP-16	GoPro Hero 4	120		
GP-17	GoPro Hero 4	120		
GP-18	GoPro Hero 4	240		

Figure 53. Camera Locations, Speeds, and Lens Settings, Test No. CMGS-2

5 FULL-SCALE CRASH TEST NO. CMGS-1

5.1 Static Soil Test

Before full-scale crash test no. CMGS-1 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

5.2 Weather Conditions

Test no. CMGS-1 was conducted on December 1, 2017 at approximately 2:30 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 3.

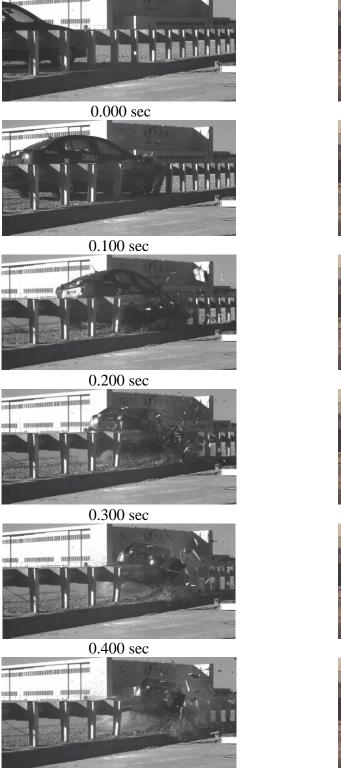
Temperature	59° F
Humidity	29%
Wind Speed	13 mph
Wind Direction	210° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.00 in.

Table 3. Weather Conditions, Test No. CMGS-1

5.3 Test Description

Initial vehicle impact was to occur at 84 in. (2,134 mm) upstream from post no. 19, as shown in Figure 54, which was selected using Table 2-8 of MASH 2016. The 2,428-lb (1,101-kg) Hyundai Accent impacted the test installation at a speed of 61.3 mph (98.7 km/h) and at an angle of 25.1 degrees, resulting in an impact severity of 54.8 kip-ft (74.3 kJ). The actual point of impact was 8 in. (203 mm) upstream from the target impact. As the vehicle was redirected, a partial rail tear occurred through the lower hump of the W-beam rail at the downstream end of the rail splice at post no. 19. This tear did not rupture the rail nor compromise the integrity of the W-beam rail element. At 0.259 sec after impact, the vehicle became parallel to the system with a speed of 26.5 mph (42.6 km/h). At 0.464 sec, the vehicle exited the system at a speed of 24.7 mph (39.8 km/h) and at angle of 17.0 degrees. The vehicle came to rest approximately 173 ft – 6 in. (52.9 m) downstream and 43 ft – 11 in. laterally in front of the system from the point of impact. The vehicle was successfully contained and redirected.

A detailed sequential description of the impact events is contained in Table 4. Sequential photographs are shown in Figures 55 through 57. Documentary photographs of the crash test are shown in Figure 58. The vehicle trajectory and final position are shown in Figure 59.


Figure 54. Impact Location, Test No. CMGS-1

TIME (sec)	EVENT
0.000	Vehicle's right-front bumper contacted rail between post nos. 16 and 17.
0.008	Vehicle's right fender contacted rail and right headlight deformed.
0.012	Vehicle's hood deformed.
0.016	Post nos. 16 and 17 deflected backward.
0.018	Post no. 18 deflected backward.
0.022	Vehicle's right headlight shattered and vehicle's right fender and grille deformed.
0.024	Post no. 18 deflected downstream.
0.026	Vehicle's right fender shattered.
0.028	Vehicle's front bumper deformed.
0.034	Vehicle's right-front door deformed.
0.041	Vehicle yawed away from barrier.
0.042	Post no. 18 rotated counterclockwise.
0.044	Post no. 19 deflected downstream.
0.070	Post no. 17 rotated backward. Vehicle rolled away from barrier. Right-side airbags deployed.
0.054	Vehicle pitched downward. Blockout no. 18 fractured.
0.056	Vehicle right-front wheel snagged on post no. 18.
0.058	Rail disengaged from bolt at post no. 18.
0.060	Blockout disengaged from post no. 18.
0.062	Post no. 19 deflected backward. Right-front airbag deployed.
0.064	Vehicle's right-rear tire became airborne.
0.070	Vehicle's right-front tire contacted post no. 18.
0.072	Post no. 18 bent downstream.
0.076	Post no. 19 rotated downstream. Post no. 20 deflected backward.
0.080	Post no. 19 twisted counterclockwise.
0.098	Rail disengaged from bolt at post no. 19.
0.104	Post no. 21 deflected backward.
0.112	Post no. 20 deflected downstream.
0.116	Vehicle's right-front wheel snagged on post no. 18.
0.120	Vehicle's front bumper contacted ground.
0.144	Rail disengaged from bolt at post no. 20.
0.196	Blockout no. 21 fractured.
0.259	Vehicle was parallel to system at a speed of 26.5 mph (42.6 km/h).

Table 4. Sequential Description of Impact Events, Test No. CMGS-1

TIME (sec)	EVENT
0.262	Vehicle's left-rear tire became airborne.
0.280	Vehicle pitched upward.
0.316	Vehicle's right-rear tire regained contact with ground.
0.333	Vehicle's right quarter panel contacted rail.
0.338	Vehicle's right-rear door deformed.
0.370	Vehicle's rear bumper contacted rail.
0.382	Vehicle's left-front tire became airborne.
0.428	Vehicle rolled away from barrier.
0.464	Vehicle exited system at a speed of 24.7 mph (39.8 km/h) and an angle of 17.0 degrees.
0.502	Vehicle's left-front tire regained contact with ground.
0.686	Vehicle's left-rear tire regained contact with ground.
0.794	Disengaged right-front tire contacted culvert headwall.
0.915	Vehicle yawed toward barrier.

 Table 5. Sequential Description of Impact Events, Test No. CMGS-1

0.500 sec

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

Figure 55. Sequential Photographs, Test No. CMGS-1

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

Figure 56. Sequential Photographs, Test No. CMGS-1

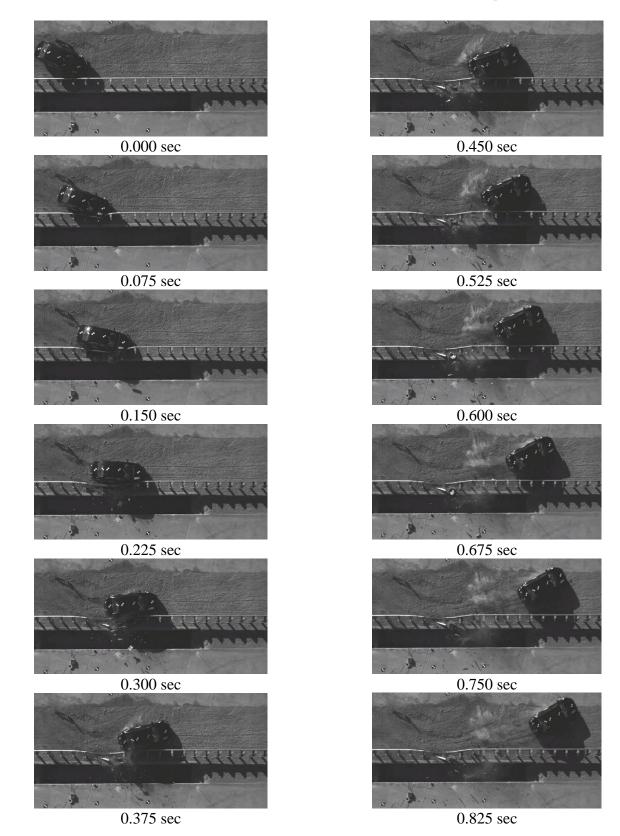


Figure 57. Additional Sequential Photographs, Test No. CMGS-1

Figure 58. Documentary Photographs, Test No. CMGS-1

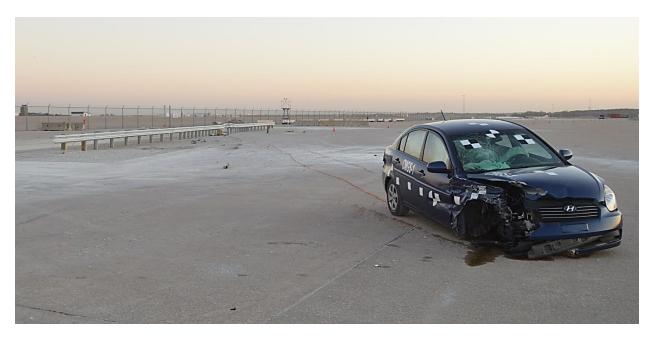


Figure 59. Vehicle Trajectory and Final Position, Test No. CMGS-1

5.4 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 60 through 66. Barrier damage consisted mostly of deformed W-beam, contact marks on the guardrail sections, and deformed posts. The length of vehicle contact along the barrier was approximately 16 ft which spanned from $12^{5/8}$ in. (321 mm) downstream from post no. 16 to $15^{1/2}$ in. (394 mm) downstream from post no. 21.

The guardrail damage consisted moderate deformation and flattening of the impacted section of the W-beam between post nos. 16 and 22. The W-beam was pulled out from the bolts at post nos. 18 through 21. Contact marks were found on the guardrail between post nos. 16 through 21. A partial rail tear was observed through the lower hump of the W-beam rail at the downstream end of the rail splice at post no. 19, as shown in Figures 60 and 61. No significant guardrail damage occurred upstream from post no. 16 nor downstream from post no. 22.

Post no. 17 slightly deflected backward. Post nos. 18 and 19 were bent longitudinally toward the ground in the downstream direction. Post no. 20 was bent slightly longitudinally downstream. Contact marks were found on the front face of post nos. 18 and 19. No significant post damage occurred to post nos. 1 through 16 nor 21 through 41. The upstream and downstream anchorage systems remained unmoved and te posts in both nchorage systems were not damaged. The wooden blockout at post nos. 18, 19, and 21 disengaged from the system. The blockout at post no. 20 rotated but did not disengage. The blockouts at post nos. 3 through 17 and 22 through 39 were undamaged.

Following the test, the soil on top of the culvert headwall was removed for inspection of the damage to the posts and base plates as well as to review any potential damage to the culvert. Deformation of the post base plates was observed on post nos. 17 through 21. Minor cracking was observed on the weld at the front flange of the base plate of post no. 17. The upstream side of the front flange of post no. 18 was torn up to the web near the base plate weld. All anchorage bolts and epoxied threaded rods were intact and remained secure, although some minor deformation of the bolts and rods was observed. No damage was observed to the concrete culvert slab or the headwall.

The maximum lateral permanent set of the barrier system was 11⁷/₈ in. (302 mm), which occurred at the back of post no. 18, as measured in the field. The maximum lateral dynamic deflection was 12 in. (305 mm) at post no. 18, as determined from high-speed digital video analysis. The working width of the system was 33.1 in. (842 mm) at post no. 18, also determined from high-speed digital video analysis. A schematic of the permanent set, dynamic deflection, and working width is shown in Figure 67.

Figure 60. System Damage, Test No. CMGS-1

Figure 61. Damage to Post Nos. 15 through 22, Test No. CMGS-1

Figure 62. Damage to Post and Base Plate Nos. 17 through 21 (After Removal of Soil Fill Post and Base), Test No. CMGS-1

Figure 63. Damage to Post and Base Plate Nos. 18 and 19, Test No. CMGS-1

Figure 64. Damage to Post and Base Plate No. 21, Test No. CMGS-1

Figure 65. Washer Plate Nos. 18 through 22 After Test, Test No. CMGS-1

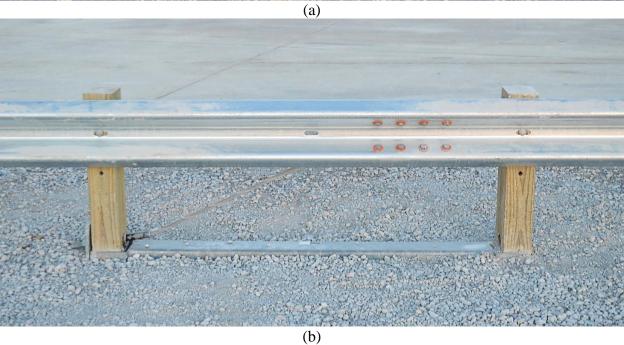


Figure 66. (a) Upstream Anchorage System After Test, and (b) Downstream Anchorage System After Test, Test No. CMGS-1

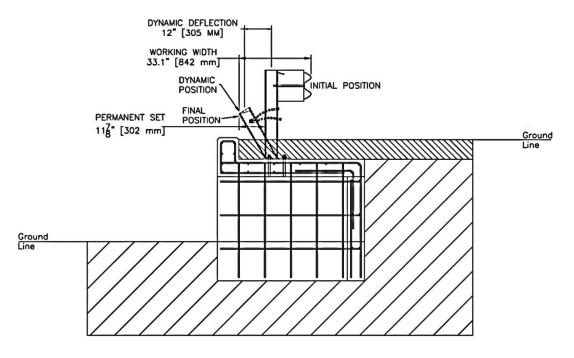


Figure 67. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. CMGS-1

5.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 68 through 72. The maximum occupant compartment deformations are listed in Table 6 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. The maximum deformation of the windshield was measured to be 3³/₈ in. (86 mm) which was not observed on the test day, as shown in Figure 70. Prior to the vehicle deformation measurements, the snow and ice on the windshield caused an additional caving in deformation. Therefore, this deformation exceeding the MASH deformation criteria was not due to the impact event and is not critical to the test evaluation. All other occupant compartment deformations were within MASH limits. Complete occupant compartment and vehicle deformations as well as the corresponding locations are provided in Appendix D.

Majority of the vehicle damage was concentrated on the right-front corner, where primary impact occurred. The right-front wheel contacted post nos. 18 and 19 and was disengaged, and the left-front tire was deflated. The right corner of the hood buckled. The side and front airbags on both the passenger and driver side deployed, which caused the windshield on the passenger side to shatter but remain intact. The right-rear quarter panel was crushed inward.

The roof, the left side, and the rear of the vehicle remained undamaged. The left-side and rear window glass also remained undamaged. The front right strut broke at the weld point on the top of the gas cylinder, and only the top portion of the shock absorber was still intact. The right-side wheel hub attachment point detached from the steering rack, and the tie rod was bent. The right-front brake assembly disengaged from the car. There was no damage to the vehicle's frame, rear suspension, or rear shocks and springs.

Figure 68. Vehicle Damage, Test No. CMGS-1

83

November 2, 2020 MwRSF Report No. TRP-03-383-20-R1

Figure 69. Additional Vehicle Damage, Test No. CMGS-1

November 2, 2020 MwRSF Report No. TRP-03-383-20-R1

84

Figure 70. Vehicle Windshield Damage, (a) on Test Site on Test Day, (b) in Vehicle Shop Prior to Measurement, Test No. CMGS-1

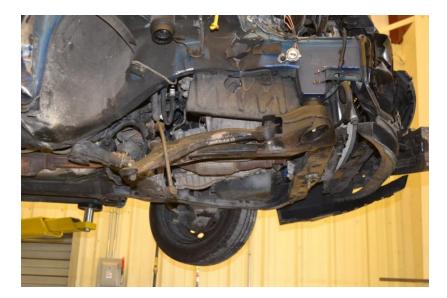

Figure 71. Occupant Compartment Damage, Test No. CMGS-1

Figure 72. Vehicle Undercarriage Damage, Test No. CMGS-1

LOCATION	MAXIMUM INTRUSION in. (mm)	MASH 2016 ALLOWABLE INTRUSION in. (mm)
Wheel Well & Toe Pan	17⁄8 (48)	≤ 9 (229)
Floor Pan & Transmission Tunnel	3⁄4 (19)	≤ 12 (305)
A-Pillar	11/8 (29)	≤ 5 (127)
A-Pillar (Lateral)	7⁄8 (22)	≤ 3 (76)
B-Pillar	1¾ (35)	≤ 5 (127)
B-Pillar (Lateral)	3⁄4 (19)	≤ 3 (76)
Side Front Panel (in Front of A-Pillar)	¹ / ₄ (6)	≤ 12 (305)
Side Door (Above Seat)	3⁄4 (19)	≤ 9 (229)
Side Door (Below Seat)	1 (25)	≤ 12 (305)
Roof	¹ / ₄ (6)	≤4 (102)
Windshield	3 ³ / ₈ (86) ²	≤ 3 (76)
Side Window	No shattering of side windows occurred	No shattering resulting from contact with structural member of test article
Dash	7⁄8 (22)	N/A ¹

Table 6. Maximum Occupant Compartment Deformations by Location, Test No. CMGS-1

 1 – N/A - No MASH 2016 criteria exist for this location

 2 – Deformation was not present on test day but occurred after snow and ice on windshield caused deformation prior to measurement

5.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 7. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 7. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Table 7. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix E.

Evaluation Criteria		Transducer		MASH
		SLICE-1 (Primary)	SLICE-2	2016 Limits
OIV	Longitudinal	-27.34 (-8.33)	-27.57 (-8.40)	± 40 (12.2)
ft/s (m/s)	Lateral	-20.01 (-6.10)	-19.49 (-5.94)	± 40 (12.2)
ORA	Longitudinal	-16.96	-15.45	± 20.49
g's	Lateral	-11.51	-11.18	± 20.49
MAX	Roll	15.2	-11.3	± 75
ANGULAR DISPLACEMENT	Pitch	-6.9	-4.7	± 75
deg.	Yaw	-53.4	-53.7	not required
THIV ft/s (m/s)		33.47 (10.20)	31.49 (9.60)	not required
PHD g's		18.32	17.61	not required
ASI		1.37	1.34	not required

Table 7. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. CMGS-1

5.7 Discussion

The analysis of the test results for test no. CMGS-1 showed that the strong post MGS attached to the culvert's top slab adequately contained and redirected the 1100C vehicle with controlled displacement of the barrier. A summary of the test results and sequential photographs are shown in Figure 73. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. Note, the maximum windshield deformation of $3\frac{3}{8}$ in. (86 mm) was not from the impact event, and therefore, it was not critical to the test evaluation.

The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix E, were deemed acceptable because they did not adversely influence occupant risk safety criteria nor cause rollover. After impact, the vehicle exited the barrier at an angle of 17 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. CMGS-1 conducted on the culvert mounted, strong post MGS was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-10.

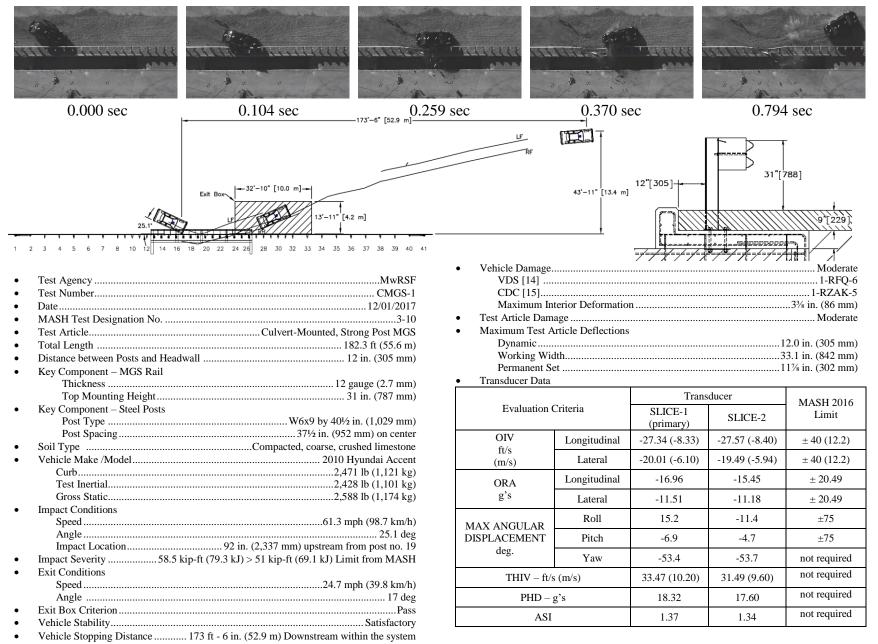


Figure 73. Summary of Test Results and Sequential Photographs, Test No. CMGS-1

November 2, 2020 MwRSF Report No. TRP-03-383-20-R1

6 FULL-SCALE CRASH TEST NO. CMGS-2

6.1 Static Soil Test

Before full-scale crash test no. CMGS-2 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix C, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

6.2 Weather Conditions

Test no. CMGS-2 was conducted on February 14, 2018 at approximately 12:45 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 8.

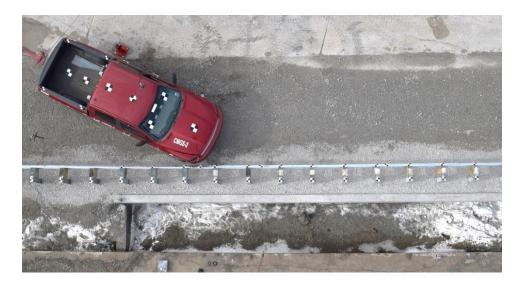

Temperature	42° F
Humidity	79%
Wind Speed	9 mph
Wind Direction	210° from True North
Sky Conditions	Sunny
Visibility	7 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.15 in.

Table 8. Weather Conditions, Test No. CMGS-2

6.3 Test Description

Initial vehicle impact was to occur 132 in. (3,353 mm) upstream from post no. 19, as shown in Figure 74, which was selected using Table 2-8 of MASH 2016. The 5,013-lb (2,274-kg) crew cab pickup truck impacted the test installation at a speed of 62.8 mph (101.1 km/h) and at an angle of 25.7 degrees, resulting in an impact severity of 124.7 kip-ft (169.1 kJ). The actual point of impact was 129.1 in. (3,279 mm) upstream from post no. 19. During the impact event, the rightfront wheel snagged on post nos. 17 through 19 and was disengaged, but the vehicle remained stable and was safely redirected. At 0.270 sec after impact, the vehicle became parallel to the system with a speed of 36.9 mph (59.5 km/h). At 0.520 sec, the vehicle exited the system at a speed of 33.1 mph (53.2 km/h) and at an angle of 17.4 degrees. The vehicle came to rest approximately 173 ft – 6 in. (52.9 m) downstream from the point of impact.

A detailed sequential description of the impact events is shown in Table 9. Sequential photographs are shown in Figures 75 and 76. Documentary photographs of the crash test are shown in Figure 78. The vehicle trajectory and final position are shown in Figure 79.

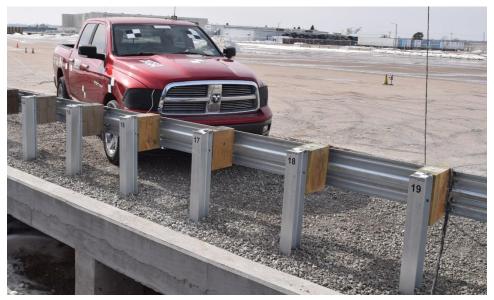


Figure 74. Impact Location, Test No. CMGS-2

TIME	EVENT
(sec)	EVENT
0.000	Vehicle's front bumper contacted rail between post nos. 15 and 16.
0.002	Vehicle's front bumper deformed.
0.006	Vehicle's right fender contacted rail and deformed.
0.012	Vehicle's right-front tire contacted rail.
0.014	Post no. 16 deflected backward.
0.016	Post no. 15 deflected backward.
0.018	Post no. 17 deflected backward. Soil heave formed on non-traffic flange of post no. 16. Vehicle's right headlight shattered.
0.020	Vehicle's grille deformed.
0.022	Vehicle's right-front wheel rim deformed.
0.032	Post no. 14 deflected backward.
0.040	Post no. 17 deflected downstream.
0.046	Post no. 18 deflected backward.
0.048	Post no. 17 rotated counterclockwise.
0.060	Vehicle yawed away from system.
0.070	Post no. 18 twisted counterclockwise. Vehicle's right-front tire contacted post no. 17.
0.076	Post no. 17 bent downstream.
0.078	Rail disengaged from bolt at post no. 17.
0.086	Post nos. 19 and 20 deflected backward. Rail disengaged from bolt at post no. 18. Blockout no. 17 fractured.
0.090	Blockout disengaged from post no. 17.
0.094	Post no. 19 rotated counterclockwise.
0.104	Post no. 17 contacted culvert headwall.
0.108	Post no. 19 deflected downstream.
0.110	Vehicle pitched downward.
0.114	Vehicle rolled toward system.
0.120	Post no. 17 pulled out of soil.
0.124	Rail disengaged from bolt at post no. 19.
0.128	Post no. 21 deflected backward. Post no. 20 twisted counterclockwise.
0.133	Vehicle's right-front tire contacted post no. 18.
0.134	Blockout disengaged from post no. 18.
0.136	Vehicle's right-front wheel became disengaged.
0.140	Post no. 20 deflected downstream.
0.144	Post no. 22 deflected backward. Soil heave formed on non-traffic flange of post no. 21.

 Table 9. Sequential Description of Impact Events, Test No. CMGS-2

TIME (sec)	EVENT
0.148	Blockout disengaged from post no. 19.
0.152	Vehicle's right-front tire contacted blockout no. 19.
0.158	Post no. 20 rotated downstream.
0.160	Post no. 18 contacted culvert headwall.
0.168	Blockout no. 19 fractured. Rail disengaged from bolt at post no. 20.
0.172	Post no. 18 pulled out of soil.
0.174	Post no. 19 bent downstream.
0.176	Vehicle's right-rear tire contacted rail.
0.184	Post no. 21 deflected downstream.
0.194	Vehicle's rear bumper contacted rail and deformed.
0.202	Blockout disengaged from post no. 20.
0.204	Blockout no. 20 fractured. Post no. 21 rotated counterclockwise.
0.210	Vehicle's right-front tire contacted blockout no. 20.
0.214	Vehicle's right-front tire contacted post no. 20. Vehicle's left-rear tire became airborne.
0.216	Post no. 20 bent downstream.
0.238	Rail disengaged from bolt at post no. 21.
0.244	Vehicle rolled away from system.
0.270	Vehicle was parallel to system at a speed of 36.9 mph (59.5 km/h).
0.384	Vehicle's left-front tire became airborne.
0.456	Vehicle's left-front tire regained contact with ground.
0.520	Vehicle's right-rear tire became airborne. Vehicle exited system at a speed of 33.1 mph (53.2 km/h) and at an angle of 17.4 degrees.

Table 10. Sequential Description of Impact Events, Test No. CMGS-2

0.000 sec

0.150 sec

0.300 sec

0.450 sec

0.600 sec

0.750 sec

0.000 sec

0.150 sec

0.300 sec

0.450 sec

0.600 sec

0.750 sec

Figure 75. Sequential Photographs, Test No. CMGS-2

0.000 sec

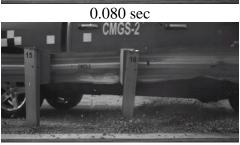
0.150 sec

0.300 sec

0.450 sec

0.600 sec

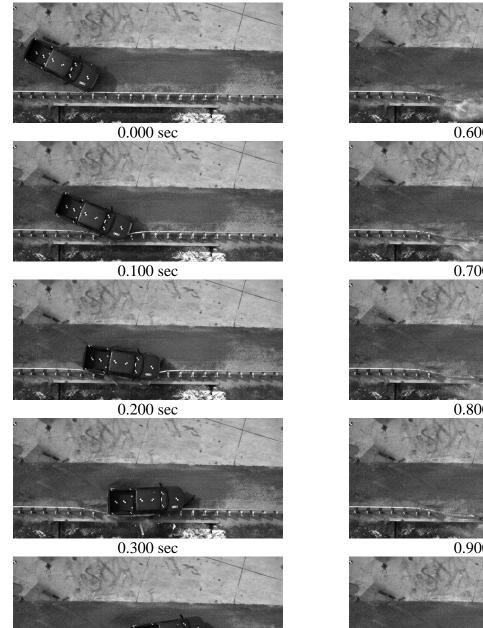
0.750 sec



0.000 sec

0.040 sec

0.120 sec



0.160 sec

0.200 sec

Figure 76. Additional Sequential Photographs, Test No. CMGS-2

0.500 sec

0.600 sec

0.700 sec

0.800 sec

0.900 sec

1.000 sec

1.100 sec

Figure 77. Additional Sequential Photographs, Test No. CMGS-2

Figure 78. Documentary Photographs, Test No. CMGS-2

Figure 79. Vehicle Trajectory and Final Position, Test No. CMGS-2

6.4 Barrier Damage

Damage to the barrier was moderate, as shown in Figures 80 through 89. Barrier damage consisted mostly of deformed W-beam, contact marks on the guardrail sections, and deformed posts. The length of vehicle contact along the barrier was approximately 24 ft -1 in. (7.3 m) which spanned from 7 in. (178 mm) downstream from post no. 15 to the downstream edge of the rail splice at post no. 23.

The guardrail damage consisted moderate deformation and flattening of the impacted section of the W-beam between post nos. 15 and 23. The W-beam disengaged from post nos. 17 through 21. Contact marks were found on the guardrail between post nos. 15 through 23. Small horizontal rail tearing was observed at and upstream from post no. 16, as shown in Figure 84. No significant guardrail damage occurred upstream from post no. 15 nor downstream from post no. 23.

Post nos. 15 and 16 slightly deflected backward. Post nos. 17 and 18 broke away from the base plate and were pulled out of the soil. However, this did not adversely affect the system's performance, and the disengaged posts did not pose secondary hazard to traffic. Post nos. 19 through 21 also deflected longitudinally toward the ground in the downstream direction but remained attached to the culvert. Contact marks were found on the front face of post nos. 18 and 19. No significant post damage occurred to post nos. 1 through 15 or 24 through 41. The upstream anchorage system was displaced nearly 1 in. (25 mm) and the downstream anchorage systems were not damaged. The wooden blockouts at post nos. 17 through 20 disengaged from the system. The blockout at post no. 21 rotated but did not disengage from the rail. The blockouts at post nos. 3 through 16 and 22 through 39 remained undamaged.

Following the test, the soil on top of the culvert headwall was removed for inspection of the damage to the posts and base plates as well as to review any potential damage to the culvert. Deformation of the post base plates was observed on post nos. 16 through 22. Post nos. 17 and 18 fractured at the base of the post above the weld line at the front flange and web of the post and through the weld at the back flange of the post. The upstream side of the front flange of post nos. 20 and 21 was torn up to the web near the base plate weld. All anchorage bolts and epoxied threaded rods were intact and remained secure, although some minor deformation of the bolts and rods was observed. No damage was observed to the concrete culvert slab or the headwall.

The maximum lateral permanent set of the barrier system was 15³/₄ in. (400 mm) which occurred at the back of rail at post no. 19, as measured in the field. The maximum dynamic barrier deflection was 29.6 in. (752 mm) at post no. 17. The working width of the system was 50.8 in. (1,290 mm) at post no. 17, also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 90.

Figure 80. System Damage, Test No. CMGS-2

Figure 81. Damage to Post Nos. 15 through 21, Test No. CMGS-2

102

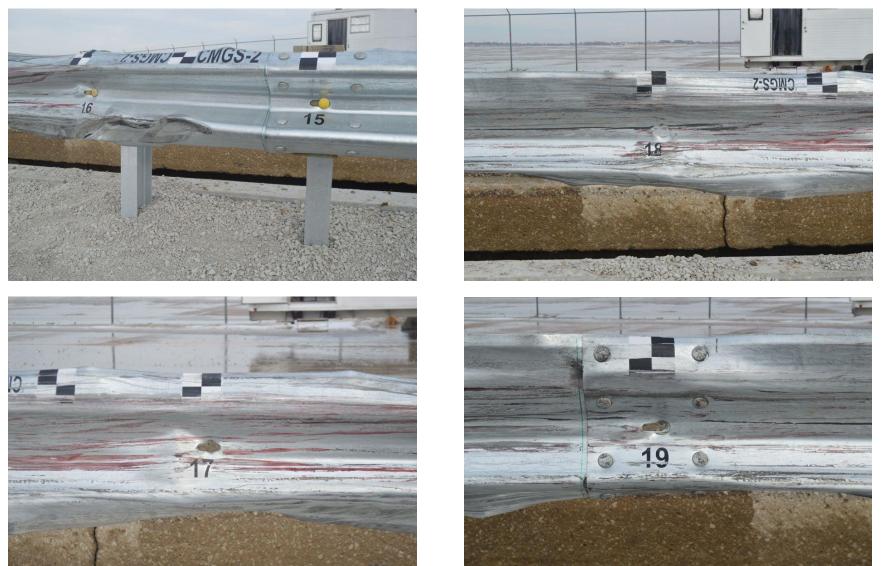


Figure 82. Guardrail Damage, Post Nos. 15 through 19, Test No. CMGS-2

Figure 83. Guardrail Damage, Post Nos. 15 through 22, Test No. CMGS-2

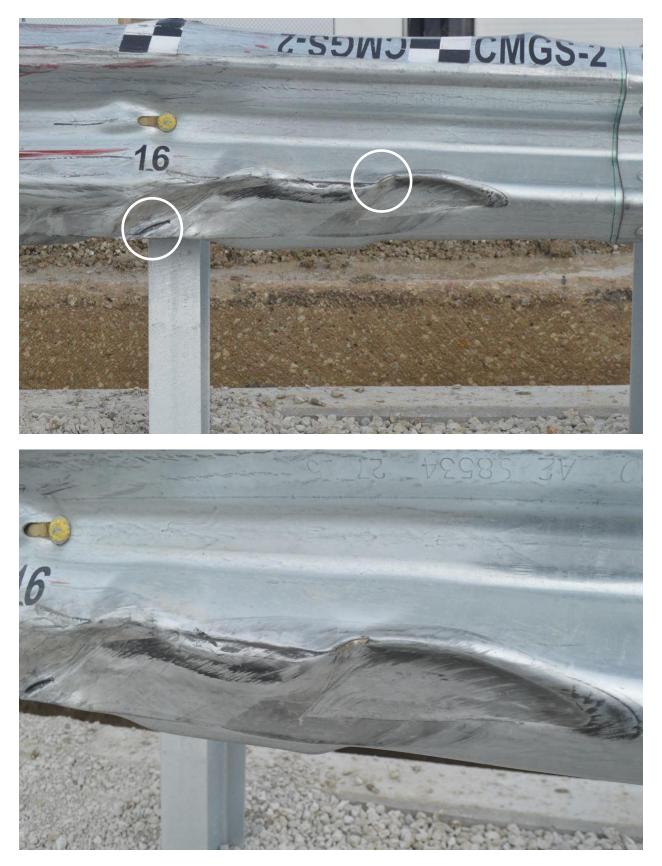


Figure 84. Rail Tears at Post No. 16, Test No. CMGS-2

Figure 85. Damage to Base Plates of Post Nos. 17 through 22, Test No. CMGS-2

Figure 86. Damage to Base Plate Nos. 16 through 18 – After Soil Removal, Test No. CMGS-2

Figure 87. Damage to Post Nos. 17 through 22 Damage – After Soil Removal, Test No. CMGS-2

108

Figure 88. Culvert Deck after Removal of Soil Fill and Posts and Downstream Anchorage System Deformation, Test No. CMGS-2

Figure 89. Damage to Upstream Anchorage System, Test No. CMGS-2

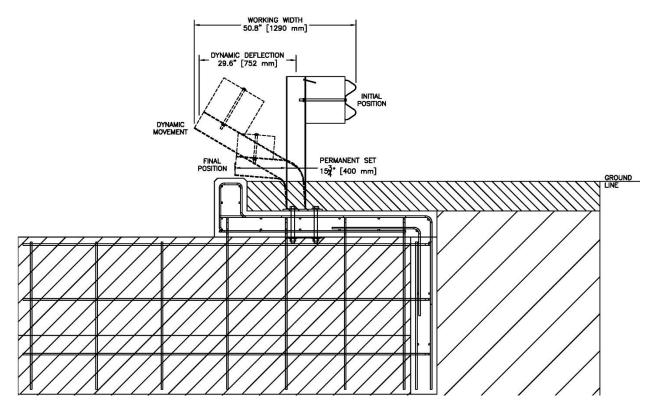
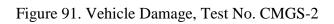


Figure 90. Permanent Set Deflection, Dynamic Deflection, and Working Width, Test No. CMGS-2


6.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 91 through 95. The maximum occupant compartment deformations are listed in Table 11 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. Complete occupant compartment and vehicle deformations as well as the corresponding locations are provided in Appendix D.

The majority of the vehicle damage was concentrated on the right-front corner, where primary impact occurred. The vehicle's front bumper was crushed inward. The lower passenger side grille was broken. The front bumper cover was torn off except for the two bolts on the driver side. The vehicle right-front wheel was disengaged, and right-rear tire was deflated. The airbags did not deploy during the impact. The right corner of the rear bumper on the passenger side buckled inward and the rear corner of the right-rear fender was deformed from the impact with the barrier.

The roof, the hood, and the left side remained undamaged. The left-side and rear window glass also remained undamaged. The airbags did not deploy during the impact. The overall undercarriage damage included a 2-in. (51 mm) bend in the lower control arm, and the steering knuckle broke along with the steering arm on the passenger side. The front passenger-side brake line was disconnected. Interior occupant compartment deformations were moderate with a maximum of $1\frac{1}{8}$ in. (29 mm), which did not violate the limits established in MASH 2016.

November 2, 2020 MwRSF Report No. TRP-03-383-20-R1

112

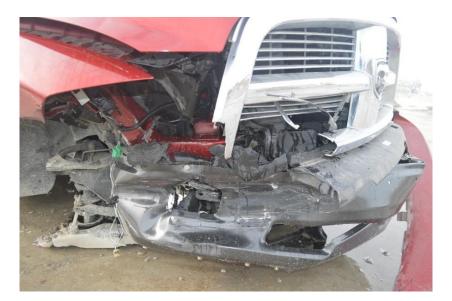


Figure 92. Additional Vehicle Damage, Test No. CMGS-2

Figure 93. Vehicle Windshield Damage, Test No. CMGS-2

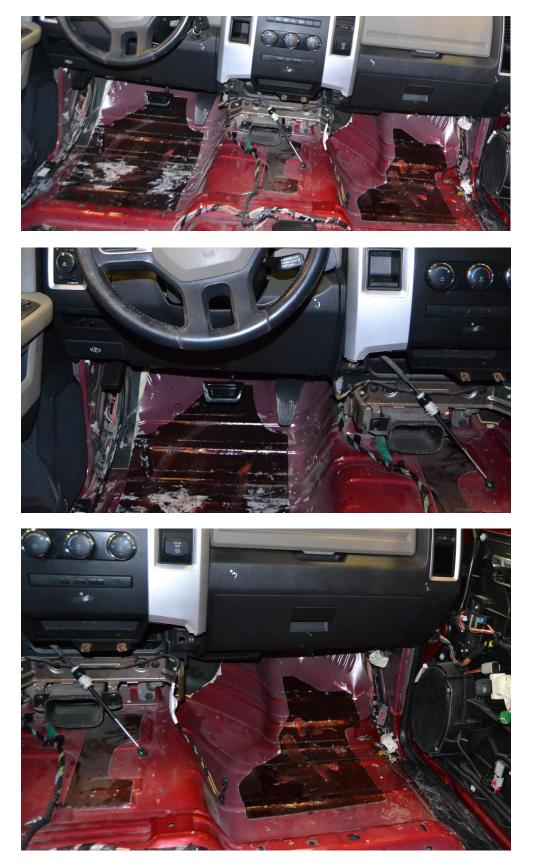
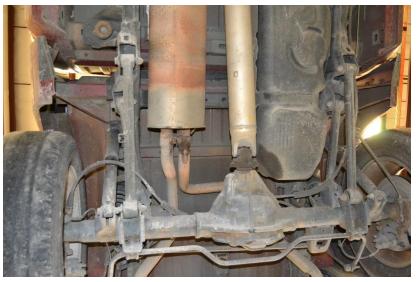



Figure 94. Vehicle Occupant Compartment Damage, Test No. CMGS-2

Figure 95. Vehicle Undercarriage Damage, Test No. CMGS-2

LOCATION	MAXIMUM INTRUSION in. (mm)	MASH ALLOWABLE INTRUSION in. (mm)		
Wheel Well & Toe Pan	¹ / ₂ (13)	≤ 9 (229)		
Floor Pan & Transmission Tunnel	1/2 (13)	≤ 12 (305)		
A-Pillar	3⁄8 (10)	≤ 5 (127)		
A-Pillar (Lateral)	¹ ⁄4 (6)	≤ 3 (76)		
B-Pillar	¹ ⁄4 (6)	≤ 5 (127)		
B-Pillar (Lateral)	¹ ⁄4 (6)	≤ 3 (76)		
Side Front Panel (in Front of A- Pillar)	7⁄8 (22)	≤ 12 (305)		
Side Door (Above Seat)	11/8 (29)	≤ 9 (229)		
Side Door (Below Seat)	³ ⁄ ₄ (19)	≤ 12 (305)		
Roof	¹ / ₂ (13)	≤ 4 (102)		
Windshield	0	≤ 3 (76)		
Side Window	No shattering of side windows occurred	No shattering resulting from contact with structural member of test article		
Dash	¹ ⁄4 (6)	N/A ¹		

Table 11. Maximum Occupant Compartment Intrusions by Location, Test No. CMGS-2

 N/A^1 – No MASH 2016 criteria exist for this location

6.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 12. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 12. The results of the occupant risk analysis, as determined from the accelerometer data, are summarized in Figure 96. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix F.

Evaluation Criteria		Transd	MASH 2016	
		SLICE-1	SLICE-2 (Primary)	Limits
OIV	Longitudinal	-21.86 (-6.66)	-19.60 (-5.97)	± 40 (12.2)
ft/s (m/s)	Lateral	-15.36 (-4.68)	-16.58 (-5.05)	± 40 (12.2)
ORA g's	Longitudinal	-12.88	-13.78	± 20.49
	Lateral	-11.05	-10.24	± 20.49
MAX	Roll	22.6	15.4	± 75
ANGULAR DISPLACEMENT	Pitch	-7.9	-9.5	± 75
deg.	Yaw	-57.0	-57.4	not required
	THIV ft/s (m/s)		23.68 (7.22)	not required
PHD g's		16.11	16.22	not required
ASI		1.02	0.96	not required

Table 12. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. CMGS-2

6.7 Discussion

The analysis of the test results for test no. CMGS-2 showed that the strong post MGS attached to the culvert's top slab using through-bolts adequately contained and redirected the 2270P vehicle with controlled displacement of the barrier. A summary of the test results and sequential photographs are shown in Figure 96. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Two posts in the system were disengaged from their base plates and ejected laterally behind the barrier system. It is not anticipated that these disengaged posts would pose a hazard to other traffic, pedestrians, or work-zone personnel when ejected behind the system and into the flow channel of the culvert. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix E, were deemed acceptable because they did not adversely influence occupant risk safety criteria nor cause rollover. After impact, the vehicle exited the barrier at an angle of 17.4 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. CMGS-2 conducted on the culvert mounted, strong post MGS was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-11.

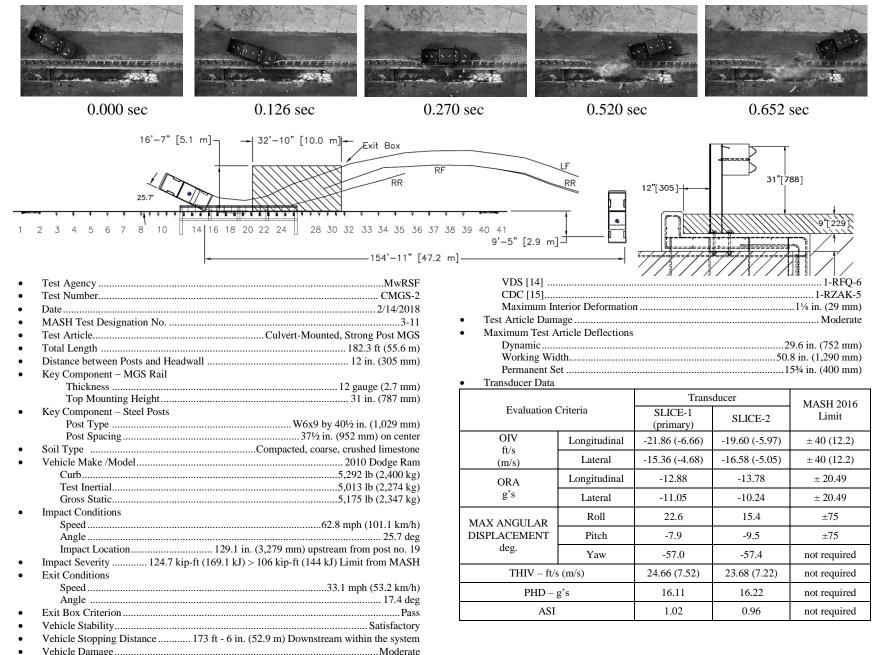


Figure 96. Summary of Test Results and Sequential Photographs, Test No. CMGS-2

119

November 2, 2020 MwRSF Report No. TRP-03-383-20-R1

7 STIFFNESS TRANSITION FROM MGS TO CULVERT-MOUNTED MGS

Following two successful full-scale crash tests on culvert-mounted MGS, it was desired to evaluate the performance of the transition between the standard MGS and the culvert-mounted MGS. This system installation consists of four sections, including the anchorage system, standard MGS, half-post spacing MGS, and culvert-mounted MGS, as shown in Figure 97.

The anchorage systems consisted of timber posts (post nos. 1 and 2, 40 and 41) measuring $5\frac{1}{2}$ in. wide x $7\frac{1}{2}$ in. deep x 46 in. long (140 mm wide x 191 mm deep x 1,168 mm long) and were placed in 6-ft (1.8-m) long steel foundation tubes. The timber BCT posts and foundation tubes were part of the end anchor systems that are representative of a tangent guardrail terminal. The safety performance of these downstream anchorage systems also has been evaluated to MASH through full-scale crash testing [16]. Alternative crashworthy anchorage systems, including energy-absorbing end terminals are also acceptable.

The culvert-mounted MGS, as described in detail in Section 3.2, consisted of MGS with a 31-in. top rail height, supported by fourteen steel W6x9 posts (post nos. 13 through 26), measuring 40¹/₂ in. (1,029 mm) long, spaced at 37¹/₂ in. (953 mm) on center, attached to a low-fill culvert's top slab with a 12-in. (305-mm) offset from the back of the post to the culvert headwall. For culvert-mounted MGS posts, the soil embedment depth was 9 in. (229 mm). Two successful crash tests were conducted according to MASH 2016 Test Level 3 impact safety criteria.

The standard MGS consisted of steel W6x8.5 guardrail posts measuring 6 ft (1.8 m) long with a top mounting rail height of 31 in. (787 mm). The posts were spaced at 75 in. (1,905 mm) on center with a soil embedment depth of 40 in. (1,016 mm). For posts within the MGS, 6-in. wide x 12-in. deep x 14¹/₄-in. long (152-mm wide x 305-mm deep x 362-mm long) wood spacer blockouts were used to offset the rail away from the front face of the steel posts. The standard MGS has been previously successfully crash tested to MASH TL-3 criteria [17-18].

The half-post spacing MGS was identical to the standard MGS except that the original guardrail system utilizes a post spacing of 37½ in. (953 mm) on center. This configuration was previously considered crashworthy under NCHRP Report No. 350 evaluation criteria and was carried over to the design evaluated herein to provide for a more conservative transition between standard MGS and the culvert-mounted system. However, half-post spacing MGS has not been successfully evaluated to MASH 2016. Thus, it desired to compare the behavior of standard 40-in. (1,016-mm) embedded posts to the culvert-mounted posts to verify that the behavior of half-post spacing MGS and the transition between half-post spacing MGS and culvert-mounted MGS would be similar.

When transitioning from the standard MGS to half-post spacing MGS, the reduced post spacing increases the system stiffness, and consequently, potential for vehicle snag. Therefore, further investigation was needed to confirm the safety performance of the transition in redirection of vehicles. Additionally, it was unknown if there was a change in system stiffness when transitioning from the half-post spacing MGS with 40-in (1,016-mm) soil embedded posts to culvert-mounted MGS with 9-in (229-mm) soil embedded post. Thus, further analysis was conducted to evaluate these two transitions: (1) transition from standard MGS to half-post spacing MGS; and (2) transition from half-post spacing MGS to culvert-mounted MGS.

It should be noted that, recent full-scale crash testing of stiffened or reduced deflection MGS systems have resulted in rail ruptures. Texas A&M Transportation Institute (TTI) has recently conducted testing on the MGS with reduced post spacing and transitions from standard post spacing to reduced post spacing. TTI researchers first evaluated a quarter-post spacing system (18³/₄ in.) with MASH test designation nos. 3-11 and 3-10. The quarter-post spacing system successfully passed both MASH tests. TTI researchers also tested a transition between quarter-(18³/₄ in.) and full-(75 in.) spacing according to MASH test designation no. 3-21 impact conditions. This transition used single, W-beam rail elements and did not incorporate any nested rail sections. In this test, the pickup truck ruptured the rail and penetrated beyond the barrier. TTI researchers also tested a half-post spacing ($37\frac{1}{2}$ in.) variation of the MGS under this project. In this test, the pickup truck ruptured the rail and penetrated beyond the barrier. Published reports for these research efforts are not yet available and are not referenced herein.

These recent test failures involving 2270P impacts into the MGS with reduced post spacing suggests that the there is potential for rail failure during impacts into stiffened MGS applications and/or applications where increased localized rail deflection and pocketing may occur.

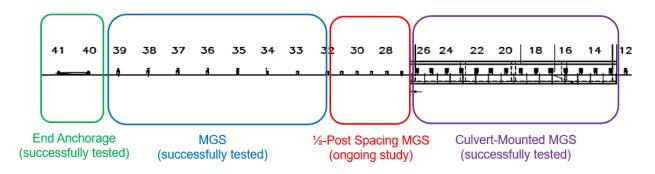


Figure 97. System Sections within Test Installation

7.1 Transition from Half-Post Spacing MGS to Culvert-Mounted MGS

For the stiffness transition from culvert-mounted posts to soil-embedded posts within the MGS, the load-deflection curve of each post is the key parameter to determine its resistance. The load-deflection curves from previous W6x8.5 posts embedded 40 in. (1,016 mm) in soil were compared to a W6x9 culvert-mounted post.

MwRSF researchers previously conducted a similar component test, namely, test no. CGSA-4, which was conducted on an ASTM A992 W6x9 (W152x13.4) steel post with the same geometry of the culvert-mounted posts in test no. CMGS-2, as shown in Figure 98a [7]. The post was bolted on the concrete grade. The impact height for the CGSA-4 post was 30⁵/₈ in. (778 mm), which would correspond to an impact height of 21⁵/₈ in. (549 mm) above grade for a 9-in (229 mm) embedment. Component level bogie tests, test nos. MH-1 and MH-4 had been previously conducted on a similar post embedded 40 in. (1,016 mm) in soil, as shown in Figure 98b. Details of these tests can be found in reports [19-20]. The bogie test key parameters are summarized in Table 13. The load- and energy-deflection results are plotted in Figures 99 and 100, respectively. Note that the force and deflection data from test no. CGSA-4 was adjusted to account for the

difference in impact height between the two tests. In test no. CGSA-4, the post was bolted to the concrete, and upon impact the bogie had large vibrations, as shown in Figure 99, whereas in test nos. MH-1 and MH-4, the soil damped out some of the bogie vibrations, so less force variation occurred.

The culvert-mounted post and standard 40-in. (1,016-mm) embedded posts had very similar average forces, as shown in Table 13 and Figure 99. Additionally, the culvert-mounted post had nearly identical energy dissipation to the standard posts. Based on the similar stiffness and energy dissipation between the culvert mounted post and standard guardrail posts, it was believed that no stiffness transition would be required between the standard 40-in. (1,016-mm) embedded posts at half-post spacing and the culvert-mounted posts as half-post spacing.

Figure 98. (a) Soil Embedment Post Test Nos. MH-1 and MH-4; (b) Concrete-Mounted Post Test No. CGSA-4

Test No. Embedment Depth in. (mm)	Embedment	r i r i r i r i r i r i r i r i r i r i	Steel Post	Post	Impact speed	Bogie	Peak Force	Average Force kips (kN) at displacement		
	Height	Grade	1	Weight lb (kg)	Kips (kN)	10 in.	15 in.	20 in.		
MH-1	40.0 (1,016)	24 ⁷ / ₈ (632)	W6x8.5 (W152x12.6)	A36	20.0 (32.2)	1,745 (792)	14.0 (62.3)	9.8 (43.6)	9.5 (42.3)	8.8 (39.1)
MH-4	40.0 (1,016)	24 ⁷ / ₈ (632)	W6x8.5 (W152x12.6)	A36	20.0 (32.2)	1,745 (792)	12.9 (57.4)	9.6 (42.7)	9.5 (42.3)	8.9 (39.6)
CGSA-4	N.A.*	305/8 (778)	W6x9 (W152x13.4)	A992	10.0 (16)	4,888 (2217)	19.0 (85.3)	10.7 (47.6)	10.9 (48.4)	9.8 (43.6)

*N.A. = not available on bolted connection

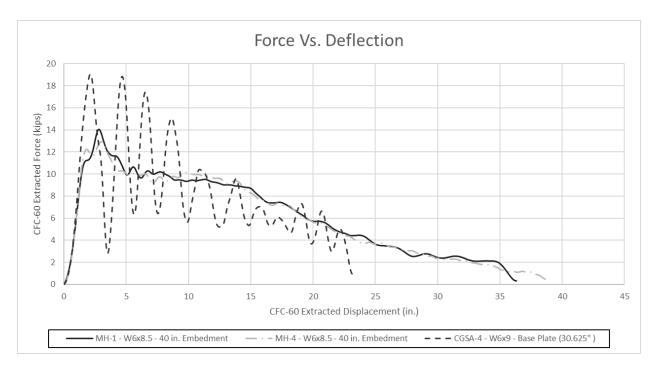


Figure 99. Load-Deflection Curves Comparison

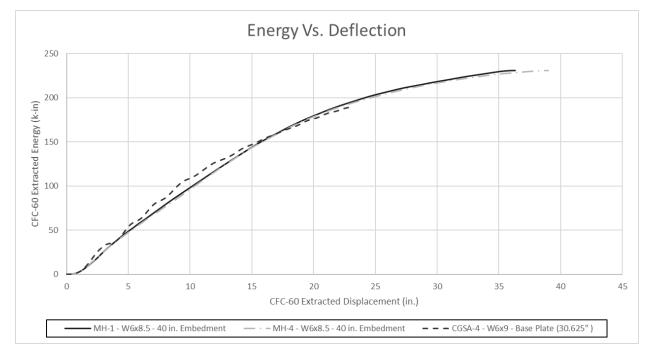


Figure 100. Energy-Deflection Curves Comparison

7.2 Transition from Standard MGS to Half-Post Spacing MGS

In transition from the standard MGS to half-post spacing MGS, the potential for rail pocketing, wheel snag, and higher accelerations exists due to the increased barrier stiffness of the half-post spacing region. MwRSF researchers previously conducted research and full-scale crash testing of a similar MGS transition, namely, test no. MWTSP-2 [21].

In test no. MWTSP-2, an upstream stiffness transition between the MGS and a thrie beam approach guardrail transition was crash tested according to TL-3 safety performance criteria set forth in MASH 2009, as shown in Figure 101. The barrier was constructed with several components, including (1) standard W-beam rail; (2) asymmetrical, W-beam to thrie-beam transition element; (3) standard thrie-beam guardrail; (4) nested thrie-beam guardrail; and (5) thrie-beam and channel bridge railing system, as shown in Figure 102a. All guardrails had a top rail height of 31 in. (787 mm). Post nos. 1 through 8 and 8 through 12 were ASTM A36 W6x9 posts embedded 40 in. (1,016 mm) and were spaced 75 in. (1,905 mm) and 37½ in. (953 mm), respectively. In test no. MWTSP-2, a 5,158-lb (2,340-kg) pickup truck impacted the upstream stiffness transition at a speed of 61.2 mph (98.5 km/h) and at an angle of 26.3 degrees. The barrier was impacted in the span where the full post spacing MGS approached the half-post spacing MGS 37.5 in. (953 mm) upstream from post no. 8), as shown in Figure 102b, which was determined to be the critical impact point for snag and rail pocketing based on a Barrier VII analysis. In test no. MWTSP-2, the pickup truck was safely contained, and test no. MWTSP-2 was determined to be acceptable according to test designation no. 3-21 of MASH.

The transition in test no. MWTSP-2 is similar to the transition between standard MGS and half-post spacing MGS in terms of the post configuration and rail section. Thus, test no. MWTSP-2 was considered as a reference to evaluate the transition from standard MGS to half-post spacing MGS within the test installation in test nos. CMGS-1 and CMGS-2. Since test no. MWTSP-2 was tested to be at a critical point for snag and rail pocketing relative to the transition from standard MGS to half-post spacing MGS and it was successful, it was also believed that the standard MGS to half-post spacing MGS utilized upstream of the culvert-mounted MGS would also be adequate. Therefore, the transition between standard MGS and half-post spacing MGS was believed to not expose errant vehicles to any additional hazards. Additionally, numerical simulations were carried out to confirm the critical impact point and evaluate the need for a separate transition from standard MGS to half-post spacing MGS.

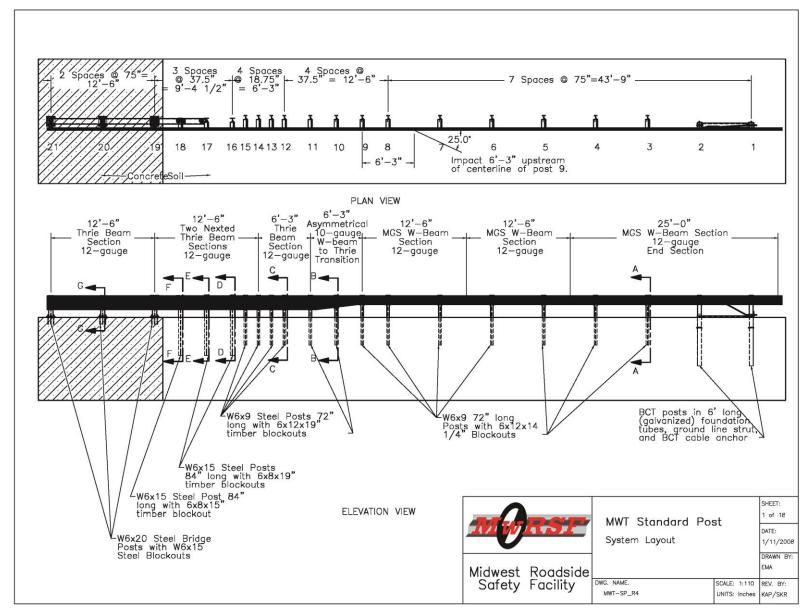
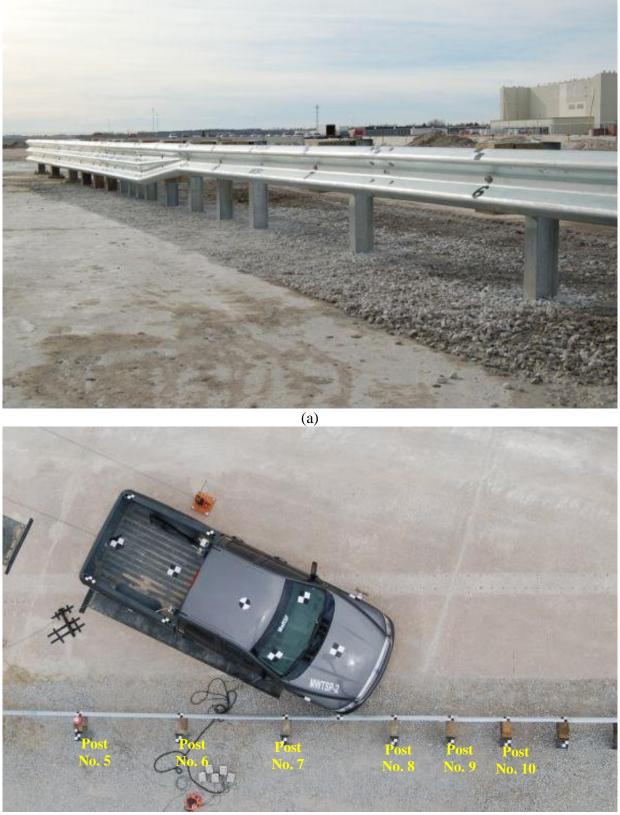



Figure 101. System Details and Layout, Test No. MWTSP-2

(b)

Figure 102. (a) System Installation; (b) Impact Location, Test No. MWTSP-2

7.2.1 Evaluation of MGS to Half-Post Spacing MGS

A baseline simulation of MGS was modified to simulate the culvert-mounted MGS impacted by a 2270P pickup truck and was compared to crash test no. CMGS-2 [22]. Then, several impact points in the transition area from full-post spacing MGS to half-post spacing MGS were evaluated. The analysis focused on impacts with the 2270P vehicle as the pickup truck was expected to deflect the barrier more as compared to the small car, leading to increased pocketing and vehicle snag in the transition region. Two cases with and without wheel and tire disengagement were considered in order to bracket the simulation analysis.

7.2.2 Simulation of Culvert-Mounted Midwest Guardrail System

The culvert-mounted MGS model was developed by modifying the standard MGS model. The standard MGS model consisted of twenty-nine steel posts with a 75 in. (1,905 mm) post spacing. The soil was modeled with soil springs in both guardrail longitudinal and lateral directions that provided equivalent resistance to soil. The standard MGS model was validated in a previous project using NCHRP Report No. W179 procedures for verification and validation of computer simulations used for roadside safety applications [22]. The standard MGS model was modified by reducing the post spacing at the culvert location and the transition areas, as shown in Figure 103, to represent test installation in test no. CMGS-2. The culvert-mounted MGS consisted of a total of forty-one steel posts. The standard post spacing of 75 in. (1,905 mm) occurred from post nos. 1 through 8 and 32 through 41. The reduced post span length of 37¹/₂ in. (952.5 mm) occurred from post nos. 8 through 32 at the culvert and the transition. The bolted connections between culvertmounted post base plates and the culvert were explicitly modeled. The welds between the culvertmounted posts and base plates were simplified by merging nodes between the two parts, as shown in Figure 104. Since no damage occurred to the culvert in test nos. CMGS-1 and CMGS-2, the culvert was modeled with rigid material. The parts, elements, and materials used in the culvertmounted MGS model are shown in Table 14. Note that the components added to the existing standard MGS model are described in Table 14. Further details of the baseline MGS model can be found in NCHRP Report No. W179 [22].

The reduced-element, 2270P Chevrolet Silverado pickup truck model, originally developed by the National Crash Analysis Center (NCAC) and modified by MwRSF, was previously validated with an MGS test, test no. 2214MG-2 [17, 22]. The standard vehicle model does not incorporate failure in the suspension parts, nor tire deflation or wheel disengagement capacities. This vehicle model was used for the baseline culvert-mounted MGS model.

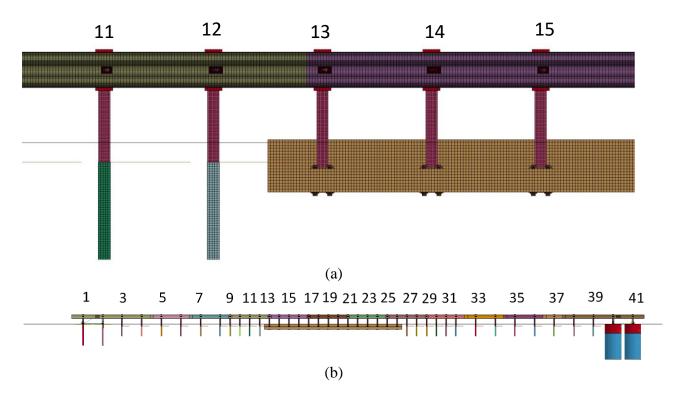
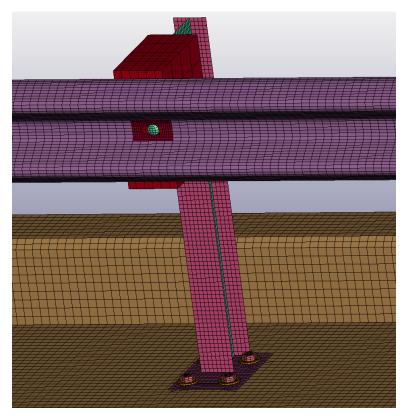
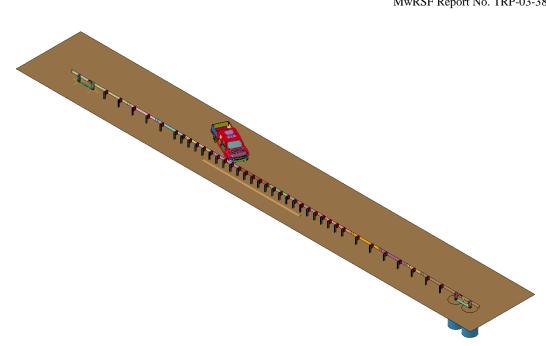
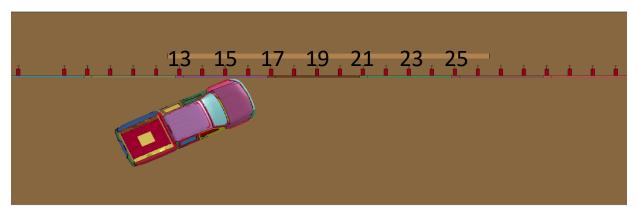


Figure 103. Culvert-Mounted MGS Model: (a) Transition from Half-Post Spacing MGS to Culvert-Mounted MGS; and (b) System Installation Model Overview




Figure 104. Culvert-Mounted Post Simulation Details

Part Name	Element Type	Element Formulation	Material Type	Material Formulation
Concrete Culvert	Solid	Constant Stress	Normal Weight Concrete	Rigid Solid
Base plates	Shell	Hughes-Liu	ASTM A572 Steel	Piecewise, Linear Plasticity
Washers	Solid	Fully Integrated	ASTM F844 Steel	Piecewise, Linear Plasticity
Bolts	Solid	Fully Integrated	ASTM A307 Steel	Piecewise, Linear Plasticity
Nuts	Solid	Fully Integrated	A563 Steel	Piecewise, Linear Plasticity


Table 14. List of Simulation Model Parts and LS-DYNA Parameters

In test no. CMGS-2, the vehicle was a 5,013-lb (2,274-kg) Dodge Ram 1500, while the simulated vehicle was a 5,005-lb (2,270-kg) Chevrolet Silverado 1500. The impact angle and speed in the numerical model were 25 degrees and 62.8 mph (101.1 km/h), whereas the impact angle and speed in the test no. CMGS-2 were 25.7 degrees and 62.8 mph (101.1 km/h). The impact point in both test and numerical models was 129 in. (3,277 mm) upstream of post no. 19. The simulated system before the impact and the sequential comparison of test CMGS-2 and baseline CMGS simulation are shown in Figures 105 and 106, respectively.

The data obtained from test no. CMGS-2 was compared to the two baseline simulations' results: one with wheel disengagement and one without, as shown in Table 15. Specifically, change in velocities, deflections, and vehicle Euler angles were compared in detail.

(a)

(b)

Figure 105. LS-DYNA Model for Test No. CMGS-2: (a) Isometric View; and (b) Overhead View

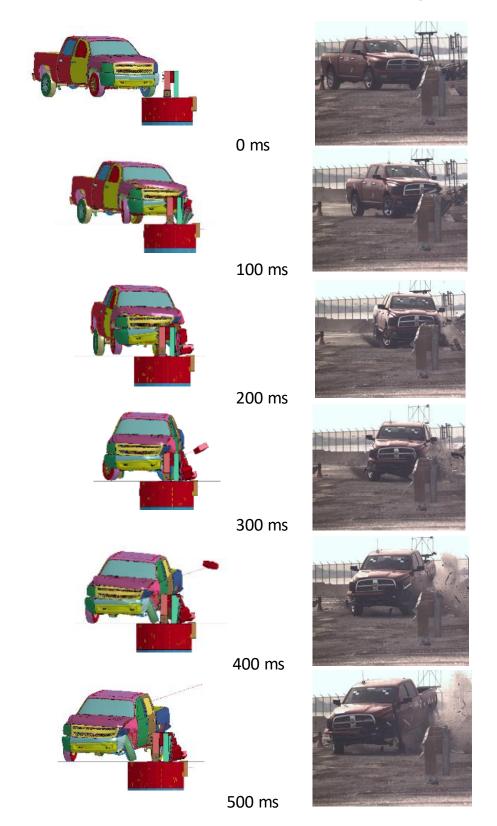


Figure 106. Downstream Vehicle Position Comparison, Baseline CMGS Simulation and Test No. CMGS-2

		Test	Simulation	Simulation
	Parameters	Test No. CMGS-2	Baseline CMGS	Baseline CMGS Wheel Disengaged
Vehicle	Year, Make, and Model	2010, Dodge, RAM 1500	Chevrolet, Silverado 1500	Chevrolet, Silverado 1500
	Test Inertial Weight, lb (kg)	5,013 (2,274)	5,005 (2,270)	5,005 (2,270)
	Speed, mph (km/h)	62.8 (101.1)	62.8 (101.1)	62.8 (101.1)
Impact	Angle, deg	25.7	25.0	25.0
Conditions	Impact Point in. (mm), from upstream from Post 19	129.1 (3,279)	129.0 (3,277)	129.0 (3,277)
Im	pact Severity, kip-ft (kN-m)	124.7 (169.1)	117.9 (159.9)	117.9 (159.9)
Parallel	Speed, mph (km/h)	36.9 (59.5)	38.2 (61.5)	39.6 (63.7)
Conditions	Time, ms	270	253	250
г.,	Speed, mph (km/h)	33.1 (53.2)	33.2 (53.4)	33.2 (53.4)
Exit Conditions	Angle, deg	19.5	15.4	15.7
Conditions	Time, (ms)	520	660	620
	t*, seconds	0.1225	0.1324	0.1324
	Longitudinal	-13.78	-12.30	-12.54
ORA, g's	Lateral	-10.24	-7.44	-8.64
OIV, ft/s	Longitudinal	-19.60 (-6.0)	-19.03 (-5.8)	-19.03 (-5.8)
(m/s)	Lateral	-16.58 (-5.1)	-17.39 (-5.3)	-17.4 (-5.3)
	Max Rail deflection, in. (mm)	22.4 (569)	25.3 (643)	26.8 (681)
_	Max Rail deflection Time, ms	192	177	350
Test Article	Max Post deflection, in. (mm)	29.6 (752)	15.3 (389)	15.6 (396)
Deflection	Max Post deflection Time, ms	137	110	110
20110001011	Working Width, in. (mm)	50.8 (1,290)	42.5 (1,080)	41.5 (1,054)
	Working Width Location (Post No.)	17	18	18
	Max Roll, Deg	3.4	6.1	11.6
	Max Roll Time, ms	257	350	626
Euler	Max Pitch, Deg	-9.0	-4.7	-6.1
Angles	Max Pitch Time, ms	600	360	473
	Max Yaw, Deg	-40.7	-40.7	-42.2
	Max Yaw Time, ms	600	621	651
	Disengaged Post Nos.	18, 19	N.A.	N.A.
Pos	sts Impacted by Leading Tire	18, 19	17 through 21	17 through 21
	Deflected Posts	15 through 23	15 through 23	15 through 23
Total Le	ength of Vehicle Contact, in. (mm)	289 (7,341)	300 (7,620)	300 (7,620)
Time	e Leading Tire Disengaged, ms	155	N.A.	150-160

Table 15. Comparison of Test No. CMGS-2 and Simulation Results

Initial comparisons were made between the full-scale crash test and the baseline simulation model without wheel disengagement. The maximum tested and simulated dynamic rail deflection was 22.4 in. (569 mm) and 25.3.8 in. (643 mm), respectively. The Euler angles for the test and the model also have similar results before the wheel completely disengaged during the test. As shown in Figure 107, the tested and simulated vehicle longitudinal velocity changes were similar. However, there was some discrepancy in the lateral velocity change after 200 ms. This discrepancy may have been caused by wheel disengagement during the test. Failure of control arms, wheels, and tires was not incorporated in the standard vehicle model, as it was computationally expensive and could not be reliably predicted.

The deflected rail shape for test no. CMGS-2 and the baseline simulation model without wheel disengagement were compared at 192 ms, when the maximum rail dynamic deflection occurred, as shown in Figure 108. The tested rail deflection was obtained using high-speed videos. The maximum tested and simulated rail deflections at 192 ms were generally in good agreement.

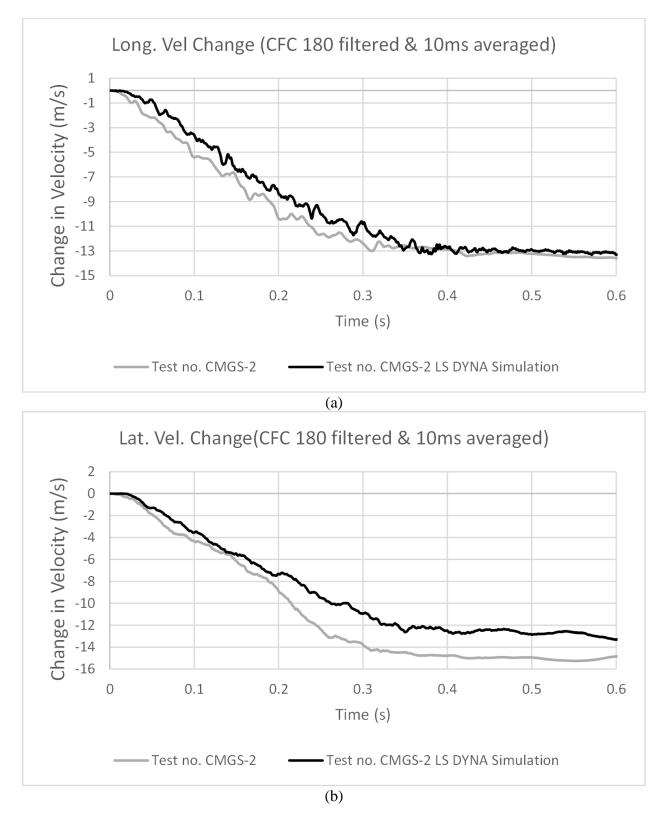


Figure 107. Velocity Comparison, Test and Baseline Simulation (No Wheel Disengagement): (a) Longitudinal Change in Velocity; (b) Lateral Change in Velocity

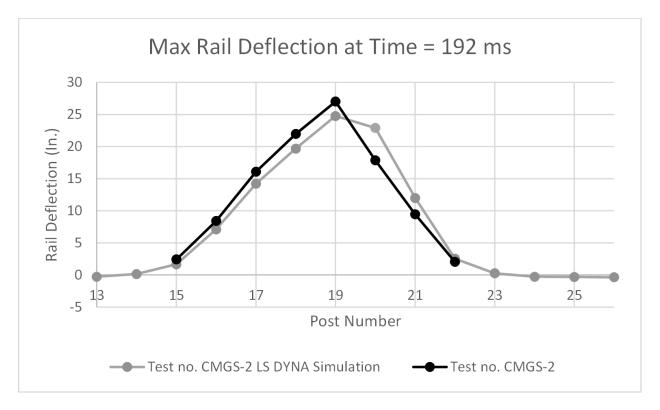
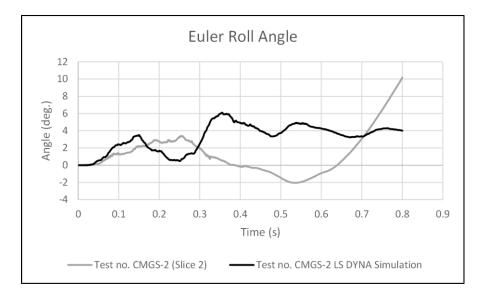
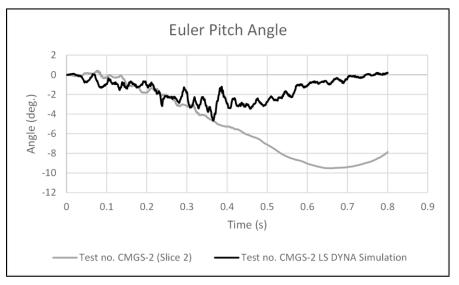




Figure 108. Deflection Comparison, Test and Baseline Simulation (No Wheel Disengagement)

The roll, pitch and yaw angles were compared between the test and baseline simulation model without wheel disengagement, as shown in Figure 109. The simulated vehicle had a maximum roll of 6.1 degrees, while the maximum vehicle roll during test no. CMGS-2 was 3.4 degrees while in contact with barrier, and 10.2 degrees after exiting the barrier. The simulated vehicle pitch was -4.6 degrees while it was still in contact with the barrier. Whereas the test vehicle pitch was -9.5 degrees after the vehicle exited the barrier. The simulated and test vehicle yaw angles agreed well until 300 ms but the difference remained within 20% until the simulated vehicle exited the barrier at 660 ms. Overall, the roll, pitch, and yaw in test no. CMGS-2 and simulation agreed well before 300 ms. However, after 300 ms, the trajectory of the vehicle in the test and simulation deviated.

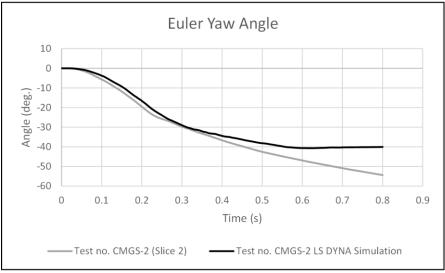


Figure 109. Roll, Pitch and Yaw Angles Comparison, Baseline Simulation

In test no. CMGS-2, the impact-side wheel of the test vehicle snagged on posts nos. 18 and 19 and was disengaged. However, the initial baseline model did not have wheel disengagement enabled. Thus, a modified model with wheel disengagement capabilities was configured. Note that failure of wheel and suspension parts cannot be reliably predicted. Thus, time-based failure was enabled in the vehicle model. This wheel disengagement model required a prescribed time to initialize the three-stage wheel disengagement process, which involves disengaging upper, lower, and steering control arms from the vehicle model. The disengagement time was estimated using test videos. Specifically, the front wheel at the guardrail side started disengagement time 150 ms and the wheel was completely disengaged at time 160 ms. This wheel disengagement time corresponded to the approximate wheel disengagement time of 155 ms during the test. Other than the wheel disengagement, everything else in the barrier and vehicle models was kept the same with the initial baseline model. Sequential time comparisons of the baseline model without wheel disengagement, the modified model with wheel disengagement, and test no. CMGS-2 are shown in Figure 110.

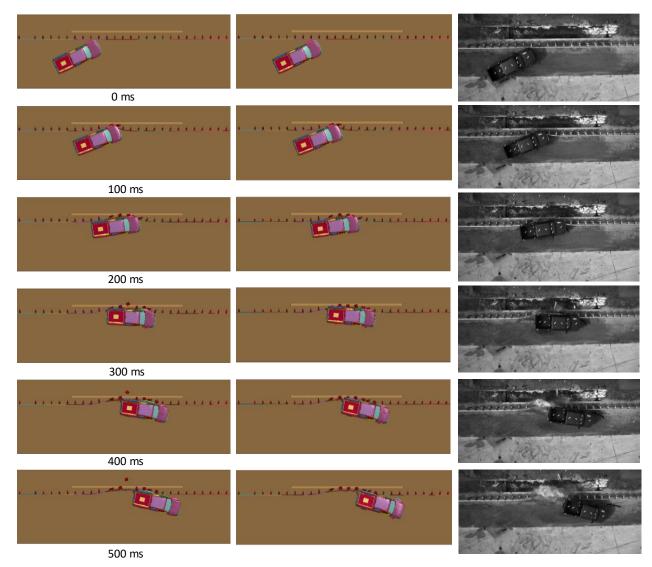
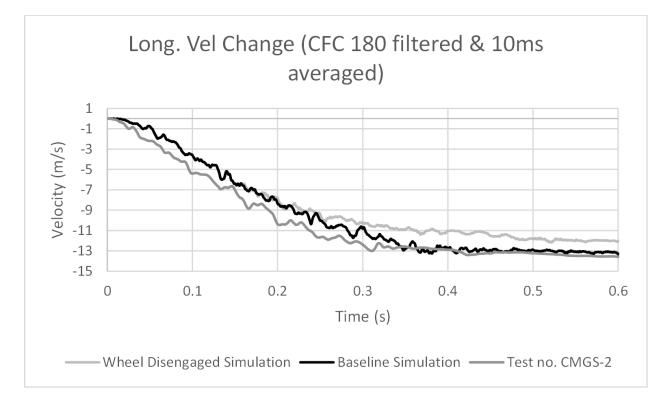



Figure 110. Simulation without Wheel Disengagement (Left), Simulation with Wheel Disengaged (Middle), and Test No. CMGS-2 (Right)

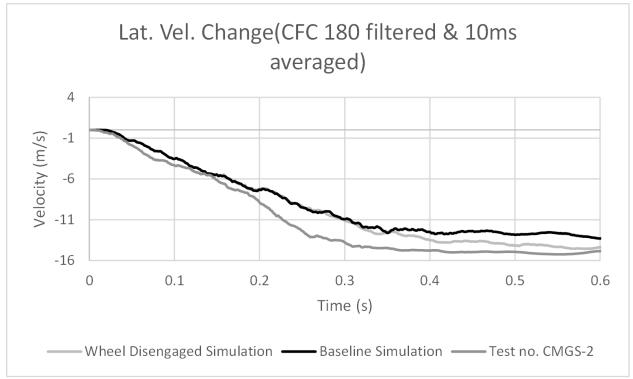


Figure 111. Change of Velocity Comparison, Baseline and Wheel Disengaged Models

The lateral change in velocity in the wheel disengaged model was closer to test no. CMGS-2 than the baseline model, as shown in Figure 111. However, the longitudinal change in velocity deviated more significantly. Additionally, several other wheel failure times were explored, but

none of them were able to replicate the wheel disengagement behavior that occurred in test no. CMGS-2.

Important metrics were similar in Table 15, and the tested and simulated velocity and Euler angle curves also agreed well. However, the wheel disengaged during test no. CMGS-2, and the current modeling techniques could not replicate the wheel disengagement. Note that the baseline model accurately represented rail deformation and deflection, which was believed to be the most important metric when evaluating the transition. Additionally, the standard MGS model had been previously validated, and the impact points for the transition areas were located near the standard MGS. Thus, the culvert MGS model was considered sufficient to evaluate the impact point in transition between the standard MGS to half-post spacing MGS.

7.2.3 Determination of Critical Impact Point

After development of the culvert-mounted MGS model, eight impact points at the transition area from standard MGS to half-post spacing MGS were simulated, as illustrated in Figure 112. The detailed results are summarized in Table 16.

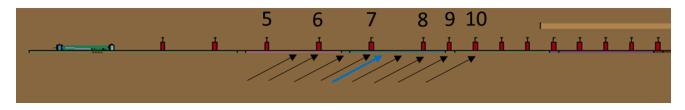


Figure 112. Illustration of Impact Points at Transition from Standard MGS to Half-Post Spacing MGS with Critical Impact Point Denoted in Blue

Starting from the midspan of post nos. 5 and 6, eight impact points were selected at an interval of $37\frac{1}{2}$ in. (953 mm) through post no. 10. The results of eight cases are summarized and compared to the baseline model in Table 16. As shown in Table 16, longitudinal ORA at the midspan of post nos. 7 and 8 had the largest value, which corresponded with significant wheel snag. At this impact point, other metrics including OIV (both lateral and longitudinal), anchor force, roll and pitch angles also had higher values. Thus, the critical impact point in this transition area was determined as the mid-span of post nos. 7 and 8 (i.e., $37\frac{1}{2}$ in. (953 mm) from the first reduced span post).

This critical impact point was the same as impact point in test no. MWTSP-2. Since test no. MWTSP-2 was successful and had similar post sections, posts spacing, and rail sections in the impact region, the standard MGS to half-post spacing MGS transition region was believed to not expose errant vehicles to any additional hazards. Thus, a separate transition was not believed to be necessary between standard MGS and half-post spacing MGS based on the simulation analysis and comparison with existing test no. MWTSP-2. However, as noted previously, recent research at TTI with reduced post spacings suggests that the potential for rail rupture exists in regions with reduced posts spacing or transitions in post spacing under MASH TL-3 impact conditions. Thus, the researchers finding that a separate transition region is not needed between the standard MGS and half-post spacing mGS may need revision based on new full-scale crash test results or further findings from the ongoing TTI studies.

Compa	rison of Results			Stiff	ness Trans	ition Simu	lations			Baseline Simulation	
	Year, Make, Model		Chevy, Silverado 1500								
Vehicle	Test Inertial Weight, lb (kg)					5005 (22	270)				
Impact	Speed, mph (km/h)				62.1	(100.0)				62.8 (101.1)	
Conditions	Angle, Deg		-		-	25			-		
	Impact Post No.	5.5*	6	6.5	7	7.5	8	9	10	15.57	
Impact Sev	erity, kip-ft (kN-m)				115.2	(156.3)				117.9 (159.8)	
Parallel	Speed, mph (km/h)	43.8 (70.5)	37.0 (59.5)	40.7 (65.5)	40.7 (65.5)	39.2 (63.1)	39.2 (63.1)	38.4 (61.8)	40.0 (64.4)	37.5 (60.3)	
Conditions	Time, ms	258	258	252	255	254	254	268	263	250	
ť	*, seconds	0.1551	0.1567	0.1525	0.1516	0.1474	0.1422	0.1402	0.1394	0.1324	
OD A ala	Longitudinal	-8.5	-10.9	-11.9	-14.8	-16.1	-10.2	-14.3	-15.	-12.3	
ORA, g's	Lateral	-10.1	-7.8	-9.7	-8.4	-9.5	-8.5	-9.4	-7.9	-7.4	
OIV, ft/s	Longitudinal	-16.8 (-5.1)	-17.5 (-5.3)	-18.2 (-5.6)	-20.3 (-6.2)	-19.2 (-5.9)	-20.8 (-6.3)	-19.4 (-5.9)	-16.9 (-5.2)	-19.0 (-5.8)	
(m/s)	Lateral	-16.7 (-5.1)	-16.5 (-5.0)	-17.2 (-5.2)	-17.2 (-5.2)	-18.1 (-5.5)	-17.8 (-5.4)	-16.9 (-5.2)	-16.2 (-4.9)	-17.4 (-5.3)	
	Max Rail Deflection, in (mm.)	35.5 (902)	36.3 (922)	32.9 (836)	32.3 (820)	30.4 (772)	28.1 (714)	28.8 (732)	28.4 (721)	25.3 (643)	
Test Article Deflections	Max Rail Location, from Post No. 5, in. (mm)	182.4 (4,633)	211.2 (5,364)	259.2 (6,584)	288.0 (7,315)	326.4 (8,291)	384.0 (9,754)	403.2 (10,241)	441.6 (11,217)	637.5 (16,193)	
	Max Rail Deflection Time, ms	360	350	173	160	160.00	200	170	173	177	

Table 16. Transition Simulated Impacts Comparison

140

November 2, 2020 MwRSF Report No. TRP-03-383-20-R1

Compa	rison of Results			Stiff	ness Trans	ition Simu	lations			Baseline Simulation
	Max Roll, Deg	5.5	4.1	5.5	4.2	6.5	4.1	5.7	5.0	6.1
	Max Roll Time, ms	363	414	372	194	420	186	377	389	350
Euler	Max Pitch, Deg	-3.9	-4.3	-3.7	-4.4	-5.2	-4.2	-4.7	-5.1	-4.7
Angles	Max Pitch Time, ms	395	360	338	241	336	275	291	393	360
	Max Yaw, Deg	-45.8	-47.0	-47.2	-49.4	-43.0	-45.2	-457	-38.9	-40.7
	Max Yaw Time, ms	524	529	795	795	568	526	753	792	621
Pocketing	Angle, Deg	-25.8	-24.6	-22.7	-24.1	-23.0	-23.8	-23.7	-24.1	-21.4
Angle	Time, ms	500	500	340	430	190	150	530	470	150
	Max Upstream	40.1	39.3	38.6	39.9	35.2	37.0	36.9	33.1	26.1
	Anchor, kips (kN)	(178.4)	(174.8)	(171.7)	(177.5)	(156.6)	(164.6)	(164.1)	(174.2)	(116.1)
	Time, ms	131	143	164	147	155	118	158	119	116
	Max Downstream	11.2	11.3	11.6	10.9	12.4	10.3	11.7	12.5	13.8
	Anchor, kips (kN)	(49.8)	(50.3)	(51.6)	(48.5)	(55.2)	(45.8)	(52.0)	(55.6)	(61.4)
	Time, ms	162	170	137	165	160	139	137	88	114
Section Forces	Max Neighboring Upstream Rail, kips (kN)	57.3 (254.9)	52.9 (235.3)	50.0 (222.4)	49.9 (222.0)	51.7 (230.0)	53.0 (235.8)	48.9 (217.5)	48.1 (214.0)	N.A.**
	Time, ms	129	134	161	137	133	138	93	117	N.A.
	Max section force right after post no. 2, kips (kN)	52.5 (233.5)	47.4 (210.8)	44.1 (196.2)	46.1 (205.1)	43.6 (193.9)	42.8 (190.4)	39.0 (173.5)	38.7 (172.1)	28.1
	Time, ms	129	149	162	156	151	136	114	114	151

Table 17. Transition Simulated Impacts Comparison, Cont.

*5.5 represents the mid-span between post nos. 5 and 6 ** N.A. = not available

141

7.3 Transition Recommendations for Culvert Mounted MGS System

The strong post, culvert mounted MGS system utilized a stiffened barrier configuration as comparted to the standard MGS. This design uses W6x9 posts as half-post spacing bolted to the top of the culvert slab. Attachment of this system to the standard MGS on each end of the culvert utilized a minimum of five posts at half-post spacing in soil prior to the culvert mounted posts. This transition required analysis of two distinct transition regions on the approach to the culvert mounted guardrail: 1) the transition from half-post spaced posts in soil to half-post spaced culvert mounted posts; and 2) the transition from standard MGS to half-posts spacing MGS. The downstream transition was not considered in the analysis as transitioning from a stiffened to a less stiff region of the barrier system is not considered a hazard. The analysis of the two transition regions led to the following recommendations.

- 1. For the transition from half-post spaced posts in soil to half-post spaced culvert mounted posts, no additional transition was recommended as comparison of the stiffness and energy dissipation of the W6x8.5 posts embedded 40 in. (1,016 mm) in soil and the W6x9 culvert-mounted post were virtually identical. This would indicate that there would be little difference in barrier stiffness and performance in that region of the system.
- 2. For the transition from standard MGS to half-posts spacing MGS, LS-DYNA analysis was used to determine the critical impact point of the transition region. The simulation analysis indicated that the critical impact point for this transition region was the mid-span of post nos. 7 and 8 (i.e., 37½ in. (953 mm) from the first reduced span post). This point was the same impact point that was previously impacted in test no. MWTSP-2 on the MGS upstream stiffness transition for thrie beam approach guardrail transitions. The upstream stiffness transition in test no. MWTSP-2 similar post sections, posts spacing, and rail sections in the impact region as the proposed transition region in the culvert mounted MGS design. Based on comparison with this similar, successful full-scale crash test, it was recommended that no additional transition was needed between the standard MGS and the half-post spacing MGS system. However, it was noted that further research may be needed to alleviate concerns raised in parallel ongoing research conducted at TTI. The results of those research studies are ongoing and may affect future recommendations for the culvert-mounted guardrail transition.

8 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

The objective of this research was to evaluate the safety performance of the MGS installed on a culvert with a strong-post attachment using W6x9 steel posts welded to anchored baseplates at half-post spacing and offset 12 in. (305 mm) from the back of the post to the culvert headwall. Test nos. CMGS-1 and CMGS-2 were conducted according to MASH 2016 test designation nos. 3-10 and 3-11, respectively. The installation in each test consisted of 182.3 ft (55.6 m) of guardrail constructed atop a 43.3-ft (13.2-m) long simulated four-cell concrete box culvert. The culvertmounted MGS was supported by steel posts with a top mounting rail height of 31 in. (787 mm). A summary of the test evaluation is shown in Table 18.

In test no. CMGS-1, the 2,428-lb (1,101-kg) car impacted the culvert-mounted MGS system at a speed of 61.3 mph (98.7 km/h), an angle of 25.1 degrees, and at a location of 92 in. (2,337 mm) upstream from post no. 19, thus resulting in an impact severity of 54.8 kip-ft (74.3 kJ). The vehicle was successfully contained and smoothly redirected with moderate damage to both the barrier system and the vehicle. All occupant crush, ORAs, and OIVs fell within the recommended safety limits established in MASH 2016. The vehicle trajectory did not violate the bounds of the exit box. Therefore, test no. CMGS-1 was successful according to the safety criteria of MASH 2016 test designation no. 3-10.

In test no. CMGS-2, the 5,013-lb (2,274-kg) pickup truck impacted the culvert-mounted MGS system at a speed of 62.8 mph (101.1 km/h), an angle of 25.7 degrees, and at a location of 129.1 in. (3,279 mm) upstream from post no. 19, thus resulting in an impact severity of 124.7 kip-ft (169.1kJ) The vehicle was successfully contained and smoothly redirected with moderate damage to both the barrier system and the vehicle. All occupant crush, ORAs, and OIVs fell within the recommended safety limits established in MASH 2016. Therefore, test no. CMGS-2 was successful according to the safety criteria of MASH 2016 test designation no. 3-11. Therefore, the culvert-mounted MGS with a 12-in. (305-mm) offset from the back of the post to the culvert headwall met all the requirements of MASH 2016 test designation nos. 3-10 and 3-11.

Following two successful full-scale crash tests on culvert-mounted MGS, the performance of the transition between the MGS and the culvert-mounted MGS was evaluated. Two stiffness transitions in this system were further investigated: (1) transition from half-post spacing MGS to culvert-mounted MGS; and (2) transition from the standard MGS to half-post spacing MGS.

For transition from the half-post spacing MGS to culvert-mounted MGS, a separate transition system is not necessary, because the resistance of the culvert-mounted posts and the posts embedded 40 in. (1,016 mm) in soil were found very similar through component-level bogie tests.

For transitioning from the standard MGS to the culvert-mounted MGS, at least five posts embedded 40 in. (1,016 mm) in soil at half-post spacing are recommended to be installed both upstream and downstream from the culvert-mounted posts.

For transition from the standard MGS and half-post spacing MGS, no additional stiffness transition is required, as this transition has been successfully tested during a previous similar test, test no. MWTSP-2 [21]. In test no. MWTSP-2, a 5,158-lb (2,340-kg) pickup truck impacted the full-spacing MGS that was transitioned to half-post spacing MGS at a speed of 61.2 mph (98.5

km/h) and at an angle of 26.3 degrees. The pickup truck was safely contained, and test no. MWTSP-2 was determined to be acceptable according to test designation no. 3-21 of MASH. Additional LS-DYNA numerical simulations confirmed the critical impact point as similar to the impact point in test no. MWTSP-2. Since the transition from standard MGS to half-post spacing MGS with this critical impact point did not result in any out of limit metrics specified in MASH in test no. MWTSP-2, this transition was believed to not expose errant vehicles to any additional hazards. However, it was noted that further research may be needed to alleviate concerns raised in parallel ongoing research conducted at TTI. The results of those research studies are ongoing and may affect future recommendations for the culvert-mounted guardrail transition.

8.1 Recommendations

The culvert-mounted MGS is unrestricted in terms of increased system length and could be implemented on culverts with lengths longer than the as-tested culvert. In terms of shorter installation lengths, there would be no reason that system lengths could not theoretically be as short as a single post. However, other solutions such as the MGS long span guardrail system and the MGS with an omitted post would likely be more practical solutions for very short culvert type post obstructions. Additionally, it is recommended to retain the half-post spacing transition region adjacent to the culvert mounted MGS system regardless of the system length.

It is recommended that at least five posts embedded 40 in. (1,016 mm) in soil at half-post spacing are installed both upstream and downstream from the culvert-mounted posts. This half-post spacing region outside of the culvert mounted posts was utilized in the original NCHRP Report No. 350 tested system and was carried over to this design to provide a more conservative transition between standard MGS and the culvert-mounted system. There is potential that this transition region could be omitted, but further research into the would be recommended prior to implementing a less conservative transition region. In order to prevent interference with post rotation in soil, the first guardrail post within the half-post spacing MGS adjacent to the culvert should have a minimum 12-in. (305-mm) clear distance to any part of the culvert. This clearance should limit a rotated and displaced guardrail post from interacting with the culvert.

The culvert mounted MGS system evaluated herein was tested utilizing an 8-in. (203-mm) thick culvert slab with non-conservative reinforcement. No damage was noted to the culvert slab following the full-scale crash testing. Installation of the system on culvert slabs with equal or greater thickness and structural reinforcement are expected to provide similar performance. The original NCHRP Report No. 350 full-scale crash testing of this design utilized a 7-in. (178-mm) thick culvert slab with similar reinforcement and displayed little to no damage. Because this system the same post section, baseplate, and anchorage, it is believed that the previously tested 7-in. (178-mm) thick culvert slab would also perform acceptably. Installations on thinner culvert slabs with lesser reinforcement may result in increased culvert slab damage and potential changes in post behavior. Thus, it is recommended that the system be implemented on culvert designs with similar or greater structural capacity than the simulated culvert slabs previously full-scale crash tested.

The culvert mounted MGS system evaluated herein was tested utilizing an embedment depth of 9 in. (229 mm). This should be considered the minimum allowable embedment depth for the culvert mounted MGS system. Installing the posts at shallower embedments shortens the moment arm of the post and stiffens the response of each post. This, in turn, can lead to increased rail loads and pocketing which may degrade the performance of the system. Additionally,

installation of the posts at shorter embedment increases the propensity for wheel snag on the posts as the lower section of the post cannot rotate and displace as much. This also can degrade the system performance. Soil fill deeper than 9 in. (229 mm) over the deck offers more support to culvert-mounted posts, therefore it does not cause concern. Greater depth of soil material would result in a post more similar to an embedded steel post in soil within the standard MGS. As such, larger embedments less than 40 in. (1016 mm) would be allowable. The top mounting height of the guardrail should remain at 31 in. (787 mm) above the top of the soil fill.

Similarly, the culvert mounted MGS system evaluated herein was tested utilizing an offset from back of the post to the culvert headwall of 12 in. (305 mm). Shorter offsets are not recommended at this time as they would tend to limit post rotation and may result in increased rail pocketing and rail loading. Offsets larger than 12 in. (305 mm) would be considered acceptable.

The culvert mounted guardrail post should not be placed too close to the upstream or downstream ends of a culvert. If a post and anchorage is placed near the end of a headwall, the attachment anchors may not have enough concrete cover to develop the required shear and/or tension loads. Thus, a minimum of 4 in. (102 mm) should be used between a free end of a culvert headwall and the center of any attachment anchor.

Anchorage of the culvert mounted posts in the full-scale crash tested barrier system was primarily accomplished with through bolts. In areas of the installation where slab support walls interfered with through bolting, an alternative epoxy anchorage was utilized than had previously be developed for the culvert post attachment through a series of dynamic bogie tests. The dynamic bogie testing demonstrated that the alternative epoxy anchorage was capable of fully developing the capacity of the culvert-mounted W6X9 post would be considered acceptable for installation of the culvert-mounted MGS system. However, it should be noted that the epoxy anchorage requires 8 in. (203mm) of embedment. As such, installation of the epoxy anchorage should ensure that the culvert slab has sufficient thickness to adequately install the anchor. Full details and recommendations for the installation of the epoxy anchorage for the culvert mounted W6x9 posts can be found in the original research report [7].

Often, culvert headwalls may extend 6.0 in. (152 mm) or more above the groundline. Headwall extensions of this magnitude would represent a vertical curb adjacent to the barrier and could pose a stability hazard or adversely affect barrier performance. Thus, it is recommended that the culvert headwall extend no higher than 2.0 in. (51 mm) above the groundline and that any extensions greater than 2.0 in. (51 mm) be ground down to match the ground profile.

It may be desired to install the culvert-mounted MGS system adjacent to a fill-slope. Placement of the culvert mounted posts adjacent to or at the slope break point of a fill slope may change the lateral resistance of the post due to the reduction of soil fill behind the post and subsequently affect the barrier performance. Because the effect of placement of the culvert-mounted posts adjacent to a fill slope is not currently quantified, it is recommended to use a minimum of 2 ft (610 mm) of level terrain from the back of the post to the start of the fill slope in order to provide consistent post response. Additionally, the system was designed and evaluated for use on low-fill culverts with relatively flat grading. It is recommended that the system only be used with approach slopes of 10H:1V or flatter.

Finally, installations should be implemented with the guardrail terminals (or end anchorages) located a sufficient distance from the culvert to prevent the two systems from interfering with the proper performance of one another. As such, the following implementation guidelines should be considered in addition to guardrail length of need requirements:

- 1. A recommended minimum length of 12 ft 6 in. (3.8 m) of standard MGS between the first post at half-post spacing and the interior end of an acceptable TL-3 guardrail end terminal.
- 2. A recommended minimum barrier length of 50 ft (15.2 m) before the first post at halfpost spacing, which includes standard MGS and a crashworthy guardrail end terminal. This guidance applies to the downstream end as well.
- 3. For flared guardrail applications, a minimum length of 25 ft (7.6 m) is recommended between the first post at half-post spacing and the start of the flared section (i.e. bend between flared and tangent sections).

Table 18	. Summary	of Safety	Performance	Evaluation
----------	-----------	-----------	-------------	------------

Evaluation Factors		Evalua	ation Criteria		Test No. CMGS-1	Test No CMGS-2
Structural Adequacy	А.	Test article should contain and redire stop; the vehicle should not penetrate controlled lateral deflection of the te	e, underride, or override the		S	S
	D.	1. Detached elements, fragments of penetrate or show potential for pene undue hazard to other traffic, pedest	trating the occupant compa	rtment, or present an	S	S
		2. Deformations of, or intrusions int limits set forth in Section 5.2.2 and			S	S
	F.	The vehicle should remain upright d pitch angles are not to exceed 75 de		he maximum roll and	S	S
Occupant	H.	Occupant Impact Velocity (OIV) (s for calculation procedure) should sa		5.2.2 of MASH 2016		
Risk		Occupant	Impact Velocity Limits		S	S
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s (9.1 m/s)	40 ft/s (12.2 m/s)		
	I.	The Occupant Ridedown Accelerat MASH 2016 for calculation procedu				
		Occupant Rid	ledown Acceleration Limits	3	S	S
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		
		MASH Test Desig	nation No.		3-10	3-11
		Final Evaluation (P	Pass or Fail)		Pass	Pass

November 2, 2020 MwRSF Report No. TRP-03-383-20-R1

9 MASH EVALUATION

In this study, the safety performance of the MGS installed on a culvert with a strong-post attachment using W6x9 steel posts welded to anchored baseplates at half-post spacing and offset 12 in. (305 mm) from the back of the post to the culvert headwall was evaluated through full-scale crash testing. The system consisted of strong post MGS mounted on a simulated four-cell concrete box culvert system. Anchorage systems were utilized at both the upstream and downstream ends of the guardrail system. Steel post nos. 3 through 12 and 27 through 39 were embedded in soil a depth of 40 in. (1,016 mm). Post nos. 13 through 26 were embedded a depth of 9 in. (229 mm) and anchored to the top of the concrete culvert using welded steel baseplates. Post nos. 13 through 15, 17 through 22, and 24 through 26 were anchored to the top concrete slab using four through-bolts, and post nos. 16 and 26 were anchored using 10-in. (254-mm) long epoxied threaded rods with an 8-in. (203 mm) embedded length due to the presence of the culvert's interior wall support.

9.1 MASH Crash Test Matrix

According to TL-3 evaluation criteria in MASH 2016, two tests are required for evaluation of longitudinal barrier systems: (1) test designation no. 3-10 - an 1100C small car and (2) test designation no. 3-11 - a 2270P pickup truck. Critical impact points (CIPs) for both impacts were determined based on calculated post and guardrail beam strengths and the use of MASH 2016 Figures 2-8 and 2-11 for the 1100C and 2270P vehicle impacts, respectively.

9.2 Full-Scale Crash Testing

In test no. CMGS-1, a 2,428-lb (1,101-kg) sedan with a simulated occupant seated in the right-front passenger seat, impacted the MGS atop culvert system at a speed of 61.3 mph (98.7 km/h) and at an angle of 25.1 degrees, resulting in an impact severity of 54.8 kip-ft (74.3 kJ). At 0.259 sec after impact, the vehicle became parallel to the system with a speed of 26.5 mph (42.6 km/h). At 0.464 sec, the vehicle exited the system at a speed of 24.7 mph (39.8 km/h) and at an angle of 17.0 degrees. The vehicle was successfully contained and smoothly redirected.

Exterior vehicle damage was moderate. Interior occupant compartment deformations were moderate with a maximum of $3\frac{3}{8}$ in. (86 mm), which was not observed on the test day. Prior to the vehicle deformations' measurements, the snow and ice on the windshield caused an additional caving in deformation. Therefore, this deformation exceeding the MASH deformation criteria was not from the impact event and was not critical to the test evaluation.

Damage to the system was also moderate, consisting mostly of deformed W-beam, contact marks on the guardrail sections, and deformed posts. The maximum lateral permanent set of the barrier system was 11% in. (302 mm). The maximum dynamic barrier deflection was 12.0 in. (305 mm), which included vehicle overhang along the MGS. The working width of the system was 33.1 in. (842 mm). All occupant risk measures were within the recommended limits, and the occupant compartment deformations were also deemed acceptable. Therefore, the MGS atop culvert system successfully met all the safety performance criteria of MASH 2016 test designation no. 3-10.

In test no. CMGS-2, a 5,013-lb (2,274-kg) pickup truck with a simulated occupant seated in the right-front passenger seat, impacted the MGS atop culvert system at a speed of 62.8 mph (101.1 km/h) and at an angle of 25.7 degrees, resulting in an impact severity of 124.7 kip-ft (169.1

kJ). At 0.270 sec after impact, the vehicle became parallel to the system with a speed of 36.9 mph (59.5 km/h). At 0.520 sec, the vehicle exited the system at a speed of 33.1 mph (53.2 km/h) and at an angle of 17.4 degrees. The vehicle was successfully contained and smoothly redirected.

Exterior vehicle damage was moderate. Interior occupant compartment deformations were moderate with a maximum of 1¹/₈ in. (29 mm), which did not violate the limits established in MASH 2016. Damage to the system was also moderate, consisting of contact marks on the front face of the guardrail sections and deformation of W-beam and posts. The maximum lateral permanent set of the barrier system was 15³/₄ in. (400 mm). The maximum dynamic barrier deflection was 29.6 in. (753 mm), which included vehicle overhang along the MGS. The working width of the system was 50.8 in. (1,290 mm). All occupant risk measures were within the recommended limits, and the occupant compartment deformations were also deemed acceptable. Therefore, the MGS atop culvert system successfully met all the safety performance criteria of MASH 2016 test designation no. 3-11.

9.3 MASH 2016 Evaluation

Based on the results of the two successful full-scale crash tests conducted herein, the culvert-mounted MGS system meets all of the safety requirements for MASH 2016 TL-3.

Additionally, an analysis of the transition between the MGS and the culvert-mounted MGS was completed. Two stiffness transitions in this system were investigated: (1) transition from half-post spacing MGS to culvert-mounted MGS; and (2) transition from the standard MGS to half-post spacing MGS. For transition from the half-post spacing MGS to culvert-mounted MGS, a separate transition system was not necessary, because the resistance of the culvert-mounted posts and the posts embedded 40 in. (1,016 mm) in soil were found very similar through component-level bogie tests [19-20].

For transitioning from the standard MGS to the culvert-mounted MGS, at least five posts embedded 40 in. (1,016 mm) in soil at half-post spacing were recommended to be installed both upstream and downstream from the culvert-mounted posts. No additional stiffness transition was believed to be required, as a similar transition region had been successfully tested during a fullscale crash testing of the MGS upstream stiffness transition to thrie beam approach guardrail transitions in test no. MWTSP-2 [21]. Additional LS-DYNA numerical simulations confirmed the critical impact point for the transition from standard to half-post spacing MGS as similar to the impact point in test no. MWTSP-2. Since the transition from standard MGS to half-post spacing MGS with this critical impact point did not result in any out of limit metrics specified in MASH in test no. MWTSP-2, this transition was believed to not expose errant vehicles to any additional hazards. However, it was noted that further research may be needed to alleviate concerns raised in parallel ongoing research conducted at TTI. The results of those research studies are ongoing and may affect future recommendations for the culvert-mounted guardrail transition.

10 REFERENCES

- 1. Hirsch, T.J. and Beggs, D., Use of Guardrails on Low Fill Bridge Length Culverts, *Transportation Research Record No. 1198, Journal of Transportation Research Board*, Washington, D.C., 1988.
- 2. Bielenberg, B.W., Faller, R. K., Rohde, J.R., Reid, J.D., Sicking, D.L., Holloway, J.C., Allison, E.M., and Polivka, K.A., *Midwest Guardrail System for Long-Span Culvert Applications*, Research Report No. TRP-03-187-07, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, November 16, 2007.
- 3. Bielenberg, R.W., Faller, R.K., Sicking, D.L., Rhode, J.R., and Reid, J.D., Midwest Guardrail System for Long-Span Culvert Applications, *Transportation Research Record No.* 2025, Journal of Transportation Research Board, Washington, D.C., 2007.
- Schneider, A.J., Rosenbaugh, S.K., Faller, R.K., Sicking, D.L., Lechtenberg, K.A., and Reid, J.D., Safety Performance Evaluation of Weak-Post, W-Beam Guardrail Attached to Culvert, Research Report No. TRP-03-277-14, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, February 12, 2014.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Reid, J.D., and Holloway, J.C., NCHRP 350 Development and Testing of a Guardrail Connection to Low-Fill Culverts, Research Report No. TRP-03-114-02, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, November 1, 2002.
- Ross, H.E., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *Recommended Procedures for* the Safety Performance Evaluation of Highway Features, National Cooperative Highway Research Program (NCHRP) Report 350, Transportation Research Board, Washington, D.C., 1993.
- Price, C.W., Rosenbaugh, S.K., Faller, R.K., Sicking, D.L., Reid, J.D., and Bielenberg, R.W., *Post Weld and Epoxy Anchorage Variations for W-Beam Guardrail Attached to Low-Fill Culverts*, Research Report No. TRP-03-278-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, August 12, 2013.
- 8. Williams, W.F., and Menges, W.L., *MASH Test 3-11 of the W-beam Guardrail on Low-Fill Box Culvert*, Test Report No. 405160-23-2, Texas A&M Transportation Institute, Texas A&M University, College Station, TX, November 11, 2011.
- 9. *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 10. *Manual for Assessing Safety Hardware, Second Edition*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- 11. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, VA, 1986.

- 12. Mac Innis, D., Cliff, W., and Ising, K., *A Comparison of the Moment of Inertia Estimation Techniques for Vehicle Dynamics Simulation*, SAE Technical Paper Series 970951, Society of Automotive Engineers, Inc., Warrendale, PA, 1997.
- 13. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July 2007.
- 14. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, IL, 1971.
- 15. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, PA, 1985.
- Mongiardini, M., Faller, R.K., Reid, J.D., Sicking, D.L., Stolle, C.S., and Lechtenberg, K.A. Downstream Anchoring Requirements for The Midwest Guardrail System, Research Report No. TRP-03-279-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, October 28, 2013.
- Polivka, K.A., Faller, R.K., Sicking, D. L., Rohde, J.R., Bielenberg, R.W., and Reid, J.D., *Performance Evaluation of the Midwest Guardrail System – Update to NCHRP 350 Test No. 3-11 with 28" C.G. Height (2214MG-2)*, National Cooperative Highway Research Program, Research Report No. TRP-03-171-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, October 2006.
- Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, R.W., and Reid, J.D., *Performance Evaluation of the Midwest Guardrail System – Update to NCHRP 350 Test No.* 3-10 (2214MG-3), National Cooperative Highway Research Program, Research Report No. TRP-03-172-06, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, October 2006.
- Schmidt, T.L., Bielenberg, R.W., Reid, J.D., Mongiardini, M., Lechtenberg, K.A., and Faller, R.K., *Dynamic Testing of MGS W6x8.5 Posts at Decreased Embedment*, Research Report No. TRP-03-271-12, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, December 17, 2012.
- Price, C.W., Rosenbaugh, S.K., Faller, R.K., Sicking, D.L., Reid, J.D., and Bielenberg, R.W., *Post Weld and Epoxy Anchorage Variations for W-Beam Guardrail Attached to Low-Fill Culverts*, Research Report No. TRP-03-278-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, August 12, 2013.
- Rosenbaugh, S.K., Lechtenberg, K.A., Faller, R.K., Sicking, D.L., Bielenberg, R.W., and Reid, J.D., *Development of the MGS Approach Guardrail Transition Using Standardized Steel Posts*, Research Report No. TRP-03-210-10, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, December 21, 2010.

22. Asadollahi Pajouh, M., Bielenberg, R.W., Schmidt, J.D., Lingenfelter, J.L., Faller, R.K., and Reid, J.D., *Placement of Breakaway Light Poles Located Directly Behind Midwest Guardrail System (MGS)*, Research Report No. TRP-03-361-17, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, June 29, 2017.

11 APPENDICES

Appendix A. Material Specifications

Item	Description	Material Specification	References
No.	*	ination operation	
a1	12'-6" [3,810] 12 gauge [2.7] W-Beam MGS Section	AASHTO M180	H#9411949
a2	12'-6" [3,810] 12 gauge [2.7] W-Beam MGS End Section	AASHTO M180	H#9411949
a3	6'-3" [1,905] 12 gauge [2.7] W-Beam MGS Section	AASHTO M180	R#12-0368 Red Paint
b1	72" [1829] Long Foundation Tube	ASTM A500 Gr. B	H#0173175
b2	BCT Timber Post - MGS Height	SYP Grade No. 1 or better (No knots 18" [457] above or below ground tension face)	R#17-505 Orange Paint
b3	W6x8.5 [152x12.6] or W6x9 [W152x13.4], 72" [1,829] Long Steel Post	ASTM A992	R#16-692 Black Paint H#55044251
b4	6"x12"x14¼" [152x305x368] Timber Blockout for Steel Posts	SYP Grade No. 1 or better	R#16-692 Black, Charge#23422 R#18-288 White, R#17-282 Light Blue, R#14-0554 Green
b5	W6x8.5 [W152x12.6] or W6x9 [W152x13.4 Post, 40 ¹ / ₂ " [1029] Long	ASTM A992	H#A134108
b6	8½"x12"x½" [216x305x13] Top Base Plate	ASTM A572 Gr. 50	H#A7D898
b7	8½"x11"x¼" [216x280x6] Bottom Post Plate	ASTM A572 Gr. 50	CMGS-1: H#A608874 CMGS-2: H#A7R1834-02
c1	⁵ %" [16] Dia. UNC, 10" [254] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolts: R#16-692 H#DL15107048 L#208977 Orange Paint Nuts: R#16-0217 P#36713 C#210101526
c2	⁷ ⁸ " [22] Dia. UNC, 8" [203] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolts: R#15-0600 H#2038622 L#39685 Nuts: R#15-0600 H#NF12101054 L#WA651
c3	1" [25] Dia. UNC, 10½" [267] Long Hex Head Bolt and Nut REPLACED BY PART C9	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	CMGS-1: P#47657 Control#200125104 CMGS-2: Bolts: P#47641 Nuts: P#36719
c4	⁵ ∕8" [16] Dia. UNC, 1½" [38] Long Hex Head Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolts: R#17-507 H#816070039 Nuts: R#16-0217 P#36713 C#210101526

Table A-1. Bill of Materials, Test Nos. CMGS-1 and CMGS-2

Item No.	Description	Material Specification	References
c5	⁵ ⁄ ₈ " [16] Dia. UNC, 14" [356] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	H#NF16202178 Yellow Paint Nuts: H#20479830
c6	⁵ / ₈ " [16] Dia. UNC, 1 ¹ / ₄ " [32] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	Bolts: H#20460760 Nuts: H#20479830
c7	16D Double Head Nail	-	COC PO E000357170
c8	%" [16] Dia. UNC, 10" [254] Long Guardrail Bolt and Nut	Bolt - ASTM A307 Gr. A Nut - ASTM A563A	R#16-692 H#20351510 L#150424L Orange Paint
c9	1" [25] Dia. UNC, 10" [254] Long Threaded Rod	ASTM A307 Gr. A	Part#47641 H#604061
c10	1" [25] Dia. Hex Nut	ASTM A563A	P#36719 H#1623764; NUTS: 36719 120282576 GL17036-5 R#17-732
d1	5⁄8" [16] Dia. Plain Round Washer	ASTM F844	n/a
d2	⁷ / ₈ " [22] Dia. Plain Round Washer	ASTM F844	n/a
d3	1" [25] Dia. Plain Round Washer	ASTM F844	n/a
e1	BCT Anchor Cable	-	Yellow Paint R#17-700 Washers: R#17-715 L#16H-168236-30 Orange Paint Nuts: P#38210 H#DL15105591
e2	2 ³ / ₈ " [60] O.D. x 6" [152] Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	H#A79999
e3	8"x8"x5%" [203x203x16] Anchor Bearing Plate	ASTM A36	North: R#17-282 South: R#09-0453
f1	Ground Strut Assembly	ASTM A36	North: R#09-0453 South: H#163375
f2	Anchor Bracket Assembly	ASTM A36	R#17-282
-	Concrete Culvert	Min. f'c = 4,000 psi [27.6 MPa] NE Mix 47BD	See Table A-3

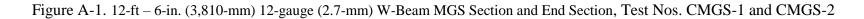
Table A-2. Bill of Materials, Test Nos. CMGS-1 and CMGS-2, Cont.

Item No.	Description	Material Specification	References
al	520"x17"x60" [13,208x432x1,524] Reinforce Concrete Culvert Deck/Headwall	Min. f'c = 4,000 psi [27.6 MPa] NE Mix 47BD	R#18-250
a2	8"x48"x120" [203x1,219x3,048] Reinforced Concrete Exterior Support Wall	Min. fc = 4,000 psi [27.6 MPa] NE Mix 47BD	R#18-250
a3	12"x48"x60" [305x1,219x1,524] Reinforce Concrete Interior Support Wall	Min. f'c = 4,000 psi [27.6 MPa] NE Mix 47BD	R#18-250
a4	8"x48"x520" [203x1,219x13,208] Reinforced Concrete Soil Wall	Min. f'c = 4,000 psi [27.6 MPa] NE Mix 47BD	R#18-250
a5	#4 [#13] Bent Rebar, Vertical Loop, 53 ³ / ₈ " [1,355] Total Length, Unbent	ASTM A615 Gr. 60	H#KN15106961
a6	#4 [#13] Straight Rebar, 57" [1,448] Long	ASTM A615 Gr. 60	H#KN15106961
a7	#4 [#13] Straight Rebar, 517" [13,132] Long	ASTM A615 Gr. 60	H#KN15106961
a8	#4 [#13] Straight Rebar, 45" [1,143] Long	ASTM A615 Gr. 60	H#KN15106961
a9	#4 [13] Straight Rebar, 117" [2,972] Long	ASTM A615 Gr. 60	H#KN15106961
a10	#4 [#13] Bent Rebar, Support Wall Hook, 64" [1,626] Total Length, Unbent	ASTM A615 Gr. 60	H#KN15106961
a11	#4 [#13] Bent Rebar, Support Wall Hook, 60 ¹ / ₂ " [1,536] Total Length, Unbent	ASTM A615 Gr. 60	H#KN15106961
a12	8"x48"x120" [203x1,219x3,048] Reinforced Concrete Exterior Support Wall	Min. f'c = 4,000 psi [27.6 MPa] NE Mix 47BD	R#18-250
a13	#4 [#13] Bent Rebar, L- Shaped, 4' 6" Total Length, Unbent	ASTM A615 Gr. 60	H#62139047

Table A-3. Bill of Materials, Culvert, Test Nos. CMGS-1 and CMGS-2

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

Customer:	UNIVERSITY OF 401 CANFIELD / P O BOX 880439 LINCOLN,NE,68	ADMIN BLDG 9					Test Report Ship Date: Customer P.O.: Shipped to: Project: GHP Order No.;	7/9/2015 4500274709/ 07/0 UNIVERSITY OF TESTING COIL 183306		NCOLN			
HT # code	Heat #	C.	Mn.	P.	S.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
8534	9411949	0.21	0.75	0.01	0.006	0.01	75774	56527	27.15	10	Α	2	12GA 25FT WB T2 MGS ANCHOR PANEL
8534	9411949	0.21	0.75	0.01	0.006	0.01	75774	56527	27.15	100	A	2	12GA 12FT6IN/3FT1 1/2IN WB T2
8534	9411949	0.21	0.75	0.01	0.006	0.01	75774	56527	27.15	20	A	2	12GA 25FT0IN 3FT1 1/2IN WB T2


Boits comply with ASTM A-307 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. Nuts comply with ASTM A-563 specifications and are galvanized in accordance with ASTM A-153, unless otherwise stated. All other galvanized material conforms with ASTM-1633 & ASTM-653 All Galvanizing has occurred in the United States All steel used in the manufacture is of Domestic Origin, "Made and Melted in the United States" All steel used meets Tile 23CFR 635,410 - Buy America All Guardrail and Terminal Sections meets AASHTO M-180, All structural steel meets AASHTO M-183 & M270 All Boits and Nuts are of Domestic Origin All material fabricated in accordance with Nebraska Department of Transportation All controlled oxidized/corrosion resistant Guardrail and terminal sections meet ASTM A606, Type 4.

L

Andrew Artar, VP of Sales & Marketing Gregory Highway Products, Inc.

By

DAWN R. BATTON 11111111 NOTARY PUBLIC STATE OF OHIO: COUNTY OF Sworn to and subscribed before if STATE OF OHIO this 17 day omm. Expires March 03, 2018 ublic, State of Ohio Tunn¹ ATE OF OHICIT Recorded in Portage County

						Certifi	ed \naly	ysis					Trinic		5,10
Trinity Hi	ighway 1	Products, LLC												1	~
550 East F	Robb Av	re.				Order	Number: 11647	46							
Lima, OH	45801					Cust	omer PO: 2563						0.010.0100		
		VEST MACH.& SU	TOPI V CO			BOI	Number: 69500					A	s of: 5/16/12		
Customer.			JILICO.												
	P. O	BOX 703					cument #: 1								
						Sh	ipped To: NE								
	MILF	ORD, NE 68405				τ	Jse State: KS								
Project:	RESA	LE													
													-		
Qty	Part #	Description	Spec	CL	12201251	Heat Code/ Heat #	Yield	TS	Elg C	Mn	P S	Si Cu	Cb Cr	Vn A	
50	6G	12/6'3/S	M-180	A	2	515691	64,000	72,300				0.010 0.021	0.04 0.032 0		4
			M-180	A	2	4111321	63,100	80,200	29.0 0.210			0.010 0.030	0.000 0.030		4
			M-180	A	2 2	515659	67,000	75,200	26.0 0.064		0.012 0.008		0.000 0.025		4
			M-180 . M-180	A A	2	515660 515662	66,800 63,900	74,300	27.0 0.064 28.0 0.064			0.009 0.017 0.009 0.016	0.000 0.025		
			M-180	A	2	515663	64,900	72,900 76,500	28.0 0.064 21.0 0.064			0.009 0.018	0.000 0.025		4
			M-180	A	2	515668	66,700	75,500	27.0 0.063			0.010 0.023	0.000 0.026		4
			M-180	A	2	515668	70,200	80,800	21.0 0.063			0.010 0.024	0.000 0.030		4
			M-180	A	2	515669	64,500	74,100	26.0 0.063			0.009 0.017	0.000 0.028		4
			M-180	A	2	515687	63,400	74,100	30.0 0.068			0.008 0.025	0.000 0.060		4
			M-180	A	2	515687	65,100	74,400	28.0 0.068			0.008 0.025	0.000 0.060		4
			M-180	A	2	515690	63,000	71,800	27.0 0.059			0.013 0.024	0.000 0.042		
			M-180	A	2	515696	62,900	72,500	28.0 0.058	0.740	0.013 0.008	0.011 0.029	0.000 0.046	0.000	4
			M-180	A	2	515696	63,900	73,400	29.0 0.058	0.740	0.013 0.008	0.011 0.029	0.000 0.046	0.000	4
			M-180	А	2	515700	67,800	77,700	28.0 0.065	0.800	0.013 0.009	0.012 0.036	0.000 0.035	0.000	4
			M-180	A	2	616068	62,900	71,600	27.0 0.061	0.740	0.013 0.010	0.012 0.027	0.000 0.064	0.000	4
			M-180	A	2	616068	66,700	74,200	30.0 0.061	0.740	0.013 0.010	0.012 0.027	0.000 0.064	0.000	4
			M-180	A	2	616071	64,000	74,000	28.0 0.061	0.760	0.016 0.007	0.011 0.021	0.000 0.028	0.000	4
			M-180	A	2	616072	63,800	74,200	29.0 0.066	0.750	0.014 0.009	0.010 0.026	0.000 0.039	0.000	4
			M-180	A	2	616073	63,900	73,300	27.0 0.064	0.760	0.016 0.009	0.012 0.024	0.000 0.041	0.000	4
			M-180	A	2	616073	65,000	74,500	28.0 0.064		0.016 0.009		0.000 0.041		4
30	60G	12/25/6'3/S	M-180	A	2	4111321	63,100	80,200				0.010 0.030	0.00 0.030		4
			M-180	A	2	515656	63,600	73,600	27.0 0.066			0.011 0.021			
			M-180	A		515658	64,800	74,300	26.0 0.069			0.011 0.022			4
			M-180	A		515659	67,000	75,200 76,500	26.0 0.064			0.008 0.022			4
			M-180	A	2	515663	64,900	70,300	21.0 0.064	0.740	0.009 0.001	0.007 0.023			-
													1 0	C 4	

Figure A-2. 6-ft – 3-in. (1,905-mm) 12-gauge (2.7-mm) W-Beam MGS Section, Test Nos. CMGS-1 and CMGS-2

				Certifie	d Analy	sis		History Products	
inity Hi	ighway Pr	oducts, LLC							
0 East F	Robb Ave			Order M	Jumber: 121532	4 Pro	d Ln Grp: 9-End Termin	als (Dom)	
na, OH	45801			Custor	mer PO: 2884			As of: 4/14/14	
stomer:	MIDW	EST MACH.& SUPPLY C	Э.	BOLN	Number: 80821		Ship Date:		
	P. O. B	OX 703			ment #: 1 ped To: NE			lubes Green Pain	
	MILFO	RD, NE 68405		Us	e State: KS	R#1	5-0157 Se	eptember 2014 SM	T
oject:	STOCK	ζ				1.1.1	-		
Qty	Part # 701A	Description	Spec CL A-36	TY Heat Code/ Heat A3V3361	Yield 48,600	TS	Elg C Min P	S Si Cu Cb Cr Vn ACW	_ 1
10		.25A11.75A16 CAB ANC				69,000			
	701A		A-36	JJ4744	50,500	71,900	30.0 0.150 1.060 0.010	0.035 0.240 0.270 0.002 0.090 0.021 4	
12	729G	TS 8X6X3/16X8'-0" SLEEVE	A-500	0173175	55,871	74,495	31.0 0.160 0.610 0.012	0.009 0.010 0.030 0.000 0.030 0.000 4	
15	736G	5'/TUBE SL/.188"X6"X8"FLA	A-500	0173175	55,871	74,495	31.0 0.160 0.610 0.012	0.009 0.010 0.030 0.000 0.030 0.000 4	
12	749G	TS 8X6X3/16X6'-0" SLEEVE	A-500	0173175	55,871	74,495	31.0 0.160 0.610 0.012	0.009 0.010 0.030 0.000 0.030 0.000 4	
5	783A	5/8X8X8 BEAR PL 3/16 STP	A-36	10903960	56,000	79,500	28.0 0.180 0.810 0.009	0.005 0.020 0.100 0.012 0.030 0.000 4	
	783A		A-36	DL13106973	57,000	72,000	22.0 0.160 0.720 0.012	0.022 0.190 0.360 0.002 0.120 0.050 4	
20	3000G	CBL 3/4X6'6/DBL	HW	99692					
25	4063B	WD 6'0 POST 6X8 CRT	HW	43360					
15	4147B	WD 3'9 POST 5.5"X7.5"	HW	2401					
20	15000G	6'0 SYT PST/8.5/31" GR HT	A-36	34940	46,000	66,000	25.3 0.130 0.640 0.012	0.043 0.220 0.310 0.001 0.100 0.002 4	
10	19948G	.135(10Ga)X1.75X1.75	HW	P34744					
2	33795G	SYT-3"AN STRT 3-HL 6'6	A-36	JJ6421	53,600	73,400	31.3 0.140 1.050 0.009	0.028 0.210 0.280 0.000 0.100 0.022 4	
4	34053A	SRT-31 TRM UP PST 2'6.625	A-36	JJ5463	56,300	77,700	31.3 0.170 1.070 0.009	0.016 0.240 0.220 0.002 0.080 0.020 4	
								1 of 3	

Figure A-3. 72-in. (1,829-mm) Long Foundation Tube, Test Nos. CMGS-1 and CMGS-2

	CENTRAL NEBRASKA WOOD PRESERVERS,			
	P. O. Box 630 • Sutt Pone 402-77 FAX 402-77	3-4319		
	R#17-505	3-4313		
	BCT Posts			
	Orange Paint Marc	h 2017 SMT		
			Date:	32/17
	CERTIFICATE C Midwest Maching + Sufp O# 3396	יא BOL# _	IANCE 10656197 CA-C 0.60 pcf A	WPA UC4B_
Part ≠	Physical Description	# of Pieces	Charge #	Tested Retention
65 6806.5PS7	bx8-b.5 Rub POST	168	23489	.649
65 68 06.5PST	6×8-6.5' Rub Post	42	23490	.724
6568065PJT	6×8.5-CRT PST	42	23490	.724
GS684685t	628-45" BCT	42	23491	. 651
	e referenced material has been and tested in accordance with AWPA		Wood Preservers certifies have been treated in accord	ance with AWPA

Figure A-4. BCT Timber Posts, Test Nos. CMGS-1 and CMGS-2

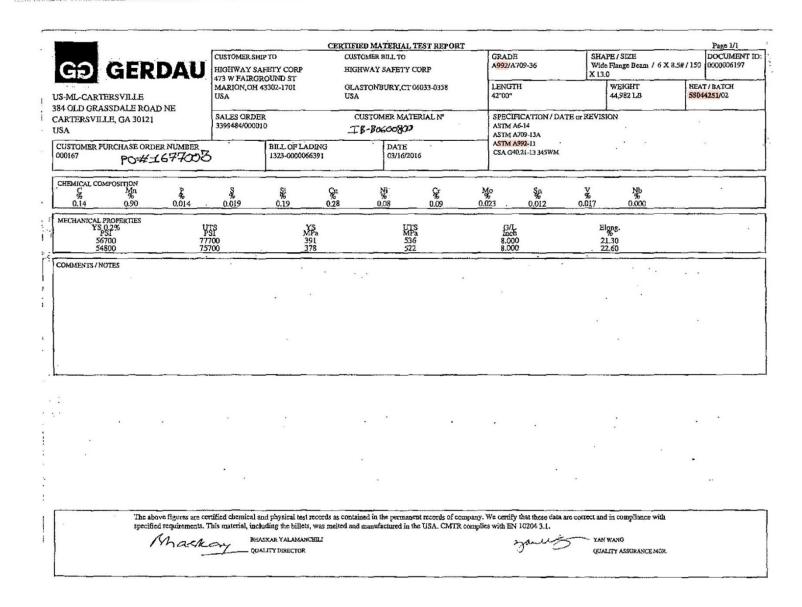


Figure A-5. W6x8.5 (152x12.6), 72-in. (1,829-mm) Long Steel Posts, Test Nos. CMGS-1 and CMGS-2

	CENTRAL NEBRASKA WOOD PRESERVERS			
	P. O. Box 630 • Su Pone 402-7 FAX 402-77	73-4319		
	692 6x12x14 Timber Blockou			
COCJ	lune2016 SMT Black Paint Ta	ags		
			Date: _	10/29/15
	CERTIFICATE (OF COMPLL	ANCE	
Shipped To	0: Midwest Machinory.	BOL#	100529	37
Customer	PO# <u>3161</u>	Preservative: CC	A-C 0.60 pcf A	WPA UC4B
Part #	Physical Description	# of Pieces	Charge #	Tested Retention
	6×12-14" and Block	84	21327	.658 pit
e				
			1. A.	
-	an a second	e e e e e		· · •
produced, treate	ve referenced material has been d and tested in accordance with AWPA onforms to AASHTO M133 & M168.	products listed above has standards, Section 236 o	/ood Preservers certifies t ve been treated in accorda f the VDOT Road & Brid imum penetration and ret	nce with AWPA ge Specifications and
Aug Nick Sowl,	Heneral Counsel		10/29/ Date	15

Figure A-6. Timber Blockouts for Steel Posts, Test Nos. CMGS-1 and CMGS-2

1098 East Maple St Sutton, NE 68979 Phone: 402.773.4319 Email: nick@nebraskawood.com

CERTIFICATE OF COMPLIANCE

Shipped To: Midwest Machinery and SupplyBOL# 10057873Customer PO# 3475Preservative: CCA - C 0.60D pcf AWPA UC4B

Part #	Physical Description	# of Pieces	Charge #	Tested Retention
GR61219	6x12-19" TRANS Hole	FZ	04045	(1)
BLK	BLK	56	24245	.616
GR6819 BLK	6x8-19" OCD BLOCK	168	24253	.611
GR61214 BLK	6x12-14" Thrie Hole BLK OCD	84	23422	.660
	-			
			-	
		x 14		
	4 6 ²	4		

I certify the above referenced material has been produced, treated and tested in accordance with and conforms to AASHTO M133 & M168 VA: Iowa Wood Preservers certifies that the treated wood products listed above have been treated in accordance with AWPA standards, Section 236 of the VDOT Road & Bridge Specifications and meets the applicable minimum penetration and retention requirements.

standards.

Nicholas Sowl, General Counsel

9/1/2017 Date

Figure A-7. Timber Blockouts for Steel Posts, Test Nos. CMGS-1 and CMGS-2

CENTRAL NEBRASKA WOOD PRESERVERS			
P. O. Box 630 • Su Pone 402-7 FAX 402-7	73-4319		
R#17-282 BCT Posts 70 Acct AND V Nov2016 SMT Wood Blockouts are		Blue	11/11/16
CERTIFICATE (Shipped TO: <u>Midwast Machinery ~Si</u> Customer PO# <u>3339</u>	μ ¹ γ BOL# _		
Part # Physical Description	# of Pieces	Charge #	Tested Retention
GR6806:587 6x8-6.5" PST	35	22973	:679
GR6806.5CPT bx8-6.5" CRT	35	82973	.679
SS6846PST 5.5-7.5-46"BCT	42	22927	.638
6R61214BCK 6x12-14" OCD	168	22927	.638
I certify the above referenced material has been produced, treated and tested in accordance with AWPA standards and conforms to AASHTO M133 & M168.	products listed above h standards, Section 236	Wood Preservers certifies t ave been treated in accorda of the VDOT Road & Brid, inimum penetration and ret <u>II/II/IL</u> Date	nce with AWPA ge Specifications and

Figure A-8. Timber Blockouts for Steel Posts, Test Nos. CMGS-1 and CMGS-2

				PRESERVE	RS, INC.					
			P. C). Box 630 • S Pone 402- FAX 402-		79				
						C	WNP In	d To Mh	0048	590
						C	Custome	r PO 🦾	2892	
		С	entral Ne				s, Inc	•		
			Cer	tification	n of Insp	ection	÷.,			
	Date:		4/23/14				2			
Specific	cations:	Highw	vay Construct	ion Use						
			CA-C 0.60							
11000			<u>en e 0.00</u>	<u>po1</u>						
Charge #	Date Treated	Grade	Materia Length &		# Pieces	White Moisture Readings	# of E	etration Sorings & nforming	Reter	tual ntions forming
8379	4/16/14	#1	6412-14"	Blogs	756	19	1/20	95%	.651	pet
8379	4/16/14	akt	618-22"	Blocks	84	19	160	95%	-651	pet
Jumbe:	r of pieces	rejecte	d and reason	for reject	ion:					
plose										
			erence materia	al was treat	ed and inspe	ected in acc	ordanc	e with th	e above	
elerenc	ed specific	ations.								
	SAL	-0			y/	3/14				
A	mel the	-								

Figure A-9. Timber Blockouts for Steel Posts, Test Nos. CMGS-1 and CMGS-2

(260) 625-8100 (260) 625-8950 FAX Quality Steel 100% EAF Melted and Manufactured in the USA Recycled content: PC = 79.6%, PI = 18.0% ISO 9001:2008 and ABS Certified				ted SA 18.0%	Ship to: Steel & I 401 New C New Centu Attn: Rece	Pipe Su Century Pa Iry KS, 66	pp iy rkway		NILL TE Customer #			S S P N	Printed: 05 / 29 / 20 Bill to: Produced: 04 / 11 / 20 Steel & Pipe Supply - Kansas 555 Poyntz Avenue PO Box 1688 Manhattan KS. 66505 US Attn: David Chizek						
GENERAL INFORMATION SPECIFIC					ATIONS		SHIPMENT DETAILS BOL # 0000455					0045532	6 - 7200 00 lbs						
Product Wide Flange Beam Size W6X9 W150X13.5 Heat Number A134108 Condition(s) As-Rolled Fine Grained Fully Killed No Weld Repair			» AS ASTI AST AASH	Standard TM A6/A6M - TM A992/A992 M A709/A709M M A572/A572N TO M270M/M2 CSA G40.21-13	- 16a 2M - 11 M - 16a M - 15 1270 - 12			<u>Grades</u> A992 / A992M A709 gr50/gr345 A572 gr50/gr345 M270 gr345/gr50 50WM/345WM			Bundle / ASN # Length pcs Cust PO Recv PO 060763251 50' 0" 16 4500287984					Recv PO J			
CHEM	ICAL ANA	LYSIS	(weight	percent	t)														
С		Р	S	Si	Cu	Ni Cr	Мо	Sn	V	Nb/Cb	AI	Ν	в	*C1	*C2	*C3	*PC	*1	Analysis T
.06	.93 .0	015 .	011	.25	.30	12 .11	.035	.012	.023	<.001	.002	.0100	.0003	.28	.32	.26	.15	5.75	Heat
Test	Yield (fy) Strength ksi / MPa 63 / 436	-	Tensile (Strengt ksi / MF	th	fy / fu ratio	% Elong. {8" gage}	Test	Ten F/	np /	TESTS (a) Absorbed Ene Specimen 1	rgy	ft-lbf / J men 2	Specimen		Average		nimum		
1 2 3 4	64 / 444		80 / 55 80 / 55		.79 .80	26 25	2 3 4 5 6												
2 3 4 Notes:	64 / 444 Calculated Chemi	nstry Values	80 / 55	4 quivalents	.80 s (C1 C2 C3.		2 3 4 5 6 7	STM G101}	= 26 01(C (CET) = C	u)+3 88(Ni)+1 20(C + (Min/6) + (5#24)	r)+1 49(Si)+ · (Cr/5) + (N	-17 29(P1-7	29(Cu)(Ni)-9.10(4) + (V/14) Pc	Ni)(P)-33 35 m{AWS} = (1(Cu²) C+Sv30+Mn/	20+Cu/20+I	N 1/60+Cr/20	+mo/15+W/	0-5B
2 3 4 Notes:	64 / 444	/6+(Cr+Mo+ material c tric arc fu	80 / 554 s Carbon E +VI/5+(Ni+0 described urnace/co	4 iquivalents Cui/15 CE I herein I continuou:	.80 s (C1 C2 C3. 2 (AWS)=C+(has been m s cast proc	25 PC) Corrosion Ind	2 3 4 5 6 7 Nex (I) I (A V)/S+(Ni+Cu) cable	15 CE3 {	= 26 01(C (CET) = C	+ (Mn/6) + (Si/24) -	()+1 49(Si)+ • (Cr(5) + (N CERTI	li/40) +(Mo/4	4) + (V/14) Pc	Nij(P)-33 39 m(AWS) = (((Cu²) C+S√30+Mr√	20+Cu/20+1	N#60+Cr/20	+mo/15+W1	0+58
2 3 4 Notes: specificati with the re Signed:	64 / 444 Calculated Chemi DE1 (IW)=C+Mn/i ertify that the r equirements of	/6+(Cr+Mo+ material c tric arc fi f America	80 / 55- s Carbon E +V/V5+(N++ described urnace/cc an Bureau	4 Equivalents Cup/15 CE I herein h ontinuou: I of Ship	.80 (C1 C2 C3. (AWS)=C+r has been m s cast proc ping Rules	25 PC) Corrosion Ind Mn-5i/G+/Cr+Mo+ ade to the applie sss and tested i with satisfactory	2 3 4 5 6 7 7 Vy/5+r(N+Cu) 7 Vy/5+r(N+Cu) 2 able n accordar y results.	/15 CE3 (= 26 01(C (CET) = C	+ (Mn/6) + (S#24) ABS	CERTI	FICATI	4) + (V/14) Pc ON	m{AWS} = 0	C+S√30+Mr√				
2 3 4 Notes: 2 1 hereby c specificati with the re Signed: 1 hereby c operations	64 / 444	/6+(Cr+Mo+ material c ctric arc fu f America content by this m	80 / 55- s Carbon E +V//5+(N+f described urnace/cc an Bureau t of this m aterial m	4 Equivalents Cui/15 CE I herein h antinuous i of Ship eport an eanufact	.80 s (C1 C2 C3. i2 (AWS)=C+(has been m s cast proc ping Rules e accurate urer are in	25 PC) Corrosion Ind Mn+Sil/6+(Cr+Mo+ ade to the applic ses and tested in	2 3 4 5 6 7 VV/5+(N+Cu) cable n accordar y results. All tests ar ith the	/15 CE3 { ce	(CET) = C	+ (Mr/6) + (S/24) + ABS	CERTI	FICATI	4) + (V/14) Pc	m{AWS} = 0	Sworn to) and su	ubscribe		
2 3 4 Interety c specificati with the re Signed: Interety c operations requireme Signed:	64 / 444	reice and the second se	80 / 55. s Carbon E +V/5+(N+C described described described an Bureau c of this re aterial m ecificatio Bas	4 Equivalents Cul/15 CE I herein I portinuous I of Shipp eport arr panufact ons and	.80 s(C1 C2 C3. 2 (AWS)=C+(has been m s cast proc ping Rules e accurate turer are in applicable	25 PC; Corrosion Ind Mn-Sul6+(Cr+Mo+ ade to the applie with satisfactory and correct // compliance with	2 3 4 5 6 7 VV/5+(N+Cu) cable n accordar y results. All tests ar ith the	/15 CE3 { ce	(CET) = C	+ (Mr/6) + (S/24) + ABS	CERTI	M40) +(Mo/ FICATI ana. Co	on on ounty of W	m{AWS} = 0	Sworn to) and su	ubscribe	ed befo	re me

Figure A-10. W6x9 (W150x13.5) 40¹/₂-in. (1,029-mm) Long Post, Test No. CMGS-1 and CMGS-2

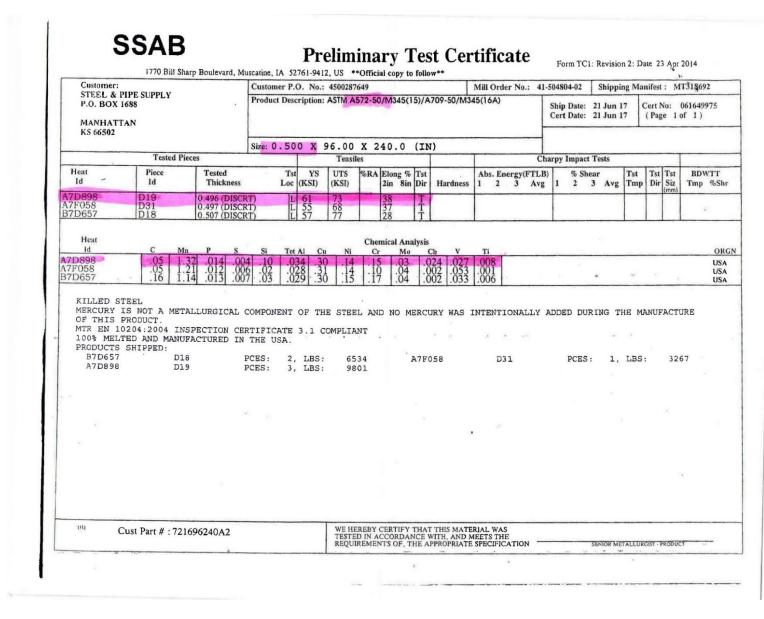


Figure A-11. 8¹/₂-in. x 12-in. x ¹/₂-in. (216-mm x 305-mm x 13-mm) Top Base Plate, Test No. CMGS-1 and CMGS-2

PS Coil Proce 275 Bird Cree								irgic Port			D T	IME 20:4	of 1 07/2016 41:17 NGRER	4
66031-112	27						P 401	716 Isas City 1 New Ce W CENTUI	ntury Pa					
	Material No.	Descrip					uantity	Weight	Custome	r Part		Customer PO	•	Ship Date
272379-0010	70860240A2	1/4	60 X 240	A572G	R50 STP MIL	PLT	4	4,084						10/07/201
						Chemical A								
eat No. A60887 oduced from Co		STEEL DY	NAMICS COL	UMBUS		DOMESTIC	Mill	STEEL DY	NAMICS C	OLUMBUS	N	Aelted and Ma	nufactured	in the US
arbon Mangane		Sulphur	Silicon	Nickel	Chromium	Molybdenum	Boron	Copper	Aluminum	Titanium	Vanadium	Columbium	B1's	
.0600 0.810		0.0010	0.0400	0.0300	0.0600	0.0100	0.0001	0.1100	0.0220	0.0010	0.0030	0.0160	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
					Mecha	nical / Physi	cal Proper	ties						
ill Coil No. 16B Tensile	640645 Yield		Elong	Rckwi	(Grain	Charpy	Ch		Ch		-		
73500.000	62300.000		30.00	TICK WI		31011	0	. 01	arpy Dr NA	Un	arpy Sz	Tempe	rature	Olse
72600.000	63500.000		26.30				0		NA					
71900.000	61500.000		33.20				0		' NA					
71900.000	62200.000		29.80				0		NA					
Detable 000	4403701 4 54	4 004 10												
Batch 0004	4493721 4 EA	4,084 LB					15							
										4				
	ICAL, PHYSICAL,													

Figure A-12. 8¹/₂-in. x 11-in. x ¹/₄-in. (216-mm x 280-mm x 6-mm) Bottom Post Plates, Test No. CMGS-1

B152559 000000 Grade Order Description: Hot Roll Plate From C A572 50, 0.2500 IN X 9 Quality Plan Descrip A57250 LO SI IMP: ASTM Shipped Heat/Sla Item Number	0725694 N-155731 511 5.000 IN x 240.0	000 IN		PO NO P018132			P	art Nu	mber		0	Certifica	te Numbe	r	Prepar	bed	
Grade Order Description: Hot Roll Plate From C A572 50, 0.2500 IN x 9 Quality Plan Descrip A57250 L0 SI IMP: ASTM A57250 L0 SI IMP: ASTM Shipped Item Number	oil 5.000 IN x 240.0 ion:	000 IN		P018132	7-09 2	3											
Order Description: Hot Roll Plate From C A572 50, 0.2500 IN x 9 Quality Plan Descrip A57250 LO SI IMP: ASTM Shipped Heat/Sla Item Number	5.000 IN x 240.0					23 572569401-1 Customer:						572569401-	1		05/07/3	2017 1	3:20
Item Number	- Internet		H Freq	impact		S	old TO SUPERIO	D: DR SUPP D: DR SUPP			CATOOS/ Catoosa						
and the second se	b Certified By	C Mn	P	S S	i Cu	Ni	Cr	Mo	Сь	v	AI	Ti N2	В	Ca	Sn	CEV	ACI
7E0085B A7R1834-02		0.07 1.14 0.	011 0	.005 0.	0.13	7 0.06	0.23	0.023	0.038	0.005	0.026	0.011 0.00	9 0.0001	0.0015		0.33	
Shipped Certified Item By		eld Tensile	Y/T	ELONG	TION %	Bend OK?	Hard	Size			ts (ft-		1	Shear 1		Avg	Test Temp
		si ksi 8.3 69.4	84.0	30.6	8	UK?	нв	Size	mm 1	2	3	Avg	- T	-	, ,	ivg	Temp
	7R1834 ***							5.0	90	89	77	85.3		_			-22 F
	7R1834 ***							5.0	82	83	88	84.3					-22 F
	7R1834 *** 7R1834 *** 6	3.1 72.1	87.5	25.4			-	5.0	88	102	72	87.3			_		-22 F
Items: 1 PCS: 5 We Mercury has not come in contact manufacturing process. Certifie Manufacture to a fully killed fin	in accordance with	ing the manufacts EN 10204 3.1. No	weld re	pair has b	een perfor				We h	ereby ce	ertify that	the product d by th	escribed abe		d all of th	e tests r	equired

Figure A-13. 8¹/₂-in. x 11-in. x ¹/₄-in. (216-mm x 280-mm x 6-mm) Bottom Post Plates, Test No. CMGS-2

NUCOR

NUCOR CORPORATION NUCOR STEEL SOUTH CAROLINA

Mill Certification 3/11/2016

MTR #: C1-366222 300 Steel Mill Road DARLINGTON, SC 29540 (843) 393-5841 Fax: (843) 395-8701

BIRMINGHAM FASTENER & SUPPLY PO BOX 10323 BIRMINGHAM, AL 35202-0323 (205) 595-3511 Fax: (205) 591-0244 Sold To:

Ship To: BIRMINGHAM 931 AVE W	FASTENER	8	SUPPLY
----------------------------------	----------	---	--------

PO BOX 10323
BIRMINGHAM, AL 35202-0000
(205) 595-3511
Fax: (205) 591-0244

Customer P.O.	M7812	Sales Order	238747.1
Product Group	Merchant Ber Quality	Part Number	30000562480DES0
Grade	ASTM A307-55, F1554-07a gr 55, S1, AASHTO M314 GR 55, S1	Lot #	DL1510704804
Size	9/16" (.5625) Round	Heat #	DL15107048
Product	9/16" (.5625) Round 40' A307-55	B.L. Number	C1-686488
Description	A307-55	Load Number	C1-366222
Customer Spec		Customer Part #	

Roll Date: 1/28/2016 Melt Date: 12/5/2015 Qty Shipped LBS: 17,494 Qty Shipped Pcs: 517

Melt Date: 1	2/5/2015											
C 0.22%	Mn 0.82%	V 0.0410%	Si 0.27%	S 0.010%	P 0.007%	Cu 0.20%	Cr 0.10%	Ni 0.06%	Mo 0.015%	Cb 0.001%	CE1554 0.37%	
CE1554: CE	per F1554 0	3R55. S1				and the second s	And		and the section of th			
Roll Date: 1	28/2016											
Yield 1: 67,0	00psi			Tensile 1: 87,000psi				Elongation: 21% in 8"(% in 203.3mm)				
Yield 2: 66.0	Yield 2: 66,000psi			Tensile	2: 88,000psi			Elongation 21% in 8"(% in 203.3mm)				
Reduction of Area: 50.43%				Reduction of Area #2: 53.52%								

Specification Comments:

WELDING OR WELD REPAIR WAS NOT PERFORMED ON THIS MATERIAL MELTED AND MANUFACTURED IN THE USA MERCURY, RADIUM, OR ALPHA SOURCE MATERIALS IN ANY FORM HAVE NOT BEEN USED IN THE PRODUCTION OF THIS ATERIAL

	Jun H Ren	
	from for recent	
	James H. Blew	
NBAIG-10 January 1, 2012	Division Metallurgist	Page 1 of 2

Figure A-14. 5%-in. (16-mm) Diameter, 10-in. Hex Head Bolts, Test Nos. CMGS-1 and CMGS-2

Certified Material Test Report to BS EN 10204-2004 3.1 FOR ASTM A563, GRADE A HEX FIN NUTS

FACTORY: IFI & Morgan Ltd. Haiyan Office ADDRESS: No.583-28, CHANG'AN NORTH ROAD WUYUAN TOWN,HAIYAN,ZHEJIANG CHINA	REPORT DATE:2017-7-20					
Tel:#(852)2542 3366 CUSTOMER:	MFG LOT NUMBER: GL17089-2					
SAMPLE SIZE: ACC. TO ASME B18.18-11;ASTM F1470-12 SIZE: 1-8 HDG QTY: 15150 PCS	PO NUMBER:210133243					
	PART NO: 36719					
STEEL PROPERTIES STEEL GRADE: ML08AL	HEAT NUMBER:1623764					
CHEMISTRY SPEC: C %*100 Mn%*100 P %*1000 ASTM A563 GRADE A 0.55max min 0.12max	S %*1000 0.15max					
TEST: 0.06 0.4 0.	01 0.006					
	ATTON A ON AT D10 0 0 0010					
	ATION: ASME-B18.2.2-2010 ACTUAL RESULT ACC. REJ.					
CHARACTERISTICS TEST METHOD SPECIFIED						
APPEARANCE ASTM F812-2013	PASSED 29 0					
THREAD ASME B1.3-2003 2B	PASSED 15 0					
WIDTH A/F 1.500-1.450	1.488-1.485 4 0					
WIDTH A/C 1.732-1.653	1.708-1.704 4 0					
HEIGHT 0.887-0.831	0.856-0.852 4 0					
MECHANICAL PROPERTIES: 1/4" to 1 1/2"	SPECIFICATION: ASTM A563-07a GR-A					
CHARACTERISTICS TEST METHOD SPECIFIED	ACTUAL RESULT ACC. REJ.					
****************	***********					
HARDNESS: ASTM F606-2014 B68-C32 Max(107HRB)	C25-27 15 0					
PROOF LOAD : ASTM F606-2014 Min 68 Ksi	70-72 Ksi 4 0					
CHARACTERISTICS TEST METHOD SPECIFIED	ACTUAL RESULT ACC. REJ. ************************************					
HOT DIP GALVANIZED ASTM F2329-05 MIN 2.10miu	2.3-2.5miu 4 0					
ALL TESTS IN ACCORDANCE WITH THE METHODS PRESCRIP ASTM OR SAE SPECIFICATION. WE CERTIFY THAT THIS DATA IS INFORMATION PROVIDED BY THE MATERIAL SUPPLIED AND OU	BED IN THE APPLICABLE					
(学检验者						
(SIGNATUR UNE D.X						
(NAME OF MANU	FACTURER)					

Figure A-15. 5%-in. (16-mm) Diameter, Hex Head Nuts, Test Nos. CMGS-1 and CMGS-2

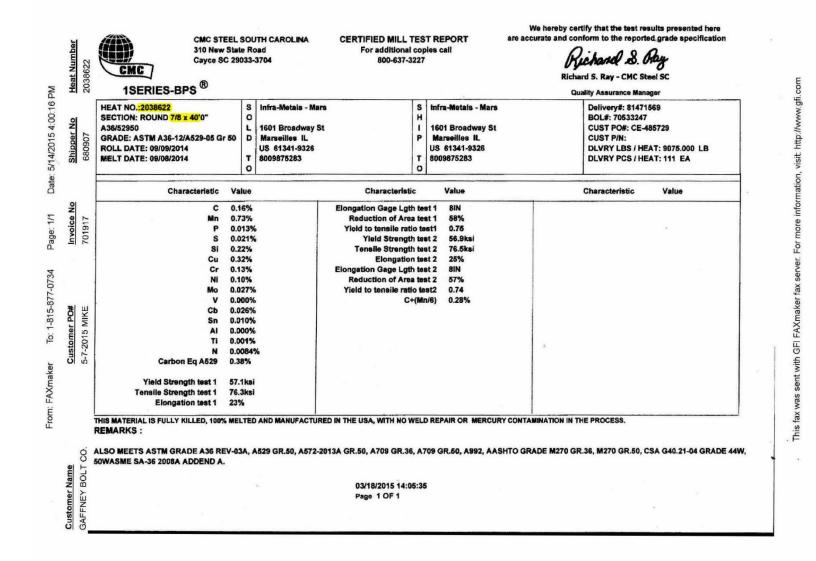


Figure A-16. 7/8-in. (22-mm) Diameter, 8-in. (203-mm) Long Hex Head Bolts, Test Nos. CMGS-1 and CMGS-2

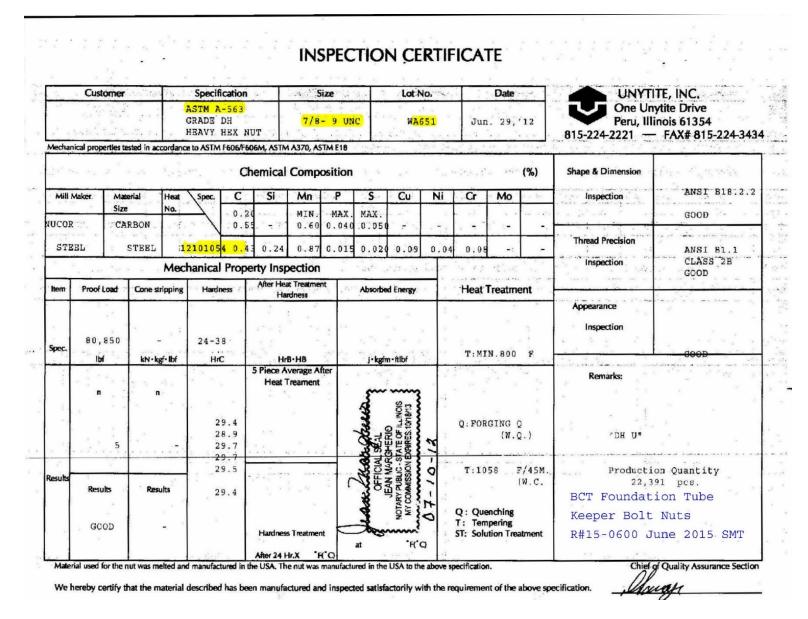


Figure A-17. 7/8-in. (22-mm) Diameter, Hex Head Nuts, Test Nos. CMGS-1 and CMGS-2

No. 4249 P. 2

Certificate of Compliance

Feb. 14. 2018 11:23AM Fastenal-NELIN

ASTENAL

Sold To:	Purchase Ord	er: tighe picking up
UNL TRANSPORTATION	Job:	
	Invoice Date:	10/23/2017
THIS IS TO CERTIFY THAT WE HAVE S THESE PARTS WERE PURCHASE		
50 PCS 1"-8 A-563 Grade DH Hot Dip Galvanized Heavy Hex I AND UNDER PART NUMBER 36761	Nut SUPPLIED UNDER O	UR TRACE NUMBER 210119800
4 PCS 1"-8 x 12 ft ASTM A307 Gr A Hot Dip Galvanized Low NUMBER 200125104 AND UNDER PART NUMBER 47657	Carbon Steel Threaded Rod	SUPPLIED UNDER OUR TRACE
This is to certify that the above document is true and accurate to the best of my knowledge.	Please check curre	nt revision to avoid using obsolete copies.
AMOIGAN	This document wa time.	s printed on 02/14/2018 and was current at that
Fastenal Account Representative Signature	Fastenal Store Lo	ocation/Address
San Aleica	3201 N. 23rd Stre	
Star Boyer	LINCOLN, NE 68	
Printed Name	Phone #: (402)470 Fax #: 402/476-79	
2/14/18	Tuk #. 402/470-73	
Date	Page 1 of 1	

Figure A-18. 1-in. (25-mm) Diameter, 10¹/₂-in. (267-mm) Long Hex Head Bolts, Test Nos. CMGS-1 and CMGS-2

					DATE :	20.06.2017			
CUSTOMER :	FASTI	ENAL COMPAN	IY PURCHASIN	G IMPORT TRAF	IC	10.000 at 100			
PART NAME :	CARB	ON STEEL ALL	THREADED RO	DS					
SIZE :	1" - 8	X 10 FT		DATE :	09.03.2017				
PART NO. (Customer) :	4764:	1		REPORT NO. :	M 18	VI 18			
MATERIAL/DIA :	25	MM		SHIPPING NO.	120280178 (LO	T#3)			
IEAT NO. :	60406	51		ORDER NO. :	120280178				
.OT QTY. :	30	PCS		LOT NO. :	25 V - 5/16				
PECIFICATION :	A\$1	ASTM A 307 GRADE A; 1A THREAD FIT							
QUANTITY TESTED :	2 PCS	<u>-</u>							
		SPECIF	ICATION	INSPECTIO	ON RESULT				
INSPECTION ITEM	N	SPECIF Min	ICATION Max	INSPECTIC 1st Sample	ON RESULT 2nd Sample	REMARKS			
	1					REMARKS OK			
INSPECTION ITEM 1 TENSILE (ksi) 2 YIELD STRENGTH	n	Min		1st Sample	2nd Sample				
1 TENSILE (ksi) 2 YIELD STRENGTH 3 ELONGATION	n 	Min 60	Мах	1st Sample 74.6	2nd Sample 74.7	ОК			
 TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS 	A	Min 60 69 - 1	Max 00 HRB	1st Sample 74.6 84 HRB	2nd Sample 74.7 84 HRB	ОК			
1TENSILE (ksi)2YIELD STRENGTH3ELONGATION4HARDNESS5COATING (HDG)	A	Min 60 69 - 1	Мах	1st Sample 74.6	2nd Sample 74.7	ОК			
 TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS 		Min 60 69 - 1 VIS	Max 00 HRB 45 μ	1st Sample 74.6 84 48 0K	2nd Sample 74.7 84 HRB 50 μ ΟΚ	ОК В ОК ОК ОК			
1 TENSILE (ksi) 2 YIELD STRENGTH 3 ELONGATION 4 HARDNESS 5 COATING (HDG) 6 APPEARANCE	DNS	Min 60 69 - 1 VIS SPECIF Min	Max 00 HRB 45 μ SUAL ICATION Max	1st Sample 74.6 84 48 0K	2nd Sample 74.7 84 HRB 50 μ ΟΚ 2N RESULT 2nd Sample	OK OK OK OK			
 TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS COATING (HDG) APPEARANCE PHYSICAL DIMENSIO MAJOR DIA (inches) 	DNS	Min 60 69 - 1 2 VIS SPECIF Min 0.975"	Μ ax 00 HRB 45 μ SUAL ICATION Max 0.998"	1st Sample 74.6 84 84 48 OK	2nd Sample 74.7 84 HRB 50 μ OK 0N RESULT 2nd Sample 0.993"	OK OK OK REMARKS OK			
 TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS COATING (HDG) APPEARANCE PHYSICAL DIMENSIC MAJOR DIA (inches) PITCH DIA (inches) 	DNS	Min 60 69 - 1 VIS SPECIF Min 0.975" 0.906"	Max 00 HRB 45 μ SUAL ICATION Max 0.998" 0.916"	1st Sample 74.6 84 48 OK INSPECTIC 1st Sample 0.992" 0.909"	2nd Sample 74.7 84 HRB 50 μ OK 0N RESULT 2nd Sample 0.993" 0.910"	ОК ОК ОК ОК REMARKS ОК ОК			
 TENSILE (ksi) YIELD STRENGTH ELONGATION HARDNESS COATING (HDG) APPEARANCE PHYSICAL DIMENSIC MAJOR DIA (inches) LENGTH (ft) 	DNS	Min 60 69 - 1 VIS SPECIF Min 0.975" 0.906" 10'	Max 00 HRB 45 μ UAL ICATION Max 0.998" 0.916" (±1/8")	1st Sample 74.6 84 HRB 48 μ OK INSPECTIC 1st Sample 0.992" 0.909" 10'	2nd Sample 74.7 84 HRB 50 μ OK 0N RESULT 2nd Sample 0.993'' 0.910'' 10'	ОК ОК ОК ОК ВЕМАККS ОК ОК ОК			
1 TENSILE (ksi) 2 YIELD STRENGTH 3 ELONGATION 4 HARDNESS 5 COATING (HDG) 6 APPEARANCE	DNS	Min 60 69 - 1 VIS SPECIF Min 0.975" 0.906" 10'	Max 00 HRB 45 μ SUAL ICATION Max 0.998" 0.916"	1st Sample 74.6 84 48 OK INSPECTIC 1st Sample 0.992" 0.909"	2nd Sample 74.7 84 HRB 50 μ OK 0N RESULT 2nd Sample 0.993" 0.910"	ОК ОК ОК ОК REMARKS ОК ОК			

Figure A-19. 1-in. (25-mm) Diameter, 10-in. (254-mm) Long Threaded Rod, Test Nos. CMGS-1 and CMGS-2

Certified Material Test Report to BS EN 10204-2004 3.1 FOR ASTM A563, GRADE A HEX FIN NUTS

			REPORT DATE:2017-4	4-15
Tel:#(852)2542 3366 CUSTOMER:			MFG LOT NUMBER:	GL17036-5
SAMPLE SIZE: ACC. TO SIZE: 1"-8 HDG		M F1470-12 1: 10800 PCS	PO NUMBER:1202825	76
	17.17.17.17.17.17.17.17.17.17.17.17.17.1		PART NO: 367	19
STEEL PROPERTIES STEEL GRADE: ML08A1	x.		HEAT NUMBER:1623	764
CHEMISTRY SPEC:	C %*100	Mn%*100 P %*1000	S %*1000	
ASTM A563 GRADE A	0.55max	min 0.12max	0.15max 0.006	
TEST:	0.00	0.4 0.0	0.000	
	L			
DIMENSIONAL INSPECT	IONS	SPECIFICATI	ON: ASME-B18.2.2-2010	
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC. REL
****	*****		*****	*******
APPEARANCE	ASTM F812-2013		PASSED	22 0
THREAD	ASME B1.3-2003 2B		PASSED	15 0
WIDTH A/F	1.500-1.450		1.478-1.475	4 0
WIDTH A/C	1.732-1.653		1.722-1.720	4 0
HEIGHT	0.887-0.831		0.853-0.851	4 0
MECHANICAL PROPERT	'IES: 1/4" to 1 1/2"		SPECIFICATION: AST	M A563-07a GR-A
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESULT	ACC. REJ.
****	*****		*****	*****
HARDNESS :	ASTM F606-2014	B68-C32 Max(107HRB)	C20-23	15 0
PROOF LOAD :	ASTM F606-2014	Min68 Ksi	70-72 Ksi	<u>4 0</u>
CHARACTERISTICS *********	TEST METHOD	SPECIFIED ******	ACTUAL RESULT ***************	ACC. REJ. ******* ******
HOT DIP GALVANIZED	ASTM F2329-05	MIN 0.0017"	0.0020-0.0021	4 0
		HE METHODS PRESCRIE		
		THAT THIS DAVA HS:A		
INFORMATION PROVID	ED BY THE MATER	LIAL SUPPLIER AND OU	RZTESTING LABORAT	ORY.
		STARA - FITT	10	
		检验专用	早	
		- CHANLITY CON		
		(SIGNATURE OF Q.A.	LAB MGR.)	
		(NAME OF MANUFA	CTURER)	

Figure A-20. 1-in. (25-mm) Diameter Hex Nut, Test Nos. CMGS-1 and CMGS-2

CERTIFIED MATERIAL TEST REPORT FOR ASTM A307, GRADE A - MACHINE BOLTS

FACTORY: NINGBO ECONOMIC & TECHNICAL DEVELOPMENT REPORT DATE:2016/12/29 ZONE YONGGANG FASTENERS CO., LTD. R#17-507 H#816070039 ADDRESS: FuShan South Road No.17, BeiLun NingBo China BCT Cable Bracket Bolts MANUFACTURE DATE:2016/12/2 TEL#(852)25423366 CUSTOMER: FASTENAL MFG LOT NUMBER:M-2016HT927-9 SAMPE SIZE: ACC.TO Dimension: ASME B18.18-11; Mechanical Properties: ASTM F1470-12 MANU QTY: 4800PCS SHIPPED QTY: 4800PCS SIZE: 5/8-11X1 1/2 HDG HEADMARKS: 307A PLUS NY PO NUMBER:220023115 PART NO:1191919 STEEL PROPERTIES: HEAT NUMBER: 816070039 MATERIAL TYPE:Q195 Mn%*100 CHEMISTRY SPEC: C %*100 P %*1000 S %*1000 Grade A ASTM A307-12 0.29max 1.20 max 0.04max 0.15max TEST: 0.07 0.28 0.016 0.003 DIMENSIONAL INSPECTIONS SPECIFICATION: ASME B18.2.1 - 2012 Unit:inch SPECIFIED ACTUAL RESULT CHARACTERISTICS ACC. REL ******** **** ***** ****** VISUAL ASTM F788-2013 PASSED 22 0 THREAD PASSED 15 0 ASME B1.1-2003,3A GO,2A NOGO WIDTH FLATS 0.906-0.938 0.915-0.928 4 0 WIDTH A/C 1.033-1.083 1.048-1.057 4 0 0.378-0.444 HEAD HEIGHT 0.394-0.424 4 0 THREAD LENGTH 1.420-1.560 1.435-1.541 15 0 1.420-1.560 1.435-1.541 15 0 LENGTH MECHANICAL PROPERTIES: SPECIFICATION: ASTM A307-2012 GR-A ACC. SPECIFIED ACTUAL RESULT REJ. CHARACTERISTICS TEST METHOD **** ***** ***** ***** ******* ***** 0 CORE HARDNESS : ASTM F606-2014 69-100 HRB 76-79 HRB 4 WEDGE TENSILE: ASTM F606-2014 Min 60 KSI 65-69 KSI 4 0 CHARACTERISTICS TEST METHOD SPECIFIED ACTUAL RESULT ACC. REJ. COATINGS OF ZINC: SPECIFIATION: ASTM F2329-2013 ASTM B568-98(2104) Min 0.0017" 0.0017" -0.0018" 4 0 HOT DIP GALVANIZED ALL TESTS IN ACCORDANCE WITH THE METHODS PRESCRIBED IN THE APPLICABLE ASTM SPECIFICATION. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER, AND OUR TESTING LABORATORY. TREARCHICATER TERRER Maker's ISO# 00109Q16722R3M/3302 ZONE YORGANG FASTLENG CO., LTD (SIGNATURE 1940.A.) AB MGR.) (NAME OF MANUFACTURER)

Figure A-21. ⁵/₈-in. (16-mm) Diameter, 1¹/₂-in. (38-mm) Long Hex Head Bolts, Test Nos. CMGS-1 and CMGS-2

1. *

CERTIFICATE OF COMPLIANCE

· ·

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

	CUSTOMER	NAME:	TRINITY IN	IDUSTRIES								
	CUSTOMER	PO:	178379				01000		0.50000			
	e					C		PER #: PPED:	058326 08/03/2016			
	LOT#:	28899-B										
	SPECIFICAT	ION:	ASTM A30	7, GRADE A M	IILD CAR	BON S	TEEL BOI	LTS				
	TENSILE:	SPEC:	60,000 psi'	'min	RESULT	S:	77,659					
	HARDNESS	:	100 max				76,735 91.30					
	*Pounds Per Sq	juare Inch.					90.70					
				ON F-2329 HO	T DIP GA	LVANI	ZE					
	ROGERS GALVANIZE: 28899-B CHEMICAL COMPOSITION											
	MILL		GRADE	HEAT#	С	Mn	Р	,S	Si			
	NUCOR		1010	NF16202178	.12	.54	.007	.035	.17			
	-							3				
		ND DESCRI	PTION:									
	3,325	PCS 5/8	" X 14" GU	ARD RAIL BOL	т							
		P/N .354	0G .					÷				
	ROCKFORD, IL THIS DATA IS A FOR THE CON	LINOIS, USA A TRUE REPI TROL OF PR	. THE MATERIA RESENTATION	AL USED WAS ME OF INFORMATIO	ELTED AND IN PROVIDA	MANUF ED BY TI S FURNI	ACTURED I HE MATERIA ISHED ON T	IN THE U	SA. WE FUR PLIER, AND T	OUR FACILITY IN THER CERIFY THAT THAT OUR PROCED EXCEED ALL APPL	URES	
		NEBAGO	ust	20/6	AL	nda	S MUL	ton	Las	8/4/16	-	
×	Mertup	7 All	fue	_	- CNU							
NC	OFFICIA MERRY DTARY PUBLIC - COMMISSION EXPL	STATE OF IL	LINOIS }									

Figure A-22. ⁵/₈-in. (16-mm) Diameter, 14-in. (356-mm) Long Guardrail Bolts, Test Nos. CMGS-1 and CMGS-2

CHARTER STEEL A Division of ning Company. Inc. EMAIL

1658 Cold Springs Road Saukville, Wisconsin 53080 (262) 268-2400 1-800-437-8789 Fax (262) 268-2570

Melted in USA Manufactured in USA

CHARTER STEEL TEST REPORT

	Cust P.O.	91893
	Customer Part #	AXA18CB-5/16
	Charter Sales Order	30124802
	Heat #	20479830
	Ship Lot #	2117839
	Grade	1018 X AK FG RHQ 5/16
wn Wire Technologies	Process	HR
rei Ave.	Finish Size	5/16
wn.PA-15906	Ship date	13-JAN-17

Johnston 124 Laur Johnston

I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and that it satisfies these requirements. The recording of faise, fictibious and fraudulent statements or entries on this document may be punishable as a felony under federal statute.

				162116	SURE OF HER	LOC# 204/	96-30				
Lab Code: 125544 CHEM	C	MN	Р	5	81	NI	CR	MO	CU	8N	۷
%Wt	.16	.54	.008	.004	.060	.03	.05	.01	.04	.003	.001
	AL	N	B	TI	NB						
	.051	.0050	.0001	.001	.001						

CAT DI=.35

kue Maan Value 88.6 TENSILE LAB = 036
72 RA LAB = 0356-04
ARB (Inch)=.000
-

manuractured per Charter Steel Quality Manual Rev Date 12/12/13 Charter Steel cartifies this product is indistinguishable from background radiation levels by having process radiation detectors in place to measure for the presence of radiation within our process & products. Meets customer specifications with any applicable Charter Steel exceptions for the following customer documents: Customer Document = RW007-RW100 Revision = Dated = 08-NOV-13

Additional Comments:

Melt Source: Charter Steel This MTR supersedes all previously dated MTRs for this order genalounal Cuyahoga Heights, OH, USA Janice Barnard Division Mgr. of Quality Assurance barnard J@chartersteel.com Rem: Load1, Fax0, Mail0 Printed Date : 01/13/2017 Page 1 of 2

Figure A-23. 5%-in. (16-mm) Diameter Guardrail Nuts, Test Nos. CMGS-1 and CMGS-2

CHARTER STEEL A Division of Charter Manufacturing Company, Inc. LOAD

.

1658 Cold Springs Road Saukville, Wisconsin 53080 (262) 268-2400 1-800-437-8789 Fax (262) 268-2570

CHARTER STEEL TEST REPORT

Melted in USA Manufactured in USA

						Cust P.O.					P370
					Custo	mer Part #					1009
			<i></i>		Charter S	ales Order					700758
						Heat #					204607
						Ship Lot #					32421
Rockfor	d Bolt & S	Steel				Grade				1010 A A	K FG RHQ 19
126 Mill	St.					Process					HR
Rockfor	d,IL-6110	1				Finish Size		1			19/
Kind At	tn :Linda	McComas	5			Ship date					01-NOV-
nereby certily that the se requirements.	The recordin	a of false. fic	rein nas bee ctitious and l	in manufac fraudulent i	tured in acco	entries on th	the specific	ations and a	unishable a	ted below an	id that it satisfie ider lederal stati
		· ·		Test r	esults of Hea	t Lot # 20460	0750	<u></u>			*
ab Code: 125544		- 101							-		
HEM Wt	C .09	- MN .33	P .006	S	SI .060	NI ,03	CR .06	MO .01	CU .08	SN .006	V .001
m.	AL	N	В	TI	NB	.05	.00	.01	.00	-000	.001
	.025	.0070	.0001	.001	,001						
				14							
				Test	sults of Rolli	ng Lot # 211	0397				
											~
REDUCTION R	IATIO=177:1										
				-							
			1								
					a 1						
				•							
								*			
											1.4
			·								
					12						
					d.						
1											
	· · ·										
				10.5	4		a				
								· · · · ·			-
Melt Source:							This M	TR superse	des all previ	ously dated	MTRs for this or
Charter Steel		1 2 4	•		-	: .				Barnard	
Cuyahoga Heights	, OH, USA		·** · ·	+			2		0		
	1. 1. 1.	1.	4		The second			Ianice Barna	ard Division	Mgr. of Qual	ity Assurance
2 A						DITED				a danata di si	
						DITED			arnardJ@ch		òm
Rem: Load1, Fax0	Mail0	÷. :		ан сай 1. н	Testing I	aboratory					òm

Figure A-24. ⁵/₈-in. (16-mm) Diameter, 1¹/₄ in. (32-mm) Long Guardrail Bolt, Test Nos. CMGS-1 and CMGS-2

Certificate of Compliance

600 N County Line Rd Elmhurst IL 60126-2081		University of Nebraska Midwest Roadside Safety Facility	Purchase Order E000357170		Page 1 of 1
630-600-360 chi.sales@n	00 ncmaster.com	M W R S F 4630 Nw 36TH St Lincoln NE 68524-1802	Order Placed By Shaun M Tighe		
		Attention: Shaun M Tighe Midwest Roadside Safety Facility	McMaster-Carr Number 2098331-01		
Line	Product		Ordered	Shipped	
1 97812A	109 Steel Double-Heade Packs of 5	ed Nail Size 16D, 3" Length, .16" Shank Diameter, 200) Pieces/Pack, Pack s	555	

Certificate of compliance

This is to certify that the above items were supplied in accordance with the description and as illustrated in the catalog. Your order is subject only to our terms and conditions, available at www.mcmaster.com or from our Sales Department.

Sal Weich

Sarah Weinberg Compliance Manager

Figure A-25. 16D Double Head Nail, Test Nos. CMGS-1 and CMGS-2

													350	000	
		TR	INIT	425	GHWAY East O'C Lima, Ohi 419-227	Connor iio 4580	Ave.	S, LLO	C					a 9	
					MATH	ERIAT	L CERT	TFIC	ATIO	N					
Cust	omer:		Stock	1	Date: December 16, 2015						_				
				Invoice Number:						-					
Part Number:		3500G					Lot Nu	mber: antity:		16,70		Pcs.			
	-	5/8" x 10" G.R.			Heat	t [51510	1000	702		1 00.			-
Descri	MON:	0/0	Bolt	0.11.	Numbe	ers:			1	-					
Heat	C .09	MN .33	P	S			R MO	CU	SN	V .001	AL	N .007	B	TI	T
<u></u>					M	ATERI	IAL CHE	MIST	RY	1	0.				
	1		-							1		-	T		1
															Ì
															1
				D	TATING	ODP	DOTECT	TYPE (TA OF	INC					
WE HER	*** THE N EBY CI	**THIS 1ATEF ERTIF	PROD HAL U Y THA	t Ave.T UCT W SED IN I TO TI	REMETH	/ Mils) UFACTU ODUCT OF OUF (JRED IN T WAS MEI	2. HE UN TED A EDGE A	52 ITED S ND MA	(2.0 Miles	OF AN TURE	D IN T	HE U.S.	HEREI	P

Figure A-26. ⁵/₈-in. (16-mm) Diameter, 10-in. (254-mm) Long Guardrail Bolt, Test Nos. CMGS-1 and CMGS-2

Feb 15th 2017

SOLD TO: GREGORY INDUSTRIES, INC. 4100 13TH ST, SW CANTON, OH. 44710 SHIP TO: HIGHWAY – FINISHED GOODS GREGORY INDUSTRIES, INC. ATTN: STEVE PENNINGTON CANTON, OH 44710

R#17-700

CERTIFICATON BCT Cables Yellow Paint

CGLP ORDER# 256284 GREGORY PO# 36454

THIS LETTER AND THE ENCLOSED ATTACHMENTS ARE TO CERTIFY THAT THE FOLLOWING ITEMS WERE 100% MANUFACTURED IN THE UNITED STATES OF AMERICA.

1,330 PCS, PART# 3012G, 3/4IN X 6FT 6IN DOUBLE SWAGE GUARD RAIL ASSEMBLYS.

THEY SHOW THE DOMESTICITY OF ALL MATERIAL USED, 100% MELTED & MANUFACTURED IN THE USA. THESE ITEMS ARE HOT DIPPED GALVANIZED TO ASTM-153 SPECIFICATIONS AND STANDARDS, GALV PROCESS ALSO TOOK PLACE IN THE U.S.A.

ATTACHMENTS:

(WIRE ROPE) WIRECO WORLD GROUP REEL# 428-671806-1; HEAT# .15R582807; 16R584001; 72987C; 16R586548; 73253F; 16R588160; 16R584967; 16R585464; 16R586547; 14R574048; 14R571682; 16R586549; 16R586401; (ROCKY MOUNTAIN STEEL / EVRAZ)

(END FITTINGS) REMLINGER MFG: HEAT#S 75063022; 75062074; 765063075 (GERDAU NORTH AMERICA)

VERY TRULY YOURS

BILL KOTARSKI GEN MGR CLEV OFFICE

HEADQUARTERS

FLINT

CLEVELAND

BRANCH

12801 UNIVERSAL DRIVE TAYLOR, MI 48180 NEW PH# (734) 947-4000 NEW FAX# (734) 947-4004 G2427 E. JUDD ROAD BURTON, MI 48529 PH# (810) 744-4540 FAX# (810) 744-1588 5213 GRANT AVE CLEVELAND, OH 44105 PH# (216) 641-4100 FAX# (216) 641-1814

BRANCH

Figure A-27. BCT Anchor Cable, Test Nos. CMGS-1 and CMGS-2

Certified Material Test Report to BS EN ISO 10204-2004 3.1

FOR USS FLAT WASHER HDG

COUNTRY OF ORIGIN: CHINA CUSTOMER: FASTENAL FACTORY NAME: IFI & MORGAN LTD, FACTORY ADDRESS: Chang'an North Road, Wuyuan Town, Haiyan, Zhejiang, China

DESCRIPTION: 1 INVOICE NBR: TD16680155 PART NBR.: 33188 LOT NO.: 16H-168236-30

DATE: 2016-10-08 ORDER NBR. 210114135 QUANTITY:3240PCS

DIMENSIONS

(UNIT:INCH)

		RESULT									
	STANDARD	1	2	3	4	5					
INSIDE DIA	1.055-1.092	1.068	1.068	1.067	1.069	1.068					
OUTSIDE DIA	2.493-2.530	2.514	2.513	2.514	2.514	2.511					
THICKNESS	0.136-0.192	0.146	0.149	0.152	0.152	0.147					

WE HEREBY CERTIFY THAT THIS WAS PRODUCED AS PER CUSTOMER'S REQUIREMENT. CHARACTERISTICS SPECIFIED ACTUAL RESULT ACC. REJ. HOT DIP GALVANIZED ASTM F2329

Min 43 um 48-64 um 8 0

NOTE

1. QUANTITY OF SAMPLES: 5 PCS 2. JUDGEMENT: GOOD 3. CHIEF INSPECTOR: QUANLITY CONTROL

Figure A-28. BCT Cable Washers, Test Nos. CMGS-1 and CMGS-2

FAS				LOT NO. 371123B			Post Office Box 6100 Saint Joe, Indiana 46785 Telephone 260/337-1600
TEST REPOR	TENAL COMPAN T SERIAL#	FB4885	56	NUCOR ORDER # CUST PART #	978943 38210		
	T ISSUE DATE						
DATE SHIPP		8/17/		CUSTOMER P.O.		/ DH	\ \
	B SAMPLER:			LUMMER, LAB TECH			X
				REPORT ********	****		Đ.
NUCOR PART	NO QUA		LOT NO.	DESCRIPTION			1
175647		3600	371123B			N n	<i>i</i>
MANUFACIUR	E DATE 1/07	/16		HEX NUT H.D.G./	GREEN LUBE	Color!	
CHEMISTR	v		MATERIAL	GRADE -1045L			
MATERIAL	HEAT	**CH			FAT ANALYSTS)	BY MATERIAL SUPPLIER	
NUMBER	NUMBER	C		P S SI			EL - SOUTH CAROL
RM030412	DL15105591			.005 .020 .2			
MECHANIC	AL PROPERTIE	S IN ACC	ORDANCE WI	TH ASTM A563-07a			
SURFACE	CORE	PR	OOF LOAD	TENSI	LE STRENGTH		
HARDNESS	HARDNESS	909	00 LBS		DEG-WEDGE		
(R30N)	(RC)			(LBS)	STRESS (PS	SI)	
N/A	26.6		PASS	N/A	N/A		
N/A	27.0		PASS	N/A	N/A		
N/A	27.6		PASS	N/A	N/A		
N/A	28.9		PASS	N/A	N/A		
N/A	26.7		PASS	N/A	N/A		
AVERAGE VA	LUES FROM TE	STS					
	27.4						
PRODUCTION	LOT SIZE	9080	0 PCS				
VISUAL I	NSPECTION IN	ACCORDA	NCE WITH A	STM A563-07a		80 PCS. SAMPLEI	D LOT PASSED
COATING	- HOT DIP GA	LVANIZED	TO ASTM F	2329-13 - GALVAN	IZING PERFORMEN	D IN THE U.S.A.	
1. 0.002	94 2. 0.	00311	3. 0.00	346 4. 0.002	35 5. 0.0021	18 6. 0.00270 7	7. 0.00353
8. 0.003	22 9. 0.	00406	10. 0.00	269 11. 0.002	75 12. 0.0031	15 13. 0.00487 1	14. 0.00253
15. 0.004	16						
AVERAGE TH	IICKNESS FROM	15 TEST	S .00318				
HEAT TREAT	MENT - AUSTE	NITIZED,	OIL QUENC	HED & TEMPERED (MIN 800 DEG F)		
	INS PER ASME						
CHARA	CTERISTIC	#SAMPL	ES TESTED	MINIMUM	MAXIMUM		
	Across Corn	ers	8	1.824	1.844		
Thick	ness		32	0.980	1.001		

ALL TESTS ARE IN ACCORDANCE WITH THE LATEST REVISIONS OF THE METHODS PRESCRIBED IN THE APPLICABLE SAE AND ASTM SPECIFICATIONS. THE SAMPLES TESTED CONFORM TO THE SPECIFICATIONS AS DESCRIBED/LISTED ABOVE AND WERE MANUFACTURED FREE OF MERCURY CONTAMINATION. NO INTENTIONAL ADDITIONS OF BISMUTH, SELENIUM, TELLURIUM, OR LEAD WERE USED IN THE STEEL USED TO PRODUCE THIS PRODUCT. THE STEEL WAS MELTED AND MANUFACTURED IN THE U.S.A. AND THE PRODUCT WAS MANUFACTURED AND TESTED IN THE U.S.A. PRODUCT COMPLIES WITH DFARS 252.225-7014. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. THIS CERTIFIED MATERIAL TEST REPORT RELATES ONLY TO THE ITEMS LISTED ON THIS DOCUMENT AND MAY NOT BE REPRODUCED EXCEPT IN FULL.

MECHANICAL FASTENER CERTIFICATE NO. A2LA 0139.01 EXPIRATION DATE 12/31/17

NUCOR FASTENER A DIVISION OF NUCOR CORPORATION

Fegueen W. Kenn JOHN W. FERGUSON QUALITY ASSURANCE SUPERVISOR

Page 1 of 1

Figure A-29. BCT Cable Nuts, Test Nos. CMGS-1 and CMGS-2

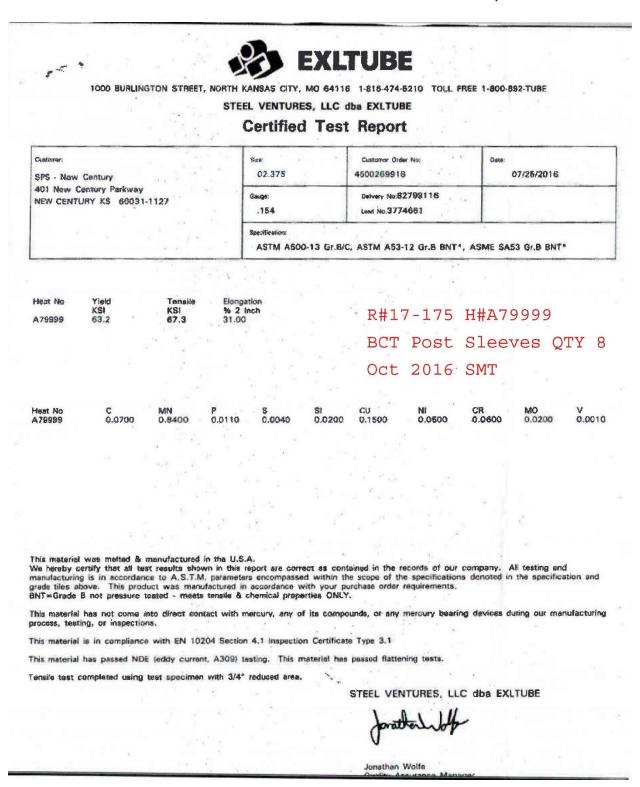


Figure A-30. BCT Post Sleeves, Test Nos. CMGS-1 and CMGS-2

Certified Analysis

Trinity Highway Products, LLC		
550 East Robb Ave.	Order Number: 1269489 Prod Ln Grp: 3-Guardrail (Dom)	
Lima, OH 45801 Phn:(419) 227-1296	Customer PO: 3346	Asof: 11/7/16
Customer: MIDWEST MACH.& SUPPLY CO.	BOL Number: 97457 Ship Date:	1601.11/110
P. O. BOX 703	Document #: 1	
	Shipped To: NE	
MILFORD, NE 68405	Use State: NE	
Project: RESALE		

Qty	Part#	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	С	Mn	Р	s	Si	Cu	Cb	Cr	Vn	ACW
	701A	ANCHOF Box	A-36		1	JK16101488	56,172	75,460	25.0	0.160	0.780	0.017	0.028	0.200	0.280	0.001	0.140	0.028	4
	701A		A-36			535133	43,300	68,500	33.0	0.019	0.460	0.013	0.016	0.013	0.090	0.001	0.090	0.002	4
4	729G	TS 8X6X3/16X8'-0" SLEEVE	A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
20	738A	5'TUBE SL.188X6X8 1/4 /PL	A-36		2	4182184	45,000	67,900	31.0	0.210	0.760	0.012	0.008	0.010	0.050	0.001	0.030	0.002	4
	738A		A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
6	749G	TS 8X6X3/16X6'-0" SLEEVE	A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	4
6	782G	5/8"X8"X8" BEAR PL/OF	A-36			DL15103543	58,000	74,000	25.0	0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	4
20	783A	5/8X8X8 BEAR PL 3/16 STP	A-36			PL14107973	48,167	69,811	25.0	0.160	0.740	0.012	0.041	0.190	0.370	0.000	0.220	0.002	4
	783A		A-36			DL15103543	58,000	74,000	25.0	0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	4
45	3000G	CBL 3/4X6'6/DBL	HW			119048													
7,000	3340G	5/8" GR HEX NUT	HW			0055551-116146													
4,000	3360G	5/8"X1.25" GR BOLT	HW			0053777-115516													
450	3500G	5/8"X10" GR BOLT A307	HW			28971-В													
1,225	3540G	5/8"X14" GR BOLT A307	HW			29053-В													

2 of 5

Figure A-31. North-Side Anchor Bearing Plate and Anchor Bracket Assembly, Test Nos. CMGS-1 and CMGS-2

Certified Analysis 52/52 Trivity Highway Products, LLC PAGH Order Number: 1095199 2548 N.E. 28th St. Ft Worth, TX Customer PO: 2041 Aso£ 6/20/08 BOL Mumber: 24481 Customer: MIDWEST MACH & SUPPLY CO. P. O. BOX 81097 Document #: 1 Shipped To: NE Use State: KS LINCOLN, NE 68501-1097 Project RESALE MIDWEST MACHINERY Field 19 Part# Description Spec CL TY Rest Code/ Heat# Els Ch Cr Vo ACW Qiy C REAR . \$ Si Ch 84964 64.230 81,300 25 60 12/6'3/8 M-180 A 25.4 0.180 0.720 0.012 0.001 0.000 0.080 0.000 0.050 0.000 701A .25K11.75K16 CAB ANC A-36 4153095 44,900 60.800 34.0 0.240 0.759 0.012 0.003 0.020 0.020 0.000 0.040 0.002 4 ---- 20 74,000 \$7,000 25.2 0.050 0.670 0.013 0.005 0.030 0.220 0.000 0.060 0.021 4 10 742G GO TUBE SLI. 188X8X6 A-500 A871160 23.5 0.120 0.030 0.010 0.005 0.020 0.230 0.000 0.070 0.006 4 den 20 7820 3/8"#8"X8" BEAR PL/OF A-36 6105195 46,700 69,900 40 9070 12/BUFFER/ROLLED M-160 A 10049 54,200 73,500 25,6 0.160 0.700 0.011 0.008 0.020 0.200 0.000 0.100 0.000 4 482-761-3288 Upon delivery, all materials subject to Trimity Highway Products , LLC Storage Stain Policy No. LG-002. ALL STEEL USED WAS MELTED AND MANUPACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT. ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 ALL OTHER GALVANIZED MATERIAL CONFORMS WITH ASTM-123. 36 BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARB GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. 16: 3/4" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED SIUD I" DIA ASTM 449 AASHTO M30, TYPE II BREAKING 36/04/2009 STRENGTH-49100 LB Sinte of Texas, County of Tarrant. Swom and subscribed before me this 20th day of June, 2008 Notary Public: RACHEL R. MEDINA / Notary Public Trinity Highway Products . LLC Commission Expires Stephinia anala State of Texas Certified By: Ay Commission Repires

Figure A-32. South-Side Anchor Bearing Plate and North-Side Ground Strut Assembly, Test Nos. CMGS-1 and CMGS-2

189

				Certifie	a ma	19515				Trim		6	
inity Hig	ghway P	roducts, LLC											
50 East R	obb Avc).		Order 1		1	2						
ma, OH 4	5801			Custo	Ā	s of: 3/7/14							
ustomer:	MIDŴ	EST MACH.& SUPPL	Y CO.	BOLI	BOL Number: 80278 Ship Date:								
	P. O. B	OX 703		Doct	ament #: 1								
				Ship	pped To: NE								
	MILFO	RD, NE 68405		Us	se State: KS								
roject:	STOCI	K ·											
	Part #	Description		TY Heat Code/ Heat	Yield	TS	Elg C M				Vn A	CW	
36	749G	TS 8X6X3/16X6'-0" SLEP	EVE A-500	0173175	55,871	74,495	31.0 0.160 0.6	10 0.012 0.009	0.010 0.030	0.000 0.030).000 4		
20	3000G	CBL 3/4X6'6/DBL	HW	98790									
22	9852A	STRUT & YOKE ASSY	A-1011-SS	.163375	48,380	64,020	32.9 0.190 0.5	20 0.011 0.003	0.030 0.110	0.000 0.050).000 4	F	
	9852A		A-36	11237730	45,500	70,000	30.0 0.170 0.5	00 0.010 0.008	0.020 0.080	0.000 0.070	0.001 4	ı.	
		Ground Strut	: Green Pair	it .									
		R#15-0157 Se	eptember 201	4 SMT		*							
In an dalir		matariala subject to Tris	ity Highway Product	s, LLC Storage Stain Pol	ion No. LC 00	2.							
-	• •	5		SA AND COMPLIES WIT	•								
				JRAL STEEL MEETS A									
				RFORMED IN USA AND (US DOMESTIC SHIPMEN		TH THE "BUY	AMERICA ACT"					i.	
				8 & ISO 1461 (INTERNAT		ENTS)							
INISHEL	GOOD	PART NUMBERS EN	DING IN SUFFIX B	P, OR S, ARE UNCOAT	ΓED								
BOLTS CO	OMPLY	WITH ASTM A-307 S	PECIFICATIONS AI	ND ARE GALVANIZEI	D IN ACCORE	DANCE WITH	H ASTM A-153, 1	UNLESS OTH	IERWISE ST	TATED.			
				D ARE GALVANIZED : OR F-844 AND ARE GAL			and a second		RWISE STA	TED.			
				35 STEEL ANNEALED ST									
	H - 4600	OTB											

Figure A-33. South-Side Ground Strut Assembly, Test Nos. CMGS-1 and CMGS-2

52/52	Trivity Highway Products, LLC	C	ertified Ana	Íysis		A MARTINE FR								
PAGE	2548 N.E. 28th St.		Order Number: 1095	199										
a.	Ft Worth, TX		Customer PO: 2041	-		Asof: 6/20/08								
	Customer: MIDWEST MACH & SUPP	LY CO.	BOL Number: 2448	1		123 D1. ULCOMEN .								
	P. O. BOX 81097		Document #: 1											
			Shipped To: NE			n								
	LINCOLN, NE 68501-1097		Use State: KS			- y 6								
	Project: RESALE													
ERY														
MACHINERY	Qty Part# Description	Spar CL TY Heat C	ade/Haat# Yield	15	Elg C Ma F	S SE Co Cb Cr Vo ACW								
	23 6G 12/63/8	64-190 A 34964	64,230	81,300	25.4 0.190 0.720 0.012 0.	001 0.040 0.020 0.000 0.050 0.000 4								
MIDWEST		ANC A-36 415309	5 44,900	60,800	34.0 0.240 0.750 0.012 0.	003 0.020 0.020 0.000 0.040 0.002 4								
MID	10 742G 60 TUBE SLJ.185X8	1X6 A-500 A8P114	0 74,000	\$7,000	25.2 0.050 0.670 0.013 0.	005 0.030 0.220 0.000 0.060 0.021 4								
	4- 20 7820 3/8"X8"X6" BEAR F	L/OF A-36 610519	5 46,700	<i>59,900</i>	23.5 0.180 0.830 0.010 0.	005 0.020 0.230 0.040 0.070 0.006 4								
	40 907G 12/BUFFER/ROLLE	D M-160 A L0049	54,200	73,500	25,0 0.160 0.700 0.011 0.	608 0.020 0.200 0.000 0.100 0.200 4								
						<u>.</u>								
8														
-326														
761	Upon delivery, all materials subject to 7	Irizity Highway Products , LLC S	torage Stain Policy No. LG-0	62.		<u>.</u>								
482-761-3288	ALL STEEL USEN WAS MELTED AND	MANUPACTURED IN USA AND (OMPLIES WITH THE BUY A	MERICA ACT		5								
4	ALL GUARDRAIL MEETS AASHTO ALL OTHER GALVANIZED MATER													
36	BOLTS COMPLY WITH ASTM A-30	7 SPECIFICATIONS AND ARE	GALVANIZED IN ACCOR											
16:36		NUTS COMPLY WITH ASTM A-563 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED.												
	34" LIA CABLE 5X19 ZENC (COATED S STRENGTH-49100 LB	3/4" DIA CABLE 6K19 ZENC COATED SWAGED END AISI C-1035 STEEL ANNEALED SYUD 1" DIA ASTM 449 AASHTO M30, TYPE II BREAKING STRENGTH - 49100 LB												
/201	Sinte of Texas, County of Tarrant. Swom a	ed subscribed before me this 20th day	of June, 2008											
06/04/2009	Notary Public:	CHEI R MEDINA T	8 ¥	See Trial	Burdents Y 3 /3									
96	Commission Expires (* 1)	Notary Public Nate of Texas Compliate Expires		nty Highway . lified By:	Products, LLC Stee	anie Onal.s								

Figure A-34. South-Side Anchor Bearing Plate, Test Nos. CMGS-1 and CMGS-2

191

Certified Analysis

550 East Rob	b Ave.	Order Number:	1269489	Prod Ln Grp: 3-Guardrail (Dom)	
Lima, OH 458	01 Phn:(419) 227-1296	Customer PO:	3346		As of: 11/7/16
Customer: N	AIDWEST MACH.& SUPPLY CO.	BOL Number:	97457	Ship Date:	AS 01: 11///10
Р	. O. BOX 703	Document #:	1		
		Shipped To:	NE		
N	ALFORD, NE 68405	Use State:	NE		
Project: R	RESALE				

Qty	Part #	Description	Spec	CL	TY	Heat Code/ He	at	Yield	TS	Elg	С	Mn	P	s si	Cu	Cb Cr	Vn	ACW
175	3580G	5/8"X18" GR BOLT A307	HW		ale E	29145-B												
6	6696G	CBL 5/8"X14'4.75/DBL BTN	HW			248853												
400	6740B	PLYMR BLK 6X12X14 MT	HW			27950												
4	9852A	STRUT & YOKE ASSY	A-36			195070		52,940	69,970	31.1	0.190	0.520	0.014 0.00	4 0.020	0.110	0.000 0.050	0.000	4
7	12379G	T12/12'6/SPEC/S 34'RCX	RHC		2	L34713												4
			M-180	Α	2	172876		55,930	72,020	31.4	0.190	0.720	0.014 0.00	2 0.02	0.130	0.000 0.080	0.000	4
6	12383G	T12/12'6/6'3/SPEC SLOTS/S	M-180 RHC	A	2	172876 L33814		55,930	72,020	31.4	0.190	0.720	0.014 0.00	2 0.02	0.130			
			M-180	A		182997		58,340	76,890	26.9	0.180	0.730	0.014 0.00	4 0.01	0.130	0.000 0.060	0.001	4
			M-180	A		182998		60,310	78,910	25.4	0.200	0.730	0.012 0.00	6 0.01	0.140			4
			M-180	A		182997		58,340	76,890	26.9	0.180	0.730	0.014 0.00	4 0.01	0.130			
3	12385G	T12/12'6/SPEC/S 5'RCX	M-180	A	2	182998 L34416		60,310	78,910	25.4	0.200	0.73(0.012 0.00	6 0.01	0.140			
			M-180	A	2	208318		64,140	81,540	24.5	0.190	0.720	0.011 0.00	3 0.02	0.110	0.000 0.060	0.000	4
24	19361G	BNT PL 3/16X12-5/8X5-1/2	A-36			B4M5475		46,800	70,400	29.1	0.180			3 0.060			Conder and	

Upon delivery, all materials subject to Trinity Highway Products, LLC Storage Stain Policy QMS-LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT , 23 CFR 635.410. ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED.

Figure A-35. Anchor Bracket Assembly, Test Nos. CMGS-1 and CMGS-2

Trinity Highway Products, LLC

PLANT	TRUCK	DRIV	Contraction of the Contraction o	A CARDINAL AND A CARD	TAX TAX	PONUN		DAT	10 10 10 10 10 10 10 10 10 10 10 10 10 1	TIME	TICKET
4 Customer	0212	926	4 0000	3 3 Delivery Address		HOLLOWAY		8/17/1 cial Instr		9:20 AM	4197075
CIAMID SAFETY	WEST R	OADSI	DE	4630 NW 36TH						EAR HAN	GAR
		Contraction of the local state	ORDERED	PRODUCT	PRODUCT	DESCRIPTIC	N U		JNIT PR		PRICE
9.00		9.00	18.00	470031PF	47BD (1PF) WO/R		yd	\$11	18.91	\$1,070.19
	led On Job r's Reques		SLUMP	Notes:				KET SL	JBTOTA	NL I	\$1,070.19 \$0.00
			4.00 in					KET TO		12.4	\$1,070.19
											\$1,070.19
\wedge	CALITIO					T	erms &	Cond	itions		
Contains Po concrete or g contact with Equipment (thoroughly w	KEEP rtland ceme grout may c skin. Alway PPE). In ca rith water. It	CHILE ent. Fres ause sk vs wear a se of co	SH CONCRI DREN AWA hly mixed cem- in injury. Avoid appropriate Per ntact with eyes n persists, seef	ent, mortar, prolonged sonal Protective or skin, flush	the mix to exce acceptance of thereof. Cylind drawn by a lice Ready Mixed C unless express personal or pro The purchaser	s produced with gths are based ed this slump, in any decrease in retests must be nsed testing lal oncrete Compa ly told to do so perty damage f s exceptions at om time of deli iny such claim.	the ASTM on a 3" slu except under compress handled a and/or ce ny will not by custome hat may oc d claims s very. In suc Seller's lia	standard imp. Drive er the aut ive streng ccording or trified tech deliver ar er and cus cur as a r hall be de ch a case, bility shal	specifical ers are not horization th and an to ACI/AS nnician. by product stomer as result of an seller sha l in no ever	t permitted of the cust y risk of los TM specific beyond an sumes all li ny such dirived unless all be given	to add water to omer and their is as a result cations and y curb lines ability for any active. made in writing full opportunity
Contains Po concrete or g contact with Equipment (thoroughly w attention pro	KEEP rtland ceme grout may co skin. Alway PPE). In ca rith water. If mptly.	CHILI ent. Fres ause sk rs wear a se of co f irritation	DREN AWA hly mixed cem- in injury. Avoid appropriate Per ntact with eyes n persists, seel	ent, mortar, prolonged sonal Protective or skin, flush c medical	concrete. Strer the mix to exce acceptance of thereof. Cylindi drawn by a lice Ready Mixed C unless express personal or pro The purchaser within 3 days fr to investigate a price of the ma	s produced with gths are based ed this slump, any decrease in retests must be nsed testing lal oncrete Compu- ly told to do so perty damage to s exceptions at om time of deli ny such claim. terials against t	the ASTM on a 3" sluexcept und compress handled a o and/or ce iny will not by custom- hat may oc d claims s very. In suc Seller's ill which any o	standard imp. Drive er the aut ive streng ccording i tified tecl deliver ar ar and cus icur as a r hall be de th a case, bility shal daims are	specifical ars are noi horization th and an to ACI/AS nnician. by product stomer as: result of an emed wai seller sha l in no even made.	t permitted of the cust y risk of los TM specific beyond an sumes all li ny such dirived unless all be given	to add water to omer and their sas ar aresult cations and y curb lines ability for any active. made in writing full opportunity the purchase
Contains Po concrete or g contact with Equipment (thoroughly w attention pro	KEEP rtland ceme grout may c skin. Alway PPE). In ca rith water. It	CHILI ent. Fres ause sk rs wear a se of co f irritation	DREN AWA) hly mixed cem- in injury. Avoid appropriate Per ntact with eyes	ent, mortar, prolonged sonal Protective or skin, flush c medical	concrete. Strer the mix to exce acceptance of thereof. Cylindi drawn by a lice Ready Mixed C unless express personal or pro The purchaser within 3 days fr to investigate a price of the ma	s produced with gths are based ed this slump, any decrease in rests must be nsed testing lat oncrete Compy ly told to do so perty damage t s exceptions al on time of deli ny such claim. terials against t	the ASTM on a 3" slu except und compress handled a and/or ce ny will not by custom- hat may oc d claims s ery. In suc Seller's lia which any oc	standard imp. Drive er the aut ive streng ccording i tified tecl deliver ar ar and cus icur as a r hall be de th a case, bility shal daims are	specifical ars are not horization th and an to ACI/AS mician. ty product stomer as: result of an emed wai seller sha l in no eve made.	t permitted of the cust y risk of los TM specific sumes all li ny such dira ved unless all be given ent exceed	to add water to omer and their sas ar aresult cations and y curb lines ability for any active. made in writing full opportunity the purchase
Contains Po concrete or g contact with Equipment (thoroughly w attention pro	KEEP rtland ceme grout may co skin. Alway PPE). In ca rith water. If mptly. DESCRIP 47B GRAN 47B ROCH	CHILE ent. Fressause sk rause sk rs wear a se of co f irritation f irritation	DREN AWAN hly mixed cemmin in injury. Avoid appropriate Per ntact with eyes n persists, see DESIGN Q 1975.0 Ib 840.0 Ib	ry REQUIRE 17994.9 lb 7635.6 lb	concrete. Strer the mix to exce acceptance of , thereof. Cylindi drawn by a lice Ready Mixed C unless express personal or pro The purchaser within 3 days fr to investigate a price of the ma	s produced with gths are based ed this slump, any decrease in er tests must be nsed testing lai oncrete Common ly told to do so perty damage t s exceptions ar om time of deli ny such claim. terials against t ED % VA b -0.19 b 0.105	the ASTM on a 3" slu except undi- compress handled a and/or ce inny will not by custome hat may oc Seller's lia vhich any oc R % MO % 1. 6 1.	standard imp. Drive er the aut ive streng ccording i trified teck deliver ar er and cus cur as a r hall be de h a case, bility shal daims are	specifical ars are not horization th and an to ACI/AS mician. ty product stomer as: esult of an emed wai seller sha in no eve made. ACTUA	t permitted of the cust y risk of lost TM specific beyond an sumes all lin ry such dir ved unless all be given ant exceed	to add water to omer and their sas ar aresult cations and y curb lines ability for any active. made in writing full opportunity the purchase
Contains Po concrete or g contact with Equipment (thoroughly w attention pro MATERIAL G47B L47B CEM1PF	KEEP rtland ceme grout may of skin. Alway PPE). In ca rith water. If mptly. DESCRIP 47B GRAV 47B ROCH 1PF CEMI	CHILE ent. Fressause sk rause sk rs wear a se of co f irritation f irritation	DREN AWAN hly mixed cemmin in injury. Avoid appropriate Per ntact with eyes n persists, see DESIGN Q 1975.0 lb 840.0 lb 658.0 lb	TY REQUIRE 17994.9 lb 7635.6 lb 5922.0 lb	concrete. Stren the mix to exce acceptance of , thereof. Cylindi drawn by a lice Ready Mixed C unless express personal or pro The purchaser within 3 days fr to investigate a price of the ma	s produced with gths are based ed this slump, any decrease in er tests must be nsed testing lat oncrete Common ly told to do so perty damage 1 ow time of deli ny such claim. terials against to ED % VA b -0.19 b 0.10° b -0.37	the ASTM on a 3" slu except undi- compress handled a and/or ce- ny will not by custome hat may oc d claims s very. In suc Seller's lia vhich any oc R % MO % 1. %	standard imp. Drive er the aut ive streng ccording i rtified teck deliver ar er and cus cur as a r hall be de hall be de	specifical ers are not horization thand an to ACI/AS nnician. ny product stomer ass result of an emed wai seller sha seller sha in no eve made. ACTUA 2	t permitted of the cust y risk of lost TM specific beyond an sumes all li ny such dirived wed unless all be given ant exceed AL WATER 26.3 gl 9.1 gl	to add water to omer and their sas ar aresult cations and y curb lines ability for any active. made in writing full opportunity the purchase
Contains Po concrete or g contact with Equipment (thoroughly w attention pro MATERIAL G47B L47B CEM1PF WATER LRWR	KEEP rtland ceme grout may o skin. Alway PPE). In ca rith water. If mptly. DESCRIP 47B GRAV 47B ROCH 1PF CEMI WATER POZZ 322	CHILE ent. Fres ause sk rs wear a se of co f irritation f irritation TION /EL < TION /EL < N LOV	DREN AWAN hly mixed cermi in injury. Avoid appropriate Per natat with eyes n persists, see DESIGN Q 1975.0 lb 840.0 lb 658.0 lb 31.6 gl 34.0 oz	TY REQUIRE 17994.9 lb 5922.0 lb 258.0 g 306.0 o	concrete. Strer the mix to exce acceptance of , thereof. Cylindi drawn by a lice Ready Mixed C unless express personal or pro The purchaser within 3 days fr to investigate a price of the ma	s produced with gths are based ed this slump, any decrease in any decrease in ter tests must be nsed testing laid to do so perty damage 1 y told to do so perty damage 1 s exceptions ar orn time of deli iny such claim. terials against in ED % VA b -0.19 b -0.10 b -0.37 gl -0.14 bz 0.00	the ASTM on a 3" slu except undi compress handled a and/or ce in y will not by custome hat may oc Seller's lia vhich any oc 8 % MO % 1. % %	standard imp. Drive er the aut ive streng ccording i rtified teck deliver ar er and cus cur as a r hall be de hall be de	specifical ers are not horization thand an to ACI/AS nnician. ny product stomer ass result of an emed wai seller sha seller sha in no eve made. ACTUA 2	t permitted of the cust of the cust y risk of loss transmitted for the cust beyond an sumes all line sumes all	to add water to omer and their sas ar aresult cations and y curb lines ability for any active. made in writing full opportunity the purchase
Contains Po concrete or g contact with Equipment (thoroughly w attention pro MATERIAL G47B L47B CEM1PF WATER	KEEP rtland ceme grout may c skin. Alway PPE). In ca rith water. If mptly. DESCRIP 47B GRAV 47B ROCH 1PF CEMI WATER	CHILE ent. Fres ause sk rs wear a se of co f irritation f irritation TION /EL < TION /EL < N LOV	DREN AWAN hly mixed cemmin in injury. Avoid appropriate Per ntact with eyes n persists, see DESIGN Q 1975.0 lb 840.0 lb 658.0 lb 31.6 gl	TY REQUIRE 17994.9 lb 5922.0 lb 258.0 g 306.0 o	concrete. Strer the mix to exce acceptance of , thereof. Cylindi drawn by a lice Ready Mixed C unless express personal or pro The purchaser within 3 days fr to investigate a price of the ma	s produced with gths are based ed this slump, any decrease in any decrease in ter tests must be nsed testing laid to do so perty damage 1 y told to do so perty damage 1 s exceptions ar orn time of deli iny such claim. terials against in ED % VA b -0.19 b -0.10 b -0.37 gl -0.14 bz 0.00	the ASTM on a 3" slu except undi compress handled a and/or ce in y will not by custome hat may oc Seller's lia vhich any oc 8 % MO % 1. % %	standard imp. Drive er the aut ive streng ccording i rtified teck deliver ar er and cus cur as a r hall be de hall be de	specifical ers are not horization thand an to ACI/AS nnician. ny product stomer ass result of an emed wai seller sha seller sha in no eve made. ACTUA 2	t permitted of the cust y risk of lost TM specific beyond an sumes all li ny such dirived wed unless all be given ant exceed AL WATER 26.3 gl 9.1 gl	to add water to omer and their is as a result cations and y curb lines ability for any active. made in writing full opportunity the purchase
Actual Contains Po concrete or g contact with Equipment (thoroughly w attention pro MATERIAL G47B L47B CEM1PF WATER LRWR AIR	KEEP rtland ceme grout may of skin. Alway PPE). In ca ith water. If mptly. DESCRIP 47B GRAV 47B GRAV 47B ROCH 1PF CEMI WATER POZZ 322 MB AE 20	CHILE ant. Fress ause sk 's wear a se of co f irritation TION /EL (ENT N LOV 0 air e N LOV	DESIGN Q DESIGN Q DESIGN Q 1975.0 lb 840.0 lb 658.0 lb 31.6 gl 34.0 oz 5.9 oz	TY REQUIRE 17994.9 lb 7635.6 lb 5922.0 lb 258.0 g 306.0 o 53.1 o	concrete. Strer the mix to exce acceptance of thereof. Cylind drawn by a lice Ready Mixed C unless express personal or purchaser within 3 days fr to investigate a price of the ma D BATCHE D 17960.01 D 7660.01 D 7660.01 D 5900.01 I 257.6 y z 306.0 z 53.0	s produced with gths are based ed this slump, any decrease in er tests must be nsed testing lai oncrete Common ly told to do so perty damage 1 s exceptions ar om time of deli ny such claim. terials against to ED % VA b -0.19 b 0.10° b -0.37 gl -0.14 oz 0.00° oz -0.19	the ASTM on a 3" slu except undi- compress handled a and/or ce- iny will not by custome hat may oc Seller's lia vhich any oc Seller's lia vhich any oc % MO % 1. % %	standard imp. Drive er the aut ive streng ccording titified teck deliver ar ar and cus ccur as a hall be de th a case, bility shai daims are ISTURE 24% A 00% M	specifical ers are not horization thorization to ACI/AS nnician. ny product stomer ass result of an emed wai seller sha i in no eve made. ACTUA 2 25	t permitted of the cust y risk of lost TM specific beyond an sumes all li ny such dir ved unless all be given ant exceed AL WATER 26.3 gl 9.1 gl 57.6 gl	to add water to omer and their sas ar aresult cations and y curb lines ability for any active. made in writing full opportunity the purchase
Contains Po concrete or g contact with Equipment (thoroughly w attention pro MATERIAL G47B L47B CEM1PF WATER LRWR AIR	KEEP rtland ceme grout may of skin. Alway PPE). In ca ith water. If mptly. DESCRIP 47B GRAV 47B GRAV 47B GRAV 47B ROCH 1PF CEMI WATER POZZ 322 MB AE 20	CHILE ent. Fressause sk sause sk s wear a se of co f irritation f irritation TION /EL (ENT N LOV 0 air el	DREN AWAN hly mixed cemm- in injury. Avoid appropriate Per ntact with eyes n persists, seek DESIGN Q 1975.0 lb 840.0 lb 658.0 lb 31.6 gl 34.0 oz 5.9 oz tches: 1 0.40 Wate	TY REQUIRE 17994.9 lb 7635.6 lb 5922.0 lb 258.0 g 306.0 o 53.1 o	concrete. Strer the mix to exce acceptance of thereof. Cylind drawn by a lice Ready Mixed C unless express personal or purchaser within 3 days fr to investigate a price of the ma D BATCHE D 17960.01 D 7660.01 D 7660.01 D 5900.01 I 257.6 y z 306.0 z 53.0	s produced with gths are based ed this slump, any decrease in er tests must be nsed testing laid to concrete Compo- ly told to do so perty damage 1 s exceptions ar om time of deli ny such claim. terials against to ED % VA b -0.19 b 0.10° b -0.37 gl -0.14 bz 0.00° bz -0.19 ater: 284.4 g	the ASTM on a 3" slu except undi- compress handled a and/or ce- iny will not by custome hat may oc Seller's lia vhich any oc Seller's lia vhich any oc % MO % 1. % %	standard imp. Drive er the aut ive streng ccording titified teck deliver ar ar and cus ccur as a hall be de th a case, bility shai daims are ISTURE 24% A 00% M	specifical ers are not horization thorization to ACI/AS nnician. ny product stomer ass result of an emed wai seller sha i in no eve made. ACTUA 2 25	t permitted of the cust y risk of lost TM specific beyond an sumes all li ny such dirived wed unless all be given ant exceed AL WATER 26.3 gl 9.1 gl	to add water to omer and their sas ar aresult cations and y curb lines ability for any active. made in writing full opportunity the purchase

Figure A-36. Concrete Culvert, Test Nos. CMGS-1 and CMGS-2

Ready Mixed Concrete Company 6200 Cornhusker Hwy, Lincoln, NE 68529 Phone: (402) 434-1844 Fax: (402) 434-1877

attention promptly.

Customer's Signature:

PLANT	TRUCK	DRIVE	R CUSTO	MER	PROJECT	TAX	PO NUMBI	ED	DATE	-	
4	0228	5806	000	03	3		HOLLOWAY 4		DATE	TIME	
Customer CIAMID SAFETY	WEST RO	DADSIE	θE		ery Address NW 36TH (ST		Speci	8/17/17 al Instructio DE OF GOO		nororo
LOAD	QUANT	ITY	ORDERED		ODUCT CODE	PRODUCT	DESCRIPTION	UO		PRICE	EXTENDED
9.00	18.	00	18.00	4	470031PF	47BD (1PF) WO/R	yd		\$118.91	\$1,070.19
Water Adda Customer	ed On Job / 's Request:		SLUMP 4.00 in	Notes				SALE	ET SUBTO S TAX ET TOTAL	TAL	\$1,070.19 \$0.00 \$1,070.19
								PREV	IOUS TOT	AL	\$1,070.19 \$1,070.19 \$2,140.38
	AUTION	FRESH	CONCRE	TE	~		Term		ondition	S	+=,++0.00
Contains Port concrete or gr contact with s Equipment (P horoughly wit	KEEP C and cement out may cau kin. Always PE). In case	HILDR Freshly ise skin in wear app of contact	EN AWAY mixed ceme njury. Avoid ropriate Pers	ent, mor prolong sonal P	rtar, a led ti rotective d flush	he mix to exceed acceptance of a hereof. Cylinde and the second second second rawn by a licer Ready Mixed Co	produced with the gths are based on a ed this slump, except ny decrease in com- r tests must be han sed testing lab and procrete Company with told to do so by cu	a 3" slump of under th opressive dled acco l/or certifie vill not deli	 Drivers are he authorizati strength and ording to ACI/ d technician. 	not permitte on of the cu any risk of I ASTM spec	ed to add water to istomer and their oss as a result ifications and

unless expressly told contrainty will not deliver any product beyond any curb lines unless expressly told to do so by customer and customer assumes all liability for any personal or property damage that may occur as a result of any such directive. The purchaser's exceptions and claims shall be deemed waived unless made in writing within 3 days from time of delivery. In such a case, seller shall be given full opportunity to investigate any such claim. Seller's liability shall in no event exceed the purchase price of the materials against which any claims are made.

MATERIAL	DESCRIPTION	DESIGN QTY	REQUIRED	BATCHED	% VAR	% MOISTURE	ACTUAL WATER
G47B L47B CEM1PF	47B GRAVEL 47B ROCK 1PF CEMENT	1975.0 lb 840.0 lb	17996.9 lb 7635.6 lb	17940.01b 7600.01b	-0.32% -0.14%	1.25% A 1.00% M	26.5 gl 9.0 gl
WATER	WATER POZZ 322N LOV	658.0 lb 31.6 gl 34.0 oz	5922.0 lb 257.8 gl 306.0 oz	5900.0 lb 258.6 gl 306.0 oz	-0.37% 0.33% 0.00%		258.6 gl
AIR	MB AE 200 air ei	5.9 oz	53.1 oz	54.0 oz	1.69%		
Actual	Num Bato	ches: 1				Manual	
Load: 33621 Slump: 4.00	Ib Design W/C: in # Water in Truck:	0.40 Water/Cem 0.0 gł Adjust Water		Design Water:	284.4 gi 0.0 gi /		ctual: 294.1 gl
Actual W/C Ratio	0.42 Actual Water: 2	94 gl Batched Ce	ement: 5900 lb	Allowable Water:	•		Add: 0.0 gl

Figure A-37. Concrete Culvert, Test Nos. CMGS-1 and CMGS-2

LINCOLN OFFICE 825 "M" Street Suite 100 Lincoln, NE 68508 Phone: (402) 479-2200 Fax: (402) 479-2276

COMPRESSION TEST OF CYLINDRICAL CONCRETE SPECIMENS - 6x12

ASTM Designation: C 39

Client Name: Midwest Roadside Safety Facility Project Name: Miscellaneous Concrete Testing Placement Location: WI MGS Culvert Date 13-Sep-17

						1	Laboratory	Test Data	1						
Laboratory Identification	Field Identification	Date Cast	Date Received	Date Tested	Days Cured in Field	Days Cored in Laboratory	Age of Test, Days	Length of Specimen, in.	Diameter of Specimen, in.	Cross-Sectional Area,sq.in.	Maximum Load, Ibf	Compressive Strength, psi.	Reqvired Strength, psi.	Type of Fracture	ASTM Practice for Capping Specimen
URR- 12	A	8/17/2017	9/13/2017	9/13/2017	27	0	27	12	6.02	28.46	132,704	4,660		5	C 1231
URR- 13	1B	8/17/2017	9/13/2017	9/13/2017	27	0	27	12	6.01	28.37	132,547	4,670		5	C 1231
1 cc: Ms. Karla Lecl	htenberg														

Required Strength:

Midwest Roadside Safety Facility

Mix Designation:

Remarks: Sketches of Types of Fractures All concrete test data in this report was produced by Benesch personnel using ASTM Standard Methods and Practices unless otherwise noted. WA Test results presented relate only to the concrete sample by Benesch personnel as referenced above. Type 5 e fractures at top or bottom (occor commonly with unbonded caps) Type 3 Columnar vertical cracking through both ends, no well-formed Type 6 Similar to Type 5 bot end of cylinder is pointed ALFRED BENESCH & COMPANY CONSTRUCTION MATERIALS LABORATORY Type 4 Diagonal fracture no cracking thro ends; tap with ha Type 1 This report shall not be reproduced except in full, without the written approval of Alfred Benesch & Company. well. W-II 6 Dir Reasonably well-formed cones on both ends, less than 1 in. [25 mm] of cracking west-tormed cone on one end, vertical cracks running through caps, no well-defined 00 to distinguish from Type 1 Report Number 2147369527 cones By______ Brant Wells, Field/Lab Operations Manager through caps cone on other end Page 1

Figure A-38. Concrete Culvert, Test Nos. CMGS-1 and CMGS-2

Constant of the state of the state

6300	Comhus	ker Hiat							JOB NU BOO	OMISC	С.		S-RSF		INC). DELIVERY		PAGE 1 Of	1
P.O. I	Box 2952 In, NE 68	9 1529-	-						JOE	B COM	IPLET	E .						RSI	FS
Phon	e: (402)43	54-1800	FAX: (402)434	-1899					CUSTO MIC	WES1	r ROA	DSID	E SAF	ETY F	ACILI	ΤY		BY Wrb	
	AL TYPE	10 60	Fooyy		REFERENC)E		DF	RAWING ID		T	CUI V	ERTS	FORM	AGS				
Itm	Qty	Size	Length	1	Mark	Shape	Lbs	A	В	С	D	E	F/R	G	н	J	K	0	В
1	8	4	5-05	A10		S10	29		1-002	4-042				<u></u>			+		20
2	38	4	5-01	A11		S10	129		1-002	4-01									20
3	45	4	4-09	A5 A7		S5	143 588	1-002	1-03	0-07	0-10			1-002					1
5	12	4	9-09	A9			78								i	+	1		1
6	22	4	6-01	A7L	AP		89							1					
7	108	4	4-09	A6 A8			343 115	an si			-	E. 11. 11.		N. C. C.		1.11.1	Color in	1	
<u> </u>	323.		3-09	1			1514.	Maria da P	in an		Sec. Sec.	<u>173</u>	Contractory St.	Sector Sector	نىڭ <u>ئ</u> ار	ن <u>ند ما</u>	<u>legand</u>	<u>181 </u>	L.
							WE	IGHT	SUN	IMAR	Y						LIN 1997		
			-																
	[TOTAL		No.		STRAIGH				LIGHT	BEND	ING		Н	EAVY	BENDI	NG	San and a second
SIZ	ZE N	ITEMS	PIECES	LBS	S	TEMS	PIECES	LBS		ITE	VIS I	PIECES	LBS	7	ITEM	S PI	ECES	LBS	1000
05253252	ana	upansingu	and provident	S Lasses	aanel	l'anna an	-	L MERSINGER		Lansoner Contraction	essed es	en an	accessingly,	and the	CONTRACTOR	anna anna	North Street Str	10925303030	8
	A		8 323	1	514	5	COMPLEX COMPLE	r, Gra	and the second second	<u>v, ep</u>		91	30	1		0	0	0	
	4		8 <u>323</u> 8 <u>323</u>	-	514 514	5 5	232 232	r, Gra 1,21 1,21	3	<u>0, Ep</u>	3 3	91 91	30		: در در مدمنیتین	0	0	0	
Tc			8 323	-			232	1,21	3	<u>v, Ep</u>	3		and in the		·	and the		A day to	
To				-			232	1,21	3	<u>0, Ep</u>	3		and in the		: من <u>ینی</u> : مراجع	and the		A day to	
	otal We	ight: 1	8 323	-			232	1,21	3	<u>0, Ep</u>	3		and in the		• •	and the		A day to	
Lo	otal Wei ongest I	ight: 1 Length	8 323 1,514 Lbs 1: 20-00	1,	514		232	1,21	3	<u>0, Ep</u>	3		and in the		3	and the		A day to	
Lo	otal Wei ongest I	ight: 1 Length	8 323 1,514 Lbs 1: 20-00	1,	514		232	1,21	3		3		and in the			and the		A day to	
Lo	otal Wei ongest I	ight: 1 Length	8 323 1,514 Lbs	1,	514		232 232	1,21 1,21	3 3	esent	3 3	91 • the l	<u>30</u>	mher	s Sho	0 wn he	0	0	
 	ngest I	ight: 1 Length	8 323 1,514 Lbs 1: 20-00 6 2.14 C	- <u>1</u> ,	514		232 232 einforcin	1,21 1,21 g stee d app	3 3 N repr	esent	3 3	91 • the l	<u>30</u>	mher	s Sho Road	0 wn he	0	0	
 	ngest I	ight: 1 Length	8 323 1,514 Lbs 1: 20-00 6 2.14 C	- <u>1</u> ,	514		232 232	1,21 1,21 g stee d app	3 3 N repr	esent	3 3	91 • the l	<u>30</u>	mher	s Sho Road	0 wn he	0	0	
 	ngest I	ight: 1 Length	8 323 1,514 Lbs 1: 20-00 6 2.14 C	- <u>1</u> ,	514	Re to Re Th	232 232 einforcin isted an isearch his steel	g stee d appr Divisio may l	3 3 al repr roved m. 59 inc	esent by Ne	3 3 ed by ebrask	91 the h ta Dep	30 Beat ni Bartme	umber ent of	Road	wn he	0 ive be cerials	0	
 	ngest I	ight: 1 Length	8 323 1,514 Lbs 1: 20-00 6 2.14 C	- <u>1</u> ,	514	Re to Re Th	232 232 ainforcin sted an asearch	g stee d appr Divisio may l	3 3 al repr roved m. 59 inc	esent by Ne	3 3 ed by ebrask	91 the h ta Dep	30 Beat ni Bartme	umber ent of	Road	wn he	0 ive be cerials	0	
 	ngest I	ight: 1 Length	8 323 1,514 Lbs 1: 20-00 6 2.14 C	- <u>1</u> ,	514	Re ta Re Tř dz	232 232 einforcin isted an asearch nis steel image h	g stee d appr Divisio may l as occ	3 3 3 a) repr roved on. be inco	esent by Ne orpore by He	3 3 ed by brask ated i andlin	91 the h ta Dep nto th d cr s	aleat ni partma hippin	umber ent of ject pi ig.	Road rovide	wn he s, Mał	o Ive be Ierials t no	0	
 	ngest I	ight: 1 Length	8 323 1,514 Lbs 1: 20-00	- <u>1</u> ,	514	Re ta Re Tř dz	232 232 232 232 232 232 232 232 232 232	1,21 1,21 0 stee d appr Divisio may l as occ lete si	3 3 3 a) repr roved m. 59 inc curred hippin	esent by Ne orpora by Ha	3 3 ed by brask ated I andlin ort co	91 the h ta Dep nto th d cr s	aleat ni partma hippin	umber ent of ject pi ig.	Road rovide	wn he s, Mał	o Ive be Ierials t no	0	
 	ngest I	ight: 1 Length	8 323 1,514 Lbs 1: 20-00 6 2.14 C	- <u>1</u> ,	514	Re ta Re Tř dz	232 232 einforcin isted an asearch nis steel image h	1,21 1,21 0 stee d appr Divisio may l as occ lete si	3 3 3 a) repr roved m. 59 inc curred hippin	esent by Ne orpore by H g Rep search	3 3	91 the h ca Dep nto th ci or s overing sion.	30 Beat ni bartme hippin g thes	umber ant of iect pi ig. e mat	Road rovide	wn he s, Mał	o Ive be Ierials t no	0	
 	ngest I	ight: 1 Length	8 323 1,514 Lbs 1: 20-00 6 2.14 C	- <u>1</u> ,	514	Re ta Re Tř dz	232 232 232 232 232 232 232 232 232 232	1,21 1,21 0 stee d appr Divisio may l as occ lete si	3 3 3 a) repr roved m. 59 inc curred hippin	esent by Ne orpore by H g Rep search	3 3	91 the h ta Dep nto th d cr s	30 Heat ni hippin g thes dustri	mber ant of lect pi g, e mat	Road covide erists	o wwn he s, Mał will b	o Ive be Ierials t no	0	
 	ngest I	ight: 1 Length	8 323 1,514 Lbs 1: 20-00 6 214 1 6 214 1 6 214 1 7 8 4 8 15	1)	5 961	f Re ta Re Tř da Tř by	232 232 232 232 232 232 232 232 232 232	1,21 1,21 0 stee d appr Divisio may l as occ lete si	3 3 3 a) repr roved m. 59 inc curred hippin	esent by Ne orpore by H g Rep search	3 3	91 the h ca Dep nto th ci or s overing sion.	30 Heat ni hippin g thes dustri	mber ant of lect pi g, e mat	Road covide erists	o wwn he s, Mał will b	o Ive be Ierials t no	0	
 	ngest I	ight: 1 Length	8 323 1,514 Lbs 1: 20-00 6 214 1 6 214 1 12 12 14 15	1) 016 106	5 961 7 201	Re ta Re Tř dz Tř by	232 232 232 232 232 232 232 232 232 232	1,21 1,21 0 stee d appr Divisio may l as occ lete si	3 3 3 a) repr roved m. 59 inc curred hippin	esent by Ne orpore by H g Rep search	3 3	91 the h ca Dep nto th ci or s overing sion.	30 Heat ni hippin g thes dustri	umber ant of iect pi ig. e mat	Road covide erists	o wwn he s, Mał will b	o Ive be Ierials t no	0	
Lo Lo	ngest I	ight: 1 Length	8 323 1,514 Lbs 1: 20-00 6 214 1 6 214 1 12 12 14 15	1) 016 106	5 961	Re ta Re Tř dz Tř by	232 232 232 232 232 232 232 232 232 232	1,21 1,21 0 stee d appr Divisio may l as occ lete si	3 3 3 a) repr roved m. 59 inc curred hippin	esent by Ne orpore by H g Rep search	3 3	91 the h ca Dep nto th ci or s overing sion.	30 Heat ni hippin g thes dustri	mber ant of lect pi g, e mat	Road covide erists	o wwn he s, Mał will b	o Ive be Ierials t no	0	
Lo Lo	ngest I	ight: 1 Length	8 323 1,514 Lbs 1: 20-00 6 214 1 6 214 1 12 12 14 15	1) 016 106	5 961 7 201	Re ta Re Tř dz Tř by	232 232 232 232 232 232 232 232 232 232	1,21 1,21 0 stee d appr Divisio may l as occ lete si	3 3 3 a) repr roved m. 59 inc curred hippin	esent by Ne orpore by H g Rep search	3 3	91 the h ca Dep nto th ci or s overing sion.	30 Heat ni hippin g thes dustri	mber ant of lect pi g, e mat	Road covide erists	o wwn he s, Mał will b	o Ive be Ierials t no	0	
Lo Lo	ngest I	ight: 1 Length	8 323 1,514 Lbs 1: 20-00 6 214 1 6 214 1 12 12 14 15	1) 016 106	5 961 7 201	Re ta Re Tř dz Tř by	232 232 232 232 232 232 232 232 232 232	1,21 1,21 0 stee d appr Divisio may l as occ lete si	3 3 3 a) repr roved m. 59 inc curred hippin	esent by Ne orpore by H g Rep search	3 3	91 the h ca Dep nto th ci or s overing sion.	30 Heat ni hippin g thes dustri	mber ant of lect pi g, e mat	Road covide erists	o wwn he s, Mał will b	o Ive be Ierials t no	0	
Lo Lo	ngest I	ight: 1 Length	8 323 1,514 Lbs 1: 20-00 6 214 1 6 214 1 12 12 14 15	1) 016 106	5 961 7 201	Re ta Re Tř dz Tř by	232 232 232 232 232 232 232 232 232 232	1,21 1,21 0 stee d appr Divisio may l as occ lete si	3 3 3 a) repr roved m. 59 inc curred hippin	esent by Ne orpore by H g Rep search	3 3	91 the h ca Dep nto th ci or s overing sion.	30 Heat ni hippin g thes dustri	mber ant of lect pi g, e mat	Road covide erists	o wwn he s, Mał will b	o Ive be Ierials t no	0	
Lo Lo	ngest I	ight: 1 Length	8 323 1,514 Lbs 1: 20-00 6 214 1 6 214 1 12 12 14 15	1) 016 106	5 961 7 201	Re ta Re Tř dz Tř by	232 232 232 232 232 232 232 232 232 232	1,21 1,21 0 stee d appr Divisio may l as occ lete si	3 3 3 a) repr roved m. 59 inc curred hippin	esent by Ne orpore by H g Rep search	3 3	91 the h ca Dep nto th ci cr s overing sion.	30 Heat ni hippin g thes dustri	mber ant of lect pi g, e mat	Road covide erists	o wwn he s, Mał will b	o Ive be Ierials t no	0	

Figure A-39. #4 (#13) Rebar, Test Nos. CMGS-1 and CMGS-2

		(ERTIFIED M	ATERIAL TEST REP	ORT					Page 1	/1
ලා GERDAU	CUSTOMER SH		CUSTOME			GRADE 60 (420)		SHAPE / SIZE Rebar / #4 (13N	AM)		
S-ML-ST PAUL	1645 RED RO SAINT PAUL, USA	CK RD	1645 RED	ROCK ROAD UL,MN 55119-6014		LENGTH 60'00"	l	WEIGHT 17,435 L		HEAT / BATCH 62139047/02	i
78 RED ROCK ROAD AINT PAUL, MN 55119	SALES ORDE 2492020/0000		CUSTO	MER MATERIAL Nº		SPECIFICA	TION / DATE or RI (A615M-14	EVISION			
SA USTOMER PURCHASE ORDER NUMBER		BILL OF LADING		DATE							1
521		1332-0000032142		08/26/2015						ang na mang na kanang	
HEMICAL COMPOSITION C. Ma P. 0.41 1.11 0.015	\$ 0.026	\$i (0.20 0.	26	Ni Ç % 0.11 0.18	M 0.0	0 23	Şn Y 0.024 0.00	Ng 05 0.0	b 02	1,11,2 0.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	
ECHANICAL PROPERTIES PSI M 70000 48	S Pa 13	UTS PSI 110500	n an	UTS MPa 762		G/L Inch 8.000		G/L mm 203.2			
ECHANICAL PROPERTIES Elong. Bend 15.00 O											
OMETRIC CHARACTERISTICS %Liphi Def Hgt Def Gap % Inch Inch 2.25 0.033 0.104	DefSpace Inch 0.333	92000-1920-1920-1920-1920-1920-1920-1920	19 19 19 19 19 19 19 19 19 19 19 19 19 1				n and have and have been all the second s			alan a mi tati a artis a tati a	
MMMENTS / NOTES tetrah 100% mekted and rolled in the USA. Manufactur d hot rolling, hus been performed at Gerdau St. Paul Mil h tillets. Silicon killed (deoxidized) steel. No weld rup uid at ambient temperatures during processing or while wided by Gerdau St. Paul Mill without the expressed va rout shall not be reproduced except in full. wholu the es- ponsible for the inability of this material to meet specifi	 1678 Red Rock R airment performed, in Gerdau St. Paul I itten consent of Ge aprossed written con 	Id., St. Paul, Minnesota, US Steel not exposed to marc Mill's possession. Any mo rdau St. Paul Mill negates t	SA. All products p ury or any liquid a dification to this o he validity of this	produced from strand alloy which is ertification as test report. This							
			atomatica intende los sols ademi		and the second second						
	ified chemical an	id physical test records :	as contained in t	the permanent records of actured in the USA. CM	company. W	e centify that with EN 1020	these data are correct 04 3.1.	t and in complia	nce with		
The above figures are cert specified requirements. Th	us material, inclu	iding the billets, was mi					1. 1M				
The above figures are cert specified requirements. The Machine	nis material, inclu	ading the billets, was ma SKAR YALAMANCHILI LITY DIRECTOR						ALEA BRANDENBI QUALITY ASSURA			
specified requirements. Th	nis material, inclu	SKAR YALAMANCHILI									

Figure A-40. #4 (#13) Bent Rebar, L-Shaped, 4 ft – 6 in. (1,372 mm) Total Length, Unbent, Test Nos. CMGS-1 and CMGS-2

Appendix B. Vehicle Center of Gravity Determination

Date: <u>12/1</u> Year: 20	010	Make:	Hyundai	VIN: Model:	КМНС	Accent	
Vehicle CG De	atorminat	ion					
					Weight		
VEH	CLE Eau	ipment			(lb.)		
+		alasted C	ar (Curb)		2471		
+	Hub				19		
+	Bra	ke activati	on cylinder a	& frame	7		
+			nk (Nitrogen		22		
+	Stro	be/Brake	Battery		5		
+	Bra	ke Recieve	er/Wires		6		
+	CG	Plate incl	uding DAS		13		
-	Bat	tery			-31		
-	Oil				-12		
-	Inte	rior			-57		
-	Fue				-18		
-		olant			-7		
-		sher fluid			-8		
+	~~~~~	~~~~~~	(In Fuel Tar	nk)	0		
+	Ont	board Batt	ery		14		
		Estim	vehicle, (-) is r ated Total V			ehicle	
Vehicle Dimensi	ions for C.	Estim G. Calcul a	ated Total W	Veight (lb.)	2424		_
Vehicle Dimensi Roof Height: 57		Estim G. Calcul a	ated Total W ations Front Tra	Veight (lb.)	2424	in.	_
Vehicle Dimensi Roof Height: 57	ions for C. 3/4 in.	Estim G. Calcul a	ated Total W ations Front Tra	Veight (lb.)	2424 57 3/8	in.	_
Vehicle Dimensi Roof Height: <u>57</u> Vheel Base: <u>98</u>	i ons for C. <u>3/4</u> in. <u>3/4</u> in.	Estim G. Calcul a	ated Total W ations Front Tra Rear Tra	Veight (lb.) ack Width: ack Width:	2424 57 3/8 57 1/4	in. in.	- Difforono
Vehicle Dimensi Roof Height: 57 Vheel Base: 98 Center of Gravit	ions for C.(<u>3/4</u> in. <u>3/4</u> in. y 11	Estim G. Calcula 00C MAS	ated Total W ations Front Tra Rear Tra H Targets	Veight (lb.) ack Width: ack Width:	2424 57 3/8 57 1/4	in. in.	– Difference
Vehicle Dimensi Roof Height: 57 Vheel Base: 98 Center of Gravit Test Inertial Weig	ions for C. <u>3/4</u> in. <u>3/4</u> in. y 11 ht (lb.)	Estim G. Calcula OOC MAS 2420 ±	ated Total W ations Front Tra Rear Tra H Targets ⊧ 55	Veight (lb.) ack Width: ack Width:	2424 57 3/8 57 1/4 est Inertia 2428	in. in.	
Vehicle Dimensi Roof Height: 57 Vheel Base: 98 Center of Gravit Test Inertial Weig Longitudinal CG	ions for C. <u>3/4</u> in. <u>3/4</u> in. y 11 ht (lb.)	Estim <u>G. Calcula</u> <u>00C MAS</u> 2420 ± 39 ±	ated Total W ations Front Tra Rear Tra H Targets ⊧ 55	Veight (lb.) ack Width: ack Width:	2424 57 3/8 57 1/4 Fest Inertia 2428 36.36017	in. in.	-2.63982
Vehicle Dimensi Roof Height: 57 Vheel Base: 98 Center of Gravit Test Inertial Weig Longitudinal CG Lateral CG (in.)	ions for C. <u>3/4</u> in. <u>3/4</u> in. y 11 ht (lb.)	Estim G. Calcula 00C MAS 2420 ± 39 ± NA	ated Total W ations Front Tra Rear Tra H Targets ⊧ 55	Veight (lb.) ack Width: ack Width:	2424 57 3/8 57 1/4 Fest Inertia 2428 36.36017 -0.40128	in. in.	-2.63982 N
Vehicle Dimensi Roof Height: 57 Vheel Base: 98 Center of Gravit Test Inertial Weig Longitudinal CG Lateral CG (in.) Vertical CG (in.)	i <u>ons for C.(</u> <u>3/4</u> in. <u>3/4</u> in. y 11 ht (lb.) (in.)	Estim G. Calcul 00C MAS 2420 ± 39 ± NA NA NA	ated Total W ations Front Tra Rear Tra H Targets ₅ 55 ₅ 4	Veight (lb.) ack Width: ack Width:	2424 57 3/8 57 1/4 Fest Inertia 2428 36.36017	in. in.	-2.63982 N
Vehicle Dimensi Roof Height: 57 Vheel Base: 98 Center of Gravity Test Inertial Weig Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is me	ions for C.(3/4 in. 3/4 in. y 11 ht (lb.) (in.)	Estim G. Calcula G. Calcula OOC MAS 2420 ± 39 ± NA NA front axle of	ated Total W ations Front Tra Rear Tra H Targets ± 55 ± 4	Veight (Ib.) ack Width: ack Width: T	2424 57 3/8 57 1/4 Fest Inertia 2428 36.36017 -0.40128 23.01861	in. in.	-2.63982
Vehicle Dimensi Roof Height: 57 Vheel Base: 98 Center of Gravit Test Inertial Weig Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is me Note: Lateral CG mea	ions for C. 3/4 in. 3/4 in. 3/4 in. y 11 ht (lb.) (in.) easured from asured from a sured from a s	Estim G. Calcula G. Calcula OOC MAS 2420 ± 39 ± NA NA front axle of	ated Total W ations Front Tra Rear Tra H Targets ± 55 ± 4	Veight (Ib.) ack Width: ack Width: T	2424 57 3/8 57 1/4 Fest Inertia 2428 36.36017 -0.40128 23.01861	in. in.	-2.63982 N
Vehicle Dimensi Roof Height: 57 Vheel Base: 98 Center of Gravity Test Inertial Weig Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is me	ions for C. 3/4 in. 3/4 in. 3/4 in. y 11 ht (lb.) (in.) easured from asured from a sured from a s	Estim G. Calcula G. Calcula OOC MAS 2420 ± 39 ± NA NA front axle of	ated Total W ations Front Tra Rear Tra H Targets ± 55 ± 4	Veight (Ib.) ack Width: ack Width: T	2424 57 3/8 57 1/4 Fest Inertia 2428 36.36017 -0.40128 23.01861	in. in. I	-2.63982 N N
Vehicle Dimensi Roof Height: 57 Vheel Base: 98 Center of Gravit Test Inertial Weig Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is me Note: Lateral CG mea	ions for C.(3/4 in. 3/4 in. y 11 ht (lb.) (in.) easured from of lb.)	Estim G. Calcula G. Calcula OOC MAS 2420 = 39 = NA NA NA front axle of centerline - p	ated Total W ations Front Tra Rear Tra H Targets ± 55 ± 4	Veight (Ib.) ack Width: ack Width: T	2424 57 3/8 57 1/4 Fest Inertia 2428 36.36017 -0.40128 23.01861 senger) side	in. in. I	-2.63982 N N
Vehicle Dimensi Roof Height: 57 Vheel Base: 98 Center of Gravit Test Inertial Weig Longitudinal CG (Lateral CG (in.) Vertical CG (in.) Note: Long. CG is me Note: Lateral CG mea CURB WEIGHT (ions for C.(3/4 in. 3/4 in. y 11 ht (lb.) (in.) easured from c lb.) eft	Estim G. Calcula G. Calcula OOC MAS 2420 = 39 = NA NA front axle of centerline - p Right	ated Total W ations Front Tra Rear Tra H Targets ± 55 ± 4	Veight (Ib.) ack Width: ack Width: T	2424 57 3/8 57 1/4 Fest Inertia 2428 36.36017 -0.40128 23.01861 senger) side TEST INEF	in. in. I RTIAL WEI	-2.63982 N N I GHT (Ib.)
Vehicle Dimensi Roof Height: 57 Vheel Base: 98 Center of Gravit Test Inertial Weig Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is meaning Note: Lateral CG meaning CURB WEIGHT (from the second s	ions for C.(3/4 in. 3/4 in. y 11 ht (lb.) (in.) easured from of lb.)	Estim G. Calcula G. Calcula OOC MAS 2420 = 39 = NA NA NA front axle of centerline - p	ated Total W ations Front Tra Rear Tra H Targets ± 55 ± 4	Veight (Ib.) ack Width: ack Width: T	2424 57 3/8 57 1/4 Fest Inertia 2428 36.36017 -0.40128 23.01861 senger) side	in. in. I	-2.63982 N N
Vehicle Dimensi Roof Height: 57 Vheel Base: 98 Center of Gravity Test Inertial Weig Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Long. CG is me Note: Lateral CG mea CURB WEIGHT (I Front 8 Rear 4	ions for C.(3/4 in. 3/4 in. 3/4 in. y 11 ht (Ib.) (in.) easured from a 1 b.) 1 eft 1 04 1	Estim G. Calcula G. Calcula OOC MAS 2420 = 39 = NA NA front axle of centerline - p Right 778	ated Total W ations Front Tra Rear Tra H Targets ± 55 ± 4	Veight (Ib.) ack Width: ack Width: T	2424 57 3/8 57 1/4 est Inertia 2428 36.36017 -0.40128 23.01861 senger) side TEST INEF Front Rear	in. in. I RTIAL WEI Left 775 456	-2.63982 N N N IGHT (Ib.) Right 759 438
Vehicle Dimensi Roof Height: 57 Vheel Base: 98 Center of Gravity Test Inertial Weig Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Lateral CG meat Note: Lateral CG meat Rear 4 FRONT 15	ions for C.(3/4 in. 3/4 in. y 11 ht (lb.) (in.) easured from a 1 bt.) 1 eft 04 04 47 582 lb	Estim G. Calcula G. Calcula OOC MAS 2420 = 39 = NA NA front axle of centerline - p Right 778	ated Total W ations Front Tra Rear Tra H Targets ± 55 ± 4	Veight (Ib.) ack Width: ack Width: T	2424 57 3/8 57 1/4 est Inertia 2428 36.36017 -0.40128 23.01861 senger) side TEST INEF Front Rear FRONT	in. in. I RTIAL WEI Left 775 456 1534	-2.63982 N N N IGHT (Ib.) Right 759 438 Ib
Vehicle Dimensi Roof Height: 57 Vheel Base: 98 Center of Gravit Test Inertial Weig Longitudinal CG Lateral CG (in.) Vertical CG (in.) Note: Lateral CG mea Note: Lateral CG mea Rear 4 FRONT 15 REAR 8	ions for C.(3/4 in. 3/4 in. 3/4 in. y 11 ht (Ib.) (in.) easured from a 1 b.) 1 eft 1 04 1	Estim G. Calcula G. Calcula OOC MAS 2420 = 39 = NA NA front axle of centerline - p Right 778	ated Total W ations Front Tra Rear Tra H Targets ± 55 ± 4	Veight (Ib.) ack Width: ack Width: T	2424 57 3/8 57 1/4 est Inertia 2428 36.36017 -0.40128 23.01861 senger) side TEST INEF Front Rear	in. in. I RTIAL WEI Left 775 456	-2.63982 N N N IGHT (Ib.) Right 759 438

Figure B-1. Vehicle Mass Distribution, Test No. CMGS-1

and a second sec	te: <u>1/3/2018</u>	Test Name:	CMGS-2	VIN:		B1CTXAS1	
Yea	ar: <u>2010</u>	Make:	DODGE	_ Model:	RAM	1500 CREV	/ CAB
Vehicle Co	G Determinatio	>n					
				100 million (100 m	Vertical CG		
VEHICLE	Equipment			(lb.)	(in.)	(lbin.)	
+		Truck (Curb)		5292	29 1/4	154791	
+	Hub			19	15 5/8	296.875	
+		ation cylinder &		7	28 1/2	199.5	
+		ank (Nitrogen)		22	27 1/2	605	
+	Strobe/Brake			6	26	156	
+	Brake Recei			5	52 1/2	262.5	
+	CG Plate inc	cluding DAS		50	30 1/8	1506.25	
-	Battery			-41	40 1/2	-1660.5	
-	Oil			-10	19 1/2	-195	
-	Interior			-113	29	-3277	
2	Fuel			-161	18	-2898	
-	Coolant			-13	36	-468	
- +	Washer fluic		1.5	-6	36 1/2	-219	
		st (In Fuel Tan		0	0	0	
+		pplemental Ba	attery	13	27 3/4	360.75	
	Spare Tire			-66	24	-1584	
Note: (+) is ad	lded equipment to v	Estimated Tota) 5004		147876.38	
Vehicle Dir	mensions for C	Estimated Tota Vertical CG	al Weight (lb.) Location (in.) ons	5004) 29.5516		147876.38	
Vehicle Dir	mensions for C	Estimated Tota Vertical CG	al Weight (lb.) Location (in.) ons Front Tr) 5004) 29.5516 rack Width:	68 1/8	147876.38 in.	
Vehicle Dir	mensions for C	Estimated Tota Vertical CG C.G. Calculatio	al Weight (lb.) Location (in.) ons Front Tr	5004) 29.5516			
Vehicle Dir	mensions for C	Estimated Tota Vertical CG C.G. Calculatio	al Weight (lb.) Location (in.) ons Front Tr) 5004) 29.5516 rack Width:		in.	
Vehicle Dir Wheel Bas	mensions for C se: <u>140 3/8</u>	Estimated Tota Vertical CG C.G. Calculatio in.	al Weight (lb.) Location (in.) ons Front Tr Rear Tr	5004 29.5516 rack Width: rack Width:	67 1 <i>1</i> 2	in. in.	
Vehicle Dir Wheel Bas	mensions for C se: <u>140 3/8</u> Gravity	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS	al Weight (Ib.) Location (in.) ons Front Tr Rear Tr SH Targets	5004 29.5516 rack Width: rack Width:	67 1/2 Test Inertia	in. in.	Difference
Vehicle Dir Wheel Bas Center of C Test Inertia	mensions for C se: <u>140 3/8</u> Gravity Il Weight (Ib.)	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000	al Weight (lb.) Location (in.) ons Front Tr Rear Tr SH Targets ± 110	5004 29.5516 rack Width: rack Width:	67 1/2 Test Inertia 5013	in. in.	Difference
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina	mensions for C se: <u>140 3/8</u> Gravity I Weight (lb.) al CG (in.)	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 63	al Weight (lb.) Location (in.) ons Front Tr Rear Tr SH Targets ± 110	5004 29.5516 rack Width: rack Width:	67 1/2 Test Inertia 5013 60.23272	in. in.	Differenc 13. -2.7672
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG	mensions for C se: <u>140 3/8</u> Gravity Il Weight (Ib.) al CG (in.) (in.)	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA	al Weight (lb.) Location (in.) ons Front Tr Rear Tr SH Targets ± 110 ± 4	5004 29.5516 rack Width: rack Width:	67 1/2 Test Inertia 5013 60.23272 0.0338183	in. in.	Difference 13. -2.7672 N
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG	mensions for C se: 140 3/8 Gravity Il Weight (Ib.) al CG (in.) (in.) G (in.)	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28	al Weight (lb.) Location (in.) Front Tr Rear Tr SH Targets ± 110 ± 4 or greater	5004 29.5516 rack Width: rack Width:	67 1/2 Test Inertia 5013 60.23272	in. in.	Differenc 13. -2.7672
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C	mensions for C se: <u>140 3/8</u> Gravity Il Weight (Ib.) al CG (in.) (in.)	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 m front axle of test	al Weight (lb.) Location (in.) Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	29.5516 ack Width: ack Width:	67 1/2 Test Inertia 5013 60.23272 0.0338183 29.55	in. in.	Difference 13. -2.7672 N
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral	Gravity I Weight (Ib.) al CG (in.) (in.) G (in.) CG is measured from CG measured from	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 m front axle of test	al Weight (lb.) Location (in.) Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	29.5516 ack Width: ack Width:	67 1/2 Test Inertia 5013 60.23272 0.0338183 29.55) side	in. in.	Differenc 13. -2.7672 N 1.5516
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C	Gravity I Weight (Ib.) al CG (in.) (in.) G (in.) CG is measured from CG measured from	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 m front axle of test	al Weight (lb.) Location (in.) Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	29.5516 ack Width: ack Width:	67 1/2 Test Inertia 5013 60.23272 0.0338183 29.55) side	in. in.	Differenc 13. -2.7672 N 1.5516
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral	Gravity I Weight (Ib.) al CG (in.) (in.) G (in.) CG is measured from CG measured from	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 m front axle of test	al Weight (lb.) Location (in.) Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	29.5516 ack Width: ack Width:	67 1/2 Test Inertia 5013 60.23272 0.0338183 29.55) side	in. in.	Differenc 13. -2.7672 N 1.5516
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral	mensions for C se: 140 3/8 I VVeight (lb.) al CG (in.) (in.) G is measured from CG measured from	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 m front axle of test o centerline - positi	al Weight (lb.) Location (in.) Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	29.5516 ack Width: ack Width:	67 1/2 Test Inertia 5013 60.23272 0.0338183 29.55) side	in. in. TIAL WEIGH	Difference 13. -2.7672 N 1.5516 -1T (Ib.)
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI	mensions for C se: 140 3/8 I VVeight (lb.) al CG (in.) (in.) G is measured from CG measured from IGHT (lb.) Left	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 m front axle of test o centerline - positi Right	al Weight (lb.) Location (in.) Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	29.5516 ack Width: ack Width:	67 1/2 Test Inertial 5013 60.23272 0.0338183 29.55) side TEST INER	in. in. TIAL WEIGI	Differenci 13. -2.7672 N 1.5516 -1T (Ib.) Right
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI Front Rear	mensions for C se: 140 3/8 Gravity I VVeight (Ib.) al CG (in.) (in.) CG is measured from CG measured from IGHT (Ib.) Left 1518 1155	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 m front axle of test centerline - positi Right 1428 1191	al Weight (lb.) Location (in.) Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	29.5516 ack Width: ack Width:	67 1/2 Test Inertial 5013 60.23272 0.0338183 29.55) side TEST INER Front Rear	in. in. TIAL WEIGI Left 1459 1045	Difference 13. -2.7672 N 1.5516 IT (Ib.) Right 1403 1106
Vehicle Dir Wheel Bas Center of C Test Inertia Longitudina Lateral CG Vertical CG Note: Long. C Note: Lateral CURB WEI Front	mensions for C se: 140 3/8 Gravity I Weight (Ib.) al CG (in.) (in.) G is measured from CG measured from IGHT (Ib.) Left 1518 1155 2946	Estimated Tota Vertical CG C.G. Calculatio in. 2270P MAS 5000 63 NA 28 m front axle of test centerline - positi centerline - positi	al Weight (lb.) Location (in.) Front Tr Rear Tr SH Targets ± 110 ± 4 or greater t vehicle	29.5516 ack Width: ack Width:	67 1/2 Test Inertial 5013 60.23272 0.0338183 29.55) side TEST INER Front	in. in. TIAL WEIGI	Differenci 13. -2.7672 N 1.5516 -1T (Ib.) Right 1403

Figure B-2. Vehicle Mass Distribution, Test No. CMGS-2

Appendix C. Static Soil Tests

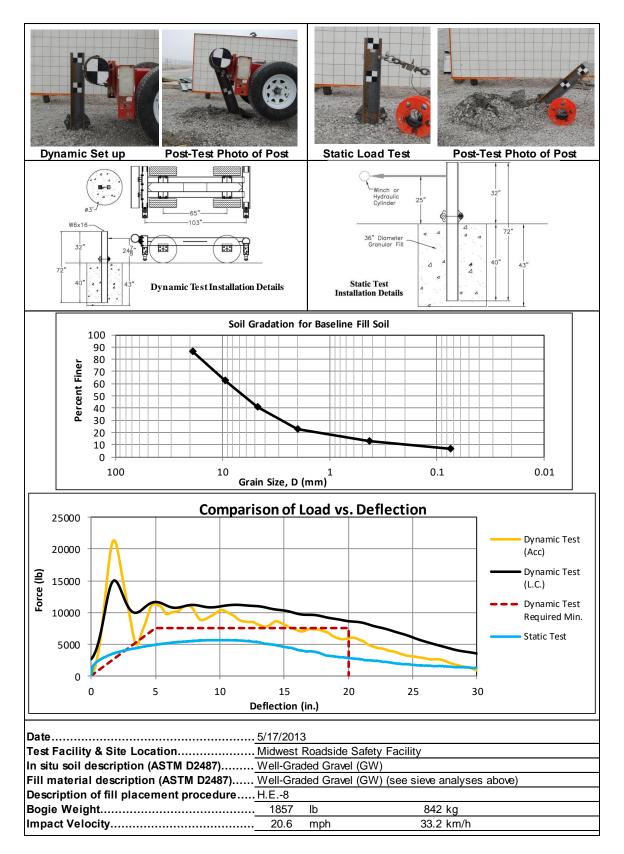


Figure C-1. Soil Strength, Initial Calibration Tests, Test No. CMGS-1

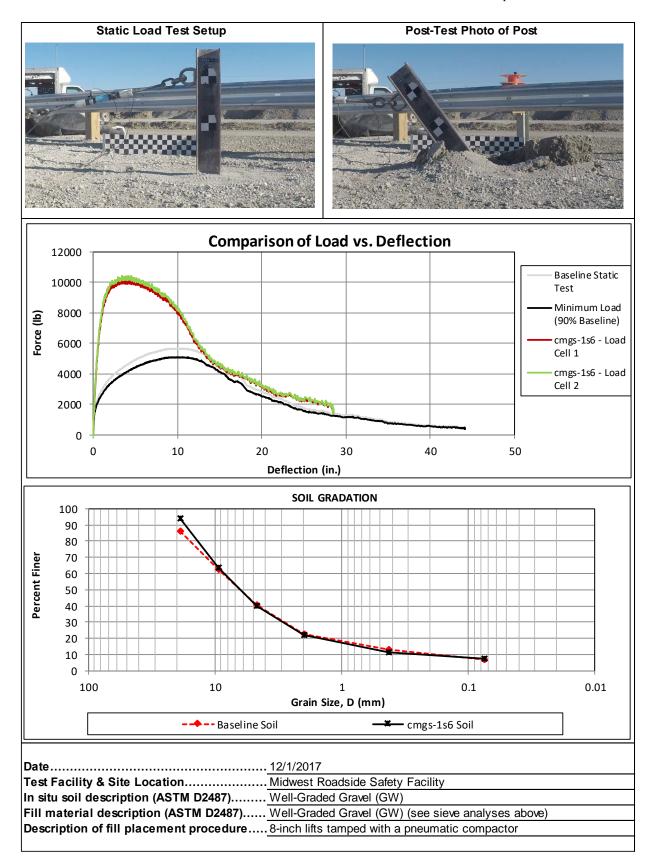


Figure C-2. Static Soil Test, Test No. CMGS-1

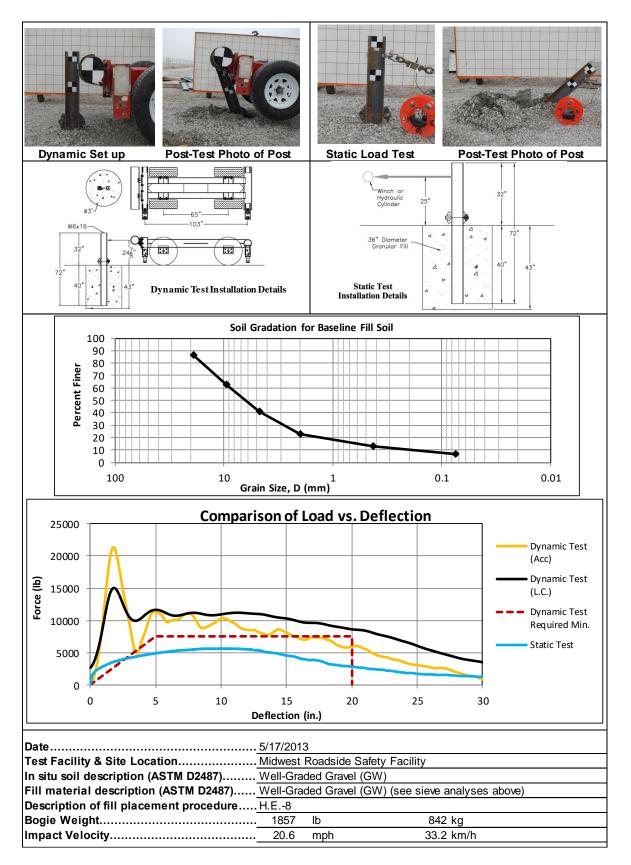


Figure C-3. Soil Strength, Initial Calibration Tests, Test No. CMGS-2

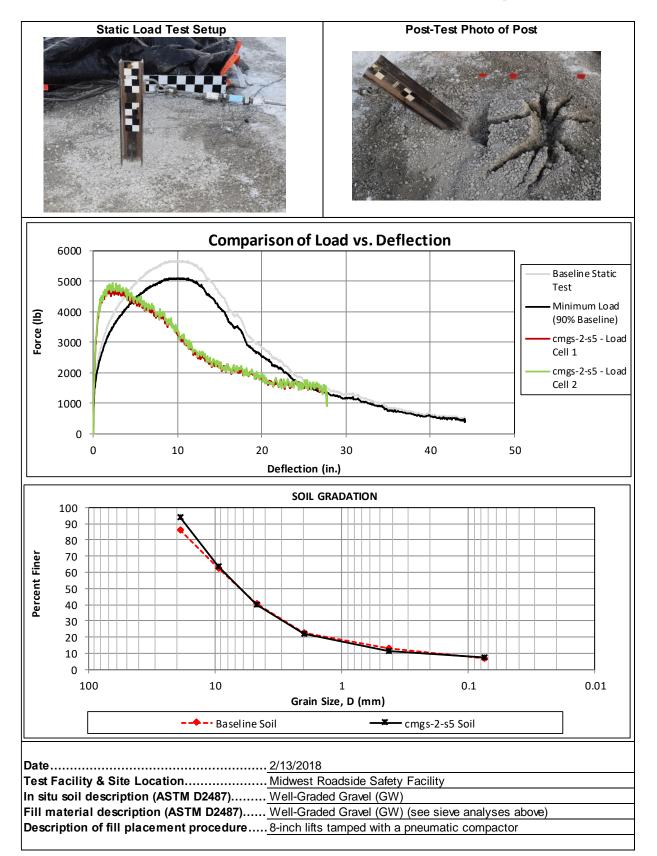


Figure C-4. Static Soil Test, Test No. CMGS-2

Appendix D. Vehicle Deformation Records

The following figures and tables describe all occupant compartment measurements taken on the test vehicles used in full-scale crash testing herein. MASH 2016 defines intrusion as the occupant compartment being deformed and reduced in size with no penetration. Outward deformations, which are denoted as negative numbers within this Appendix, are not considered as crush toward the occupant, and are not subject to evaluation by MASH 2016 criteria.

Date: Year:	12/1/2017 2010	. 1	Fest Name: Make:	CMGS-1 Hyundai		VIN: Model:	KMHC	N4ACOAU4 Accent	423259	-
					PRE/POS ⁻ DRPAN - S					
	x	Y	Z	Х	Y'	Z	ΔX	ΔΥ	ΔZ	Total ∆
POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
1	26.022	10.369	-2.981	24.767	12.320	-2.774	-1.256	1.951	0.208	2.329
2	25.897	15.105	-2.961	24.458	17.093	-2.833	-1.439	1.988	0.128	2.458
3	25.683	19.029	-2.692	24.009	20.935	-2.555	-1.674	1.906	0.137	2.541
4	25.168	23.426	-1.838	23.286	25.291	-1.769	-1.883	1.864	0.070	2.651
5	22.247	10.452	-4.969	21.101	12.316	-4.824	-1.146	1.863	0.145	2.192
6	22.432 22.452	14.973	-4.830 -4.394	21.069	16.817	-4.844 -4.285	-1.363 -1.629	1.844	-0.014	2.293
8	22.452	18.834 24.128	-4.495	20.823 20.735	20.675 25.919	-4.400	-1.852	<u>1.841</u> 1.791	0.109	2.461 2.578
9	19.146	10.691	-5.466	18.689	11.093	-5.300	-0.457	0.402	0.000	0.631
10	18.872	15.054	-5.432	18.387	15.509	-5.285	-0.485	0.455	0.147	0.680
11	18.983	18.555	-5.294	18.393	18.974	-5.144	-0.591	0.418	0.150	0.739
12	18.823	23.251	-5.503	18.321	23.690	-5.328	-0.502	0.439	0.176	0.689
13	16.652	10.752	-5.587	16.304	11.126	-4.873	-0.348	0.374	0.714	0.878
14	16.562	15.192	-5.448	16.034	15.576	-5.326	-0.529	0.384	0.122	0.665
15	16.310	18.887	-5.421	15.716	19.285	-5.295	-0.594	0.398	0.126	0.726
16	16.352	23.481	-5.601	15.798	23.933	-5.445	-0.554	0.452	0.156	0.732
17	14.150	10.659	-5.871	13.807	11.089	-5.320 -5.259	-0.343	0.430	0.552	0.779
<u>18</u>	13.873 13.492	15.404 19.773	-5.360 -5.322	13.308 12.906	15.761 20.128	-5.259 -5.191	-0.566 -0.586	0.357	0.101	0.677 0.697
20	13.292	24.331	-5.876	12.663	24.740	-5.725	-0.629	0.335	0.151	0.765
21	8.439	10.574	-5.853	8.067	10.949	-5.616	-0.372	0.375	0.238	0.579
22	8.239	15.454	-5.161	7.765	15.742	-5.064	-0.474	0.288	0.097	0.563
23	7.925	20.084	-5.106	7.401	20.367	-4.986	-0.524	0.283	0.121	0.607
24	7.481	24.511	-5.764	6.968	24.818	-5.588	-0.513	0.306	0.177	0.623
25	-1.031	8.841	-1.228	-1.301	8.980	-1.210	-0.270	0.139	0.018	0.304
26	-1.393	13.778	-1.204	-1.725	14.010	-1.123	-0.332	0.232	0.082	0.413
27	-1.454	18.832	-1.172	-1.882	19.055	-1.026	-0.427	0.223	0.146	0.503
28	-1.913	24.861	-1.104	-2.285	24.889	-0.871	-0.372	0.028	0.233	0.440

DOOR-					HBDAR:	5		20	D	DOR

Figure D-1. Floor Pan Deformation Data – Set 1, Test No. CMGS-1

Г

		<u>12/1/2017</u> 2010	. T	est Name: Make:	CMGS-1 Hyundai		VIN: Model:	КМНС	N4ACOAU4 Accent	423259	
PONT (in.)											
1 52 751 11 566 0.776 52 203 11 530 0.842 0.044 0.036 0.067 0.066 2 52 683 16.317 0.848 52 647 16.311 0.672 0.036 0.006 0.169 0.173 3 52 497 22.066 1.129 52.844 20.175 0.662 0.072 0.033 0.267 0.278 4 51.891 24.644 1.972 51.847 24.578 1.528 0.044 0.066 0.031 0.262 0.022 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.031 0.266 0.317 0.329 7 49.307 25.366 0.760 49.287 2.0441 1.036 0.030 0.066 0.311 0.459 1.517 10 45.797 16.362 1.982 46.844 14.987 2.075 0.846 1.336 0.426 1.517 10 45.797 16.362 1.939 0.696 1.314 0.022 1.640 1.366 0.127 1.641		Х	Y	Z	Х	Y'	Z	ΔΧ	ΔΥ	ΔZ	Total ∆
2 52683 16317 0.848 52.344 20.175 0.862 0.002 0.0031 0.2267 0.278 4 651891 24.644 1.972 61.847 24.578 1.528 0.0044 0.0066 0.444 0.451 5 49.066 11.672 -1.386 49.362 16.66 -1.511 0.062 0.031 0.022 0.002 0.002 0.002 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.022 0.022 0.022 0.022 0.022 0.021 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.022 0.022 0.021 0.022 0.022 0.021 0.021 0.025 1.517 0.486 1.489 0.025 1.517 0.112 1.619 1.457 0.102 1.647 1.487 0.015 1.649 1.346 0.025 1.547 1.424 0.484 1.583 1.522 1.241 1.432 0.020 1.54 1.569 1.432 0	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
3 52457 20.206 11/29 52.344 20.175 0.862 -0.072 -0.031 -0.287 0.287 4 51891 24.644 1972 51.847 24.578 1.528 0.044 -0.066 -0.444 0.451 5 49.301 16.228 -1.194 49.326 16.166 -1.511 0.061 -0.022 -0.020 0.075 6 49.307 16.06 -0.726 49.287 20.041 -1.036 -0.031 0.317 0.329 7 49.317 20.106 -0.726 49.287 20.014 -1.036 -0.029 -0.086 -0.411 0.499 9 46.019 11.990 2.018 46.716 1.0522 1.930 0.696 1.346 0.022 1.541 10 45.797 15.362 -1.992 46.822 184 -1.376 0.128 1.643 12 45.759 24.484 -1.983 47.2075 0.846 1.327 -1.228 0.517 1.541 13 43.564 12.008 -2.244 <td< td=""><td></td><td></td><td>}</td><td></td><td></td><td></td><td>*</td><td></td><td>ò</td><td></td><td>·</td></td<>			}				*		ò		·
4 61.891 24.644 1.972 51.847 24.578 1.528 -0.044 -0.066 -0.444 0.461 5 49.086 11.672 -1.364 49.362 16.166 -1.511 0.061 -0.062 -0.317 0.329 7 49.317 20.106 -0.726 49.287 20.041 -1.036 -0.030 -0.065 -0.414 0.481 8 49.507 25.566 -7.60 49.372 20.041 -1.036 -0.030 -0.065 -0.311 0.319 9 46.019 11.909 2.018 46.716 10.562 -1.933 0.056 -1.375 0.112 1.619 10 45.797 14.444 1.983 47.006 2.158 -2.270 1.247 -1.327 0.228 1.843 12 45.759 2.4444 1.983 4.302 15.173 -2.247 0.333 1.243 0.569 1.549 13 43.584 12.008 -2.231 1.404 1.983 -2.010 0.907 1.282 0.526 1.561							§				<u>{</u>
5 49.086 11.672 1.386 49.159 11.670 -1.407 0.072 -0.020 0.075 6 49.301 16.228 -1.194 49.362 16.166 -1.511 0.061 -0.062 -0.311 0.319 7 49.317 20.106 -0.726 49.267 20.041 -1.036 -0.029 -0.085 -0.311 0.319 9 46.019 11.900 -2.018 46.844 14.987 -2.075 0.846 -1.375 -0.112 1.619 10 45.797 16.362 -1.982 46.644 14.987 -2.075 0.846 -1.375 -0.012 0.112 1.619 11 45.905 19.794 -1.766 46.822 18.449 -1.996 0.317 -1.323 0.549 1.576 13 43.584 12.008 2.248 44.306 1.573 -2.247 0.333 -1.43 0.157 1.504 14 43.489 16.415 -2.094 44.502 3.262 -2.531 1.026 1.228 0.3232 1.752 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>§</td><td></td><td></td><td>4</td><td>·····</td></t<>							§			4	·····
6 49.301 16.228 1.194 49.362 16.166 -1.511 0.061 -0.025 0.317 0.329 7 49.317 20.106 -0.726 49.277 20.041 -1.036 -0.039 -0.065 -0.311 0.319 8 49.507 25.366 -0.760 49.478 25.280 -1.251 -0.029 -0.085 -0.491 0.489 9 46.019 11.309 -2.018 46.716 10.562 -1.933 0.0566 -1.375 -0.112 1.619 10 45.797 16.444 1.983 47.066 23.158 -2.270 1.247 -1.327 -0.228 1.843 12 45.759 24.444 -1.983 47.056 2.158 -2.270 1.247 -1.327 -0.228 1.843 13 43.584 12.008 -2.248 44.306 12.252 -7.084 -1.112 0.332 -1.752 14 43.469 16.415 -2.090 44.508 23.526 -2.531 1.205 -1.228 -0.282 1.576 1	****	******		*************************	*******		ð	*****	(*************************************	*****	ç:
8 49 507 25.366 0.760 49.479 25.280 -1.251 -0.029 -0.085 -0.491 0.499 9 46.019 11.909 2.018 46.716 10.562 -1.933 0.686 -1.348 0.025 1.517 10 45.797 16.362 -1.962 46.644 1.487 -0.727 0.846 -1.375 -0.112 1.619 11 45.905 19.744 1.982 46.822 18.449 -1.996 0.917 -1.345 -0.200 1.640 12 45.759 24.444 -1.983 47.006 2.3158 -2.270 1.247 -1.327 -0.288 1.843 13 43.584 12.008 2.248 44.316 10.725 -1.699 0.732 1.283 0.549 1.571 14 43.469 16.415 2.000 44.302 15.173 2.247 0.833 1.443 0.167 1.504 15 44.3.02 2.190 45.088 2.333 0.842 1.142 0.333 1.443 16 40.342	6						§			*****	
9 46.019 11.909 2.018 46.716 10.562 1.993 0.696 1.1348 0.025 1.517 10 45.797 16.362 1.962 46.644 14.987 2.075 0.846 1.375 0.112 1.619 11 45.905 19.794 1.796 46.822 18.449 1.996 0.917 1.345 0.200 1.640 12 45.759 24.494 1.1983 47.006 23.188 2.270 1.247 1.327 0.288 1.843 13 43.584 12.008 2.248 44.316 10.725 1.099 0.732 1.283 0.594 1.576 14 43.469 16.415 2.090 44.302 15.173 2.247 0.833 1.243 0.157 1.504 15 43.209 20.175 2.049 44.177 18.893 2.301 0.907 1.282 0.252 1.591 16 43.303 24.755 2.199 44.508 2.3526 2.531 1.205 1.228 0.925 1.591 17 41.064 11.918 2.665 41.849 10.806 2.282 0.784 1.112 0.333 1.413 18 40.748 16.639 2.2163 41.590 15.498 2.233 0.842 1.142 0.197 1.432 19 40.434 21.034 2.085 41.414 19.880 2.387 0.980 1.154 0.282 1.540 20 40.244 25.586 2.619 41.439 24.486 2.998 1.192 1.102 0.379 1.667 21 33.571 11.833 2.924 38.134 10.952 2.387 0.980 1.154 0.282 1.540 20 40.244 25.586 2.208 38.052 15.766 2.444 0.889 0.931 0.236 1.309 23 34.856 21.09 2.319 35.925 20.403 2.470 1.069 0.906 0.331 1.667 24 33.444 25.806 2.787 35.757 24.857 3.176 1.313 0.950 0.381 1.627 25 25.705 10.088 1.222 26.451 9.557 1.027 0.746 0.531 0.0166 1.309 26 25.277 15.199 1.262 20.285 14.402 0.999 0.995 0.331 0.236 1.309 26 22.8478 26.075 1.424 26.279 25.499 1.022 1.401 0.576 0.0402 1.567 26 24.878 26.075 1.424 26.279 25.499 1.022 1.401 0.576 0.0402 1.567 27 25.249 20.106 1.326 26.386 19.649 0.995 1.138 0.0456 0.331 1.270 28 24.878 26.075 1.424 26.279 25.499 1.022 1.401 0.576 0.0402 1.567 27 25.249 20.106 1.326 26.386 19.649 0.995 1.338 0.456 0.331 1.270 28 24.878 26.075 1.424 26.279 25.499 1.022 1.401 0.576 0.0402 1.567 27 25.249 20.106 1.326 26.386 19.649 0.995 1.138 0.0456 0.331 1.270 28 24.878 26.075 1.424 26.279 25.499 1.022 1.401 0.576 0.0402 1.567 29 24.878 26.075 1.424 26.279 25.499 1.022 1.401 0.576 0.0402 1.567 20 21 22 23 24 24 878 26.075 1.424 26.279 25.499 1.022 1.401 0.576 0.0402 1.567 28 24.878 26.075 1.424 26.279 25.499 1.022 1.401 0.576 0.0402 1.567 29 4.878 26.075 1.424 26.279 25.499 1.022 1.401 0		49.317					ç		-0.065	-0.311	0.319
10 45.797 16.382 1.962 46.644 14.987 2.075 0.846 1.1375 0.112 1.640 11 45.905 19.794 1.796 46.822 18.449 1.996 0.917 1.345 0.200 1.640 12 45.759 24.444 1.983 47.006 23.158 2.270 1.247 1.327 0.288 1.843 13 43.584 12.008 2.248 44.316 10.725 -1.699 0.732 1.283 0.549 1.576 14 43.496 16.415 2.090 44.302 15.173 2.247 0.831 1.243 0.157 1.504 15 43.269 20.175 2.049 44.508 2.326 2.282 0.784 1.112 0.333 1.413 16 43.303 2.4765 2.199 44.508 2.333 0.842 1.142 0.197 1.432 17 41.064 11.918 2.666 41.414 19.880 2.333 0.842 1.142 0.197 1.432 16 40.344 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>§</td> <td></td> <td></td> <td></td> <td><u>}</u></td>							§				<u>}</u>
11 45.050 19.794 -1.796 46.822 18.449 -1.996 0.917 -1.345 0.200 1.640 12 45.759 24.484 -1.983 47.006 23.158 -2.270 1.247 -1.327 -0.288 1.843 13 45.584 12.008 2.248 44.302 15.173 -2.247 0.833 -1.243 -0.157 1.504 14 43.469 16.415 2.090 44.302 15.173 -2.247 0.833 -1.243 -0.157 1.504 15 43.209 20.175 2.049 44.171 18.893 -2.301 0.907 -1.228 -0.322 1.752 16 43.303 24.755 2.199 44.508 23.526 2.531 1.205 -1.228 -0.332 1.752 17 41.064 11.918 2.065 41.414 19.880 -2.337 0.842 -1.142 -0.197 1.432 20 40.248 25.88 2.619 1.439 2.486 2.998 1.192 -1.102 -0.331 1.461 <t< td=""><td></td><td></td><td>}</td><td></td><td></td><td></td><td>ð</td><td></td><td>è</td><td></td><td><u>}</u></td></t<>			}				ð		è		<u>}</u>
12 45,759 24,484 -1.983 47.006 23.158 -2.270 1.247 -1.327 -0.288 1.843 13 43,584 12.008 -2.248 44.316 10.725 -1.699 0.732 -1.283 0.549 1.576 14 43,469 16.415 -2.090 44.302 15.173 2.247 0.683 -1.282 0.252 1.591 16 43,303 24.755 -2.199 44.508 2.331 1.205 -1.282 0.232 1.752 17 41.064 11.918 -2.665 41.849 10.806 -2.282 0.784 -1.112 0.333 1.413 18 40.748 16.639 -2.136 41.590 15.488 -2.337 0.842 -1.142 -0.197 1.432 20 40.248 25.588 -2.619 41.419 19.880 -2.367 0.980 -1.154 0.282 1.540 21 35.371 11.833 -2.924 36.134 10.952 -2.891 0.762 0.880 0.033 1.667 21 <td></td> <td></td> <td>*****</td> <td></td> <td></td> <td></td> <td>8</td> <td></td> <td></td> <td>*****</td> <td></td>			*****				8			*****	
13 43.584 12.008 -2.248 44.316 10.725 -1.699 0.732 -1.283 0.549 1.576 14 43.669 16.415 -2.090 44.302 15.173 -2.247 0.833 -1.243 -0.157 1.504 15 43.269 2.0175 -2.049 44.508 2.301 0.007 -1.228 -0.322 1.591 16 43.303 24.755 -2.199 44.508 2.332 0.784 -1.112 0.333 1.413 18 40.748 16.639 -2.136 41.580 15.488 -2.333 0.842 -1.142 -0.197 1.432 20 40.248 25.588 -2.619 41.439 24.866 -2.989 1.192 -1.102 -0.379 1.667 21 35.371 11.833 -2.924 36.134 10.952 -2.891 1.0762 -0.806 0.033 1.1440 22 35.163 16.696 -2.2787 35.757 24.857 -3.176 1.313 -0.906 -0.331 1.440 24 34.							÷			4	·····
15 43.269 20.175 -2.049 44.177 18.893 -2.301 0.007 -1.282 -0.252 1.591 16 43.303 24.755 -2.199 44.508 23.526 -2.531 1.206 -1.228 -0.332 1.752 17 41.064 11.918 -2.665 41.849 10.806 -2.282 0.784 -1.112 0.383 1.413 18 40.748 16.659 -2.085 41.414 19.880 -2.367 0.980 -1.154 -0.282 1.540 20 40.434 21.034 -2.085 41.414 19.880 -2.387 0.842 -1.162 -0.379 1.667 21 35.371 11.833 -2.924 36.163 16.696 -2.281 0.762 -2.891 0.762 0.800 0.033 1.165 22 35.163 16.696 -2.139 35.925 2.0403 -2.474 0.889 -0.931 0.236 1.309 23 34.866 21.309 -2.139 35.925 1.0243 -0.476 -0.531 0.196 <t< td=""><td></td><td>******</td><td></td><td>*************************</td><td>*******</td><td></td><td>§</td><td></td><td>(*************************************</td><td>****************************</td><td>ç</td></t<>		******		*************************	*******		§		(*************************************	****************************	ç
16 43.303 24.755 -2.199 44.508 23.526 -2.531 1.205 -1.228 -0.332 1.752 17 41.064 11.918 -2.665 41.849 10.806 -2.282 0.784 -1.112 -0.383 1.413 18 40.748 16.639 -2.136 41.509 15.498 -2.337 0.842 -1.142 -0.197 1.432 20 40.248 25.586 -2.619 41.439 24.466 -2.998 1.192 -1.102 -0.379 1.667 21 35.371 11.833 -2.924 36.134 10.952 -2.981 1.022 -0.331 -0.236 1.309 23 34.866 21.309 -2.139 35.925 20.403 -2.470 1.069 -0.331 1.440 24 34.444 25.806 -2.787 35.757 14.857 1.767 1.757 -3.767 1.767 0.746 -0.531 -0.196 0.337 26 25.276 10.088 1.222 26.451 9.557 1.027 0.746 -0.507 <td< td=""><td></td><td></td><td></td><td>~~~~~</td><td></td><td></td><td>§~~~~~~~~~</td><td></td><td></td><td>*****</td><td></td></td<>				~~~~~			§~~~~~~~~~			*****	
17 41.064 11.918 -2.665 41.849 10.806 -2.282 0.784 -1.112 0.383 1.413 18 40.748 16.639 -2.136 41.590 15.498 -2.333 0.842 -1.142 -0.197 1.432 20 40.248 25.588 -2.619 41.439 24.486 -2.998 1.192 -1.102 -0.379 1.667 21 35.371 11.833 -2.924 36.134 10.952 -2.811 0.762 -0.880 0.033 1.165 22 35.163 16.696 -2.208 36.052 15.766 -2.444 0.889 -0.931 -0.236 1.309 23 34.856 21.309 -2.139 35.925 20.403 -2.470 1.069 -0.906 -0.331 1.440 24 34.444 25.806 -2.787 35.757 24.857 -3.176 1.313 -0.950 -0.331 1.440 25 25.705 10.028 1.22 26.451 9.557 1.027 0.766 -0.431 1.170 28<			000000000000000000000000000000000000000				ç		*************************************	·····	000000000000000000000000000000000000000
18 40.748 16.639 2.136 41.590 15.498 -2.333 0.842 -1.142 -0.197 1.432 19 40.434 21.034 2.085 41.414 19.880 -2.367 0.980 -1.154 -0.282 1.540 20 40.248 25.588 2.619 41.439 24.486 -2.998 1.192 -1.102 -0.379 1.667 21 35.371 11.833 2.924 36.134 10.952 -2.891 0.762 -0.880 0.033 1.165 22 35.163 16.696 -2.008 36.052 15.766 -2.444 0.889 -0.931 -0.336 1.309 23 34.856 21.309 2.139 35.925 20.400 -0.474 0.889 -0.931 1.440 24 34.444 25.806 -2.787 35.757 24.857 -3.176 1.313 -0.950 -0.389 1.667 25 25.027 10.088 1.222 26.451 1.602 0.999 0.958 -0.507 0.244 1.115 26		h					ş		}	******	
19 40.434 21.034 -2.085 41.414 19.880 -2.367 0.980 -1.154 -0.282 1.540 20 40.248 25.588 -2.619 41.439 24.486 -2.998 1.192 -1.102 -0.379 1.667 21 35.371 11.833 2.924 36.134 10.952 -2.891 0.762 -0.880 0.033 1.165 22 35.163 16.696 -2.208 36.052 15.766 -2.444 0.889 -0.331 0.026 1.309 23 34.856 21.309 -2.397 35.925 20.403 -2.470 1.069 -0.906 0.331 1.440 24 34.444 25.806 2.787 35.757 24.857 -1.027 0.746 -0.531 0.196 0.337 26 25.327 15.09 1.222 26.451 9.557 1.027 0.746 0.566 -0.331 1.270 27 25.249 20.106 1.326 26.865 14.602 0.999 0.956 -0.507 0.264 1.567		***************************************					§		{	*****	f
20 40.248 25.588 -2.619 41.439 24.486 -2.998 1.192 -1.102 -0.379 1.667 21 35.371 11.833 -2.924 36.134 10.952 -2.891 0.762 -0.880 0.033 1.165 22 35.163 16.696 -2.208 36.052 15.766 -2.444 0.889 0.931 -0.236 1.309 23 34.856 21.309 -2.139 35.925 20.403 -2.470 1.069 -0.906 -0.331 1.440 24 34.444 25.806 -2.787 35.757 24.857 -3.176 1.313 0.950 -0.389 1.667 25 25.327 15.109 1.262 26.285 14.602 0.999 0.956 -0.507 -0.264 1.115 27 25.249 20.106 1.326 26.386 19.649 0.995 1.138 -0.456 -0.331 1.270 28 24.878 26.075 1.424 26.279 25.499 1.022 1.401 -0.576 -0.402 1.567							8			******	<u> </u>
21 36.371 11.833 -2.924 36.134 10.952 -2.891 0.762 -0.880 0.033 1.165 22 35.163 16.696 -2.208 36.052 15.766 -2.444 0.889 -0.931 -0.236 1.309 23 34.856 21.309 -2.139 35.925 20.403 -2.470 1.069 -0.906 -0.331 1.440 24 34.444 25.806 -2.787 35.757 24.857 -3.176 1.313 -0.960 -0.331 1.440 25 25.705 10.088 1.222 26.451 9.557 1.027 0.746 -0.531 -0.196 0.937 26 25.327 15.109 1.262 26.386 14.602 0.999 0.958 -0.507 -0.264 1.115 27 25.249 20.106 1.326 26.386 19.649 0.995 1.138 -0.402 1.567 28 24.878 26.075 1.424 26.279 25.499 1.022 1.401 -0.576 -0.402 1.567 21							ð			4	·····
22 35.163 16.696 -2.208 36.052 15.766 -2.444 0.889 -0.931 -0.236 1.309 23 34.856 21.309 -2.139 35.925 20.403 -2.470 1.069 -0.906 0.331 1.440 24 34.444 25.806 -2.787 35.757 24.857 -3.176 1.313 0.950 -0.389 1.667 25 25.705 10.088 1.222 26.451 9.557 1.027 0.746 -0.531 0.196 0.937 26 25.327 15.109 1.262 26.285 14.602 0.999 0.958 -0.507 -0.264 1.115 27 25.249 20.106 1.326 26.386 19.649 0.995 1.138 -0.456 -0.331 1.270 28 24.878 26.075 1.424 26.279 25.499 1.022 1.401 -0.576 -0.402 1.567 13 14 15 16 17 18 19 20 21 22 23 24 25 26	******						{			*****	<u> </u>
24 34.444 25.806 -2.787 35.757 24.857 -3.176 1.313 -0.950 -0.389 1.667 25 25.705 10.088 1.222 26.451 9.557 1.027 0.746 -0.531 -0.196 0.937 26 25.327 15.109 1.262 26.285 14.602 0.999 0.958 -0.507 -0.264 1.115 27 25.249 20.106 1.326 26.386 19.649 0.995 1.138 -0.456 -0.331 1.270 28 24.878 26.075 1.424 26.279 25.499 1.022 1.401 -0.576 -0.402 1.567 DASHBOARD 1 2 3.14 15 46 1 2 23 24 DOOR 25 26 27 28 24 25 26 27 28 DOOR		\$~~~~~~					§			+	
25 25.705 10.088 1.222 26.451 9.557 1.027 0.746 -0.531 -0.196 0.937 26 25.327 15.109 1.262 26.285 14.602 0.999 0.958 -0.507 -0.264 1.115 27 25.249 20.106 1.326 26.386 19.649 0.995 1.138 -0.456 -0.331 1.270 28 24.878 26.075 1.424 26.279 25.499 1.022 1.401 -0.576 -0.402 1.567 28 24.878 26.075 1.424 26.279 25.499 1.022 1.401 -0.576 -0.402 1.567		34.856	21.309			ç	-2.470	1.069	÷	·?·····	÷
26 25.327 15.109 1.262 26.285 14.602 0.999 0.958 -0.507 -0.264 1.115 27 25.249 20.106 1.326 26.386 19.649 0.995 1.138 -0.456 -0.331 1.270 28 24.878 26.075 1.424 26.279 25.499 1.022 1.401 -0.576 -0.402 1.567	24	ff	25.806	-2.787	35.757	24.857	-3.176	1.313	-0.950	-0.389	1.667
27 25.249 20.106 1.326 26.386 19.649 0.995 1.138 -0.456 -0.331 1.270 28 24.878 26.075 1.424 26.279 25.499 1.022 1.401 -0.576 -0.402 1.567 DASHBOARD 1 2 3.4 5 6 7 8 9 10.714 12 13 14 15 16 17 18 19 20 21 22 23 24 DOOR 25 26 27 28 DOOR							§			*****	f
28 24.878 26.075 1.424 26.279 25.499 1.022 1.401 -0.576 -0.402 1.567							§			*****	
DASHBOARD 1 2 3 4 5 6 7 8 9 10 14 12 13 14 15 46 17 18 19 20 21 22 23 24 25 26 27 28 DOOR							§		·····	4	·····
DOOR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 DOOR						201100			0.010	01.102	
	DOOR-						1 5 9 13 17 21	6 7 10 14 3 14 15 7 18 1 22 2	12 16 9 20 3 24	D	DOR
		-				_					

Figure D-2. Floor Pan Deformation Data – Set 2, Test No. CMGS-1

Г

	Year:	2010			Hyundai		Model:		Accent		-
					IICLE PRE/ TERIOR CR						
		х	Y	Z	x	Υ'	Z	ΔΧ	ΔΥ	ΔZ	Total Δ
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
	1	12.945	3.187	23.438	13.329	3.090	23.536	0.384	-0.097	0.099	0.408
-	2	13.442	15.878	21.719	13.761	15.830	21.843	0.319	-0.048	0.125	0.345
DASH	3	12.971	25.434	21.705	13.286	25.306	21.879	0.315	-0.129	0.174	0.382
DA	4	9.018	2.458	16.202	9.299	2.444	16.339	0.281	-0.014	0.137	0.312
	5	11.505	17.525	16.970	11.770	17.437	17.170	0.265	-0.088	0.201	0.344
	6	10.657	25.550	16.631	10.907	25.389	16.792	0.251	-0.161	0.162	0.339
SIDE PANEL	7	16.772	29.237	0.861	16.874	29.101	1.140	0.103	-0.136	0.279	0.327
SID AN	8	16.804	29.243	2.453	16.934	29.098	2.643	0.130	-0.145	0.190	0.272
÷, с	9	19.491	29.419	0.009	19.626	29.142	0.392	0.135	-0.277	0.383	0.491
Щ	10	9.266	29.799	21.090	9.309	29.683	21.303	0.044	-0.116	0.214	0.247
SIC SIC	11	-0.152	29.427	21.983	-0.047	29.468	22.217	0.105	0.041	0.234	0.260
IMPACT SIDE DOOR	12	-9.959	28.958	23.071	-9.929	29.111	23.437	0.030	0.153	0.366	0.398
ÅΖ	13	3.598	30.092	9.679	3.566	30.661	10.039	-0.033	0.568	0.360	0.674
M	14	-2.810	29.832	11.850	-2.782	30.313	12.171	0.028	0.482	0.322	0.580
	15	-11.617	29.489	12.197	-11.510	29.848	12.572	0.107	0.359	0.375	0.530
	16	0.412	19.897	38.649	0.480	19.873	38.879	0.068	-0.025	0.230	0.241
		1.428	13.605	38.957	1.543	13.608	39.126	0.114	0.003	0.170	0.205
	18	1.993	9.098	39.071	2.074	9.050	39.248	0.081	-0.048	0.177	0.200
	19	2.262	5.670	39.155	2.424	5.579	39.304	0.162	-0.091	0.149	0.238
	20	2.493	1.703	39.171	2.554	1.699	39.349	0.061	-0.004	0.178	0.188
	21	-5.405	18.611	41.227	-5.261	18.557	41.429	0.143	-0.054	0.202	0.253
ROOF	22	-4.560	14.266	41.467	-4.511	14.159	41.685	0.049	-0.107	0.218	0.247
۵ <u>ٌ</u>	23	-3.895	10.182	41.604	-3.698	10.025	41.773	0.196	-0.156	0.169	0.302
_	24	-3.591	6.923	41.691	-3.448	6.774	41.864	0.144	-0.148	0.173	0.269
	25 26	-3.908 -9.902	1.858	41.907	-3.655	1.725	42.038 42.456	0.252	-0.133	0.131	0.314
	20	-9.902	17.578 13.817	42.261 42.301	-9.766 -7.973	17.428 13.687	42.456	0.136	-0.151 -0.130	0.196 0.183	0.282
	28	-7.418	10.099	42.301	-7.267	9.956	42.405	0.151	-0.130	0.183	0.283
	20	-6.588	6.486	42.419	-6.477	6.362	42.604	0.111	-0.124	0.182	0.270
	30	-6.089	2.002	42.422	-5.771	1.788	42.547	0.318	-0.214	0.102	0.240
					1						Î
A PILLAR	31 32	3.629 7.160	24.589 25.535	34.809 32.688	3.754 7.287	24.460 25.401	35.116 33.005	0.125	-0.130 -0.134	0.307 0.317	0.356
EL A	32	9.830	25.555	30.832	9.998	25.401	31.121	0.126	-0.134	0.317	0.367
ם	34	13.443	27.226	28.258	13.649	27.081	28.596	0.205	-0.132	0.238	0.339
	35	-17.939	27.390	22.735	-17.708	27.463	23.007	0.231	0.072	0.330	0.364
	36	-17.939	27.294	22.333	-21.485	27.2403	23.007	0.231	-0.052	0.272	0.304
AR	37	-18.625	26.517	28.198	-18.362	26.406	28.449	0.263	-0.111	0.214	0.323
B PILLAR	38	-22.485	26.511	27.849	-22.235	26.415	28.127	0.250	-0.096	0.230	0.387
Ф.	39	-19.964	23.437	36.441	-19.463	23.414	36.525	0.500	-0.030	0.085	0.508
	40	-22.990	23.524	36.231	-22.621	23.386	36.452	0.369	-0.139	0.221	0.452

Figure D-3.	Occupant	Compartment	Deformation	Data – Set 1	, Test No. CMGS-1
	r	r			,

X (in.) 38.167 38.715 38.281 34.575 37.044 36.229 43.110 43.086 45.911 34.647 25.217 15.326 29.583 23.071 14.261 24.800 25.783 26.401 26.644	Y (in.) 4.280 17.003 26.538 3.730 18.701 26.686 30.453 30.450 30.450 30.622 30.908 30.555 30.099 31.290 31.034 30.703 20.926 14.644		ICLE PRE/ ERIOR CR 38.400 38.951 38.496 34.764 37.219 36.396 43.211 43.189 45.999 34.566 25.173 15.239 29.443 22.988 14.251 24.776	USH - SET Y' (in.) 5.083 17.789 27.264 4.306 19.309 27.254 30.662 30.687 30.685 31.634 31.634 31.447 31.126 32.405 32.106 31.659		ΔX (in.) 0.232 0.235 0.215 0.189 0.176 0.167 0.101 0.103 0.088 -0.081 -0.044 -0.086 -0.139 -0.082 2.040	ΔY (in.) 0.803 0.785 0.726 0.576 0.608 0.568 0.209 0.237 0.063 0.725 0.892 1.027 1.116 1.072	ΔZ (in.) 0.016 -0.221 -0.453 0.013 -0.241 -0.447 -0.444 -0.564 -0.357 -0.533 -0.533 -0.537 -0.494 -0.448 -0.455	Total ∆ (in.) 0.836 0.849 0.882 0.606 0.677 0.742 0.501 0.620 0.373 0.904 1.043 1.143 1.210 1.168
(in.) 38.167 38.715 38.281 34.575 37.044 36.229 43.110 43.086 45.911 34.647 25.217 15.326 29.583 23.071 14.261 24.800 25.783 26.401	(in.) 4.280 17.003 26.538 3.730 18.701 26.686 30.453 30.450 30.450 30.622 30.908 30.555 30.099 31.290 31.034 30.703 20.926 14.644	INT Z (in.) 26.554 24.884 24.948 19.165 20.101 19.734 4.357 5.981 3.672 24.156 24.569 25.214 12.495 14.293 14.236 41.199	ERIOR CR (in.) 38.400 38.951 38.496 34.764 37.219 36.396 43.211 43.189 45.999 34.566 25.173 15.239 29.443 22.988 14.251	USH - SET Y' (in.) 5.083 17.789 27.264 4.306 19.309 27.254 30.662 30.687 30.685 31.634 31.634 31.447 31.126 32.405 32.106 31.659	2 Z (in.) 26.570 24.664 24.495 19.178 19.860 19.287 3.914 5.418 3.315 23.623 24.032 24.720 12.047 13.838	(in.) 0.232 0.235 0.215 0.189 0.176 0.107 0.101 0.103 0.088 -0.081 -0.044 -0.086 -0.139 -0.082	(in.) 0.803 0.785 0.726 0.576 0.608 0.568 0.209 0.237 0.063 0.725 0.892 1.027 1.116 1.072	(in.) 0.016 -0.221 -0.453 0.013 -0.241 -0.447 -0.444 -0.357 -0.564 -0.357 -0.533 -0.533 -0.537 -0.494 -0.448 -0.445	(in.) 0.836 0.849 0.882 0.606 0.677 0.742 0.501 0.620 0.373 0.904 1.043 1.143 1.210
(in.) 38.167 38.715 38.281 34.575 37.044 36.229 43.110 43.086 45.911 34.647 25.217 15.326 29.583 23.071 14.261 24.800 25.783 26.401	(in.) 4.280 17.003 26.538 3.730 18.701 26.686 30.453 30.450 30.450 30.622 30.908 30.555 30.099 31.290 31.034 30.703 20.926 14.644	(in.) 26.554 24.884 24.948 19.165 20.101 19.734 4.357 5.981 3.672 24.156 24.569 25.214 12.495 14.293 14.236 41.199	(in.) 38.400 38.951 38.496 34.764 37.219 36.396 43.211 43.189 45.999 34.566 25.173 15.239 29.443 22.988 14.251	(in.) 5.083 17.789 27.264 4.306 19.309 27.254 30.662 30.687 30.685 31.634 31.447 31.126 32.405 32.106 31.659	(in.) 26.570 24.664 24.495 19.178 19.860 19.287 3.914 5.418 3.315 23.623 24.032 24.720 12.047 13.838	(in.) 0.232 0.235 0.215 0.189 0.176 0.107 0.101 0.103 0.088 -0.081 -0.044 -0.086 -0.139 -0.082	(in.) 0.803 0.785 0.726 0.576 0.608 0.568 0.209 0.237 0.063 0.725 0.892 1.027 1.116 1.072	(in.) 0.016 -0.221 -0.453 0.013 -0.241 -0.447 -0.444 -0.357 -0.564 -0.357 -0.533 -0.533 -0.537 -0.494 -0.448 -0.445	(in.) 0.836 0.849 0.882 0.606 0.677 0.742 0.501 0.620 0.373 0.904 1.043 1.143 1.210
(in.) 38.167 38.715 38.281 34.575 37.044 36.229 43.110 43.086 45.911 34.647 25.217 15.326 29.583 23.071 14.261 24.800 25.783 26.401	(in.) 4.280 17.003 26.538 3.730 18.701 26.686 30.453 30.450 30.450 30.622 30.908 30.555 30.099 31.290 31.034 30.703 20.926 14.644	(in.) 26.554 24.884 24.948 19.165 20.101 19.734 4.357 5.981 3.672 24.156 24.569 25.214 12.495 14.293 14.236 41.199	(in.) 38.400 38.951 38.496 34.764 37.219 36.396 43.211 43.189 45.999 34.566 25.173 15.239 29.443 22.988 14.251	(in.) 5.083 17.789 27.264 4.306 19.309 27.254 30.662 30.687 30.685 31.634 31.447 31.126 32.405 32.106 31.659	(in.) 26.570 24.664 24.495 19.178 19.860 19.287 3.914 5.418 3.315 23.623 24.032 24.720 12.047 13.838	(in.) 0.232 0.235 0.215 0.189 0.176 0.107 0.101 0.103 0.088 -0.081 -0.044 -0.086 -0.139 -0.082	(in.) 0.803 0.785 0.726 0.576 0.608 0.568 0.209 0.237 0.063 0.725 0.892 1.027 1.116 1.072	(in.) 0.016 -0.221 -0.453 0.013 -0.241 -0.447 -0.444 -0.357 -0.564 -0.357 -0.533 -0.533 -0.537 -0.494 -0.448 -0.445	(in.) 0.836 0.849 0.882 0.606 0.677 0.742 0.501 0.620 0.373 0.904 1.043 1.143 1.210
38.715 38.281 34.575 37.044 36.229 43.110 43.086 45.911 34.647 25.217 15.326 29.583 23.071 14.261 24.800 25.783 26.401	17.003 26.538 3.730 18.701 26.686 30.453 30.450 30.622 30.908 30.555 30.099 31.290 31.034 30.703 20.926 14.644	24.884 24.948 19.165 20.101 19.734 4.357 5.981 3.672 24.156 24.569 25.214 12.495 14.293 14.236 41.199	38.951 38.496 34.764 37.219 36.396 43.211 43.189 45.999 34.566 25.173 15.239 29.443 22.988 14.251	17.789 27.264 4.306 19.309 27.254 30.662 30.687 30.685 31.634 31.447 31.126 32.405 32.106 31.659	24.664 24.495 19.178 19.860 19.287 3.914 5.418 3.315 23.623 24.032 24.720 12.047 13.838	0.235 0.215 0.189 0.176 0.101 0.103 0.088 -0.081 -0.044 -0.086 -0.139 -0.082	0.785 0.726 0.576 0.608 0.209 0.237 0.063 0.725 0.892 1.027 1.116 1.072	-0.221 -0.453 0.013 -0.241 -0.447 -0.444 -0.564 -0.357 -0.533 -0.533 -0.537 -0.494 -0.448 -0.455	0.849 0.882 0.606 0.677 0.742 0.501 0.620 0.373 0.904 1.043 1.143 1.210
38.281 34.575 37.044 36.229 43.110 43.086 45.911 34.647 25.217 15.326 29.583 23.071 14.261 24.800 25.783 26.401	26.538 3.730 18.701 26.686 30.453 30.450 30.622 30.908 30.555 30.099 31.290 31.034 30.703 20.926 14.644	24.948 19.165 20.101 19.734 4.357 5.981 3.672 24.156 24.569 25.214 12.495 14.293 14.236 41.199	38.496 34.764 37.219 36.396 43.211 43.189 45.999 34.566 25.173 15.239 29.443 22.988 14.251	27.264 4.306 19.309 27.254 30.662 30.687 30.685 31.634 31.447 31.126 32.405 32.106 31.659	24.495 19.178 19.860 19.287 3.914 5.418 3.315 23.623 24.032 24.720 12.047 13.838	0.215 0.189 0.176 0.107 0.101 0.103 0.088 -0.081 -0.044 -0.086 -0.139 -0.082	0.726 0.576 0.608 0.209 0.237 0.063 0.725 0.892 1.027 1.116 1.072	-0.453 0.013 -0.241 -0.447 -0.444 -0.564 -0.357 -0.533 -0.533 -0.537 -0.494 -0.448 -0.455	0.882 0.606 0.677 0.742 0.501 0.620 0.373 0.904 1.043 1.143 1.210
34.575 37.044 36.229 43.110 43.086 45.911 34.647 25.217 15.326 29.583 23.071 14.261 24.800 25.783 26.401	3.730 18.701 26.686 30.453 30.450 30.622 30.908 30.555 30.099 31.290 31.034 30.703 20.926 14.644	19.165 20.101 19.734 4.357 5.981 3.672 24.156 24.569 25.214 12.495 14.293 14.236 41.199	34.764 37.219 36.396 43.211 43.189 45.999 34.566 25.173 15.239 29.443 22.988 14.251	4.306 19.309 27.254 30.662 30.687 30.685 31.634 31.447 31.126 32.405 32.106 31.659	19.178 19.860 19.287 3.914 5.418 3.315 23.623 24.032 24.720 12.047 13.838	0.189 0.176 0.107 0.101 0.103 0.088 -0.081 -0.044 -0.086 -0.139 -0.082	0.576 0.608 0.568 0.209 0.237 0.063 0.725 0.892 1.027 1.116 1.072	0.013 -0.241 -0.447 -0.564 -0.357 -0.533 -0.537 -0.494 -0.448 -0.455	0.606 0.677 0.742 0.501 0.620 0.373 0.904 1.043 1.143 1.210
37.044 36.229 43.110 43.086 45.911 34.647 25.217 15.326 29.583 23.071 14.261 24.800 25.783 26.401	18.701 26.686 30.453 30.450 30.622 30.908 30.555 30.099 31.290 31.034 30.703 20.926 14.644	20.101 19.734 4.357 5.981 3.672 24.156 24.569 25.214 12.495 14.293 14.236 41.199	37.219 36.396 43.211 43.189 45.999 34.566 25.173 15.239 29.443 22.988 14.251	19.309 27.254 30.662 30.685 31.634 31.447 31.126 32.405 32.106 31.659	19.860 19.287 3.914 5.418 3.315 23.623 24.032 24.720 12.047 13.838	0.176 0.167 0.101 0.103 0.088 -0.081 -0.044 -0.086 -0.139 -0.082	0.608 0.568 0.209 0.237 0.063 0.725 0.892 1.027 1.116 1.072	-0.241 -0.447 -0.564 -0.357 -0.533 -0.537 -0.494 -0.448 -0.455	0.677 0.742 0.501 0.620 0.373 0.904 1.043 1.143 1.210
36.229 43.110 43.086 45.911 34.647 25.217 15.326 29.583 23.071 14.261 24.800 25.783 26.401	26.686 30.453 30.450 30.622 30.908 30.555 30.099 31.290 31.034 30.703 20.926 14.644	19.734 4.357 5.981 3.672 24.156 24.569 25.214 12.495 14.293 14.236 41.199	36.396 43.211 43.189 45.999 34.566 25.173 15.239 29.443 22.988 14.251	27.254 30.662 30.687 31.634 31.447 31.126 32.405 32.106 31.659	19.287 3.914 5.418 3.315 23.623 24.032 24.720 12.047 13.838	0.167 0.101 0.103 0.088 -0.081 -0.044 -0.086 -0.139 -0.082	0.568 0.209 0.237 0.063 0.725 0.892 1.027 1.116 1.072	-0.447 -0.444 -0.564 -0.357 -0.533 -0.537 -0.494 -0.448 -0.455	0.742 0.501 0.620 0.373 0.904 1.043 1.143 1.210
43.110 43.086 45.911 34.647 25.217 15.326 29.583 23.071 14.261 24.800 25.783 26.401	30.453 30.450 30.622 30.908 30.555 30.099 31.290 31.034 30.703 20.926 14.644	4.357 5.981 3.672 24.156 24.569 25.214 12.495 14.293 14.236 41.199	43.211 43.189 45.999 34.566 25.173 15.239 29.443 22.988 14.251	30.662 30.687 30.685 31.634 31.447 31.126 32.405 32.106 31.659	3.914 5.418 3.315 23.623 24.032 24.720 12.047 13.838	0.101 0.103 0.088 -0.081 -0.044 -0.086 -0.139 -0.082	0.209 0.237 0.063 0.725 0.892 1.027 1.116 1.072	-0.444 -0.564 -0.357 -0.533 -0.537 -0.494 -0.448 -0.455	0.501 0.620 0.373 0.904 1.043 1.143 1.210
43.086 45.911 34.647 25.217 15.326 29.583 23.071 14.261 24.800 25.783 26.401	30.450 30.622 30.908 30.555 30.099 31.290 31.034 30.703 20.926 14.644	5.981 3.672 24.156 24.569 25.214 12.495 14.293 14.236 41.199	43.189 45.999 34.566 25.173 15.239 29.443 22.988 14.251	30.687 30.685 31.634 31.447 31.126 32.405 32.106 31.659	5.418 3.315 23.623 24.032 24.720 12.047 13.838	0.103 0.088 -0.081 -0.044 -0.086 -0.139 -0.082	0.237 0.063 0.725 0.892 1.027 1.116 1.072	-0.564 -0.357 -0.533 -0.537 -0.494 -0.448 -0.455	0.620 0.373 0.904 1.043 1.143 1.210
45.911 34.647 25.217 15.326 29.583 23.071 14.261 24.800 25.783 26.401	30.622 30.908 30.555 30.099 31.290 31.034 30.703 20.926 14.644	3.672 24.156 24.569 25.214 12.495 14.293 14.236 41.199	45.999 34.566 25.173 15.239 29.443 22.988 14.251	30.685 31.634 31.447 31.126 32.405 32.106 31.659	3.315 23.623 24.032 24.720 12.047 13.838	0.088 -0.081 -0.044 -0.086 -0.139 -0.082	0.063 0.725 0.892 1.027 1.116 1.072	-0.357 -0.533 -0.537 -0.494 -0.448 -0.455	0.373 0.904 1.043 1.143 1.210
34.647 25.217 15.326 29.583 23.071 14.261 24.800 25.783 26.401	30.908 30.555 30.099 31.290 31.034 30.703 20.926 14.644	24.156 24.569 25.214 12.495 14.293 14.236 41.199	34.566 25.173 15.239 29.443 22.988 14.251	31.634 31.447 31.126 32.405 32.106 31.659	23.623 24.032 24.720 12.047 13.838	-0.081 -0.044 -0.086 -0.139 -0.082	0.725 0.892 1.027 1.116 1.072	-0.533 -0.537 -0.494 -0.448 -0.455	0.904 1.043 1.143 1.210
25.217 15.326 29.583 23.071 14.261 24.800 25.783 26.401	30.555 30.099 31.290 31.034 30.703 20.926 14.644	24.569 25.214 12.495 14.293 14.236 41.199	25.173 15.239 29.443 22.988 14.251	31.447 31.126 32.405 32.106 31.659	24.032 24.720 12.047 13.838	-0.044 -0.086 -0.139 -0.082	0.892 1.027 1.116 1.072	-0.537 -0.494 -0.448 -0.455	1.043 1.143 1.210
15.326 29.583 23.071 14.261 24.800 25.783 26.401	30.099 31.290 31.034 30.703 20.926 14.644	25.214 12.495 14.293 14.236 41.199	15.239 29.443 22.988 14.251	31.126 32.405 32.106 31.659	24.720 12.047 13.838	-0.086 -0.139 -0.082	1.027 1.116 1.072	-0.494 -0.448 -0.455	1.143 1.210
29.583 23.071 14.261 24.800 25.783 26.401	31.290 31.034 30.703 20.926 14.644	12.495 14.293 14.236 41.199	29.443 22.988 14.251	32.405 32.106 31.659	12.047 13.838	-0.139 -0.082	1.116 1.072	-0.448 -0.455	1.210
23.071 14.261 24.800 25.783 26.401	31.034 30.703 20.926 14.644	14.293 14.236 41.199	22.988 14.251	32.106 31.659	13.838	-0.082	1.072	-0.455	8
14.261 24.800 25.783 26.401	30.703 20.926 14.644	14.236 41.199	14.251	31.659					1.168
24.800 25.783 26.401	20.926 14.644	41.199	1		13.774			0 400	4 004
25.783 26.401	14.644	h	24.776			-0.010	0.956	-0.462	1.061
26.401	*****		05 040	22.168	40.875	-0.024	1.242	-0.324	1.284
		}	25.810	15.908	41.298	0.027	1.264	-0.220	1.284
	10.104	41.620	26.323	11.353	41.533	-0.077	1.248	-0.086	1.254
26.760	6.712 2.756	41.699 41.744	26.662 26.781	7.883 4.004	41.674 41.799	0.018	1.171	-0.025 0.056	1.172 1.249
18.883	19.681	41.744	18.902	20.908	43.134	0.021	1.240	-0.321	1.249
19.737	15.330	43.706	19.627	16.514	43.513	-0.110	1.185	-0.193	1.205
20.389	11.212	43.851	20.425	12.383	43.723	0.036	1.171	-0.128	1.178
20.705	7.884	43.932	20.663	9.134	43.889	-0.042	1.249	-0.044	1.251
20.358	2.914	44.102	20.435	4.089	44.147	0.077	1.176	0.045	1.179
14.395	18.611	44.241	14.346	19.804	43.937	-0.050	1.193	-0.304	1.232
16.127	14.808	44.348	16.126	16.062	44.133	0.000	1.254	-0.215	1.272
16.746	11.087	44.494	16.817	12.333	44.358	0.071	1.246	-0.136	1.255
17.673	7.485	44.501	17.597	8.739	44.471	-0.076	1.254	-0.030	1.257
18.076	2.998	44.512	18.295	4.164	44.538	0.219	1.165	0.026	1.186
28.196	25.646	37.560	28.259	26.679	37.210	0.063	1.033	-0.351	1.093
31.885	26.595	35.591	31.903	27.576	35.276	0.018	0.981	-0.314	1.031
34.663	27.332	33.892	34.714	28.274	33.528	0.050	0.942	-0.364	1.011
38.420	28.297	31.541	38.498	29.165	31.187	0.078	0.868	-0.354	0.941
7.299	28.541	24.409	7.491	29.478	23.900	0.192	0.938	-0.509	1.084
3.549	28.455	23.808	3.744	29.254	23.240	0.195	0.799	-0.568	0.999
6.293	27.626	29.853	6.541		29.318		0.900	-0.535	1.076
	÷							-0.481	1.037
4 575		*****							1.319
	24.594	37.606	1.848	25.662	37.134	0.240	1.069	-0.472	1.193
	16.746 17.673 18.076 28.196 31.885 34.663 38.420 7.299 3.549	16.746 11.087 17.673 7.485 18.076 2.998 28.196 25.646 31.885 26.595 34.663 27.332 38.420 28.297 7.299 28.541 3.549 28.455 6.293 27.626 2.476 27.640 4.575 24.546	16.74611.08744.49417.6737.48544.50118.0762.99844.51228.19625.64637.56031.88526.59535.59134.66327.33233.89238.42028.29731.5417.29928.54124.4093.54928.45523.8086.29327.62629.8532.47627.64029.2674.57524.54637.883	16.74611.08744.49416.81717.6737.48544.50117.59718.0762.99844.51218.29528.19625.64637.56028.25931.88526.59535.59131.90334.66327.33233.89234.71438.42028.29731.54138.4987.29928.54124.4097.4913.54928.45523.8083.7446.29327.62629.8536.5412.47627.64029.2672.6914.57524.54637.8834.997	16.74611.08744.49416.81712.33317.6737.48544.50117.5978.73918.0762.99844.51218.2954.16428.19625.64637.56028.25926.67931.88526.59535.59131.90327.57634.66327.33233.89234.71428.27438.42028.29731.54138.49829.1657.29928.54124.4097.49129.4783.54928.45523.8083.74429.2546.29327.62629.8536.54128.5252.47627.64029.2672.69128.5334.57524.54637.8834.99725.688	16.74611.08744.49416.81712.33344.35817.6737.48544.50117.5978.73944.47118.0762.99844.51218.2954.16444.53828.19625.64637.56028.25926.67937.21031.88526.59535.59131.90327.57635.27634.66327.33233.89234.71428.27433.52838.42028.29731.54138.49829.16531.1877.29928.54124.4097.49129.47823.9003.54928.45523.8083.74429.25423.2406.29327.62629.8536.54128.52529.3182.47627.64029.2672.69128.53328.7874.57524.54637.8834.99725.68837.378	16.74611.08744.49416.81712.33344.3580.07117.6737.48544.50117.5978.73944.471-0.07618.0762.99844.51218.2954.16444.5380.21928.19625.64637.56028.25926.67937.2100.06331.88526.59535.59131.90327.57635.2760.01834.66327.33233.89234.71428.27433.5280.05038.42028.29731.54138.49829.16531.1870.0787.29928.54124.4097.49129.47823.9000.1923.54928.45523.8083.74429.25423.2400.1956.29327.62629.8536.54128.52529.3180.2492.47627.64029.2672.69128.53328.7870.2144.57524.54637.8834.99725.68837.3780.422	16.74611.08744.49416.81712.33344.3580.0711.24617.6737.48544.50117.5978.73944.471-0.0761.25418.0762.99844.51218.2954.16444.5380.2191.16528.19625.64637.56028.25926.67937.2100.0631.03331.88526.59535.59131.90327.57635.2760.0180.98134.66327.33233.89234.71428.27433.5280.0500.94238.42028.29731.54138.49829.16531.1870.0780.8687.29928.54124.4097.49129.47823.9000.1920.9383.54928.45523.8083.74429.25423.2400.1950.7996.29327.62629.8536.54128.52529.3180.2490.9002.47627.64029.2672.69128.53328.7870.2140.8934.57524.54637.8834.99725.68837.3780.4221.142	16.74611.08744.49416.81712.33344.3580.0711.246-0.13617.6737.48544.50117.5978.73944.471-0.0761.254-0.03018.0762.99844.51218.2954.16444.5380.2191.1650.02628.19625.64637.56028.25926.67937.2100.0631.033-0.35131.88526.59535.59131.90327.57635.2760.0180.981-0.31434.66327.33233.89234.71428.27433.5280.0500.942-0.36438.42028.29731.54138.49829.16531.1870.0780.868-0.3547.29928.54124.4097.49129.47823.9000.1920.938-0.5093.54928.45523.8083.74429.25423.2400.1950.799-0.5686.29327.62629.8536.54128.52529.3180.2490.900-0.5352.47627.64029.2672.69128.53328.7870.2140.893-0.4814.57524.54637.8834.99725.68837.3780.4221.142-0.506

Figure D-4. Occupant Compartment Deformation Data – Set 2, Test No. CMGS-1

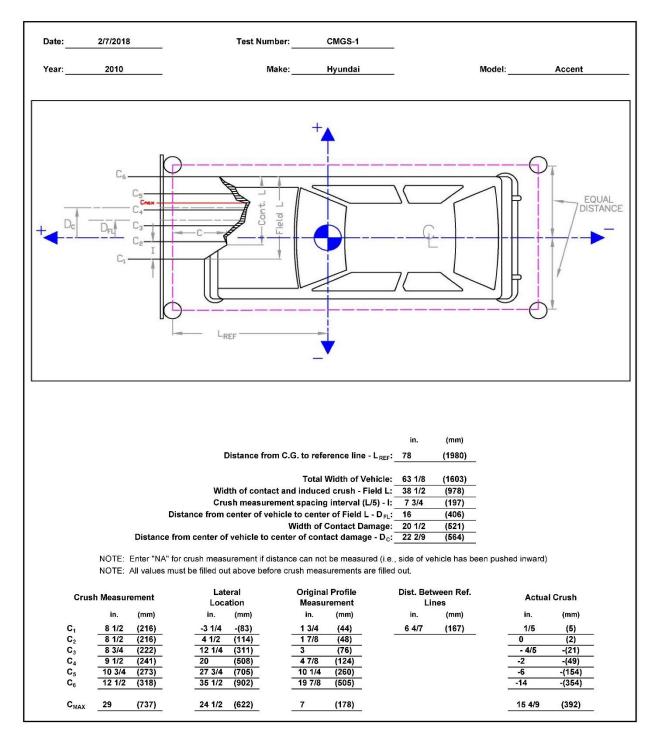


Figure D-5. Exterior Vehicle Crush (NASS) - Front, Test No. CMGS-1

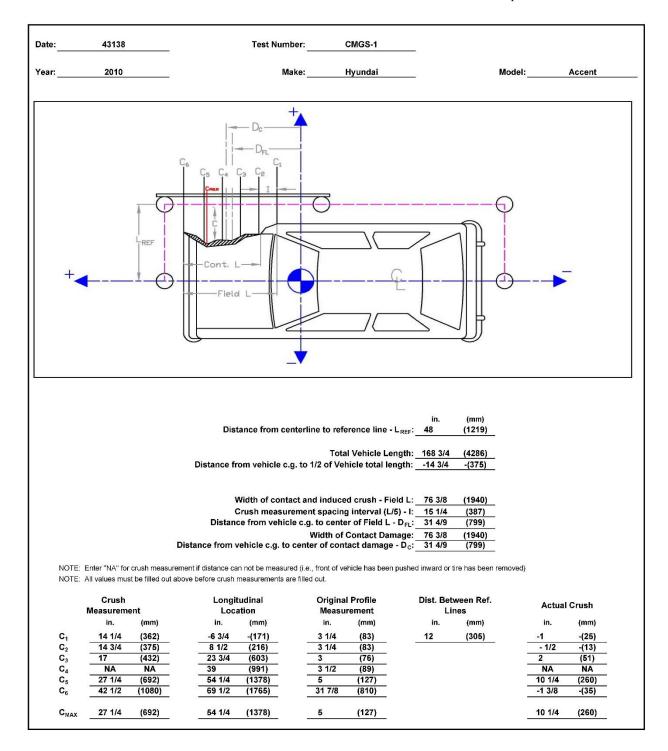


Figure D-6. Exterior Vehicle Crush (NASS) - Side, Test No. CMGS-1

Date: Year:	2/14/2018 2010		Test Name: Make:	CMC	GS-2 DGE	VIN: Model:		B1CTXAS1 1500 CREV		
					PRE/POS ⁻ DRPAN - S					
	Х	Y	Z	X	Υ'	Z	ΔX	ΔΥ	ΔZ	Total ∆
POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
2	65.518 66.258	46.148	6.804 5.965	65.168	45.889	6.878 6.021	-0.350	-0.259 -0.156	0.074	0.442
3	66.636	44.195	5.965	66.100 66.616	44.039 42.228	5.335	-0.158 -0.020	-0.156	0.056	0.229
4	66.385	39.467	5.298	66.274	39.434	5.284	-0.111	-0.033	-0.014	0.117
5	64.722	36.877	6.431	64.579	36.896	6.468	-0.143	0.019	0.038	0.149
6	63.161	34.712	7.485	63.063	34.788	7.573	-0.098	0.076	0.088	0.153
7	62.548	47.661	3.262	62.350	47.428	3.244	-0.198	-0.233	-0.019	0.306
8	62.705	44.748	2.632	62.698	44.641	2.530	-0.007	-0.107	-0.103	0.148
9 10	62.546 62.453	40.947	2.660 3.493	62.460 62.384	40.793 37.386	2.584 3.443	-0.086	-0.154 -0.048	-0.077 -0.050	0.192
10	61.468	35.368	6.191	61.289	35.393	6.172	-0.179	0.040	-0.030	0.182
12	60.886	33.653	7.206	60.693	33.688	7.203	-0.193	0.035	-0.003	0.196
13	58.414	47.168	0.565	58.359	47.085	0.535	-0.055	-0.083	-0.030	0.104
14	58.533	44.575	0.675	58.498	44.521	0.632	-0.034	-0.054	-0.043	0.077
15	58.501	42.142	0.676	58.545	42.065	0.650	0.044	-0.078	-0.026	0.093
16 17	58.623 57.787	38.645 36.394	0.708	58.618 57.716	38.573 36.339	0.642	-0.005	-0.072 -0.056	-0.066	0.097
18	56.916	33.060	5.272	56.844	33.005	5.280	-0.072	-0.056	0.008	0.092
19	51.751	48.299	-1.175	51.696	48.235	-1.263	-0.055	-0.064	-0.088	0.122
20	51.643	45.766	-1.035	51.666	45.652	-1.132	0.023	-0.113	-0.098	0.151
21	51.699	42.321	-1.021	51.664	42.200	-1.122	-0.035	-0.121	-0.102	0.162
22	51.727	39.208	-1.018	51.724	39.095	-1.113	-0.003	-0.113	-0.096	0.148
<u>23</u> 24	51.708 50.533	36.446 30.501	-0.988 2.091	51.629 50.471	36.372 30.320	-1.083 2.016	-0.079 -0.062	-0.075 -0.181	-0.095 -0.075	0.145
24	42.983	46.101	-1.396	42.889	45.952	-1.449	-0.082	-0.181	-0.075	0.206
26	42.879	41.991	-1.329	42.858	41.959	-1.400	-0.021	-0.032	-0.072	0.081
27	42.736	38.281	-1.300	42.716	38.202	-1.374	-0.020	-0.079	-0.075	0.111
28	42.582	34.062	-1.277	42.564	33.946	-1.341	-0.018	-0.117	-0.065	0.134
29 30	36.114 35.944	43.585	2.687 2.765	36.159 35.986	43.478 34.423	2.736 2.726	0.046	-0.106 -0.065	0.049	0.126
	001011	011101	1 21.00	001000	011120		01012	0.000		01001
	\sum			DAS	HBOARI	D				
DOOR-					X	Y			0	DOR

Figure D-7. Floor Pan Deformation Data – Set 1, Test No. CMGS-2

Figure D-8. Floor Pan Deformation Data – Set 2, Test No. CMGS-2

Г

	Date: Year:	2/14/2018 2010	. т	est Name: Make:	CMC		VIN: Model:		B1CTXAS1		-
			-	VEH	IICLE PRE/	POST CRU	JSH			· · · · ·	-
[x	Y	Z	х	Y'	Z	ΔX	ΔΥ	ΔZ	Total /
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
	1	-47.020	-48.357	20.164	-46.983	-48.392	20.202	0.037	-0.035	0.038	0.064
-	2	-49.089	-38.210	14.643	-49.020	-38.132	14.673	0.069	0.078	0.030	0.109
DASH	3	-46.019	-30.678	20.914	-46.018	-30.621	20.963	0.002	0.056	0.049	0.075
DA	4	-50.950	-38.078	31.061	-50.938	-38.099	31.102	0.012	-0.021	0.041	0.048
	5	-46.930	-20.267	30.796	-46.917	-20.305	30.740	0.014	-0.038	-0.056	0.069
	6	-44.026	-19.878	19.478	-44.013	-19.977	19.459	0.013	-0.099	-0.019	0.102
SIDE PANEL	7	-56.089	-52.035	8.971	-55.987	-51.153	8.956	0.102	0.881	-0.015	0.887
AN	8	-59.068	-51.996	6.653	-58.963	-51.312	6.622	0.105	0.683	-0.031	0.692
<u>م</u> رو	9	-60.646	-51.882	4.010	-60.590	-51.374	4.095	0.056	0.508	0.086	0.518
Щ	10	-21.856	-54.031	26.435	-21.450	-54.944	26.673	0.406	-0.913	0.238	1.027
SIC ~	11	-34.469	-53.794	26.323	-34.095	-54.301	26.556	0.373	-0.506	0.233	0.671
ACT S	12	-44.396	-53.586	26.211	-44.043	-53.756	26.433	0.353	-0.170	0.222	0.451
IMPACT SIDE DOOR	13	-26.279	-54.789	16.281	-25.834	-55.314	16.569	0.445	-0.525	0.288	0.746
ĽЦ	14	-37.165	-54.656	16.671	-36.746	-54.849	16.890	0.419	-0.193	0.219	0.510
_	15	-36.791	-55.196	6.792	-36.310	-55.184	6.938	0.481	0.012	0.146	0.503
	16	-35.177	-41.318	47.536	-35.093	-41.328	47.664	0.084	-0.010	0.128	0.153
	17	-36.527	-36.395	47.912	-36.507	-36.424	47.985	0.021	-0.029	0.073	0.081
	18	-37.515	-31.014	48.080	-37.485	-31.127	48.133	0.030	-0.113	0.053	0.128
	19	-37.980	-26.873	48.110	-37.964	-26.897	48.138	0.016	-0.023	0.028	0.040
	20	-29.773	-41.267	49.564	-29.843	-41.375	49.630	-0.071	-0.108	0.066	0.145
	21	-31.020	-35.266	49.936	-31.029	-35.339	49.979	-0.009	-0.073	0.043	0.086
ROOF	22	-32.010	-28.878	50.160	-32.143	-28.834	50.179	-0.133	0.044	0.019	0.141
S S	23 24	-32.165	-23.898	50.306	-32.274	-23.946	50.304	-0.108	-0.047	-0.002	0.118
	24	-23.272 -23.503	-39.694 -35.851	50.229	-23.297 -23.507	-39.715 -35.932	50.314 50.504	-0.025	-0.022	0.085	0.091
	25	-23.503	-29.390	50.422 50.791	-23.018	-35.932	50.834	-0.004	-0.081 -0.077	0.082	0.115
,	20	-22.738	-25.268	50.939	-22.802	-25.234	50.978	-0.040	0.034	0.043	0.037
	28	-18.962	-39.319	50.441	-19.060	-39.324	50.528	-0.003	-0.005	0.038	0.001
	29	-19.021	-34.949	50.734	-19.086	-34.956	50.801	-0.065	-0.007	0.067	0.094
	30	-18.967	-28.866	51.039	-19.105	-28.911	51.085	-0.138	-0.045	0.007	0.034
	31	-54.374	-50.505	33.075	-54.379	-50.520	33.079	-0.005	-0.015	0.003	0.017
A PILLAR	32	-51.087	-49.824	36.231	-54.373	-49.862	36.270	0.064	-0.038	0.003	0.017
A ILL	33	-45.252	-48.770	40.803	-45.086	-48.788	40.885	0.166	-0.017	0.082	0.186
с.	34	-39.014	-47.418	44.440	-38.913	-47.453	44.565	0.100	-0.035	0.126	0.165
	35	-11.043	-47.050	46.038	-11.038	-47.084	46.234	0.005	-0.034	0.126	0.199
~	36	-14.083	-47.060	45.925	-14.116	-47.105	46.145	-0.033	-0.046	0.130	0.133
~AR	37	-11.824	-48.626	41.371	-11.754	-48.680	41.575	0.070	-0.054	0.204	0.220
B PILLAR	38	-14.797	-49.032	40.268	-14.775	-49.139	40.485	0.070	-0.107	0.204	0.243
с.	39	-12.980	-51.436	32.920	-12.899	-51.515	33.134	0.080	-0.079	0.215	0.243
	40	-14.321	-52.268	29.284	-14.273	-52.382	29.539	0.048	-0.114	0.256	0.284

Figure D-9. Occupant Compartment Deformation Data – Set 1, Test No. CMGS-2

	Date: Year:	2/14/2018 2010	. т	est Name: Make:		<u>GS-2</u>	VIN: Model:		B1CTXAS1		_
	Tour.	2010	-	VEH	IICLE PRE/	POST CRU	JSH	10 101		VORD	-
		x	Y	Z	x	Y'	Z	ΔΧ	ΔΥ	ΔZ	Total <i>L</i>
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)
	1	44.453	28.840	16.384	44.457	28.947	16.172	0.004	0.107	-0.212	0.237
-	2	46.629	18.681	10.818	46.579	18.722	10.611	-0.050	0.041	-0.207	0.217
DASH	3	43.600	11.105	17.077	43.657	11.166	16.885	0.057	0.061	-0.192	0.209
DA	4	48.436	18.536	27.233	48.525	18.662	27.036	0.089	0.126	-0.197	0.250
	5	44.574	0.655	26.858	44.669	0.832	26.632	0.095	0.177	-0.227	0.302
	6	41.708	0.301	15.539	41.749	0.509	15.355	0.040	0.207	-0.184	0.280
SIDE PANEL	7	53.492	32.644	5.245	53.415	31.823	4.918	-0.077	-0.821	-0.327	0.887
AN	8	56.492	32.640	2.887	56.385	32.016	2.579	-0.106	-0.625	-0.308	0.704
° L	9	58.065	32.555	0.292	58.007	32.099	0.050	-0.058	-0.456	-0.242	0.519
щ	10	19.306	34.257	22.609	18.875	35.245	22.705	-0.431	0.988	0.095	1.082
IMPACT SIDE DOOR	11	31.927	34.127	22.533	31.526	34.719	22.564	-0.401	0.592	0.032	0.715
ACT S	12	41.813	33.993	22.495	41.478	34.267	22.423	-0.335	0.273	-0.072	0.439
POD	13	23.607	35.109	12.535	23.238	35.683	12.594	-0.369	0.574	0.059	0.685
ЧM	14	34.586	35.060	12.917	34.155	35.318	12.896	-0.431	0.258	-0.021	0.503
_	15	34.201	35.651	2.996	33.698	35.676	2.945	-0.502	0.026	-0.051	0.506
	16	32.621	21.554	43.688	32.680	21.698	43.634	0.060	0.144	-0.053	0.165
	17	33.991	16.588	44.130	34.140	16.806	43.940	0.149	0.218	-0.190	0.325
	18	34.988	11.296	44.244	35.168	11.518	44.071	0.180	0.222	-0.173	0.334
	19	35.512	7.116	44.172	35.686	7.293	44.064	0.174	0.177	-0.108	0.270
	20	27.109	21.424	45.745	27.434	21.690	45.610	0.325	0.266	-0.135	0.441
	21	28.505	15.531	46.058	28.676	15.665	45.940	0.172	0.134	-0.118	0.248
Ч	22	29.681	9.032	46.238	29.851	9.170	46.120	0.170	0.138	-0.118	0.249
ROOF	23	29.797	4.126	46.357	30.027	4.283	46.231	0.230	0.157	-0.126	0.305
Ľ.	24	20.575	19.806	46.373	20.905	19.969	46.300	0.329	0.162	-0.073	0.374
	25	20.998	16.062	46.549	21.150	16.187	46.480	0.152	0.125	-0.069	0.209
	26	20.507	9.518	46.879	20.722	9.717	46.793	0.214	0.199	-0.086	0.304
	27	20.329	5.381	47.006	20.545	5.481	46.925	0.215	0.100	-0.081	0.251
	28	16.439	19.410	46.570	16.672	19.538	46.520	0.234	0.128	-0.050	0.271
	29	16.518	15.011	46.841	16.739	15.169	46.782	0.221	0.159	-0.059	0.279
	30	16.544	9.011	47.116	16.815	9.124	47.049	0.271	0.113	-0.068	0.301
R	31	51.855	31.004	29.426	51.855	31.109	29.042	0.000	0.104	-0.384	0.398
A PILLAR	32	48.521	30.252	32.414	48.511	30.411	32.237	-0.010	0.159	-0.177	0.238
ЫЦ	33	42.648	29.109	36.979	42.592	29.268	36.859	-0.056	0.160	-0.120	0.207
	34	36.408	27.675	40.557	36.439	27.866	40.546	0.031	0.191	-0.011	0.194
	35	8.446	27.089	42.149	8.571	27.234	42.262	0.126	0.145	0.113	0.223
R	36	11.502	27.106	42.096	11.649	27.285	42.168	0.147	0.178	0.072	0.242
B PILLAR	37	9.243	28.685	37.532	9.264	28.850	37.606	0.022	0.166	0.074	0.183
ЫЦ	38	12.286	29.119	36.449	12.278	29.341	36.512	-0.007	0.221	0.063	0.230
	39	10.398	31.570	29.058	10.368	31.719	29.172	-0.029	0.150	0.114	0.190
	40	11.740	32.409	25.482	11.728	32.608	25.577	-0.013	0.199	0.094	0.220

Figure D-10. Occupant Compartment Deformation Data – Set 2, Test No. CMGS-2

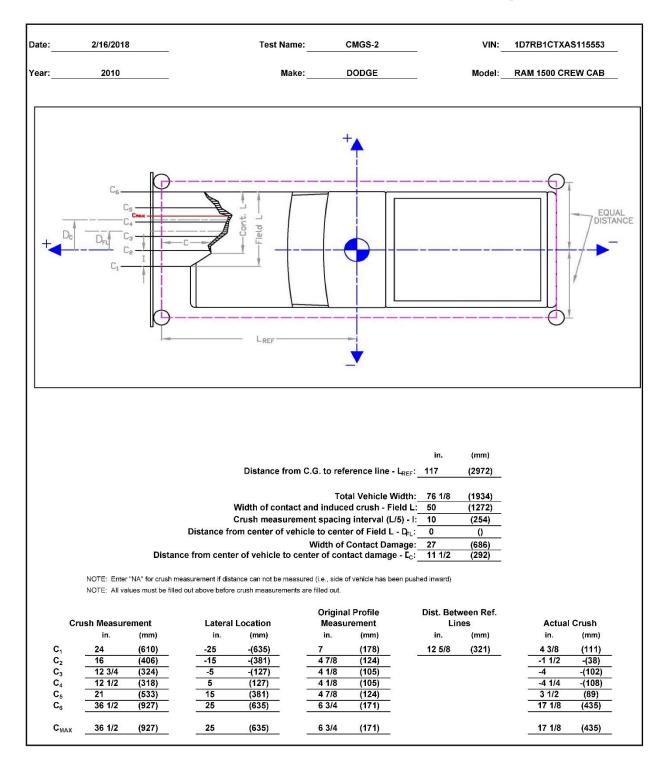


Figure D-11. Exterior Vehicle Crush (NASS) - Front, Test No. CMGS-2

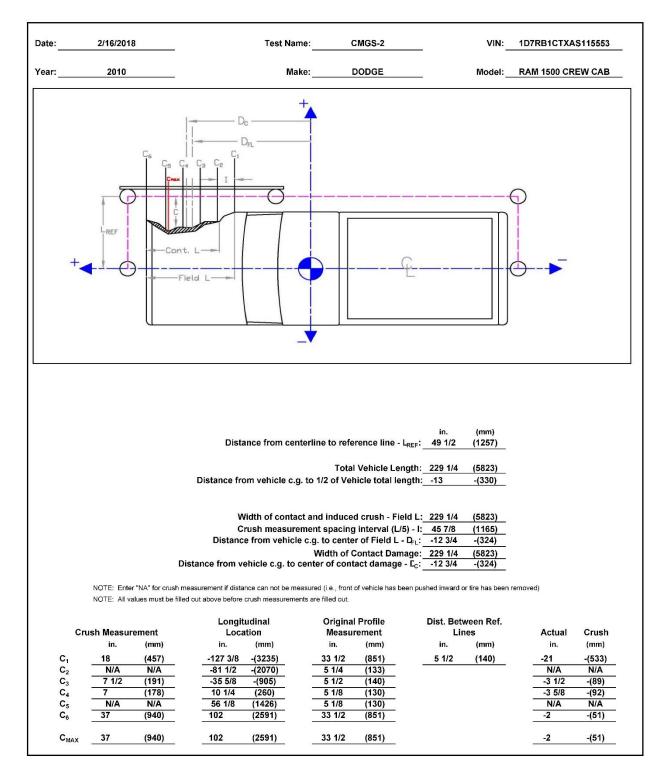


Figure D-12. Exterior Vehicle Crush (NASS) - Side, Test No. CMGS-2

Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. CMGS-1

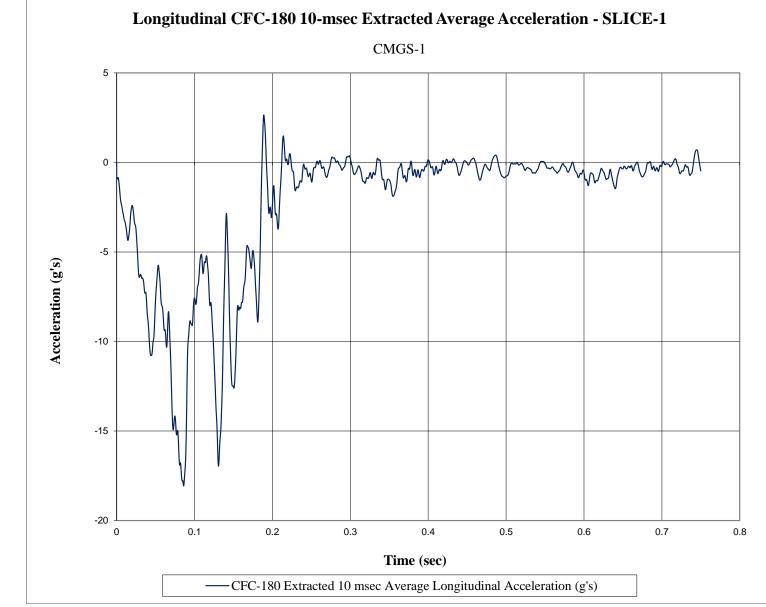


Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. CMGS-1

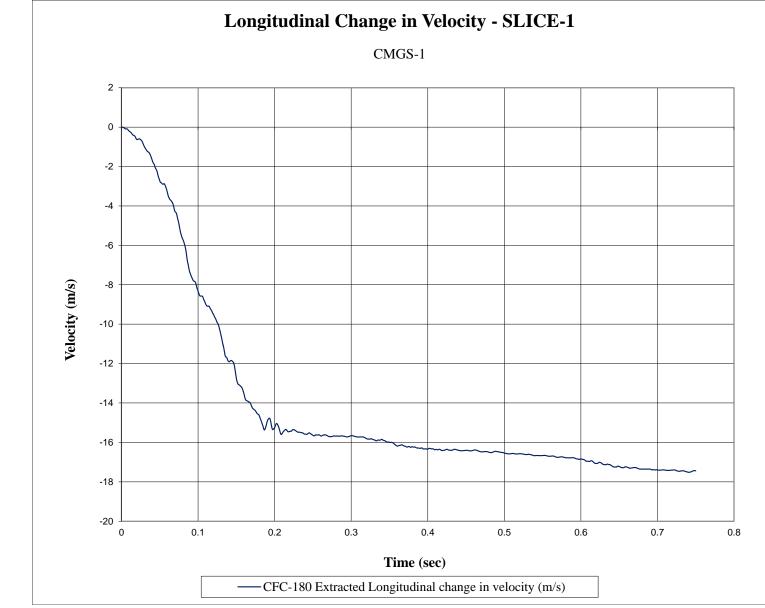


Figure E-2. Longitudinal Change in Velocity (SLICE-1), Test No. CMGS-1

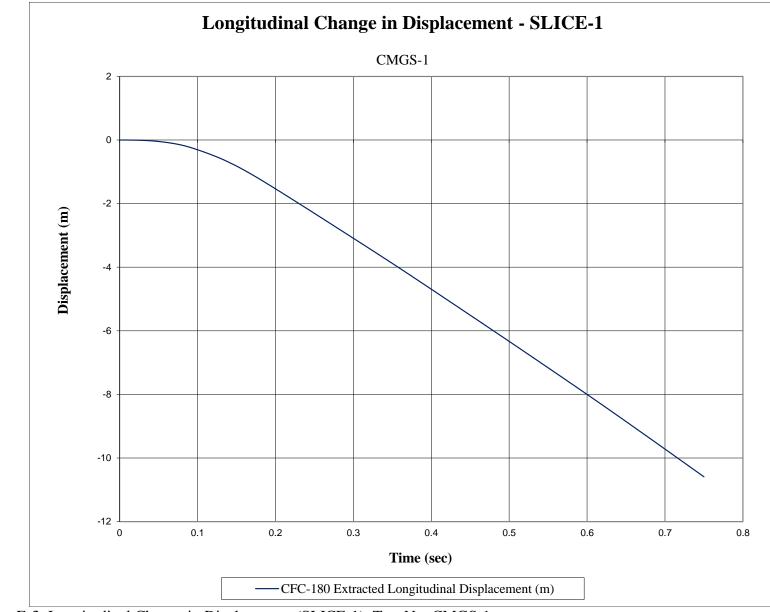


Figure E-3. Longitudinal Change in Displacement (SLICE-1), Test No. CMGS-1

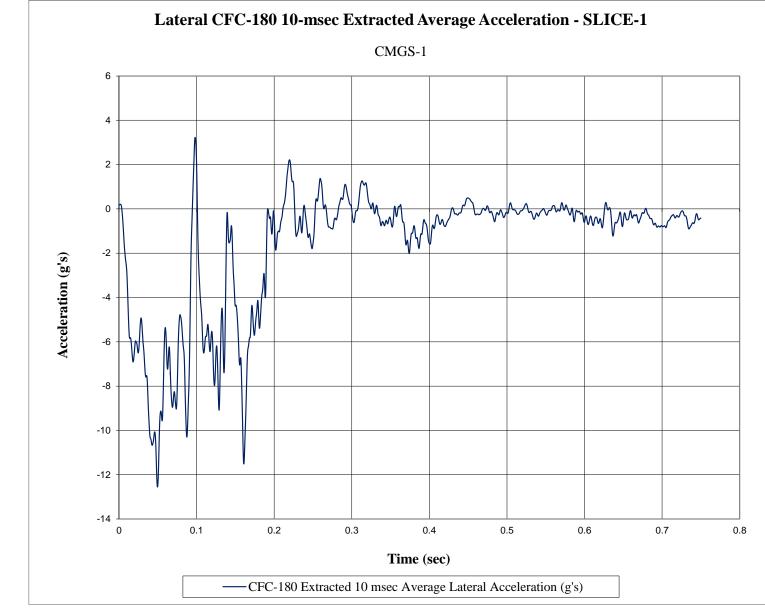


Figure E-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. CMGS-1

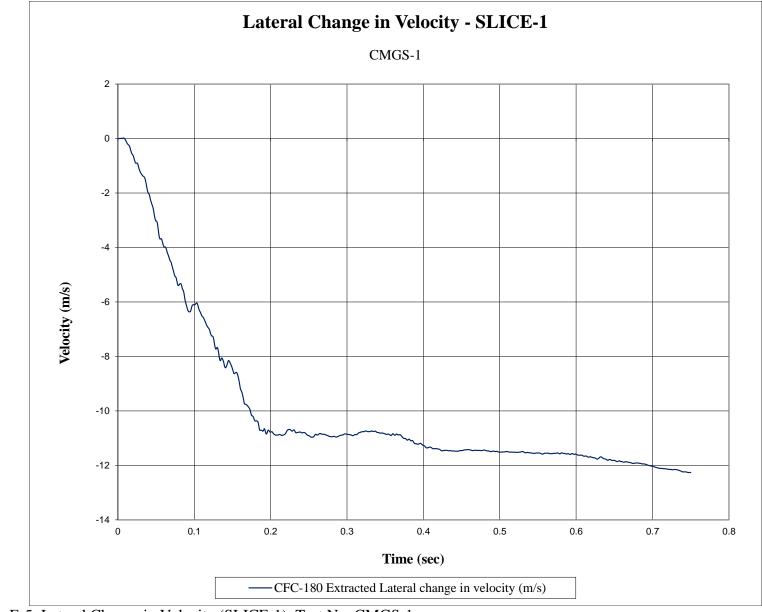


Figure E-5. Lateral Change in Velocity (SLICE-1), Test No. CMGS-1



Figure E-6. Lateral Change in Displacement (SLICE-1), Test No. CMGS-1

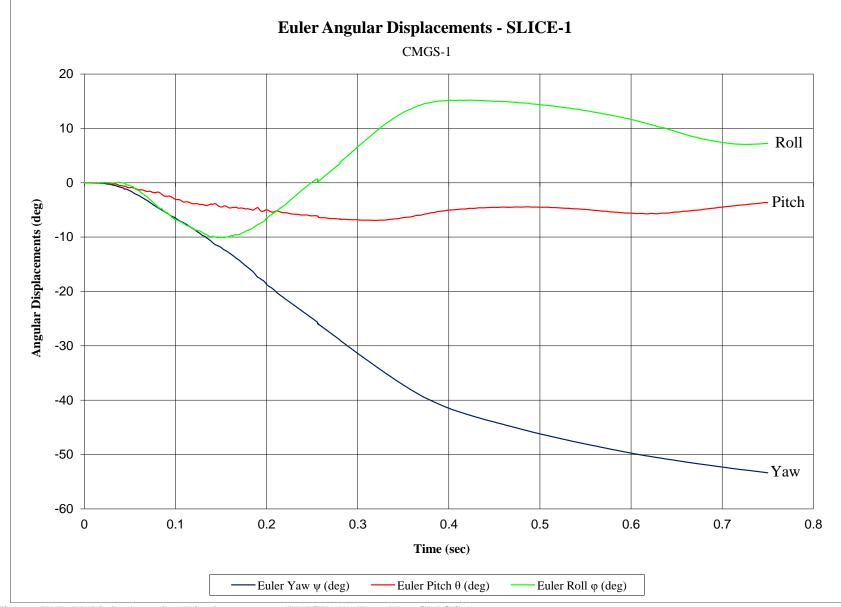


Figure E-7. Vehicle Angular Displacements (SLICE-1), Test No. CMGS-1

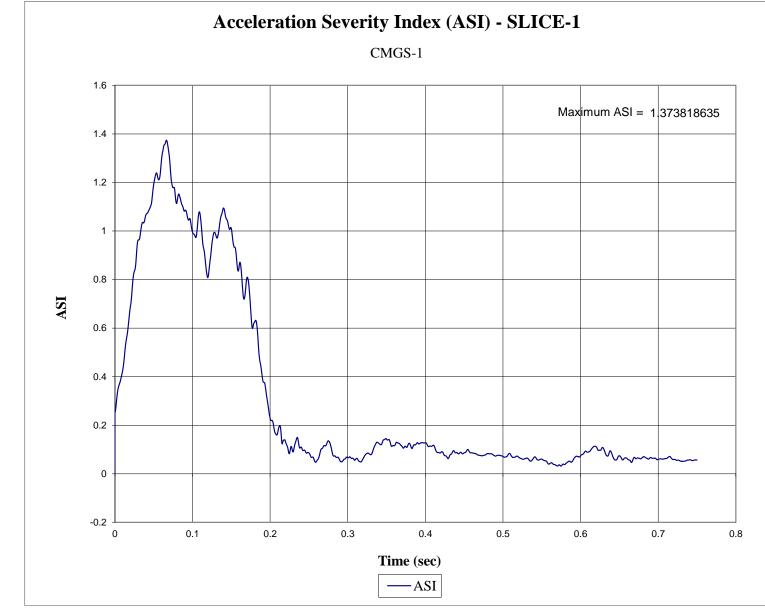


Figure E-8. Acceleration Severity Index (SLICE-1), Test No. CMGS-1

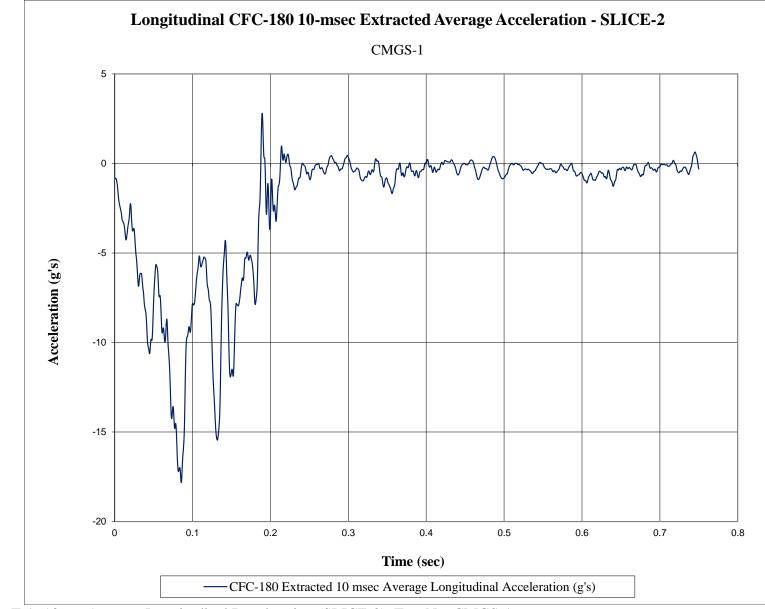


Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. CMGS-1

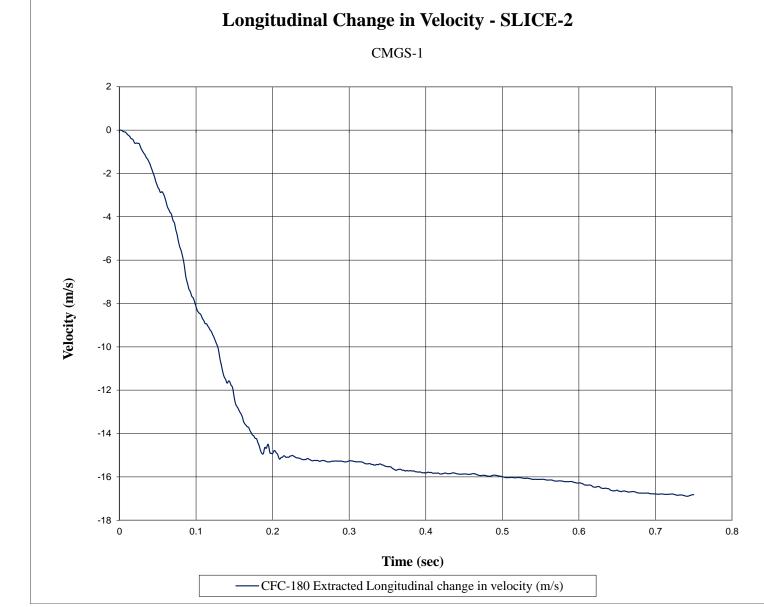


Figure E-10. Longitudinal Change in Velocity (SLICE-2), Test No. CMGS-1

Figure E-11. Longitudinal Change in Displacement (SLICE-2), Test No. CMGS-1

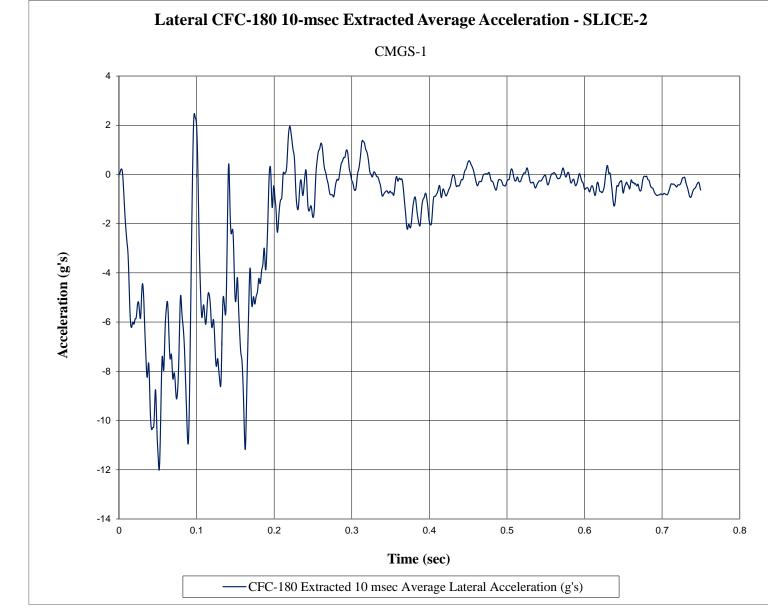


Figure E-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. CMGS-1

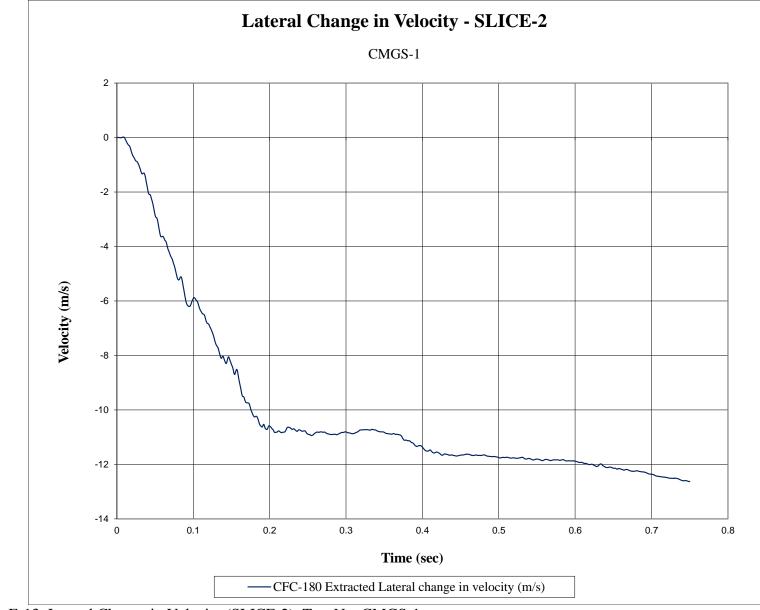


Figure E-13. Lateral Change in Velocity (SLICE-2), Test No. CMGS-1

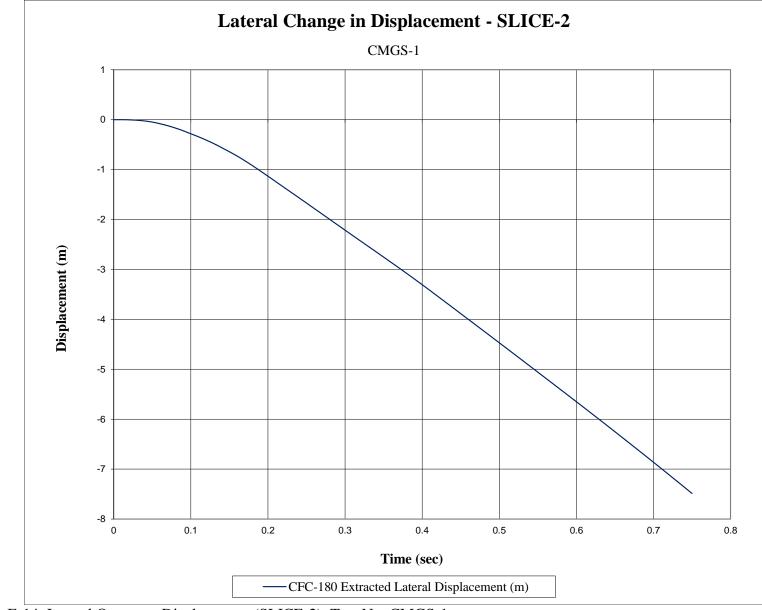


Figure E-14. Lateral Occupant Displacement (SLICE-2), Test No. CMGS-1

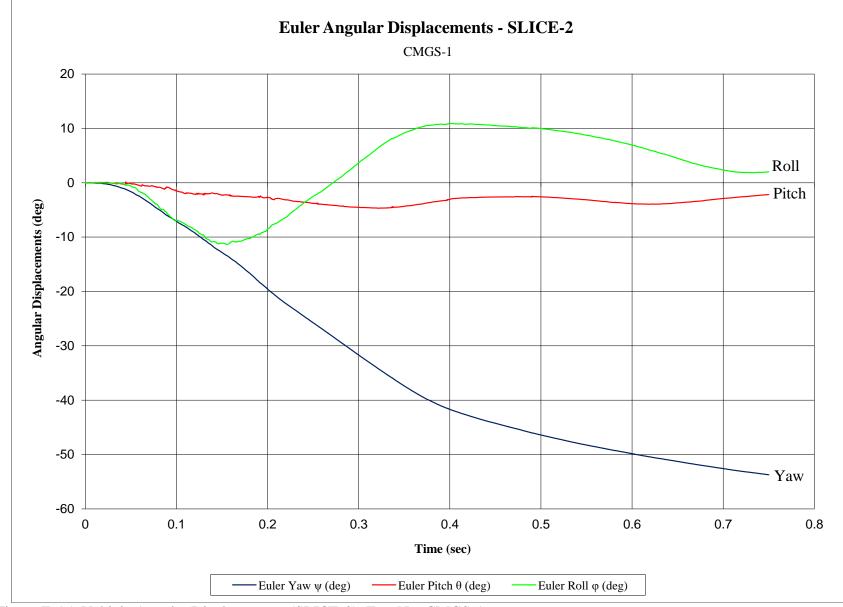


Figure E-15. Vehicle Angular Displacements (SLICE-2), Test No. CMGS-1

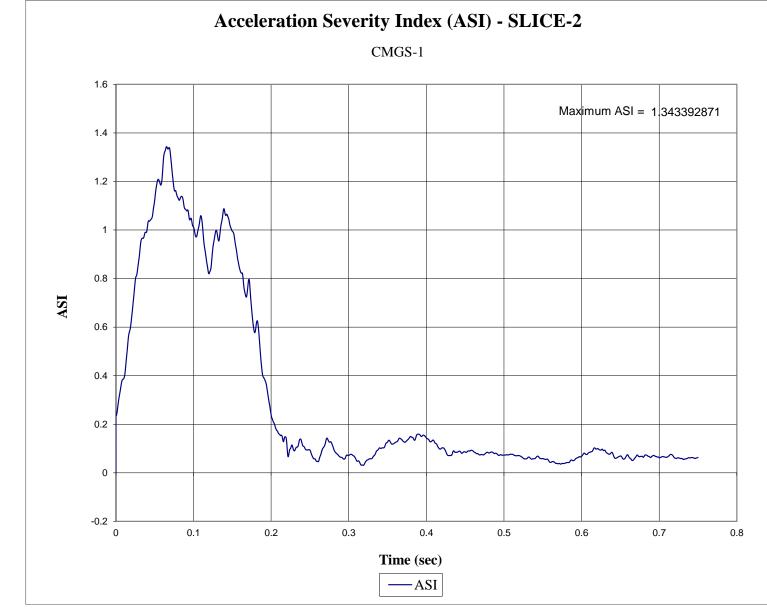


Figure E-16. Acceleration Severity Index (SLICE-2), Test No. CMGS-1

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. CMGS-2

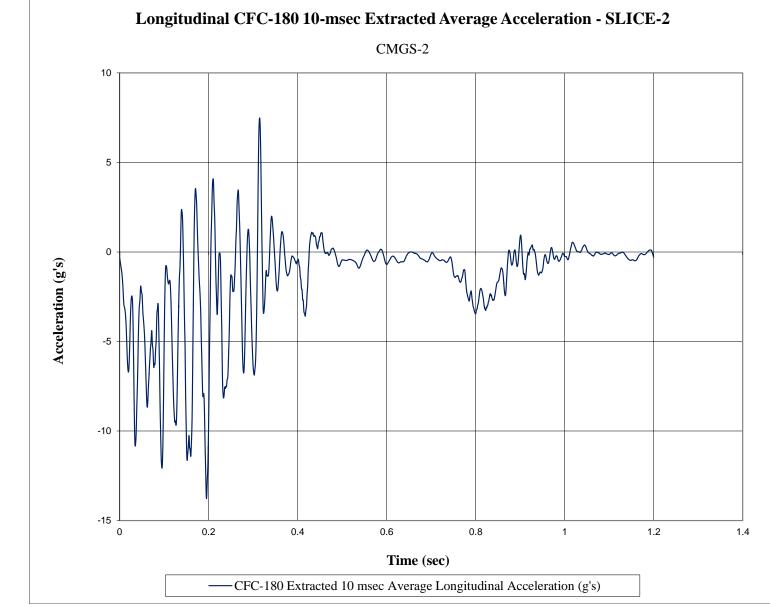


Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. CMGS-2

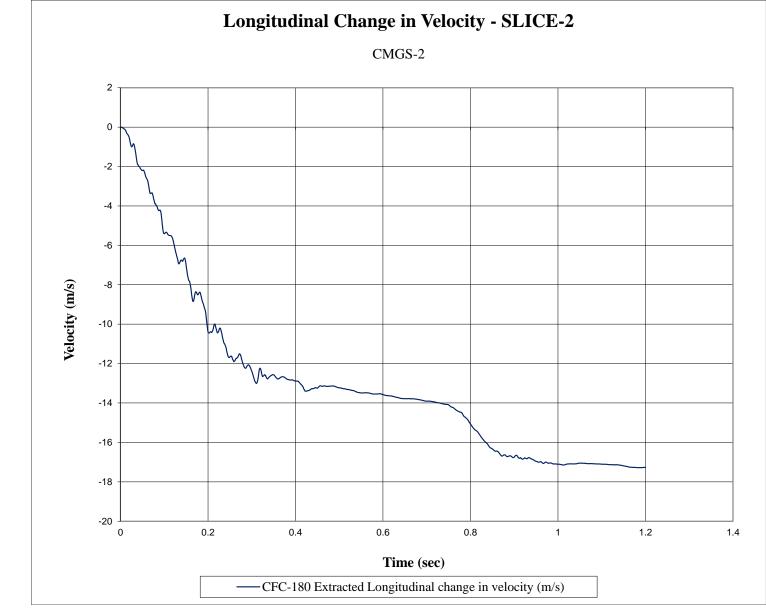


Figure F-2. Longitudinal Change in Velocity (SLICE-2), Test No. CMGS-2

Figure F-3. Longitudinal Change in Displacement (SLICE-2), Test No. CMGS-2

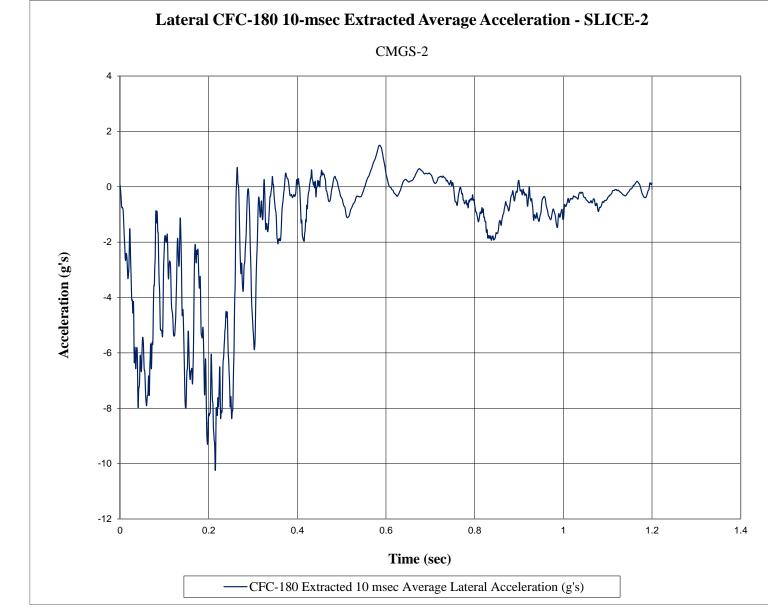


Figure F-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. CMGS-2

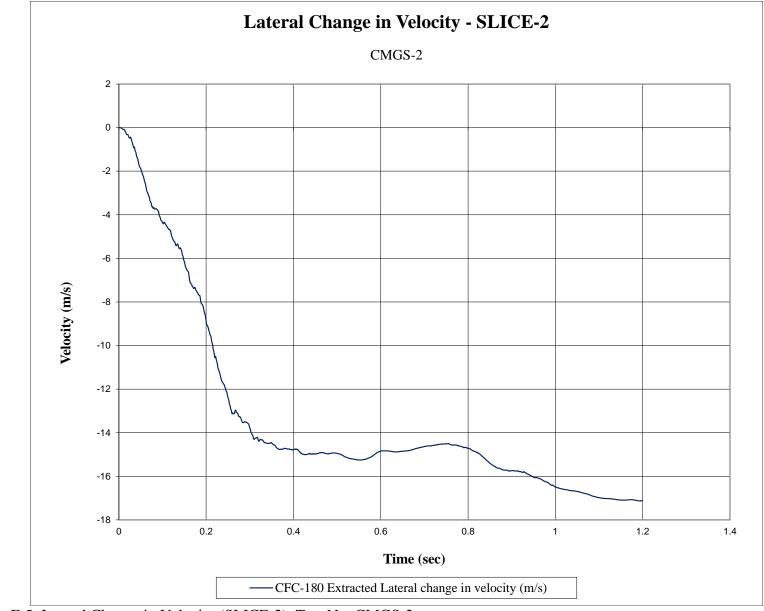


Figure F-5. Lateral Change in Velocity (SLICE-2), Test No. CMGS-2

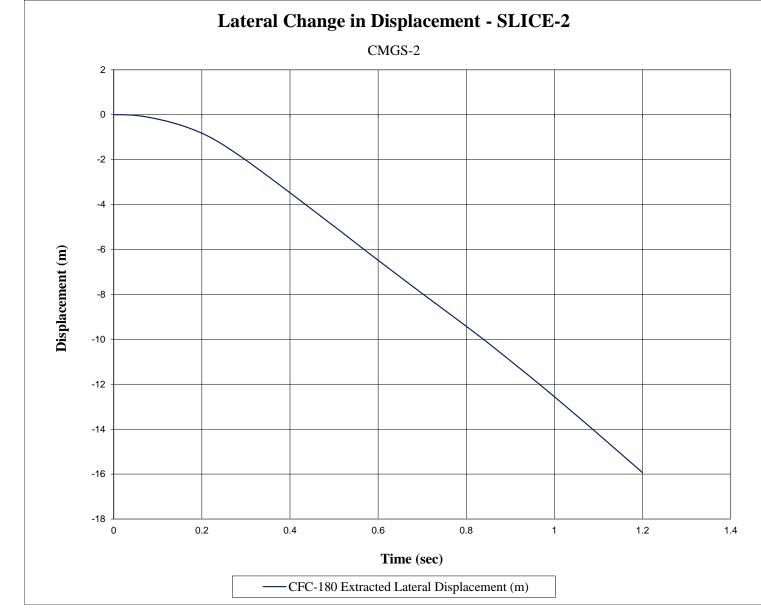


Figure F-6. Lateral Change in Displacement (SLICE-2), Test No. CMGS-2

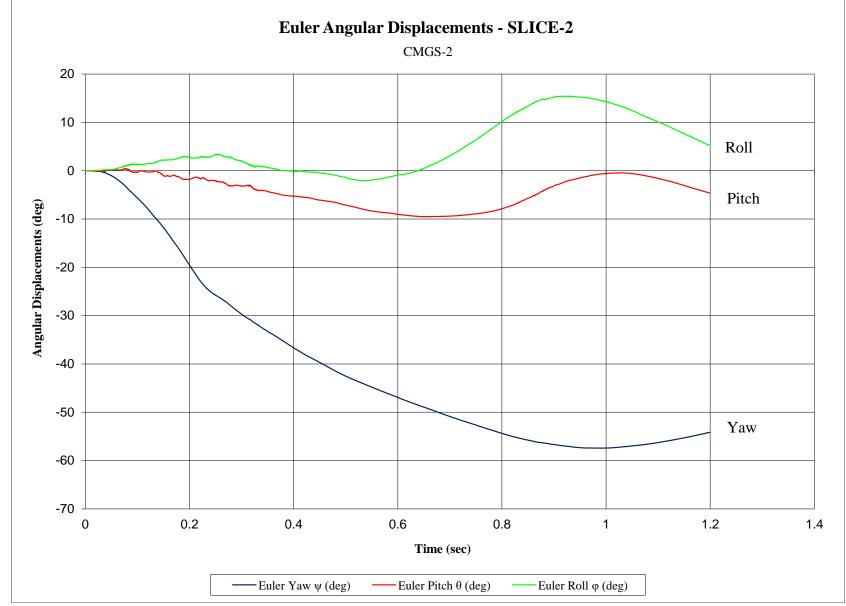


Figure F-7. Vehicle Angular Displacements (SLICE-2), Test No. CMGS-2

243

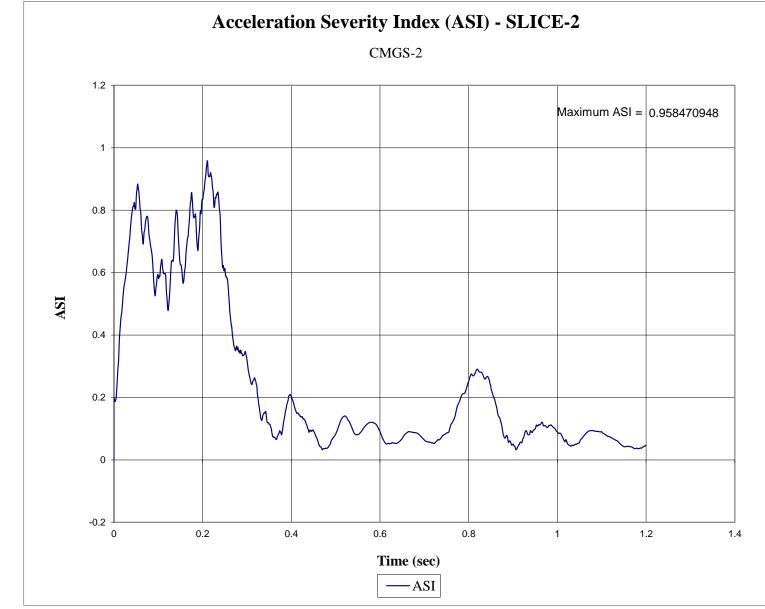


Figure F-8. Acceleration Severity Index (SLICE-2), Test No. CMGS-2

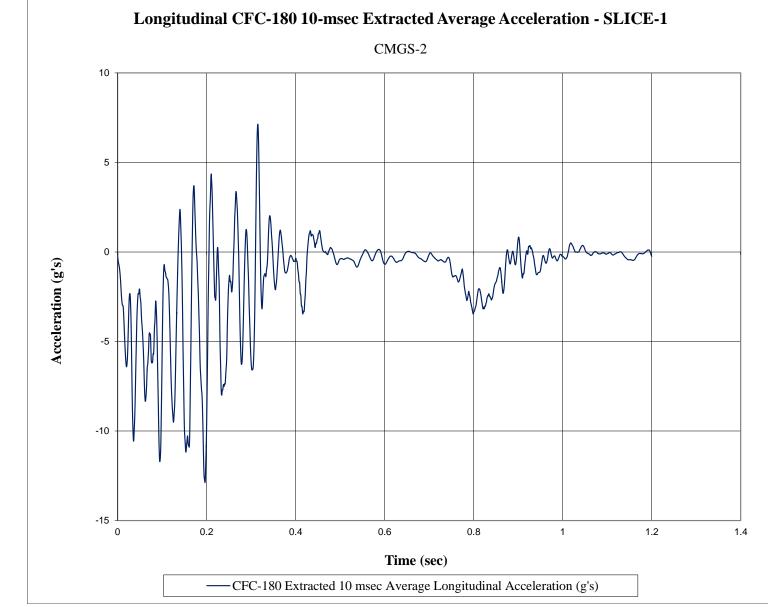


Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. CMGS-2

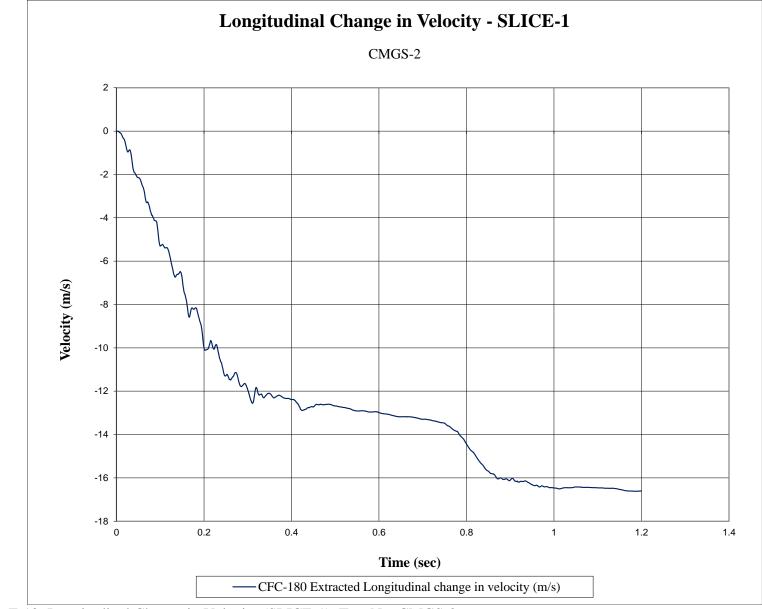


Figure F-10. Longitudinal Change in Velocity (SLICE-1), Test No. CMGS-2

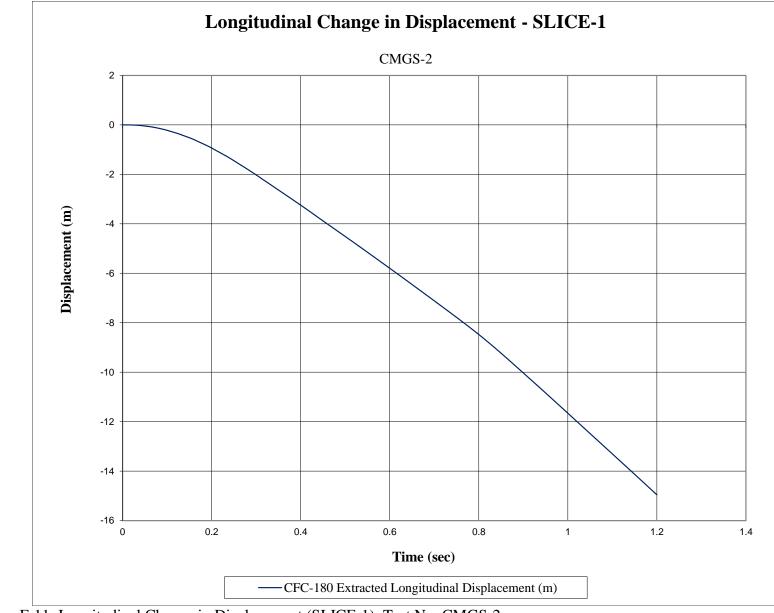


Figure F-11. Longitudinal Change in Displacement (SLICE-1), Test No. CMGS-2

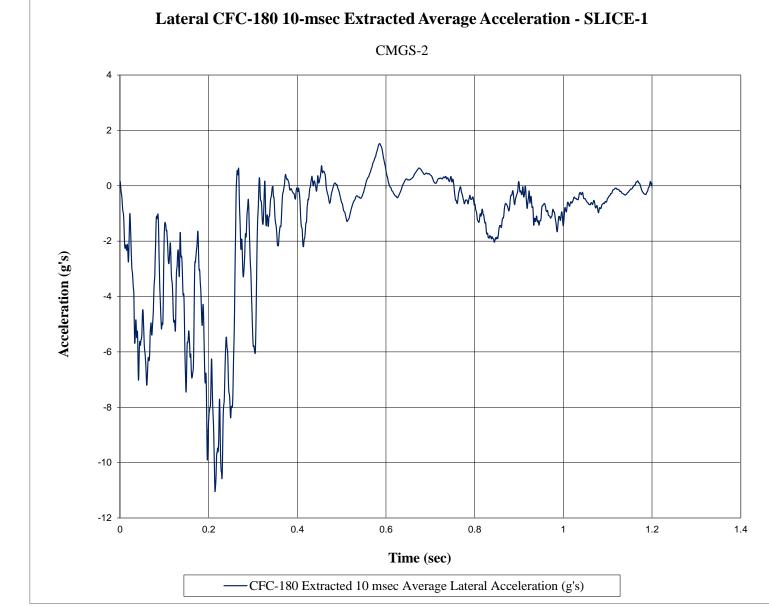


Figure F-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. CMGS-2

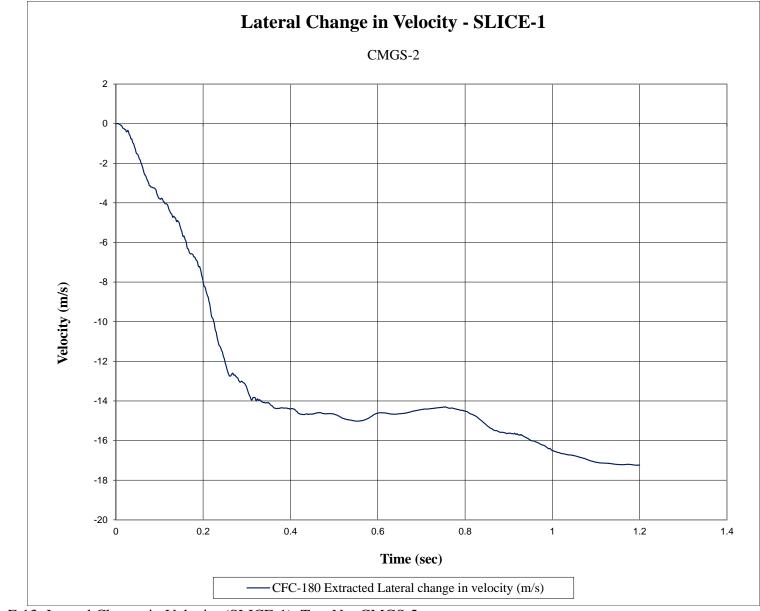


Figure F-13. Lateral Change in Velocity (SLICE-1), Test No. CMGS-2

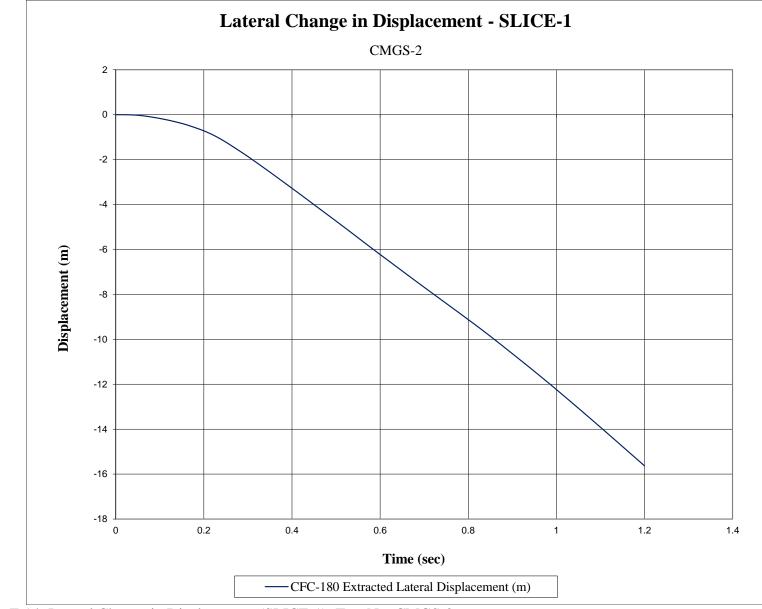


Figure F-14. Lateral Change in Displacement (SLICE-1), Test No. CMGS-2

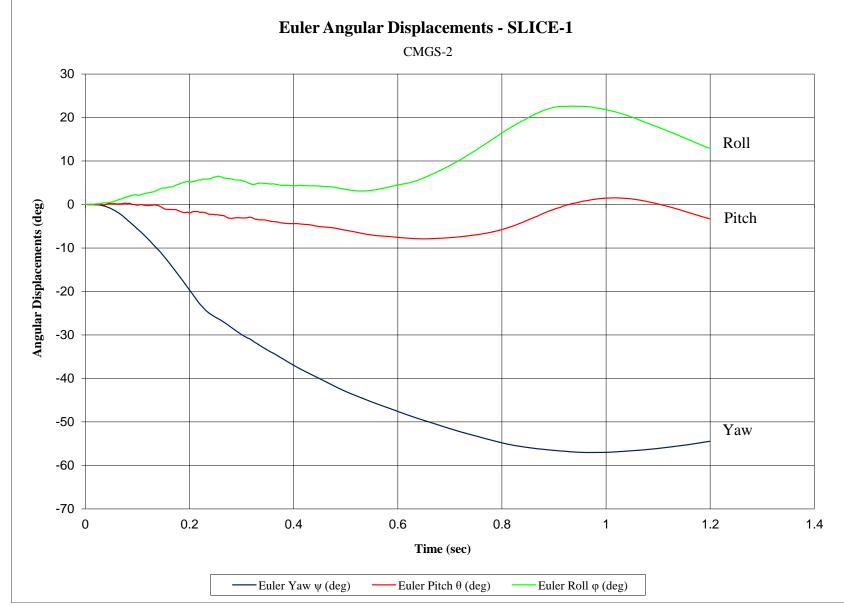


Figure F-15. Vehicle Angular Displacements (SLICE-1), Test No. CMGS-2

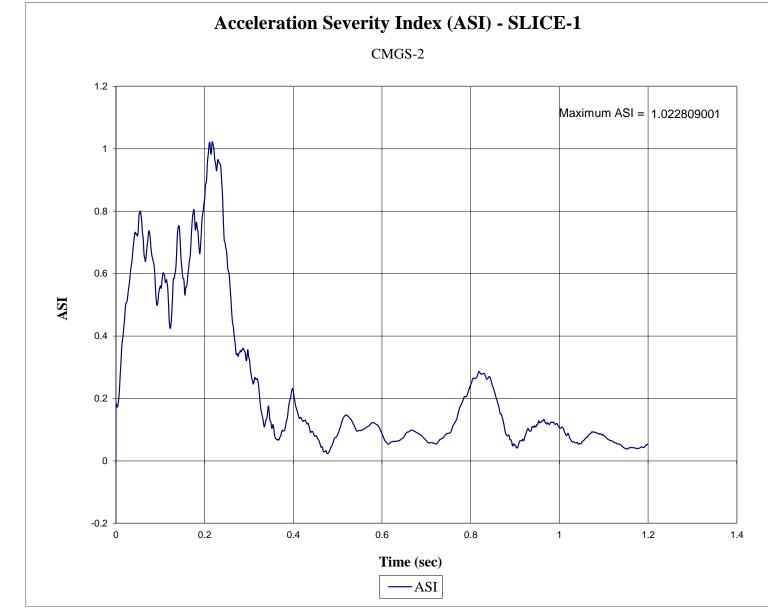


Figure F-16. Acceleration Severity Index (SLICE-1), Test No. CMGS-2

END OF DOCUMENT