

Midwest Pooled Fund Research Program Fiscal Years 2018-2019 (Year 28) Research Project Number TPF-5(193) Supplement #122 NDOT Sponsoring Agency Code RPFP-18-SIGN-1

MASH FULL-SCALE TESTING OF SINGLE-

POST, U-CHANNEL SIGN SUPPORTS

Submitted by

Jennifer D. Rasmussen, Ph.D., P.E. Research Associate Professor

Ronald K. Faller, Ph.D., P.E. Research Professor & MwRSF Director Karla A. Lechtenberg, M.S.M.E., E.I.T. Research Engineer

Robert W. Bielenberg, M.S.M.E., E.I.T. Research Engineer Nathan Dowler, B.S.M.E. Graduate Research Assistant

Axel Bayingana Former Undergraduate Research Assistant Casey Markvicka Former Undergraduate Research Assistant

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska–Lincoln

Main Office

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 **Outdoor Test Site** 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

MIDWEST POOLED FUND PROGRAM

Nebraska Department of Transportation 1500 Nebraska Highway 2 Lincoln, Nebraska 68502

MwRSF Research Report No. TRP-03-440-20

December 17, 2020

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. TRP-03-440-20	2.	3. Recipient's Accession No.	
4. Title and Subtitle MASH Full-Scale Testing of Sing	le-Post, U-Channel Sign Supports	5. Report Date December 17, 2020	
	6.		
7. Author(s) Rasmussen, J.D., Faller, R.K., Leo Bayingana, A., and Markvicka, C.	chtenberg, K.A., Bielenberg, R.W., Dowler, N.,	8. Performing Organization Report No. TRP-03-440-20	
9. Performing Organization Name Midwest Roadside Safety Facility Nebraska Transportation Center University of Nebraska–Lincoln	and Address (MwRSF)	10. Project/Task/Work Unit No.	
Main Office: Prem S. Paul Research Center at W Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	Outdoor Test Site:Whittier School4630 N.W. 36th StreetLincoln, Nebraska 68524	11. Contract © or Grant (G) No. TPF-5(193) Supplement #122	
12. Sponsoring Organization Nam Midwest Pooled Fund Program	e and Address	13. Type of Report and Period Covered Final Report: 2018-2020	
1500 Nebraska Highway 2 Lincoln, Nebraska 68502	tation	14. Sponsoring Agency Code RPFP-18-SIGN-1	
15. Supplementary Notes Prepared in cooperation with U.S.	Department of Transportation, Federal Highway	Administration.	
 16. Abstract Single-post, U-channel sign st their wide use, many U-channel sig and Transportation Officials' (AA The objective of this research project sponsors were surveyed to and dynamic component testing of Full-scale crash testing was used 1.12-lb/ft U-channel support with lb/ft U-channel support with a 36- ground line. System C had a 4-lb/ line, with a lap splice near the grout the right- and left-quarter points o In test no. UCSS-1, an 1100C at a 0-degree impact angle, or here aritaria but the performance of St 	upports are used across the country for small sign gn supports have not been fully evaluated to current SHTO) <i>Manual for Assessing Safety Hardware</i> (a effort was to evaluate the MASH crashworthine identify common post and sign configurations. In of various U-channel supports were reviewed to to evaluate three sign configurations to MASH to a 36-in. tall x 12-in. wide sign mounted at 4 ft a in. tall x 36-in. wide sign mounted at 7 ft above ft U-channel support with a 36-in. tall x 36-in. w and line. System A contacted at the centerline of th f the test vehicle, respectively.	as, chevrons, and mile delineators. Despite int American Association of State Highway (MASH) Test Level 3 (TL-3) criteria. ess of select U-channel sign supports. The addition, previous full-scale crash testing help identify critical sign configurations. est designation no. 3-61. System A had a above the ground line. System B had a 4- the ground line, with a lap splice near the ide sign mounted at 5 ft above the ground ne vehicle, and Systems B and C contacted ted three U-channel systems in succession ASH test designation no. 3-61 evaluation in System A prior to impact	

17. Document Analysis/Descripto Highway Safety, Crash Test, Road Compliance Test, MASH 2016, T Channel Sign Supports, and Break	rs dside Appurtenances, est Designation 3-61, U- caway Supports	 Availability Statement No restrictions. Document available from: National Technical Information Services, Springfield, Virginia 22161 		
19. Security Class (this report)20. Security Class (this page)UnclassifiedUnclassified		21. No. of Pages 147	22. Price	

DISCLAIMER STATEMENT

This material is based upon work supported by the Federal Highway Administration, U.S. Department of Transportation and the Midwest Pooled Fund Program under TPF-5(193) Supplement #122. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Nebraska-Lincoln, state highway departments participating in the Midwest Pooled Fund Program nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names, which may appear in this report, are cited only because they are considered essential to the objectives of the report. The United States (U.S.) government and the State of Nebraska do not endorse products or manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Dr. Cody Stolle, Research Assistant Professor.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) The Midwest Pooled Fund Program funded by the California Department of Transportation, Florida Department of Transportation, Illinois Department of Transportation, Georgia Department of Transportation, Hawaii Department of Transportation, Indiana Department of Transportation, Iowa Department of Transportation, Kansas Department of Transportation, Kentucky Department of Transportation, Minnesota Department of Transportation, Missouri Department of Transportation, Nebraska Department of Transportation, New Jersey Department of Transportation, North Carolina Department of Transportation, Ohio Department of Transportation, Utah Department of Transportation, Virginia Department of Transportation, Wisconsin Department of Transportation, and Wyoming Department of Transportation for sponsoring this project; and (2) MwRSF personnel for constructing the barriers and conducting the crash tests.

Acknowledgement is also given to the following individuals who contributed to the completion of this research project.

Midwest Roadside Safety Facility

J.D. Reid, Ph.D., Professor

J.C. Holloway, M.S.C.E., E.I.T., Research Engineer & Assistant Director – Physical Testing Division

S.K. Rosenbaugh, M.S.C.E., E.I.T., Research Engineer

C.S. Stolle, Ph.D., E.I.T., Research Assistant Professor

J.S. Steelman, Ph.D., P.E., Associate Professor

M. Asadollahi Pajouh, Ph.D., P.E., Research Assistant Professor

A.T. Russell, B.S.B.A., Testing and Maintenance Technician II

E.W. Krier, B.S., Construction and Testing Technician II

S.M. Tighe, Construction and Testing Technician I

D.S. Charroin, Construction and Testing Technician I

R.M. Novak, Construction and Testing Technician I

T.C. Donahoo, Construction and Testing Technician I

J.T. Jones, Construction and Testing Technician I

J.E. Kohtz, B.S.M.E., CAD Technician

E.L. Urbank, B.A., Research Communication Specialist

Z.Z. Jabr, Engineering Technician

Undergraduate and Graduate Research Assistants

California Department of Transportation

Bob Meline, Chief, Roadside Safety Research Branch David Whitesel, P.E., Transportation Engineer John Jewell, P.E., Senior Transportation Engineer, Specialist

Florida Department of Transportation

Derwood C. Sheppard, Jr., P.E., Design Standards Publication Manager, Roadway Design Engineer

Georgia Department of Transportation

Brent Story, P.E., State Design Policy Engineer Frank Flanders IV, P.E., Assistant State Design Policy Engineer

Hawaii Department of Transportation

James Fu, P.E., State Bridge Engineer Dean Takiguchi, P.E., Engineer, Bridge Design Section Kimberly Okamura, Engineer, Bridge Design Section

Illinois Department of Transportation

Filiberto Sotelo, Safety Evaluation Engineer Martha Brown, P.E., Safety Evaluation Unit Chief

Indiana Department of Transportation

Katherine Smutzer, P.E., Standards Engineer Elizabeth Phillips, P.E., Standards and Policy Manager

Iowa Department of Transportation

Chris Poole, P.E., Roadside Safety Engineer Brian Smith, P.E., Methods Engineer Daniel Harness, P.E., Transportation Engineer Specialist Stuart Nielsen, P.E., Transportation Engineer Administrator, Design Elijah Gansen, P.E., Geometrics Engineer

Kansas Department of Transportation

Ron Seitz, P.E., Director of Design Scott King, P.E., Road Design Bureau Chief Thomas Rhoads, P.E., Road Design Leader, Bureau of Road Design

Brian Kierath Jr., Engineering Associate III, Bureau of Road Design

Kentucky Department of Transportation

Jason J. Siwula, P.E., Assistant State Highway Engineer Kevin Martin, P.E., Transportation Engineer Specialist Gary Newton, Engineering Tech III, Design Standards

Minnesota Department of Transportation

Michael Elle, P.E., Design Standards Engineer Michelle Moser, P.E., Assistant Design Standards Engineer

Missouri Department of Transportation

Sarah Kleinschmit, P.E., Policy and Innovations Engineer

Nebraska Department of Transportation

Phil TenHulzen, P.E., Design Standards Engineer
Jim Knott, P.E., Construction Engineer
Mike Owen, P.E., State Roadway Design Engineer
Mick Syslo, P.E., Materials and Research Engineer & Division Head
Matt Neemann, P.E., Traffic Engineer
Dan Waddle, P.E., Traffic Engineer
Mark Fischer, P.E., PMP, Research Program Manager
Lieska Halsey, Research Project Manager
Angela Andersen, Research Coordinator
David T. Hansen, Internal Research Coordinator
Jodi Gibson, Former Research Coordinator

New Jersey Department of Transportation

Hung Tang, Senior Engineer, Transportation Joseph Warren, Assistant Engineer, Transportation

North Carolina Department of Transportation

Neil Mastin, P.E., Manager, Transportation Program Management – Research and Development

D. D. "Bucky" Galloway, P.E., CPM, Field Operations Engineer

Brian Mayhew, P.E., State Traffic Safety Engineer Joel Howerton, P.E., Plans and Standards Engineer

Ohio Department of Transportation

Don Fisher, P.E., Roadway Standards Engineer

South Carolina Department of Transportation

J. Adam Hixon, P.E., Design Standards Associate Mark H. Anthony, P.E., Letting Preparation Engineer Henry Cross, P.E., Design Standards Engineer Jason Hall, P.E., Engineer

South Dakota Department of Transportation

David Huft, P.E., Research Engineer Bernie Clocksin, P.E., Standards Engineer

Utah Department of Transportation

Shawn Debenham, Traffic and Safety Specialist Glenn Blackwelder, Operations Engineer

Virginia Department of Transportation

Charles Patterson, P.E., Standards/Special Design Section Manager

Andrew Zickler, P.E., Complex Bridge Design and ABC Support Program Manager

Wisconsin Department of Transportation

Erik Emerson, P.E., Standards Development Engineer Rodney Taylor, P.E., Roadway Design Standards Unit Supervisor

Wyoming Department of Transportation

William Wilson, P.E., Architectural and Highway Standards Engineer

Federal Highway Administration

David Mraz, Division Bridge Engineer, Nebraska Division Office

	SI* (MODER	N METRIC) CONVE	RSION FACTORS	
	APPROX	IMATE CONVERSION	S TO SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
in.	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mı	miles	1.61	kilometers	km
:2		AKEA		2
111 ⁻ ft ²	square feet	045.2	square maters	mm ²
vd ²	square vard	0.093	square meters	m ²
ac	acres	0.405	hectares	ha
mi ²	square miles	2.59	square kilometers	km ²
		VOLUME		
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
It. ³	cubic feet	0.028	cubic meters	m ³
yu	NOTE	volumes greater than 1 000 L shall	be shown in m ³	111
	ROLL	MASS		
07	ounces	28 35	grams	σ
lb	pounds	0.454	kilograms	kg
Т	short ton (2,000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")
		TEMPERATURE (exact de	egrees)	
°F	Fahrenheit	5(F-32)/9	Celsins	°C
1	Tamemen	or (F-32)/1.8	Cersius	C
		ILLUMINATION		
fc	foot-candles	10.76	lux	lx
ŤI.	foot-Lamberts	3.426	candela per square meter	cd/m ²
11.5	n our dforroe	ORCE & PRESSURE or S	IKESS	N
101 1bf/in ²	poundforce per square inch	4.45 6.89	kilonascals	IN kPa
101/111		ATE CONVERSIONS	FROM SI LINITS	KI U
Symbol	When You Know	Multiply Dy	To Find	Symphol
Symbol	when You Know		TOFING	Symbol
	millimators		inches	in
m	minimeters	3.28	feet	111. ft
m	meters	1.09	vards	vd
km	kilometers	0.621	miles	mi
		AREA		
mm ²	square millimeters	0.0016	square inches	in^2
m ²	square meters	10.764	square feet	ft ²
m ²	square meters	1.195	square yard	yd ²
ha 1.m ²	hectares	2.47	acres	ac m ²
KIII	square knometers		square nines	1111
mI	millilitor		fluid oupgos	flor
IIIL L	liters	0.034	gallons	n oz gal
m ³	cubic meters	35.314	cubic feet	ft ³
m ³	cubic meters	1.307	cubic yards	yd ³
		MASS		
g	grams	0.035	ounces	OZ
kg	kilograms	2.202	pounds	lb
Mg (or "t")	megagrams (or "metric ton")		short ton (2,000 lb)	Т
°C	Cultime	IEMPERATURE (exact de	egrees)	9 F
°C	Celsius		Fanrenneit	°F
1.	lux		foot condice	fa
cd/m^2	rux candela per square meter	0.0929	foot-Lamberts	fl
		ORCE & PRESSURE or S	TRESS	11
Ν	newtons	0.225	poundforce	lbf
kPa	kilopascals	0.145	poundforce per square inch	lbf/in ²

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

TABLE OF CONTENTS

TECHNICAL REPORT DOCUMENTATION PAGE	i
DISCLAIMER STATEMENTi	i
UNCERTAINTY OF MEASUREMENT STATEMENTi	i
INDEPENDENT APPROVING AUTHORITYi	i
ACKNOWLEDGEMENTSii	i
LIST OF FIGURES	i
LIST OF TABLES x	i
1 INTRODUCTION 1.1 Background 1.2 Objective and Scope	1 1 1
 2 LITERATURE REVIEW	222556
3 SIGN SUPPORT DESIGN AND ANALYSIS	8
4 DESIGN DETAILS	2
5 TEST REQUIREMENTS AND EVALUATION CRITERIA))) 2
6 TEST CONDITIONS.336.1 Test Facility336.2 Vehicle Tow and Guidance System336.3 Test Vehicles.336.4 Simulated Occupant396.5 Data Acquisition Systems396.5.1 Accelerometers396.5.2 Rate Transducers.396.5.3 Retroreflective Optic Speed Trap406.5.4 Digital Photography40	3333999900
7 FULL-SCALE CRASH TEST NO. UCSS-1 (UCSS-1A, UCSS-1B, UCSS-1C)	2 2

7.2 Weather C	Conditions	
7.3 Test Desc	ription	
7.4 System D	amage	
7.5 Vehicle D	amage	
7.6 Occupant	Risk	
7.7 Discussion	1	
8 SUMMARY, CON	CLUSIONS, AND RECOMMENDATIONS	67
9 REFERENCES		
10 APPENDICES		
Appendix A.	Data from Previous U-Channel Testing	
Appendix B.	U-Channel Sign Support Survey	
Appendix C.	Material Specifications	
Appendix D.	Vehicle Center of Gravity Determination	
Appendix E.	Static Soil Tests	119
Appendix F.	Vehicle Deformation Records	
Appendix G.	Accelerometer and Rate Transducer Data Plots, Test No. UCS	SS-1 125

LIST OF FIGURES

Figure 1. FDOT U-Channel Schematic, Test Nos. 7185-3 through 7185-18 [7]	3
Figure 2. U-Channel Schematic, Test No. 417929-3 [8]	5
Figure 3. U-Channel Schematic, Test No. RF476460-1-2 [11]	7
Figure 4. U-Channel Sign Support Survey Results	10
Figure 5. Test Installation Layout, Test No. UCSS-1	13
Figure 6. Sign Assembly, Test No. UCSS-1A	14
Figure 7. U-Channel Base Detail, Test No. UCSS-1A	15
Figure 8. Sign Assembly, Test No. UCSS-1B	16
Figure 9. Splice Detail, Test No. UCSS-1B	17
Figure 10. Sign Assembly, Test No. UCSS-1C	18
Figure 11. Splice Detail, Test No. UCSS-1C	19
Figure 12. U-Channel Base Detail, Test Nos. UCSS-1B and UCSS-1C	20
Figure 13. U-Channel Post Detail, Test Nos. UCSS-1B and UCSS-1C	21
Figure 14. Sign Panel Detail, Test No. UCSS-1	22
Figure 15. Sign Support and Ground Stub Splice Attachment Hardware Detail, Test No.	
UCSS-1	23
Figure 16. Bill of Materials, Test No. UCSS-1	24
Figure 17. Test Installation, Test No. UCSS-1	25
Figure 18. Test Installation, Test No. UCSS-1	26
Figure 22. Test Vehicle, Test No. UCSS-1	34
Figure 23. Test Vehicle's Interior Floorboards, Test No. UCSS-1	35
Figure 24. Test Vehicle's Undercarriage, Test No. UCSS-1	36
Figure 25. Vehicle Dimensions, Test No. UCSS-1	37
Figure 26. Target Geometry, Test No. UCSS-1	38
Figure 27. Camera Locations, Speeds, and Lens Settings, Test No. UCSS-1	41
Figure 28. Impact Location, Test No. UCSS-1A	44
Figure 29. Impact Location, Test Nos. UCSS-1B and UCSS-1C	45
Figure 30. Sequential Photographs, Test No. UCSS-1	46
Figure 31. Sequential Photographs, Test No. UCSS-1A	47
Figure 32. Sequential Photographs, Test No. UCSS-1B	48
Figure 33. Sequential Photographs, Test No. UCSS-1C	49
Figure 34. Vehicle Trajectory, Test No. UCSS-1	50
Figure 35. System Damage, Test No. UCSS-1A	52
Figure 36. System Damage, Test No. UCSS-1B	53
Figure 37. System Damage, Test No. UCSS-1C	54
Figure 38. Vehicle Damage, Test No. UCSS-1	56
Figure 39. Undercarriage Damage, Test No. UCSS-1	57
Figure 40. Undercarriage Damage, Test No. UCSS-1	58
Figure 41. Right-Side Lower A-Arm Damage, Test No.UCSS-1	59
Figure 42. Roof Damage, Test No. UCSS-1	60
Figure 43. Windshield Damage, Test No. UCSS-1	61
Figure 44. Summary of Test Results and Sequential Photographs, Test No. UCSS-1A	64
Figure 45. Summary of Test Results and Sequential Photographs, Test No. UCSS-1B	65
Figure 46. Summary of Test Results and Sequential Photographs, Test No. UCSS-1C	66
Figure B-1. U-Channel Sign Support Survey Questions, Page 1	76

Figure B-2. U-Channel Sign Support Survey Questions, Page 2	77
Figure B-3. U-Channel Sign Support Survey Questions, Page 3	78
Figure C-1. 96-in. Long Franklin U-Channel Sign Post, Test No. UCSS-1	81
Figure C-2. 120-in. Long Franklin U-Channel Sign Post, Test No. UCSS-1	82
Figure C-3. 96-in. Long Franklin U-Channel Sign Post, Test No. UCSS-1	83
Figure C-4. 42-in. Long Franklin U-Channel Sign Post, Test No. UCSS-1	84
Figure C-5. 36-in. x 12-in. x 0.08-in. Sign with Reflective Sheeting, Test No. UCSS-1	85
Figure C-6. 36-in. x 36-in. x 0.08-in. Sign with Reflective Sheeting, Test No. UCSS-1	86
Figure C-7. ⁵ / ₁₆ -in18 UNC, 1 ³ / ₄ -in. Long Hex Bolt, Page 1, Test No. UCSS-1	87
Figure C-8. ⁵ / ₁₆ -in18 UNC, 1 ³ / ₄ -in Long Hex Bolt, Page 2, Test No. UCSS-1	88
Figure C-9. ⁵ / ₁₆ -in18 UNC, 1 ³ / ₄ -in. Long Hex Bolt, Page 1, Test No. UCSS-1	89
Figure C-10. ⁵ / ₁₆ -in18 UNC, 1 ³ / ₄ -in. Long Hex Bolt, Page 2, Test No. UCSS-1	90
Figure C-11. $\frac{3}{16}$ -in18 UNC, 1 ³ / ₄ -in. Long Hex Bolt, Test No. UCSS-1	91
Figure C-12. ³ / ₁₆ -in18 UNC, 1 ³ / ₄ -in. Long Hex Bolt, Test No. UCSS-1	92
Figure C-13. ³ / ₁₆ -in18 UNC, 1 ³ / ₄ -in. Long Hex Bolt, Test No. UCSS-1	93
Figure C-14. $\frac{3}{16}$ -in18 UNC, $\frac{21}{4}$ -in. Long Hex Bolt, Page 1, Test No. UCSS-1	94
Figure C-15. ³ / ₁₆ -in18 UNC, 2 ¹ / ₄ -in. Long Hex Bolt, Page 2, Test No. UCSS-1	95
Figure C-16. $\frac{3}{16}$ -in18 UNC, $\frac{21}{4}$ -in. Long Hex Bolt, Page 1, Test No. UCSS-1	96
Figure C-17. $\frac{3}{16}$ -in18 UNC, $\frac{21}{4}$ -in. Long Hex Bolt, Page 2, Test No. UCSS-1	97
Figure C-18. $\frac{7}{16}$ -in18 UNC, $\frac{21}{4}$ -in. Long Hex Bolt, Page 1, Test No. UCSS-1	98
Figure C-19. $\frac{7}{16}$ -in18 UNC, $\frac{24}{4}$ -in. Long Hex Bolt, Page 2, Test No. UCSS-1	
Figure C-20. 7_{16} -in18 UNC, 2%-in. Long Hex Bolt, Test No. UCSS-1	100
Figure C-21. 7_{16} -in18 UNC, 2%-in. Long Hex Bolt, Page 1, Test No. UCSS-1	101
Figure C-22. 7_{16} -in18 UNC, 2%-in. Long Hex Bolt, Page 2, Test No. UCSS-1	102
Figure C-25. 7_{16} -in18 UNC, 2%-in. Long Hex Boil, Test No. UCSS-1	105
Figure C-24. 7/16-III18 UNC Heavy Hex Nut, Test No. UCSS-1	104
Figure C 26. ⁵ / ₁₆ -in. 18 UNC Heavy Hex Nut, Test No. UCSS-1	105
Figure C 27. ⁵ / ₁₆ -in. 18 UNC Heavy Hex Nut. Test No. UCSS-1	100
Figure C-28 ⁵ / ₁₆ -in -18 UNC Heavy Hex Nut, Test No. UCSS-1	107
Figure C-20. 7_{16} -in18 UNC Heavy Hex Nut, Page 2. Test No. UCSS-1	100
Figure C-30 $\frac{5}{16}$ in -18 UNC Heavy Hex Nut, Test No. UCSS-1	110
Figure C-31 ⁵ / ₁₆ -in Dia Plain Round Washer Test No. UCSS-1	111
Figure C-32. ⁵ / ₁₆ -in Dia Plain Round Washer, Test No. UCSS-1	112
Figure C-33, ³ / ₄ -in Dia Lock Washer Test No UCSS-1	113
Figure C-34, ³ / ₈ -in. Dia. Lock Washer. Test No. UCSS-1	114
Figure C-35. Round Spacer. Steel. Zinc Plated Finish. ³ / ₈ -in. Screw Size. ³ / ₄ -in. OD. 0.38	
inID. ½-in. Length. Test No. UCSS-1	115
Figure D-1. Vehicle Mass Distribution, Test No. UCSS-1	117
Figure D-2. Vehicle Mass Distribution, Test No. UCSS-1	118
Figure E-1. Soil Strength Initial Calibration Tests, Test No. UCSS-1	120
Figure E-2. Static Soil Test, Test No. UCSS-1	121
Figure F-1. Roof Deformation Data, Test No. UCSS-1	123
Figure F-2. Windshield Deformation Data, Test No. UCSS-1	124
Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. UCSS-1A	126
Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. UCSS-1A	127
Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. UCSS-1A	128

Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. UCSS-1A	129
Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. UCSS-1A	130
Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. UCSS-1A	131
Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. UCSS-1A	132
Figure G-8. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. UCSS-1B	133
Figure G-9. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. UCSS-1B	134
Figure G-10. Longitudinal Occupant Displacement (SLICE-1), Test No. UCSS-1B	135
Figure G-11. 10-ms Average Lateral Deceleration (SLICE-1), Test No. UCSS-1B	136
Figure G-12. Lateral Occupant Impact Velocity (SLICE-1), Test No. UCSS-1B	137
Figure G-13. Lateral Occupant Displacement (SLICE-1), Test No. UCSS-1B	138
Figure G-14. Vehicle Angular Displacements (SLICE-1), Test No. UCSS-1B	139
Figure G-15. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. UCSS-1C	140
Figure G-16. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. UCSS-1C	141
Figure G-17. Longitudinal Occupant Displacement (SLICE-1), Test No. UCSS-1C	142
Figure G-18. 10-ms Average Lateral Deceleration (SLICE-1), Test No. UCSS-1C	143
Figure G-19. Lateral Occupant Impact Velocity (SLICE-1), Test No. UCSS-1C	144
Figure G-20. Lateral Occupant Displacement (SLICE-1), Test No. UCSS-1C	145
Figure G-21. Vehicle Angular Displacements (SLICE-1), Test No. UCSS-1C	146

LIST OF TABLES

Table 1. MASH 2016 TL-3 Test Matrix	1
Table 2. Summary of U-Channel Sign Support Tests for ADOT, 1988	2
Table 3. Summary of U-Channel Sign Support Tests for FDOT, 1992 [7]	4
Table 4. Summary of U-Channel Sign Support Test, 2000 [8]	6
Table 5. Summary of U-Channel Sign Support Test for Nucor Compliance Test, 2009 [9]	6
Table 6. Summary of U-Channel Sign Support Test for NCHRP Project 22-14(03), 2010	
[11]	7
Table 7. MASH 2016 Estimates of Previous Testing	9
Table 8. Sign Systems Prioritized for Testing	11
Table 9. MASH 2016 TL-3 Crash Test Conditions for Support Structures	30
Table 10. MASH 2016 Evaluation Criteria for Support Structures	31
Table 11. Weather Conditions, Test No. UCSS-1	42
Table 12. Sequential Description of Impact Events, Test No. UCSS-1A	43
Table 13. Sequential Description of Impact Events, Test No. UCSS-1B	43
Table 14. Sequential Description of Impact Events, Test No. UCSS-1C	43
Table 15. Maximum Occupant Compartment Deformations by Location, Test No. UCSS-1	62
Table 16. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. UCSS-1	63
Table 17. Summary of Safety Performance Evaluation	69
Table A-1. Data from Previous U-Channel Testing	74
Table C-1. Bill of Materials, Test No. UCSS-1	80

1 INTRODUCTION

1.1 Background

Single-post, U-channel sign supports are used by many agencies for a variety of small signs and delineators, including mile delineators and object markers. These signs are generally mounted between 4 ft and 7 ft above the ground and placed in close proximity to the roadway. Despite the wide use of U-channel sign supports, their crashworthiness has not been fully evaluated to current *Manual for Assessing Safety Hardware* (MASH 2016) [1] safety criteria. With the impending MASH implementation dates agreed upon by the Federal Highway Administration (FHWA) and American Association of State Highway and Transportation Officials' (AASHTO), single-post, U-channel sign supports need to be evaluated to MASH 2016 Test Level 3 (TL-3) safety criteria.

Numerous studies and full-scale crash tests have been conducted on U-channel sign supports over the past four decades. These tests may help identify critical configurations for evaluation prior to MASH testing. However, several of these projects were conducted under previous evaluation criteria, the National Cooperative Highway Research Program (NCHRP) Report Nos. 230, *Recommended Procedures for the Safety Performance Evaluation of Highway Appurtenances*) [2], and 350, *Recommended Procedures for the Safety Performance Evaluation of Highway Features* [3]; and no U-channel sign supports completed the full testing matrix required by MASH. NCHRP Project 03-119 [4] is currently evaluating luminaire poles, sign supports, and work zone devices to MASH 2016 standards, but U-channel supports will only be partially evaluated during this project, and it is unknown if any of these systems will be full-scale crash tested to MASH standards.

1.2 Objective and Scope

The objective of this study was to evaluate single-post, U-channel sign supports according to the TL-3 safety performance criteria set forth in MASH 2016, as shown in Table 1. The study included a literature review of past testing, survey of sponsoring agencies, and dynamic component testing to identify critical sign configurations and evaluation parameters, including mounting height, sign size, and post splice configuration. Additionally, one full-scale crash test was conducted to evaluate the crashworthiness of three systems. The research scope included the development of a bogie vehicle to be utilized in the MASH compliance evaluation of the selected sign configurations. Thus, a full-scale MASH test designation no. 3-61 crash test was conducted to provide baseline data to validate the bogie vehicle. The background and full-scale crash test are detailed herein. MASH test designation nos. 3-60 and 3-62 were not conducted as part of the initial research effort. For a complete evaluation of the sign systems according to MASH TL-3, the full test matrix should be conducted, as shown in Table 1.

Test	Vehicle	Vehicle Weight,	Impact Speed,	Impact	Impact Angle,
No.	Designation	lb	mph	Point	degrees
3-60	1100C	2,420	19	Vahiala	
3-61	1100C	2,420	62	Venicle	CIA^1
3-62	2270P	5,000	62	Quarterpoint	

Table 1. MASH 2016 TL-3 Test Matrix

¹Critical Impact Angle from 0 to 25 deg., which is to be determined

2 LITERATURE REVIEW

A total of 22 full-scale crash tests were found on single U-channel sign supports, as described below. Additional data can be found in Appendix A.

2.1 Small Sign Support Analysis (1988)

In 1988, Texas A&M Transportation Institute (TTI) conducted a series of full-scale small car crash tests to evaluate the impact performance of small sign supports used by the Arizona Department of Transportation (ADOT) [5]. While the testing covered more than just single-post U-channels, it was determined that both 3-lb/ft and 4-lb/ft U-channel posts met performance criteria set forth by NCHRP Report No. 230 and the 1985 AASHTO *Standard Specifications for Structural Supports for Highway Signs, Luminaires and Traffic Signals* [6].

The sign panels measured 2 ft x $2\frac{1}{2}$ ft and were positioned so the lower edge was 5 ft above the ground. Two low-speed tests and one high-speed test were used to validate the system. In all three tests, the sign support fractured at bumper height and lost contact with the front of the vehicle, and the sign panel impacted the vehicle's roof. Roof deformation was within safety standards. A summary of the impact data and properties of each sign support test is shown in Table 2.

Test No. (Designation)	Post Weight, lb/ft	Post Yield Strength, ksi	Test Inertial Weight, lb	Impact Speed, mph	Impact Location	Max. Compartment Deformation and Location, in.	Pass/ Fail
7024-7 (63)	3	102	1,800	60.5	15 in. left of centerline	2 (Roof)	Pass
7024-8 (62)	3	102	1,800	19.9	15 in. right of centerline	0	Pass
7024-13 (63)	4	84.1	1,795	20.3	15 in. left of centerline	2 (Roof)	Pass

 Table 2. Summary of U-Channel Sign Support Tests for ADOT, 1988

2.2 Florida Thin-Walled Aluminum Tube and Steel U-Channel Sign Supports (1992)

In 1992, TTI conducted a series of full-scale 1,800-lb small car crash tests to evaluate the impact performance of 4-lb/ft steel U-channel sign supports used by the Florida Department of Transportation (FDOT) in strong and weak soil [7]. The sign panels measured 2 ft x 3 ft and were mounted so the lower end of the panel was 7 ft above the ground. Some of the crash tests involved sign systems with normal splice orientation where the sign post is nested behind the base stub, while others had a reverse splice orientation with the sign post nested in front of the base stub. Two of these sixteen tests failed due to occupant risk because the signs struck the vehicle's roof and caused large deformations. One of these failing systems had a normal spice orientation, while the other one had a reverse orientation. The project adhered to performance criteria set forth by NCHRP Report No. 230. A schematic of the system is shown in Figure 1. A summary of the testing is shown in Table 3.

Figure 1. FDOT U-Channel Schematic, Test Nos. 7185-3 through 7185-18 [7]

Test No. (Designation)	Splice Orientation	Post Yield Strength, ksi	Soil Type	Impact Speed, mph	Impact Location	Max. Compartment Deformation Location ¹	Pass/ Fail
7185-3 (62)	Reverse	80	Weak	18.4	Left quarterpoint	N/A	Pass
7185-4 (63)	Reverse	80	Weak	61.8	Right quarterpoint	N/A	Pass
7185-5 (62)	Reverse	80	Standard	19.3	Left quarterpoint	N/A	Pass
7185-6 (63)	Reverse	80	Standard	61.1	Right quarterpoint	N/A	Pass
7185-7 (62)	Reverse	60	Weak	20.3	Left quarterpoint	N/A	Pass
7185-8 (63)	Reverse	60	Weak	61.5	Right quarterpoint	N/A	Pass
7185-9 (62)	Reverse	60	Standard	17.0	Right quarterpoint	N/A	Pass
7185-10 (63)	Reverse	60	Standard	60.8	Left quarterpoint	Roof over driver compartment area	Fail ²
7185-11 (62)	Normal	80	Weak	19.2	Left quarterpoint	N/A	Pass
7185-12 (63)	Normal	80	Weak	61.9	Right quarterpoint	N/A	Pass
7185-13 (62)	Normal	80	Standard	20.1	Left quarterpoint	N/A	Pass
7185-14 (63)	Normal	80	Standard	61.8	Right quarterpoint	N/A	Pass
7185-15 (62)	Normal	60	Standard	19.4	Left quarterpoint	N/A	Pass
7185-16 (63)	Normal	60	Standard	62.4	Right quarterpoint	N/A	Pass
7185-17 (62)	Normal	60	Weak	20.0	Left quarterpoint	N/A	Pass
7185-18 (63)	Normal	60	Weak	62.4	Right quarterpoint	Roof over driver compartment area	Fail ³

Table 3. Summary of U-Channel Sign Support Tests for FDOT, 1992 [7]

¹Exact deformation values not available

²Test failed due to driver compartment intrusion ³Test failed because occupant compartment deformation was too large

2.3 Impact Performance Evaluation of Work-Zone Traffic Control Devices (2000)

In 2000, TTI conducted a series of full-scale small car crash tests to evaluate the impact performance of selected work zone sign supports [8]. The project adhered to performance criteria set forth by NCHRP Report No. 350. Among the selected systems was a U-channel sign support with a 2 ft x 3 ft sign panel mounted 4 ft above the ground. For test no. 417929-3, it should be noted that the test vehicle simultaneously impacted two identical U-channel supports on the right and left quarter points. After impact, one of the U-channel sign posts split and fractured at bumper height. The sign panel impacted and cut the vehicle's windshield before losing contact with the vehicle. Due to the sign panel showing potential to penetrate the occupant compartment, this test failed. The test on second sign support was acceptable. A schematic of the U-channel system is shown in Figure 2. A summary of the impact data and properties of the sign support is shown in Table 4.

Figure 2. U-Channel Schematic, Test No. 417929-3 [8]

Test No. (Designation)	Support Size, lb/ft	U-Channel Type	Test Inertial Weight, lb	Impact Speed, mph	Impact Location	Max. Compartment Deformation, in.	Pass/ Fail
417929-3 (3-71)	2	Winged	1,806	62	Right and left quarter points	3.0	Fail ¹

Table 4. Summary of U-Channel Sign Support Test, 2000 [8]

¹Test failed because sign panel showed potential to penetrate occupant compartment

2.4 Compliance Test of U-Channel Sign Support System (2009)

In 2009, New Zealand-based Holmes Solutions conducted a single-post full-scale 2270P crash test to evaluate the impact performance of the Nucor Lap Splice U-Channel Sign Support system [9]. The project adhered to performance criteria set forth by MASH 2009 [10]. Test no. 2-362 was conducted with a 1 ft x 1 ft sign panel mounted 5 ft – 11 in. above the ground and a 3 ft x 3 ft sign panel mounted 7 ft above the ground on a single post. After a head-on impact, the support bent slightly before breaking just above the splice. The sign panel impacted the vehicle's windshield, fracturing the glass. The sign post contacted the left side of the vehicle until it passed over the A-pillar, where it lost contact. The test failed because occupant compartment deformation exceeded maximum limits. The test results are shown in Table 5.

Table 5. Summary of U-Channel Sign Support Test for Nucor Compliance Test, 2009 [9]

Test No. (Designation)	Post Weight, lb/ft	Test Inertial Weight, lb	Lower Panel Height(s)	Impact Speed, mph	Impact Location	Max. Compartment Deformation and Location, in.	Pass/ Fail
2-362 (3-62)	4	4,991	5 ft –11 in. 7 ft	61	Centerline	5.5 (Right side of roof above windshield)	Fail ¹

¹Test failed because occupant compartment deformation was too large

2.5 Evaluation of Existing Roadside Safety Hardware Using MASH (2010)

In 2010, TTI conducted a full-scale 2270P crash test to evaluate the impact performance of a 4-lb/ft steel U-channel support with a 3 ft x 3 ft plywood sign mounted 7 ft above the ground [11]. The project adhered to performance criteria set forth by MASH 2009. After primary impact with the U-channel support, the test vehicle impacted a Perforated Square Steel Tube (PSST) support. The sign post broke away at the splice location, and the sign panel rotated around the leading edge of the vehicle's hood, contacting the roof near the top of the windshield and overriding the vehicle. Contact with the roof was minor and caused slight deformations. A schematic of the system is shown in Figure 3. A summary of the impact data and sign support properties is shown in Table 6.

Figure 3. U-Channel Schematic, Test No. RF476460-1-2 [11]

Table 6. Summary of U-Channel Sign Support Test for NCHRP Project 22-14(03), 2010 [11]

Test No. (Designation)	Post Weight, lb/ft	Test Inertial Weight, lb	Impact Speed, mph	Impact Location	Max. Compartment Deformation and Location, in.	Pass/ Fail
RF476460-1-2 (3-62)	4	4,958	63.3	Left quarterpoint	2.1 ¹ (Roof)	Pass

¹It is believed most of the vehicle damage was due to the secondary impact with the PSST support

3 SIGN SUPPORT DESIGN AND ANALYSIS

In order to determine critical sign configurations, MwRSF researchers reviewed reports, photographs, and video footage of previous testing to estimate the likelihood of success with MASH 2016 performance criteria. Each test was graded on a scale of one (very unlikely to pass) to five (very likely to pass). This scale was subjective and does not indicate a definite pass or failure. This information is summarized in Table 7 for the 22 tests described in the literature review.

Most of the systems would likely comply with MASH criteria for the low-speed test designation no. 3-60. However, researchers were less optimistic about MASH test designation nos. 3-61 and 3-62, where the heavy sign panels would impact the test vehicle at higher speeds and potentially cause excessive deformation or intrude into the passenger compartment. Generally, the systems that were predicted to have a higher chance of passing had higher minimum steel yield strengths. A panel mounting height of 5 ft or less above the ground and a smaller post weight was associated with a lower chance of passing MASH test designation no. 3-60 than the system with a panel mounting height of 7 ft and a heavier post.

Midwest Roadside Safety Facility (MwRSF) researchers surveyed the Midwest Pooled Fund Program member states to gain a full understanding of current U-channel sign support usage. MwRSF used the results, as shown in Figure 4, to determine which sign support configurations were desired by state transportation departments. Fourteen states responded to the survey, which is shown in its entirety in Appendix B.

All fourteen states currently use U-channel sign supports for small delineators with sign panels, and thirteen states planned to use them in the future. Generally, 1.12-lb/ft and 2-lb/ft weight U-channel sign supports are used for small delineator applications. While many different sign panel sizes are used, the mounting height to the bottom of the sign panel for small delineators was typically 4 ft. Some states did not attach sign panels and only attached a reflective marker at the top of the sign support. Every state mounted these supports in soil, and six states mounted them in both soil and concrete.

Nine of the thirteen states that responded used U-channel sign supports for a purpose other than small delineators. Specifications for these applications varied widely in several aspects, including U-channel weight and sign panel size. Every state mounted these supports in soil, and three states mounted them in both soil and concrete.

Based on the results of the survey, several systems were identified as a priority for evaluation with this project, as shown in Table 8. The yield strength and splice configurations could be variable and would be further evaluated throughout the project.

Test No.	Designation	Vehicle Type	Post Weight, lb/ft	Lower Panel Height(s), ft	Impact Location Te Res		MASH 3-60 Prediction	MASH 3-61 Prediction	MASH 3-62 Prediction
7024-7	NCHRP 230 63	1800S	3	5	15 in. left of centerline	Pass	2	4	2
7024-8	NCHRP 230 62	1800S	3	5	15 in. right of centerline	Pass	2	4	2
7024-13	NCHRP 230 63	1800S	4	5	15 in. left of centerline	Pass	2	4	2
7185-3	NCHRP 230 62	1800S	4	7	Left quarterpoint	Pass	5	4	4
7185-4	NCHRP 230 63	1800S	4	7	Right quarterpoint	Pass	5	4	4
7185-5	NCHRP 230 62	1800S	4	7	Left quarterpoint	Pass	5	4	4
7185-6	NCHRP 230 63	1800S	4	7	Right quarterpoint	Pass	5	4	4
7185-7	NCHRP 230 62	1800S	4	7	Left quarterpoint	Pass	5	1	2
7185-8	NCHRP 230 63	1800S	4	7	Right quarterpoint	Pass	5	1	2
7185-9	NCHRP 230 62	1800S	4	7	Right quarterpoint	Pass	5	1	2
7185-10	NCHRP 230 63	1800S	4	7	Left quarterpoint	Fail	5	1	2
7185-11	NCHRP 230 62	1800S	4	7	Left quarterpoint	Pass	5	4	4
7185-12	NCHRP 230 63	1800S	4	7	Right quarterpoint	Pass	5	4	4
7185-13	NCHRP 230 62	1800S	4	7	Left quarterpoint	Pass	5	4	4
7185-14	NCHRP 230 63	1800S	4	7	Right quarterpoint	Pass	5	4	4
7185-15	NCHRP 230 62	1800S	4	7	Left quarterpoint	Pass	5	1	2
7185-16	NCHRP 230 63	1800S	4	7	Right quarterpoint	Pass	5	1	2
7185-17	NCHRP 230 62	1800S	4	7	Left quarterpoint	Pass	5	1	2
7185-18	NCHRP 230 63	1800S	4	7	Right quarterpoint	Fail	5	1	2
417292-3	NCHRP 350 3-71	820C	2	4	Right quarterpoint	Fail	4	1	2
2-362	MASH 3-62	2270P	4	5 ft –11 in.	Centerline	Fail	4	3	1
RF476460-1-2	MASH 3-62	2270P	4	7	Left quarterpoint	Pass	5	5	Pass ¹

Table 7. MASH 2016 Estimates of Previous Testing

¹Full-scale crash test was conducted to MASH Scale: 1 unlikely to pass and 5 likely to pass

	Question	No. Resp.	Results		
	1 Are you currently using LL Channel Sign Supports?	14	Yes - 14		
-	1. Are you currently using U-Channel Sign Supports?	14	No - 0		
sage	2. Are you interested in using U-Channel Sign Supports in	14	Yes - 13		
ñ	the future?		No - 1 No - 12		
	3. Do you want to provide input on which sign supports will be evaluated with this Pooled Fund project?	14	Yes - 15		
	be evaluated with this robied rund project:		Yes - 13		
	4. Do you use U-channel sign support for small delineators?	13	No - 0		
	5 What must be descent to the bound deliver to the		Nucor Steel Marion - 4	MD Solutions - 1	
	from?	12	Franklin Industries - 3	Vulcan Signing - 1	
			Chicago Heights Steel - 1	Unknown - 6	
			1.12 lb/ft - 5	3 lb/ft - 3	
	6. What weight U-channel do you utilize for delineators?	13	2 10/11 - 0 2 2 1b/ft 1	4 lb/ft - 1	
			2.5 lb/ft = 2	0.93-in. A36/A36m steel - 1	
tors		10	Yes - 13		
nea	7. Do you use sign panels with U-channel delineators?	13	No - 0		
Jeli	7a. What is the typical beight to bottom of sign papel for U-		2 ft - 1		
all I	channel delineators?	12	4 ft - 9		
Sm			5 ft - 2	[
	7h What is the terrical size namel size for U sharped		6 in. x 12 in 3 10 in. x 26 in 2	12 in. x 48 in. - 3	
	delineators?	13	10 III. \times 30 III 3	18 in. x 18 in 3	
			12 in. x 24 in 4 12 in. x 36 in 8	None (reflector only) - 3	
			Yes - 3	Į.	
	8. Do you use spliced U-channel with delineators?		No - 9		
			Soil - 7		
	9. Do you mount U-channel delineators in concrete or soil?	13	Concrete - 0		
			Both - 6		
	10. Do you use U-channel sign support for other sign	13	$\mathbf{Yes} = \mathbf{Y}$		
			Nucor Steel Marion - 5	MD Solutions - 1	
	11. What supplier do you purchase other U-channel sign	10	Franklin Industries - 4	Vulcan Signing - 1	
	supports from?		Chicago Heights Steel - 2	Unknown - 2	
	12. What weight U-channel do you utilize for other sign		1.12 lb/ft - 3	3 lb/ft- 5	
	supports?	9	2 lb/ft - 2	4 lb/ft - 3	
			2.5 lb/ft - 3		
rts	13. What is the twnical bottom of sign papel height for other		5 II - 5 6 ft - 1		
odd	U-channel sign supports?	9	7 ft - 8		
Su			> 7 ft - 1		
lign			18 in. x 18 in. - 4	20 in - 26 in 1	
er			18 in. x 24 in 4	$36 \text{ in } \mathbf{x} \ 36 \text{ in } \mathbf{x} \ 24 \text{ in } \mathbf{z} \ 2$	
Oth	14. What is the typical single sign panel size or total		24 in. x 24 in. - 6	36 in. x 36 in 4	
-	clustered panel size (w x h) for other U-channel sign	8	24 in. x 30 in 5	36 in. x 48 in. - 2	
	supports?		24 m. x 36 m 4	42 in. x 30 in. - 2	
			24 III. X 48 III 2 30 in x 30 in 6	48 in. x 48 in. - 2	
	15. Do you use spliced U-channel with other small U-		Yes - 7		
	channel sign supports?	9	No - 2		
	16 Do you mount other small II shared sizes in successful		Soil - 6		
	or soil?	9	Concrete - 0		
			Both - 3		

Figure 4. U-Channel Sign Support Survey Results

Post Weight, lb/ft	Sign Panel Size	Lower Panel Height, ft	Post Yield Strength, ksi	Splice Configuration
1.12	Reflector only	4	60	None
1.12	8 in. x 2 ft x 0.08 in.	4	60	None
3	3 ft x 3 ft x 0.1 in.	7	60	8-in. overlap at ground line
4	3 ft x 3 ft x 0.1 in.	7	80+	None
4	3 ft x 3 ft x 0.1 in.	7	60	8-in. overlap at ground line
4	3 ft x 3 ft x 0.1 in.	5	60	8-in. overlap at ground line

Table 8. Sign Systems Prioritized for Testing

4 DESIGN DETAILS

The test installation consisted of three separate U-channel sign supports, schematics of which are shown in Figures 5 through 16. Photographs of the test installation are shown in Figures 17 and 18. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix C.

The U-channel sign supports were made of A499 steel with a powder-coated finish. System A (test no. UCSS-1A) was a single post embedded in the ground without any splices, while Systems B and C (test nos. UCSS-1B and UCSS-1C, respectively) were comprised of an upper post support attached to an embedded ground stub foundation with a lap splice. The lap splices consisted of Gr. 9 hex bolts and heavy hex nuts, flat washers, and lock washers. The systems were placed 30 ft apart, with a slight offset so that Systems B and C contacted the right and left quarter points of the test vehicle, respectively.

The 1.12-lb/ft U-channel support for System A was 96 in. tall, including 24 in. below the ground line. The weight of the support was confirmed to be 1.12 lb/ft. The sign panel was 36 in. tall, 12 in. wide, and 0.08 in. thick. The bottom of the sign panel was 48 in. above the ground line. The mounting points for the sign panel were 6 in. above the bottom edge of the sign panel and 2 in. below the top edge of the U-channel support.

The 4-lb/ft U-channel support for System B was 120 in. tall, which overlapped 8 in. with a ground stub that extended 38 in. below the ground line. The weight of the support was confirmed to be 4 lb/ft. The sign panel for System B was 36 in. tall, 36 in. wide, and 0.08 in. thick. The bottom of the sign panel was 84 in. above the ground line. The mounting points for the sign panel were 6 in. above the bottom edge of the sign panel and 2 in. below the top edge of the U-channel support.

The 4-lb/ft U-channel support for System C was 96 in. tall, which overlapped 8 in. with a ground stub that extended 38 in. below the ground line. The weight of the support was confirmed to be 4 lb/ft. The sign panel for System C was 36 in. tall, 36 in. wide, and 0.08 in. thick. The bottom of the sign panel was 60 in. above the ground line. The mounting points for the sign panel were 6 in. above the bottom edge of the sign panel and 2 in. below the top edge of the U-channel support.

Figure 5. Test Installation Layout, Test No. UCSS-1

Figure 6. Sign Assembly, Test No. UCSS-1A

Figure 7. U-Channel Base Detail, Test No. UCSS-1A

Figure 8. Sign Assembly, Test No. UCSS-1B

Figure 9. Splice Detail, Test No. UCSS-1B

Figure 11. Splice Detail, Test No. UCSS-1C

Figure 12. U-Channel Base Detail, Test Nos. UCSS-1B and UCSS-1C

Figure 13. U-Channel Post Detail, Test Nos. UCSS-1B and UCSS-1C

Figure 14. Sign Panel Detail, Test No. UCSS-1

Figure 15. Sign Support and Ground Stub Splice Attachment Hardware Detail, Test No. UCSS-1

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
a1	1	1.12 lb/ft U—Channel Sign Post, 96" Long	ASTM A499 Gr. 60 Min. Yield = 80 ksi	ASTM A123	-
a2	1	4.00 lb/ft U-Channel Sign Post, 120" Long	ASTM A499 Gr. 60 Min. Yield = 60 ksi	ASTM A123	-
a3	1	4.00 lb/ft U—Channel Sign Post, 96" Long	ASTM A499 Gr. 60 Min. Yield = 60 ksi	ASTM A123	-
a4	2	4.00 lb/ft U-Channel Sign Post, 42" Long	ASTM A499 Gr. 60 Min. Yield = 60 ksi	ASTM A123	-
Ь1	1	36"x12"x0.08" Sign with Reflective Sheeting	Aluminum Alloy 5052 or Similar	_	-
b2	2	36"x36"x0.08" Sign with Reflective Sheeting	Aluminum Alloy 5052 or Similar	-	-
c1	2	5/16"—18 UNC, 1 3/4" Long Hex Bolt	SAE J429 Gr. 5 or 9	Fe/Zn 3AN per ASTM F1941	FBX08b
c2	4	5/16"—18 UNC, 2 1/4" Long Hex Bolt	SAE J429 Gr. 9	Zinc-Plated	-
c3	4	5/16"—18 UNC , 2 3/4" Long Hex Bolt	SAE J429 Gr. 5 or 9	Fe/ZN 3AN per ASTM F1941	FBX08b
c4	10	5/16"—18 UNC Heavy Hex Nut	SAE J995 Gr. 5 or 9	Fe/Zn 3AN per ASTM F1941	FNX08b
c5	20	5/16" Dia. Plain Round Washer	Low Carbon Steel	Fe/Zn 3AN per ASTM F1941	FWC08a
c6	10	3/8" Dia. Lock Washer	Low Carbon Steel	Fe/Zn 3AN per ASTM F1941	-
c7	4	1/2" Thick Spacer with 7/16" Hole	-	-	-

	RSP	U-Channel Sign Test no. UCSS-1		SHEET: 12 of 12 DATE: 7/8/2020
Midwest	Roadside	Bill of Materials		DRAWN BY: AEL/MB/ GRL/JEK/JF
Safety	Facility	DWG. NAME. UCSS-1_R7	SCALE: None UNITS: in.	REV. BY: JEK/JDS/ KAL

24

Figure 16. Bill of Materials, Test No. UCSS-1

Figure 17. Test Installation, Test No. UCSS-1

December 17, 2020 MwRSF Report No. TRP-03-440-20

Figure 18. Test Installation, Test No. UCSS-1

Figure 19. Test Installation, Test No. UCSS-1A

Figure 20. Test Installation, Test No. UCSS-1B

Figure 21. Test Installation, Test No. UCSS-1C

5 TEST REQUIREMENTS AND EVALUATION CRITERIA

5.1 Test Requirements

Support structures, such as U-channel sign supports, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the FHWA for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016. According to TL-3 criteria, support structures must be subjected to three full-scale vehicle crash tests, as summarized in Table 9.

The second se	Test		Vehicle Weight, lb	Impact C	Conditions	
Test Article	Designation No.	Test Vehicle		Speed, mph	Angle, degrees	Evaluation Criteria ¹
Support Structures	3-60	1100C	2,420	19	CIA	B,D,F,H,I,N
	3-61	1100C	2,420	62	CIA	B,D,F,H,I,N
	3-62	2270P	5,000	62	CIA	B,D,F,H,I,N

Table 9. MASH 2016 TL-3 Crash Test Conditions for Support Structures

¹Evaluation criteria explained in Table 10

Test designation no. 3-61, reported herein, was conducted for three sign supports simultaneously. The selected devices, termed Systems A, B, and C, corresponded to test nos. UCSS-1A, UCSS-1B, and UCSS-1C, respectively. The systems were installed 30 ft apart and contacted by the test vehicle at a 0-degree angle. MASH notes that the critical impact angle (CIA) should be selected to represent the highest risk for the system to fail any of the recommended evaluation criteria. Since these permanent sign supports will not be typically installed 90 degrees from the normal direction of travel, a critical impact angle between 0 and 25 degrees is recommended. Impacting the sign systems at a 0-degree impact angle was believed to be most critical in terms of maximizing the potential area of contact of the sign panels with the windshield and roof. The initial impact point of System A was the centerline of the vehicle's front bumper, while Systems B and C were impacted at the vehicle's right- and left-side quarter points, respectively.

Only one full-scale MASH test designation no. 3-61 crash test was conducted, as reported herein. MASH test designation nos. 3-60 and 3-62 were not conducted as part of the initial research effort. For a complete evaluation of the sign systems according to MASH TL-3, the full test matrix should be conducted, as shown in Table 9.

5.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy is that the test article should readily activate in a predicable manner by breaking away, fracturing, or yielding. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle

to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 10 and are defined in greater detail in MASH 2016.

It is important to note that in tests of breakaway features, the impulse on the vehicle may be relatively small and of short duration. It is not unusual for x and y in the flail-space model to be less than 2 ft and 1 ft, respectively, during the period in which accelerations are recorded or up to the time brakes are applied to the test vehicle. As specified in Section A5.5.2 of MASH 2016, in such cases, it is recommended that the OIV be set equal to the vehicle's change in velocity that occurs during contact with the test article, or parts thereof [1]. If parts of the test article remain with the vehicle after impact, the vehicle's change in velocity should be computed at the time the vehicle clears the footing or foundation of the test article.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), Theoretical Head Impact Velocity (THIV), and Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

Structural Adequacy	В.	The test article should readily activate in a predictable manner by breaking away, fracturing, or yielding.				
	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.				
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.				
Occupant Risk	H.	endix A, Section re) should satisfy				
		Occupant Impact Velocity Limits				
		Component	Preferred	Maximum		
		Longitudinal	10 ft/s	16 ft/s		
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				
		Occupant Rideo	ccupant Ridedown Acceleration Limits			
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		
Post-Impact Vehicular Response	N.	Vehicle trajectory behind th	e test article is acce	ptable.		

Table 10. MASH 2016 Evaluation Criteria for Support Structures

5.3 Soil Strength Requirements

In accordance with Chapter 3 and Appendix B of MASH 2016, foundation soil strength must be verified. During the installation of a soil dependent system, a W6x16 post is installed near the impact region using the same installation procedures as the system itself. Prior to full-scale testing, a dynamic impact test is conducted to verify a minimum dynamic soil resistance of 7.5 kips at post deflections between 5 and 20 in. at a height of 25 in. If dynamic testing near the system is not desired, MASH 2016 permits a static test to be conducted and compared against a previously established baseline. In this situation, the soil must provide a resistance of at least 90 percent of the static baseline test at deflections of 5, 10, and 15 in. Further details can be found in Appendix B of MASH 2016.

6 TEST CONDITIONS

6.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately five miles northwest of the University of Nebraska–Lincoln.

6.2 Vehicle Tow and Guidance System

A reverse-cable tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the measurement accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [12] was used to steer the test vehicle. A guide flag, attached to the right-front wheel and the guide cable, was sheared off before impact with the system. The ³/₈-in. diameter guide cable was tensioned to approximately 3,500 lb and supported both laterally and vertically every 100 ft by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

6.3 Test Vehicles

A 2009 Toyota Yaris subcompact four-door car was used as the test vehicle for test no. UCSS-1. The curb, test inertial, and gross static vehicle weights were 2,312 lb, 2,395 lb, and 2,557 lb, respectively. The test vehicle is shown in Figures 22 through 24, and vehicle dimensions are shown in Figure 25. MASH recommends using test vehicles within 6 model years on the day the test is conducted. Regardless of age, test vehicles should adhere to the properties specified in MASH [13]. While the test vehicle utilized was older than 6 years from the test date, the properties of the test vehicle met the requirements in MASH, and the test vehicle was geometrically similar to newer 1100C test vehicles. Note, MASH recommends that, when practical, the test vehicle should be selected to conform to all the parameters shown in MASH Tables 4-1 and 4-2. The hood height was measured to be 327/8 in., and MASH recommends 24 +/- 4 in. for the 1100C hood height. This difference was noted. Since, the overall front geometry of the Toyota Yaris was similar to other 1100C test vehicles, which was the primary contact area for the test article, it was not considered to be an issue. The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The vertical component of the c.g. was determined using a procedure published by SAE [14]. The location of the final c.g. is shown in Figures 25 and 26. Data used to calculate the location of the c.g. and ballast information are shown in Appendix D.

Square, black- and white-checkered targets were placed on the vehicle for reference to be viewed from the high-speed digital video cameras and aid in video analysis, as shown in Figure 26. Round, checkered targets were placed at the c.g. on the left-side door, right-side door, and roof of the vehicle.

Figure 22. Test Vehicle, Test No. UCSS-1

Figure 23. Test Vehicle's Interior Floorboards, Test No. UCSS-1

Figure 24. Test Vehicle's Undercarriage, Test No. UCSS-1

Date:	9/26/20)18	_		Test Name	:UC:	SS-1	VIN No:	jtdbt9	031940567	58
Year:	2009)	-		Make	:Тоу	/ota	Model:		Yaris	
Tire Size:	p185/6	60	5	Tire Inflat	tion Pressure	: 32	Psi	Odometer:		147873	
	M				N		• 	Vehicle G Target Range A: <u>66 3/8</u> <u>65±3 (1</u> C: <u>168 3/4</u> 169±8 (4 E: <u>100 5/8</u> <u>98±5 (22</u>	Geometry - in. as listed below (1686) 650±75) (4286) 300±200) (2556) (60±125)	(mm) : <u>56 3/8</u> : <u>37 1/8</u> 35±4 (9 : <u>31 3/8</u>	(1432) (943) ^{00±100)} (797)
				Tes	st Inertial CG			G: <u>22 1/2</u>	(57 <u>2)</u> П	39±4 (9	90±100)
	R		S	-			B L L I I	l: 7 1/4 K: 13 3/8 M: 57 7/8 56#2 (1 O: 32 7/8 2444 (6	(184) J (340) L (1470) N (425±50) N (835) P (00±100)	: <u>19 3/8</u> : <u>25 1/8</u> : <u>57 3/8</u> : <u>56±2 (1</u> . : <u>1 1/4</u>	(492) (638) (1457) ^{425±50)} (32)
	- D		Т — Е			F		Q: 23 1/4	<u>(591)</u> R	: 16 3/8	(416)
	-		(c ——		-		S: 8 1/4	(210) T	: 65	(1651)
								U (i	mpact width)	: 33 1/8	(841)
Mass Distribi	ution Ib (Kg)				(a			Тор	of radiator core	•	
Gross Static	LF <u>728</u>	(330)	_ RF_	111	(352)				support Wheel Cente	: <u>31 1/2</u> r	(800)
	LR <u>517</u>	(235)	_RR_	535	(243)				Height (Front) Wheel Cente	: <u>11 1/4</u> r	(286)
Weights									Height (Rear) Wheel Wel	: <u>11 1/2</u> I	(292)
lb (kg)	Cu	ırb		Test I	nertial	Gross	Static	Cl	earance (Front)	: 26 1/4	(667)
W-front	1430	(649)		1422	(645)	1505	(683)	С	learance (Rear)	26 1/4	(667)
W-rear	882	(400)		973	(441)	1052	(477)		Bottom Frame Height (Front)	; 15 3/4	(400)
W-total	2312	(1049)		2395	(1086)	2557	(1160)		Bottom Frame Height (Rear)	; <u>16 1/2</u>	(419)
				2420±55 ((1100±25)	2585±55	(1175±50)		Engine Type	: Gas	oline
GVWR Rating	gs Ib		5	Surrogate	e Occupant D	ata			Engine Size	:VVT-i 1.	5L 4 Cy
Front	1840				Type:	Hybric	111	Transı	nission Type	: Auto	matic
Rear	1820				Mass:	162 I	b		Drive Type	:FV	VD
Total	3300	••		Seat	Position:	righ	t				
Note an	Note any damage prior to test: Previously used for CHIC-4 Repaired near suspension.										

Figure 25. Vehicle Dimensions, Test No. UCSS-1

Figure 26. Target Geometry, Test No. UCSS-1

The front wheels of the test vehicle were aligned to vehicle standards, except for the toein value, which was adjusted to zero so the vehicle would track properly along the guide cable. Three 5B flash bulbs were mounted under the windshield wipers on the right, left, and center of the windshield, and were fired by a pressure tape switch mounted at each quarter point and centerline of the front bumper. The flash bulb was fired upon initial impact with the test articles to create a visual indicator of the precise time of impact. A remote-controlled brake system was installed so the vehicle could be brought safely to a stop.

6.4 Simulated Occupant

A Hybrid II 50th-Percentile, Adult Male Dummy, equipped with footwear, was placed in the right-front seat of the test vehicle with the seat belt fastened. The dummy had a final weight of 162 lb. As recommended by MASH 2016, the dummy was not included in calculating the c.g. location.

6.5 Data Acquisition Systems

6.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometer systems were mounted near the c.g. of the test vehicle. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [15].

The SLICE-1 and SLICE-2 units were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-2 unit was designated as the primary system. Note that the SLICE-2 unit did not record data during test no. UCSS-1 due to triggering issues. The acceleration sensors were mounted inside the bodies of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of \pm 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The SLICEWare computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

6.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicle. Note again that the SLICE-2 unit did not record this data due to triggering issues. Each SLICE MICRO Triax ARS had a range of 1,500 deg./sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were downloaded, converted to the proper Euler angles for analysis, and plotted. The SLICEWare computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

6.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicle before impact. Five retroreflective targets, spaced at approximately 18-in. intervals, were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the emitter/receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used if vehicle speeds cannot be determined from the electronic data.

6.5.4 Digital Photography

Five AOS high-speed digital video cameras, fourteen GoPro digital video cameras, two Panasonic digital video cameras, and one SoloShot digital video camera were used to film test no. UCSS-1. Camera details and operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 27.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was used to document pre- and post-test conditions.

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-2	AOS Vitcam CTM	500	KOWA 16mm Fixed	-
AOS-5	AOS X-PRI Gigabit	500	100 mm Fixed	-
AOS-6	AOS X-PRI Gigabit	500	Sigma 28-70 #2	70
AOS-7	AOS X-PRI Gigabit	500	Sigma 28-70 #1	70
AOS-8	AOS S-VIT 1531	500	Fujinon 75 mm Fixed	-
GP-7	GoPro Hero 4	120		
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-10	GoPro Hero 4	120		
GP-11	GoPro Hero 4	120		
GP-13	GoPro Hero 4	120		
GP-14	GoPro Hero 4	120		
GP-15	GoPro Hero 4	120		
GP-16	GoPro Hero 4	120		
GP-17	GoPro Hero 4	120		
GP-18	GoPro Hero 6	120		
GP-19	GoPro Hero 6	120		
GP-20	GoPro Hero 6	120		
GP-21	GoPro Hero 6	120		
PAN-1	Panasonic HC-V770	60		
PAN-2	Panasonic HC-V770	60		
SOLO	SoloShot	120		

Figure 27. Camera Locations, Speeds, and Lens Settings, Test No. UCSS-1

7 FULL-SCALE CRASH TEST NO. UCSS-1 (UCSS-1A, UCSS-1B, UCSS-1C)

7.1 Static Soil Test

Before conducting full-scale crash test no. UCSS-1, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The results, as shown in Appendix E, demonstrated a soil resistance above baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

7.2 Weather Conditions

Test no. UCSS-1 was conducted on September 26, 2018 at approximately 02:00 p.m. The weather conditions, as per the National Oceanic and Atmospheric Administration (station 14939/LNK), are shown in Table 11.

Temperature	70°F
Humidity	25 percent
Wind Speed	7 mph
Wind Direction	300 deg. from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.07 in.
Previous 7-Day Precipitation	0.71 in.

Table 11. Weather Conditions, Test No. UCSS-1

7.3 Test Description

The 2,395-lb car impacted System A at 67.1 mph and an angle of 0 degrees. System B was impacted at 65.5 mph and an angle of 0 degrees. System C was impacted at 61.5 mph and an angle of 0 degrees The impact location is shown in Figures 28 and 29. Overhead cameras were not present to verify the impact angle with each system. However, the angles appeared very close to nominal. A detailed sequential description of the impact events is contained in Tables 12 through 14. Sequential photographs are shown in Figures 30 through 32. Vehicle trajectory and final position are shown in Figure 34.

MASH 2016 does not provide specific guidance about alignment between the test vehicle and test article for U-channel sign supports, so a centerline impact was selected for System A. In order to distinguish damage between different test articles, Systems B and C were aligned with the right and left quarter points of the front bumper, respectively. System A remained in contact with the vehicle throughout the entire impact event. The vehicle was determined to have exited each system when the vehicle cleared the footings of the signs. The vehicle came to rest 246 ft – 6 in. downstream and 5 ft – 5 in. to the left of System A.

TIME	EVENT			
(sec)				
0.000	Vehicle's front bumper contacted bottom of System A sign support.			
0.030	Sign support pulled from ground, buckled, and bent downward toward vehicle's			
0.060	Sign support fully pulled from ground and lower portion of sign support lodged into vehicle's right-lower A-arm. Sign support's middle lower half bent.			
0.090	Lower portion of sign support lodged into vehicle's A-arm. Sign support's top section pulled toward ground.			
0.120	Sign panel and sign support bent and buckled toward right side of vehicle.			
0.146	Vehicle cleared the footing of system A.			

Table 12. Sequential Description of Impact Events, Test No. UCSS-1A

Table 13. Sequential Description of Impact Events, Test No. UCSS-1B

TIME	EVENT		
(sec)			
0.000	System A and vehicle's front bumper on right corner point contacted bottom of		
	System B sign support.		
0.040	Lower portion of sign support sheared off at top attachment point of ground stub		
	by attachment hardware.		
0.080	Sign support on the sign panel side moved toward vehicle's roof.		
0.120	Top portion of sign support, where sign panel is attached, contacted right-rear of		
	vehicle's roof.		
0.154	Vehicle cleared the footing of system B.		
0.160	Sign support deflected off vehicle's roof.		

Table 14. Sequential Description of Impact Events, Test No. UCSS-1C

TIME	EVENT				
(sec)					
0.000	Vehicle's left-front bumper contacted bottom of System C sign support.				
0.024	U-channel sign support and ground stub section attachment hardware sheared off, and the sign support sheared off about 12 in. from attachment hardware. Lower portion of sign support (where the shearing occurred) stayed in ground and bent approximately 45 deg. to the rear.				
0.048	Sign support rotated clockwise with the end with the sign panel moving toward vehicle's roof.				
0.072	Sign support continued to rotate clockwise and became horizontal with ground.				
0.096	Top portion of sign support where sign panel was attached contacted vehicle's roof.				
0.120	Sign support deflected off vehicle's roof.				
0.156	Vehicle cleared the footing of System C.				

Figure 28. Impact Location, Test No. UCSS-1A

Figure 29. Impact Location, Test Nos. UCSS-1B and UCSS-1C

0.000 sec

0.080 sec

0.160 sec

0.240 sec

0.400 sec

0.480 sec

0.560 sec

0.720 sec

0.800 sec

0.880 sec

0.960 sec

Figure 30. Sequential Photographs, Test No. UCSS-1

0.000 sec

0.050 sec

0.100 sec

0.150 sec

0.200 sec

0.250 sec

0.000 sec

0.050 sec

0.100 sec

0.150 sec

0.200 sec

0.250 sec

Figure 31. Sequential Photographs, Test No. UCSS-1A

0.050 sec

0.100 sec

0.150 sec

0.200 sec

0.250 sec

0.000 sec

0.050 sec

0.100 sec

0.150 sec

0.200 sec

0.250 sec

Figure 32. Sequential Photographs, Test No. UCSS-1B

0.200 sec

0.000 sec

0.040 sec

0.080 sec

0.120 sec

0.160 sec

0.200 sec

Figure 33. Sequential Photographs, Test No. UCSS-1C

Figure 34. Vehicle Trajectory, Test No. UCSS-1

7.4 System Damage

System damage is shown in Figures 35 through 37 for Systems A, B, and C, respectively. System A was initially impacted 14.5 in. above the ground. The sign support was pulled out of the ground and bent around the vehicle's hood and undercarriage. The lower end of the sign support was lodged in the vehicle's right-side lower A-arm. The sign support and sign panel were bent and buckled toward the right side of the vehicle.

System B was initially impacted by System A's sign support, which was wrapped around the front bumper. Damage to the system included deformation of the sign panel, sign support, and support stub. The bottom of the U-channel sign support fractured, and the support-to-stub attachment hardware fractured. The top of the sign support and sign panel contacted the vehicle's roof. The ground stub did not rotate through the soil or experience uplift, and the stub height (top of the ground stub) remained approximately 4 in. above the ground level, as shown in Figure 36.

System C was initially impacted 14.5 in. above the ground. The sign support deflected backward and fractured 10 in. above the top of the stub. The lower portion of the fractured sign support remained in contact with the ground. The upper portion of the sign support and sign panel contacted the vehicle's roof. The ground stub did not rotate through the soil or experience uplift, and the stub height (top of the ground stub) remained approximately 4 in. above the ground level, as shown in Figure 37. Although a portion of the upper sign support remained attached to the ground tub, this portion of the post was loose after the test and could be moved easily by hand. Thus, this portion of the post was not considered a hazard and not included in the ground stub measurement.

Figure 35. System Damage, Test No. UCSS-1A

December 17, 2020 MwRSF Report No. TRP-03-440-20

Figure 36. System Damage, Test No. UCSS-1B

Figure 37. System Damage, Test No. UCSS-1C

7.5 Vehicle Damage

Damage to the vehicle was minor, as shown in Figures 38 through 43. The maximum occupant compartment deformations are listed in Table 15 along with the deformation limits established in MASH 2016 for various areas of the occupant compartment. Note that none of the established MASH 2016 deformation limits were violated. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix F. The windshield damage occurred from System A. The roof damage occurred from Systems B and C.

Contact marks were found across the front bumper and hood from impact with all three systems. The rear of the vehicle's roof was moderately deformed after impact with Systems B and C. The lower center portion of the front windshield was cracked and slightly deformed. Minor scrapes were found on the leading edge of the lower control arms. The bottom portion of the sign support of System A was lodged in the right-side lower A-arm. The transmission and oil pan housings were scraped. Part of one of the U-channel supports was lodged in the suspension on the right side. The lower radiator support was damaged on the leading edge.

Little Apple

/Howith

Figure 38. Vehicle Damage, Test No. UCSS-1

December 17, 2020 MwRSF Report No. TRP-03-440-20

Figure 39. Undercarriage Damage, Test No. UCSS-1

Figure 40. Undercarriage Damage, Test No. UCSS-1

Figure 41. Right-Side Lower A-Arm Damage, Test No.UCSS-1

Figure 42. Roof Damage, Test No. UCSS-1

Pre-test

Post-test

LOCATION	MAXIMUM INTRUSION in.	MASH 2016 ALLOWABLE INTRUSION in.
Wheel Well & Toe Pan	N/A	≤ 9
Floor Pan & Transmission Tunnel	N/A	≤ 12
A-Pillar	N/A	≤ 5
A-Pillar (Lateral)	N/A	≤ 3
B-Pillar	N/A	≤ 5
B-Pillar (Lateral)	N/A	≤ 3
Side Front Panel (in Front of A-Pillar)	N/A	≤ 12
Side Door (Above Seat)	N/A	≤ 9
Side Door (Below Seat)	N/A	≤ 12
Roof	2.375	<u>≤</u> 4
Windshield	0.375	≤ 3
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	N/A	N/A

Table 15. Maximum Occupant Compartment Deformations by Location, Test No. UCSS-1

N/A – Not applicable

7.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 16. It is important to note that in these tests, the impulse on the vehicle was relatively small and of short duration. Thus, x and y in the flail-space model were less than 2 ft and 1 ft, respectively, during the period when the vehicle was in contact with each system. As specified in Section A5.5.2 of MASH 2016, in such cases, it was recommended that the OIV be set equal to the vehicle's change in velocity that occurs during contact with the test article, or parts thereof [1]. If parts of the test article remain with the vehicle after impact, the vehicle's change in velocity should be computed at the time the vehicle clears the footing or foundation of the test article. For each of the three tests, the OIV, or in this case, the vehicle change in velocity, was reported at the time in which the vehicle cleared the footings.

Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 16. The results of the occupant risk analysis, as determined from accelerometer data, are summarized in Figures 44 through 46. The recorded data from the accelerometers and rate transducers are shown graphically in Appendix G.

Evaluation Criteria			MASH 2016		
		Test No.Test No.UCSS-1AUCSS-1B		Test No. UCSS-1C	Limits
OIV	Longitudinal	-1.70	-4.47	-2.41	±16
ft/s	Lateral	0.05	0.10	-0.46	not required
ORA	Longitudinal	N/A	N/A	N/A	±20.49
g's	Lateral	N/A	N/A	N/A	±20.49
MAX.	Roll	0.7	-0.5	-1.9	±75
ANGULAR	Pitch	-0.3	0.9	-0.4	±75
deg.	Yaw	-0.1	1.4	-0.7	not required
TI f	HIV řt/s	9.87	11.39	11.02	not required
PHD g's		0.29	0.26	0.69	not required
A	SI	0.08	0.13	0.11	not required

Table 16. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. UCSS-1

Note: SLICE-2 was the designated primary transducer for test no. UCSS-1, but its equipment did not trigger. Data is from SLICE-1. The vehicle cleared the footings at 0.146 sec, 0.154 sec, and 0.156 sec after impact for test nos. UCSS-1A, UCSS-1B, and UCSS-1C, respectively, which was used to determine vehicle change in velocity, denoted as OIV.

N/A - Not Applicable

7.7 Discussion

Analysis of the results for test no. UCSS-1 showed that the systems readily activated in a predictable manner when impacted by the 1100C vehicle. A summary of the test results and sequential photographs are shown in Figures 44 through 46. Detached elements, fragments, or other debris from the test articles did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle remained upright during and after impacts. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix G, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle traversed the foundations and continued forward until it stopped downstream of the systems. Therefore, test nos. UCSS-1A and UCSS-1C were determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-61. However, since System A contacted and interfered with System B prior to the test vehicle contact, test no. UCSS-1B was ruled inconclusive.

N/A - Not Applicable Figure 44. Summary of Test Results and Sequential Photographs, Test No. UCSS-1A

ASI

0.08

CDC [17].....12FCEN5

December 17, 2020 MwRSF Report No. TRP-03-440-20

Not required

64

Figure 45. Summary of Test Results and Sequential Photographs, Test No. UCSS-1B

65

December 17, 2020 MwRSF Report No. TRP-03-440-20

N/A - Not Applicable

Figure 46. Summary of Test Results and Sequential Photographs, Test No. UCSS-1C

December 17, 2020 MwRSF Report No. TRP-03-440-20

8 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Previous full-scale crash testing and dynamic component testing of various U-channel support configurations were reviewed to help identify critical sign configurations. Testing was conducted on systems with various panel mounting heights and post weights and included head-on impacts as well as impacts to the right or left quarter points. Out of these 22 tests, four of them failed due to the excessive deformation to the vehicle's roof and excessive occupant risk. Based on a survey from fourteen states, some common system configurations were prioritized for this test, with the primary features summarized in Table 8.

The research scope included the development of a bogie vehicle to be utilized in the MASH compliance evaluation of the selected sign configurations. Thus, a full-scale MASH test designation no. 3-61 crash test was conducted to provide baseline data to validate the bogie vehicle. The background and full-scale crash test are detailed herein.

Test no. UCSS-1 was conducted with three U-channel sign supports in accordance with MASH 2016 test designation no. 3-61. System A had a 1.12-lb/ft U-channel support with a 36-in. tall x 12-in. wide sign mounted at 4 ft above the ground line. System B had a 4-lb/ft U-channel support with a 36-in. tall x 36-in. wide sign mounted at 7 ft above the ground line, with a lap splice near the ground line. System C had a 4-lb/ft U-channel support with a 36-in. tall x 36-in. wide sign mounted at 5 ft above the ground line, with a lap splice near the ground line. System A contacted the vehicle at its centerline, System B was impacted by the vehicle at its right-front bumper, and System C was impacted by the vehicle's left-front bumper. A summary of the test results is shown in Table 17. The systems were installed 30 ft apart in compacted crushed limestone, alternatively classified as well-graded gravel, on level terrain. During the test, a 2,395-lb small car impacted and disengaged all support structures from the ground. Detached elements and fragments did not show potential for penetrating the occupant compartment nor present an undue hazard to other traffic. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle remained upright during and after the collisions. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix G, were deemed acceptable as they did not adversely influence occupant risk nor cause rollover. Therefore, test nos. UCSS-1A and UCSS-1C were determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-61. However, since System A contacted and interfered with System B prior to the test vehicle contact, test no. UCSS-1B was ruled inconclusive. All other testing criteria for test no. UCSS-1B was satisfactory. However, it is recommended that this test be repeated to obtain conclusive test results.

The stub height remaining after an impact is of potential concern for vehicle override and undercarriage contact. For both systems B and C, the ground stub did not rotate or experience uplift. Thus, the stub height (top of the ground stub) was not changed from approximately 4 in. This result within the LRFD Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals [18] 4 in. recommendation for sign supports after an impact. As well, the impact configurations selected for systems B and C were selected because they represented the most common configuration for U-channel sign supports on roadsides, such that the post flanges were on the upstream side of impact. This configuration is also the standard, recommended orientation. Previous research has indicated that the sign supports perform approximately the same in both orientations, fracturing near the top of the ground stub. MASH 2016 requires three full-scale crash tests to fully verify a sign support system. MASH test designation no. 3-60 is a 19-mph, small car impact used to determine if the support will activate the breakaway, fracture, or yielding mechanism in the support. MASH test designation nos. 3-61 and 3-62 are 62-mph impacts used to evaluate the behavior of the system during high-speed collisions by 1100C small car and 2270P pickup truck, respectively. MASH test designation no. 3-61 was conducted successfully on Systems A and C. MASH test designation nos. 3-60 and 3-62 should be conducted to complete the TL-3 testing matrix for these sign supports. Dynamic bogie tests will be completed on additional U-channel sign supports and will be reported in a forthcoming report.

Evaluation Factors		Eval		Test No. UCSS-1A	Test No. UCSS-1B	Test No. UCSS-1C	
Structural Adequacy	B.	The test article should readily act fracturing, or yielding.	ivate in a predictable manr	ner by breaking away,	S	S	S
	D.	1. Detached elements, fragments, or or show potential for penetrating the to other traffic, pedestrians, or perso	S	S	S		
		2. Deformations of, or intrusions i limits set forth in Section 5.2.2 and a	nto, the occupant compartm Appendix E of MASH 2016.	nent should not exceed	S	S	S
	F.	The vehicle should remain upright dual angles are not to exceed 75 deg.	maximum roll and pitch	S	S	S	
Occupant	H. Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:						
Risk		Occupat	nt Impact Velocity Limits		S	S	S
	Component Preferred Maximum						
		Longitudinal	10 ft/s	16 ft/s			
	I.	The Occupant Ridedown Accelera MASH 2016 for calculation procedu	tion (ORA) (see Appendix irre) should satisfy the following	A, Section A5.2.2 of ang limits:			
		Occupant R	idedown Acceleration Limits	6	S	S	S
		Component	Preferred	Maximum			
		Longitudinal and Lateral	15.0 g's	20.49 g's			
Post-Impact Vehicular Response	Post-Impact Vehicular N. Vehicle trajectory behind the test article is acceptable. Response Vehicle trajectory behind the test article is acceptable.					S	S
	MASH 2016 Test Designation No.					3-61	3-61
	Final Evaluation (Pass/Fail)					Inconclusive*	Pass

S – Satisfactory U – Unsatisfactory N/A – Not Applicable *Inconclusive due to interference from System A

69

9 REFERENCES

- 1. *Manual for Assessing Safety Hardware (MASH), Second Edition*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- 2. Michie, J.D., *Recommended Procedures for the Safety Performance Evaluation of Highway Appurtenances*, National Cooperative Highway Research Program (NCHRP) Report No. 230, Transportation Research Board, Washington, D.C., March 1981.
- 3. Ross, H.E., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *NCHRP Report 350: Recommended Procedures for the Safety Performance Evaluation of Highway Features*, TRB, National Research Council, Washington, D.C., 1993.
- 4. Bush, M.S., Marzougui, D., *NCHRP Project 03-119: Application of MASH Test Criteria to Breakaway Sign and Luminaire Supports and Crashworthy Work-Zone Traffic Control Devices*, George Mason University, 2019.
- 5. Ross, H.E., Sicking, D.L., Campise, W.L., Zimmer, R.A., *Small Sign Support Analysis*, Texas Transportation Institute, College Station, Texas, August 1988.
- 6. American Association of State Highway and Transportation Officials (AASHTO), *Standard Specifications/or Structural Supports/or Highway Signs, Luminaires, and Traffic Signals,* 1994.
- 7. Bullard, D.L., Evaluation of the Crash Worthiness of the Florida Thin Walled Aluminum Tube and Steel U-Channel Sign Supports, Texas Transportation Institute, College Station, Texas, February 1992.
- 8. Bligh, R.P., Bullard, D.L., Menges, W.L., and Schoenman, S.K., *Impact Performance Evaluation of Work Zone Traffic Control Devices*, Texas Transportation Institute, College Station, Texas, December 2000.
- 9. Allington, C. and Williamson, C., *NCHRP 350 Compliance Test 3-62 on Nucor Lap Splice U-Channel Support System*, Holmes Solutions, Christchurch, New Zealand, February 2009.
- 10. *Manual for Assessing Safety Hardware (MASH)*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- Bullard, D.L., NCHRP Project 22-14(03): Evaluation of Existing Roadside Safety Hardware Using Manual for Assessing Safety Hardware (MASH), Texas A&M Research Foundation, 2010.
- 12. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- AASHTO, "Clarifications on Implementing the AASHTO Manual for Assessing Safety Hardware, 2016", March 24, 2020. https://design.transportation.org/wpcontent/uploads/sites/21/2020/03/Clarifications-on-Implementing-MASH-2016-aka-MASH-QA-Updated-Mar-24-2020.pdf

- 14. MacInnis, D., Cliff, W., and Ising, K., A Comparison of the Moment of Inertia Estimation Techniques for Vehicle Dynamics Simulation, SAE Technical Paper Series – 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.
- 15. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, New York, July, 2007.
- 16. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.
- 18. AASHTO, *LRFD Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals*, 2015 with updates in 2017, 2018, and 2019.

10 APPENDICES

Appendix A. Data from Previous U-Channel Testing

Test No.	Designation	Vehicle Designation	Post Weight, lb/ft	Sign Panel Dimensions, ft	Lower Panel Height(s), in.	Impact Location	Stub Orientation	Soil Type	Pass/ Fail
7024-7	NCHRP 230 63	1800S	3	2 x 2 ¹ / ₂	5	15 in. left of centerline	Reverse	Standard	Pass
7024-8	NCHRP 230 62	1800S	3	2 x 2 ¹ / ₂	5	15 in. right of centerline	Reverse	Standard	Pass
7024-13	NCHRP 230 63	1800S	4	2 x 2 ¹ / ₂	5	15 in. left of centerline	Reverse	Standard	Pass
7185-3	NCHRP 230 62	1800S	4	2 x 3	7	Left quarterpoint	Reverse	Weak	Pass
7185-4	NCHRP 230 63	1800S	4	2 x 3	7	Right quarterpoint	Reverse	Weak	Pass
7185-5	NCHRP 230 62	1800S	4	2 x 3	7	Left quarterpoint	Reverse	Standard	Pass
7185-6	NCHRP 230 63	1800S	4	2 x 3	7	Right quarterpoint	Reverse	Standard	Pass
7185-7	NCHRP 230 62	1800S	4	2 x 3	7	Left quarterpoint	Reverse	Weak	Pass
7185-8	NCHRP 230 63	1800S	4	2 x 3	7	Right quarterpoint	Reverse	Weak	Pass
7185-9	NCHRP 230 62	1800S	4	2 x 3	7	Right quarterpoint	Reverse	Standard	Pass
7185-10	NCHRP 230 63	1800S	4	2 x 3	7	Left quarterpoint	Reverse	Standard	Fail
7185-11	NCHRP 230 62	1800S	4	2 x 3	7	Left quarterpoint	Normal	Weak	Pass
7185-12	NCHRP 230 63	1800S	4	2 x 3	7	Right quarterpoint	Normal	Weak	Pass
7185-13	NCHRP 230 62	1800S	4	2 x 3	7	Left quarterpoint	Normal	Standard	Pass
7185-14	NCHRP 230 63	1800S	4	2 x 3	7	Right quarterpoint	Normal	Standard	Pass
7185-15	NCHRP 230 62	1800S	4	2 x 3	7	Left quarterpoint	Normal	Standard	Pass
7185-16	NCHRP 230 63	1800S	4	2 x 3	7	Right quarterpoint	Normal	Standard	Pass
7185-17	NCHRP 230 62	1800S	4	2 x 3	7	Left quarterpoint	Normal	Weak	Pass
7185-18	NCHRP 230 63	1800S	4	2 x 3	7	Right quarterpoint	Normal	Weak	Fail
417292-3	NCHRP 350 3-71	820C	2	2 x 3	4	Right quarterpoint	N/A	Standard	Fail
2-362	MASH 3-62	2270P	4	1 x 1 3 x 3	5 ft –11 in. 7 ft	Centerline	Normal	Standard	Fail
RF476460-1-2	MASH 3-62	2270P	4	3 x 3	7	Left quarterpoint	Normal	Standard	Pass

Table A-1. Data from Previous U-Channel Testing

Appendix B. U-Channel Sign Support Survey

Name:	 	
State:		
Email Address:	 	

The Midwest Pooled Fund Program sponsored a project in Year 28 (2017-2020) to evaluate single, steel, U-Channel Sign Supports to MASH TL-3 (60 mph speeds). We have categorized these sign supports into two general categories:

(1) delineators [such as mile marker and reference location signs, object markers, or reflectors (without a sign) that have a typical minimum bottom of sign panel height around 4 ft] and

(2) other smaller signs [such as speed limit or highway designator signs and may include clustered sign panels that have a typical minimum bottom of sign panel height of 5 to 7 ft].

Examples of these systems are shown below.

 Are you currently using U-Channel Sign Supports (delineators, mile markers, or other smaller signs such as speed limit or highway designator signs)?

Ves No

Are you interested in using U-Channel Sign Supports (delineators, mile markers, or other smaller signs such as speed limit or highway designator signs) in the future?

Yes No.

3. Do you want to provide input on which sign supports will be evaluated with this Pooled Fund project? □ Yes, I want to provide input for this Pooled Fund project. Please continue with survey □ No, I do not want to provide input for this Pooled Fund project. Please stop here and submit

Figure B-1. U-Channel Sign Support Survey Questions, Page 1

SMALL DELINEATORS (SUCH AS MILE MARKERS OR REFLECTORS, TYPICALLY 4 FT TO BOTTOM OF SIGN OR REFLECTOR)

 Do you use U-channel sign support for small delineators?
 Yes, please answer questions 5-9

No, please skip questions 5-9

 What supplier do you purchase from for U-channel delineators? You may select multiple.
 Franklin Industries
 Nucor Steel Marion (Rib-bak)
 Chicago Heights Steel
 Other

Unknown

- What weight/foot U-channel do you utilize for delineators? You may select multiple.
 1.12 lb/ft
 3 lb/ft
 - □ 2 lb/ft □ 4 lb/ft
 - 2.5 lb/ft
 - Other _
 - Unknown
- Do you use sign panels (such as mile marker or object marker signs) with U-channel delineators?
 - Yes. Please answer 7a and 7b.
 - 7a. If yes, What is the typical height to bottom of sign panel for U-channel delineators?
 - 05ft
 - Other
 - 7b. If yes, What is the typical sign panel size for U-channel delineators? You may select multiple.
 □ 10 in, x 24 in.
 □ 10 in, x 36 in.
 □ 12 in, x 36 in.
 - 10 in. x 48 in. 12 in. x 48 in.
 - □ 6 in. x 12 in. □ 18 in. x 18 in.
 - No, it only has a reflector
- Do you use spliced U-channel (lapped, slipbase, etc.) with delineators?
 - Yes, lapped near groundline
 - Yes, lapped near middle of post or bottom of sign No
 - LI NO
 - Other:
 - Unknown
- Do you mount U-channel delineators in concrete or soil?
 Only soil
 - Only concrete
 - Both

OTHER SIGN SUPPORTS (SUCH AS SPEED LIMIT OR HIGHWAY DESIGNATOR SIGNS, TYPICALLY 5 FT OR 7 FT TO BOTTOM OF SIGN PANEL)

- Do you use U-channel sign support for other sign supports?
 - Yes, please answer questions 11-16
 - No, please skip questions 11-16
- What supplier do you purchase from for other Uchannel sign supports? You may select multiple.
 - Franklin Industries
 - Nucor Steel Marion (Rib-bak)
 - Chicago Heights Steel
 - Other_
 - Unknown
- What weight/foot U-channel do you utilize for other sign supports? You may select multiple.
 - □ 1.12 lb/ft □ 3 lb/ft
 - □ 2 lb/ft □ 4 lb/ft
 - C 2.5 lb/ft Other
 - Other _____
 - Unknown
- What is the typical bottom of sign panel height for other U-channel sign supports? You may select multiple.
 5 ft
 - □7ft
 - Greater than 7 ft
 - Other _____
 - Unknown

- 15. Do you use spliced U-channel (lapped, slipbase, etc.) with other small U-channel sign supports?
 - □ Yes, lapped near groundline
 - Yes, lapped near middle of post or bottom of sign
 - D No
 - Other:
 - Unknown
- 16. Do you mount other small U-channel signs in concrete or soil?
 - Only soil
 - Only concrete
 - D Both

Figure B-2. U-Channel Sign Support Survey Questions, Page 2

^{14.} What is the typical single sign panel size or total clustered panel size (width x height) for other U-channel sign supports? You may select multiple.
□ 18 in. x 18 in. □ 30 in. x 30 in. □ 42 in. x 30 in.
□ 18 in. x 24 in. □ 30 in. x 36 in. □ 48 in. x 48 in.
□ 24 in. x 24 in. □ 36 in. x 24 in. □ 48 in. x 60 in.
□ 24 in. x 30 in. □ 36 in. x 48 in. □ 54 in. x 18 in.
□ 24 in. x 36 in. □ 36 in. x 48 in. □ 60 in. x 60 in.
□ Other

17. Please provide tw	o single, U-channel sign configuration that is the highest need for your state:
1st Sign Configuratio	
U-channel weigh	t per foot;
Height to bottom	of sign:
Sign panel size:	
Splice Used?:	Yes, Please Describe:
	No, directly buried in ground
2 nd Sign Configuratio	n
U-channel weight	t per foot:
Height to bottom	of sign:
Sign panel size:	
Splice Used?:	Ves, Please Describe:
	No, directly buried in ground

18. Please provide any additional comments that you feel would be important to the project.

Figure B-3. U-Channel Sign Support Survey Questions, Page 3

Appendix C. Material Specifications

Item	Description	Material	Reference
No.		Specification	
01	1.12 lb/ft Franklin U-Channel Sign	1 STM 1400 Cr 60	PO#E000562398
al	Post, 96 in. Long	ASTM A499 01.00	Grainger COC
	4.00 lb/ft Franklin U-Channel Sign	A STM A 400 C = 60	PO#1543 Franklin
äZ	Post, 120 in. Long	ASTM A499 01.00	Industries COC
.2	4.00 lb/ft Franklin U-Channel Sign		PO#1543 Franklin
as	Post, 96 in. Long	ASTM A499 01.00	Industries COC
- 1	4.00 lb/ft Franklin U-Channel Sign		PO#1543 Franklin
a4	Post, 42 in. Long	ASTM A499 Gr. 00	Industries COC
L 1	36 in. x 12 in. x 0.08 in. Sign with	3M Engineer Grade	Smart Sign COC
01	Reflective Sheeting	Reflective Alum	RTS-143048
ь э	36 in. x 36 in. x 0.08 in. Sign with	3M Engineer Grade	Smart Sign COC
02	Reflective Sheeting	Reflective Alum	RTS-143551
	5/ in 19 UNC 13/ in Lang Hay		P#11540782
c1	$\frac{1}{16}$ In18 UNC, 1% In. Long Hex	SAE J429 Gr. 9	C#486338
	Bolt		H#10449870
	5/ in 19 UNC $21/$ in Lang Hay		H#10242060
c2	$\frac{7}{16}$ in18 UNC, $\frac{24}{4}$ in. Long Hex	SAE J429 Gr. 9	P#11540736
	DOIL		C#469737
	5/ in 19 UNC $23/$ in Long Her		P#464179
c3	7_{16} III18 UNC, 2% III. LONG Hex	SAE J429 Gr. 9	C#11540737
	DOIL		H#10229550
			P.O.#110233073
c4	⁵ / ₁₆ in18 UNC Heavy Hex Nut	SAE J995 Gr. 9	P#11541092
			H#10463770
-5	5/ in Die Dlein Dound Weshen	ACME D10 10 2017	P#1133006
05	716-III. DIa. Plain Round Washer	ASME D10.10-2017	C#210149350 COC
		ACME D 19 01 1	P#1133620
c6	³ / ₈ -in. Dia. Lock Washer	ASIVIE D 10.21.1-	C#210150709
		2009	H#F790006793
	Round Spacer, Steel, Zinc Plated		A SINI-
c7	Finish, ³ / ₈ in. Screw Size, ³ / ₄ in. OD,	Steel	ASIN: BOOOVI VKOC
	0.38 in. ID, ¹ / ₂ in. Length		DUUSILARUU

Table C-1	. Bill of	Materials,	Test No.	UCSS-1
-----------	-----------	------------	----------	--------

Certificate of Conformance

W.W. Grainger, Inc. 100 Grainger Parkway Lake Forest, IL. 60045-5201

September 17 2018

Attn:	SHAUN M TIGHE
	SHAUN M TIGHE
	CANFIELD ADMINISTRATION
	BLDG
	LINCOLN, NE, 68588-0439
East #	

Fax #

 Grainger Sales Order #:
 1331380123

 Customer PO #:
 E000562398

Dear SHAUN M TIGHE

As you requested, we are providing you with the following information. We certify that, to the best of Grainger's actual knowledge, the products described below conform to the respective manufacturer's specifications as described and approved by the manufacturer.

Item #	Description	Vendor Part #	Catalog Page #	Order Quantity
39F187	Post,U Channel,Green,8 ft.	054-00014	1834	2.000

She Salla

Shea Gallup Process Management Analyst Compliance Team Grainger Industrial Supply

Figure C-1. 96-in. Long Franklin U-Channel Sign Post, Test No. UCSS-1

Franklin Industries

CERTIFICATE OF COMPLIANCE

July 12, 2018

Sanbar Construction 9101 Broadway SE Albuquerque, NM 87105

RE: Customer Purchase Order No: (1543) Franklin Industries' Folio No: H5018 Franklin Industries' Product: 7', 1.12lb. per ft. 10', 11', 3'6, 3lb. per ft. green u channel post.

We hereby certify that all posts manufactured by Franklin Industries Co are hot rolled and fabricated in Franklin, Pennsylvania and have been produced from recycled Standard T rails weighing 91 lbs. / yard or heavier, complying with ASTM specification A499-89, Grade 60. Standard T rails used for products subject to "Buy America" requirements were produced according to ASTM A1 from rails melted and rolled in the United States of America.

truly our Suttle

Customer Service/Sales

PO Box 671 Franklin, PA 16323 Sales Office 814.437.3726 Fax 814.432.7556

Figure C-2. 120-in. Long Franklin U-Channel Sign Post, Test No. UCSS-1

Franklin Industries

CERTIFICATE OF COMPLIANCE

July 12, 2018

Sanbar Construction 9101 Broadway SE Albuquerque, NM 87105

RE: Customer Purchase Order No: (1543) Franklin Industries' Folio No: H5018 Franklin Industries' Product: 7', 1.12lb. per ft. 10', 11', 3'6, 3lb. per ft. green u channel post.

We hereby certify that all posts manufactured by Franklin Industries Co are hot rolled and fabricated in Franklin, Pennsylvania and have been produced from recycled Standard T rails weighing 91 lbs. / yard or heavier, complying with ASTM specification A499-89, Grade 60. Standard T rails used for products subject to "Buy America" requirements were produced according to ASTM A1 from rails melted and rolled in the United States of America.

Suttle

Customer Service/Sales

PO Box 671 Franklin, PA 16323 Sales Office 814.437.3726 Fax 814.432.7556

Figure C-3. 96-in. Long Franklin U-Channel Sign Post, Test No. UCSS-1

Franklin Industries

CERTIFICATE OF COMPLIANCE

July 12, 2018

Sanbar Construction 9101 Broadway SE Albuquerque, NM 87105

RE: Customer Purchase Order No: (1543) Franklin Industries' Folio No: H5018 Franklin Industries' Product: 7', 1.12lb. per ft. 10', 11', 3'6, 3lb. per ft. green u channel post.

We hereby certify that all posts manufactured by Franklin Industries Co are hot rolled and fabricated in Franklin, Pennsylvania and have been produced from recycled Standard T rails weighing 91 lbs. / yard or heavier, complying with ASTM specification A499-89, Grade 60. Standard T rails used for products subject to "Buy America" requirements were produced according to ASTM A1 from rails melted and rolled in the United States of America.

struly Suttle

Customer Service/Sales

PO Box 671 Franklin, PA 16323 Sales Office 814.437.3726 Fax 814.432.7556

Figure C-4. 42-in. Long Franklin U-Channel Sign Post, Test No. UCSS-1

300 Cadman Plaza West, ste 1303 Brooklyn NY 11201 Phone: 1-800-952-1457

9/11/18

CERTIFICATE OF COMPLIANCE

Smartsign hereby certifies that all materials supplied against purchase order RTS-143048 shipped on 9/10/18 conforms to the material and/ or manufacturing specifications as called on this said purchase order without expectations.

Item # X-OM-3L

Description: Type 3 Object Marker

Sincerely, 0

Tahyna Colon Call Center Manager <u>tahyna@smartsign.com</u> 800-952-1457 x 7140

Figure C-5. 36-in. x 12-in. x 0.08-in. Sign with Reflective Sheeting, Test No. UCSS-1

300 Cadman Plaza West, ste 1303 Brooklyn NY 11201 Phone: 1-800-952-1457

9/18/18

CERTIFICATE OF COMPLIANCE

Smartsign hereby certifies that all materials supplied against purchase order PO: RTS-143551, shipped on 9/17/18 conforms to the material and/ or manufacturing specifications as called on this said purchase order without expectations.

Item # X-R5-1

Description: Do not Enter, [Engineer Grade Reflective Aluminum Sign, 80 mil

Sincerely, Tahyna Colon

Call Center Manager tahyna@smartsign.com 800-952-1457 x 7140

Figure C-6. 36-in. x 36-in. x 0.08-in. Sign with Reflective Sheeting, Test No. UCSS-1

61 Barnes Industrial Park North Wallingford, Connecticut 06492 (203) 284-7023

CERTIFIED MATERIAL TEST REPORT : EN 10204 3.1

Certified Number	:	486338	Date Issued	:	September 19, 2018	
Customer	:	Fastenal,	Manufacturing date	:	August 25, 2017	
		4730 Service Drive	SHOP Part Number	:	11540782	
		Winona, MN 57987	Purchase Order	:	350020074	
			Holo Code	:	N/A	
Manufacturer	:	Holo-Krome	Grade	:	9	
		61 Barnes Industrial Park North	Material	:	8640	
		Wallingford, CT 06492	Finish	:	ECOGUARD®	
			Order Quantity	:	5,000 Pcs	
Customer Part Number	:	11540782	Production Lot Size	:	5,000 Pcs	
Description	:	5/16"-18 x 1-3/4" Holo-Krome® Hex Cap Screw				
Thread Designation	:	UNRC-2A	Marking	:	H-K ; G9 ; '9 radial lines'	

CHEMISTRY – Heat Number: 10449870										
Heat Composition (WT% Heat Analysis)										
Element:	Element: C P S Cr Mn Mo Ni Si									
Result:	0.39	0.010	0.010	0.42	0.84	0.22	0.42	0.21		
MACROETCH (if required):	N/A									

SURFACE QUALITY: In accordance with ASTM F788/F788M-13	PASS
COATING: ECOGUARD®	PASS

Heat Treat Me	thod:	Quenched and Tempered						
	Mechanic	cal Properties: I	n accordance with ASTM A	A574-17				
Attribute	Test Method	Sample Size	Requirement	Result	Acceptance			
Core Hardness	ASTM F606/F606M-	16 4	38-42 HRC	41-42 HRC	PASS			
ProofLoad	ASTM F606/F606M-	16 3	Min: 140,650 PSI	PASS	PASS			
6° Wedge Tensile	ASTM F606/F606M-	16 3	Min: 180,000 PSI	189,126 - 190,025 PSI	PASS			
Decarburization /Carburization	ASTM F2328-17	3	NO COLOR	PASS	PASS			

Page 1 of 2

I

January 6, 2016 This document was printed on 9/19/2018 and was current at that time. Please check current revisions to avoid using obsolete copies.

Figure C-7. ⁵/₁₆-in.-18 UNC, 1³/₄-in. Long Hex Bolt, Page 1, Test No. UCSS-1

61 Barnes Industrial Park North Wallingford, Connecticut 06492 (203) 284-7023

DIMENSIONAL INSPECTION: Per H-K Dimension Inspection Drawing Plan : S12150-3 REV B SAMPLING PLAN : Per ASME B18.18-17

Characteristics	DIMENSIO	N DATA	UNIT	SAMPLE	RES	ACCEPTANCE	
Characteristics	MIN	MAX	UNII	SIZE	MIN	MAX	
Width Across Flat	0.489	0.499	INCH	3	0.492	0.493	PASS
Width Across Corner	0.557	-	INCH	3	0.562	0.565	PASS
Head Height	0.227	0.241	INCH	7	0.228	0.234	PASS
Washer Diameter	0.450	0.499	INCH	3	0.472	0.474	PASS
Washer Height	0.015	0.025	INCH	7	0.019	0.020	PASS
Body Length	0.600	-	INCH	7	0.738	0.739	PASS
Grip Length	-	0.875	INCH	7	0.850	0.852	PASS
Total Length	1.710	1.750	INCH	7	1.726	1.730	PASS
Major Diameter	0.3026	0.3113	INCH	7	0.3070	0.3084	PASS
Thread	5/16"-18 UI	NRC-2A	INCH	7	PASS	PASS	PASS

Compliancy Statement:

All products as indicated in the test report above, conforms to the above requirement.

All manufacturing Operations & Processes performed in the United States of America.

Products meets RoHs & DFARS requirement, Mercury was not used during the manufacture of this product.

Comments:

Muhammad Luqman Azmi Quality Assurance Dept.

THIS TEST REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF THE HOLO-KROME COMPANY LABORATORY. WE CERTIFY THIS DATA IS A TRUE REPRESENTATION OF THE INFORMATION PROVIDED BY THE MANUFACTURER/CUSTOMER AND OUR LABORATORY. THIS TEST REPORT APPLIES ONLY TO THE SAMPLES TESTED AND LISTED ON THIS REPORT. ANY DEVIATIONS OR DISCREPANCIES THAT ARE DETECTED, OR ANY DEPARTURES FROM DOCUMENTED POLICIES OR PROCEDURES WILL BE NOTED IN THE COMMENT SECTION.

Page 2 of 2

January 6, 2016 This document was printed on 9/19/2018 and was current at that time. Please check current revisions to avoid using obsolete copies.

Figure C-8. ⁵/₁₆-in.-18 UNC, 1³/₄-in Long Hex Bolt, Page 2, Test No. UCSS-1

CHARTER STEEL A Division of Charter Manufacturing Company, Inc. LOAD

1658 Cold Springs Road Saukville, Wisconsin 53080 (262) 268-2400 1-800-437-8789 Fax (262) 268-2570

CHARTER STEEL TEST REPORT

Melted in USA Manufactured in USA

					Γ		Cust P.O.						35	0020074
						Custo	mer Part #						-	0970917
					F	Charter Sa	ales Order						30	0118213
						onartor of	Heat #						1(0449870
					1		Ship Lot #							1428326
					-		Grade	8640 H SK FG RHQ 21/64						0 21/64
Fac	tonal / H		200		-		Process				00	40110	KT G T U	HRSA
ras c1	Dermoe la	olu-Mi	al Dark N	louth	-	F	inich Size							21/64
61	Barnes II	austri	al Park N	orth	-		Chin data							21/04
Wa	llingford	CI-064	192		L		Ship date							
I hereby certify these requirem Lab Code: 738 CHEM	/ that the manents. The manents. The manents. The manents of the m	aterial des acording	scribed her of false, fic	ein has been litious and fra P	i manufactu audulent sta Test res S	red in accord atements or o sults of Heat SI	dance with th entries on this Lot # 104498 NI	e specifica s documer 70 CR	tions and t may be MO	d standar punisha C	rds listed t ble as a fe	elow ar elony un SN	nd that it s ider federa	atisfies al statute.
%Wt	.39		.84	.010	.010	.210	.42	.42	.22	.1	7	.008	.003	
	AL		N	в	TI	NB								
	.022	2	.0060	.0001	.001	.001								
IOMINY(HRC)														
	J1	J2	J3	J4	J5	J6	J7	J8		J9	J10		J12	
	56	56	56	53	51	48	46	44		42	41	3	37	
	J14	J16	J18	J20	J24	J28	J32							
	35	33	32	31	29	27	26							
	JOMINY S	AMPLE	TYPE ENGL	ISH=C										
					Test resu	Its of Rolling	g Lot # 11915	42						
DEDUCT		050.4												(
REDUCIN	ON RATIO=	356:1												(
				Test	results of F	Processing L	ot #4423108.	4428326						
		#	of Tests		Min Value	J	Max Value)	Mea	n Value				
ENSILE (KSI)		1.	.0		83.0		83.0		83.0	1		TEN	SILE LAB =	0358-02
EDUCTION OI	F AREA (%)	1			66		66		66			RAL	AB = 0358	-02 .
NUM DE	CARB=1			F	REE FERRI	TE DECARB	(Inch)=.000		FREE	FERR &	PARTIAL	DECAR	IB (Inch)=.	002
				Dhautau Ctas	1 Outelline M	Innual David		0						
specifications:		Chartor 9	tured per C	inarter Stee	Quality M	etinguiebab	Jate 12/12/1	3 karound r	adiation	lovale b	v having	proces	e radiatio	n
		detector	s in place t	o measure	for the nres	sence of rac	liation within	n our proc	ess & n	oducts	ynavnig	process	siaulatio	
		Meets cu	stomer sp	ecifications	with any a	pplicable C	harter Steel	exception	s for the	followi	na custor	mer doc	uments:	
		Customer	Document	t = QWI#23 -	DETAIL 81	Revi	sion = New	Dated =	19-OCT-	15				
dditional Com	ments:													
												5 .		
elt Source:								This MTR :	supersed	es all pre	eviously da	ated MT	Rs for this	order
elt Source: narter Steel								This MTR :	supersed	es all pre	eviously de	ated MT	Rs for this	order
elt Source: larter Steel ukville, WI, U	ISA							This MTR s	supersed	es all pre	eviously de	ated MT	Rs for this	order
elt Source: narter Steel aukville, WI, U	ISA							This MTR :	supersed	es all pre Januc Janic	eviously di uBarnar	ated MT	Rs for this	order
elt Source: narter Steel aukville, WI, U	ISA							This MTR :	supersed	es all pre Janic Janic	eviously di uBanay ce Barnarc Quality As	ated MT	Rs for this	order
elt Source: aarter Steel ukville, WI, U rm: Load1,Fa	ISA x0,Mail0					ACCREDITE Testing Labor	ED atory	This MTR :	supersed Mar Pr	es all pre Janic Jager of f	eviously di uBarnar ce Barnarc Quality As te : 09/27	ated MT J surance /2016	Rs for this	order
elt Source: narter Steel lukville, WI, U em: Load1,Fa)	ISA x0,Mail0					ACCREDITE Testing Labor Page 1 of	D atory	This MTR :	supersed Mar Pr	es all pre Janic Janic ager of d inted Da	eviously di Le Barnar ce Barnarc Quality As te : 09/27	ated MT d surance /2016	Rs for this	order

Figure C-9. ⁵/₁₆-in.-18 UNC, 1³/₄-in. Long Hex Bolt, Page 1, Test No. UCSS-1

The following statements are applicable to the material described on the front of this Test Report:

Except as noted, the steel supplied for this order was melted, rolled, and processed in the United States meeting DFARS compliance, LEEDS compliance, REACH compliance, ROHS-WEEE compliance, and Conflict Materials Restrictions.
 Mercury was not used during the manufacture of this product, nor was the steel contaminated with mercury during

Mercury was not used during the manufacture of this product, nor was the steel contaminated with mercury during processing.

3. Unless directed by the customer, there are no welds in any of the coils produced for this order.

4. The laboratory that generated the analytical or test results can be identified by the following key:

Certificate Number	Lab Code	Labora	tory	Address
0358-01	7388	CSSM	Charter Steel Melting Division	1658 Cold Springs Road, Saukville, WI 53080
0358-02	8171	CSSR/ CSSP	Charter Steel Rolling/ Processing Division	1658 Cold Springs Road, Saukville, WI 53080
0358-03	123633	CSFP	Charter Steel Ohio Processing Division	6255 US Highway 23, Rising Sun, OH 43457
0358-04	125544	CSCM/ CSCR	Charter Steel Cleveland	4300 E. 49th St., Cuyahoga Heights, OH 44125-1004
*	*		Subcontracted test performed by laborator	v not in Charter Steel System

5. When run by a Charter Steel laboratory, the following tests were performed according to the latest revisions of the specifications listed below, as noted in the Charter Steel Laboratory Quality Manual:

Test	Specifications	CSSM	CSSR/ CSSP	CSFP	CSCM/ CSCR
Chemistry Analysis	ASTM E415; ASTM E1019	X			X
Macroetch	ASTM E381	X			X
Hardenability (Jominy)	ASTM A255; SAE J406; JIS G0561	X			Х
Grain Size	ASTM E112	X	Х	Х	Х
Tensile Test	ASTM E8; ASTM A370		X	X	X
Rockwelll Hardness	ASTM E18; ASTM A370	Х	Х	Х	Х
Microstructure (spheroidization)	ASTM A892		X	Х	
Inclusion Content (Methods A, E)	ASTM E45		Х		X
Decarburization	ASTM E1077		X	Х	Х

Charter Steel has been accredited to perform all of the above tests by the American Association for Laboratory Accreditation (A2LA). These accreditations expire 03/31/17. All other test results associated with a Charter Steel laboratory that appear on the front of this report, if any, were performed according to documented procedures developed by Charter Steel and are not accredited by A2LA.

6. The test results on the front of this report are the true values measured on the samples taken from the production lot. They do not apply to any other sample.

7. This test report cannot be reproduced or distributed except in full without the written permission of Charter Steel. The primary customer whose name and address appear on the front of this form may reproduce this test report subject to the following restrictions:

- It may be distributed only to their customers
- · Both sides of all pages must be reproduced in full
- 8. This certification is given subject to the terms and conditions of sale provided in Charter Steel's acknowledgement (designated by our Sales Order number) to the customer's purchase order. Both order numbers appear on the front page of this Report.
- 9. Where the customer has provided a specification, the results on the front of this test report conform to that specification unless otherwise noted on this test report.

Pana ? of ?

Figure C-10. ⁵/₁₆-in.-18 UNC, 1³/₄-in. Long Hex Bolt, Page 2, Test No. UCSS-1

part numbers a	We certif and ship to location	y that this shipr listed below we materia	ment cons ere coated al manufac	isting o to our cture's	of the purchase or agreed upon coa requirements.	der numb iting proce	ers, essing requirements	and the
	Coatings		Direct S	Ship Re	ference Nbr:			
Allegheny	Coatings	٩	PL ID					
224 River Road Rid	Igway, PA 15655 05/	А	SHIP DA	TE	01-Sep-2017			
Contact: Christina	Fax (814) 772-2330		SHIP TE	RMS	Third Party C	ollect		
Sonder. Omistina		CAR TI	SHIP VIA	A R:	XPO			
BILL TO: MNWINOF FASTENAL COMPAN PO BOX 1225 WINONA,MN 55987 USA Attn:	NA-B2171 OurSupp YY Supplier Pł	blier ID Code n (507) 453-8921		SHIP T FASTE 61 BAR WALLIN USA Attn:	O CTWALLING-S387 NAL COMPANY, HOL NES INDUSTRIAL P4 NGFORD,CT 06492	1 .O-KROME (ARK NORTH	OurSupplier I COMPANY 1 Supplier Code Ph: (203) 284-7028	
CustomerPartNbr	CustomerPO	WO#-REL#	OurlohlE	Shin	[oPartNbr	Lot Nbr		ShinCode
essential alliver	Eng.DrawingNbr	Specification Na	ame	Ship	SaltSpravTest	Salt Hrs	Net Wat	Pieces
10309013	350024475	350024475	29404		- senopray root	781686-1		no an Rodala
		NA			ASTM B-117	1000	258	4724
-1.0								
11540782 DIPSPIN/AKC+GB/2-0	350024542 GEOMET321+1-PLUSL/	350024542 ECOGUARD THICKNESS REAL	29466 DING		ASTM B-117	486338 1000	247	5335
11540782 DIPSPIN/AKC+GB/2-C Coating meets the adhesion	350024542 GEOMET321+1-PLUSL/ n requirements of ASTM F113	350024542 ECOGUARD THICKNESS REAL	29466 DING		ASTM B-117	486338 1000	247	5335
11540782 DIPSPIN/AKC+GB/2-C Coating meets the adhesion	350024542 GEOMET321+1-PLUSL/ n requirements of ASTM F113	350024542 ECOGUARD THICKNESS READ	29466 DING		ASTM B-117	486338 1000	247	5335
11540782 DIPSPIN/AKC+GB/2-C Coating meets the adhesion 11540785	350024542 GEOMET321+1-PLUSL/ n requirements of ASTM F11: 350024544	350024542 ECOGUARD THICKNESS READ 36 350024544	29466 DING 29464		ASTM B-117	486338 1000	247	5335
11540782 DIPSPIN/AKC+GB/2-C Coating meets the adhesion 11540785	350024542 GEOMET321+1-PLUSL/ n requirements of ASTM F113 350024544	350024542 ECOGUARD THICKNESS REAL 36 350024544 ECOGUARD	29466 DING 29464		ASTM B-117 ASTM B-117	486338 1000 486340 1000	247 828	5335
11540782 DIPSPIN/AKC+GB/2-C Coating meets the adhesion 11540785 DIPSPIN/AKC+GB/2-C	350024542 GEOMET321+1-PLUSL/ n requirements of ASTM F11 350024544 GEOMET321+1-PLUSL/	350024542 ECOGUARD THICKNESS REAL 36 350024544 ECOGUARD THICKNESS REAL	29466 DING 29464 DING		ASTM B-117 ASTM B-117 ASTM B-117	486338 1000 486340 1000	247 828	5335
11540782 DIPSPIN/AKC+GB/2-C Coating meets the adhesion 11540785 DIPSPIN/AKC+GB/2-C Coating meets the adhesion	350024542 GEOMET321+1-PLUSL/ n requirements of ASTM F113 350024544 GEOMET321+1-PLUSL/ n requirements of ASTM F113	350024542 ECOGUARD THICKNESS REAL 36 350024544 ECOGUARD THICKNESS REAL	29466 DING 29464 DING		ASTM B-117 ASTM B-117	486338 1000 486340 1000	247 828	5335
11540782 DIPSPIN/AKC+GB/2-C Coating meets the adhesion 11540785 DIPSPIN/AKC+GB/2-C Coating meets the adhesion GEOA760004880	350024542 GEOMET321+1-PLUSL/ n requirements of ASTM F113 350024544 GEOMET321+1-PLUSL/ n requirements of ASTM F113 350024481	350024542 ECOGUARD THICKNESS READ 36 350024544 ECOGUARD THICKNESS READ 36 350024481	29466 DING 29464 DING 29381		ASTM B-117 ASTM B-117	486338 1000 486340 1000 4855886	247 828	5335
11540782 DIPSPIN/AKC+GB/2-C Coating meets the adhesion 11540785 DIPSPIN/AKC+GB/2-C Coating meets the adhesion GEOA760004880	350024542 GEOMET321+1-PLUSL/ n requirements of ASTM F113 350024544 GEOMET321+1-PLUSL/ n requirements of ASTM F113 350024481	350024542 ECOGUARD THICKNESS REAL 36 350024544 ECOGUARD THICKNESS REAL 36 350024481 NA	29466 DING 29464 DING 29381		ASTM B-117 ASTM B-117 ASTM B-117	486338 1000 486340 1000 485886 0	247 828 565	5335 11427 462

Figure C-11. ⁵/₁₆-in.-18 UNC, 1³/₄-in. Long Hex Bolt, Test No. UCSS-1

Allegheny Coatings 224 River Road Ridgway, PA 15853

Thickness Reading Report

Customer: FASTENAL PO: 350024542 Job ID: 29466 Coating Specification: ecoguard Report Date: 8/31/2017 Part #: 11870782 Lot #: 486338 Packing List #: 14696

Process: 2-GEOMET321+1-PLUSL

Evaluation Method: Magnetic eddy current (Permascope)

Sample	μm
1	10.1
2	10.8
3	9.6
4	9.6
5	10.1
6	10.2
7	9.5
8	9.5
9	10.7
10	10.1
Average	10.02

Christina McClelland

Quality Manager Allegheny Coatings 224 River Road

Ridgway, PA 15853

814-772-3850 christina@alleghenycoatings.com

Figure C-12. ⁵/₁₆-in.-18 UNC, 1³/₄-in. Long Hex Bolt, Test No. UCSS-1

No. 5628 P. 2

Certificate of Compliance

Sold To:	Purchase Order:	U-Channel YR28
UNL TRANSPORTATION	Job:	U-Channel YR28
	Invoice Date:	09/18/2018

THIS IS TO CERTIFY THAT WE HAVE SUPPLIED YOU WITH THE FOLLOWING PARTS. THESE PARTS WERE PURCHASED TO THE FOLLOWING SPECIFICATIONS.

100 PCS 5/16" Zinc Finish Medium Split Lock Washer SUPPLIED UNDER OUR TRACE NUMBER 210150709 AND UNDER PART NUMBER 1133620

100 PCS 5/16" x 0.875" OD Low Carbon Zinc Finish Steel USS General Purpose Flat Washer SUPPLIED UNDER OUR TRACE NUMBER 210149350 AND UNDER PART NUMBER 1133006

16 PCS 5/16"-18 x 1-3/4" Grade 9 Holo-Krome[REG] ECOGUARD[REG] Finish Hex Cap Screw SUPPLIED UNDER OUR TRACE NUMBER 486338 AND UNDER PART NUMBER 11540782

24 PCS 5/16"-18 x 2-3/4" Grade 9 Holo-Krome[REG] ECOGUARD[REG] Finish Hex Cap Screw SUPPLIED UNDER OUR TRACE NUMBER 464179 AND UNDER PART NUMBER 11540737

40 PCS 5/16"-18 FNL[REG] ECOGUARD[REG] Finish High Hex Nut for Grade 9 Applications SUPPLIED UNDER OUR TRACE NUMBER 110233073 AND UNDER PART NUMBER 11541092

This is to certify that the above document is true and accurate to the best of my knowledge.

av a

Fastenal Account Representative Signature

Printed Name

Date

Please check current revision to avoid using obsolete copies.

This document was printed on 09/18/2018 and was current at that time.

Fastenal Store Location/Address

3201 N. 23rd Street STE 1 LINCOLN, NE 68521 Phone #: (402)476-7900 Fax #: 402/476-7958

Page 1 of 1

Figure C-13. ⁵/₁₆-in.-18 UNC, 1³/₄-in. Long Hex Bolt, Test No. UCSS-1

61 Barnes Industrial Park North Wallingford, Connecticut 06492 (203) 284-7023

CERTIFIED MATERIAL TEST REPORT : EN 10204 3.1

Certified Number	:	469737	Date Issued	:	September 26, 2018
Customer	:	Fastenal,	Manufacturing date	:	October 10, 2014
		4730 Service Drive	SHOP Part Number	:	11540736
		Winona, MN 57987	Purchase Order	:	350007110
			Holo Code	:	N/A
Manufacturer	:	Holo-Krome	Grade	:	9
		61 Barnes Industrial Park North	Material	:	8640
		Wallingford, CT 06492	Finish	:	ECOGUARD®
			Order Quantity	:	11,500 Pcs
Customer Part Number	:	11540736	Production Lot Size	:	11,500 Pcs
Description	:	5/16"-18 x 2-1/4" Holo-Krome® He	x Cap Screw		
Thread Designation	:	UNRC-2A	Marking	:	H-K ; G9 ; '9 radial lines'

CHEMISTRY – Heat Number: 10242060										
	Heat Composition (WT% Heat Analysis)									
Element:	Element: C P S Cr Mn Mo Ni Si									
Result:	0.38	0.010	0.007	0.42	0.86	0.21	0.46	0.22		
MACROETCH (if required):	N/A									

SURFACE QUALITY: In accordance with ASTM F788/F788M-13	PASS
COATING: ECOGUARD®	PASS

Heat Treat Me	thod:	Quenched and Tempered						
	Mechanica	ical Propertics: In accordance with ASTM A574-17						
Attribute	Test Method	Sample Size	Requirement	Result	Acceptance			
Core Hardness	ASTM F606/F606M-16	5 4	38-42 HRC	42 HRC	PASS			
ProofLoad	ASTM F606/F606M-16	5 3	Min: 140,650 PSI	PASS	PASS			
6° Wedge Tensile	ASTM F606/F606M-10	5 3	Min: 180,000 PSI	197,932 - 199,998 PSI	PASS			
Decarburization /Carburization	ASTM F2328-17	3	NO COLOR	PASS	PASS			

Page 1 of 2

January 6, 2016 This document was printed on 9/26/2018 and was current at that time. Please check current revisions to avoid using obsolete copies.

Figure C-14. ⁵/₁₆-in.-18 UNC, 2¹/₄-in. Long Hex Bolt, Page 1, Test No. UCSS-1

61 Barnes Industrial Park North Wallingford, Connecticut 06492 (203) 284-7023

DIMENSIONAL INSPECTION: Per H-K Dimension Inspection Drawing Plan : S12150-3 REV B SAMPLING PLAN : Per ASME B18,18-17

Chamatariatian	DIMENSION DATA		UNIT	SAMPLE	RES	ACCEPTANCE	
Characteristics	MIN	MAX	UNII	SIZE	MIN	MAX	
Width Across Flat	0.489	0.500	INCH	3	0.493	0.494	PASS
Width Across Corner	0.557	-	INCH	3	0.563	0.564	PASS
Head Height	0.227	0.242	INCH	6	0.234	0.235	PASS
Washer Diameter	0.450	0.500	INCH	3	0.475	0.477	PASS
Washer Height	0.015	0.025	INCH	6	0.018	0.019	PASS
Body Length	1.100	-	INCH	6	1.228	1.230	PASS
Grip Length		1.375	INCH	6	1.320	1.350	PASS
Total Length	2.210	2,250	INCH	6	2.225	2.228	PASS
Major Diameter	0.3026	0.3113	INCH	6	0.305	0.307	PASS
Thread	5/16"-18 UNRC-2A		INCH	6	PASS	PASS	PASS

Compliancy Statement:

All products as indicated in the test report above, conforms to the above requirement.

All manufacturing Operations & Processes performed in the United States of America.

Products meets RoHs & DFARS requirement, Mercury was not used during the manufacture of this product.

Comments:

Muhammad Luqman Azmi Quality Assurance Dept.

THIS TEST REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL, WITHOUT THE WRITTEN APPROVAL OF THE HOLO-KROME COMPANY LABORATORY, WE CERTIFY THIS DATA IS A TRUE REPRESENTATION OF THE INFORMATION PROVIDED BY THE MANUFACTURER/CUSTOMER AND OUR LABORATORY. THIS TEST REPORT APPLIES ONLY TO THE SAMPLES TESTED AND LISTED ON THIS REPORT. ANY DEVIATIONS OR DISCREPANCIES THAT ARE DETECTED, OR ANY DEPARTURES FROM DOCUMENTED POLICIES OR PROCEDURES WILL BE NOTED IN THE COMMENT SECTION.

Page 2 of 2

January 6, 2016 This document was printed on 9/26/2018 and was current at that time. Please check current revisions to avoid using obsolete copies.

Figure C-15. ⁵/₁₆-in.-18 UNC, 2¹/₄-in. Long Hex Bolt, Page 2, Test No. UCSS-1

						L	OAD				
()				тг	П						1658 Cold Springs Road
		CF		IE	K						Saukville, Wisconsin 53080
CHART	ER	SII	EEL	-	СНАР	TFR S	FEEL TI	EST REI	PORT		(262) 268-2400
STEE					Reve	erse Ha	s Text	And Co	des		1-800-437-8789
	9	A Divisio Charter	on of Manufac	turing Co	ompany,	Inc.					FAX (262) 268-2570
				5	, j,						174 (202) 200-2570
									Cı	ist P.O.	350007110
	Fastan	al Maat	Hartford	1				CL	ustomer	Part #	0970917
	Fastenal-West Hartford					Charter Sales Order			30054252		
	Walling	iford CT	-06/02						01.1	Heat #	10242060
	Kind A	ttn ·Mai	-00452						Ship	Lot #	4199470
	Killu A	ttii .iviai	K Leone							Grade	8640 R SK FG RHQ 3/8
										rocess	SA + SAFS
									Fini	sh Size	0.3265
I hereby of listed belo	certify the	at the ma in the rev	aterial de verse side	scribed h and tha	erein has t it satisf	s been m lies these	anufactu e requirer	red in aco ments.	cordance	with the	e specifications and standards
			0100 0100	former and	Test R	esults of	Heat Lot#	1024206	0		
Lab Code: 7388 CHEM	C C	MN	Р	S	SI	NI	CR	MO	CU	SN	v
%Wt	.38	.86	.010	.007	.220	.46	.42	.21	.17	.009	.003
				-	ND						
	AL .026	N .0070	в .0001	.001	.002						
JOMINY(HRC)	JOM01	JOM02	JOM03	JOM04	JOM05	JOM06	JOM07	JOM08	JOM09	JOM10	JOM12
	55	55	55	53	50	47	45	43	41	40	37
	JOM14 35	JOM16 33	JOM18 32	JOM20 30	JOM24 28	JOM28 27	JOM32 26				
JOMINY SAMPL	E TYPE E	NGLISH = GREEN =	C C								
					Test R	esults of F	Rolling Lot	# 109075	51		
REDUCTION RA	110 = 27	4:1		Test	Populto o	f Drococci	ing Lot# 4	105297 /	1100/70		
			# of '	Tests	Min \	/alue	Max	Value	Mean	Value	
TENSILE	1012131		1.0		72.2		72.2		72.2		TENSILE LAB = $0358-02$
REDUCTION OF	AREA		1		78		78		78		RA LAB = 0358-02
ROCKWELL B			'		//		//		//		ND EAD - 0330-02
NUM DECARB =	= 1 FRE	EE FERRIT	E DECARE	3 = .000	FREE F	ERR & PA	RTIAL DE	CARB = .	.002		
Specifications:		Ma Me	nufacture ets custor	d per Chai ner specif	ter Steel	Quality M	anual Rev oplicable (9,08-01- Charter Sto	09 eel except	ions for tl	e following customer documents:
		Cus	stomer Do	cument =	QWI#23	- DETAIL	55	Kevisi	on = Nev	/ Date	a = 02-WAR-12
Additional Com	nents:										
Charter Steel							_				This MTR supersedes all previously
Saukville, WI,	USA										dated MTRs for this order
					. 7						Jonung boursed
						K-					UJanice Barnard
Rom: Load1	Eavo M	ailO				CCRED	PhED of	1			Manager of Quality Assurance
nem. Luadi	,1 0.00,1116	allO			2			1			04/02/2013
					Tes	ting Lab	oratory				

Figure C-16. ⁵/₁₆-in.-18 UNC, 2¹/₄-in. Long Hex Bolt, Page 1, Test No. UCSS-1
The following statements are applicable to the material described on the front of this Test Report:

1. Except as noted, the steel supplied for this order was melted, rolled, and processed in the United States meeting DFAR's compliance.

2. Mercury was not used during the manufacture of this product, nor was the steel contaminated with mercury during processing.

3. Unless directed by the customer, there are no welds in any of the coils produced for this order.

4. The laboratory that generated the analytical or test results can be identified by the following key:

Certificate Number	Lab Code		Laboratory	Address		
0358-01 7388		CSSM	Charter Steel Melting Division	1653 Cold Springs Road, Saukville, WI 5308 1658 Cold Springs Road, Saukville, WI 5308		
0358-02	0358-02 8171 CSSR/ CSSP		Charter Steel Rolling/ Processing Division			
0358-03	123633	CSFP	Charter Steel Ohio Processing Division	6255 US Highway 23, Risingsun, OH 43457		
0358-04	125544	CSCM/ CSCR	Charter Steel Cleveland	4300 E. 49th St., Cuyahoga Heights, OH 44125-1004		
	•		Subcontracted test perfo	rmed by laboratory not in Charter Steel system		

When run by a Charter Steel laboratory, the following tests were performed according to the latest revisions of the specifications listed below, as noted in the Charter Steel Laboratory Quality Manual:

Test	Specification	CSSM	CSSR/CSSP	CSFP	CSCM/CSCR	
Chemistry Analysis	ASTM E415; ASTM E1019	Х			Х	
Macroetch	ASTM E381	Х			Х	
Hardenability (Jominy)	ASTM A255; SAE J406; JIS G0561	Х			Х	
Grain Size	ASTM E112	Х	Х	X	Х	
Tensile Test	ASTM E8; ASTM A370		Х	X	Х	
Rockwell Hardness	ASTM E18; ASTM A370	Х	Х	X	Х	
Microstructure (spheroidization)	ASTM A892		Х	X		
Inclusion Content (Methods A, E)	ASTM E45		X		Х	
Decarburization	ASTM E1077		X	X	x	

Charter Steel has been accredited to perform all of the above tests by the American Association for

Laboratory Accreditation (A2LA). These accreditations expire 01/31/13.

All other test results associated with a Charter Steel laboratory that appear on the front of this report, if any, were performed according to documented procedures developed by Charter Steel and are not accredited by A2LA.

The test results on the front of this report are the true values measured on the samples taken from the production lot. They do not apply to any other sample.

7. This test report cannot be reproduced or distributed except in full without the written permission of Charter Steel. The primary customer whose name and address appear on the front of this form may reproduce this test report subject to the following restrictions:

It may be distributed only to their customers

Both sides of all pages must be reproduced in full

 This certification is given subject to the terms and conditions of sale provided in Charter Steel's acknowledgement (designated by our Sales Order number) to the customer's purchase order. Both order numbers appear on the front page of this Report.

9. Where the customer has provided a specification, the results on the front of this test report conform to that specification unless otherwise noted on this test report.

Figure C-17. ⁵/₁₆-in.-18 UNC, 2¹/₄-in. Long Hex Bolt, Page 2, Test No. UCSS-1

AI	LEGI	HENY	
ALE	P•E•N•N•S•Y	•L•V•A•N•I•A	
- CONTRACTOR	Te	et Poport For Foster	
	10	st Report For Fastena	1
PO: 350013919 Job ID: 41732		PART# 11540736 LOT # 469737	Date: 10/20/14
THICKNESS:		ASTM B-499	
Test: Average Coating Meaurements done in r	Thickness		
Specification:			
	Part #	Average Microns	
	2	11.9	
	3	8.1	
	4	8.2	
	6	6.4	
	7	12.4	
	8	9.5	
	10	11.4	
	[10		
Aven	age thickness=	9.86	
0-12	2 microns minii	mum per Control Plan	
Donna Tripodi QA Manager			А. А
Allegheny Coatings Ridgway, PA			

Figure C-18. ⁵/₁₆-in.-18 UNC, 2¹/₄-in. Long Hex Bolt, Page 1, Test No. UCSS-1

part numbers	s and ship to locati	on listed below w	vere coat	ted to our	of the purchase agreed upon	coating proce	essing requiremen	ts and the
		mater	iai manui	racture's	requirements.			
Allegheny	Coatings		PLID	ct Ship Ref	erence Nbr:			,
224 River Road Riv	dgway, PA 15853 U	SA	SUID	DATE	69674			
Ph: (814) 772-3850	Fax (814) 772-2336	6	SHIP	TERMS	21-Oct-201	4		
Contact: Chris Car	son		SHIP	VIA	ATS EDEE	/ Collect		
		CAR T	RAILER N	BR:	AISFREE	VVAT		
BILL TO: MNWINO FASTENAL COMPAI PO BOX 1225	NA-B2171 OurSup NY	oplier ID		SHIP TO FASTEN 61 BARN) CTWALLING-SC AL COMPANY, H IES INDUSTRIAL	3871 IOLO-KROME C PARK NORTH	OurSupplier I COMPANY	
WINONA, MN 55987				WALLIN	GFORD, CT 06492	2 ,		
USA Attn:	Supplie	er Code		USA			Supplier Code	
QuetomorPortNbr	0	1 (007) 400 0021		Au.			Ph: (203) 284-7028	
Justomer annor	Eng DrawingNbr	WO#-REL#	OurJobl	ID ShipTo	PartNbr	Lot Nbr		ShipCode
1540732	350013897	350013897	4166	9	SaltSprayTe	ASPE11	Net Wgt	Pieces
				-		403011		
IPSPIN/AKC+GB/2-G	EOMET321+1-PLUSL requirements of ASTM F11	ECO GUARD /THICKNESS READ	DING		ASTM B-117	1000	571	(
IPSPIN/AKC+GB/2-G pating meets the adhesion 540736 PSPIN/AKC+GB/2-G	EOMET321+1-PLUSL requirements of ASTM F11 350013919 EOMET321+1-PLUSL/	ECO GUARD /THICKNESS READ 36 350013919 ECOGUARD THICKNESS READ	DING 41732 ING	2	ASTM B-117 ASTM B-117	1000 469737 1000	571 647	0
IPSPIN/AKC+GB/2-G bating meets the adhesion 540736 PSPIN/AKC+GB/2-GI aling meets the adhesion	EOMET321+1-PLUSL requirements of ASTM F11 350013919 EOMET321+1-PLUSL/ requirements of ASTM F113	ECO GUARD /THICKNESS READ 350013919 ECOGUARD THICKNESS READ 36	DING 41732 ING	2	ASTM B-117 ASTM B-117	1000 469737 1000	571 647	0
IPSPIN/AKC+GB/2-G oating meets the adhesion 1540736 PSPIN/AKC+GB/2-G ating meets the adhesion 540774	EOMET321+1-PLUSL requirements of ASTM F11 350013919 EOMET321+1-PLUSL/ requirements of ASTM F113 350013896	ECO GUARD /THICKNESS READ 350013919 ECOGUARD THICKNESS READ 36 350013896	201NG 41732 ING 41666	2	ASTM B-117 ASTM B-117	1000 469737 1000 469612	571 647	0
IPSPIN/AKC+GB/2-G batting meets the adhesion 540736 PSPIN/AKC+GB/2-GI ating meets the adhesion 540774 PSPIN/AKC+GB/2-GE	EOMET321+1-PLUSL requirements of ASTM F11 350013919 EOMET321+1-PLUSL/ requirements of ASTM F113 350013896	ECO GUARD /THICKNESS READ 350013919 ECOGUARD THICKNESS READ 36 350013896 ECO GUARD FHICKNESS READ	41732 41732 ING 41666 NG	2	ASTM B-117 ASTM B-117 ASTM B-117	1000 469737 1000 469612 1000	647	0
IPSPIN/AKC+GB/2-G pating meets the adhesion 540736 PSPIN/AKC+GB/2-G ating meets the adhesion 540774 PSPIN/AKC+GB/2-GE ting meets the adhesion of	EOMET321+1-PLUSL requirements of ASTM F11 350013919 EOMET321+1-PLUSL/ requirements of ASTM F113 350013896 EOMET321+1-PLUSL/T equirements of ASTM F113	ECO GUARD /THICKNESS READ 350013919 ECOGUARD THICKNESS READ 36 350013896 ECO GUARD FHICKNESS READ IIICKNESS READ	201NG 41732 ING 41666 NG	2	ASTM B-117 ASTM B-117 ASTM B-117	1000 469737 1000 469612 1000	571 647 604	0
IPSPIN/AKC+GB/2-G pating meets the adhesion 540736 PSPIN/AKC+GB/2-G ating meets the adhesion 540774 PSPIN/AKC+GB/2-GE ting meets the adhesion of 440783	EOMET321+1-PLUSL requirements of ASTM F11 350013919 EOMET321+1-PLUSL/ requirements of ASTM F113 350013896 EOMET321+1-PLUSL/TI equirements of ASTM F113	ECO GUARD /THICKNESS READ 350013919 ECOGUARD THICKNESS READ 36 350013896 ECO GUARD THICKNESS READ HICKNESS READ 6 350013908	201NG 41732 ING 41666 NG 41674	2	ASTM B-117 ASTM B-117 ASTM B-117	1000 469737 1000 469612 1000	571 647 604	0
IPSPIN/AKC+GB/2-G batting meets the adhesion 540736 PSPIN/AKC+GB/2-GI atting meets the adhesion 540774 PSPIN/AKC+GB/2-GE ting meets the adhesion m 40783	EOMET321+1-PLUSL requirements of ASTM F11 350013919 EOMET321+1-PLUSL/ requirements of ASTM F113 350013896 EOMET321+1-PLUSL/T equirements of ASTM F113 350013908	ECO GUARD /THICKNESS READ 350013919 ECOGUARD THICKNESS READ 36 350013896 ECO GUARD THICKNESS READ 6 350013908 ECOGUARD	201NG 41732 1NG 41666 NG 41674	2	ASTM B-117 ASTM B-117 ASTM B-117	1000 469737 1000 469612 1000 469722 1000	571 647 604 638	0
IPSPIN/AKC+GB/2-G batting meets the adhesion 540736 PSPIN/AKC+GB/2-GI ating meets the adhesion 540774 PSPIN/AKC+GB/2-GE ting meets the adhesion m 40783 SPIN/AKC+GB/2-GE	EOMET321+1-PLUSL requirements of ASTM F11 350013919 EOMET321+1-PLUSL/ requirements of ASTM F113 350013896 EOMET321+1-PLUSL/T a50013908 OMET321+1-PLUSL/T	ECO GUARD /THICKNESS READ 350013919 ECOGUARD THICKNESS READ 350013896 ECO GUARD FHICKNESS READ 6 350013908 ECOGUARD HICKNESS READIN	201NG 41732 ING 41666 NG 41674 NG	2	ASTM B-117 ASTM B-117 ASTM B-117 ASTM B-117	1000 469737 1000 469612 1000 469722 1000	571 647 604 638	0
IPSPIN/AKC+GB/2-G pating meets the adhesion 540736 PSPIN/AKC+GB/2-G ating meets the adhesion 540774 PSPIN/AKC+GB/2-GE ting meets the adhesion re 40783 SPIN/AKC+GB/2-GE ing meets the adhesion re	EOMET321+1-PLUSL requirements of ASTM F11 350013919 EOMET321+1-PLUSL/ requirements of ASTM F113 350013896 EOMET321+1-PLUSL/T adjurements of ASTM F1136 OMET321+1-PLUSL/T requirements of ASTM F1136	ECO GUARD /THICKNESS READ 350013919 ECOGUARD THICKNESS READ 36 350013896 ECO GUARD FHICKNESS READ 6 350013908 ECOGUARD HICKNESS READIN 6	201NG 41732 ING 41666 NG 41674	2	ASTM B-117 ASTM B-117 ASTM B-117 ASTM B-117	1000 469737 1000 469612 1000 469722 1000	571 647 604 638	0
IPSPIN/AKC+GB/2-G pating meets the adhesion 540736 PSPIN/AKC+GB/2-GI ating meets the adhesion 540774 PSPIN/AKC+GB/2-GE ting meets the adhesion in 40783 SPIN/AKC+GB/2-GE ing meets the adhesion re	EOMET321+1-PLUSL requirements of ASTM F11 350013919 EOMET321+1-PLUSL/ requirements of ASTM F113 350013896 EOMET321+1-PLUSL/T equirements of ASTM F1136 QMET321+1-PLUSL/T equirements of ASTM F1136	ECO GUARD /THICKNESS READ 350013919 ECOGUARD THICKNESS READ 36 350013896 ECO GUARD THICKNESS READ 6 350013908 ECOGUARD HICKNESS READ HICKNESS READ	41732 ING 41666 NG 41674 NG	2	ASTM B-117 ASTM B-117 ASTM B-117 ASTM B-117	1000 469737 1000 469612 1000 469722 1000	571 647 604 638	0

Figure C-19. $^{5}/_{16}$ -in.-18 UNC, 2½-in. Long Hex Bolt, Page 2, Test No. UCSS-1

ISO 9001 Certified Certificate Number: US11/82236

61 Barnes Industrial Park North Wallingford, CT 06492 (203)-284-7023

CERTIFICATE OF CONFORMANCE

July 8, 2015

This certifies the Grade 9 Hex Head Bolt samples submitted were randomly selected from the lot identified and tested to the specifications listed. The samples were found to conform to the specifications listed below. The original test data is on file at Holo-Krome.

Quantity:	10,000
Fastenal Part Number:	11540737
H-K Part Number:	11540737
Description:	5/16"-18 X 2-3/4" HCS G9 ECO
Lot No.:	464179
Mill Heat:	10229550
H-K Lab Number:	3-2359

SPECIFICATIONS

Dimensional per ASME 18.2.1						
Hardness per ASTM E18:	40	1	40	1	40	Rc
Proof Load (Length) per ASTM A574-2012:			PASS			
Tensile per ASTM F606 / USA.HCS.GR9.ECO:	185,802	1	187,913	1	188,093	PS
Decarburization (Microscopic) per ASTM F2328-20	05:		PASS			
Surface Discontinuities per ASTM F788-12:			PASS			
Product was heat treated in accordance to ASTM A5	74.					

Heat treat was performed at the Holo-Krome facility. Product meets DFARs requirements. Material was melted and processed in the United States of America. Product meets RoHS requirements. Mercury was not used during the manufacture of this product. Raw Material Certificate is Attached.

COMMENTS

Angel Perez Morales

Angel Perez Morales

Quality Assurance Technician
This report shall not be reproduced except in full without the written approval of the Holo-Krome Quality Laboratory.
MADE IN THE USA

Figure C-20. ⁵/₁₆-in.-18 UNC, 2³/₄-in. Long Hex Bolt, Test No. UCSS-1

CHARTI	ER	CH- STI	IAR EEL mn of Manufac	TE - turing Co	CHAF Reve	RTER S erse Ha Inc.	TEEL TI s Text	EST REI And Co	PORT des		1658 Cold Springs Road Saukville, Wisconsin 53080 (262) 268-2400 1-800-437-8789 FAX (262) 268-2570
	Fasten 61 Bar Walling Kind A	al-West nes Indu gford,CT ttn :Mai	Hartford ustrial Pa -06492 rk Leone	l ark Nort	h			Char	Cu istomer ter Sales Ship Fini	st P.O. Part # s Order Heat # Lot # Grade Process sh Size	350006957 0970917 30053773 10229550 4182846 8640 R SK FG RHQ 3/8 SA + SAFS 0.3265
I hereby c	ertify th	at the ma	aterial de	scribed h	erein has	s been m	anufactu	red in ac	cordance	with the	e specifications and standards
listed belo	ow and c	on the rev	erse side	e,and tha	Test R	lesults of	Heat Lot#	1022955	0		
Lab Code: 7388 CHEM %Wt	C .39	MN .85	P .010	S .007	SI .230	NI .44	CR .43	MO .22	CU .13	SN .009	V .003
	AL .025	N .0060	B .0001	TI .002	NB .002	101406	101407	IOMOR	IOMOR	IOM10	10M12
JOMINY(HRC)	56 JOM14	56 JOM16	56 JOM18	53 JOM20	52 .IOM24	48 .IOM28	46 JOM32	44	43	41	38
JOMINY SAMPL CHEM. DEVIATIO	E TYPE E ON EXT	nglish = green =	= C		Test R	esults of F	Rolling Lot	# 108492	24		
REDUCTION RAT	ΓIO = 27	4:1			D. K	(D		102407	1102046		
TENSILE REDUCTION OF ROCKWELL B	AREA		# of 1.0 1 1	Tests	Min V 72.6 76 76	of Process Value	Max 72.6 76 76	Value	Mean 72.6 76 76	Value	TENSILE LAB = 0358-02 RA LAB = 0358-02 RB LAB = 0358-02
NUM DECARB = Specifications:	1 FRI	EE FERRIT Ma Me	E DECARE	3 = .000 d per Cha ner specif	FREE F	ERR & PA Quality M vith any a	ARTIAL DE anual Rev pplicable (CARB = 9,08-01- Charter St Bevisi	.002 09 eel except	ions for t	he following customer documents:
Additional Comm	nents:	Cu	stomer Do	cument -		- DETAIL		110 1131		Duto	
Charter Steel Saukville, WI,	USA					Z					This MTR supersedes all previously dated MTRs for this orde
Rem: Load1,	Fax0,M	ailO			A	CCRED		f 1			Manager of Quality Assurance 01/08/2013

LOAD

Figure C-21. ⁵/₁₆-in.-18 UNC, 2³/₄-in. Long Hex Bolt, Page 1, Test No. UCSS-1

Testing Laboratory

The following statements are applicable to the material described on the front of this Test Report:

1. Except as noted, the steel supplied for this order was melted, rolled, and processed in the United States meeting DFAR's compliance.

2. Mercury was not used during the manufacture of this product, nor was the steel contaminated with mercury during processing.

3. Unless directed by the customer, there are no welds in any of the coils produced for this order.

4. The laboratory that generated the analytical or test results can be identified by the following key:

Certificate Number	Certificate Lab Code		Laboratory	Address			
0358-01 7388 C		CSSM	Charter Steel Melting Division	1653 Cold Springs Road, Saukville, WI 53080			
0358-02	0358-02 8171 CSSR/ CSSP 0358-03 123633 CSFP		Charter Steel Rolling/ Processing Division	1658 Cold Springs Road, Saukville, WI 5308			
0358-03			Charter Steel Ohio Processing Division	6255 US Highway 23, Risingsun, OH 43457			
0358-04	125544	CSCM/ CSCR	Charter Steel Cleveland	4300 E. 49th St., Cuyahoga Heights, OH 44125-1004			
•	•		Subcontracted test perfo	rmed by laboratory not in Charter Steel system			

5. When run by a Charter Steel laboratory, the following tests were performed according to the latest revisions of the specifications listed below, as noted in the Charter Steel Laboratory Quality Manual:

Test	Specification	CSSM	CSSR/CSSP	CSFP	CSCM/CSCR
Chemistry Analysis	ASTM E415; ASTM E1019	Х			Х
Macroetch	ASTM E381	Х			×
Hardenability (Jominy)	ASTM A255; SAE J406; JIS G0561	Х			Х
Grain Size	ASTM E112	Х	Х	Х	Х
Tensile Test	ASTM E8; ASTM A370		Х	X	Х
Rockwell Hardness	ASTM E18; ASTM A370	Х	Х	X	Х
Microstructure (spheroidization)	ASTM A892		Х	Х	
Inclusion Content (Methods A, E)	ASTM E45		X		Х
Decarburization	ASTM E1077		X	X	х

Charter Steel has been accredited to perform all of the above tests by the American Association for Laboratory Accreditation (A2LA). These accreditations expire 01/31/13.

All other test results associated with a Charter Steel laboratory that appear on the front of this report, if any, were performed according to documented procedures developed by Charter Steel and are not accredited by A2LA.

The test results on the front of this report are the true values measured on the samples taken from the production lot. They do not apply to any other sample.

7. This test report cannot be reproduced or distributed except in full without the written permission of Charter Steel. The primary customer whose name and address appear on the front of this form may reproduce this test report subject to the following restrictions:

It may be distributed only to their customers

Both sides of all pages must be reproduced in full

 This certification is given subject to the terms and conditions of sale provided in Charter Steel's acknowledgement (designated by our Sales Order number) to the customer's purchase order. Both order numbers appear on the front page of this Report.

Where the customer has provided a specification, the results on the front of this test report conform to that specification unless otherwise noted on this test report.

Figure C-22. ⁵/₁₆-in.-18 UNC, 2³/₄-in. Long Hex Bolt, Page 2, Test No. UCSS-1

No. 5628 P. 2

Certificate of Compliance

Sold To:	Purchase Order:	U-Channel YR28
UNL TRANSPORTATION	Job:	U-Channel YR28
	Invoice Date:	09/18/2018

THIS IS TO CERTIFY THAT WE HAVE SUPPLIED YOU WITH THE FOLLOWING PARTS. THESE PARTS WERE PURCHASED TO THE FOLLOWING SPECIFICATIONS.

100 PCS 5/16" Zinc Finish Medium Split Lock Washer SUPPLIED UNDER OUR TRACE NUMBER 210150709 AND UNDER PART NUMBER 1133620

100 PCS 5/16" x 0.875" OD Low Carbon Zinc Finish Steel USS General Purpose Flat Washer SUPPLIED UNDER OUR TRACE NUMBER 210149350 AND UNDER PART NUMBER 1133006

16 PCS 5/16"-18 x 1-3/4" Grade 9 Holo-Krome[REG] ECOGUARD[REG] Finish Hex Cap Screw SUPPLIED UNDER OUR TRACE NUMBER 486338 AND UNDER PART NUMBER 11540782

24 PCS 5/16"-18 x 2-3/4" Grade 9 Holo-Krome[REG] ECOGUARD[REG] Finish Hex Cap Screw SUPPLIED UNDER OUR TRACE NUMBER 464179 AND UNDER PART NUMBER 11540737

40 PCS 5/16"-18 FNL[REG] ECOGUARD[REG] Finish High Hex Nut for Grade 9 Applications SUPPLIED UNDER OUR TRACE NUMBER 110233073 AND UNDER PART NUMBER 11541092

This is to certify that the above document is true and accurate to the best of my knowledge.

(AA

Fastenal Account Representative Signature

Printed Name

Date

Please check current revision to avoid using obsolete copies.

This document was printed on 09/18/2018 and was current at that time.

Fastenal Store Location/Address

3201 N. 23rd Street STE 1 LINCOLN, NE 68521 Phone #: (402)476-7900 Fax #: 402/476-7958

Page 1 of 1

Figure C-23. ⁵/₁₆-in.-18 UNC, 2³/₄-in. Long Hex Bolt, Test No. UCSS-1

۰**۱**

MATERIAL CERTIFICATION

Customer:		Date: 11/13/2017
2001 THEURER BLVD.	Customer P.O. Number:	110233073
WINONA MN	Customer Part Number:	11541092
55987	Invoice Number:	62068
	Lot Number:	0072385-129135-129136
Description: NUT THICK HEX 5/16-18 ENL 9 ORG	Ship Quantity: 12000	Ship Date: 7/6/2017
	Material: 1038	Heat Number: 10463770

C	Mn	P	S	Si	Ni	Cr	Мо	Al
0.380	0.750	0.008	0.010	0.200	0.040	0.080	0.010	0.033

Hardness	C 36.1	
Proof Load:	4 passed at 180,000 psi min	
Plating 1	Geomet 321 + L - Pass	
		1999 – Marthale Marthale Montenant and an ann an
		a ann an Ar Guar

We hereby certify that to our actual knowledge the information contained herein is correct. We also certify that all parts substantially conform to SAE, ASTM, or customer specifications as agreed upon. The product has been manufactured and tested in accordance with our Quality Assurance manual. The above data accurately represents values provided by our suppliers or values generated in the EFG-BEREA laboratory. Statistical process control data is on file. All manufacturing processes for these parts occurred in the United States of America.

* Processed Mercury Free using material that is Free of Welds.

This document may only be reproduced without alteration and only for the purpose of certifying the quantity of the product specified here.

Geo Kip

Joe Kilpatrick Quality Technician

Figure C-24. $^{5}/_{16}$ -in.-18 UNC Heavy Hex Nut, Test No. UCSS-1

page 1

ERIEVIEW METAL TREATING CO. 4465 JOHNSTON PARKWAY CLEVELAND, OH 44128

CERTIFICATION

CUSTOMER: T00033 TELEFAST IND. ap@elginfasteners.com 1415 S. BENHAM ROAD VERSAILLES, IN 47042

DATE: 06/22/2017

We certify that this lot of material has been processed to your specification and/or instructions. Records are maintained on file for your examination upon request

ORDER NO: 129136 PART NO: T0963/00 DESC: 5/16-18 THICK HEX NUT LOT NO: 0072385 BINS 10438 CONTAINERS: 1 BIN

EMT	NO:	4786	64-0001
WEIG	GHT:		345
PIEC	CES:		26360

SPECIFICATION: Geomet 321 "XL"

CERTIFIED BY: PACKING LIST - FILE COPY

Figure C-25. ⁵/₁₆-in.-18 UNC Heavy Hex Nut, Test No. UCSS-1

USA HEAT TR ISO 9001 Registered		ſ	OrderDate:	Order#:			
Company Name EFG Berea Pl	CER ant Telefast Industries		FICATION Ship Name ERIEVIEW				
129135 ProductName:	0072385	C-10463770		BinNumber 10438			
ProductDescription: Containers: Quantity/Weight: Material:	NUT THICK HEX 5/16-18 Bin(s) 345 1035 PreWash	26360 PCS:					
Process:	Neutral Harden		Certificat	ion/Pass Slip Req.			

Post-Process: Dry Finish

Test Results: Specification RC 32/38 RC 36.1-35.0-35.3-36.9-36.1-36.9-35.9-36.4-35.5-36.6

The above order has been processed and inspected. All samples tested were within the above stated results. Approved By:

DELANEU Quality Manager

6/13/2017

Date:

Proudly processed in the United States of America

Figure C-26. ⁵/₁₆-in.-18 UNC Heavy Hex Nut, Test No. UCSS-1

ノ	J M T	ohns lire echno	town ologie	25	124 Lau Johnsto Phone: Fax:	rel Ave wn, PA 814 5 814 5	, 15906 32-5 32-5	T 756 684	EST R	EP(ORDI 6200	ORT ER 58	LOT NUMBER C-1046377(SALES ORDER / RL(096775 / 00)
SOLD TO												CERT ID / REV 00053716 / 01
Elgin Fas 777 West Berea, Of USA	tener G Bagley I 44017	roup / Ber Road	ea Plant					,		The second s		
CUSTOMER P.O.	-	CUSTOME	RPART			QUA	NTITY	COILS	LADING N	0		SHIPMENT DATE
109635		T10036		10		4,339	LBS	2	0014319	8		01/27/2017
S.050 Max Silic Size: .881+STD CERTIFICATION RE	on Kille -STD QUIREME	d Fine Gra	ain Cold H	eading C	Quality Dra	wn From	Anne	aled Rod i	PHOS & PO	DLYMI	ER COATE	D
	-					Chemica	d		2			
C .38	Mn .75	P .008	S .010	Si .200	A1 .033	N3 . 04	L	Cr .08	Mo .01	Cu . 08	N . 0060	Annun 1 197922
Sn									×			
.007						•			100 T70			
						Physica	I					
					<u>N</u>	lechanic	al					
TEST			UNITS					нан			1.014/	
Tensile Str			Lbs/Sq	In				78000		7	8000	78000
					Rod	/ Melt Sc	urce				0000	
Rod Source Charter		Melt Chart	Source		Countr	y of Or	igin	Nafta Yes				
					End	of Certificat	lon					

I certify that the results are a true and correct copy of the records prepared and maintained by JOHNSTOWN WIRE TECHNOLOGIES in compliance with the requirements of the cited specification. Chemistry is as reported by the rod / bar supplier and is not in JWT A2LA accreditation. This test report cannot be reproduced or distributed except in full without the written permission of JOHNSTOWN WIRE TECHNOLOGIES. The lest results certified herein relate only to the items tested.

Caniel Mallet Dariel J. Hallik Director of Quality Assurance

Date Printed: 01/27/2017

(C) AXIS Computer Systems - qtc302 (v6.0)

Figure C-27. $^{5}/_{16}$ -in.-18 UNC Heavy Hex Nut, Test No. UCSS-1

Page 1 of 1

CHARTER	CHARTER STEEL
	A Division of Charter Manufacturing Company, Inc.

EMAIL

1658 Cold Springs Road Saukville, Wisconsin 53080 (262) 268-2400 1-800-437-8789 Fax (262) 268-2570

CHARTER STEEL TEST REPORT

Melted in USA Manufactured in USA

						Cust P.O.	T				91626
					Custo	mer Part #					EXA38CD-31/64
					Charter S	ales Order					30122857
						Heat #					10463770
						Ship Lot #					1198506
						Grade				1038 R S	K FG RHQ 31/64
Joh	instown V	Vire Tech	nologies			Process					HF
124	Laurel A	ve.				Finish Size					31/64
Joł	instown,F	A-15906				Ship date					
I hereby certify	that the mat	erial describ	ed herein has	been manufac	tured in acco	dance with th	ne specific	ations and s	tandards lis	sted below a	nd that it satisfies
		oording or is	ise, ilcinous a	Test	esults of Heat	1 of # 104637	5 000ume	ant may be pr	unsnable a	s a leiony ui	ider lederal statute
Lab Code: 738	8										
CHEM	C	N	N P	S	SI	NI	CR	MO	CU	SN	v
70 VVL	.38	•	5 .008	.010	.200	.04	.08	.01	.08	.007	.003
	AL 033	1	N B	TI	NB						
IOMINV/HPC)	.055		.0001	.002	.001						
Sound (Into)	J1	J2	J3 .	J4 J5	J6	.17					
	55	49	38	27 23	21	20					
	JOMINY S	MPLE TYPE	E ENGLISH=C			CAT DI=1.06					
				Test re	sults of Pollin	n 1 at # 11094	506		1000 BB		
		# of Te	sts	Min Value	D	Max Value		Mean '	Value		
TENSILE (KSI)		1		93.1		93.1		93.1		TEN	SILE LAB = 0358-02
REDUCTION O	F AREA (%)	1		44		44		44		RAI	_AB = 0358-02
								202.02			
REDUCT	ON RATIO=1	64-1				AVE DECAR	B (Inch)=	.002			
		•			-0.0.2						
Constitutions											
opecifications		harter Stee	a per charter	steel Quality	Manual Rev	Date 12/12/1	13 skaround	radiation In	vole hv ha	ving proces	e radiation
		etectors in	place to mea	sure for the p	resence of ra	diation with	in our pre	ocess & pro	ducts.	and bloces	STAUIAUUU
	1	leets custo	mer specifica	tions with an	y applicable	Charter Stee	l exceptio	ons for the f	ollowing c	ustomer do	cuments:
		Sustomer Do	cument = RW0	07-RW100	Revision	= Dated =	= 08-NOV	/-13	-		
Additional Con	nments:										
									*		
Malt Source:							This Ser	2 augusta	all area in	why dated 54	
Melt Source: Charter Steel							This MTF	R supersedes	s all previou	usly dated M	TRs for this order

Rem: Load1,Fax0,Mail0

MTR supersedes all previously dated MTRs for this order *FunctBanach* Janice Barnard Division Mgr, of Quality Assurance barnard/@chartersteel.com Printed Date : 11/28/2016

Figure C-28. ⁵/₁₆-in.-18 UNC Heavy Hex Nut, Page 1, Test No. UCSS-1

The following statements are applicable to the material described on the front of this Test Report: 1. Except as noted, the steel supplied for this order was melted, rolled, and processed in the United States meeting DFARS compliance, LEEDS compliance, REACH compliance, ROHS-WEEE compliance, and Conflict Materials Restrictions. 2. Mercury was not used during the manufacture of this product, nor was the steel contaminated with mercury during

processing.

Unless directed by the customer, there are no welds in any of the coils produced for this order.
 The laboratory that generated the analytical or test results can be identified by the following key

Certificate Number	Lab Code	Labora	tory	Address			
0358-01	7388	CSSM	Charter Steel Melting Division	1658 Cold Springs Road, Saukville, WI 53080			
0358-02	8171	CSSR/ CSSP	Charter Steel Rolling/ Processing Division	1658 Cold Springs Road, Saukville, WI 53080			
0358-03	123633	CSFP	Charter Steel Ohio Processing Division	6255 US Highway 23, Rising Sun, OH 43457			
0358-04	125544	CSCM/ CSCR	Charter Steel Cleveland	4300 E. 49th St., Cuyahoga Heights, OH 44125-1004			
*	*		Subcontracted test performed by laborator	y not in Charter Steel System			

5. When run by a Charter Steel laboratory, the following tests were performed according to the latest revisions of the specifications listed below, as noted in the Charter Steel Laboratory Quality Manual:

Test	Specifications	CSSM	CSSR/ CSSP	CSFP	CSCM/ CSCR
Chemistry Analysis	ASTM E415; ASTM E1019	X			X
Macroetch	ASTM E381	X			X
Hardenability (Jominy)	ASTM A255; SAE J406; JIS G0561	X			X
Grain Size	ASTM E112	X	X	X	X
Tensile Test	ASTM E8; ASTM A370		X	X	X
Rockwelll Hardness	ASTM E18; ASTM A370	X	X	X	X
Microstructure (spheroidization)	ASTM A892		X	X	
Inclusion Content (Methods A, E)	ASTM E45		X		X
Decarburization	ASTM E1077		X	X	X
		The second se	A second se Second second sec second second sec	 I should be a should be should be should be a should be a should be a should	A CONTRACTOR OF A CONTRACTOR O

Charter Steel has been accredited to perform all of the above tests by the American Association for Laboratory Accreditation (A2LA). These accreditations expire 03/31/17. All other test results associated with a Charter Steel laboratory that appear on the front of this report, if any, were performed according to documented procedures developed by Charter Steel and are not accredited by A2LA.

6. The test results on the front of this report are the true values measured on the samples taken from the production lot. They do not apply to any other sample.

7. This test report cannot be reproduced or distributed except in full without the written permission of Charter Steel. The primary customer whose name and address appear on the front of this form may reproduce this test report subject to the following restrictions:

- It may be distributed only to their customers
- · Both sides of all pages must be reproduced in full
- 8. This certification is given subject to the terms and conditions of sale provided in Charter Steel's acknowledgement

(designated by our Sales Order number) to the customer's purchase order. Both order numbers appear on the front page of this Report.

9. Where the customer has provided a specification, the results on the front of this test report conform to that specification unless otherwise noted on this test report.

Page 2 of 2

Figure C-29. ⁵/₁₆-in.-18 UNC Heavy Hex Nut, Page 2, Test No. UCSS-1

No. 5628 P. 2

Certificate of Compliance

	a manufacture of the second se	
Sold To:	Purchase Order:	U-Channel YR28
UNL TRANSPORTATION	Job:	U-Channel YR28
	Invoice Date:	09/18/2018

THIS IS TO CERTIFY THAT WE HAVE SUPPLIED YOU WITH THE FOLLOWING PARTS. THESE PARTS WERE PURCHASED TO THE FOLLOWING SPECIFICATIONS.

100 PCS 5/16" Zinc Finish Medium Split Lock Washer SUPPLIED UNDER OUR TRACE NUMBER 210150709 AND UNDER PART NUMBER 1133620

100 PCS 5/16" x 0.875" OD Low Carbon Zinc Finish Steel USS General Purpose Flat Washer SUPPLIED UNDER OUR TRACE NUMBER 210149350 AND UNDER PART NUMBER 1133006

16 PCS 5/16"-18 x 1-3/4" Grade 9 Holo-Krome[REG] ECOGUARD[REG] Finish Hex Cap Screw SUPPLIED UNDER OUR TRACE NUMBER 486338 AND UNDER PART NUMBER 11540782

24 PCS 5/16"-18 x 2-3/4" Grade 9 Holo-Krome[REG] ECOGUARD[REG] Finish Hex Cap Screw SUPPLIED UNDER OUR TRACE NUMBER 464179 AND UNDER PART NUMBER 11540737

40 PCS 5/16"-18 FNL[REG] ECOGUARD[REG] Finish High Hex Nut for Grade 9 Applications SUPPLIED UNDER OUR TRACE NUMBER 110233073 AND UNDER PART NUMBER 11541092

This is to certify that the above document is true and accurate to the best of my knowledge.

 α

Fastenal Account Representative Signature

Printed Name

Date

Please check current revision to avoid using obsolete copies.

This document was printed on 09/18/2018 and was current at that time.

Fastenal Store Location/Address

3201 N. 23rd Street STE 1 LINCOLN, NE 68521 Phone #: (402)476-7900 Fax #: 402/476-7958

Page 1 of 1

Figure C-30. ⁵/₁₆-in.-18 UNC Heavy Hex Nut, Test No. UCSS-1

FASTWELL INDUSTRY CO., LTD.

TEL:(86)21 53964567 HEAD OFFICE :6TH FLOOR,NO.227.SEC.1. FU-SHENG S.RD.,

64813702 TAIPEI , TAIPEDI, TAIWAN

FAX: 64811848 SHANGHAI OFFICE:SUITE A,11F,HAILI BUIL DING,NO.88 DAPU ROAD. SHANGHAI CHINA ZIP CODE :200023

CERTIFICATE OF INSPECTION

CUSTOMER NAME: FAS	STENAL COMPANY PURCHAS	SING-IMPORT TRAFFIC	
REPORT NO.	:20180424001	HEAT NO.	:/
INSPECTION DATE	: 2018.04.24	LOT. NO.	:/
FINISH	: ZINC PLATED CR3+	MATERIALS	:/
MANUFACTURING DAT	E : 2018.02	P.O.NO.	:210149350
DESCRIPTION	:USS FLAT WASHER	PART NUMBER	:1133006
SIZE	: 5/16	MANUFACTURE	DQUANTITY:862500PCS
MARK	:/	SHIPQUANTITY:	862500PCS
INVOICE NO .	:FS18040042	Sampling plan:	ASME B18.18-2017
1 • DIMENSIONS INSPE	CTION		
SPECIFICATION: ASM	Æ B18.21.1 - 2009		

CHARACTERISTIC	SPECIFICATION	INSPECTION RESULTS	SAMPLING	AC	RE
OUTSIDE DIA.	0.868 - 0.905	0.876 - 0.881	8PCS	8	0
INSIDE DIA.	0.370 - 0.390	0.384 - 0.385	8PCS	8	0
THICKNESS	0.064 - 0.104	0.069 - 0.075	8PCS	8	0

2 • MECHANICAL INSPECTION: SPECIFICATION ·

RE

3、 FINISH INSPECTION

SPECIFICATION : AST	M F1941-2015					
CHARACTERISTIC	TEST METHOD	STANDARD	RESULTS	SAMPLING	AC	RE
THICKNESS OF COATING	ASTM B487	3UM min.	3.22 - 3.58	29PCS	29	0
		6H NO				
		WHITE				
		RUST,12H NO				
SALT SPRAY TEST	ASTM B117-2016	RED RUST	OK	15PCS	15	0

4, APPEARANCE INSPECTION

SPECIFICATION:ASME B18.21.1-2009

CHARACTERIST	TC		TEST	METHO	DD	STAN	DARD	RES	SULTS	SAMPI	ING	AC	RE
GENERAL WO	RKMANS	SHIP	ASME E	318.21.1-	2009	VIS	UAL		OK	29P	CS	29	0
5、CHEMICAL	ANALYS	SIS											
HEAT NO	C-X100	Mn-x100	P-x1000	S-x1000	Si-x100	Cu-x100	Ni-x100	Cr-x100	Mo-x100	Al-x1000	B-x100	000 V-x	100
STANDARD													

RC MANAGER

Alice mias

Remark :1. This cortificate is valid with signature on

2. This test report only relates to the items listed and tested ,it's not allowed to be partially used.

- 3.Samples testing conform to the requirements of specification.
- 4. This test report is responsible for designated samples only.

5. The above composition is quoted from original mill certs which is not in the scope of Lab Accreditation.

6. Quality System conforms to ISO 9001 requirements.

7.All fasteners meet the requirements of the (FQA)and records of compliance are on file.

8.Sampling Data is according to ASME B18.18.

9.Parts are manufactured and tested according to above specification and compliance with order, we certify that this

is a ture representation of information provided by manufacturer and laboratory.

Figure C-31. ⁵/₁₆-in. Dia. Plain Round Washer, Test No. UCSS-1

No. 5628 P. 2

Certificate of Compliance

Sold To:	Purchase Order:	U-Channel YR28
UNL TRANSPORTATION	Job:	U-Channel YR28
	Invoice Date:	09/18/2018

THIS IS TO CERTIFY THAT WE HAVE SUPPLIED YOU WITH THE FOLLOWING PARTS. THESE PARTS WERE PURCHASED TO THE FOLLOWING SPECIFICATIONS.

100 PCS 5/16" Zinc Finish Medium Split Lock Washer SUPPLIED UNDER OUR TRACE NUMBER 210150709 AND UNDER PART NUMBER 1133620

100 PCS 5/16" x 0.875" OD Low Carbon Zinc Finish Steel USS General Purpose Flat Washer SUPPLIED UNDER OUR TRACE NUMBER 210149350 AND UNDER PART NUMBER 1133006

16 PCS 5/16"-18 x 1-3/4" Grade 9 Holo-Krome[REG] ECOGUARD[REG] Finish Hex Cap Screw SUPPLIED UNDER OUR TRACE NUMBER 486338 AND UNDER PART NUMBER 11540782

24 PCS 5/16"-18 x 2-3/4" Grade 9 Holo-Krome[REG] ECOGUARD[REG] Finish Hex Cap Screw SUPPLIED UNDER OUR TRACE NUMBER 464179 AND UNDER PART NUMBER 11540737

40 PCS 5/16"-18 FNL[REG] ECOGUARD[REG] Finish High Hex Nut for Grade 9 Applications SUPPLIED UNDER OUR TRACE NUMBER 110233073 AND UNDER PART NUMBER 11541092

This is to certify that the above document is true and accurate to the best of my knowledge.

ga

Fastenal Account Representative Signature

Printed Name

Date

Please check current revision to avoid using obsolete copies.

This document was printed on 09/18/2018 and was current at that time.

Fastenal Store Location/Address

3201 N. 23rd Street STE 1 LINCOLN, NE 68521 Phone #: (402)476-7900 Fax #: 402/476-7958

Page 1 of 1

Figure C-32. ⁵/₁₆-in. Dia. Plain Round Washer, Test No. UCSS-1

HANGZHOU SPRING WASHER CO.,LTD QUALITY TEST CERTIFICATE OF SPRING LOCK WASHER

Standard: AS	SME B	18.21.1-	2009		Contr	act No.:		17HZW1	2599	
)rder No.:	P0 2	210150709)		Invo	ice No.:				
Chemical		С	s	i	Mn	Р	S	Cr	Ni	Cu
(%)	1	0.67	0.	19	0.53	0.008	0.01	0.06	0.03	0.09
Heat No.		F7900067	793	•				•		•
Specification	1		5	/16″	MECH					
Quantity				405	M					
Lot No.				1801	058					
Part No.				1133	620					
Testing Item	Ac/n	Norm	n	F	Result	Reject	Norm	n	Result	Reject
Inside Diameter	2/100	7.98-8	. 18	8. (02-8.18	0				
Outside Diameter	1/32	Max15.	01	Ma	x14. 75	0				
Width	1/32	Min3.	26	Mi	in3. 23	0				
Thickness	1/32	2.06-2	. 35	2.0	04-2.08	0				
Height										
Section										
Surface Defects	2/100	None	a	50 52	None	0				
Hardness	0/8	HRC38-	-46	HRC	40-41.5	0				
Springing										
Toughness	0/8	Qualif	ied	Qua	alified	0				
							-			
General:	The	spring loof A	ock v .SME	vashe E B 1	ers are co 8.21.1-2	onformea 009. QU	d with th JALIFT		d T	
Inspector: Shiwei	qing		Qual Chie	ity In: f:	spection		5.	Mat The	,1,09.20	

Figure C-33. ³/₈-in. Dia. Lock Washer, Test No. UCSS-1

No. 5628 P. 2

Certificate of Compliance

		······································
Sold To:	Purchase Order:	U-Channel YR28
UNL TRANSPORTATION	Job:	U-Channel YR28
	Invoice Date:	09/18/2018

THIS IS TO CERTIFY THAT WE HAVE SUPPLIED YOU WITH THE FOLLOWING PARTS. THESE PARTS WERE PURCHASED TO THE FOLLOWING SPECIFICATIONS.

100 PCS 5/16" Zinc Finish Medium Split Lock Washer SUPPLIED UNDER OUR TRACE NUMBER 210150709 AND UNDER PART NUMBER 1133620

100 PCS 5/16" x 0.875" OD Low Carbon Zinc Finish Steel USS General Purpose Flat Washer SUPPLIED UNDER OUR TRACE NUMBER 210149350 AND UNDER PART NUMBER 1133006

16 PCS 5/16"-18 x 1-3/4" Grade 9 Holo-Krome[REG] ECOGUARD[REG] Finish Hex Cap Screw SUPPLIED UNDER OUR TRACE NUMBER 486338 AND UNDER PART NUMBER 11540782

24 PCS 5/16"-18 x 2-3/4" Grade 9 Holo-Krome[REG] ECOGUARD[REG] Finish Hex Cap Screw SUPPLIED UNDER OUR TRACE NUMBER 464179 AND UNDER PART NUMBER 11540737

40 PCS 5/16"-18 FNL[REG] ECOGUARD[REG] Finish High Hex Nut for Grade 9 Applications SUPPLIED UNDER OUR TRACE NUMBER 110233073 AND UNDER PART NUMBER 11541092

This is to certify that the above document is true and accurate to the best of my knowledge.

G ANI

Fastenal Account Representative Signature

Printed Name

Date

Please check current revision to avoid using obsolete copies.

This document was printed on 09/18/2018 and was current at that time.

Fastenal Store Location/Address

3201 N. 23rd Street STE 1 LINCOLN, NE 68521 Phone #: (402)476-7900 Fax #: 402/476-7958

Page 1 of 1

Figure C-34. ³/₈-in. Dia. Lock Washer, Test No. UCSS-1

Figure C-35. Round Spacer, Steel, Zinc Plated Finish, ³/₈-in. Screw Size, ³/₄-in. OD, 0.38 in.-ID, ¹/₂-in. Length, Test No. UCSS-1

Appendix D. Vehicle Center of Gravity Determination

Date: <u>9/26/2018</u> Test Name: UCSS-1 Year: 2009 Make: Toyota					jtak	Varie	0730
rear:	2009				raris		
Vehicle CG	Determina	tion					
					Weight		
	Vehicle Eq	uipment			(lb.)		
	+	Unballasted C	ar (Curb)		2312		
	+	Hub			19		
	+	Brake activatio	on cylinder &	frame	7		
	+	Pneumatic tan	nk (Nitrogen)		22		
	+	Strobe/Brake I	Battery		5		
	+	Brake Receive	er/Wires		6		
		14					
	-	Battery			-35		
	-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-11		
	-	Interior			-6		
	-	Fuel			-19		
	-	Coolant			-7		
	-	Washer fluid			0		
	+	Vvater Ballast	(In Fuel Tani	K)	83 F		
	+	Onboard Supp	nemental Ba	ttery	5		
	+	Smart Barrier			U		
	Note: (+) is a	dded equipment to Estim	vehicle, (-) is r nated Total W	emoved equij /eight (lb.)	pment from vel	hicle	
Vehicle Dim	Note: (+) is a	dded equipment to Estim	vehicle, (-) is r ated Total W	emoved equij /eight (lb.)	pment from vel	hicle	_
Vehicle Dime Wheel Base:	Note: (+) is a <u>ensions for</u> 100.625	dded equipment to Estim • C.G. Calculat in.	vehicle, (-) is r nated Total W ions Front Tra	emoved equij /eight (lb.)	2395 57.875	hicle	_
Vehicle Dim Wheel Base: Roof Height:	Note: (+) is a ensions for 100.625 56.375	dded equipment to Estim <u>C.G. Calculat</u> _in. _in.	vehicle, (-) is r nated Total W ions Front Tra Rear Tra	emoved equij /eight (lb.) ack Width: ack Width:	2395 2395 57.875 57.375	hicle in. in.	_
Vehicle Dim Wheel Base: Roof Height:	Note: (+) is a ensions for 100.625 56.375	dded equipment to Estim <u>C.G. Calculat</u> _in. _in.	vehicle, (-) is r nated Total W ions Front Tra Rear Tra	emoved equij /eight (lb.) ack Width: ack Width:	2395 57.875 57.375	hicle in. in.	
Vehicle Dim Wheel Base: Roof Height: Center of Gra	Note: (+) is a <u>ensions for</u> 100.625 56.375 <u>avity</u>	dded equipment to Estim <u>C.G. Calculat</u> _in. _in.	vehicle, (-) is r nated Total W ions Front Tra Rear Tra H Targets	emoved equij /eight (lb.) ack Width: ack Width:	2395 2395 57.875 57.375	hicle in. in.	Difference
Vehicle Dim Wheel Base: Roof Height: Center of Gr Test Inertial V	Note: (+) is a <u>ensions for</u> 100.625 56.375 avity Veight (lb.)	dded equipment to Estim <u>C.G. Calculat</u> _in. _in. 1100C MAS 2420 ±	vehicle, (-) is r lated Total W ions Front Tra Rear Tra H Targets	emoved equij /eight (lb.) ack Width: ack Width:	2395 57.875 57.375 Fest Inertia 2395	hicle in. in. in.	Difference -25.
Vehicle Dim Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal C	Note: (+) is a ensions for 100.625 56.375 avity Veight (lb.) CG (in.)	dded equipment to Estim <u>• C.G. Calculat</u> _in. _in. <u>1100C MAS</u> _2420 <u>=</u> _39 <u>=</u>	vehicle, (-) is r hated Total W ions Front Tra Rear Tra H Targets ± 55 ± 4	emoved equij /eight (lb.) ack Width: ack Width: 1	2395 2395 57.875 57.375 Fest Inertia 2395 40.88	hicle in. in.	Differenc: -25. 1.8
Vehicle Dim Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal C Lateral CG (i	Note: (+) is a ensions for 100.625 56.375 avity Veight (lb.) 2G (in.) n.)	dded equipment to Estim <u>C.G. Calculat</u> in. in. <u>1100C MAS</u> 2420 1 39 1 NA	vehicle, (-) is r nated Total W ions Front Tra Rear Tra H Targets ± 55 ± 4	emoved equij /eight (lb.) ack Width: ack Width:	2395 57.875 57.375 Fest Inertia 2395 40.88 -0.18	hicle in. in.	Difference -25. 1.8 N/
Vehicle Dim Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: (+) is a ensions for 100.625 56.375 avity Veight (lb.) 2G (in.) n.) [in.)	dded equipment to Estim C.G. Calculat in. in. 1100C MAS 2420 ± 39 ± NA NA	vehicle, (-) is r nated Total W ions Front Tra Rear Tra H Targets ± 55 ± 4	emoved equij /eight (lb.) ack Width: ack Width:	2395 2395 57.875 57.375 Fest Inertia 2395 40.88 -0.18 22.469	hicle in. in.	Difference -25. 1.8 N/
Vehicle Dim Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: Long. CG Note: Lateral CC	Note: (+) is a ensions for 100.625 56.375 avity Veight (lb.) CG (in.) n.) is measured f 3 measured fr	dded equipment to Estim	vehicle, (-) is r ated Total W ions Front Tra Rear Tra H Targets ± 55 ± 4 est vehicle sitive to vehicle	emoved equij /eight (Ib.) ack Width: ack Width:	2395 2395 57.875 57.375 Fest Inertia 2395 40.88 -0.18 22.469 nger) side	hicle in. in.	Differencc -25. 1.8 N/ N/
Vehicle Dim Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal C Lateral CG (i Vertical CG (i Note: Long. CG Note: Lateral CC	Note: (+) is a ensions for 100.625 56.375 avity Veight (lb.) CG (in.) n.) (in.) is measured fr 3 measured fr	dded equipment to Estim <u>C.G. Calculat</u> in. in. <u>1100C MAS</u> 2420 <u>=</u> 39 <u>=</u> NA NA NA rom front axle of te om centerline - pos	vehicle, (-) is r ated Total W ions Front Tra Rear Tra H Targets ± 55 ± 4 est vehicle sitive to vehicle	emoved equi /eight (Ib.) ack Width: ack Width:	2395 2395 57.875 57.375 Fest Inertial 2395 40.88 -0.18 22.469 nger) side	hicle in. in.	Difference -25. 1.8 N/ N/
Vehicle Dim Wheel Base: Roof Height: Center of Gr. Test Inertial V Longitudinal C Lateral CG (i Vertical CG () Note: Long. CG Note: Lateral CC Note: Lateral CC	Note: (+) is a ensions for 100.625 56.375 avity Veight (lb.) CG (in.) n.) (in.) is measured fr HT (lb.)	dded equipment to Estim <u>C.G. Calculat</u> in. in. <u>1100C MAS</u> 2420 = 39 = NA NA NA rom front axle of te om centerline - pos	vehicle, (-) is r ated Total W ions Front Tra Rear Tra H Targets ± 55 ± 4	emoved equij /eight (Ib.) ack Width: ack Width:	2395 2395 57.875 57.375 Fest Inertial 2395 40.88 -0.18 22.469 nger) side TEST INER	in. in. in. TIAL WEIC	Difference -25. 1.8 N/ N/ SHT (Ib.)
Vehicle Dim Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal C Lateral CG (i Vertical CG (i Vertical CG (Note: Long. CG Note: Lateral CC CURB WEIGI	Note: (+) is a ensions for 100.625 56.375 avity Veight (lb.) CG (in.) n.) (in.) is measured fr HT (lb.) Left	dded equipment to Estim <u>C.G. Calculat</u> in. in. <u>1100C MAS</u> 2420 = 39 = NA NA NA rom front axle of te om centerline - pos Right	vehicle, (-) is r ated Total W ions Front Tra Rear Tra H Targets ± 55 ± 4	emoved equi /eight (Ib.) ack Width: ack Width:	2395 2395 57.875 57.375 Fest Inertial 2395 40.88 -0.18 22.469 nger) side TEST INER	hicle in. in. in. TIAL WEIC	Difference -25. 1.8 N/ BHT (Ib.) Right
Vehicle Dim Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal C Lateral CG (i Vertical CG (i Vertical CG (Note: Long. CG Note: Lateral CC CURB WEIGI	Note: (+) is a ensions for 100.625 56.375 avity Veight (lb.) 2G (in.) n.) (in.) is measured fr HT (lb.) Left 730	dded equipment to Estim	vehicle, (-) is r hated Total W ions Front Tra Rear Tra H Targets ± 55 ± 4	emoved equij /eight (Ib.) ack Width: ack Width: right (passer	2395 2395 57.875 57.375 Fest Inertial 2395 40.88 -0.18 22.469 nger) side TEST INER Front	hicle in. in. in. TIAL WEIC Left 712	Differenc: -25. 1.8 N/ SHT (Ib.) Right 710
Vehicle Dim Wheel Base: Roof Height: Center of Gr. Test Inertial V Longitudinal C Lateral CG (i Vertical CG (i Note: Long. CG Note: Lateral CC CURB WEIGI Front Rear	Note: (+) is a ensions for 100.625 56.375 avity Veight (lb.) CG (in.) n.) (in.) is measured fr HT (lb.) Left 730 445	dded equipment to Estim C.G. Calculat in. in. 1100C MAS 2420 ± 39 ± NA NA rom front axle of te om centerline - post Right 700 437	vehicle, (-) is r ated Total W ions Front Tra Rear Tra H Targets ± 55 ± 4	emoved equij /eight (Ib.) ack Width: ack Width:	2395 2395 57.875 57.375 Fest Inertial 2395 40.88 -0.18 22.469 nger) side TEST INER Front Rear	hicle in. in. in. TIAL WEIC Left 712 493	Differenc -25. 1.8 N/ SHT (Ib.) Right 710 480
Vehicle Dim Wheel Base: Roof Height: Center of Gr. Test Inertial V Longitudinal C Lateral CG (i Vertical CG (i Vertical CG (i Note: Long. CG Note: Lateral CC CURB WEIGI Front Rear FRONT	Note: (+) is a ensions for 100.625 56.375 avity Veight (lb.) 2G (in.) n.) (in.) is measured fr HT (lb.) Left 730 445 1430	C.G. Calculat in. in. in. 1100C MAS 2420 = 39 = NA NA rom front axle of te om centerline - pos Right 700 437	vehicle, (-) is r nated Total W ions Front Tra Rear Tra H Targets ± 55 ± 4	emoved equij /eight (Ib.) ack Width: ack Width:	2395 2395 57.875 57.375 57.375 Fest Inertia 2395 40.88 -0.18 22.469 nger) side TEST INER Front Rear FRONT	hicle in. in. in. TIAL WEIC Left 712 493 1422	
Vehicle Dim Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal C Lateral CG (i Vertical CG (Note: Long. CG Note: Lateral CC CURB WEIGI Front Rear FRONT REAR	Note: (+) is a ensions for 100.625 56.375 avity Veight (lb.) 2G (in.) n.) (in.) is measured f T (lb.) Left 730 445 1430 882	C.G. Calculat in. in. in. 1100C MAS 2420 = 39 = NA NA rom front axle of te om centerline - pos Right 700 437 Ib.	vehicle, (-) is r nated Total W ions Front Tra Rear Tra H Targets ± 55 ± 4	emoved equip /eight (Ib.)	2395 2395 57.875 57.375 Fest Inertia 2395 40.88 -0.18 22.469 nger) side TEST INER Front Rear FRONT REAR	hicle in. in. in. TIAL WEIC Left 712 493 1422 973	Difference -25. 1.8 N/ N/ SHT (Ib.) Right 710 480 Ib.
Vehicle Dim Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal C Lateral CG (i Vertical CG (i Vertical CG (i Vertical CG (i Note: Long. CG Note: Lateral CC CURB WEIGI Front Rear FRONT REAR	Note: (+) is a ensions for 100.625 56.375 avity Veight (lb.) 2G (in.) n.) (in.) is measured f HT (lb.) Left 730 445 1430 882 2012	C.G. Calculat in. in. in. <u>1100C MAS</u> 2420 = 39 = NA NA rom front axle of te om centerline - pos Right 700 437 Ib. Ib.	vehicle, (-) is r ated Total W ions Front Tra Rear Tra H Targets ± 55 ± 4	emoved equij /eight (lb.) ack Width: ack Width:	2395 2395 57.875 57.375 Fest Inertia 2395 40.88 -0.18 22.469 nger) side TEST INER Front Rear FRONT REAR TOTAL	hicle in. in. in. TIAL WEIC Left 712 493 1422 973	

Figure D-1. Vehicle Mass Distribution, Test No. UCSS-1

Year: 2009 Make: Toyota Model: Yaris Vehicle CG Determination Long CG Lat CG Vertical Long M Lat M Vertical Vehicle Equipment (in.) (in.) CG (in.) (lbin.) (lbin.)<	′ear:_ ′ehicle	9/26/2018	Test Name:	UCS	SS-1	VIN:	jtdb	t90319405	6758
Vehicle CG Determination Long CG Lat CG Vertical Long M Lat M Vertical Vehicle Equipment (in.) (in.) (CG (in.) (ibin.) (ib	ehicle	2009 Make: Toyota Model: Yaris							
Archicle CG Determination Long CG Lat CG Vertical Long M Lat M Vertical ehicle Equipment (in.) (in.) CG (in.) (lbin.) (lbi	ehicle								
Long CG Lat CG Vertical Long M Lat M Vertical ehicle Equipment (in.) (in.) CG (in.) (lbin.)		e CG Determination							
Behicle Equipment (in.) (in.) (in.) (in.) (in.) (in.) (ibin.)				Lona CG	Lat CG	Vertical	Lona M	Lat M	Vertical M
Construction Construction<	ehicle	Equipment		(in.)	(in.)	CG (in.)	(lbin.)	(lbin.)	(lbin.)
Hub O O O O O O O O O A O A O A O A O A O A O A O A	1	Inballasted Car (Curb)		38.387	-0.474	22.268	88751.25	#########	51483.905
Brake activation cylinder & frame 32.125 -12.25 16.0 224.875 85.75 112. Pneumatic tank (Nitrogen) 65.5 -12.75 13.25 1441.0 -280.5 291. Strobe/Brake Battery 85.25 17.125 20.0 426.25 85.625 100. Brake Receiver/Wires 131.625 0 35.5 789.75 0 213. CG Plate including DAS 39.875 0 15.25 588.25 0 213. Battery 31.0 -7.5 -13.5 -1085.0 262.5 472. Oil 24.0 -5.0 7.0 -264.0 55.0 -77.0 Interior 40.625 0 21.75 -243.75 0 -130. Fuel 80.0 0 12.5 -164.0 133.0 21.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Hub		0	20.5	11.25	0	389.5	213.75
Pneumatic tank (Nitrogen) 65.5 -12.75 13.25 1441.0 -280.5 291. Strobe/Brake Battery 85.25 17.125 20.0 426.25 85.625 100. Brake Receiver/Wires 131.625 0 35.5 789.75 0 213. CG Plate including DAS 39.875 0 15.25 558.25 0 213. Battery 31.0 -7.5 -13.5 -1085.0 262.5 472. Oil 24.0 -5.0 7.0 -264.0 55.0 -77.1 Interior 40.625 0 21.5 -1520.0 0 -237. Coolant 20.0 -19.0 -3.0 -140.0 133.0 21.0 Washer fluid 22.0 -13.0 20.5 0 0 0 Onboard Supplemental Battery 31.0 0 20.0 155.0 0 100.0 Smart Barrier 0 0 0 0 0 0 0		Brake activation cylind	er & frame	32,125	-12.25	16.0	224,875	-85.75	112.0
Strobe/Brake Battery 85.25 17.125 20.0 426.25 85.625 100. Brake Receiver/Wires 131.625 0 35.5 789.75 0 213. CG Plate including DAS 39.875 0 15.25 558.25 0 213. Battery 31.0 -7.5 -13.5 -1085.0 262.5 472. Oil 24.0 -5.0 7.0 -264.0 55.0 -77.0 Interior 40.625 0 21.75 -243.75 0 -130. Fuel 80.0 0 12.5 -1520.0 0 -237. Coolant 20.0 -19.0 -3.0 -140.0 133.0 21.0 Washer fluid 22.0 -13.0 20.5 0 0 0 Onboard Supplemental Battery 31.0 0 20.0 155.0 0 100.0 Smart Barrier 0 0 0 0 0 0 0 0 <		Pneumatic tank (Nitroo	ien)	65.5	-12.75	13.25	1441.0	-280.5	291.5
Brake Receiver/Wires 131.625 0 35.5 789.75 0 213.625 CG Plate including DAS 39.875 0 15.25 558.25 0 213. Battery 31.0 -7.5 -13.5 -1085.0 262.5 472. Oil 24.0 -5.0 7.0 -264.0 55.0 -77.0 Interior 40.625 0 21.75 -243.75 0 -130. Fuel 80.0 0 12.5 -1520.0 0 -237. Coolant 20.0 -19.0 -3.0 -140.0 133.0 21.0 Washer fluid 22.0 -13.0 20.5 0 0 0 Washer fluid 22.0 -13.0 0 20.0 155.0 0 100. Smart Barrier 0 0 0 0 0 0 0 te: (+) is added equipment to vehicle, (-) is removed equipment from vehicle ########## -535.5 53813. Equipment Type		Strobe/Brake Battery	(0.1)	85.25	17.125	20.0	426.25	85.625	100.0
CG Plate including DAS 39.875 0 15.25 558.25 0 213.5 Battery 31.0 -7.5 -13.5 -1085.0 262.5 472. Oil 24.0 -5.0 7.0 -264.0 55.0 -77.0 Interior 40.625 0 21.75 -243.75 0 -130. Fuel 80.0 0 12.5 -1520.0 0 -237. Coolant 20.0 -19.0 -3.0 -140.0 133.0 21.0 Washer fluid 22.0 -13.0 20.5 0 0 0 Washer Sallast (In Fuel Tank) 80.0 0 12.5 6640.0 0 1037. Onboard Supplemental Battery 31.0 0 20.0 155.0 0 100. Smart Barrier 0 0 0 0 0 0 0 te: (+) is added equipment to vehicle, (-) is removed equipment from vehicle ####################################		Brake Receiver/Wires		131.625	0	35.5	789.75	0	213.0
Battery 31.0 -7.5 -13.5 -1085.0 262.5 472. Oil 24.0 -5.0 7.0 -264.0 55.0 -77.0 Interior 40.625 0 21.75 -243.75 0 -130. Fuel 80.0 0 12.5 -1520.0 0 -237. Coolant 20.0 -19.0 -3.0 -140.0 133.0 21.0 Washer fluid 22.0 -13.0 20.5 0 0 0 Washer Salest (In Fuel Tank) 80.0 0 12.5 6640.0 0 1037. Onboard Supplemental Battery 31.0 0 20.0 155.0 0 100. Smart Barrier 0 10 0 <		CG Plate including DA	S	39.875	0	15.25	558.25	0	213.5
Oil 24.0 -5.0 7.0 -264.0 55.0 -77.0 Interior 40.625 0 21.75 -243.75 0 -130. Fuel 80.0 0 12.5 -1520.0 0 -237. Coolant 20.0 -19.0 -3.0 -140.0 133.0 21.0 Washer fluid 22.0 -13.0 20.5 0 0 0 Washer fluid 22.0 -13.0 20.5 0 0 0 Onboard Supplemental Battery 31.0 0 20.0 155.0 0 100. Smart Barrier 0 0 0 0 0 0 0 Smart Barrier 0 0 0 0 0 0 0 te: (+) is added equipment to vehicle, (-) is removed equipment from vehicle ####################################		Batterv	<u> </u>	31.0	-7.5	-13.5	-1085.0	262.5	472.5
Interior		Dil		24.0	-5.0	7.0	-264 0	55.0	-77 0
Fuel 80.0 0 11.0 1520.0 0 -237. Coolant 20.0 -19.0 -3.0 -140.0 133.0 21.0 Washer fluid 22.0 -13.0 20.5 0 0 0 0 Washer fluid 22.0 -13.0 20.5 0 0 0 0 Washer fluid 22.0 -13.0 20.5 0 0 0 0 0 Onboard Supplemental Battery 31.0 0 20.0 155.0 0 100. Smart Barrier 0 0 0 0 0 0 0 0 te: (+) is added equipment to vehicle, (-) is removed equipment from vehicle ######### -535.5 53813. Estimated CG Location (in.) 39.972 -0.224 22.46 Pad Scale Pennsylvania Scale 95-228908 5000 lbs. Pad Scale Pennsylvania Scale 95-22809 5000 lbs. Race Wheel Scales Intercomp 22033056 15		nterior		40 625	0.0	21 75	-243 75	0	-130.5
Coolant 20.0 -19.0 -3.0 -140.0 133.0 21.0 Washer fluid 22.0 -13.0 20.5 0 0 0 Washer fluid 22.0 -13.0 20.5 0 0 0 Washer fluid 22.0 -13.0 20.5 0 0 0 0 Washer Ballast (In Fuel Tank) 80.0 0 12.5 6640.0 0 1037. Onboard Supplemental Battery 31.0 0 20.0 155.0 0 100.0 Smart Barrier 0 0 0 0 0 0 0 0 te: (+) is added equipment to vehicle, (-) is removed equipment from vehicle ######### -535.5 53813. Estimated CG Location (in.) 39.972 -0.224 22.46 Equipment Type Manufacturer Serial # Capacity Pad Scale Pennsylvania Scale 95-228908 5000 lbs. Race Wheel Scales Intercomp 22033056 1500/pad		Fuel		80.0	0	12.5	-1520.0	0	-237.5
Column 20.0 110.0 20.5 110.0 20.0 21.0 Washer fluid 22.0 -13.0 20.5 0 0 0 0 Water Ballast (In Fuel Tank) 80.0 0 12.5 6640.0 0 1037. Onboard Supplemental Battery 31.0 0 20.0 155.0 0 100. Smart Barrier 0 0 0 0 0 0 0 0 te: (+) is added equipment to vehicle, (-) is removed equipment from vehicle ####################################				20.0	_10 0	-3.0	-140.0	133.0	207.0
Value radie 22.0 13.0 20.3 0 0 0 Water Ballast (In Fuel Tank) 80.0 0 12.5 6640.0 0 1037. Onboard Supplemental Battery 31.0 0 20.0 155.0 0 100. Smart Barrier 0 0 0 0 0 0 0 0 te: (+) is added equipment to vehicle, (-) is removed equipment from vehicle ######### -535.5 53813. Estimated CG Location (in.) 39.972 -0.224 22.46 Equipment Type Manufacturer Serial # Capacity Pad Scale Pennsylvania Scale 95-228908 5000 lbs. Pad Scale Pennsylvania Scale 95-228909 5000 lbs. Race Wheel Scales Intercomp 22033056 1500/pad	······	Nashar fluid		20.0	-13.0	20.5	-1 -1 0.0	0	0
Calibrated Scales Used Scale 95-228908 5000 lbs. Pad Scale Pennsylvania Scale 95-228909 5000 lbs. Pad Scale Pennsylvania Scale 95-228909 5000 lbs. Race Wheel Scales Intercomp 22033056 1500/pad		Nater Ballast (In Fuel -	Tank)	<u>22.0</u> 80.0	-13.0	12.5	6640.0	0	1037.5
Childbard Supplementation Bartlery 31.0 0 20.0 133.0 0 100. Smart Barrier 0 0 0 0 0 0 0 0 0 te: (+) is added equipment to vehicle, (-) is removed equipment from vehicle ####################################		Onhoord Supplemental	Botton/	21.0	0	20.0	155.0	0	1007.0
Calibrated Scales Used Estimated CG Location (in.) 39.972 -0.224 22.46 Calibrated Scales Used Equipment Type Manufacturer Serial # Capacity Pad Scale Pennsylvania Scale 95-228908 5000 lbs. Pad Scale Pennsylvania Scale 95-228909 5000 lbs. Race Wheel Scales Intercomp 22033056 1500/pad		Smart Barrier	Dattery	0	0	20.0	0	0	0.0
te: (+) is added equipment to vehicle, (-) is removed equipment from vehicle Estimated CG Location (in.) <u>39.972</u> -0.224 22.46 <u>Calibrated Scales Used</u> Equipment Type Manufacturer Serial # Capacity Pad Scale Pennsylvania Scale 95-228908 5000 lbs. Pad Scale Pennsylvania Scale 95-228909 5000 lbs. Race Wheel Scales Intercomp 22033056 1500/pad				0	0	0	0	0	0
Calibrated Scales UsedEquipment TypeManufacturerSerial #CapacityPad ScalePennsylvania Scale95-2289085000 lbs.Pad ScalePennsylvania Scale95-2289095000 lbs.Race Wheel ScalesIntercomp220330561500/pad									
Equipment TypeManufacturerSerial #CapacityPad ScalePennsylvania Scale95-2289085000 lbs.Pad ScalePennsylvania Scale95-2289095000 lbs.Race Wheel ScalesIntercomp220330561500/pad	(Calibrated Scales Us	ed]
Pad ScalePennsylvania Scale95-2289085000 lbs.Pad ScalePennsylvania Scale95-2289095000 lbs.Race Wheel ScalesIntercomp220330561500/pad	I	Equipment Type	Manufactur	er		Serial #		Capacity	
Pad Scale Pennsylvania Scale 95-228909 5000 lbs. Race Wheel Scales Intercomp 22033056 1500/pad	Ĩ	Pad Scale	Pennsylvan	nia Scale		95-228908	}	5000 lbs.	
Race Wheel Scales Intercomp 22033056 1500/pad	Į	Pad Scale	Pennsylvan	nia Scale		95-228909)	5000 lbs.	
	I	Race Wheel Scales	Intercomp			22033056		1500/pad	
	~								
	~								
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~~~~~~	*****	•••••••••••••••••	
	~								

Figure D-2. Vehicle Mass Distribution, Test No. UCSS-1

## Appendix E. Static Soil Tests



Figure E-1. Soil Strength Initial Calibration Tests, Test No. UCSS-1



Figure E-2. Static Soil Test, Test No. UCSS-1

## Appendix F. Vehicle Deformation Records

Date:	9/26/	/2018	Test Name:	UCSS-1	VIN:	jtdb	t903194056758	
Year:	20	009	Make:	Toyota	Model:		Yaris	
			VEF	ROOF	ION			
				Reel				
		Vertical Reference	Vertical Reference	Lateral Referece	Lateral Reference	Examplar	Test Vehicle	Cruch ^D
		Length ^A	Side ^B	Length ^C	Side ^B	Vehicle	Measurment	(in.)
	POINT		(Top or Bottom)		(Driver or Pass.)	Measurement		, ,
	1	6 3/4	Top of back Glass	9 1/2	Pass.	5 1/2	7 1/8	1.625
0	3	28 3/4	Top of back Glass	27 1/2	Pass.	5 1/2	6 3/4	1.25
	4	16 3/4	Top of back Glass	23 3/4	Pass.	5 3/8	7 3/4	2.375
SHI	5	23	Top of back Glass	34	Pass.	6	7 1/4	1.25
QN	6	25 1/4	Top of back Glass	38 3/8	Pass.	6 3/8	7	0.625
8								
C Length to	o vertical refe	erence, typically the top	o or bottom of the winds	hield frame.				
^b C Side of	f windshield	frame, top, bottom, pas	ssenger, or driver, in whi	ich the reference was	measured from.			
^C Length to	b lateral refe	rene either the driver or	passenger side windsh	ield frame.				
Crush is	the difference	ce between the test veh	the X & Z directions	le that is the intrusion	of the windshield defor	mation. The intru	sion is perpendic	ular to the
plane of the			the $\wedge \alpha \ge$ directions.					
			Exam	plar Vehicle Descr	iption			
			-//					
Year:	2008	Make: Toy	ota	Model: Ya	aris VIN:	jtdb	t923384017665	
Windshie	eld Deforn	nation Notes:						
	Те	st Vehicle Damage	d Windshield		Examplar	Vehicle Winds	hield	]
		or ronnoio Dannago.			Examplai			
		\$0			1			
-	11		4		-3			
	11	਼			6			ally a
	- 6	and the second s	1.1					-
	$\gamma$	5	2			1		
	-				<u> </u>			
		12/ 1 1 1	al is to					
						07/200		
Ya h	-				28	No. In the second		
							- <b></b>	
3								
111	tr i			1				
			Carton and					
	1			10	10 10 14		r	1
	1		10		n p ^a h	(*	P	1

Figure F-1. Roof Deformation Data, Test No. UCSS-1

Date:	9/26/	2018	Test Name:	UCSS-1	VIN:	jtdb	t903194056758				
I Cai.	20	09	Widne.	Τύγυια			Tans				
	VEHICLE DEFORMATION										
				WINDSHIELD							
	POINT	Vertical Reference Length ^A	Vertical Reference Side ^B (Top or Bottom)	Lateral Referece Length ^C	Lateral Reference Side ^B (Driver or Pass.)	Examplar Vehicle Measurement	Test Vehicle Measurment	Crush ^D (in.)			
	1	23 1/8	Тор	21 7/8	Driver	5 1/8	4 3/4	-0.375			
	2 3	<u>27 1/2</u> 29	Тор Тор	<u>16 5/8</u> 25 3/4	Driver Driver	5 1/8 5 1/8	<u>4 3/4</u> 5	-0.375 -0.125			
IS ON											
MIM											
A Length to	vertical refe	erence, typically the top	or bottom of the winds	hield frame.							
^B C Side of	windshield	frame, top, bottom, pas	senger, or driver, in whi	ch the reference was	measured from.						
^C Length to	lateral refe	rene either the driver or	passenger side windshi	ield frame.							
Crush is plane of the	the difference windshield	ce between the test veh which is a resultant of	cile and examplar vehic the X & Z directions.	le that is the intrusion	n of the windshield deform	mation. The intrus	sion is perpendicu	ular to the			
			Exam	plar Vehicle Desc	ription						
Year:	2008	Make: Toy	ota	Model: Y	<u>aris</u> VIN:	jtdb	t923384017665				
Windshie	d Deforn	nation Notes:									
				1							
7	Te	st Vehicle Damageo	d Windshield		Examplar	Vehicle Winds	hield	- AL-			
-I	-				M/						
AL	100	WWRSF		-	Man -	The second	-The	-			
17		AN LES			M	WRSF	2 M				
	AR			aller -		1					
1-1					I.	20 2					
18	TH	Alexan						A.A.			
4			- Although and a second		Alter			B			
	-	Liter A						ALL PARTY			
		10 10 States and	The second	I I I I I I I I I I I I I I I I I I I			2.0				
111111111		- Market - Market	0. 0		33333444444 [©] 888866848888888888	ALL		C			
	1.0004411111	11111111111111111	Contraction of the second								

Figure F-2. Windshield Deformation Data, Test No. UCSS-1

Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. UCSS-1



Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. UCSS-1A



Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. UCSS-1A



Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. UCSS-1A



Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. UCSS-1A



Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. UCSS-1A



Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. UCSS-1A



Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. UCSS-1A


Figure G-8. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. UCSS-1B



Figure G-9. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. UCSS-1B



Figure G-10. Longitudinal Occupant Displacement (SLICE-1), Test No. UCSS-1B



Figure G-11. 10-ms Average Lateral Deceleration (SLICE-1), Test No. UCSS-1B



Figure G-12. Lateral Occupant Impact Velocity (SLICE-1), Test No. UCSS-1B



Figure G-13. Lateral Occupant Displacement (SLICE-1), Test No. UCSS-1B



Figure G-14. Vehicle Angular Displacements (SLICE-1), Test No. UCSS-1B



Figure G-15. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. UCSS-1C



Figure G-16. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. UCSS-1C



Figure G-17. Longitudinal Occupant Displacement (SLICE-1), Test No. UCSS-1C



Figure G-18. 10-ms Average Lateral Deceleration (SLICE-1), Test No. UCSS-1C



Figure G-19. Lateral Occupant Impact Velocity (SLICE-1), Test No. UCSS-1C



Figure G-20. Lateral Occupant Displacement (SLICE-1), Test No. UCSS-1C



Figure G-21. Vehicle Angular Displacements (SLICE-1), Test No. UCSS-1C

## **END OF DOCUMENT**