

Research Project Number TPF-5(193) Supplement #116 DEVELOPMENT OF A MASH TL-3 APPROACH GUARDRAIL TRANSITION TO A MASH TL-4 STEEL BRIDGE RAIL

Submitted by

Jennifer D. Rasmussen, Ph.D., P.E. Research Associate Professor

Scott K. Rosenbaugh, M.S.C.E. Research Engineer

Ronald Alvarado, B.S.C.E. Graduate Research Assistant

Robert W. Bielenberg, M.S.C.E. Research Engineer Ronald K. Faller, Ph.D., P.E. Professor and MwRSF Director

Pascual Mauricio, M.S.C.E. Former Graduate Research Assistant

Joshua S. Steelman, Ph.D., P.E. Associate Professor

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office

Outdoor Test Site

Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853 (402) 472-0965 4630 NW 36th Street Lincoln, Nebraska 68524

Submitted to

Illinois Department of Transportation

2300 S Dirksen Parkway Springfield, IL 62764 **Ohio Department of Transportation** 1980 W Broad St., MailStop 1230 Columbus, OH 43223

MwRSF Research Report No. TRP-03-411-20

December 23, 2020

1. Report No. TRP-03-411-20	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle Development of a MASH TL-3 Approach Guardrail Transition to a MASH TL-4 Steel Bridge Rail		5. Report Date December 23, 2020	
		6. Performing Organization Code	
7. Author(s) Rasmussen, J.D., Rosenbaugh, S.K., Mauricio, P., Bielenberg, R.W., and	Faller, R.K., Alvarado, R., Steelman, J.S.	8. Performing Organization Report No. TRP-03-411-20	
9. Performing Organization Name Midwest Roadside Safety Facility (M Nebraska Transportation Center University of Nebraska-Lincoln	and Address IwRSF)	10. Work Unit No.	
Main Office: Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	Outdoor Test Site: 4630 N.W. 36th Street Lincoln, Nebraska 68524	11. Contract TPF-5(193) Supplement #116	
12. Sponsoring Agency Name and Illinois Department of Transportation	Address Diverse Ohio Department of	13. Type of Report and Period Covered Final Report: 2017 – 2020	
2300 S Dirksen Parkway Springfield, IL 62764	1980 W Broad St. Columbus, OH 43223	14. Sponsoring Agency Code	

TECHNICAL REPORT DOCUMENTATION PAGE

15. Supplementary Notes

Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration

16. Abstract

A *Manual for Assessing Safety Hardware* (MASH) Test Level 3 (TL-3) approach guardrail transition (AGT) was designed to connect the Midwest Guardrail System (MGS) to a MASH TL-4 steel-post, steel-tube, bridge rail, Type IL-OH. Two connection concepts were evaluated using the LS-DYNA finite element analysis computer software. The second concept was selected for further evaluation with full-scale crash testing, which included a previously-developed, thrie-beam, approach guardrail transition, modified HSS8x6x¹/₄ transition tube rails that aligned with the lower and middle bridge rail tubes, and new connection hardware designed to prevent vehicle snag during reverse-direction impacts. The critical impact points were selected using LS-DYNA for MASH test designation nos. 3-20 and 3-21 in the impact direction from the thrie-beam to the bridge rail. MASH test designation nos. 3-20 and 3-21 in the impact direction from the thrie-beam AGT were determined to be non-critical.

In test no. STBRT-1, the 2,404-lb small car impacted the AGT at a speed of 64.6 mph, an angle of 25.2 degrees, and at a location 21.3 in. upstream from post no. 19, thus resulting in an impact severity of 60.9 kip-ft. The small car was contained and redirected and resulted in a successful test according to MASH test designation no. 3-20 safety performance criteria. In test no. STBRT-2, the 5,007-lb quad cab pickup truck impacted the AGT at a speed of 62.7 mph, an angle of 24.9 degrees, and at a location 15.9 in. upstream from post no. 19, thus resulting in an impact severity of 116 kip-ft. The pickup truck was contained and redirected and resulted in a successful test according to MASH test designation no. 3-21 safety performance criteria.

17. Key Words		18. Distribution Statement	
Highway Safety, Crash Test, Roadside Appurtenances, Compliance Test, MASH 2016, Approach Guardrail Transition, Thrie-Beam Rail, Post-to-Deck, LS-DYNA, FEA, Steel-Tube, Bridge Rail, Roadside Safety, MASH, and Crash Testing		No restrictions. This document is available through the National Technical Information Service. 5285 Port Royal Road Springfield, VA 22161	
19. Security Classification (of this report) Unclassified	20. Security Classification (of this page) Unclassified	21. No. of Pages 321	22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

DISCLAIMER STATEMENT

This material is based upon work supported by the Federal Highway Administration, U.S. Department of Transportation and the Illinois and Ohio Departments of Transportation under TPF-5(193) Supplement #116. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Nebraska-Lincoln, the Illinois and Ohio Departments of Transportation, nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names, which may appear in this report, are cited only because they are considered essential to the objectives of the report. The United States (U.S.) government and the States of Illinois and Ohio do not endorse products or manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Karla Lechtenberg, Research Engineer

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) the Illinois Department of Transportation and the Ohio Department of Transportation for sponsoring this project; (2) MwRSF personnel for constructing the barriers and conducting the crash tests; (3) the Holland Computing Center at the University of Nebraska for providing computational resources; and (4) ANSYS for providing LS-DYNA computational software resources. Acknowledgement is also given to the following individuals who made a contribution to the completion of this research project.

Illinois Department of Transportation

Kevin L. Riechers, P.E., Structural Standards Development Group Engineer James J. Klein, P.E., S.E., Acting Engineer of Local Roads and Streets
Filiberto Sotelo, Safety Evaluation Engineer
Tim A. Craven, P.E., Bridge Planning Unit Chief
Mark D. Shaffer, P.E., S.E., Policy, Standards, and Specifications Unit
Patrick D. Claussen, P.E., S.E., Bridge Planning Section
Martha A. Brown, P.E., Bureau of Safety Programs and Engineering
Paul L. Lorton, P.E., S.E., Bridge Design Section
Dave L. Piper, P.E., Bureau of Safety Engineering
Jon M. McCormick, P.E., Geometrics Engineer

Ohio Department of Transportation

Sean Meddles, P.E., Assistant Administrator Bridge Standards Section Don Fisher, P.E., Roadway Standards Engineer Tim Keller, P.E., Administrator

Midwest Roadside Safety Facility

J.D. Reid, Ph.D., Professor J.C. Holloway, M.S.C.E., E.I.T., Research Engineer & Assistant Director – Physical Testing Division K.A. Lechtenberg, M.S.M.E., Research Engineer C.S. Stolle, Ph.D., Research Assistant Professor M. Asadollahi Pajouh, Ph.D., P.E., Research Assistant Professor A.T. Russell, B.S.B.A., Testing and Maintenance Technician II E.W. Krier, B.S., Construction and Testing Technician II S.M. Tighe, Construction and Testing Technician I D.S. Charroin, Construction and Testing Technician I R.M. Novak, Construction and Testing Technician I T.C. Donahoo, Construction and Testing Technician I J.T. Jones, Construction and Testing Technician I J.E. Kohtz, B.S.M.E., CAD Technician E.L. Urbank, B.A., Research Communication Specialist Z.Z. Jabr, Engineering Technician Undergraduate and Graduate Research Assistants

	SI* (MODERI	N METRIC) CONVER	SION FACTORS	
	APPROXI	MATE CONVERSIONS	TO SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
in.	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
ya mi	yards	0.914	kilometers	m km
	miles		Kiloliketis	KIII
in ²	square inches	645 2	square millimeters	mm ²
ft ²	square feet	0.093	square meters	m ²
yd ²	square yard	0.836	square meters	m^2
ac	acres	0.405	hectares	ha
mi ²	square miles	2.59	square kilometers	km ²
		VOLUME		
floz	fluid ounces	29.57	milliliters	mL
gal 63	gallons	3.785	liters	L
rt vd ³	cubic teet	0.028	cubic meters	m ³
yu	NOTE: N	volumes greater than 1.000 L shall b	e shown in m ³	111
		MASS		
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
Т	short ton (2,000 lb)	0.907	megagrams (or "metric ton")	Mg (or "t")
	Τ	EMPERATURE (exact deg	grees)	
°F	Fahrenheit	5(F-32)/9	Celsius	°C
		or (F-32)/1.8		
c	6	ILLUMINATION		
fc fi	foot-candles	10.76	lux condele per square motor	lx ad/m^2
11		DCE & DDESSUDE or ST		Cu/III
lbf	noundforce		newtons	N
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa
	APPROXIM	ATE CONVERSIONS F	ROM SI UNITS	
Symbol	When You Know	Multinly By	To Find	Symbol
Sjilloor		LENGTH	1011114	Symbol
mm	millimeters	0.039	inches	in.
m	meters	3.28	feet	ft
m	meters	1.09	yards	yd
km	kilometers	0.621	miles	mi
		AREA		
mm ²	square millimeters	0.0016	square inches	in ²
m ²	square meters	10.764	square feet	ft^2
m² bo	square meters	1.195	square yard	yd²
km ²	square kilometers	0.386	square miles	ac mi ²
KIII	square knometers	VOLUME	square miles	1111
mL	milliliter	0.034	fluid ounces	fl oz
L	liters	0.264	gallons	gal
m ³	cubic meters	35.314	cubic feet	ft ³
m ³	cubic meters	1.307	cubic yards	yd ³
		MASS		
g	grams Ivilo gramo	0.035	ounces	OZ 11
Kg Mg (or "t")	KIIOgrams megagrams (or "metric ton")	2.202	short ton (2 000 lb)	ID T
ing (or t)		EMPERATURE (exact der	grees)	
°C	Celsius	1 8C+32	Fahrenheit	°F
č	Colorus	ILLUMINATION		
lx	lux	0.0929	foot-candles	fc
cd/m ²	candela per square meter	0.2919	foot-Lamberts	fl
	FC	ORCE & PRESSURE or ST	TRESS	
Ν	newtons	0.225	poundforce	lbf
kPa	kilopascals	0.145	poundforce per square inch	lbf/in ²

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

TABLE OF CONTENTS

DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	v
LIST OF FIGURES	viii
LIST OF TABLES	xv
1 INTRODUCTION 1.1 Background and Problem Statement 1.2 Research Objectives 1.3 Research Scope	1 1 3 3
2 LITERATURE REVIEW	4
2.1 Ohio MGS Bridge Terminal Assembly, Type 1	4
2.2 Illinois Traffic Barrier Terminal, Type 6A	6
2.3 Texas 1131RC Bridge Rall Transition	ð
2.4 Olegon Two-Tube Side Mount Kan Transition	9
2.5 Alaska Multi State Thile-Dealit Hansition	10
2.0 Camonia Type TTS Transition 2.7 New Hampshire T2 Steel Bridge Rail Transition	12
2.8 Wisconsin Thrie-Beam Transition	15
2.9 TL-4 Bridge Rail and Transition for Transverse Glulam Decks	17
3 APPROACH GUARDRAIL TRANSITION CONNECTION DESIGN	19
3.1 Design Criteria	19
3.2 Base AGT Configuration	20
3.3 Termination of Top Tube Rail	21
3.4 Vehicle Snag	22
3.5 Design Concepts	23
3.5.1 Concept #1: Connection Assembly	23
3.5.2 Concept #2: Continuous Transition Tubes	25
4 LS-DYNA MODEL DEVELOPMENT	27
4.1 Development of the AGT model	27
4.2 Development of IL-OH Bridge Rail Model	28
4.3 Connection Model	30
4.3.1 Concept #1	30
4.3.2 Concept #2	32
5 LS-DYNA TRANSITION MODEL RESULTS	34

5.1 Simulation of Concept #1	34
5.2 Simulation of Concept #2	59
5.2.1 Test Designation No. 3-21 (Conventional Impact Direction)	59
5.2.2 Test Designation No. 3-20 (Conventional Impact Direction)	66
5.2.3 Test Designation No. 3-21 (Reverse Direction)	74
5.3 Discussion and CIP Selection	79
	0.0
6 TEST REQUIREMENTS AND EVALUATION CRITERIA	80
6.1 Test Requirements	80
6.2 Evaluation Criteria	81
6.3 Soil Strength Requirements	82
7 DESIGN DETAILS	83
8 TEST CONDITIONS	123
8 1 Test Facility	123
8.2 Vehicle Tow and Guidance System	123
8.3 Test Vehicles	123
8.4 Simulated Occupant	133
8.5 Data Acquisition Systems	133
8 5 1 Accelerometers	133
8 5 2 Rate Transducers	133
8.5.3 Retroreflective Ontic Sneed Tran	133
8.5.4 Digital Photography	. 134
9 FULL-SCALE CRASH TEST NO. STBRT-1	. 137
9.1 Static Soil Test	. 137
9.2 Weather Conditions	. 137
9.3 Test Description	. 137
9.4 Barrier Damage	. 144
9.5 Vehicle Damage	. 148
9.6 Occupant Risk	. 153
9.7 Discussion	. 154
10 FULL-SCALE CRASH TEST NO_STBRT-2	156
10 1 Static Soil Test	156
10.2 Weather Conditions	156
10.2 Test Description	156
10.5 Test Description	163
10.4 Damage	166
10.5 Venice Damage	171
10.0 Occupant Risk	172
10.7 Discussion	. 172
11 SUMMARY AND CONCLUSIONS	. 174
12 MASH EVALUATION	. 178
13 REFERENCES	. 180

14 APPENDICES		. 184
Appendix A.	DOT Standard Drawings for AGTs and Bridge Rail	. 185
Appendix B.	Material Specifications	226
Appendix C.	Shop Drawings for Transition Tube Rails	278
Appendix D.	Vehicle Center of Gravity Determination	281
Appendix E.	Static Soil Tests	284
Appendix F.	Vehicle Deformation Records	288
Appendix G.	Accelerometer and Rate Transducer Data Plots, Test No. STBRT-1	303
Appendix H.	Accelerometer and Rate Transducer Data Plots, Test No. STBRT-2	. 312
Appendix E. Appendix F. Appendix G. Appendix H.	Vehicle Deformation Records Accelerometer and Rate Transducer Data Plots, Test No. STBRT-1 Accelerometer and Rate Transducer Data Plots, Test No. STBRT-2	. 284 . 288 . 303 . 312

LIST OF FIGURES

Figure 1. Existing Ohio Side-Mounted Steel-Tube Bridge Railing [1]	1
Figure 2. Existing Illinois Side-Mounted Steel-Tube Bridge Railing [2]	2
Figure 3. Ohio DOT MGS Bridge Terminal Assembly, Type 1 [11]	4
Figure 4. Ohio DOT Twin Steel Bridge Railing with AGT Terminal Connector [1, 11]	5
Figure 5. Ohio Guardrail Connection Plate [11]	5
Figure 6. Illinois Traffic Barrier Terminal, Type 6A [13]	6
Figure 7. Illinois Type Side-Mounted Bridge Rail [14]	7
Figure 8. Illinois Guardrail Connection Plate [13]	7
Figure 9. Texas T131RC Bridge Rail and Transition [15]	8
Figure 10. The Oregon Two-Tube Side Mount Rail and Transition [17]	9
Figure 11. Oregon Transition Connection and Guardrail Connection Plate [17]	10
Figure 12. The Alaska Multi State Thrie-Beam Transition and Bridge Rail [19]	11
Figure 13. Alaska Guardrail Connection Plate [19]	11
Figure 14. The California Type 115 Bridge Rail and Transition [21]	12
Figure 15. Transition to Type 115 Bridge Rail Connector [21]	13
Figure 16. The New Hampshire T2 Steel Bridge Rail and Transition [22]	14
Figure 17. NH T2 Transition Guardrail Connection Plate [22]	15
Figure 18. Wisconsin Thrie-Beam Transition and Type "M" Steel Tube Bridge Rail [23]	16
Figure 19. Wisconsin Back-Up Plate [23]	16
Figure 20. TL-4 Thrie-Beam Bridge Rail and AGT for Timber Decks [24]	17
Figure 21. Top Bridge Rail Transition Details [24]	18
Figure 22. Top-Mounted Bridge Rail End Post	19
Figure 23. AGT Post Spacing Configuration	20
Figure 24. Transition Top Mounting Height	21
Figure 25. Nebraska DOT's 34-in. Tall AGT [26]	21
Figure 26. Termination of Top Bridge Railing	22
Figure 27. Thrie-Beam Rail Misaligning with Bridge Rail	23
Figure 28. Concept #1: Connection Assembly	24
Figure 29. Terminal Connector Plate for New Jersey Shaped Barriers	25
Figure 30. Connection Assembly Attached to the Bridge Rail	25
Figure 31. Concept #2: Continuous Transition Tubes	26
Figure 32. 34-in. Tall Approach Guardrail Transition Model	27
Figure 33. Bridge Rail Model	29
Figure 34. Bridge Post Model [8-9]	30
Figure 37. Concept #2 Model	33
Figure 38. Sequential Photographs, Concept #1, Simulation v10	37
Figure 39. Sequential Images, Concept #1, Simulation v11	38
Figure 40. Sequential Images, Concept #1, Simulation v1	39
Figure 41. Sequential Images, Concept #1, Simulation v13	39
Figure 42. Sequential Images, Concept #1, Simulation v14	40
Figure 43. Sequential Images, Concept #1, Simulation v15	41
Figure 44. Sequential Images, Concept #1, Simulation v16	42
Figure 45. Sequential Images, Concept #1, Simulation v1/	43
Figure 40. Sequential Images, Concept #1, Simulation v18	44
Figure 47. Sequential Images, Concept #1, Simulation v19	45

Figure 48.	Sequential Images, Concept #1, Simulation v20	46
Figure 49.	Sequential Images, Concept #1, Simulation v21	47
Figure 50.	Sequential Images, Concept #1, Simulation v22	48
Figure 51.	Sequential Images, Concept #1, Simulation v23	49
Figure 52.	Sequential Images, Concept #1, Simulation v24	50
Figure 53.	Sequential Images, Concept #1, Simulation v25	51
Figure 54.	Sequential Images, Concept #1, Simulation v26	52
Figure 55.	Sequential Images, Concept #1, Simulation v27	53
Figure 56.	Sequential Images, Concept #1, Simulation v28	54
Figure 57.	Sequential Images, Concept #1, Simulation v29	55
Figure 58.	Vehicle Interaction with System, Simulation V10	56
Figure 59.	Vehicle Interaction with System, Simulation V13	56
Figure 60.	Vehicle Interaction with System, Simulation V18	57
Figure 61.	Vehicle Interaction with System, Simulation V20	57
Figure 62.	Vehicle Interaction with System, Simulation V28	58
Figure 63.	Vehicle Interaction with System, Simulation V29	58
Figure 64.	Sequential Images, Concept #2, Simulation New-v1	61
Figure 65.	Sequential Images, Concept #2, Simulation New-v2	62
Figure 66.	Sequential Images, Concept #2, Simulation New-v3	63
Figure 67.	Sequential Images, Concept #2, Simulation New-v4	64
Figure 68.	Sequential Images, Concept #2, Simulation New-v5	65
Figure 69.	Vehicle Interaction with System, Simulation new-V4	66
Figure 70.	Sequential Images, Concept #2, Simulation New-sc-v1	68
Figure 71.	Sequential Images, Concept #2, Simulation New-sc-v2	69
Figure 72.	Sequential Images, Concept #2, Simulation New-sc-v3	70
Figure 73.	Sequential Images, Concept #2, Simulation New-sc-v4	71
Figure 74.	Sequential Images, Concept #2, Simulation New-sc-v5	72
Figure 75.	Vehicle Interaction with System, Simulation New-sc-v3	73
Figure 76.	Vehicle Interaction with System, Simulation New-sc-v4	73
Figure 77.	Vehicle Interaction with System, Simulation New-sc-v5	74
Figure 78.	Sequential Images, Concept #2, Simulation New-rev-v1	76
Figure 79.	Sequential Images, Concept #2, Simulation New-rev-v2	77
Figure 80.	Sequential Images, Concept #2, Simulation New-rev-v3	78
Figure 81.	Test Installation Layout, Test Nos. STBRT-1 and STBRT-2	85
Figure 82.	Bridge Rail Post Sections, Test Nos. STBRT-1 and STBRT-2	86
Figure 83.	Box Beam Rail Components, Test Nos. STBRT-1 and STBRT-2	87
Figure 84.	Bridge Rail Post Components, Test Nos. STBRT-1 and STBRT-2	88
Figure 85.	Welded Post Assembly, Test Nos. STBRT-1 and STBRT-2	89
Figure 86.	Bridge Rail Post Components, Test Nos. STBRT-1 and STBRT-2	90
Figure 87.	Detail D, Test Nos. STBRT-1 and STBRT-2	91
Figure 88.	Upper Splice Tube Assembly, Test Nos. STBRT-1 and STBRT-2	92
Figure 89.	Middle/Lower Splice Tube Assembly, Test Nos. STBRT-1 and STBRT-2	93
Figure 90.	Transition Layout, Test Nos. STBRT-1 and STBRT-2	94
Figure 91.	Transition Details, Test Nos. STBRT-1 and STBRT-2	95
Figure 92.	Angled Cut Tube Assembly, Test Nos. STBRT-1 and STBRT-2	96
Figure 93.	Middle/Bottom Transition Rail Assemblies, Test Nos. STBRT-1 and STBRT-2	97
Figure 94.	Transition Rail Component Details, Test Nos. STBRT-1 and STBRT-2	98

Figure 95. Transition Rail Component Details, Test Nos. STBRT-1 and STBRT-2	99
Figure 96. Top Bridge Rail Termination Assembly, Test Nos. STBRT-1 and STBRT-2	100
Figure 97. Top Bridge Rail Termination Pieces, Test Nos. STBRT-1 and STBRT-2	101
Figure 98. W-Beam to Thrie Beam Transition, Test Nos. STBRT-1 and STBRT-2	102
Figure 99. Post Sections, Test Nos. STBRT-1 and STBRT-2	103
Figure 100. AGT Post Details, Test Nos. STBRT-1 and STBRT-2	104
Figure 101. W-Beam and Thrie Beam Blockouts, Test Nos. STBRT-1 and STBRT-2	105
Figure 102. Anchor Components, Test Nos. STBRT-1 and STBRT-2	106
Figure 103. Upstream Anchorage, Test Nos. STBRT-1 and STBRT-2	107
Figure 104. Upstream Anchorage Details, Test Nos. STBRT-1 and STBRT-2	108
Figure 105. BCT Anchor Cable, Test Nos. STBRT-1 and STBRT-2	109
Figure 106. BCT Post Components and Anchor Bracket, Test Nos. STBRT-1 and STBRT-	
2	110
Figure 107. Ground Strut Assembly, Test Nos. STBRT-1 and STBRT-2	111
Figure 108. W-Beam Rails, Test Nos. STBRT-1 and STBRT-2	112
Figure 109. Thrie Beam Rails, Test Nos. STBRT-1 and STBRT-2	113
Figure 110, Rail Transition and Component Details, Test Nos, STBRT-1 and STBRT-2	114
Figure 111. Hardware Details, Test Nos. STBRT-1 and STBRT-2	115
Figure 112. Hardware Details, Test Nos. STBRT-1 and STBRT-2	116
Figure 113, Bill of Materials, Test Nos, STBRT-1 and STBRT-2.	
Figure 114, Bill of Materials, Test Nos. STBRT-1 and STBRT-2	
Figure 115, Bill of Materials, Test Nos, STBRT-1 and STBRT-2.	
Figure 116. Test Installation Photographs. Test No. STBRT-1	120
Figure 117. Test Installation Photographs – AGT Connection Hardware, Test No. STBRT-	
1	121
1 Figure 118. Test Installation Photographs. Test No. STBRT-2	121
1 Figure 118. Test Installation Photographs, Test No. STBRT-2 Figure 119. Test Vehicle. Test No. STBRT-1	121 122 125
1 Figure 118. Test Installation Photographs, Test No. STBRT-2 Figure 119. Test Vehicle, Test No. STBRT-1 Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1	121 122 125 126
1 Figure 118. Test Installation Photographs, Test No. STBRT-2 Figure 119. Test Vehicle, Test No. STBRT-1 Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1 Figure 121. Vehicle Dimensions. Test No. STBRT-1	121 122 125 126 127
1 Figure 118. Test Installation Photographs, Test No. STBRT-2 Figure 119. Test Vehicle, Test No. STBRT-1 Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1 Figure 121. Vehicle Dimensions, Test No. STBRT-1 Figure 122. Test Vehicle. Test No. STBRT-2	121 122 125 126 127 128
1 Figure 118. Test Installation Photographs, Test No. STBRT-2 Figure 119. Test Vehicle, Test No. STBRT-1 Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1 Figure 121. Vehicle Dimensions, Test No. STBRT-1 Figure 122. Test Vehicle, Test No. STBRT-2 Figure 123. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-2 Figure 123. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-2	121 122 125 126 127 128 129
1Figure 118. Test Installation Photographs, Test No. STBRT-2Figure 119. Test Vehicle, Test No. STBRT-1Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1Figure 121. Vehicle Dimensions, Test No. STBRT-1Figure 122. Test Vehicle, Test No. STBRT-2Figure 123. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-2Figure 124. Vehicle Dimensions, Test No. STBRT-2	121 122 125 126 127 128 129 130
1Figure 118. Test Installation Photographs, Test No. STBRT-2Figure 119. Test Vehicle, Test No. STBRT-1Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1Figure 121. Vehicle Dimensions, Test No. STBRT-1Figure 122. Test Vehicle, Test No. STBRT-2Figure 123. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-2Figure 124. Vehicle Dimensions, Test No. STBRT-2Figure 125. Target Geometry, Test No. STBRT-1	121 122 125 126 127 128 129 130 131
1Figure 118. Test Installation Photographs, Test No. STBRT-2Figure 119. Test Vehicle, Test No. STBRT-1Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1Figure 121. Vehicle Dimensions, Test No. STBRT-1Figure 122. Test Vehicle, Test No. STBRT-2Figure 123. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-2Figure 124. Vehicle Dimensions, Test No. STBRT-2Figure 125. Target Geometry, Test No. STBRT-1Figure 126. Target Geometry, Test No. STBRT-2	121 122 125 126 127 128 129 130 131 132
1Figure 118. Test Installation Photographs, Test No. STBRT-2Figure 119. Test Vehicle, Test No. STBRT-1Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1Figure 121. Vehicle Dimensions, Test No. STBRT-1Figure 122. Test Vehicle, Test No. STBRT-2Figure 123. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-2Figure 124. Vehicle Dimensions, Test No. STBRT-2Figure 125. Target Geometry, Test No. STBRT-1Figure 126. Target Geometry, Test No. STBRT-2Figure 127. Camera Locations, Speeds, and Lens Settings, Test No. STBRT-1	121 122 125 126 127 128 129 130 131 132 135
1Figure 118. Test Installation Photographs, Test No. STBRT-2Figure 119. Test Vehicle, Test No. STBRT-1Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1Figure 121. Vehicle Dimensions, Test No. STBRT-1Figure 122. Test Vehicle, Test No. STBRT-2Figure 123. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-2Figure 124. Vehicle Dimensions, Test No. STBRT-2Figure 125. Target Geometry, Test No. STBRT-1Figure 126. Target Geometry, Test No. STBRT-2Figure 127. Camera Locations, Speeds, and Lens Settings, Test No. STBRT-2Figure 128. Camera Locations, Speeds, and Lens Settings, Test No. STBRT-2	121 122 125 126 127 128 129 130 131 132 135 136
1Figure 118. Test Installation Photographs, Test No. STBRT-2Figure 119. Test Vehicle, Test No. STBRT-1Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1Figure 121. Vehicle Dimensions, Test No. STBRT-1Figure 122. Test Vehicle, Test No. STBRT-2Figure 123. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-2Figure 124. Vehicle Dimensions, Test No. STBRT-2Figure 125. Target Geometry, Test No. STBRT-1Figure 126. Target Geometry, Test No. STBRT-2Figure 127. Camera Locations, Speeds, and Lens Settings, Test No. STBRT-1Figure 128. Camera Location, Speeds, and Lens Settings, Test No. STBRT-2Figure 129. Impact Location, Test No. STBRT-1	121 122 125 126 127 128 129 130 131 132 135 136 138
1Figure 118. Test Installation Photographs, Test No. STBRT-2Figure 119. Test Vehicle, Test No. STBRT-1Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1Figure 121. Vehicle Dimensions, Test No. STBRT-1Figure 122. Test Vehicle, Test No. STBRT-2Figure 123. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-2Figure 124. Vehicle Dimensions, Test No. STBRT-2Figure 125. Target Geometry, Test No. STBRT-1Figure 126. Target Geometry, Test No. STBRT-2Figure 127. Camera Locations, Speeds, and Lens Settings, Test No. STBRT-1Figure 128. Camera Locations, Speeds, and Lens Settings, Test No. STBRT-2Figure 129. Impact Location, Test No. STBRT-1Figure 130. Sequential PhotographsTest No. STBRT-1	121 122 125 126 127 128 129 130 131 132 135 136 138 140
1Figure 118. Test Installation Photographs, Test No. STBRT-2Figure 119. Test Vehicle, Test No. STBRT-1Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1Figure 121. Vehicle Dimensions, Test No. STBRT-1Figure 122. Test Vehicle, Test No. STBRT-2Figure 123. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-2Figure 124. Vehicle Dimensions, Test No. STBRT-1Figure 125. Target Geometry, Test No. STBRT-1Figure 126. Target Geometry, Test No. STBRT-2Figure 127. Camera Locations, Speeds, and Lens Settings, Test No. STBRT-1Figure 128. Camera Location, Speeds, and Lens Settings, Test No. STBRT-2Figure 129. Impact Location, Test No. STBRT-1Figure 130. Sequential Photographs, Test No. STBRT-1Figure 131. Sequential Photographs, Test No. STBRT-1	121 122 125 126 127 128 129 130 131 132 135 136 138 140 141
1Figure 118. Test Installation Photographs, Test No. STBRT-2Figure 119. Test Vehicle, Test No. STBRT-1Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1Figure 121. Vehicle Dimensions, Test No. STBRT-1Figure 122. Test Vehicle, Test No. STBRT-2Figure 123. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-2Figure 124. Vehicle Dimensions, Test No. STBRT-1Figure 125. Target Geometry, Test No. STBRT-1Figure 126. Target Geometry, Test No. STBRT-2Figure 127. Camera Locations, Speeds, and Lens Settings, Test No. STBRT-1Figure 128. Camera Location, Test No. STBRT-1Figure 129. Impact Location, Test No. STBRT-1Figure 130. Sequential Photographs, Test No. STBRT-1Figure 131. Sequential Photographs, Test No. STBRT-1Figure 132. Documentary Photographs, Test No. STBRT-1	121 122 125 126 127 128 129 130 131 132 135 136 138 140 141 142
1Figure 118. Test Installation Photographs, Test No. STBRT-2Figure 119. Test Vehicle, Test No. STBRT-1Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1Figure 121. Vehicle Dimensions, Test No. STBRT-1Figure 122. Test Vehicle, Test No. STBRT-2Figure 123. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-2Figure 124. Vehicle Dimensions, Test No. STBRT-1Figure 125. Target Geometry, Test No. STBRT-1Figure 126. Target Geometry, Test No. STBRT-2Figure 127. Camera Locations, Speeds, and Lens Settings, Test No. STBRT-1Figure 128. Camera Location, Speeds, and Lens Settings, Test No. STBRT-2Figure 129. Impact Location, Test No. STBRT-1Figure 130. Sequential Photographs, Test No. STBRT-1Figure 131. Sequential Photographs, Test No. STBRT-1Figure 132. Documentary Photographs, Test No. STBRT-1Figure 133. Vehicle Final Position and Trajectory MarksFigure 133. Vehicle Final Position and Trajectory Marks	121 122 125 126 127 128 128 129 130 131 132 135 136 138 140 141 142 142 143
1Figure 118. Test Installation Photographs, Test No. STBRT-2Figure 119. Test Vehicle, Test No. STBRT-1Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1Figure 121. Vehicle Dimensions, Test No. STBRT-1Figure 122. Test Vehicle, Test No. STBRT-2Figure 123. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-2Figure 124. Vehicle Dimensions, Test No. STBRT-2Figure 125. Target Geometry, Test No. STBRT-1Figure 126. Target Geometry, Test No. STBRT-2Figure 127. Camera Locations, Speeds, and Lens Settings, Test No. STBRT-1Figure 128. Camera Locations, Speeds, and Lens Settings, Test No. STBRT-2Figure 129. Impact Location, Test No. STBRT-1Figure 130. Sequential Photographs, Test No. STBRT-1Figure 131. Sequential Photographs, Test No. STBRT-1Figure 132. Documentary Photographs, Test No. STBRT-1Figure 133. Vehicle Final Position and Trajectory Marks, Test No. STBRT-1Figure 134. System Damage Test No. STBRT-1	121 122 125 126 127 128 129 130 131 132 135 136 138 140 141 142 143 145
1 Figure 118. Test Installation Photographs, Test No. STBRT-2. Figure 119. Test Vehicle, Test No. STBRT-1 Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1 Figure 121. Vehicle Dimensions, Test No. STBRT-1 Figure 122. Test Vehicle, Test No. STBRT-2 Figure 123. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-2 Figure 124. Vehicle Dimensions, Test No. STBRT-1 Figure 125. Target Geometry, Test No. STBRT-1 Figure 126. Target Geometry, Test No. STBRT-2 Figure 127. Camera Locations, Speeds, and Lens Settings, Test No. STBRT-1 Figure 128. Camera Locations, Speeds, and Lens Settings, Test No. STBRT-2 Figure 129. Impact Location, Test No. STBRT-1 Figure 130. Sequential Photographs, Test No. STBRT-1 Figure 131. Sequential Photographs, Test No. STBRT-1 Figure 132. Documentary Photographs, Test No. STBRT-1 Figure 133. Vehicle Final Position and Trajectory Marks, Test No. STBRT-1 Figure 134. System Damage, Test No. STBRT-1 Figure 135. Thrie Beam and Transition Rail Damage Test No. STBRT-1	121 122 125 126 127 128 129 130 131 132 135 136 136 140 141 142 143 145 146
1 Figure 118. Test Installation Photographs, Test No. STBRT-2 Figure 119. Test Vehicle, Test No. STBRT-1 Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1 Figure 121. Vehicle Dimensions, Test No. STBRT-1 Figure 122. Test Vehicle, Test No. STBRT-2 Figure 123. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-2 Figure 124. Vehicle Dimensions, Test No. STBRT-2 Figure 125. Target Geometry, Test No. STBRT-1 Figure 126. Target Geometry, Test No. STBRT-2 Figure 127. Camera Locations, Speeds, and Lens Settings, Test No. STBRT-1 Figure 128. Camera Location, Speeds, and Lens Settings, Test No. STBRT-2 Figure 129. Impact Location, Test No. STBRT-1 Figure 130. Sequential Photographs, Test No. STBRT-1 Figure 131. Sequential Photographs, Test No. STBRT-1 Figure 132. Documentary Photographs, Test No. STBRT-1 Figure 133. Vehicle Final Position and Trajectory Marks, Test No. STBRT-1 Figure 134. System Damage, Test No. STBRT-1 Figure 135. Thrie Beam and Transition Rail Damage, Test No. STBRT-1 Figure 136. Deck Damage, Test No. STBRT-1	121 122 125 126 127 128 129 130 131 132 135 136 138 140 141 142 143 145 146 147
1	121 122 125 126 127 128 129 130 131 132 135 136 138 140 141 142 143 145 146 147 148
1	121 122 125 126 127 128 129 130 131 132 135 136 136 140 141 142 143 145 146 147 148 149
1Figure 118. Test Installation Photographs, Test No. STBRT-2Figure 119. Test Vehicle, Test No. STBRT-1Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1Figure 121. Vehicle Dimensions, Test No. STBRT-1Figure 122. Test Vehicle, Test No. STBRT-2Figure 123. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-2Figure 124. Vehicle Dimensions, Test No. STBRT-2Figure 125. Target Geometry, Test No. STBRT-1Figure 126. Target Geometry, Test No. STBRT-2Figure 127. Camera Locations, Speeds, and Lens Settings, Test No. STBRT-1Figure 128. Camera Locations, Speeds, and Lens Settings, Test No. STBRT-2Figure 129. Impact Location, Test No. STBRT-1Figure 130. Sequential Photographs, Test No. STBRT-1Figure 131. Sequential Photographs, Test No. STBRT-1Figure 132. Documentary Photographs, Test No. STBRT-1Figure 133. Vehicle Final Position and Trajectory Marks, Test No. STBRT-1Figure 134. System Damage, Test No. STBRT-1Figure 135. Thrie Beam and Transition Rail Damage, Test No. STBRT-1Figure 136. Deck Damage, Test No. STBRT-1Figure 137. Permanent Set, Dynamic Deflection, and Working Width, Test No. STBRT-1Figure 138. Vehicle Damage, Test No. STBRT-1Figure 139. Vehicle Damage, Test No. STBRT-1	121 122 125 126 127 128 129 130 131 132 135 136 138 140 141 142 143 145 146 147 148 149 150

Figure 140. Occupant Compartment Damage, Test No. STBRT-1	151
Figure 141. Undercarriage Damage, Test No. STBRT-1	152
Figure 142. Summary of Test Results and Sequential Photographs, Test No. STBRT-1	155
Figure 143. Impact Location, Test No. STBRT-2	157
Figure 144. Sequential Photographs, Test No. STBRT-2	159
Figure 145. Sequential Photographs, Test No. STBRT-2	160
Figure 146. Documentary Photographs, Test No. STBRT-2	161
Figure 147. Vehicle Final Position and Trajectory Marks, Test No. STBRT-2	162
Figure 148. System Damage, Test No. STBRT-2	164
Figure 149. Thrie Beam and Transition Rail Damage, Test No. STBRT-2	165
Figure 150. Permanent Set, Dynamic Deflection, and Working Width, Test No. STBRT-2	166
Figure 151. Vehicle Damage, Test No. STBRT-2	167
Figure 152. Vehicle Damage, Test No. STBRT-2	168
Figure 153. Occupant Compartment Damage, Test No. STBRT-2	169
Figure 154. Undercarriage Damage, Test No. STBRT-2	170
Figure 155. Summary of Test Results and Sequential Photographs, Test No. STBRT-2	173
Figure A-1. Ohio MGS Bridge Terminal Assembly, Type 1, Sheet 1 of 2	186
Figure A-2. Ohio MGS Bridge Terminal Assembly, Type 1, Sheet 2 of 2	187
Figure A-3. Ohio Twin Steel Tube Bridge Railing, Sheet 1 of 4	188
Figure A-4. Ohio Twin Steel Tube Bridge Railing, Sheet 2 of 4	189
Figure A-5. Ohio Twin Steel Tube Bridge Railing, Sheet 3 of 4	190
Figure A-6. Ohio Twin Steel Tube Bridge Railing, Sheet 4 of 4	191
Figure A-7. Illinois Traffic Barrier Terminal, Type 6A, Sheet 1 of 3	192
Figure A-8. Illinois Traffic Barrier Terminal, Type 6A, Sheet 2 of 3	193
Figure A-9. Illinois Traffic Barrier Terminal, Type 6A, Sheet 3 of 3	194
Figure A-10. Illinois Type SM Side Mount Bridge Rail	195
Figure A-11. Texas T131RC Bridge Rail Transition, Sheet 1 of 7	196
Figure A-12. Texas T131RC Bridge Rail Transition, Sheet 2 of 7	197
Figure A-13. Texas T131RC Bridge Rail Transition, Sheet 3 of 7	198
Figure A-14. Texas T131RC Bridge Rail Transition, Sheet 4 of 7	199
Figure A-15. Texas T131RC Bridge Rail Transition, Sheet 5 of 7	200
Figure A-16. Texas T131RC Bridge Rail Transition, Sheet 6 of 7	201
Figure A-17. Texas T131RC Bridge Rail Transition, Sheet 7 of 7	202
Figure A-18. Texas T131RC Bridge Rail, Sheet 1 of 9	203
Figure A-19. Texas T131RC Bridge Rail, Sheet 2 of 9	204
Figure A-20. Texas T131RC Bridge Rail, Sheet 3 of 9	205
Figure A-21. Texas T131RC Bridge Rail, Sheet 4 of 9	206
Figure A-22. Texas T131RC Bridge Rail, Sheet 5 of 9	207
Figure A-23. Texas T131RC Bridge Rail, Sheet 6 of 9	208
Figure A-24. Texas T131RC Bridge Rail, Sheet 7 of 9	209
Figure A-25. Texas T131RC Bridge Rail, Sheet 8 of 9	210
Figure A-26. Texas T131RC Bridge Rail, Sheet 9 of 9	211
Figure A-27. Oregon Two-Tube Side Mount Rail Transition	212
Figure A-28. Oregon Two-Tube Side Mount Rail	213
Figure A-29. Alaska Multi-State Thrie-Beam Transition, Sheet 1 of 2	214
Figure A-30. Alaska Multi-State Thrie-Beam Transition, Sheet 2 of 2	215
Figure A-31. Alaska Multi-State Bridge Rail, Sheet 1 of 3	216

Figure A-32. Alaska Multi-State Bridge Rail, Sheet 2 of 3	217
Figure A-33. Alaska Multi-State Bridge Rail, Sheet 3 of 3	218
Figure A-34. California Type 115 Bridge Rail, Sheet 1 of 3	219
Figure A-35. California Type 115 Bridge Rail, Sheet 2 of 3	220
Figure A-36. California Type 115 Bridge Rail, Sheet 3 of 3	221
Figure A-37. New Hampshire T2 Steel Bridge Rail Transition	222
Figure A-38. New Hampshire T2 Steel Bridge Rail	223
Figure A-39. Wisconsin Thrie-Beam Transition Connection	224
Figure A-40. Wisconsin Tubular Steel Railing Type "M"	225
Figure B-1. 12-gauge Thrie Beam Sections, Test Nos. STBRT-1 and STBRT-2	230
Figure B-2. 10-ga. W-to-Thrie Transition Segment, Test Nos. STBRT-1 and STBRT-2	231
Figure B-3. 12-gauge W-Beam Sections, Test Nos. STBRT-1 and STBRT-2	232
Figure B-4. 10-gauge Thrie Beam Terminal Connector, Test Nos. STBRT-1 and STBRT-2	233
Figure B-5. 6 ft – 3 in., 12-gauge W-Beam, Test Nos. STBRT-1 and STBRT-2	234
Figure B-6. ⁵ / ₁₆ -in. Plates, Test Nos. STBRT-1 and STBRT-2	234
Figure B-7. 3/8-in. Plates, Test Nos. STBRT-1 and STBRT-2	235
Figure B-8. 17 ³ / ₄ -in. x 13-in. x 1-in. Post Plate, Test Nos. STBRT-1 and STBRT-2	235
Figure B-9. ¹ / ₄ -in. Gusset Plate, Test Nos. STBRT-1 and STBRT-2	236
Figure B-10. 20-in. Long HSS5x4x ¹ / ₂ , Test Nos. STBRT-1 and STBRT-2	237
Figure B-11. HSS8x6x ¹ / ₄ , Test Nos. STBRT-1 and STBRT-2	238
Figure B-12. HSS12x4x ¹ /4, Test Nos. STBRT-1 and STBRT-2	239
Figure B-13. 20-in. x 15-in. x ³ / ₁₆ -in. Steel Plate, Test Nos. STBRT-1 and STBRT-2	240
Figure B-14. BCT Timber Post, Test Nos. STBRT-1 and STBRT-2	240
Figure B-15. BCT Timber Post, Test Nos. STBRT-1 and STBRT-2	241
Figure B-16. 72-in. Long Foundation Tube, Test Nos. STBRT-1 and STBRT-2	242
Figure B-17. Ground Strut Assembly, Test Nos. STBRT-1 and STBRT-2	243
Figure B-18. BCT Cable Anchor Assembly, Test Nos. STBRT-1 and STBRT-2	244
Figure B-19. 8-in. x 8-in. x 5%-in. Plate, Test Nos. STBRT-1 and STBRT-2	245
Figure B-20. Anchor Bracket Assembly, Test Nos. STBRT-1 and STBRT-2	245
Figure B-21. 2 ³ / ₈ -in. O.D. x 6-in. Post Sleeve, Test Nos. STBRT-1 and STBRT-2	246
Figure B-22. Bent 16D Double Head Nail, Test Nos. STBRT-1 and STBRT-2	246
Figure B-23. W6x9 or W6x8.5, 72-in. Long Steel Post, Test Nos. STBRT-1 and STBRT-2	247
Figure B-24. W6x9 or W6x8.5, 72-in. Long Steel Post, Test Nos. STBRT-1 and STBRT-2	247
Figure B-25. W6x15, 84-in. Long Steel Post, Test Nos. STBRT-1 and STBRT-2	248
Figure B-26. W6x15, 53 ¹ / ₂ -in. Long Steel Post, Test Nos. STBRT-1 and STBRT-2	248
Figure B-27. 6-in. x 8-in. x 19-in. Timber Blockout, Test Nos. STBRT-1 and STBRT-2	249
Figure B-28. 6-in. x 12-in. x 19-in. Timber Blockout, Test Nos. STBRT-1 and STBRT-2	249
Figure B-29. 6-in. x 12-in. x 19-in. Timber Blockout, Test Nos. STBRT-1 and STBRT-2	250
Figure B-30. 6-in. x 12-in. x 14 ¹ / ₄ -in. Timber Blockout, Test Nos. STBRT-1 and STBRT-2	251
Figure B-31. ⁵ / ₈ -in. Dia., 14-in. Long Guardrail Bolt, Test Nos. STBRT-1 and STBRT-2	252
Figure B-32. 5%-in. Dia., 10-in. Long Guardrail Bolt, Test Nos. STBRT-1 and STBRT-2	253
Figure B-33. 5%-in. Dia., 2-in. Long Guardrail Bolt, Test Nos. STBRT-1 and STBRT-2	254
Figure B-34. 5%-in. Dia., 11/4-in. Long Guardrail Bolt, Test Nos. STBRT-1 and STBRT-2	255
Figure B-35. 5%-in. Dia., 10 in. Long Hex Bolt, Test Nos. STBRT-1 and STBRT-2	256
Figure B-36. 5%-in. Dia., 11/2-in. Long Hex Bolt, Test Nos. STBRT-1 and STBRT-2	257
Figure B-37. Round Head Bolts, Test Nos. STBRT-1 and STBRT-2	258
Figure B-38. Heavy Hex and Round Head Bolts, Test Nos. STBRT-1 and STBRT-2	259

Figure B-39. 7%-in. Dia., 8-in. Long Hex Bolt, Test Nos. STBRT-1 and STBRT-2......259 Figure B-40. 1-in. Dia, 3¹/₂-in. Long Heavy Hex Bolt, Test Nos. STBRT-1 and STBRT-2260 Figure B-41. 1-in. Dia., 2¹/₄-in. Long Heavy Hex Bolt, Test Nos. STBRT-1 and STBRT-2261 Figure B-42. 5%-in. Dia. SAE Plain Round Washer, Test Nos. STBRT-1 and STBRT-2......262 Figure B-43. 7%-in. Dia. USS Plain Round Washer, Test Nos. STBRT-1 and STBRT-2......263 Figure B-44. 1-in. Dia. USS Plain Round Washer, Test Nos. STBRT-1 and STBRT-2......263 Figure B-45. ¾-in. Dia. SAE Hardened Flat Washer, Test Nos. STBRT-1 and STBRT-2.......264 Figure B-46. ¹/₄-in. Thick, 2¹/₄-in. Square Washer, Test Nos. STBRT-1 and STBRT-2......265 Figure B-48. %-in. Dia. Guardrail Nut, Test Nos. STBRT-1 and STBRT-2......267 Figure B-49. %-in. Dia. Hex Nut, Test Nos. STBRT-1 and STBRT-2......268 Figure B-51. 7%-in. Dia. Hex Nut, Test Nos. STBRT-1 and STBRT-2......270 Figure B-52. 1-in. 8 UNC Heavy Hex Nut, Test Nos. STBRT-1 and STBRT-2271 Figure B-53. 1-in. Dia. Hex Nut, Test Nos. STBRT-1 and STBRT-2......272 Figure B-56. HSS12x4x¹/₄ Transition Rail, Test Nos. STBRT-1 and STBRT-2......275 Figure B-57. HSS8x6x¹/₄ Transition Rails, Test No. STBRT-1276 Figure F-5. Max. Occupant Compartment Deformations by Location, Test No. STBRT-1293 Figure F-6. Exterior Vehicle Crush (NASS) - Front, Test No. STBRT-1......294 Figure F-12. Max. Occupant Compartment Deformations by Location, Test No. STBRT-2.....300 Figure F-14. Exterior Vehicle Crush (NASS) - Side, Test No. STBRT-2......302 Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. STBRT-1304 Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. STBRT-1......305

Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. STBRT-1	307
Figure G-8. Acceleration Severity Index (SLICE-1), Test No. STBRT-1	307
Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. STBRT-1	308
Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. STBRT-1	308
Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. STBRT-1	309
Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. STBRT-1	309
Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. STBRT-1	310
Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. STBRT-1	310
Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. STBRT-1	311
Figure G-16. Acceleration Severity Index (SLICE-2), Test No. STBRT-1	311
Figure H-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. STBRT-2	313
Figure H-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. STBRT-2	313
Figure H-3. Longitudinal Occupant Displacement (SLICE-1), Test No. STBRT-2	314
Figure H-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. STBRT-2	314
Figure H-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. STBRT-2	315
Figure H-6. Lateral Occupant Displacement (SLICE-1), Test No. STBRT-2	315
Figure H-7. Vehicle Angular Displacements (SLICE-1), Test No. STBRT-2	316
Figure H-8. Acceleration Severity Index (SLICE-1), Test No. STBRT-2	316
Figure H-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. STBRT-2	317
Figure H-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. STBRT-2	317
Figure H-11. Longitudinal Occupant Displacement (SLICE-2), Test No. STBRT-2	318
Figure H-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. STBRT-2	318
Figure H-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. STBRT-2	319
Figure H-14. Lateral Occupant Displacement (SLICE-2), Test No. STBRT-2	319
Figure H-15. Vehicle Angular Displacements (SLICE-2), Test No. STBRT-2	320
Figure H-16. Acceleration Severity Index (SLICE-2), Test No. STBRT-2	320

LIST OF TABLES

Table 1. Comparison of Test No. 34AGT-1 and Simulation	28
Table 2. Comparison of Test No. 34AGT-2 and Simulation	28
Table 3. Summary of Simulations on Concept #1, Test Designation No. 3-21	34
Table 4. Summary of Concept #1 Simulation Results	35
Table 5. Summary of Simulations on Concept #2, Test Designation No. 3-21 (TB to BR)	59
Table 6. Summary of Concept #2 Simulation Results, Test Designation No. 3-21 (TB to	
BR)	60
Table 7. Summary of Simulations on Concept #2, Test Designation No. 3-20 (TB to BR)	66
Table 8. Summary of Concept #2 Simulation Results, Test Designation No. 3-20 (TB to	
BR)	67
Table 9. Summary of Simulations on Concept #2, Test Designation No. 3-21 (BR to TB)	74
Table 10. Summary of Concept #2 Simulation Results, Test Designation No. 3-21 (BR to	
TB)	75
Table 11. MASH 2016 TL-3 Crash Test Conditions for Approach Guardrail Transitions [5]	80
Table 12. MASH 2016 Evaluation Criteria for Approach Guardrail Transitions [5]	82
Table 13. Weather Conditions, Test No. STBRT-1	137
Table 14. Sequential Description of Impact Events, Test No. STBRT-1	139
Table 15. Maximum Occupant Compartment Intrusion by Location, Test No. STBRT-1	153
Table 16. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. STBRT-1	154
Table 17. Weather Conditions, Test No. STBRT-2	156
Table 18. Sequential Description of Impact Events, Test No. STBRT-2	158
Table 19. Maximum Occupant Compartment Intrusion by Location, Test No. STBRT-2	171
Table 20. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. STBRT-2	172
Table 21. Summary of Safety Performance Evaluation	177
Table B-1. Bill of Materials, Test Nos. STBRT-1 and STBRT-2	227
Table B-1. Bill of Materials, Test Nos. STBRT-1 and STBRT-2, Cont	228
Table B-1. Bill of Materials, Test Nos. STBRT-1 and STBRT-2, Cont	229

1 INTRODUCTION

1.1 Background and Problem Statement

Over the past few decades, the Ohio and Illinois Departments of Transportation (Ohio DOT and Illinois DOT) have regularly installed steel-tube bridge railings to safely treat the edges of their bridges. These bridge railings consist of multiple steel-tube rails mounted to the face of I-section steel posts, as shown in Figures 1 and 2 for the states of Ohio and Illinois, respectively. The systems were designed without a curb to allow water to drain off the sides of a bridge, and the posts were mounted to the side of the bridge deck to maximize the traversable width of the bridge.

Figure 1. Existing Ohio Side-Mounted Steel-Tube Bridge Railing [1]

Figure 2. Existing Illinois Side-Mounted Steel-Tube Bridge Railing [2]

The bridge railings shown in Figures 1 and 2 were originally developed to satisfy the Test Level 4 (TL-4) safety criteria found in National Cooperative Highway Research Program (NCHRP) Report No. 350 [3]. However, in 2009, the American Association of State Highway and Transportation Officials (AASHTO) implemented a new standard for the evaluation of roadside hardware, the *Manual for Assessing Safety Hardware* (MASH) [4]. The MASH criteria superseded the criteria found in NCHRP Report 350 and significantly increased the impact severity for the three crash tests prescribed under TL-4 conditions. Specifically, the impact angle for the small car test was increased, the impact speed for the single unit truck test was increased, and the weight of all three vehicles (small car, pickup truck, and the single unit truck) were increased. Note, the 2nd Edition of MASH was published in 2016 [5] with minimal changes to the criteria for evaluating bridge rails. As such, the existing steel-tube bridge rails needed to be modified and evaluated to the new MASH 2016 TL-4 safety performance criteria.

The ends of bridge rails require approach guardrail transitions (AGTs) to safely connect the bridge rail to guardrail systems on the adjacent roadway. Specifically configured to prevent pocketing and vehicle snag on the bridge rail end, AGTs are typically designed to meet TL-3 impact safety standards. With the geometric and strength modifications required of the steel-tube bridge rail to satisfy MASH 2016 TL-4 criteria, development of a new AGT and associated modifications to the ends of the bridge rail were also required to complete the design of the desired MASH 2016 TL-4 bridge rail.

1.2 Research Objectives

The objective of this research study was to develop a MASH 2016 TL-4 steel-tube bridge rail with a TL-3 approach guardrail transition. The design and evaluation of the bridge rail was completed in previous phases of this research. Documentation of the development of the bridge rail can be found in reports by Pena and Mauricio [6-9]. The research efforts documented herein cover the development and evaluation of the AGT attached to the ends of the new bridge rail.

The AGT was required to safely connect the new MASH TL-4 steel-tube bridge rail to the Midwest Guardrail System (MGS) located on the adjacent roadway while preventing snagging on the bridge rail during both conventional and reverse-direction (traveling from bridge to roadway) impacts. Additionally, it was desired to maximize the distance between the final AGT post and the first bridge rail post to avoid post installation obstacles, such as bridge abutments and wing walls. Since the bridge rail was developed to remain crashworthy after roadway overlays up to 3 in. thick, the same criteria were desired for the adjacent AGT. Although the bridge rail was MASH TL-4 compliant, the AGT was only required to satisfy MASH TL-3 criteria, which matched the test level of the adjacent MGS.

The research presented in this report pertains only to the development and MASH 2016 evaluation of the new TL-3 AGT to the TL-4 steel-tube bridge rail. Recommendations and implementation guidance for both the bridge rail and the AGT were documented in a separate summary report [10], the fourth and final report in the series related to this research project.

1.3 Research Scope

Development of a MASH TL-3 AGT for use with the new TL-4 steel-tube bridge rail began with the review of previous NCHRP Report 350 and MASH AGTs connected to steel-tube bridge rails. A previously developed W-to-thrie beam guardrail stiffness transition was selected for use at the upstream end of the AGT, so design efforts focused on the downstream region of the AGT and the end of the bridge rail. Modifications were made to the steel tube rails to prevent vehicle snag, and new rail components were designed to connect with the thrie-beam AGT. LS-DYNA computer simulations were utilized to conduct preliminary evaluations of the new AGT concepts and to identify critical impact points (CIPs). Two full-scale crash tests were conducted on the new AGT in accordance with MASH test designation nos. 3-20 and 3-21. Finally, the test results were evaluated in accordance with MASH safety performance criteria.

2 LITERATURE REVIEW

A literature review was performed on connections between previously crash-tested AGTs and bridge rails that were considered relevant to the development of a TL-3 AGT for use with the new TL-4 steel-tube bridge rail. The review focused on MASH TL-3 AGTs and NCHRP Report 350 TL-3 and TL-4 AGTs. Relevant systems are discussed in the following sections.

Various thrie-beam AGTs that connect to steel bridge rails and incorporate tube-section rail elements exist in current roadside applications. However, not all AGTs have been crash tested. The bridge rails tended to consist of strong, steel posts that were either side-mounted or top-mounted to the bridge deck. The AGTs typically incorporated nested thrie beam guardrail and guardrail posts with a reduced post spacing as compared to typical guardrail installations.

2.1 Ohio MGS Bridge Terminal Assembly, Type 1

Ohio DOT's MGS Bridge Terminal Assembly, Type 1 was a 31-in. tall thrie-beam transition connecting to the 31-in. tall Twin Steel Tube Bridge Railing or a concrete parapet [11], as shown in Figure 3. The AGT consisted of nested thrie-beam rail on 12-in. deep wood blockouts mounted on six W6x9 steel posts spaced at 18³/₄-in. on-center, commonly referred to as quarter-post spacing. No actual crash test data and/or Federal Highway Administration (FHWA) reports were found, but detailed plans of the system were obtained from Ohio DOT. Complete drawing details for the transition and bridge rail are shown in Figures A-1 through A-6 of Appendix A.

The Twin Steel Tube Bridge Railing was a curb- or side-mounted system consisting of wide-flange posts and tubular steel rail elements designed and tested to the former AASHTO crash standards as satisfying Performance Level 2 (PL-2) safety criteria [12], approximately equivalent to NCHRP Report 350 TL-4 safety standards. The bridge rail consisted of W6x25 posts spaced at 6 ft – 3 in. with two HSS8x4x⁵/₁₆ rail elements, as shown in Figure 4.

Figure 3. Ohio DOT MGS Bridge Terminal Assembly, Type 1 [11]

Figure 4. Ohio DOT Twin Steel Bridge Railing with AGT Terminal Connector [1, 11]

The connection of the thrie-beam rail to the steel-tube bridge rail consisted of a ¹/₂-in. thick guardrail connection plate mounted to the front face of the tube railings at 1 ft upstream from the first bridge rail post, as shown in Figure 5. The guardrail connection plate was a 12-in. x 22-in. rectangular plate with a ¹/₂-in. stiffener on the back side of the plate. A separate ¹/₂-in. thick deflector plate was welded to the rectangular plate and stiffener and was situated between the tube railings. This deflector plate tapered 4 in. to the backside of the railings over a 12-in. length at a 3:1 taper ratio to prevent snag at the connection during reverse-direction impacts. However, the transition system was never tested in the reverse direction or in the normal traffic direction.

A thrie-beam terminal connector was connected to nested thrie-beam rails and mounted to the connection plate and the tube railings with eight ⁷/₈-in. diameter by 6-in. long A325 bolts. The nested thrie-beam rails and terminal connector were also connected to the front face of the tube railings using two ⁵/₈-in. diameter by 7-in. long bolts, with plate washers and hex nuts. Bearing plates were placed between the guardrail and the tube railings.

2.2 Illinois Traffic Barrier Terminal, Type 6A

The Illinois Traffic Barrier Terminal, Type 6A was a 31-in. tall thrie-beam transition connecting to a 32-in. tall top- or side-mounted, two-tube bridge rail [13], as shown in Figure 6. Similar to the Ohio AGT, the Illinois AGT utilized nested thrie-beam rail, six W6x9 steel posts at quarter-post spacing, and 8-in. deep wood blockouts. No crash test data was found on the Illinois AGT. Complete drawing details for the transition and bridge rail are shown in Figures A-7 through A-10 of Appendix A.

Figure 6. Illinois Traffic Barrier Terminal, Type 6A [13]

The Illinois Type SM Side-Mounted Bridge Rail was a side-mounted railing consisting of wide-flange posts and tubular steel rail elements designed and tested to the former AASHTO PL-2 crash safety standards [14], approximately equivalent to NCHRP Report 350 TL-4 standards. The bridge rail design consisted of W6x25 posts spaced at 6 ft – 3 in. with an HSS8x4x⁵/₁₆ top rail element and an HSS6x4x¹/₄ bottom rail element, as shown in Figure 7.

Figure 7. Illinois Type Side-Mounted Bridge Rail [14]

The connection of the thrie-beam rail to the steel-tube bridge rail consisted of a $\frac{1}{2}$ -in. guardrail connection plate mounted to the front face of the tube railings at 1 ft upstream from the first bridge rail post, as shown in Figure 8. The guardrail connection plate consisted of a $13\frac{3}{8}$ -in. x 21-in. rectangular plate, a $\frac{3}{8}$ -in. stiffener on the back side of the plate, and a 4-in. x 4-in. x $\frac{3}{8}$ -in. angle. The stiffener and angle were placed below the top railing and above the lower railing, respectively. A separate $\frac{1}{2}$ -in. deflector plate was welded to the rectangular plate and stiffener and was situated between the tube railings. This deflector plate tapered 4 in. to the backside of the railings over a 12 in. length at a 3:1 taper to prevent snag at the connection in reverse-direction impacts. However, the transition system was never tested in the reverse direction.

Figure 8. Illinois Guardrail Connection Plate [13]

The thrie-beam terminal connector mounted the guardrail connection plate to the bridge rail with seven $\frac{7}{8}$ -in. diameter, high-strength bolts. The spliced connection between the nested thrie-beam rails and terminal connector was also connected to the ends of the bridge rail with a 5-in. x 3-in. x $\frac{1}{4}$ -in. steel angle. The angle bolted to rail cap plates welded to the ends at the bridge railings. These $\frac{3}{16}$ -in. rail cap plates utilized $\frac{5}{8}$ -in. reduced base welded studs with $\frac{5}{8}$ -in. washers and self-locking nuts or nuts and jam nuts for the guardrail connection.

2.3 Texas T131RC Bridge Rail Transition

The Texas DOT T131RC Bridge Rail Transition was a 31-in. tall thrie-beam transition connecting to a 36-in. tall top-Texas T131RC bridge rail [15], as shown in Figure 9. The T131RC transition consisted of two nested 12-gauge thrie beam rails supported by six W6x8.5 posts spaced at 37¹/₂ in. on-center and was developed to satisfy MASH TL-3 impact safety criteria [15]. Complete drawing details for the transition and bridge rail are shown in Figures A-11 through A-26 of Appendix A.

Figure 9. Texas T131RC Bridge Rail and Transition [15]

The Texas T131RC Bridge Rail consisted of two HSS6x6x¹/₄ structural tubes supported by W6x20 steel posts spaced at 5 ft. The bridge rail was successfully crash tested in accordance with MASH TL-3 test criteria [16]. The system was anchored into an 8-in. wide x 11-in. high, cast-in-place concrete curb that was anchored to a cast-in-place, 8-in. thick, cantilevered concrete deck. The width of the cantilever was 20³/₄ in.

The nested thrie-beam transition connected to a 10-gauge terminal connector and was anchored to the end of the bridge rail. The terminal connector was attached to the traffic face of the HSS $6x6x^{1/4}$ railings used for the T131RC Bridge Rail using three 7_{8} -in. diameter, A325 bolts. The terminal connector was anchored to the end of the rail near the W6x15 bridge rail post in the concrete curb. Two HSS sections called fill blocks were located between the tube railings and curb and attached to the bridge rail using two 3_{4} -in. diameter by 20-in. long bolts. These fill blocks were mounted flush to the tube railings to prevent vehicle snag in reverse-direction impacts. The fill blocks were fabricated using HSS $6x6x^{1/4}$ tubes and were tapered to the back side of the bridge rail on the exposed end in the installation. The top rail tapered down 5 in. over a 22-in. length at a 4:1 taper rate, terminating behind the thrie-beam rail of the AGT.

The transition system successfully passed the small car and pickup truck full-scale crash tests required by MASH TL-3. The 1100C small passenger vehicle impacted the transition 5 ft upstream from the first bridge rail post, at an impact speed and angle of 61.5 mph and 25.6 degrees, respectively. The 2270P pickup truck impacted the transition 7.2 ft upstream from the first bridge rail post, at an impact speed and angle of 62.7 mph and 25.1 degrees, respectively. Minimal dynamic and permanent deformations were observed, which would not require repair after most impacts. The transition system was not tested in the reverse direction.

2.4 Oregon Two-Tube Side Mount Rail Transition

The Oregon Two-Tube Side Mount Rail Transition was a 31-in. tall thrie-beam transition connecting to a $32\frac{1}{2}$ -in. tall Two-Tube Side Mount Rail [17-18], as shown in Figure 10. The Oregon transition system consisted of nested 12-gauge thrie-beam rails supported by six W6x9 steel posts at quarter-post spacing. The bridge rail consisted of an HSS8x4x⁵/₁₆ top rail and an HSS6x4x¹/₄ lower rail supported by W6x25 steel posts spaced at 6 ft – 3 in. on-center. Drawing details for the transition and bridge rail are shown in Figures A-27 and A-28 of Appendix A.

Figure 10. The Oregon Two-Tube Side Mount Rail and Transition [17]

The connection of the thrie-beam rail to the bridge rail consisted of a $\frac{1}{2}$ -in. guardrail connection plate mounted to the front face of the tube railings located at the first bridge rail post, as shown in Figure 11. The guardrail connection plate consisted of a 12-in. x 22-in. rectangular plate, a $\frac{3}{8}$ -in. stiffener on the back side of the plate, and a 4-in. x $\frac{31}{2}$ -in. x $\frac{3}{8}$ -in. steel angle. The stiffener and angle were placed below the top railing and above the lower railing, respectively. No deflector plate was utilized between the middle tube railings. No crash test data was found on the transition to the Oregon Two-Tube Bridge Rail.

The thrie-beam terminal connector attached the guardrail connection plate to the bridge railings with six $\frac{7}{8}$ -in. diameter A325 bolts. The spliced connection between the nested thrie-beam rails and terminal connector was also connected to the ends of the bridge railings with a 3-in. x 4-in. x $\frac{1}{4}$ -in. steel angle. The angle bolted to rail cap plates welded to the ends at the bridge railings. These $\frac{3}{16}$ -in. rail cap plates utilized $\frac{5}{8}$ -in. welded studs for the guardrail connection.

Figure 11. Oregon Transition Connection and Guardrail Connection Plate [17]

2.5 Alaska Multi State Thrie-Beam Transition

The Alaska Multi State Thrie-Beam Transition was a 31-in. tall thrie-beam transition connecting to the 34-in. tall Alaska Multi-State Bridge Rail [19-20], as shown in Figure 12. The Alaska transition system consisted of nested 12-gauge thrie-beam rails on six W6x9 steel posts at quarter-post spacing. The bridge rail consisted of an HSS8x4x⁵/₁₆ top rail element and an HSS6x4x¹/₄ lower rail element supported by W8x24 steel posts spaced at 10 ft – 4¹/₂ in. on-center. Both the transition and the bridge rail were successfully evaluated to NCHRP Report 350 TL-4 safety performance criteria [19-20]. Drawing details for the transition and bridge rail are shown in Figures A-29 through A-33 of Appendix A.

Figure 12. The Alaska Multi State Thrie-Beam Transition and Bridge Rail [19]

The Alaska transition connection was similar in design to the Illinois and Oregon AGT connections. The Alaska connection of the thrie-beam rail to the bridge rail consisted of a ¹/₂-in. guardrail connection plate mounted to the front face of the tube railings located at the first bridge rail post, as shown in Figure 13. The guardrail connection plate consisted of a 13¹/₂-in. x 22-in. rectangular plate, a ³/₈-in. stiffener on the back side of the plate, and a 4-in. x 4-in. x ³/₈-in. steel angle. The stiffener and angle were placed below the top railing and above the lower railing, respectively. No deflector plate was utilized between the middle tube railings.

Figure 13. Alaska Guardrail Connection Plate [19]

The thrie-beam terminal connector mounted the guardrail connection plate to the bridge rail with seven ⁷/₈-in. diameter A325 bolts. The spliced connection between the nested thrie-beam

rails and terminal connector was also connected to the ends of the bridge railings with a 5-in. x 3in. x $\frac{1}{4}$ -in. steel angle, as shown in Figure 13. The angle bolted to rail cap plates welded to the ends at the bridge railings. These $\frac{3}{16}$ -in. rail cap plates utilized $\frac{5}{8}$ -in. welded studs for the guardrail connection. A separate $\frac{1}{2}$ -in. deflector plate was welded to the rectangular plate and stiffener and was situated between the tube railings. This deflector plate tapered 4 in. to the backside of the railings over a 12-in. length at a 3:1 taper rate, which was designed to prevent snag at the connection in reverse-direction impacts. However, the transition system was never tested in the reverse direction.

The Alaska transition system was successfully crash tested with an 1,810-lb passenger car impacting the system at 62 mph at a 20-degree angle, a 4,410-lb pickup truck impacting the system at 62 mph at a 25-degree angle, and a 18,000-lb single-unit truck impacting the system at 50 mph at a 15-degree angle. The transition sustained minimal damage. However, structural damage was imparted to the bridge deck at the first bridge rail post in the single-unit truck test. The end of the curb at the edge of the bridge deck was cracked and pushed back 7/8 in. This transition system was never tested in the reverse direction. The Alaska Multi State Thrie-Beam Transition satisfied all NCHRP Report 350 TL-4 criteria.

2.6 California Type 115 Transition

The California Type 115 Transition was a 31-in. tall thrie-beam transition connecting to the 30-in. tall California Type 115 bridge rail [21], as shown in Figure 14. The Type 115 transition consisted of 10-gauge thrie-beam rails supported by three 6-ft long timber posts with wood blockouts spaced at 37¹/₂-in. on-center. The California Type 115 bridge rail featured two HSS4x4x¹/₄ tube rails with W8x31 posts spaced at a minimum and maximum of 6 ft and 8 ft, respectively. The bridge rail met the AASHTO *Guide Specifications for Bridge Rails* PL-1 criteria [21]. The transition system failed to meet the intended PL-2 criteria but performed adequately for a PL-1 rating. Details for the transition and bridge rail are shown in Figures A-34 through A-36 of Appendix A.

Figure 14. The California Type 115 Bridge Rail and Transition [21]

The thrie-beam transition barrier was attached to the Type 115 bridge rail with a 12-in. x 20-in. x $\frac{1}{4}$ -in. steel plate. A 12-in. long HSS4x4x $\frac{1}{4}$ structural steel tube was welded onto the plate. The flat side of the plate was bolted to the thrie beam. The side of the plate with the steel tube was fitted between the two tube railings on the Type 115 bridge rail and was bolted to the post, as shown in Figure 15.

Figure 15. Transition to Type 115 Bridge Rail Connector [21]

There was one impact test on the Type 115 bridge rail transition. A 5,400-lb 1985 Chevy Custom Deluxe pickup truck impacted the transition and bridge rail connection at an AASHTO PL-1 impact speed and angle of 46.5 mph and 19.2 degrees, respectively. The pickup truck was redirected when some pocketing occurred upstream from the first transition post. The pocketing issue, in conjunction with wheel snag during two crash tests on the bridge rail, led to the recommendation that the Type 115 transition and bridge rail only be used as a PL-1 rated system [21]. The transition system was never tested in the reverse direction. Furthermore, after considerations of the transition design, it was concluded that there may be issues with reverse-direction impacts. Therefore, the transition was recommended to not be used where impacts could occur in the reverse direction.

2.7 New Hampshire T2 Steel Bridge Rail Transition

The New Hampshire T2 Steel Bridge Rail Transition was a 32-in. tall thrie-beam transition connecting to the 34-in. tall T2 Steel Bridge Rail by a two-tube transition rail [22], as shown in Figure 16. The T2 transition consisted of nested 12-gauge thrie beam rails supported by seven 6-in. x 8-in. x 7-ft long wood posts spaced at 18³/₄ in. on-center and satisfied NCHRP Report 350 TL-3 testing criteria. Transition and bridge rail drawing details are shown in Figures A-37 and A-38 of Appendix A.

The bridge rail consisted of an $HSS8x4x^{5/16}$ top rail element and an $HSS4x4x^{1/4}$ lower rail element supported by W6x25 steel posts spaced at 8 ft and was successfully crash tested by the New Hampshire Transportation Consortium to meet AASHTO PL-2 testing criteria [22], approximately equivalent to NCHRP Report 350 TL-4 requirements. A 7-in. tall simulated curb

was installed throughout the transition and extended in front of the rail tubes by 6 in. and in front of the thrie-beam rail by $1\frac{1}{4}$ in.

Figure 16. The New Hampshire T2 Steel Bridge Rail and Transition [22]

The connection of the thrie-beam rail to the steel-tube bridge rail consisted of two tube transition rails of the same tubular elements used in the bridge rail by means of a $\frac{1}{2}$ -in. guardrail connection plate mounted to the front face of the tube railings, as shown in Figure 17. The guardrail connection plate consisted of a 20-in. x 27-in. x $\frac{1}{2}$ -in. rectangular plate with clipped corners on the downstream end of the plate. A separate $\frac{1}{2}$ -in. thick deflector plate was bolted to the middle of the connection plate and tapered 3-in. to the backside of the railings over a 6-in. length at a 2:1 taper rate, designed to prevent snag at the connection in reverse-direction impacts. However, the transition system was never tested in the reverse direction.

The guardrail connection plate was bolted to the ends of the two tube transition rails and to the first adjacent AGT post. The thrie-beam terminal connector mounted the guardrail connection plate to the bridge railings with eight ½-in. diameter, high-strength bolts. The spliced connection between the nested thrie-beam rails and terminal connector was connected to the first adjacent AGT post using two 5%-in. diameter standard guardrail bolts.

The transition system was successfully crash tested with a 4,410-lb pickup truck impacting the transition connection 67 in. upstream from the first bridge rail post at an impact speed and angle of 63.6 mph and 24.9 degrees, respectively. Moderate damage was imparted to the rail in the form of deformations to the lower two corrugations.

Figure 17. NH T2 Transition Guardrail Connection Plate [22]

2.8 Wisconsin Thrie-Beam Transition

The Wisconsin Thrie-Beam Transition was a $31\frac{1}{2}$ -in. tall transition connecting to the 42in. tall Type "M" Tubular Steel Bridge Rail [23], as shown in Figure 18. The transition system consisted of nested 12-gauge thrie-beam rails supported by six 6-in. x 8-in. x 7-ft long wood posts at quarter-post spacing and satisfied NCHRP Report 350 TL-3 testing criteria. The bridge rail consisted of an HSS5x4x¹/₄ top rail element and HSS5x5x¹/₄ middle and lower rail elements supported by W6x25 steel posts spaced at 6 ft – 6 in. and was successfully crash tested to meet NCHRP Report 350 TL-4 testing criteria [23]. Drawing details for the transition and bridge rail are shown in Figures A-39 and A-40 of Appendix A.

Figure 18. Wisconsin Thrie-Beam Transition and Type "M" Steel Tube Bridge Rail [23]

The connection of the thrie-beam rail to the bridge rail consisted of a back-up plate and an anchor plate, as shown in Figure 19. The ¹/₂-in. back-up plate consisted of a 22-in. x 20-in. section mounted to the front face of the middle tube railings of the bridge rail with clipped corners on the downstream side of the plate. The back-up plate tapered back 5 in. between the lower railings over a 20-in. length at a 4:1 taper rate and was bolted to the back side of the tube railings. This tapered back section of the back-up plate was designed to prevent vehicle snag in reverse-direction impacts. However, the transition system was never tested in the reverse direction.

Figure 19. Wisconsin Back-Up Plate [23]

The thrie-beam terminal connector was connected to the back-up plate and the lower tube railings with five $\frac{7}{8}$ -in. diameter x 7-in. long high-strength bolts and two $\frac{7}{8}$ -in. diameter x 1½-in. long threaded shop welded studs. At the last bridge rail post, the HSS5x4x¹/₄ top rail element tapered down 12 in. over a 24-in. length at a 2:1 slope and was welded to the top of the middle tube railing. Termination of both the tapered top rail element and the ends of the middle and lower rail elements was situated behind the thrie-beam rail 18 in. downstream from the first guardrail post.

The transition system was successfully crash tested with a 4,410-lb pickup truck impacting the system at a speed and angle of 62.6 mph and 25.2 degrees, respectively. The transition was impacted 82 in. downstream from the first bridge rail post. No snagging or vehicle instability occurred during the impact event. As previously noted, the transition system was never tested in the reverse direction.

2.9 TL-4 Bridge Rail and Transition for Transverse Glulam Decks

The TL-4 AGT was a 31-in. thrie-beam system connected to a 36-in. tall TL-4 thrie-beam and steel tube bridge railing [24], as shown in Figure 20. The transition system consisted of 10-gauge thrie-beam supported by five W6x15 posts spaced at $37\frac{1}{2}$ in. on-center and was developed to satisfy NCHRP Report 350 TL-4 criteria. The thrie-beam bridge rail consisted of 10-gauge thrie-beam rail and an HSS8x3x³/₁₆ upper tube rail supported by W6x15 posts spaced at 8 ft on-center and was successfully crash tested to meet NCHRP Report 350 TL-4 criteria [24]. The bridge rail was anchored to a $5\frac{1}{8}$ -in. thick transverse glulam timber deck with a 2-in. wearing surface.

Figure 20. TL-4 Thrie-Beam Bridge Rail and AGT for Timber Decks [24]

Within the bridge rail section, the upper tube rail was attached to the top of the steel spacer blocks. At the connection of the AGT to the bridge rail, the upper tube rail was flared back 8 in. over a 32-in. length at a 1:4 ratio to connect on top of the first transition post. The upper tube was attached to the top of the first transition post and then sloped down 8 in. over a 24-in. length at a

1:3 ratio to attach to the tube rail terminator connection to the second transition post. These lateral and vertical tapers are shown in Figure 21.

Figure 21. Top Bridge Rail Transition Details [24]

The transition system was successfully crash tested with a pickup truck and a single-unit truck. The 4,396-lb pickup truck impacted the transition 5.7 ft upstream from the first bridge rail post at an impact speed and angle of 58.2 mph and 25.5 degrees, respectively. The 17,650-lb single-unit truck impacted the transition 7.8 ft upstream from the first bridge rail post at an impact speed and angle of 50.8 mph and 15.2 degrees, respectively. In the analysis of the test results from both crash tests, Midwest Roadside Safety Facility (MwRSF) determined that the transition system adequately contained and redirected the vehicles with controlled lateral displacements of the guardrail transition.

3 APPROACH GUARDRAIL TRANSITION CONNECTION DESIGN

3.1 Design Criteria

The intent of the research project was to develop a transition between MGS and the newly developed Ohio/Illinois steel-tube bridge rail. Although the bridge rail was developed to be MASH TL-4 compliant, the AGT was only required to satisfy MASH TL-3 criteria. Note that MGS installations adjacent to the bridge rail are also MASH TL-3 systems. Thus, the transition from TL-3 to TL-4 would occur downstream from the first bridge post. To satisfy MASH TL-3 criteria, the AGT must provide sufficient lateral strength to redirect passenger vehicles and be configured with a geometry to prevent vehicle snag.

Additionally, the AGT must be crashworthy before and after roadway overlays. The TL-4 steel-tube bridge railing was designed to remain MASH crashworthy after overlays up to 3 in. thick. Thus, it was desired for the AGT to remain crashworthy after roadway overlays without adjusting the bridge rail or the adjacent AGT.

Finally, it was desired to maximize the longitudinal distance between the adjacent transition and bridge rail posts (i.e., between the last transition post and first bridge rail post, or between the first transition post and last bridge rail post). Maximizing this longitudinal distance helps to avoid installation issues adjacent to the bridge end where abutments, bents, or wing walls could prevent post placement. Often, bridge rails in both Illinois and Ohio must incorporate a top-mounted end post to aid in connecting bridge rails to the adjacent approach guardrails, as shown in Figure 22. Eliminating the need for this end post would reduce hardware and simplify installation.

Figure 22. Top-Mounted Bridge Rail End Post

3.2 Base AGT Configuration

MASH AGTs typically follow one of two different post-spacing configurations near the bridge end for connecting the thrie-beam rail: (1) a ¹/₄-post spacing configuration, which incorporates W6x9 steel posts at 18³/₄ in. on-center or (2) a ¹/₂-post spacing configuration, which incorporates W6x15 posts at 37¹/₂ in. on-center, as shown in Figure 23. The ¹/₂-post spacing configuration was viewed as the more desirable AGT layout as it would allow greater distance between the adjacent transition and bridge rail posts.

Figure 23. AGT Post Spacing Configuration

Historically, thrie beam AGTs have been designed, evaluated, and installed with 31-in. top mounting heights. Unfortunately, roadway overlays reduce the effective height of the guardrail relative to the new roadway surface unless milling or grinding of the roadway occurs in conjunction with the resurfacing. Although limited research exists on AGTs with lower heights, full-scale crash testing on the upstream end of an AGT, which had stiffened W-beam rail mounted at a 27.75-in. height, resulted in the rollover of a 2000P pickup truck [25]. The reduced guardrail height coupled with the increase in barrier stiffness caused the high center-of-mass vehicle to roll toward the system. Thus, an AGT with an effective height below 31 in. is not recommended without further evaluation.

Since the new AGT was desired to be crashworthy even after placement of a 3-in. thick roadway overlay, the height of the AGT needed to be raised above the standard 31 in. A 34-in. top mounting height was recommended so that the thrie beam rail would be reduced to the standard 31 in. height after a 3-in. overlay, as shown in Figure 24. Note that the same 3-in. increase in top mounting height was incorporated into the design of the new bridge rail, which brought its height to 39 in. from a nominal height of 36 in.

Figure 24. Transition Top Mounting Height

One AGT system was developed with a ¹/₂-post spacing configuration, a 34-in. top mounting height, and has satisfied MASH TL-3 evaluation criteria. The Nebraska DOT specifically developed a 34-in. tall AGT, shown in Figure 25, to be crashworthy before and after placement of a 3-in. thick roadway overlay, thus matching the desired criteria for the new AGT [26]. Although the 34-in. AGT was developed for use with a standardized concrete buttress, the connection hardware could be modified to attach to the TL-4 steel-tube bridge railing. Therefore, the Nebraska DOT's 34-in. tall AGT was selected as the base configuration for the new AGT to steel-tube bridge railing.

Figure 25. Nebraska DOT's 34-in. Tall AGT [26]

3.3 Termination of Top Tube Rail

Due to the height of the new bridge railing, efforts were made to reduce the propensity for snag during impact events by safely terminating the top bridge railing. From the literature review, it was observed that steel bridge rail systems with similar geometric sections and rail heights as the new MASH TL-4 steel-tube bridge rail terminated the top bridge railing behind the AGT thriebeam rail. For example, the Wisconsin Thrie-Beam Transition, shown previously in Figure 18, had the top railing angled downward at a 2:1 slope and was welded onto the top of the middle railing.

A similar approach was taken for terminating the top $HSS12x4x^{1/4}$ railing of the MASH TL-4 steel-tube bridge rail. A top railing assembly was designed featuring a downward sloped end that was welded to a bent plate. The top railing was to be angled downward at a 2H:1V slope and terminated $\frac{1}{2}$ in. from the end of the middle railing to allow for weld space. The bent plate fit over the top and back surfaces of the middle rail, and two $\frac{3}{4}$ -in. diameter bolts were used to attach the plate to the middle rail. Note that the same bolts were used to attach the middle and lower rails to the bridge posts. This concept for safely terminating the top rail is shown in Figure 26.

Figure 26. Termination of Top Bridge Railing

3.4 Vehicle Snag

Vehicle snag was a concern for impacts at the connection in both the conventional and reverse directions. For conventional impacts with the vehicle traveling toward the bridge rail, the potential for snag arises from height differences between the thrie-beam guardrail and the steel tube rails. Vehicle components snagging on the exposed ends of the tube rails could lead to excessive decelerations, occupant compartment crush, or vehicle instabilities. Therefore, a smooth height transition was needed to prevent snag. A 3H:1V taper was recommended for height transitions between the lower two tube rails and the thrie-beam guardrail. The 1V:3H rate was based on the performance of guardrail connection plates observed in the literature review.

Additionally, tires from an impacting vehicle could extend under the lower tube rail and snag on a bridge post. Minor tire snag was observed during full-scale testing of the new TL-4 steel-tube bride rail, but not enough to negatively affect the performance of the bridge rail. However, the nested thrie-beam rails of the AGT provided much less bending strength as compared to the tube rails, which could lead to increased system deflections, pocketing and/or snag. To limit system deflections and the potential for snag or pocketing, it was recommended that the bridge tube rails be extended as far upstream as possible and be terminated near the first transition post.

For reverse-direction impacts, vehicle snag could occur on the thrie-beam terminal connector between the middle and lower tube rails or on the top tube rail as it sloped downward to meet the middle tube rail. Designs found during the literature review often included a sloped face component between tube rails and adjacent to the terminal connector. This sloped face would push vehicle components out from between the tube rails to prevent snagging on the downstream edge of the terminal connector. Although none of the previous designs were crash tested with reverse-direction impacts, the concept showed promise for snag mitigation.

3.5 Design Concepts

The 34-in. tall thrie-beam terminal connector could not be easily bolted to the bridge rail using the standard five-bolt pattern. Several bolts were located at the top or bottom of the tube rails, as shown in Figure 27, which prevented a simple bolted connection. Thus, a unique solution was required to complete the connection for the new AGT. Two concepts were explored as possible solutions. The first included a connection assembly plate that sloped downward from the terminal connector to match the heights of the transition tube rails, while the second included modified tube rails that tapered upward to match the height of the thrie beam. These concepts are briefly discussed in the following sections.

Figure 27. Thrie-Beam Rail Misaligning with Bridge Rail

3.5.1 Concept #1: Connection Assembly

The connection assembly featured a built-up assembly of plates and stiffeners that allowed the AGT thrie-beam terminal connector to connect to the end of the bridge rail, as shown in Figure 28. The terminal connector bolted to the front face of the connection assembly. Horizontal stiffeners were welded to the back side of the connection assembly to increase the bending capacity of the assembly and reduce the propensity for hinging at the connection during impact. All horizontal stiffeners were one piece with the same 5/16-in. thickness. The vertical stiffeners served as bracing of the built-up assembly and offered additional bending capacity. All vertical stiffeners were independent stiffeners with a thickness of 3/16 in.

Figure 28. Concept #1: Connection Assembly

The use of horizontal and vertical stiffeners to increase the bending capacity of the connection assembly was derived from terminal connector plates utilized in New Jersey shaped concrete barriers that featured a sloped face, as shown in Figure 29. The connector plate allowed the terminal connector of an adjacent AGT thrie-beam rail to connect to the sloped face of the concrete barrier.

Figure 29. Terminal Connector Plate for New Jersey Shaped Barriers

The connection assembly attached to the ends of the bridge rail through built-up plates that acted as tube splices and were inserted into the middle and lower tube railings, as shown in Figure 30. The tube splice inserts were flush with the inner front face of the tube railings.

Figure 30. Connection Assembly Attached to the Bridge Rail

3.5.2 Concept #2: Continuous Transition Tubes

A second concept was developed which connected the terminal connector directly to the HSS tubes with the same sections as the bridge rail. The lower two HSS8x6x¹/₄ tube rails within the bridge rail had top heights of 32 in. and 20 in. Specialized HSS8x6x¹/₄ transition tubes were fabricated with an angled middle section that sloped up at a 6H:1V rate to achieve top heights of 34 in. and 22 in. and aligned with the top and bottom of the terminal connector, as shown in Figure 31.

A 9-ft span from the final AGT post to the first bridge rail post was selected. The transition tubes extended to 12 in. from the centerline of the last AGT post to provide a stiff section throughout the transition. The thrie-beam terminal connector bolted directly to the transition tubes,

and one additional $HSS6x4x^{1/4}$ tube was sandwiched between the middle and lower transition tubes to provide a connection for all five terminal connector bolts. The downstream face of this additional tube was tapered back laterally to prevent reverse-direction snag on the terminal connector.

Figure 31. Concept #2: Continuous Transition Tubes

4 LS-DYNA MODEL DEVELOPMENT

The two transition concepts were evaluated using LS-DYNA finite element software [27] to evaluate the feasibility of each concept, assist in the design, and to select CIPs for the full-scale crash testing effort.

4.1 Development of the AGT model

An LS-DYNA model of an AGT consisting of a trailing end anchor, MGS, thrie-beam approach guardrail transition, and the standardized concrete buttress had been previously developed [28]. The LS-DYNA model was validated against test no. AGTB-2 on the approach guardrail transition [28-29]. This model was modified to utilize the post sections and spacing and a top rail height of 34 in. as was used in test nos. 34AGT-1 and 34AGT-2 [26], shown in Figure 32. The total system length of the LS-DYNA model was 6.25 ft shorter than length of the actual test installations, which was due to a shorter length of MGS being placed upstream of the MGS. Thus, the LS-DYNA model had 18 posts, while the test installations for test nos. 34AGT-1 and 34AGT-2 utilized 19 posts.

Two vehicle models were used in the simulations. A Dodge Ram pickup truck vehicle model was originally developed by the Center for Collision Safety and Analysis Team at George Mason University [30] and was modified by MwRSF personnel for use in roadside safety applications. A model of a 2010 Toyota Yaris was originally developed by the National Crash Analysis Center at the George Washington University and was modified by MwRSF personnel for use in roadside safety applications [31].

Figure 32. 34-in. Tall Approach Guardrail Transition Model

Although a complete model validation was not conducted, several key parameters were compared between test nos. 34AGT-1 and 34AGT-2, including occupant impact velocities (OIVs), occupant ridedown accelerations (ORAs), angular displacements, and dynamic deflections. A

comparison of results between the simulations and test nos. 34AGT-1 and 34AGT-2 are shown in Tables 1 and 2, respectively. The metrics compared very well for the pickup truck (test no. 34AGT-1), with the simulation overpredicting longitudinal OIV and lateral ORA. However, the metrics did not compare well with the small car (test no. 34AGT-2) as the simulation overpredicted longitudinal OIV, longitudinal ORA, pitch, and dynamic deflection but underpredicted lateral ORA and roll. However, the general behavior of the small car was reasonable. Since the pickup truck simulation compared well with test no. 34AGT-1, the transition model was utilized for this study. However, the areas where the model did not compare well for both the pickup truck and small car simulations were taken into account when utilizing the model to evaluate AGT configurations as part of this study.

Evaluation Criteria		Test No. 34AGT-1	Simulation (34agt1- v11)	MASH 2016 Limits
	Longitudinal	-20.2 -27.2		±40
OIV IUS	Lateral	25.9	25.4	±40
ORA g's	Longitudinal	-10.8	-10.2	±20.49
	Lateral	8.9	11.9	±20.49
Maximum Angular Displacement deg.	Roll	12.0	8.3	±75
	Pitch	4.4	5.1	±75
	Yaw	38.9	39.7	N/A
Maximum Dynamic Deflection in.		7.8	7.7	N/A
Maximum Dynamic Deflection Location		2 nd to last AGT post	2 nd to last AGT post	N/A

Table 1. Comparison of	f Test No.	34AGT-1	and Simulation
------------------------	------------	---------	----------------

N/A = not applicable

Table 2. Comparison of Test No. 34AGT-2 and Simulation	on
--	----

Evaluation Criteria		Test No. 3/AGT-2	Simulation (34agt2-	MASH 2016
		Test NO. 54A01-2	v3)	Limits
OIV ft/s	Longitudinal	-6.9	-10.1	±40
	Lateral	10.0	9.7	±40
ORA g's	Longitudinal	-10.8	-19.9	±20.49
	Lateral	14.7	11.3	±20.49
Maximum Angular Displacement deg.	Roll	-10.0	6.9	±75
	Pitch	-5.5	17.6	±75
	Yaw	94.9	61.0	N/A
Maximum Dynamic Deflection in.		2.7	5.2	N/A
Maximum Dynamic Deflection Location		Last AGT post	Last AGT post	N/A

4.2 Development of IL-OH Bridge Rail Model

A bridge model with 7 posts and 6 rail spans was also created, as shown in Figure 33. For evaluation of the two transition concepts, minimal vehicle interaction with the bridge rail was anticipated. Thus, the full bridge rail model was not validated against test nos. STBR-2 through

STBR-4 [6-7]. It was most important for the bridge rail posts to have accurate deflection behavior, as the impacting vehicle may contact and snag on the bridge rail posts. Therefore, the bridge rail posts and post connection, as shown in Figure 34, were previously modeled and validated by Mauricio, et al. [8-9]. The rails were created from shell elements with material properties consistent with the ASTM A500 steel material. The rail-to-splice and rail-to-post bolts were simulated with constrained nodal rigid bodies. The concrete bridge deck was not modeled, and the embedded plate on the bridge rail posts was rigid and constrained, similar to how the actual connection behaves.

Figure 33. Bridge Rail Model

Figure 34. Bridge Post Model [8-9]

4.3 Connection Model

4.3.1 Concept #1

The concept #1 connection assembly model is shown in Figure 35. The model utilized shell elements for the connection assembly, wedge middle tube, and top tube transition with material properties consistent with those steel sections. Bolts were modeled as constrained nodal rigid bodies or tied rigid bodies.

The connection assembly was initially designed and evaluated utilizing $^{3}/_{16}$ -in. vertical and horizontal gusset plates. Another model evaluated $^{3}/_{16}$ -in. vertical gusset plates and $^{5}/_{16}$ -in. horizontal gusset plates. Three post configurations were evaluated, as shown in Figure 36. The first configuration utilized the three standard W6x15 AGT posts with a 9-ft span length between the last AGT post and the first bridge rail post. The second configuration utilized four W6x15 AGT posts with a 6-ft span length between the last AGT post and the first bridge post. The third configuration utilized four W6x15 AGT posts with a 9-ft span length between the last AGT post and the first bridge post. The third configuration utilized four W6x15 AGT posts with a 9-ft span length between the last AGT post and the first bridge post.

Figure 35. Concept #1 Connection Assembly Model

Figure 36. Concept #1 Models

4.3.2 Concept #2

The concept #2 continuous tubes transition model is shown in Figure 37. The model utilized shell elements for the lower and middle transition tubes, wedge middle tube, and top tube transition with material properties consistent with those steel sections. Bolts were modeled as constrained nodal rigid bodies or tied rigid bodies. Only one configuration was evaluated with three standard W6x15 AGT posts and a 9-ft span between the last AGT post and the first bridge rail post.

Figure 37. Concept #2 Model

5 LS-DYNA TRANSITION MODEL RESULTS

5.1 Simulation of Concept #1

Concept #1 was first evaluated with the MASH test designation no. 3-21 (pickup truck) impacts. Several parameters were utilized to evaluate the feasibility of the concept:

- 1) General vehicle behavior and snag on any system components
- 2) Occupant risk longitudinal and lateral OIV and ORA
- 3) Angle of connection assembly as the connection assembly deformed and bent backward, the angle that was formed relative to the bridge rail tubes
- 4) Stresses in various components compared to yield and ultimate stresses
- 5) Other MASH metrics

As mentioned previously, three post configurations and two connection assembly thicknesses were evaluated. Table 3 shows the simulation matrix of these configurations at several different impact points listed by simulation name (V#) and impact location in inches upstream from the last transition post.

Span	Connector $-\frac{3}{16}$ -in. plates	Connector $-\frac{3}{16}$ -in. vertical, $\frac{5}{16}$ -in. horizontal
9-ft span (3 AGT posts)	V10-54.6"	V18-54.6"
	V11-73.4"	V19-73.4"
	V12 – 35.9"	V20-35.9"
	V13-17.1"	V21 – 17.1"
6-ft span (4 AGT posts)	V14 – 54.6"	V22 – 54.6"
	V15-73.4"	V23 – 73.4"
	V16-35.9"	V24 – 35.9"
	V17 – 17.1"	V25 – 17.1"
9-ft span (4 AGT posts	V26 - 54.6"	N/A
	V27 – 73.4"	N/A
	V28 – 35.9"	N/A
	V29 – 17.1"	N/A

Table 3. Summary of Simulations on Concept #1, Test Designation No. 3-21

N/A - Not applicable

Occupant risk values and the angle of connection assembly for each simulation are shown in Table 4. General vehicle and system behavior for each simulation is shown in Figures 38 through 57. All occupant risk values were below MASH thresholds. However, several simulations did not run to completion, as denoted with an asterisk in Table 4, so ORAs may have been higher in those simulations had they not terminated early. The errors that caused the simulations to terminate early were not resolvable. However, early termination is likely linked to areas where large deformations were occurring within the simulation, which may indicate vehicle snag on system components.

Concept Description	Simulation Name	Impact Distance US from last transition post (in.)	Occupant Impact Velocity (m/s)		Occupant Ridedown Acceleration (g's)		Angle of Connection
			Lateral	Long.	Lateral	Long.	Assembly (deg.)
	V10*	54.6	6.0	-5.7	9.0	-11.6	19.8
3 AGT Posts 9-ft span	V11	73.4	6.0	-5.6	12.4	-8.6	21.1
$^{3/_{16}}$ -in. connector	V12*	35.9	6.3	-6.4	10.8	-13.1	20.1
plates	V13*	17.1	6.5	-6.9	0.0	0.0	19.7
	V14	54.6	6.7	-6.3	11.0	-11.4	15.7
4 AGT Posts 6-ft span	V15	73.4	6.7	-6.3	10.4	-7.8	12.9
³ / ₁₆ -in. connector plates	V16*	35.9	6.8	-7.2	8.5	-9.8	15.8
	V17	17.1	7.3	-7.1	8.3	-12.0	16.2
3 AGT Posts	V18*	54.6	6.1	-5.7	11.2	-12.5	14.4
9-ft span $\frac{3}{16}$ -in. vertical	V19	73.4	6.1	-5.7	10.8	-8.8	15.3
and ⁵ / ₁₆ -in.	V20*	35.9	6.4	-6.4	9.8	-7.0	16.6
connector plates	V21	17.1	6.5	-7.0	9.5	-14.7	12.4
4 AGT Posts 6-ft span ³ / ₁₆ -in. vertical and ⁵ / ₁₆ -in. horizontal connector plates	V22	54.6	6.6	-6.5	12.0	-12.9	11.6
	V23	73.4	6.5	-6.4	10.3	-10.0	9.5
	V24	35.9	6.8	-7.2	9.8	-12.0	13.2
	V25	17.1	7.1	-7.1	7.5	-9.2	12.3
4 AGT Posts 9-ft span ³ / ₁₆ -in. connector plates	V26	54.6	6.4	-6.6	12.1	-13.8	14.1
	V27	73.4	6.5	-6.4	10.6	-11.0	12.1
	V28	35.9	6.9	-6.5	8.6	-12.4	13.8
	V29*	17.1	6.6	-6.3	12.5	-15.6	9.3

Table 4. Summary of Concept #1 Simulation Results

*Simulation terminated early – ORAs may be greater than recorded

The connection assembly had stresses that exceeded yield in every simulation as the connection assembly bent. When the connection assembly bent, especially with a higher bend angle, there was increased potential for the vehicle to snag on the ends of the bridge rail tube. However, the connection assembly performed as intended and remained intact to connect the AGT

and bridge rail systems. Since the bolts were not modeled explicitly, their capacity was not evaluated. Additionally, the potential for rupture and tearing of the guardrail and connection assembly was not fully evaluated as it would have been difficult to accurately model.

The simulations with four W6x15 AGT posts performed better than the simulations with three W6x15 AGT posts, as the general behavior and potential for snag appeared less with four AGT posts. Additionally, simulations with the $\frac{5}{16}$ -in. thick horizontal gusset plates performed better than those with the $\frac{3}{16}$ -in. thick horizontal gusset plates. In the simulations with three AGT posts and $\frac{3}{16}$ -in. thick connection assembly gusset plates, larger angles formed with the connection assembly, which indicated rail pocketing and the potential for vehicle snag. Still frames from simulations V10 and V13 are shown in Figures 58 and 59, respectively, which show the right-front wheel riding underneath the rail and snagging on the connection assembly, which could produce an undesirable test outcome. Three AGT posts with a 9-ft span to the first bridge rail post with $\frac{5}{16}$ -in. thick horizontal gusset plates on the connection assembly also indicated the potential for vehicle snag. Still frames from simulations V18 and V20 are shown in Figures 60 and 61, respectively, also show the right-front wheel snagging on the connection assembly. Thus, the configurations with three AGT posts were not recommended for further evaluation.

Still frames from the configuration with four AGT posts, a 9-ft span to the first bridge rail post, and $\frac{5}{16}$ -in. thick horizontal gusset plates in the connection assembly (simulations V28 and V29) also showed the right-front wheel interacting with and snagging on the lower side of the connection assembly. Thus, the $\frac{3}{16}$ -in. thick horizontal gusset plates were not recommended for further evaluation.

The configuration with four AGT posts, a 9-ft span to the first bridge rail post, and $\frac{5}{16}$ -in. thick horizontal gusset plates in the connection assembly performed the best and appeared to have a potential to pass MASH test designation no. 3-21, with the occupant risk values well below MASH thresholds. However, it was desired to utilize the standard AGT configuration with three W6x15 AGT posts, and concept #2 was further pursued to be evaluated for feasibility.

Figure 38. Sequential Photographs, Concept #1, Simulation v10

Figure 39. Sequential Images, Concept #1, Simulation v11

Figure 40. Sequential Images, Concept #1, Simulation v1

Figure 41. Sequential Images, Concept #1, Simulation v13

Figure 42. Sequential Images, Concept #1, Simulation v14

Perpendicular View

Figure 43. Sequential Images, Concept #1, Simulation v15

Figure 44. Sequential Images, Concept #1, Simulation v16

Perpendicular View

Figure 45. Sequential Images, Concept #1, Simulation v17

Figure 46. Sequential Images, Concept #1, Simulation v18

Figure 47. Sequential Images, Concept #1, Simulation v19

Figure 48. Sequential Images, Concept #1, Simulation v20

Perpendicular View

Figure 49. Sequential Images, Concept #1, Simulation v21

Figure 50. Sequential Images, Concept #1, Simulation v22

Perpendicular View

Figure 51. Sequential Images, Concept #1, Simulation v23

Perpendicular View

Figure 52. Sequential Images, Concept #1, Simulation v24

Perpendicular View

Figure 53. Sequential Images, Concept #1, Simulation v25

Figure 54. Sequential Images, Concept #1, Simulation v26

Figure 55. Sequential Images, Concept #1, Simulation v27

Figure 56. Sequential Images, Concept #1, Simulation v28

Figure 57. Sequential Images, Concept #1, Simulation v29

Figure 58. Vehicle Interaction with System, Simulation V10

Figure 59. Vehicle Interaction with System, Simulation V13

Figure 60. Vehicle Interaction with System, Simulation V18

Figure 61. Vehicle Interaction with System, Simulation V20

Figure 62. Vehicle Interaction with System, Simulation V28

Figure 63. Vehicle Interaction with System, Simulation V29

5.2 Simulation of Concept #2

Concept #2 was evaluated with MASH test designation nos. 3-21 (pickup truck) and 3-20 (small car) impacts. MASH test designation no. 3-21 was simulated with conventional impacts originating from the three beam to the bridge rail (TB to BR) as well as with reverse-direction impacts from the bridge rail to the three beam (BR to TB).

Several parameters were utilized to evaluate the feasibility of the concept:

- 1) General vehicle behavior and snag on any system components
- 2) Occupant risk longitudinal and lateral OIV and ORA
- 3) Stresses in various components compared to yield and ultimate stresses
- 4) Other MASH metrics

5.2.1 Test Designation No. 3-21 (Conventional Impact Direction)

Table 5 shows the matrix of the concept #2, test designation no. 3-21, three beam to bridge rail simulations at several different impact points listed by simulation name and impact location in inches upstream (US) from the last AGT post (post no. 18).

Simulation Name	Impact Point
New-v1	54.6" US post no. 18
New-v2	73.4" US post no. 18
New-v3	35.9" US post no. 18
New-v4	17.1" US post no. 18
New-v5	63.5" US post no. 18

Table 5. Summary of Simulations on Concept #2, Test Designation No. 3-21 (TB to BR)

Occupant risk values for each simulation are shown in Table 6. General vehicle and system behavior for each simulation is shown in Figures 64 through 68. The vehicle was redirected in all simulations except New-V4, which terminated early. All the occupant risk values were below MASH thresholds. However, simulation New-V4 did not run to completion, as denoted with an asterisk in Table 6, so ORAs may have been higher had the simulation not terminated early. The errors that caused the simulation to terminate early were not resolvable. However, the early termination is likely linked to areas where large deformations were occurring within the simulation, which may indicate vehicle snag on system components. A still frame of the vehicle interaction with the system in simulation New-V4 is shown in Figure 69. The right-front wheel rode underneath the rail and interacted with and snagged on the sloped portion of the transition tube, which resulted in the model's termination shortly thereafter. A larger lateral ORA also

occurred at this time. Based on the results of the simulation effort, the impact point associated with simulation New-v4, or 17.1 in. upstream from the last AGT post, would be selected as the CIP to maximize the potential for wheel snag on the transition tubes.

Simulation	Occupa Veloc	nt Impact city m/s	Occupant Ridedown Acceleration g's	
No.	Lateral	Longitudinal	Lateral	Longitudinal
New-v1	6.7	-5.9	9.6	-6.5
New-v2	6.9	-6.2	8.4	-5.1
New-v3	6.9	-5.6	8.9	-10.2
New-v4*	6.6	-5.6	15.2	-9.7
New-v5	6.9	-6.1	8.5	-7.6

Table 6. Summary of Concept #2 Simulation Results, Test Designation No. 3-21 (TB to BR)

*Simulation terminated early - ORAs may be greater than recorded

Figure 65. Sequential Images, Concept #2, Simulation New-v2

Figure 66. Sequential Images, Concept #2, Simulation New-v3

Figure 67. Sequential Images, Concept #2, Simulation New-v4

Figure 68. Sequential Images, Concept #2, Simulation New-v5

Figure 69. Vehicle Interaction with System, Simulation new-V4

5.2.2 Test Designation No. 3-20 (Conventional Impact Direction)

Table 7 shows the matrix of the concept #2, test designation no. 3-20, three beam to bridge rail simulation at several different impact points listed by simulation name and impact location in inches upstream (US) from the last AGT post (post no. 18).

Table 7. Summary	of Simulations on	Concept #2,	Test Designation	No. 3-20 (TB to BR)
		1 '	0	

Simulation Name	Impact Point
New-sc-v1	37.5" US post no. 18
New-sc-v2	56.3" US post no. 18
New-sc-v3	50.5" US post no. 18
New-sc-v4	29.6" US post no. 18
New-sc-v5	21.7" US post no. 18

Occupant risk values for each simulation are shown in Table 8. General vehicle and system behavior for each simulation is shown in Figures 70 through 74. The vehicle was redirected in all simulations except New-sc-V3 and New-sc-V4, which terminated early. All the occupant risk values were below MASH thresholds. However, simulations New-sc-V3 and New-sc-V4 did not run to completion, as denoted with an asterisk in Table 8, so ORAs may have been higher had the simulations not terminated early. The errors that caused the simulation to terminate early were not

resolvable. However, the termination is likely linked to areas where large deformations were happening within the simulation which may indicate vehicle snag on system components.

A still frame of the vehicle interaction with the system in simulation New-sc-V3 is shown in Figure 75. The right-front wheel rode underneath the rail and interacted with the front face of the last AGT post, which resulted in model termination. A larger lateral ORA also occurred at this time.

A still frame of the vehicle interaction with the system in simulation New-sc-V4 is shown in Figure 76. The right-front wheel extended and rode underneath the transition tubes with the potential to interact with and snag on the sloped portion of the transition tube, which resulted in model termination. Due to the early model termination, it is believed that the lateral and longitudinal ORA values would be much greater if the right-front wheel snagged on the sloped portion of the transition tubes.

A still frame of the vehicle interaction with the system in simulation New-sc-V5 is shown in Figure 77. The right-front wheel extended underneath the transition tubes and slightly contacted the first bridge rail post before traversing past it. Since the small car tire in test no. STBR-3 overlapped with the bridge rail post several inches, this tire snag on the bridge rail post was believed to be less severe and not of concern.

Simulations New-sc-v1 and New-sc-v2 were similar to simulations New-sc-v4 and Newsc-v3, respectively, but resulted in decreased snag potential. Thus, the impact points in simulations New-sc-v1 and New-sc-v2 were not believed to be critical. Based on the results of the simulation effort, the impact point associated with simulation New-sc-v4, or 29.6 in. upstream from the final AGT post, would be selected as the CIP to maximize the potential for wedging the wheel underneath the transition tubes and snagging on the sloped portion of the transition tubes.

Simulation No.	Occupant Impact Velocity m/s		Occupant Ridedown Acceleration g's	
	Lateral	Longitudinal	Lateral	Longitudinal
New-sc-v1	9.1	-6.9	10.7	-11.8
New-sc-v2	8.6	-7.9	15.7	-12.0
New-sc-v3*	8.1	-7.6	18.3	-11.0
New-sc-v4*	8.8	-7.1	5.8	-8.5
New-sc-v5	8.4	-7.1	11.7	-12.6

Table 8. Summary of Concept #2 Simulation Results, Test Designation No. 3-20 (TB to BR)

*Simulation terminated early - ORAs may be greater than recorded

Overhead View

Perpendicular View

Figure 73. Sequential Images, Concept #2, Simulation New-sc-v4

Figure 74. Sequential Images, Concept #2, Simulation New-sc-v5

Figure 75. Vehicle Interaction with System, Simulation New-sc-v3

Figure 76. Vehicle Interaction with System, Simulation New-sc-v4

Figure 77. Vehicle Interaction with System, Simulation New-sc-v5

5.2.3 Test Designation No. 3-21 (Reverse Direction)

Table 9 shows the matrix of the concept #2, test designation no. 3-21, bridge rail to three beam simulation at several different impact points listed by simulation name and impact location in inches upstream (US) from the three-beam terminal connector.

Table 9. Summary of Simulations on Concept #2, Test Designation No. 3-21 (BR to TB)

Simulation Name	Impact Point		
New-rev-v1	72" US from end shoe		
New-rev-v2	125" US from end shoe		
New-rev-v3	84" US from end shoe		

Occupant risk values for each simulation are shown in Table 10. General vehicle and system behavior for each simulation are shown in Figures 78 through 80. The vehicle was redirected in all the simulations. All the occupant risk values were below MASH thresholds.

Since there were no system components that showed the potential for snag in impacts from the bridge rail to the three beam (from a stiff system to a less stiff system), testing was not deemed critical.

Simulation Name	Occupant In	npact Velocity n/s	Occupant Ridedown Acceleration g's		
Simulation Ivanic	Lateral	Longitudinal	Lateral	Longitudinal	
New-rev-v1	-7.3	-8.5	-12.9	-10.2	
New-rev-v2	-8.5	-5.8	-11.6	-3.4	
New-rev-v3	-7.7	-5.1	-14.3	-9.8	

Table 10. Summary of Concept #2 Simulation Results, Test Designation No. 3-21 (BR to TB)

Figure 79. Sequential Images, Concept #2, Simulation New-rev-v2

Overhead View

Perpendicular View

Figure 80. Sequential Images, Concept #2, Simulation New-rev-v3

5.3 Discussion and CIP Selection

The CIP for test designation no. 3-21 in the conventional direction was determined from computer simulation to be 17 in. upstream from the last W6x15 AGT post to maximize occupant risk values and the potential for snagging on sloped end of the upper transition tube and the first bridge rail post.

The CIP for test designation no. 3-20 in the conventional direction was determined from computer simulation to be 30 in. upstream from the last AGT post to maximize wedging of the small car tire underneath the sloped transition tubes and the potential for snagging on the posts. Although the occupant risk values were lower in this simulation compared to other simulations, the accelerations with the small car were less reliable, and thus were not used to evaluate the small car simulations.

Reverse-direction impacts with test designation no. 3-21 showed no indication of significant pocketing or snag. Additionally, the system behaved similar to the bridge rail length-of-need impacts. Since test no. STBR-2 on the length-of-need bridge rail was successful, the test on the transition from the bridge rail to the thrie beam should also be successful [6-7]. The simulated occupant risk values were all below MASH limits, and the reverse-direction simulation results were less severe than those of the conventional-direction impacts. Thus, this test was deemed not critical for testing.

Reverse-direction impacts with test designation no. 3-20 were not simulated. However, it was believed that a reverse-direction impact to the transition tube rails would behave similarly as the bridge rail length-of-need impacts. Since test no. STBR-3 on the length-of-need bridge rail was successful, the test on the transition from the bridge rail to the thrie beam should also be successful [6-7]. Thus, this test was deemed not critical for testing.

6 TEST REQUIREMENTS AND EVALUATION CRITERIA

6.1 Test Requirements

AGTs must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the FHWA for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in MASH 2016 [5]. Note that there is no difference between MASH 2009 and MASH 2016 for AGTs like the system developed and tested herein except that additional occupant compartment deformation measurements, photographs, and documentation are required by MASH 2016. According to TL-3 of MASH 2016, AGT systems must be subjected to two full-scale vehicle crash tests, as summarized in Table 11. Both crash tests are recommended for evaluation of the AGT with the CIPs as recommended by the computer simulation effort.

Test Test	Test	Test	Vehicle	Impact Conditions		Evaluation Criteria ¹
Article	cle Designation Vehicle Weigh No. (lb)	Weight (lb)	Speed (mph)	Angle (deg.)		
Longitudinal Barrier	3-20	1100C	2,420	62	25	A,D,F,H,I
	3-21	2270P	5,000	62	25	A,D,F,H,I

Table 11. MASH 2016 TL-3 Crash Test Conditions for Approach Guardrail Transitions [5]

¹ Evaluation criteria explained in Table 12

Recent testing of AGTs has illustrated the importance of evaluating two different transition regions along the length of the AGT: (1) the downstream transition where the thrie beam connects to the bridge rail and (2) the upstream stiffness transition where the W-beam guardrail transitions to a stiffer thrie beam barrier. Additionally, the 34-in. tall AGT described herein was designed for use both before and after roadway overlays, which effectively changes the barrier height relative to the roadway surface. The combination of these MASH tests, different transition regions, and pre- and post-overlay barrier configurations resulted in a total of eight recommended tests, but not all of them were considered critical or necessary to evaluate the performance of the new AGT.

The upstream stiffness transition of the 34-in. tall AGT was specifically designed to replicate the MASH-crashworthy MGS stiffness transition [32-33]. Upon initial installation, the only difference between the two systems was that the 34-in. tall AGT utilized a symmetric W-to-thrie transition rail instead of an asymmetric transition rail. Since the W-beam upstream from the transition rail was mounted at its nominal 31-in. height, vehicles impacting this region of the barrier should not extend over the rail and roll excessively. Additionally, the bottom of the symmetric transition rail has a shallower slope, which would produce less snag if a small vehicle tried to wedge underneath the rail. Thus, there were no concerns about vehicle stability and/or snag on the upstream stiffness transition of the 34-in. tall AGT prior to a roadway overlay.

After the roadway overlay, the symmetric rail segment is replaced by an asymmetric rail and the W-beam is raised 3 in. on the post to maintain its nominal 31-in. mounting height. Thus, after an overlay, the upstream stiffness transition is essentially identical to the MGS stiffness transition. Since the MGS stiffness transition was previously subjected to and successfully passed MASH TL-3 criteria, the upstream stiffness transition within the 34-in. tall AGT would be MASH TL-3 crashworthy as well. Therefore, all crash testing of the upstream stiffness transition, both before and after an overlay, was deemed non-critical.

At the downstream end of the AGT, there were concerns about the strength of the connection hardware, the stiffness of the system within the 9-ft span between adjacent transition and bridge rail posts, and the potential for vehicle snag on the system components. Although these concerns applied to the AGT both before and after a roadway overlay, the increased height of the 34-in. tall thrie beam prior to an overlay increased the propensity for vehicle snag. The front ends and wheels of both small cars and pickup trucks were susceptible to excessive snag by extending below the rail and impacting the sloped portions of the transition tubes rails and the bridge rail posts. As such, both MASH crash tests were determined to be critical in evaluating the crashworthiness of the downstream end of the 34-in. tall AGT.

After a 3-in. overlay, the thrie beam would be at its nominal 31-in. height relative to the roadway surface and the opening below the rails would be smaller. As such, the potential for vehicle snag on the system components would be decreased. Subsequently, testing of the downstream end of the AGT after the application of a roadway overlay was deemed non-critical, as testing with the taller rails (before overlay) would be more critical for vehicle snag. Thus, only two full-scale tests were recommended for evaluating the crashworthiness of the AGT, and MASH test designation nos. 3-20 and 3-21 were conducted on the downstream end of the transition with the rail mounted 34 in. above the roadway surface (pre-overlay configuration).

It should be noted that the test matrix detailed herein represents the researchers' best engineering judgement with respect to the MASH 2016 safety requirements and their internal evaluation of critical tests necessary to evaluate the crashworthiness of the guardrail transition. However, these opinions may change in the future due to the development of new knowledge (crash testing, real-world performance, etc.) or changes to the evaluation criteria. Thus, any tests within the evaluation matrix deemed non-critical may eventually need to be evaluated based on additional knowledge gained over time or revisions to the MASH 2016 criteria.

6.2 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the transition to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 12 and defined in greater detail in MASH 2016. The full-scale vehicle crash test was conducted and reported in accordance with the procedures provided in MASH 2016. In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.					
	D.	Detached elements, fragment should not penetrate or show compartment, or present an ur or personnel in a work zone. occupant compartment should 5.2.2 and Appendix E of MAS	s or other debris from potential for penetra idue hazard to other t Deformations of, or is a not exceed limits so SH 2016.	om the test article ating the occupant raffic, pedestrians, intrusions into, the et forth in Section			
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.					
Occupant	H. Occupant Impact Velocity (OIV) (see Appendix A, Section MASH 2016 for calculation procedure) should satisfy the limits:						
Risk		Occupant In	mpact Velocity Limit	ts			
		Component	Preferred	Maximum			
		Longitudinal and Lateral	30 ft/s	40 ft/s			
	I.	The Occupant Ridedown Acceleration (ORA) (see Appendix A Section A5.2.2 of MASH 2016 for calculation procedure) shoul satisfy the following limits:					
		Occupant Ridedown Acceleration Limits					
		Component Preferred Maximum					
		Longitudinal and Lateral 15.0 g's 20.49 g'					

6.3 Soil Strength Requirements

In accordance with Chapter 3 and Appendix B of MASH 2016, foundation soil strength must be verified before any full-scale crash testing can occur. During the installation of a soil dependent system, W6x16 posts are installed near the impact region utilizing the same installation procedures as the system itself. Prior to full-scale testing, a dynamic impact test must be conducted to verify a minimum dynamic soil resistance of 7.5 kips at post deflections between 5 and 20 in. measured at a height of 25 in. If dynamic testing near the system is not desired, MASH 2016 permits a static test to be conducted instead and compared against the results of a previously established baseline test. In this situation, the soil must provide a resistance of at least 90% of the static baseline test at deflections of 5, 10, and 15 in. Further details can be found in Appendix B of MASH 2016.

7 DESIGN DETAILS

The AGT test installation was approximately 137 ft – 9 in. long and consisted of five major components: (1) a guardrail anchorage system; (2) standard Midwest Guardrail System (MGS); (3) a 34-in. tall approach guardrail transition; (4) a 39-in. tall steel-tube bridge rail; and (5) the AGT connection hardware developed herein to attach thrie beam guardrail to the bridge rail. Design details for test nos. STBRT-1 and STBRT-2 are shown in Figures 81 through 115. Photographs of the test installation are shown in Figures 116 and 118. Material specifications, mill certifications, and certificates of conformity for the system are shown in Appendix B.

The breakaway cable terminal (BCT) guardrail anchorage system utilized to anchor the upstream region of the test installation consisted of timber posts, connection hardware, foundation tubes, anchor cable, bearing plate, rail bracket, and channel strut. BCT posts consisted of wooden posts embedded in 72-in. long foundation tubes. Longitudinal stiffness and strength were provided to the guardrail by the BCT ground strut and anchorage assembly. The guardrail anchorage system has been MASH TL-3 crash tested as a downstream trailing end terminal [34-37].

The MGS section was 43.75 ft long and consisted of 12-gauge W-beam mounted to W6x8.5 guardrail posts spaced at 75 in. on-center. The W-beam had a top mounting height of 31 in. The MGS section utilized 12-in. deep timber blockouts.

The 34-in. tall AGT consisted of a 10-gauge, symmetric, W-to-thrie beam rail transition rail segment; 6.25 ft of 12-gauge thrie beam; and 12.5 ft of nested 12-gauge thrie beam. A 10-gauge thrie beam terminal connector was sandwiched between the nested thrie beam rails at the downstream end of the guardrail and connected to the upstream end of the steel bridge rail transition tubes. The AGT posts used a combination of standard W6x8.5 guardrail posts at various spacings and W6x15 posts spaced at 37.5 in. on-center. Post details, including lengths, embedment depths, and spacings for the 34-in. tall AGT are shown in Figure 99.

The transition to the steel bridge rail consisted of four specialized transition tubes. Two 119⁵/₈-in. long HSS8x6x¹/₄ steel rails were used to connect the thrie beam terminal connector to the bridge rails. These transition rails included a 2-in. height transition near their middle to match up with the heights of the AGT rail and the bridge rail tubes. A 6H:1V vertical taper was used on the height transition to reduce snag severity. A 36-in. long HSS6x4x¹/₄ tube was sandwiched between the lower and middle transition rails and incorporated a 3:1 lateral taper to mitigate vehicle snag on the terminal connector during reverse-direction impacts. The top transition rail assembly was 44¹/₄ in. long and consisted of HSS12x4x¹/₄ segments and a ¹/₄-in. thick bent plate. The top transition rail was sloped downward at a 2H:1V slope and welded to the bent plate. The bent plate fit against the top and back sides of the middle transition rail and was secured with two ³/₄-in. diameter bolts. The three transition rails were connected to the bridge rail tubes using the same hardware as the bridge rail splices.

Two fabricators were consulted about the best practice to assemble the welded tube assemblies, and two sets of the transition tube rails were obtained, one from each manufacturer. Both fabricators used full penetration welds with backing plates on the inside of the lower and middle transition tubes in lieu of bevel welds. The final fabricator details of the transition components utilized in test no. STBRT-1 are shown in Appendix C. For test no. STBRT-2, the fabricator specified these welds with weld detail B-U2a-GF. It is recommended that full

penetration welds are utilized on the lower and middle transition tube assemblies to ensure adequate system capacity.

The 39-in. tall steel bridge rail was approximately 50 ft long and consisted of seven W6x15 bridge rail posts, an HSS12x4x¹/₄ top tube rail, and two HSS6x8x¹/₄ (lower and middle) tube rails. The bridge rail posts were spaced at 8 ft on-center and mounted to the side of a simulated bridge deck used previously in the full-scale crash testing of the new steel-tube bridge rail.

Figure 81. Test Installation Layout, Test Nos. STBRT-1 and STBRT-2

Figure 82. Bridge Rail Post Sections, Test Nos. STBRT-1 and STBRT-2

Figure 83. Box Beam Rail Components, Test Nos. STBRT-1 and STBRT-2

78

Figure 84. Bridge Rail Post Components, Test Nos. STBRT-1 and STBRT-2

Figure 85. Welded Post Assembly, Test Nos. STBRT-1 and STBRT-2

Figure 86. Bridge Rail Post Components, Test Nos. STBRT-1 and STBRT-2

Figure 87. Detail D, Test Nos. STBRT-1 and STBRT-2

Figure 88. Upper Splice Tube Assembly, Test Nos. STBRT-1 and STBRT-2

92

Figure 89. Middle/Lower Splice Tube Assembly, Test Nos. STBRT-1 and STBRT-2

Figure 90. Transition Layout, Test Nos. STBRT-1 and STBRT-2

Figure 91. Transition Details, Test Nos. STBRT-1 and STBRT-2

Figure 92. Angled Cut Tube Assembly, Test Nos. STBRT-1 and STBRT-2

Figure 93. Middle/Bottom Transition Rail Assemblies, Test Nos. STBRT-1 and STBRT-2

Figure 94. Transition Rail Component Details, Test Nos. STBRT-1 and STBRT-2

Figure 95. Transition Rail Component Details, Test Nos. STBRT-1 and STBRT-2

Figure 96. Top Bridge Rail Termination Assembly, Test Nos. STBRT-1 and STBRT-2

Figure 97. Top Bridge Rail Termination Pieces, Test Nos. STBRT-1 and STBRT-2

Figure 98. W-Beam to Thrie Beam Transition, Test Nos. STBRT-1 and STBRT-2

Figure 99. Post Sections, Test Nos. STBRT-1 and STBRT-2

Figure 100. AGT Post Details, Test Nos. STBRT-1 and STBRT-2

Figure 101. W-Beam and Thrie Beam Blockouts, Test Nos. STBRT-1 and STBRT-2

Figure 102. Anchor Components, Test Nos. STBRT-1 and STBRT-2

Figure 103. Upstream Anchorage, Test Nos. STBRT-1 and STBRT-2

Figure 104. Upstream Anchorage Details, Test Nos. STBRT-1 and STBRT-2

Figure 105. BCT Anchor Cable, Test Nos. STBRT-1 and STBRT-2

Figure 106. BCT Post Components and Anchor Bracket, Test Nos. STBRT-1 and STBRT-2

Figure 107. Ground Strut Assembly, Test Nos. STBRT-1 and STBRT-2

Figure 108. W-Beam Rails, Test Nos. STBRT-1 and STBRT-2

Figure 109. Thrie Beam Rails, Test Nos. STBRT-1 and STBRT-2

Figure 110. Rail Transition and Component Details, Test Nos. STBRT-1 and STBRT-2

Figure 111. Hardware Details, Test Nos. STBRT-1 and STBRT-2

Figure 112. Hardware Details, Test Nos. STBRT-1 and STBRT-2

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
		MASH Strong Soil in Critical Region	-	_	-
		Existing Bridge Deck	-	-	_
a1	24	12'-6" 12-gauge Thrie Beam Section	AASHTO M180	A123 or ASTM A653	RTM08a
a2	1	6'-3" 12-gauge Thrie Beam Section	AASHTO M180	A123 or ASTM A653	RTM19a
aЗ	1	10-gauge Symmetrical W-beam to Thrie Beam Transition	AASHTO M180	A123 or ASTM A653	RWT01b
a4	3	12'-6" 12-gauge W-Beam Section	AASHTO M180	A123 or ASTM A653	RWM04a
a5	1	12'-6" 12-gauge W-Beam MGS End Section	AASHTO M180	A123 or ASTM A653	RWM14a
a6	1	10-gauge Thrie Beam Terminal Connector	AASHTO M180 (Min yield strength = 50 ksi Min. ultimate strength = 70 ksi)	A123 or ASTM A653	RTE01b
a7	1	6'—3" 12—gauge W—Beam MGS Section	AASHTO M180	A123 or ASTM A653	RWM04a
ь1	6	30"x10 5/8"x5/16" Plate	ASTM A572 Gr. 50	See Assembly	-
b2	6	30"x2 5/8"x3/8" Plate	ASTM A572 Gr. 50	See Assembly	
ь3	7	8"x8"x3/8" Plate	ASTM A572 Gr. 50	See Assembly	-
b4	7	17 3/4"x13"x1" Post Plate	ASTM A572 Gr. 50	See Assembly	<u> </u>
ь5	28	6 1/8"x5 11/16"x1/4" Gusset Plate	ASTM A572 Gr. 50	See Assembly	-
b6	14	HSS 5"x4"x1/2", 20" Long	ASTM A500 Gr. C	ASTM A123	
b7	12	30"x6 5/8"x3/8" Plate	ASTM A572 Gr. 50	See Assembly	-
b8	12	30"x4 5/8"x5/16" Plate	ASTM A572 Gr. 50	See Assembly	
Ь9	6	HSS 8"x6"x1/4", 191 1/4" Long	ASTM A500 Gr. C	ASTM A123	-
ь10	3	HSS 12"x4"x1/4", 191 1/4" Long	ASTM A500 Gr. C	ASTM A123	=
b11	14	20"x15"x3/16" Steel Plate	ASTM A572 Gr. 50	See Assembly	_
c1	2	BCT Timber Post — MGS Height	SYP Grade No. 1 or better (No knots +/- 9" from weakening hole on tension face)	~	PDF01
c2	2	72" Long Foundation Tube	ASTM A500 Gr. B	ASTM A123	PTE06
c3	1	Ground Strut Assembly	ASTM A36	ASTM A123	PFP02
c4	1	BCT Cable Anchor Assembly	-	-	FCA01
c5	1	8"x8"x5/8" Anchor Bearing Plate	ASTM A36 ASTM A123		FPB01
c6	1	Anchor Bracket Assembly	ASTM A36	ASTM A123	FPA01
c7	1	2 3/8" O.D. x 6" Long BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	ASTM A123	FMM02
Note:	(1) (Quantities listed berein are only for one copy of th	e system	OH-IL Transition	SHEET: 33 of 35
	(.)			to MCS Cuardrail	

	RSF	OH—IL Transition to MGS Guardrail Test Series STBRT	SHEET: 33 of 35 DATE: 1/12/2020	
Midwest	Roadside	Bill of Materials		DRAWN BY: LJP/JRF/SE W
Safety	Facility	DWG. NAME. STBRT 1-2_R14	SCALE: None UNITS: in.	REV. BY: JEK/SKR/J DR

Figure 113. Bill of Materials, Test Nos. STBRT-1 and STBRT-2

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
c8	11	Bent 16D Double Head Nail			. -
d1	5	W6x9 or W6x8.5, 72" Long Steel Post	ASTM A992	ASTM A123	-
d2	1	W6x9 or W6x8.5, 72" Long Steel Post	ASTM A992	ASTM A123	-
d3	8	W6x9 or W6x8.5, 72" Long Steel Post	ASTM A992	ASTM A123	
d4	3	W6x15, 84" Long Steel Post	ASTM A992	ASTM A123	PWE12
d5	7	W6x15, 53 1/2" Long Post	ASTM A992	See Assembly	-
d6	3	6"x8"x19" Timber Blockout	SYP Grade No.1 or better	-	PDB17
d7	5	6"x12"x19" Timber Blockout	SYP Grade No.1 or better	<u> </u>	-
d8	1	6"x12"x19" Timber Blockout	SYP Grade No.1 or better	-	PDB18
d9	8	6"x12"x14 1/4" Timber Blockout	SYP Grade No.1 or better	(-)	PDB10a
e1	19	5/8" Dia. UNC, 14" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	FBB06
e2	8	5/8" Dia. UNC, 10" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	FBB03
e3	24	5/8" Dia. UNC, 2" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	FBB02
e4	52	5/8" Dia. UNC, 1 1/4" Long Guardrail Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	FBB01
e5	2	5/8" Dia. UNC, 10" Long Hex Head Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	FBX16a
e6	8	5/8" Dia. UNC, 1 1/2" Long Hex Head Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	FBX16a
e7	2	3/4"-11 UNC, 21" Long Round Head Bolt	ASTM A449	ASTM A153 or B695 Class 55 or F1941 or F2329	FBB08
e8	24	3/4"—10 UNC, 9 1/2" Long Heavy Hex Head Bolt	ASTM F3125 Gr. A325 Type 1	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F1941 or F2329 or F2833 Gr. 1	FBX20b
e9	35	3/4"-10 UNC, 7 1/2" Long Round Head Bolt	ASTM A449	ASTM A153 or B695 Class 55 or F1941 or F2329	FBB08
e10	40	3/4"-10 UNC, 6" Long Round Head Bolt	ASTM A449	ASTM A153 or B695 Class 55 or F1941 or F2329	FBB08
e11	2	7/8" Dia. UNC, 8" Long Hex Head Bolt	ASTM A307 Gr. A	ASTM A153 or B695 Class 55 or F1941 or F2329	FBX22a
e12	28	1"-8 UNC, 3 1/2" Long Heavy Hex Head Bolt	ASTM F3125 Gr. A325 Type 1	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F1941 or F2329 or F2833 Gr. 1	FBX24b

Note: (1) Quantities listed herein are only for one copy of the system.

	M	RSF	OH—IL Transition to MGS Guardrail Test Series STBRT	SHEET: 34 of 35 DATE: 1/12/2020	
	Midwest Safety	Roadside	Bill of Materials		DRAWN BY: LJP/JRF/SB W
		Facility	DWG. NAME. STBRT 1-2_R14	SCALE: None UNITS: in.	REV. BY: JEK/SKR/J DR

Figure 114. Bill of Materials, Test Nos. STBRT-1 and STBRT-2

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
e13	28	1"-8 UNC, 2 1/4" Long Heavy Hex Head Bolt	ASTM F3125 Gr. A325 Type 1	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F1941 or F2329 or F2833 Gr. 1	FBX24b
f1	34	5/8" Dia. SAE Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC16a
f2	4	7/8" Dia. USS Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	<u></u>
f3	2	1" Dia. USS Plain Round Washer	ASTM F844	ASTM A123 or A153 or F2329	FWC24a
f4	127	3/4" Dia. SAE Hardened Flat Washer	ASTM F436	ASTM A153 or B695 Class 55 or F1136 Gr. 3 or F2329	FWC20b
f5	84	2 1/4"x2 1/4"x1/4" Square Washer	ASTM A36	ASTM A123	-
g1	101	3/4 -10 UNC Heavy Hex Nut	ASTM A563DH	ASTM A153 or B695 Class 55 or F2329	FNX20b
g2	105	5/8" Dia. Guardrail Nut	ASTM A563A	ASTM A153 or B695 Class 55 or F2329	-
g3	8	5/8" Dia. Hex Nut	ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX22a
g4	2	7/8" Dia. Hex Nut	ASTM A563A	ASTM A153 or B695 Class 55 or F2329	FBX22a
g5	56	1"—8 UNC Heavy Hex Nut	ASTM A563DH	ASTM A153 or B695 Class 55 or F2329	FNX24b
g6	2	1" Dia. Hex Nut	ASTM A563DH	ASTM A153 or B695 Class 55 or F2329	FBX24a
h1	1	HSS 6"x4"x1/4", 36" Long Angled Cut Tube	ASTM A500 Gr. C	See Assembly	
h2	1	13"x3 3/4"x1/4" Plate	ASTM A572 Gr. 50	See Assembly	-
h3	1	13"x10 3/8"x1/4" Bent Plate	ASTM A572 Gr. 50	See Assembly	-
h4	1	12"x4"x1/4", 15" Long Sloped Transition Rail	ASTM A500 Gr. C	See Assembly	
h5	1	12"x4"x1/4", 30 1/8" Long Transition Rail	ASTM A500 Gr. C	See Assembly	-
h6	1	HSS 8"x6"x1/4", 62 15/16" Long Middle Transition Rail	ASTM A500 Gr. C	See Assembly	-
h7	1	HSS 8"x6"x1/4", 45 3/8" Long Middle Transition Rail	ASTM A500 Gr. C	See Assembly	-
h8	2	HSS 8"x6"x1/4", 12 7/8" Long Transition Rail	ASTM A500 Gr. C	See Assembly	-
h9	1	HSS 8"x6"x1/4", 62 15/16" Long Bottom Transition Rail	ASTM A500 Gr. C	See Assembly	-
h10	1	HSS 8"x6"x1/4", 45 3/8" Long Bottom Transition Rail	ASTM A500 Gr. C	See Assembly	-

Note: (1) Quantities listed herein are only for one copy of the system.

MARSE	OH—IL Transition to MGS Guardrail Test Series STBRT	SHEET: 35 of 35 DATE: 1/12/2020	
Midwest Roadside	Bill of Materials		DRAWN BY: LJP/JRF/SB W
Safety Facility	DWG. NAME. STBRT 1-2_R14	SCALE: None UNITS: in.	REV. BY: JEK/SKR/J DR

Figure 115. Bill of Materials, Test Nos. STBRT-1 and STBRT-2

Figure 116. Test Installation Photographs, Test No. STBRT-1

Figure 117. Test Installation Photographs – AGT Connection Hardware, Test No. STBRT-1

Figure 118. Test Installation Photographs, Test No. STBRT-2

8 TEST CONDITIONS

8.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles northwest of the University of Nebraska-Lincoln.

8.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer on the tow vehicle increased the accuracy of the test vehicle impact speed.

A vehicle guidance system developed by Hinch [38] was used to steer the test vehicle. A guide flag, attached to the right-front wheel and the guide cable, was sheared off before impact with the barrier system. The $\frac{3}{8}$ -in. diameter guide cable was tensioned to approximately 3,500 lb and supported both laterally and vertically every 100 ft by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

8.3 Test Vehicles

For test no. STBRT-1, a 2009 Hyundai Accent four door sedan was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,447 lb, 2,404 lb, and 2,568 lb, respectively. The test vehicle is shown in Figures 119 and 120, and vehicle dimensions are shown in Figure 121.

For test no. STBRT-2, a 2014 Dodge Ram 1500 quad cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,133 lb, 5,007 lb, and 5,160 lb, respectively. The test vehicle is shown in Figures 122 and 123, and vehicle dimensions are shown in Figure 124.

MASH 2016 requires test vehicles used in crash testing to be no more than six model years old. However, a 2009 model was used for the small car test because the vehicle geometry of newer models did not comply with recommended vehicle dimension ranges specified in Table 4.1 of MASH 2016. The use of older test vehicles due to recent small car vehicle properties falling outside of MASH 2016 recommendations was allowed by FHWA and AASHTO in MASH implementation guidance dated May 2018 [39].

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights. The Suspension Method [40] was used to determine the vertical component of the c.g. for the pickup truck. This method is based on the principle that the c.g. of any freely suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The vertical component of the c.g. for the 1100C vehicle was determined utilizing a

procedure published by SAE [41]. The location of the final c.g. for the test vehicle used in test no. STBRT-1 is shown in Figures 121 and 125, and the location of the final c.g. for the test vehicle used in test no. STBRT-2 is shown in Figures 124 and 126. Data used to calculate the location of the c.g. and ballast information are shown in Appendix D.

Square, black- and white-checkered targets were placed on the vehicles for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figures 125 and 126. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicles.

The front wheels of the test vehicles were aligned to vehicle standards except the toe-in value was adjusted to zero such that the vehicles would track properly along the guide cable. A 5B flash bulb was mounted under the vehicle's left-side windshield wiper and was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A remote-controlled brake system was installed in the test vehicles so the vehicle could be brought safely to a stop after the test.

Figure 119. Test Vehicle, Test No. STBRT-1

Figure 120. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-1

Date:	8/24/2020		Test Name:	STBRI	г-1	VIN No:	kmhcn4	6c69u367	7008
Model Year:	2009		Make:	Hyund	lai	Model:	А	ccent	
Tire Size:	185/65R14	4 Tire Inflati	on Pressure:	44 ps	si	Odometer:	1	55708	
	M		N	T	-	Vehicle Ga Target Ranges A: <u>66</u> C: <u>168 1/4</u> 169±8 (43) E: <u>98 1/2</u> <u>98±5 (250</u>	cometry - in. s listed below (1676) B: 50±75) B: (4274) D: 00±200) D: (2502) F: 00±125) F:	(mm) 57 3/4 33 3/4 ^{35±4 (9)} 36	(1467) (857) ^{00±100)} (914)
		Tor	t Inactial CC			G: 22 7/8	(581) H:	35 1/2	(902)
	- Q -	Tes	t inertial CG			l:8	(203) J:	21	(533)
	R		B	e i	↓ ↓ B	K: <u>11 1/2</u> M: 57 1/2	(292) L:	23 57 1/5	(584)
		S		K	+ +	56±2 (14	25±50)	56±2 (14	425±50)
t t	-	н⊥⊷∣т		1		24±4 (60	(033) 0±100)		(102)
	- D - -	C		-		Q: <u>23</u>	<u>(584)</u> R:	15 1/4	(387)
						S: 12	(305) T:	65 1/2	(1664)
Mass Distrib	ution - Ib (ka)					U (im	pact width):	29 5/8	(752)
Gross Static	LF 830 ((376) RF 797	(362)			Top of	radiator core support:	28 3/4	(730)
	LR 474 ((215) RR 467	(212)			F	Wheel Center leight (Front): Wheel Center	10 5/8	(270)
Weights						1	Height (Rear):	11	(279)
lb (kg)	Curb	Test In	nertial	Gross S	tatic	Clear	rance (Front):	25	(635)
W-front	1550 ((703) 1538	(698)	1627	(738)	Clea	rance (Rear):	25	(635)
W-rear	897 ((407) 866	(393)	941	(427)	E	leight (Front):	6	(152)
W-total	2447 (*	<u>1110)</u> <u>2404</u>	(1090)	2568	(1165)	E	Bottom Frame Height (Rear):	16	(406)
		2420100 (100123)	2000100(11	75150)	E	ingine Type:	4 cyl	. Gas
GVWR Rating	gs Ib	Surrogate	e Occupant Dat	ta		3	Engine Size:	1.	6L
Front	1918		Туре:	Hybrid II		Transm	ission Type:	Auto	matic
Rear	1874		Mass:	164 lb			Drive Type:	FV	VD
Total	3638	Seat	Position:	Left/Drive	rs				
Note any	/ damage prior t	to test:			Nor	ne			

Figure 121. Vehicle Dimensions, Test No. STBRT-1

Figure 122. Test Vehicle, Test No. STBRT-2

Figure 123. Test Vehicle's Interior Floorboards and Undercarriage, Test No. STBRT-2

129

Date:	9/22/2020		Test Name:	STBRT	-2	VIN No:	1C6RR6F	T9ES238	613
Model Year:	2014		Make:	Dodg	e	Model:	Ram 150	00 Quad 0	Cab
Tire Size:	265/70R17	Tire Inflat	tion Pressure:	40 ps	i .	Odometer:	5	4821	
						Vehicle Geo Target Ranges lis	metry - in. (ited below	mm)	
		• Test Iner				A: 76 3/4 (1 78±2 (1950) C: 229 1/4 (5 237±13 (6020) E: 140 1/2 (3 148±12 (3760) G: 28 3/8 (min: 28 (71	1949) B: 550 D: 5823) D: ±325) D: 3569) F: ±300) F: 721) H: 0) H:	75 40 3/8 39±3 (10 48 3/8 61 63±4 (15	(1905) (1026) ^(00±75) (1229) (1549) 75±100)
	- Q - R				B	l: <u>12 5/8 (</u> K: <u>21 (</u>	321) J: _ 533) L: _	25 29	(635) (737)
		G	s B			$M: \underline{68} (1) \\ 67 \pm 1.5 (1700) \\ O: \underline{44 \ 1/2} (1) \\ 43 \pm 4 (1100) \\ \hline \end{cases}$	1729) N: ±38) N: 1130) P: 575)	67 7/8 67±1.5 (1 4 1/2	(1724) 700±38) (114)
	,н	E	f F			Q: <u>31 (</u>	787) R:	18 3/8	(467)
		C				S: 13 3/4 (349) T:	76 1/2	(1943)
Mass Distributio	on - Ib (kg)					U (impa	act width):	36 1/2	(927)
Gross Static LF	- 1485 (67	74) RF 1442	(654)			Wi Hei	neel Center aht (Front):	15	(381)
LF	R 1107 (50	02) RR 1126	(511)			Wi He	neel Center ight (Rear):	15	(381)
						Clearar	Wheel Well ice (Front):	35	(889)
Weights Ib (kg)	Curb	Test	nertial	Gross St	tatic	Cleara	Wheel Well nce (Rear):	38	(965)
W-front	2922 (13	25) 2834	(1285)	2927 (1328)	Bot Heig	tom Frame ght (Front):	18 1/8	(460)
W-rear	2211 (10	03) 2173	(986)	2233 (1013)	Bot He	tom Frame ight (Rear):	25 1/2	(648)
W-total	5133 (23	<u>28)</u> <u>5007</u>	(2271) <u>5</u>	5160 (2341)	Eng	gine Type:_	Gaso	oline
		50001110	(2270130) 3	1031110 (23	43130)	En	gine Size:	5.71	v8
GVWR Ratings	- Ib	Surrogat	e Occupant Data			Transmiss	sion Type:	Autor	natic
Front	3700		Туре:	Hybrid II		D	rive Type:	RW	/D
Rear	3900		Mass:	161 lb			Cab Style:_	Quad	cab
Total	6800	Seat	Position: [Driver/Lef	t	Be	ed Length:	76	
Note any damage prior to test: None									

Figure 124. Vehicle Dimensions, Test No. STBRT-2

Figure 125. Target Geometry, Test No. STBRT-1

Figure 126. Target Geometry, Test No. STBRT-2

8.4 Simulated Occupant

For test nos. STBRT-1 and STBRT-2, a Hybrid II 50th-Percentile, Adult Male Dummy equipped with footwear was placed in the left-front seat of the test vehicles with the seat belt fastened. The simulated occupant had a final weight of 164 lb in test no. STBRT-1 and 161 lb in test no. STBRT-2. As recommended by MASH 2016, the simulated occupant weight was not included in calculating the c.g. location.

8.5 Data Acquisition Systems

8.5.1 Accelerometers

Two environmental shock and vibration sensor/recorder systems were used to measure the accelerations in the longitudinal, lateral, and vertical directions. Both accelerometers systems were mounted near the c.g. of the test vehicles. The electronic accelerometer data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [42].

The SLICE-1 and SLICE-2 units were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. (DTS) of Seal Beach, California. The SLICE-1 unit was designated as the primary system for test no. STBRT-1, and the SLICE-2 unit was the primary system for test no. STBRT-2. The acceleration sensors were mounted inside the bodies of custombuilt, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Both SLICE 6DX were configured with 7 GB of non-volatile flash memory, a range of ± 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

8.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the bodies of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicle. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

8.5.3 Retroreflective Optic Speed Trap

The retroreflective optic speed trap was used to determine the speed of the test vehicle before impact. Five retroreflective targets, spaced at approximately 18-in. intervals, were applied to the side of the vehicle. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are only used as a backup in the event that vehicle speeds cannot be determined from the electronic data.

8.5.4 Digital Photography

Five AOS high-speed digital video cameras, eight GoPro digital video cameras, and five Panasonic digital video cameras were utilized to film test no. STBRT-1. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 127.

Five AOS high-speed digital video cameras, seven GoPro digital video cameras, and five Panasonic digital video cameras were utilized to film test no. STBRT-2. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the system are shown in Figure 128.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and posttest conditions for all tests.

No.	Туре
AOS-1	AOS Vitcam
AOS-5	AOS X-PRI
AOS-8	AOS S-VIT 1531
AOS-9	AOS TRI-VIT 2236
AOS-10	AOS TRI-VIT
GP-8	GoPro Hero 4
GP-9	GoPro Hero 4
GP-18	GoPro Hero 6
GP-19	GoPro Hero 6
GP-20	GoPro Hero 6
GP-22	GoPro Hero 7
GP-23	GoPro Hero 7
GP-24	GoPro Hero 7

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-1	AOS Vitcam	500	KOWA 16 mm	
AOS-5	AOS X-PRI	500	100 mm	
AOS-8	AOS S-VIT 1531	500	Fujinon 35 mm	
AOS-9	AOS TRI-VIT 2236	1000	KOWA 12 mm	
AOS-10	AOS TRI-VIT	500	Fujinon 50 mm	
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-18	GoPro Hero 6	240		
GP-19	GoPro Hero 6	240		
GP-20	GoPro Hero 6	240		
GP-22	GoPro Hero 7	240		
GP-23	GoPro Hero 7	240		
GP-24	GoPro Hero 7	240		
PAN-2	Panisonic HC-V770	120		
PAN-3	Panisonic HC-V770	120		
PAN-4	Panisonic HC-V770	120		
PAN-5	Panisonic HC-VX981	120		
PAN-6	Panisonic HC-VX981	120		

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-1	AOS Vitcam	500	KOWA 16 mm	
AOS-5	AOS X-PRI	500	100 mm	
AOS-8	AOS S-VIT 1531	500	Fujinon 75 mm	
AOS-9	AOS TRI-VIT 2236	1000	KOWA 12 mm	
AOS-10	AOS TRI-VIT	500	Fujinon 50 mm	
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-14	GoPro Hero 4	120		
GP-16	GoPro Hero 4	120		
GP-18	GoPro Hero 6	240		
GP-22	GoPro Hero 7	240		
GP-23	GoPro Hero 7	240		
GP-24	GoPro Hero 7	240		
PAN-2	Panisonic HC-V770	120		
PAN-3	Panisonic HC-V770	120		
PAN-4	Panisonic HC-V770	120		
PAN-5	Panisonic HC-VX981	120		
PAN-6	Panisonic HC-VX981	120		

Figure 128. Camera Locations, Speeds, and Lens Settings, Test No. STBRT-2

9 FULL-SCALE CRASH TEST NO. STBRT-1

9.1 Static Soil Test

Before full-scale crash test no. STBRT-1 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix E, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

9.2 Weather Conditions

Test no. STBRT-1 was conducted on August 24, 2020 at approximately 2:45 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 13.

Temperature	94° F
Humidity	33 %
Wind Speed	14 mph
Wind Direction	190° from True North
Sky Conditions	Sunny
Visibility	9 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0 in.
Previous 7-Day Precipitation	0 in.

Table 13. Weather Conditions, Test No. STBRT-1

9.3 Test Description

Initial vehicle impact was to occur 30 in. upstream from post no. 19, as shown in Figure 129, which was selected using an LS-DYNA analysis to maximize vehicle wedging and snag underneath the sloped lower bridge rail tube termination. The 2,404-lb small car impacted the bridge rail transition at a speed of 64.6 mph and at an angle of 25.2 degrees. The actual point of impact was 8.7 in. downstream from the target location. During the test, the 1100C small car was contained and smoothly redirected with only minor roll and pitch displacements. The AGT experienced minimal deflections with maximum dynamic and permanent set deflections of 8.6 in. and 2.7 in., respectively. Both deflections were measured at the upstream end of the middle transition tube rail. Vehicle components contacted the height transition of the lower transition tube rail and the first bridge post, but snag was minimal. The vehicle came to rest 193 ft – 11 in. downstream from the target point and 63 ft – 1 in. laterally in front of the traffic side of the system after the vehicle's brakes were applied.

A detailed description of the sequential impact events is contained in Table 14. Sequential photographs are shown in Figures 130 and 131. Documentary photographs of the crash test are shown in Figure 132. The vehicle trajectory and final position are shown in Figure 133.

Figure 129. Impact Location, Test No. STBRT-1

TIME (sec)	EVENT
0.000	Vehicle's front bumper contacted system 21.3 in. upstream from post no. 19 (the farthest downstream transition post).
0.008	Vehicle's left fender contacted rail.
0.010	Vehicle's hood contacted the rail.
0.016	Post no. 19 deflected backward.
0.020	Post no. 19 rotated to face downstream.
0.023	Vehicle yawed away from system.
0.024	Post no. 18 deflected backward.
0.028	Post no. B1 (first bridge rail post) deflected backward.
0.032	Vehicle's left front door contacted rail, and vehicle rolled toward system.
0.042	Vehicle's roof deformed.
0.054	Vehicle pitched downward.
0.060	Post no. B2 deflected backward, and vehicle's left headlight shattered.
0.074	Post no. B1 bent backward.
0.082	Vehicle's left rear door contacted rail.
0.096	Top of left-front door deformed, resulting in top being opened.
0.130	Vehicle rolled toward system, and vehicle's right-rear tire became airborne.
0.160	Vehicle's left quarter panel contacted rail.
0.165	Vehicle was parallel to system traveling at 47.5 mph.
0.174	Vehicle's rear bumper contacted rail.
0.188	Vehicle pitched upward.
0.234	Vehicle yawed toward system.
0.237	Vehicle exited system at 46.2 mph and a -7.4-degree angle.
0.328	Vehicle rolled away from system.
0.382	System came to a rest.
0.446	Vehicle's right-rear tire regained contact with ground.

Table 14. Sequential Description of Impact Events, Test No. STBRT-1

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.500 sec

0.000 sec

0.100 sec

0.200

0.300 sec

0.400 sec

0.500 sec

Figure 130. Sequential Photographs, Test No. STBRT-1

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

Figure 131. Sequential Photographs, Test No. STBRT-1

Figure 132. Documentary Photographs, Test No. STBRT-1

Figure 133. Vehicle Final Position and Trajectory Marks, Test No. STBRT-1

9.4 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 134 through 136. Barrier damage consisted of contact marks and kinks on the thrie beam guardrail, contact marks on the HSS transition rails, and spalling of the concrete deck. The length of vehicle contact along the barrier was approximately 15 ft, which spanned from $6\frac{1}{2}$ in. downstream from the centerline of post no. 18 to 4 ft downstream from the first bridge rail post.

Kinks on the thrie beam began $8\frac{1}{2}$ in. upstream from the centerline of post no. 15 and continued downstream to the end of the thrie beam section. Multiple kinks were found on the top and bottom of the thrie beam between post nos. 15 and 19. The bottom corrugation was flattened beginning 1 ft – $8\frac{1}{4}$ in. upstream from the centerline of post no. 19 and continued 5 ft – 3 in. downstream to the thrie beam terminal connector. Post nos. 18 and 19 rotated backward.

Contact marks were found on the upstream end of the HSS transition rail sections and extended downstream past the first bridge rail post. The contact marks were mainly concentrated on the bottom transition tube rail. However, marks were found on the middle transition tube rail and on the face of the sloped portion of the upper transition tube rail. Tire marks were found on the face of the first bridge rail post below the lower rail.

Minor spalling occurred on the upstream corner of the concrete deck. The spalling began 1 ft $-4\frac{1}{2}$ in. upstream from the centerline of the first bridge rail post and extended 2 ft downstream. Tire marks were observed on the concrete deck between the first and second bridge rail.

The maximum lateral permanent set of the barrier system was 2.7 in. at the upstream end of the middle transition tube rail, as measured in the field. The maximum lateral dynamic barrier deflection was 8.6 in. at the upstream end of the middle transition tube, as determined from high-speed digital video analysis. The working width of the system was found to be 21.4 in., also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 137.

Figure 134. System Damage, Test No. STBRT-1

Figure 135. Thrie Beam and Transition Rail Damage, Test No. STBRT-1

Figure 136. Deck Damage, Test No. STBRT-1

Figure 137. Permanent Set, Dynamic Deflection, and Working Width, Test No. STBRT-1

9.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 138 through 141. The maximum occupant compartment intrusions are listed in Table 15, along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix F. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment, and none of the established MASH 2016 deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix F, are not considered crush toward the occupant, and are not evaluated by MASH 2016 criteria.

Majority of the damage was concentrated on the left-front corner and left side of the vehicle where impact had occurred. The front bumper had scrapes along its left side, and the left headlight was disengaged from the vehicle. The hood was crushed downward and inward at the headlight opening. The left-front fender remained intact but was crushed inward along its entire length. The left-front door was dented inward, and the left-rear door was crushed and dented. The windshield was cracked along the left side of the vehicle, but the system had no direct contact with the windshield.

Undercarriage damage was minimal. The left-side strut assembly remained intact but was bent, causing the tire and wheel to lean inward. The engine cradle was bent upward and inward at the left-front corner. The right-side frame horn kinked 16 in. behind the leading edge and was bent to the right. The left-side frame horn was bent to the right and inward.

Figure 139. Vehicle Damage, Test No. STBRT-1

150

Figure 140. Occupant Compartment Damage, Test No. STBRT-1

Figure 141. Undercarriage Damage, Test No. STBRT-1

LOCATION	MAXIMUM INTRUSION (in.)	MASH 2016 ALLOWABLE INTRUSION (in.)
Wheel Well & Toe Pan	0.4	≤ 9
Floor Pan & Transmission Tunnel	0.5	≤ 12
A-Pillar	0.7	≤ 5
A-Pillar (Lateral)	0.6	≤ 3
B-Pillar	0.2	≤ 5
B-Pillar (Lateral)	0.2	≤ 3
Side Front Panel (in Front of A- Pillar)	0.8	≤ 12
Side Door (Above Seat)	0.0	≤ 9
Side Door (Below Seat)	0.0	≤ 12
Roof	0.1	≤ 4
Windshield	2.1	≤ 3
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	0.6	N/A

Table 15. Maximum Occupant Compartment Intrusion by Location, Test No. STBRT-1

 $N\!/A-No$ MASH 2016 criteria exist for this location

9.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 16. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 16. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix G.

		Trans	MASH 2016	
Evaluation Criteria		SLICE-1 (primary)	SLICE-2	Limits
OIV	Longitudinal	-18.83	-17.79	± 40
(ft/s)	Lateral	28.98	27.52	±40
ORA	Longitudinal	-9.44	-9.22	±20.49
(g's)	Lateral	11.40	11.30	±20.49
Maximum Angular Displacement (deg.)	Roll	-6.1	-3.3	±75
	Pitch	-3.9	-4.5	±75
	Yaw	36.3	36.0	not required
THIV (ft/s)		29.06	28.22	not required
PHD (g's)		11.53	11.35	not required
ASI		1.91	1.80	not required

Table 16. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. STBRT-1

9.7 Discussion

The analysis of the test results for test no. STBRT-1 showed that the system adequately contained and redirected the 1100C vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 142. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix G, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of -7.4 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. STBRT-1 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-20.

$ \begin{array}{ c c c c c } \hline \\ \hline $					den .			- Jacob -
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-				2	
$10^{-10^{-10^{-10^{-10^{-10^{-10^{-10^{$	0.000 sec	0.100 sec	0.150 sec		0.250 se	c	0.3:	50 sec
111Test AgencyMWRSFTest AnmberSTBRT-1DateAugust 24, 2020MASH 2016 Test Designation No.3-202Test ArticleOH-IL Steel-Tube Bridge Rail TransitionTotal Lengh137 ft – 9 in.Key Component – RailsMaximum Interior DeformationMiddle and Lower Tube RailsHSS12x4X4AGT RailNested 12-gauge Thrie BeamThrie Beam Connector10-gauge Terminal ConnectorKey Component – PostsW6x15 at 8 ft on-centerBridge RailW6x15 at 8 ft on-centerAGTW6x15 at 8 ft on-centerSpacing between Adjacent AGT and Bridge Post9 ftVehicle Make (Model2009 Hyunai AccentCurb.2,447 lbGross Static.2,56 lbImpact Conditions21.3 in. U.S. from post no. 19Speed60.9 kip-ft > 51.1 kip-ft limit from MASH 201Exit Conditions21.3 in. U.S. from post no. 19Speed60.9 kip-ft > 51.1 kip-ft limit from MASH 201Kit Conditions21.3 in. U.S. from post no. 19Speed60.9 kip-ft > 51.1 kip-ft limit from MASH 201Kit Conditions29.06Speed60.9 kip-ft > 51.1 kip-ft limit from MASH 201Key Conditions29.06Speed46.2 mphAngle1.91Asil1.91List conditions29.06Speed46.2 mphAngle1.91Kibo CriterionPascKibo CriterionPascKibo CriterionPasc<	3 4 5 4 5 4 7 2 9 11 13 25.2' 32'-10" [10.0 m]	5 87 193-11 [39.1 m] 5 87 14"-11" [4.5 m] -Exit Box R ²			-	52"		
Top RailHSS12x4x/4 AGT RailWorking Width.AGT RailNested 12-gauge Thrie Beam Thrie Beam Thrie Beam Connector10-gauge Terminal ConnectorTransducer DataKey Component –PostsW6x15 at 8 ft on-center AGT.W6x15 at 37.5 in. on-center Spacing between Adjacent AGT and Bridge Post9 ftVehicle Make /Model2009 Hyundai Accent Curb2,404 lb Gross Static2,404 lb Gross Static11.883-17.79 ± 44 Gross Static2,404 lb Gross Static2,568 lb0RALongitudinal-9.44-9.22 ± 20.752 Impact Conditions21.3 in. U.S. from post no. 19Impact Severity60.9 kip-ft > 51.1 kip-ft limit from MASH 2016Yaw36.336.0not requExit IcorditionsSpeed46.2 mph Angle74 deg.Yaw36.336.0not requSpeed46.2 mph Angle-7.4 deg.HIV(ft/s)29.0628.22not requPHD (g's)11.5311.35not requWehcle StabilitySatisfactoryASI1.911.8not requ	Test Agency Test Number Date MASH 2016 Test Designation No Test Article Total Length Key Component –Rails Middle and Lower Tube Rails	M	MwRSF • 'BRT-1 4, 2020 4, 2020 • ansition • t - 9 in. • '88x6x!/4 •	17 Vehicle Damage. VDS [43] CDC [44] Maximum Int Test Article Dama Maximum Test A Permanent Se Dynamic	terior Deformation age rticle Deflections	19		
Key Component –Posts Bridge RailMASH Evaluation CriteriaBridge RailW6x15 at 8 ft on-center AGT $SLICE-1$ (primary) $SLICE-2$ LimAGTW6x15 at 37.5 in. on-center Spacing between Adjacent AGT and Bridge Post9 ft OIV Longitudinal -18.83 -17.79 ± 44 Curb2.009 Hyundai Accent Curb2.447 lbLateral 28.98 27.52 ± 44 Gross Static2.568 lb ORA Longitudinal -9.44 -9.22 ± 20.52 Impact Conditions $Speed$.64.6 mph Angle $Seed$ 11.40 11.30 ± 20.52 Impact Location21.3 in. U.S. from post no. 19Maximum AngleRoll -6.1 -3.3 ± 77.52 Impact Severity 60.9 kip-ft > 51.1 kip-ft limit from MASH 2016Yaw 36.3 36.0 not requExit Conditions Speed -7.4 deg. Exit Box Criterion PHD (g's) 11.53 11.35 not requPHD (g's) 1.91 1.8 not requASI 1.91 1.8 not requ	Top Rail AGT Rail Thrie Beam Connector	HSS1 Nested 12-gauge Thric 10-gauge Terminal Con	2x4x ¹ ⁄ ₄ e Beam • nnector	Working Wid Transducer Data	lth	Trans	ducer	
AGTW6x15 at 37.5 in. on-center Spacing between Adjacent AGT and Bridge Post9 ftVehicle Make /Model2009 Hyundai Accent 2.447 lb Test Inertial9 ftCurb2.447 lb Gross Static2.447 lb (ft/s)Gross Static2.440 lb Gross Static9.247 lb (ft/s)Impact Conditions2.447 lb (g's)0RASpeed64.6 mph Angle11.40Angle25.2 deg. Impact Location9.11.33Impact Severity60.9 kip-ft > 51.1 kip-ft limit from MASH 2016Exit Conditions21.3 in. U.S. from post no. 19 AngleSpeed60.9 kip-ft > 51.1 kip-ft limit from MASH 2016Exit Box Criterion9 ass Vehicle StabilityKerterion9 ass PassVehicle StabilitySatisfactory	Key Component –Posts Bridge Rail		i-center	Evaluatio	n Criteria	SLICE-1 (primary)	SLICE-2	Limits
Splitting of the indiger for an analysisVehicle Make /Model.2009 Hyundia AccentCurb. 2.447 lbGross Static. 2.568 lbImpact ConditionsSpeed. 64.6 mphAngle 25.2 deg.Impact Location. 21.3 in. U.S. from post no. 19Impact SeverityGross Static. 21.3 in. U.S. from post no. 19Impact Severity 60.9 kip-ft > 51.1 kip-ft limit from MASH 2016Exit Box Criterion $Pass$ Vehicle Stability.Satisfactory	AGT Spacing between Adjacent AGT and	Bridge Post	i-center 9 ft	OIV	Longitudinal	-18.83	-17.79	±40
Curb2,447 lbTest Inertial2,404 lbGross Static2,568 lbImpact Conditions2,568 lbSpeed64.6 mphAngle25.2 deg.Impact Location21.3 in. U.S. from post no. 19Impact Severity60.9 kip-ft > 51.1 kip-ft limit from MASH 2016Exit Conditions46.2 mphAngle7.4 deg.Exit Box CriterionPassVehicle StabilitySatisfactory	Vehicle Make /Model		Accent	(ft/s)	Lateral	28.98	27.52	±40
Test Inertial	Curb	2	2,447 lb	OR A	Longitudinal	-9.44	-9.22	±20.49
Gross state2,500 rbDate and11.4011.50120.Impact ConditionsSpeed	Test Inertial		2,404 lb	(g's)	Lateral	11.40	11 30	+20.49
MaximumKoil-6.1-5.3 $\pm l$ SpeedAngularPitch-3.9-4.5 $\pm l$ Impact LocationPitch-3.9-4.5 $\pm l$ Impact LocationYaw36.336.0not requiredImpact SeverityYaw36.336.0not requiredExit ConditionsYaw36.336.0not requiredAngleYaw36.311.35not requiredAngleNot requiredAngle1.911.8not requiredVehicle StabilitySatisfactoryImpact Severity<	Impact Conditions	2	2,300 ID	Maximum	D _c ¹¹	£ 1	2.2	.75
Angle25.2 deg.Impact Location21.3 in. U.S. from post no. 19Impact Severity60.9 kip-ft > 51.1 kip-ft limit from MASH 2016Exit Conditions46.2 mphAngle7.4 deg.Exit Box CriterionPassVehicle StabilitySatisfactory	Speed		l.6 mph	Angular	KOII	-0.1	-3.3	±/3
Impact Location 21.3 in. U.S. from post no. 19Impact Severity 60.9 kip-ft > 51.1 kip-ft limit from MASH 2016Exit Conditions 60.9 kip-ft > 51.1 kip-ft limit from MASH 2016Speed 46.2 mphAngle 7.4 deg.Exit Box CriterionPassVehicle StabilitySatisfactory	Angle		5.2 deg.	Displacement	Pitch	-3.9	-4.5	±75
Impact severity 60.9 kip-ft > 51.1 kip-ft limit from MASH 2016 Exit Conditions Speed Speed 46.2 mph Angle -7.4 deg. Exit Box Criterion Pass Vehicle Stability Satisfactory	Impact Location		t no. 19	(deg.)	Yaw	36.3	36.0	not require
Speed 46.2 mph Angle -7.4 deg. Exit Box Criterion Pass Vehicle Stability Satisfactory	Impact Severity	50.9 kip- π > 51.1 kip-ft limit from MASI	H 2016	THIV	(ft/s)	29.06	28.22	not require
AngleThe GerThe GerExit Box CriterionPassVehicle StabilitySatisfactory	Speed	46	5.2 mph	PHD	(g's)	11.53	11.35	not require
Exit Box Criterion Pass Vehicle Stability Satisfactory	Angle	-7	7.4 deg.		SI	1.01	1 9	not require
Vehicle StabilitySatisfactory	Exit Box Criterion		Pass	А	51	1.91	1.0	not require
	Vehicle Stability	Satis	factory					

Figure 142. Summary of Test Results and Sequential Photographs, Test No. STBRT-1

December 23, 2020 MwRSF Report No. TRP-03-411-20

10 FULL-SCALE CRASH TEST NO. STBRT-2

10.1 Static Soil Test

Before full-scale crash test no. STBRT-2 was conducted, the strength of the foundation soil was evaluated with a static test, as described in MASH 2016. The static test results, as shown in Appendix E, demonstrated a soil resistance above the baseline test limits. Thus, the soil provided adequate strength, and full-scale crash testing could be conducted on the barrier system.

10.2 Weather Conditions

Test no. STBRT-2 was conducted on September 22, 2020 at approximately 2:00 p.m. The weather conditions as per the National Oceanic and Atmospheric Administration (station 14939/LNK) were reported and are shown in Table 17.

Temperature	83° F
Humidity	37 %
Wind Speed	14 mph
Wind Direction	180° from True North
Sky Conditions	Sunny
Visibility	8 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0 in.
Previous 7-Day Precipitation	0 in.

Table 17. Weather Conditions, Test No. STBRT-2

10.3 Test Description

Initial vehicle impact was to occur 17 in. upstream from post no. 19, as shown in Figure 143, which was selected from LS-DYNA analysis to maximize vehicle snag on the AGT connection hardware. The 5,007-lb quad cab pickup truck impacted the bridge rail transition at a speed of 62.7 mph and at an angle of 24.9 degrees. The actual point of impact was 1.1 in. downstream from the target location. During the test, the 2270P pickup was contained and smoothly redirected with only minor roll and pitch displacements. The AGT experienced maximum dynamic and permanent set deflections of 18.6 in. and 8.4 in., respectively. Both deflections were measured at the upstream end of the middle transition tube rail. Vehicle components contacted the height transition of the lower transition tube rail and the first bridge post, but snag was minimal. The vehicle came to rest 183 ft – 10 in. downstream from the target point and 2 ft – 4 in. laterally behind the traffic side of the system after the vehicle's brakes were applied.

A detailed description of the sequential impact events is contained in Table 18. Sequential photographs are shown in Figures 144 and 145. Documentary photographs of the crash test are shown in Figure 146. The vehicle trajectory and final position are shown in Figure 147.

Figure 143. Impact Location, Test No. STBRT-2

TIME (sec)	EVENT
0.0	Vehicle's front bumper contacted system 28.9 in. upstream from post no. 19 (the farthest downstream transition post).
0.002	Vehicle's front bumper deformed, and vehicle's left-front tire contacted rail.
0.008	Vehicle's hood deformed, and vehicle's left fender contacted rail.
0.016	Post no. 19 deflected backward, and vehicle's grille deformed.
0.022	Post no. 18 deflected backward.
0.026	Post no. B1 (first bridge rail post) deflected backward, and vehicle's left-front door deformed.
0.032	Post no. 17 deflected backward, and vehicle yawed away from system.
0.038	Vehicle rolled toward system.
0.054	Vehicle's left-rear door deformed, and vehicle's left-front door contacted rail.
0.058	Post no. 16 deflected backward.
0.062	Vehicle pitched downward.
0.070	Post no. B2 deflected backward.
0.084	Post no. B1 bent backward.
0.126	Vehicle's left-rear door contacted rail.
0.136	Vehicle's right-front tire became airborne.
0.146	Vehicle's right-rear tire became airborne.
0.160	Occupant's head contacted left-front window.
0.174	Vehicle's rear bumper contacted rail.
0.178	Post no. B3 deflected backward.
0.179	Vehicle was parallel to system travelling at 51.2 mph.
0.184	Vehicle's tailgate contacted the rail.
0.250	Vehicle's left-front tire became airborne.
0.318	Vehicle's left-front tire regained contact with ground.
0.360	Vehicle exited system at 49.6 mph and a -11.4-degree angle.
0.442	System came to rest.
0.508	Vehicle rolled away from system.
0.554	Vehicle's right-front tire regained contact with ground.
0.578	Vehicle pitched upward.
0.760	Vehicle's right-rear tire regained contact with ground.

Table 18. Sequential Description of Impact Events, Test No. STBRT-2

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

Figure 144. Sequential Photographs, Test No. STBRT-2

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

0.000 sec

0.100 sec

0.200 sec

0.300 sec

0.400 sec

0.500 sec

Figure 145. Sequential Photographs, Test No. STBRT-2

Figure 146. Documentary Photographs, Test No. STBRT-2

Figure 147. Vehicle Final Position and Trajectory Marks, Test No. STBRT-2

10.4 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 148 and 149. Barrier damage consisted of contact marks and kinks on the three beam section and contact marks on the HSS transition tube rails. The length of vehicle contact along the barrier was approximately 14 ft and spanned from post no. 18 to downstream from the first bridge rail post.

Contact marks on the thrie beam began at post no. 18 and continued downstream to the end of the thrie beam terminal connector. The top corrugation sustained various kinks and bends beginning $8\frac{1}{2}$ in. upstream from the centerline of post no. 15 and continued to 5 in. downstream from the centerline of post no. 19. The bottom corrugation was kinked and folded upward beginning 2 in. downstream from the centerline of post no. 19 and continuing to the terminal connector.

Contact marks were found on the front faces of all three HSS transition rails and extended approximately 2 ft past the first bridge rail post. Contact marks were also found covering most of the top surface of the top rail's sloped upstream end. The upstream ends of the middle and lower transition tube rails were displaced backward, but no sharp bends in the rails were visible. The first bridge rail post was bent backward as a plastic hinge formed in the post just above the welded attachment plate. Flange buckling was also observed on the first bridge rail post adjacent to the transition tube rails.

The maximum lateral permanent set of the barrier system was 8.4 in. at the upstream end of the middle transition tube, as measured in the field. The maximum lateral dynamic barrier deflection was 18.6 in. at the upstream end of the middle transition tube, as determined from high-speed digital video analysis. The working width of the system was found to be 27.8 in., also determined from high-speed digital video analysis. A schematic of the permanent set deflection, dynamic deflection, and working width is shown in Figure 150.

Figure 148. System Damage, Test No. STBRT-2

December 23, 2020 MwRSF Report No. TRP-03-411-20

Figure 149. Thrie Beam and Transition Rail Damage, Test No. STBRT-2

Figure 150. Permanent Set, Dynamic Deflection, and Working Width, Test No. STBRT-2

10.5 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 151 through 154. The maximum occupant compartment intrusions are listed in Table 19, along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix F. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment, and none of the established MASH 2016 deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix F, are not considered crush toward the occupant, and are not evaluated by MASH 2016 criteria.

Majority of the damage was concentrated on the left-front corner and left side of the vehicle where the impact had occurred. The front bumper was crushed inward on the left side, and the grille disengaged from the vehicle. The left fender was crushed and scraped, and the left-front tire was deflated. The left-front door remained intact was scraped and dented. The left-rear door had some minor scrapes and dents. The left-rear taillight was disengaged from the vehicle, and the back bumper was pushed inward toward the center of the vehicle.

Undercarriage damage was minimal. The front sway bar moved slightly to the right, and the left end link was bent backward. The left upper control arm was bent and torn at the rear mount, and the left lower control arm was fractured at both mounting locations. The left outer tie rod was also slightly bent. The left frame horn was bent inward approximately 2 in. at the leading edge.

Figure 153. Occupant Compartment Damage, Test No. STBRT-2

Figure 154. Undercarriage Damage, Test No. STBRT-2

LOCATION	MAXIMUM INTRUSION (in.)	MASH 2016 ALLOWABLE INTRUSION (in.)
Wheel Well & Toe Pan	0.7	≤ 9
Floor Pan & Transmission Tunnel	0.0	≤ 12
A-Pillar	0.2	≤ 5
A-Pillar (Lateral)	0.2	≤ 3
B-Pillar	0.1	≤ 5
B-Pillar (Lateral)	0.2	≤ 3
Side Front Panel (in Front of A-Pillar)	1.8	≤ 12
Side Door (Above Seat)	0.6	<i>≤</i> 9
Side Door (Below Seat)	0.2	≤ 12
Roof	0.0	≤ 4
Windshield	0.0	≤ 3
Side Window	Intact	No shattering resulting from contact with structural member of test article
Dash	0.6	N/A

Table 19. Maximum Occupant Compartment Intrusion by Location, Test No. STBRT-2

N/A - No MASH 2016 criteria exist for this location

10.6 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ridedown accelerations (ORAs) in both the longitudinal and lateral directions, as determined from the accelerometer data, are shown in Table 20. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 20. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix H.

Evaluation Criteria		Transducer		MASH 2016	
		SLICE-1	SLICE-2 (primary)	Limits	
OIV (ft/s)	Longitudinal	-18.04	-16.27	± 40	
	Lateral	20.41	21.60	±40	
ORA (g's)	Longitudinal	-11.28	-11.86	±20.49	
	Lateral	13.62	15.81	±20.49	
Maximum Angular Displacement (deg.)	Roll	-21.5	-17.7	±75	
	Pitch	3.6	-5.5	±75	
	Yaw	46.9	46.2	not required	
THIV (ft/s)		25.56	25.80	not required	
PHD (g's)		17.26	19.24	not required	
ASI		1.14	1.25	not required	

Table 20. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. STBRT-2

10.7 Discussion

The analysis of the test results for test no. STBRT-2 showed that the system adequately contained and redirected the 2270P vehicle with controlled lateral displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 155. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix H, were deemed acceptable, because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of -11.4 degrees, and its trajectory did not violate the bounds of the exit box. Therefore, test no. STBRT-2 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 3-21.

11 SUMMARY AND CONCLUSIONS

The objective of this project was to develop a MASH TL-3 approach guardrail transition to the TL-4 steel-tube bridge rail, which was recently developed for the Ohio and Illinois DOTs. The AGT was required to safely connect the new steel-tube bridge rail to the Midwest Guardrail System (MGS) located on the adjacent roadway. Although the bridge rail was MASH TL-4 compliant, the AGT was only required to satisfy MASH TL-3 criteria, similar to the test level of the adjacent MGS. The AGT needed to prevent snag on the bridge rail during both conventional-and reverse-direction (traveling from bridge to roadway) impacts. Additionally, it was desired to maximize the distance between the last AGT post and the first bridge rail post to avoid post installation obstacles, such as bridge abutments and wing walls. Finally, the AGT was to remain crashworthy both before and after roadway overlays up to 3 in. thick. Note that the new bridge rail was designed with the same overlay criteria.

After a review of previously developed, MASH crashworthy AGTs, the Nebraska DOT 34-in. tall AGT was selected as the basis for the new AGT to steel-tube bridge rail. This nested thrie beam AGT was installed with a top mounting height of 34 in. to account for future overlays up to 3 in. thick. After an overlay, the symmetric W-to-thrie transition segment would be swapped out with an asymmetric W-to-thrie transition segment, and the W-beam in the upstream MGS region would be raised 3 in. on the guardrail posts. Thus, the effective nominal height for the entire system would become the standard 31 in. after a 3-in. thick overlay and these minor adjustments. Note that the posts would not have to be replaced or reset as part of these minor adjustments. Additionally, the Nebraska DOT 34-in. tall AGT utilized W6x15 posts spaced at 37.5 in. on-center. This post configuration was thought to be more conducive to maximizing the span length between the last transition post and the first bridge rail post as compared to the other AGTs with smaller W6x9 posts spaced at 18.75 in. on-center.

To attach the thrie-beam AGT to the steel-tube bridge rail, two connection design concepts were explored. The first concept involved a reinforced plate assembly that bridged the gap between the two systems. The thrie-beam terminal connector was bolted to the front face of the plate connector assembly, while the downstream end of the assembly would slide into the open ends of the HSS tube rails. The back side of the plate connector assembly contained both horizontal and vertical gussets to reinforce the assembly and provide adequate bending strength.

The second concept involved specialized transition tube rails that angled upward at a 6:1 slope and raised the height of the lower and middle HSS tube rails to match the height of the thrie beam. Thus, the thrie-beam terminal connector could be directly bolted to the transition tube rails. To prevent vehicle snag on the top tube rail, it was angled downward at a 2:1 slope and attached to the middle tube rail. Finally, an HSS6x4x¹/₄ section was sandwiched between the lower two tube rails, and the downstream end was tapered back laterally at a 3:1 slope to prevent vehicle snag on the thrie-beam terminal connector during reverse-direction impacts.

LS-DYNA computer simulations of MASH TL-3 impacts were conducted on both concepts to finalize component design and evaluate design feasibility. Although design concept #1 showed promise as a crashworthy connection between the AGT and the bridge rail, high stresses and plastic deformations were observed in the plate connector assembly during the simulations. Additionally, both the Illinois and Ohio DOTs expressed concern with the complexity and potential cost required to construct the plate connector assembly. Simulations on Concept #2

showed only minor vehicle snag on the system components during both conventional- and reversedirection impacts. Additionally, the simulations also showed a potential for safely using a 9-ft span length between the last transition post and first bridge post, which was more than double the post distances of other MASH AGTs. Thus, concept #2 with the specialized transition tube rails was ultimately selected as the desired configuration

LS-DYNA computer simulations were also used to identify critical impact points (CIPs) for both full-scale crash tests required by MASH TL-3 evaluation criteria. Multiple impacts were simulated on the AGT with both vehicles to identify the impact point that would maximize vehicle snag and thereby maximize the potential for excessive decelerations, occupant compartment crush, and/or vehicle instabilities. The CIP for test designation no. 3-21 was determined to be 17 in. upstream from the last W6x15 AGT post to maximize occupant risk values and the potential for snagging on the sloped end of the upper transition tube and the first bridge rail post. The CIP for test designation no. 3-20 was determined to be 30 in. upstream from the last AGT post to maximize wedging of the small car tire underneath the sloped transition tube rails and the potential for snagging on the posts.

LS-DYNA computer simulations of reverse-direction impacts showed no indication of significant pocketing or snag. Additionally, these simulated reverse-direction impacts on the AGT showed similar vehicle behavior, accelerations, and system deflections as observed during the actual full-scale crash tests conducted on the interior sections of the bridge railing, test nos. STBR-2 and STBR-3. Since MASH testing on the bridge rail was successful, any reverse direction crash tests on the transition from the bridge rail to the thrie-beam AGT should also be successful. Thus, reverse-direction testing was deemed non-critical and only conventional direction impacts were conducted in the full-scale testing and evaluation of the new AGT connection.

A full-scale test installation of the AGT to steel-tube bridge rail was constructed, and test nos. STBRT-1 and STBRT-2 were conducted on the test article in accordance with MASH 2016 test designation nos. 3-20 and 3-21, respectively. A summary of the test evaluation is shown in Table 21. In test no. STBRT-1, the 2,404-lb small car impacted the steel-tube bridge rail system 21.3 in. upstream from post no. 19 at a speed of 64.6 mph and an angle of 25.2 degrees, resulting in an impact severity of 60.9 kip-ft. The vehicle was successfully contained and smoothly redirected with moderate damage to both the bridge rail system and the vehicle. After impacting the barrier system, the vehicle exited the system at a speed of 46.2 mph and an angle of -7.4 degrees. All vehicle decelerations, ORAs, and OIVs fell within the recommended safety limits established in MASH 2016. Therefore, test no. STBRT-1 satisfied the safety criteria of MASH 2016 test designation no. 3-20.

In test no. STBRT-2, the 5,007-lb pickup truck impacted the steel-tube bridge rail system 15.9 in. upstream from post no. 19 at a speed of 62.7 mph and an angle of 24.9 degrees, resulting in an impact severity of 116 kip-ft. The vehicle was successfully contained and smoothly redirected with moderate damage to both the bridge rail system and the vehicle. After impacting the barrier, the vehicle exited the system at a speed of 49.6 mph and an angle of -11.4 degrees. All vehicle decelerations, ORAs, and OIVs fell within the recommended safety limits established in MASH 2016. Therefore, test no. STBRT-2 was successful according to the safety criteria of MASH 2016 test designation no. 3-21.

Recall, the upstream end of the AGT incorporated the MGS stiffness transition, which had previously been successfully crash tested to MASH TL-3 criteria [32-33]. Further, LS-DYNA simulations of reverse-direction impacts on the AGT showed negligible vehicle snag and resulted in behavior similar to the full-scale tests on the steel-tube bridge railing, which also previously passed MASH safety criteria [6-7]. Therefore, with the successful crash tests documented herein, the new AGT to the Ohio/Illinois steel-tube bridge railing was determined to be crashworthy to MASH 2016 TL-3 safety performance criteria.

The research presented within this research report pertains only to the development and MASH 2016 evaluation of the new AGT to steel-tube bridge rail. Recommendations and implementation guidance for both the bridge rail and the AGT were documented in a separate summary report [10].

Evaluation Factors		Ev	aluation Criteria		Test No. STBRT-1	Test No. STBRT-2
Structural Adequacy	А.	Test article should c the vehicle to a co penetrate, underride controlled lateral de	contain and redirect ontrolled stop; the e, or override the i flection of the test a	the vehicle or bring vehicle should not nstallation although article is acceptable.	S	S
Occupant Risk	D.	1. Detached element test article should penetrating the occur hazard to other traffic zone.	S	S		
		2. Deformations of compartment should 5.2.2 and Appendix	of, or intrusions d not exceed limits E of MASH 2016.	into, the occupant set forth in Section	S	S
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.			S	S
	H.	Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:			S	S
		Occupant Impact Velocity Limits				
		Component	Preferred	Maximum	S	S
		Longitudinal and Lateral	30 ft/s	40 ft/s	5	~
	I. The Occupant Ridedown Acceleration (ORA) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits:				S	S
		Occupant Ridedown Acceleration Limits				
		Component	Preferred	Maximum	S	S
		Longitudinal and Lateral	15.0 g's	20.49 g's		
MASH 2016 Test Designation No.			3-20	3-21		
Final Evaluation (Pass or Fail)			Pass	Pass		

Table 21. Summary of Safety Performance Evaluation
--

 $S-Satisfactory \qquad U-Unsatisfactory \qquad NA-Not Applicable$

12 MASH EVALUATION

The MASH TL-3 approach guardrail transition developed and evaluated herein was specifically designed for use with the MASH TL-4 steel-tube bridge railing that was developed for the Ohio and Illinois Departments of Transportation. Since the AGT was intended for use on roadways that may receive future overlays up to 3 in. thick, the AGT was based on Nebraska DOT's 34-in. tall thrie-beam AGT. The nested thrie-beam rail at the downstream end of the AGT was supported by W6x15 posts spaced at 37.5 in., while the upstream end rail elements were supported by W6x8.5 posts at various spacings corresponding to the MGS stiffness transition. A symmetric W-to-thrie transition segment was utilized to attach the 34-in. tall thrie beam to 31-in. tall MGS upstream from the AGT. At the downstream end of the AGT, a 9-ft span length was used between the last transition post and the first bridge rail post to avoid post installation conflicts with bridge elements, such as wing walls, abutments, or bents.

To attach the thrie-beam AGT to the steel-tube bridge rail, specialized transition tube rails were extended from the upstream end of the bridge rail. The transition tube rails angled upward at a 6:1 slope and raised the height of the lower and middle HSS tube rails to match the height of the thrie beam. Thus, the thrie-beam terminal connector could be directly bolted to the transition tube rails. To prevent vehicle snag on the top tube rail, it was angled downward at a 2:1 slope and attached to the middle tube rail. Finally, an HSS6x4x¹/₄ was sandwiched between the lower two tube rails, and the downstream end was tapered back laterally at a 3:1 slope to prevent vehicle snag on the thrie beam terminal connector during reverse-direction impacts.

The upstream region of the AGT was specifically designed to replicate the MASHcrashworthy MGS stiffness transition. Upon initial installation, the only difference between the two systems was that the 34-in. tall AGT utilized a symmetric W-to-thrie transition rail instead of an asymmetric transition rail. Since the W-beam upstream from the transition rail was mounted at its nominal 31-in. height, vehicles impacting this region of the barrier should not extend over the rail and roll excessively. Additionally, the bottom of the symmetric transition rail had a shallower slope than the asymmetric segment and would likely produce less snag as a small vehicle tried to wedge underneath the rail. Thus, there were no concerns about vehicle stability and/or snag on the upstream region of the new AGT prior to a roadway overlay.

After the roadway overlay, the symmetric rail segment would be replaced by an asymmetric segment, and the W-beam of the adjacent MGS would be raised 3 in. on the posts to maintain its nominal 31-in. mounting height. Previous studies have concluded that guardrail can be raised up to 4 in. on the support posts and the system will remain crashworthy. Thus, after an overlay, the upstream stiffness transition is essentially identical to the MASH-tested MGS stiffness transition. Since the MGS stiffness transition was previously subjected to and successfully passed MASH TL-3 criteria, the upstream stiffness transition within the new AGT to a steel-tube bridge rail would be MASH TL-3 crashworthy as well. Therefore, all crash testing of the upstream stiffness transition, both before and after an overlay, was deemed non-critical.

At the downstream end of the AGT, there were concerns for rail pocketing within the 9-ft unsupported span length adjacent to the stiff bridge rail as well as vehicle snag on the transition tube rails and bridge posts. Rail pocketing issues would be the same regardless of the presence of an overlay as an overlay would not affect the strength of the system. However, an overlay would reduce the gap below the rail, thereby reducing the likelihood that vehicle bumpers and wheels would extend under the rail and snag on system components. Accordingly, the system configuration without an overlay would present the worst-case scenario for vehicle snag. Thus, only two full-scale tests were recommended to evaluate the crashworthiness of the 34-in. tall AGT to MASH 2016 TL-3 criteria.

Test nos. STBRT-1 and STBRT-2 were conducted in accordance with MASH test designation nos. 3-20 and 3-21, respectively, on the downstream end of the AGT without an overlay. Test no. STBRT-1 was performed with the 1100C small car impacting 21.3 in. upstream from the last transition post to maximize vehicle snag on the vertically sloped portion of the lower transition tube rail, while test no. STBRT-2 was performed with the 2270P pickup impacting 15.9 in. upstream from the last transition post to maximize loading to the connection hardware and snag on the sloped end of the top transition tube rail. Both vehicles were contained and smoothly redirected with minor roll and pitch angular displacements. Vehicle contact did occur on the targeted snag points on the AGT, but the tapered designs limited the snag severity. None of the MASH 2016 occupant compartment deformation limits were violated, and all ORA and OIV values were within MASH 2016 safety limits. Therefore, test nos. STBRT-1 and STBRT-2 were determined to be acceptable according to test designation nos. 3-20 and 3-21, respectively, of MASH 2016.

Due to the two successful full-scale crash tests, the incorporation of the upstream MGS stiffness transition, and modification to the AGT and adjacent MGS after an overlay as described herein, the new 34-in. AGT to steel-tube bridge rail was determined to be crashworthy to MASH 2016 TL-3 standards both before and after a 3-in. roadway overlay.

13 REFERENCES

- 1. *Twin Steel Tube Bridge Railing*, State of Ohio Department of Transportation, Office of Structural Engineering, Bridge Rail Drawing No. TST-1-99, Columbus, Ohio, July 2016.
- 2. *Type Side-Mounted Steel Bridge Rail*, State of Illinois Department of Transportation, Bureau of Bridges and Structures, Bridge Rail Drawing No. R-34HMAWS, Springfield, Illinois, November 2016.
- Ross, H.E., Sicking, D.L., Zimmer, R.A., and Michie, J.D., *Recommended Procedures for* the Safety Performance Evaluation of Highway Features, National Cooperative Highway Research Program (NCHRP) Report 350, Transportation Research Board, Washington, D.C., 1993.
- 4. *Manual for Assessing Safety Hardware (MASH)*, American Association of State and Highway Transportation Officials (AASHTO), Washington, D.C., 2009.
- 5. *Manual for Assessing Safety Hardware (MASH), Second Edition*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- Peña, O., Faller, R.K., Rasmussen, J.D., Steelman, J.S., Rosenbaugh, S.K., Bielenberg, R.W., Mauricio, P., and Duren, J.T., *Development of a MASH Test Level 4 Steel, Side-Mounted, Beam-and-Post, Bridge Rail*, Research Report No. TRP-03-410-20, Midwest Roadside Safety Facility, University of Nebraska – Lincoln, Lincoln, Nebraska, July 20, 2020.
- 7. Peña, O., *Development of a MASH Test Level 4 Steel, Side-Mounted, Beam-and-Post, Bridge Rail*, Thesis, University of Nebraska Lincoln, April 2019.
- 8. Mauricio, P., Rasmussen J.D., Faller, R.K., Rosenbaugh, S.K., Bielenberg, R.W., Pena, O., Steelman, J.S., and Stolle, C.S., *Development of a Post-to-Deck Connections for a TL-4 Steel-Tube Bridge Rail*, Research Report No. 03-409-20, Midwest Roadside Safety Facility, University of Nebraska Lincoln, May 27, 2020.
- 9. Mauricio, P., An Evaluation of Post-to-Deck Connections for Use in a MASH TL-4 Steel-Tube Bridge Rail, Thesis, University of Nebraska – Lincoln, April 2019.
- Rosenbaugh, S.K., Rasmussen, J.D., Faller, R.K., Bielenberg, R.W., and Steelman, J.S., Steel Railing, Type IL-OH: MASH Evaluation and Implementation Guidance, DRAFT Research Report No. TRP-03-438-20, Midwest Roadside Safety Facility, University of Nebraska – Lincoln, Lincoln, Nebraska, 2020.
- 11. *MGS Bridge Terminal Assembly, Type 1*, State of Ohio Department of Transportation, Office of Structural Engineering, Transition Drawing No. MGS-3.1, Columbus, Ohio, January 2018.
- 12. *Guide Specifications for Bridge Railings*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 1989.

- 13. *Traffic Barrier Terminal, Type 6A*, State of Illinois Department of Transportation, Bureau of Bridges and Structures, Transition Drawing No. 631032-09, Springfield, Illinois, January 2003.
- 14. Buth, C.E., Hirsch, T.J., Menges, W.L., *Testing of New Bridge Rail and Transition Designs Illinois Side Mount Bridge Railing*. Report No. FHWA-RD-93-066, Texas Transportation Institute, College Station, Texas, September 1993.
- 15. Williams, W.F., Bligh, R.P., Menges, W.L., *MASH TL-3 Testing and Evaluation of the TxDOT T131RC Bridge Rail and Transition*. Report No. FHWA-TX-13-9-1002-12-4, Texas Transportation Institute, College Station, Texas, March 2013.
- Williams, W.F., Bligh, R.P., Menges, W.L., MASH Test 3-11 on the T131RC Bridge Rail. Report No. FHWA-TX-12-9-1002-12-1, Texas Transportation Institute, College Station, Texas, October 2012.
- 17. Oregon Two-Tube Side Mount Rail Transition, State of Oregon Department of Transportation, Roadway Engineering Unit, Transition Drawing No. BR230, Salem, Oregon, January 2016.
- 18. *Oregon Two-Tube Side Mount Rail*, State of Oregon Department of Transportation, Roadway Engineering Unit, Bridge Rail Drawing No. BR226, Salem, Oregon, January 2017.
- 19. Buth, C.E., Menges, W.L., Williams, W.F., Schoeneman, S.K., *NCHRP Report 350 Test 4-21 of the Alaska Multi-State Bridge Rail Thrie-Beam Transition*. Report No. 404311-5, Texas Transportation Institute, College Station, Texas, July 1999.
- 20. Buth, C.E., Menges, W.L., Williams, W.F., Schoeneman, S.K., *NCHRP Report 350 Test 4-12 of the Alaska Multi-State Bridge Rail.* Report No. 404311-3, Texas Transportation Institute, College Station, Texas, February 1999.
- 21. Jewell, J., Glauz, D., Stoughton, R.L., Crozier, W., Folsom, J.J., *Vehicle Crash Tests of Type 115 Barrier Rail Systems for Use on Secondary Highways*. Paper No. 1419, Transportation Research Board, Washington, D.C., March 1993.
- 22. Alberson, D.C., Buth, E.C., Menges, W.L., Haug, R.R., *NCHRP Report 350 Testing and Evaluation of NETC Bridge Rail Transitions*. Report No. NETCR 53, New England Transportation Consortium, Storrs, Connecticut, January 2006.
- 23. Alberson, D.C., Menges, W.L., Bligh, R.P., Abu-Odeh, A.Y., Buth, E.C., Haug, R.R., *Thrie Beam Transition Crash Tests*. Report No. FHWA-RD-04-115, Texas Transportation Institute, College Station, Texas, January 2005.
- Polivka, K.A. Faller, R.K., Ritter, M.A., Rosson, B.T., Fowler, M.D., and Keller, E.A., *Two Test Level 4 Bridge Railing and Transition Systems for Transverse Glue-Laminated Timber Decks*, Report No. TRP-03-71-01, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, January 30, 2002.

- Eller, C.M., Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Reid, J.D., Bielenberg, R.W., and Allison, E.M., *Development of the Midwest Guardrail System (MGS) W-beam to Thrie Beam Transition Element*, Report No. TRP-03-167-07, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, NE, November 2007.
- 26. Rosenbaugh, S.K., Fallet, W.G., Faller, R.K., Bielenberg, R.W., and Schmidt, J.D., *34-in. Tall Thrie Beam Transition to Concrete Buttress*, Report No. TRP-03-367-19-R1, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, July 2, 2019.
- 27. Halquist, L.O., *LS-DYNA Keyword User's Manual*, Version 970, Livermore Software Technology Corporation, Livermore, California, 2003.
- Bickhaus, R.F., Rasmussen, J.D., and Reid, J.D., *Development and Validation of a Thrie-Beam AGT LS-DYNA Model*, Draft Report to the Midwest Pooled Fund Program, Report No. TRP-03-441-20, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, 2020.
- 29. Rosenbaugh, S.K., Faller, R.K., Asselin, N., and Hartwell, J.A., *Development of a Standardized Buttress for Approach Guardrail Transitions*, Report No. TRP-03-369-20, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, November 10, 2020.
- Dhafer, M., Update on New MASH Pickup Truck Model, Center for Collision Safety and Analysis, TRB 98th Annual Meeting (2019) Roadside Safety Design Computational Mechanics Subcommittee, AFB20(1), Washington, D.C., January 14, 2019, Obtained on February 12, 2019.
- 31. National Crash Analysis Center, 2010 Toyota Yaris FE Model, Retrieved from http://www.ncac.gwu.edu/vml/archive/ncac/vehicle/yaris-vlm.pdf, Accessed June 1, 2013.
- Rosenbaugh, S.K., Lechtenberg, K.A., Faller, R.K., Sicking, D.L., Bielenberg, R.W., Reid, J.D., *Development of the MGS Approach Guardrail Transition Using Standardized Steel Posts*, Report No. TRP-03-210-10, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, December 21, 2010.
- 33. Lechtenberg, K.A., Mongiardini, M., Rosenbaugh, S.K., Faller, R.K., Bielenberg, R.W., and Albuquerque, F.D.B., Development and Implementation of the Simplified MGS Stiffness Transition, *Transportation Research Record: Journal of the Transportation Research Board*, 2012. Volume 2309, pp. 1-11.
- Mongiardini, M., Faller, R.K., Reid, J.D., Sicking, D.L., Stolle, C.S., and Lechtenberg, K.A., Downstream Anchoring Requirements for the Midwest Guardrail System, Report No. TRP-03-279-13, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, October 28, 2013.

- 35. Mongiardini, M., Faller, R.K., Reid, J.D., and Sicking, D.L., *Dynamic Evaluation and Implementation Guidelines for a Non-Proprietary W-Beam Guardrail Trailing-End Terminal*, Paper No. 13-5277, Transportation Research Record No. 2377, Journal of the Transportation Research Board, TRB AFB20 Committee on Roadside Safety Design, Transportation Research Board, Washington D.C., January 2013, pages 61-73.
- Stolle, C.S., Reid, J.D., Faller, R.K., and Mongiardini, M., *Dynamic Strength of a Modified W-Beam BCT Trailing-End Termination*, Paper No. IJCR 886R1, Manuscript ID 1009308, International Journal of Crashworthiness, Taylor & Francis, Vol. 20, Issue 3, Published online February 23, 2015, pages 301-315.
- 37. Griffith, M.S., Federal Highway Administration (FHWA), *Eligibility Letter HSST/B-256 for: Trailing-End Anchorage for 31" Tall Guardrail*, December 18, 2015.
- 38. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- 39. Clarifications on Implementing the AASHTO Manual for Assessing Safety Hardware, 2016, FHWA and AASHTO, <u>https://design.transportation.org/wp-content/uploads/sites/</u>21/2019/11/Clarifications-on-Implementing-MASH-2016-aka-MASH-QA-Updated-Nov-19-2019.pdf, November 2019.
- 40. *Center of Gravity Test Code SAE J874 March 1981,* SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.
- 41. MacInnis, D., Cliff, W., and Ising, K., *A Comparison of the Moment of Inerita Estimation Techniques for Vehicle Dynamics Simulation*, SAE Technical Paper Series 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.
- 42. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, New York, July, 2007.
- 43. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 44. Collision Deformation Classification Recommended Practice J224 March 1980, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

14 APPENDICES

Appendix A. DOT Standard Drawings for AGTs and Bridge Rail

Figure A-1. Ohio MGS Bridge Terminal Assembly, Type 1, Sheet 1 of 2	
Figure A-2. Ohio MGS Bridge Terminal Assembly, Type 1, Sheet 2 of 2	
Figure A-3. Ohio Twin Steel Tube Bridge Railing, Sheet 1 of 4	
Figure A-4. Ohio Twin Steel Tube Bridge Railing, Sheet 2 of 4	
Figure A-5. Ohio Twin Steel Tube Bridge Railing, Sheet 3 of 4	
Figure A-6. Ohio Twin Steel Tube Bridge Railing, Sheet 4 of 4	191
Figure A-7. Illinois Traffic Barrier Terminal, Type 6A, Sheet 1 of 3	
Figure A-8. Illinois Traffic Barrier Terminal, Type 6A, Sheet 2 of 3	
Figure A-9. Illinois Traffic Barrier Terminal, Type 6A, Sheet 3 of 3	194
Figure A-10. Illinois Type SM Side Mount Bridge Rail	195
Figure A-11. Texas T131RC Bridge Rail Transition, Sheet 1 of 7	
Figure A-12. Texas T131RC Bridge Rail Transition, Sheet 2 of 7	197
Figure A-13. Texas T131RC Bridge Rail Transition, Sheet 3 of 7	
Figure A-14. Texas T131RC Bridge Rail Transition, Sheet 4 of 7	
Figure A-15. Texas T131RC Bridge Rail Transition, Sheet 5 of 7	
Figure A-16. Texas T131RC Bridge Rail Transition, Sheet 6 of 7	
Figure A-17. Texas T131RC Bridge Rail Transition, Sheet 7 of 7	
Figure A-18. Texas T131RC Bridge Rail, Sheet 1 of 9	
Figure A-19. Texas T131RC Bridge Rail, Sheet 2 of 9	
Figure A-20. Texas T131RC Bridge Rail, Sheet 3 of 9	
Figure A-21. Texas T131RC Bridge Rail, Sheet 4 of 9	
Figure A-22. Texas T131RC Bridge Rail, Sheet 5 of 9	
Figure A-23. Texas T131RC Bridge Rail, Sheet 6 of 9	
Figure A-24. Texas T131RC Bridge Rail, Sheet 7 of 9	
Figure A-25. Texas T131RC Bridge Rail, Sheet 8 of 9	
Figure A-26. Texas T131RC Bridge Rail, Sheet 9 of 9	
Figure A-27. Oregon Two-Tube Side Mount Rail Transition	
Figure A-28. Oregon Two-Tube Side Mount Rail	
Figure A-29. Alaska Multi-State Thrie-Beam Transition, Sheet 1 of 2	
Figure A-30. Alaska Multi-State Thrie-Beam Transition, Sheet 2 of 2	
Figure A-31. Alaska Multi-State Bridge Rail, Sheet 1 of 3	
Figure A-32. Alaska Multi-State Bridge Rail, Sheet 2 of 3	
Figure A-33. Alaska Multi-State Bridge Rail, Sheet 3 of 3	
Figure A-34. California Type 115 Bridge Rail, Sheet 1 of 3	
Figure A-35. California Type 115 Bridge Rail, Sheet 2 of 3	
Figure A-36. California Type 115 Bridge Rail, Sheet 3 of 3	
Figure A-37. New Hampshire T2 Steel Bridge Rail Transition	
Figure A-38. New Hampshire T2 Steel Bridge Rail	
Figure A-39. Wisconsin Thrie-Beam Transition Connection	
Figure A-40. Wisconsin Tubular Steel Railing Type "M"	

2/2

Figure A-2. Ohio MGS Bridge Terminal Assembly, Type 1, Sheet 2 of 2

December 23, 2020 MwRSF Report No. TRP-03-411-20

Figure A-3. Ohio Twin Steel Tube Bridge Railing, Sheet 1 of 4

Figure A-4. Ohio Twin Steel Tube Bridge Railing, Sheet 2 of 4

Figure A-5. Ohio Twin Steel Tube Bridge Railing, Sheet 3 of 4

TST-1-99 GENERAL NOTES:

GENERAL: THIS DRAWING PROVIDES DESIGN AND CONSTRUCTION DETAILS. THE PROJECT PLANS FOR EACH STRUCTURE SHALL PROVIDE NECESSARY ADDITIONAL RAILING DIMENSIONS INCLUDING RAILING LENGTHS, POST SPACINOS, POST LENGTHS AND ANY OTHER PERTINENT INFORMATION INCLUDING SPECIAL NOTES AND DETAILS. FOR ADDITIONAL GUARDRAIL DETAILS, SEE SID. CONSTR. DWGS. MGS-11, MGS-2, AND OTHER DRAWINGS PERTAINING TO DESIGN OF SPECIFIC GUARDRAIL TYPES.

APPLICATION: THIS RAILING SYSTEM HAS BEEN ACCEPTED TO THE TL-4 CRITERIA OF NOHEP REPORT 350. THE TWIN STELL TUBE RAILING SHALL BE USED ON STRUCTURES DESIGNED TO DRAIN SURFACE WATER OVER THE SIDES OF THE STRUCTURE. THIS RAILING IS NOT APPLICABLE TO COMPOSITE BOX BEAM BRIDGES WITH DESIGN OVERHANGS GREATER THAN 2" OR TOP FLANGE THICKNESSES LESS THAN 5".

CONNECT THE APPROACH AND TRAILING ENDS OF THE TWIN STEEL TUBE RAILING TO THE BRIDGE TERMINAL ASSEMBLY DETAILED IN STANDARD CONSTRUCTION DRAWING MGS-3.1. THE FIRST POST AT THE APPROACH END AND THE LAST POST AT THE TRAILING END OF THE BRIDGE RAILING SHALL BE FLUSH MOUNTED AS SHOWN ON SHEET I OF 4.

DESIGN DATA:

19

REINFORCING STEEL - MINIMUM YIELD STRENGTH = 60,000 PSI STEEL TUBING - MINIMUM YIELD STRENGTH = 46,000 PSI ALL OTHER STEEL - MINIMUM YIELD STRENGTH = 50,000 PSI

MATERALS: FURNISH SHAPED STRUCTURAL TUBING ACCORDING TO TO7.10 (ASTM ASOG, GRADE B). IN LIEU OT HE 'DROP WEIGHT TERST (ASTM 4350, THE MANUFACTURE MAY CHOOSE TO SUPPLY TUBING THAIT MEETS IMPACT TOUGHNESS ACCORDING TO ASHTO TSGE, 'WOCTWED BAR IMPACT TESTING OF METALLIC MATERIALS (CVW)'. THE CVN IMPACT REOUJRE-DED, THE MANUFACTURES HALL FURNISH ONE 2"× 18" SPECIMEN, MARKED WITH ITS HEAT NUMBER, FOR IMPACT TESTING.

FURNISH STRUCTURAL STEEL SHAPES, PLATES AND PLATE WASHERS ACCORDING TO 711.01.

GALYAMZING: GALYAMIZE ALL SHAPED STRUCTURAL TUBES, POSTS, PLATES, HARDWARE AND ACCESSORIES IN ACCORDANCE WITH THLOZ. PRICR TO GALYANIZING, ROUND ALL STRUCTUR-AL TUBING ENDS AND REMOVE BURRS FROM ALL STEEL TUBING, SHAPES AND PLATES. HORIZONTAL CURVATURE: THIS STANDARD IS APPLICABLE TO STRUCTURES HAVING A RAILING CURVATURE RADIUS OF 20 FEET OR MORE. FOR A RADIUS OF LESS THAN 20 FEET, THE DESIGN SHALL BE SPECIAL. FOR ALL CURVED STRUCTURES, HEAT CURVE THE HORIZONTAL RAIL ELEMENTS ACCORDING TO THE AASHTO LAFD BRIDGE CONSTRUCTION SPECIFICATIONS.

TUBE SPLICES: LOCATE SPLICES SO THAT EACH TUBE SEGMENT IS CONNECT-ED TO NOT LESS THAN TWO POSTS. STAGGER SPLICES IN THE TOP AND BOTTOM TUBES TO AVOID OCCURRENCES IN THE SAME PANEL.

FASTENERS: FURNISH MATERIAL CONFORMING TO THE FOLLOWING:

ALL ANCHOR BOLTS, SLEEVE NUTS, NUTS AND WASHERS SHALL CONFORM TO ASTM A 449.

END WELDED STUDS SHALL CONFORM TO ASTM AIO8.

THE TUBE RAIL TO POST CONNECTION BOLTS AND HEX NUTS SHALL CONFORM TO 711.10 (ASTM A307). REFER TO STANDARD CONSTRUCTION DRAWING MGS-3.1 FOR THE BRIDGE TERMINAL ASSEMBLY CONNECTION HARDWARE.

THE HEX CAP SCREWS (BOLTS), HEX NUTS AND WASHERS SHALL CONFORM TO ASTM A 449.

BOX BEAMS: THE DISTANCE FROM THE CENTERLINE OF A GUARD-RAIL POST TO THE ABUIMENT END OF THE BEAM OR TO THE CENTERLINE OF A THE ROO SHALL NOT BE LESS THAN I'-8". THE DISTANCE FROM THE CENTERLINE OF A GUARDRAIL POST TO THE PIER END OF THE BEAM SHALL NOT BE LESS THAN 2'-10". THE LOCATION OF THE HORIZONTAL THE RODS MAY MEED TO BE AJUSTED IN ORDER TO ACCOMMODATE EACH POST ANCHOR DEVICE.

METHOD OF MEASUMEMENT: THE DEPARTMENT WILL MEASUME TWIN STEEL TUBE BRIDGE RAILING BY THE NUMBER OF FEET. THE DEPARTMENT WILL MEASURE THE LENGTH OF RAILING AS THE DISTANCE BETWEEN THE CENTERS OF THE FLUSH MOUNTED POSTS AT THE APPRACH AND TRAILING ENDS PLUS 4'-11'.

BASIS OF PAYMENT: THE DEPARTMENT WILL CONSIDER THE COSTS ASSOCIATED WITH FURNISHING AND INSTALLING STEEL TUBING, STEEL POSTS, POST ANCHOR DEVICES, ANCHOR PLATES, TUBE SPLICE PLATES, STEEL SHIM PLATES, GUARDRAIL CONNECTION PLATES, ANCHOR BOLIS, ⅔ ROUND HEAD BOLIS, SLEEVE NUTS, NUTS, CAP SCREWS, MASHERS AND OTHER HARDWARE TO DE INCLUDED WITH THE TWIN STEEL TUBE FAILING. THE DEPARTMENT WILL PAY FOR ACCEPTED QUANTITIES AT THE CONTRACT PRICE FOR THEM SIT, RAILING (TWIN STEEL TUBE).

THE DEPARTMENT WILL PAY FOR BRIDGE TERMINAL ASSEMBLY HARDWARE SEPARATELY.

07-06-

Figure A-6. Ohio Twin Steel Tube Bridge Railing, Sheet 4 of 4

Figure A-7. Illinois Traffic Barrier Terminal, Type 6A, Sheet 1 of 3

Figure A-8. Illinois Traffic Barrier Terminal, Type 6A, Sheet 2 of 3

Figure A-9. Illinois Traffic Barrier Terminal, Type 6A, Sheet 3 of 3

Figure A-10. Illinois Type SM Side Mount Bridge Rail

Figure A-11. Texas T131RC Bridge Rail Transition, Sheet 1 of 7

Figure A-12. Texas T131RC Bridge Rail Transition, Sheet 2 of 7

Figure A-13. Texas T131RC Bridge Rail Transition, Sheet 3 of 7

Figure A-14. Texas T131RC Bridge Rail Transition, Sheet 4 of 7

Figure A-15. Texas T131RC Bridge Rail Transition, Sheet 5 of 7

Figure A-16. Texas T131RC Bridge Rail Transition, Sheet 6 of 7

Figure A-17. Texas T131RC Bridge Rail Transition, Sheet 7 of 7

Figure A-18. Texas T131RC Bridge Rail, Sheet 1 of 9

#	PART NAME	QTY.	SHEET
1	Post, T131RC	16	3
2	Post, end T131RC	1	4
3	Rail, TS6x6x1/4	6	5
4	Splice Sleeve for 6x6 Rail	4	5
5	Hilti Anchor (see 1a)	64	
6	Nut, 3/4 hex	see 2e	
7	Washer, 3/4 flat	see 2e	
8	Bolt, 5/8 x 8 round-head slotted	34	6
9	Nut, 5/8 hex	34	
10	Washer, 5/8 flat	34	

2a. Hilti Super HAS-E \emptyset 3/4 (cut off to 8-1/2" long), installed with Hilti RE500 epoxy according to label directions, with 1-3/4" \pm 1/8" protruding above concrete. Place anchors in curb top at 4" from back of curb. Do not place them in slot center. This is to allow removal of the posts. 2b. All bolts, nuts, and washers (except Hilti products) are grade A307. 2c. Threads not shown on bolts for clarity, and End Post and its foundation are also

not shown here.

2d. Connection details typical for Bridge Posts and End Post.
2e. Ø3/4" nuts and washers are provided with Hilti Anchors and do not need to be supplied separately.

Texas Transpor	tation Institu	ite The T	Texas A&M Unive ollege Station, Tex	ersity System kas 77843
Project 490022-1	T-131-	RC		2011-11-28
Drawn By GES	Scale 1:7	Sheet 2 of	f 9 Posts and	Rail

Figure A-19. Texas T131RC Bridge Rail, Sheet 2 of 9

Figure A-20. Texas T131RC Bridge Rail, Sheet 3 of 9

Figure A-21. Texas T131RC Bridge Rail, Sheet 4 of 9

Figure A-22. Texas T131RC Bridge Rail, Sheet 5 of 9

Figure A-23. Texas T131RC Bridge Rail, Sheet 6 of 9

Figure A-24. Texas T131RC Bridge Rail, Sheet 7 of 9

Figure A-25. Texas T131RC Bridge Rail, Sheet 8 of 9

Figure A-26. Texas T131RC Bridge Rail, Sheet 9 of 9

Figure A-27. Oregon Two-Tube Side Mount Rail Transition

Figure A-28. Oregon Two-Tube Side Mount Rail

Figure A-29. Alaska Multi-State Thrie-Beam Transition, Sheet 1 of 2

Figure A-30. Alaska Multi-State Thrie-Beam Transition, Sheet 2 of 2

Figure A-31. Alaska Multi-State Bridge Rail, Sheet 1 of 3

Figure A-32. Alaska Multi-State Bridge Rail, Sheet 2 of 3

Figure A-33. Alaska Multi-State Bridge Rail, Sheet 3 of 3

Figure A-34. California Type 115 Bridge Rail, Sheet 1 of 3

December 23, 2020 MwRSF Report No. TRP-03-411-20

Figure A-36. California Type 115 Bridge Rail, Sheet 3 of 3

Figure A-37. New Hampshire T2 Steel Bridge Rail Transition

Figure A-38. New Hampshire T2 Steel Bridge Rail

Figure A-39. Wisconsin Thrie-Beam Transition Connection

Figure A-40. Wisconsin Tubular Steel Railing Type "M"

Appendix B. Material Specifications

Item No.	Description	Material Specification	Reference
a1	12'-6" 12-gauge Thrie Beam	AASHTO M180	H#L31920
a2	6'-3" 12-gauge Thrie Beam	AASHTO M180	H#L34919
a3	10-gauge Symmetrical W- beam to Thrie Beam Transition	AASHTO M180	H#C89858
a4	12'-6" 12-gauge W-Beam	AASHTO M180	H#C85187
a5	12'-6" 12-gauge W-Beam End	AASHTO M180	H#C85187
аб	10-gauge Thrie Beam Terminal Connector	AASHTO M180 Min yield strength = 50 ksi Min. ultimate strength = 70 ksi	H#A81568
a7	6'-3" 12-gauge W-Beam MGS	AASHTO M180	H#31631800
b1	30"x10 ⁵ / ₈ "x ⁵ / ₁₆ " Plate	ASTM A572 Gr. 50	H#18170241
b2	30"x25/8"x3/8" Plate	ASTM A572 Gr. 50	H#E8H296
b3	8"x8"x ³ / ₈ " Plate	ASTM A572 Gr. 50	H#E8H296
b4	17¾"x13"x1" Post Plate	ASTM A572 Gr. 50	H#W8J820
b5	6 1/8"x5 ¹¹ / ₁₆ "x ¹ /4" Gusset	ASTM A572 Gr. 50	H#E8I347
b6	HSS5x4x ¹ /2, 20" Long	ASTM A500 Gr. C	H#17111221
b7	30"x65/8"x3/8" Plate	ASTM A572 Gr. 50	H#E8H296
b8	30"x45/8"x5/16" Plate	ASTM A572 Gr. 50	H#18170241
b9	HSS8x6x¼, 191¼" Long	ASTM A500 Gr. C	H#835188
b10	HSS12x4x ¹ /4, 191 ¹ /4" Long	ASTM A500 Gr. C	H#NH4681 "B" and H#TH4011
b11	20"x15"x ³ / ₁₆ " Steel Plate	ASTM A572 Gr. 50	H#B8E871
c1	BCT Timber Post - MGS Height	SYP Grade No. 1 or better (No knots +/- 9" from weakening hole)	Ch#1488 and Ch#652
c2	72" Long Foundation Tube	ASTM A500 Gr. B	H#821T08220
c3	Ground Strut Assembly	ASTM A36	C.A. 3/22/17
c4	BCT Cable Anchor Assembly	-	C.o.C. 9/24/2018
c5	8"x8"x ⁵ / ₈ " Anchor Plate	ASTM A36	H#4181496
c6	Anchor Bracket Assembly	ASTM A36	H#JK16101488
c7	2 ³ / ₈ " O.D. x 6" BCT Post Sleeve	ASTM A53 Gr. B Schedule 40	H#712810
c8	Bent 16D Double Head Nail	-	C.o.C.8/2/2018

Table B-1. Bill of Materials, Test Nos. STBRT-1 and STBRT-2

Item No.	Description	Material Specification	Reference
d1	W6x9 or W6x8.5, 72" Long Post	ASTM A992	H#55066998/03 and H#59091883/02
d2	W6x9 or W6x8.5, 72" Long Post	ASTM A992	H#55066998/03 and H#59091883/02
d3	W6x9 or W6x8.5, 72" Long Post	ASTM A992	H#55066998/03
d4	W6x15, 84" Long Steel Post	ASTM A992	H#59091494/02
d5	W6x15, 53 ¹ / ₂ " Long Post	ASTM A992	H#59082360/02
d6	6"x8"x19" Timber Blockout	SYP Grade No.1 or better	Ch#1695
d7	6"x12"x19" Timber Blockout	SYP Grade No.1 or better	CH#1597
d8	6"x12"x19" Timber Blockout	SYP Grade No.1 or better	Ch#25698
d9	6"x12"x14¼" Timber Blockout	SYP Grade No.1 or better	Ch#1672
e1	5/8" Dia. UNC, 14" Long Bolt	ASTM A307 Gr. A	H#DL17100590
e2	5/8" Dia. UNC, 10" Long Bolt	ASTM A307 Gr. A	H#1721198
e3	5/8" Dia. UNC, 2" Long Bolt	ASTM A307 Gr. A	H#10626360
e4	5/8" Dia. UNC, 11/4" Long Bolt	ASTM A307 Gr. A	H#10641050
e5	5/8" Dia. UNC, 10" Hex Bolt	ASTM A307 Gr. A	H#JK18104124
e6	5/8" Dia. UNC, 11/2" Hex Bolt	ASTM A307 Gr. A	H#5-01570
e7	³ / ₄ "-11 UNC, 21" Round Bolt	ASTM A449	H#3090536
e8	³ / ₄ "-10 UNC, 9 ¹ / ₂ " Heavy Hex Bolt	ASTM F3125 Gr. A325 Type 1	H#3078659
e9	³ ⁄4"-10 UNC, 7 ¹ ⁄2" Round Bolt	ASTM A449	H#3078659 H#3090536
e10	³ / ₄ "-10 UNC, 6" Round Head Bolt	ASTM A449	H#3078659
e11	⁷ / ₈ " Dia. UNC, 8" Hex Bolt	ASTM A307 Gr. A	H#489517
e12	1"-8 UNC, 3 ¹ / ₂ " Heavy Hex Bolt	ASTM F3125 Gr. A325 Type 1	H#10552460
e13	1"-8 UNC, 2¼" Heavy Hex Bolt	ASTM F3125 Gr. A325 Type 1	H#10415990
f1	5∕8" Dia. SAE Plain Round Washer	ASTM F844	L#M-SWE0412454-8
f2	⅔" Dia. USS Plain Round Washer	ASTM F844	L#1844804
f3	1" Dia. USS Plain Round Washer	ASTM F844	Certified 10/22/2018

Table B-1. Bill of Materials, Test Nos. STBRT-1 and STBRT-2, Cont.

Item No.	Description	Material Specification	Reference
f4	³ ⁄4" Dia. SAE Hardened Flat Washer	ASTM F436	H#1P791
f5	2¼"x2¼"x¼" Square Washer	ASTM A36	H#17126641
g1	³ / ₄ "-10 UNC Heavy Hex Nut	ASTM A563DH	H#100798971
g2	5/8" Dia. Guardrail Nut	ASTM A563A	H#10624590
g3	5/8" Dia. Hex Nut	ASTM A563A	H#331608011
g4	⁷ ∕ ₈ " Dia. Hex Nut	ASTM A563A	L#1N18BC001 L#1N1880113
g5	1"-8 UNC Heavy Hex Nut	ASTM A563DH	C.o.C. 11/29/2018
g6	1" Dia. Hex Nut	ASTM A563DH	C.o.C. 4/17/2019
h1	HSS6x4x ¹ /4, 36" Long Tapered Tube	ASTM A500 Gr. C	H#90992C
h2	13"x3 ³ /4"x ¹ /4" Plate	ASTM A572 Gr. 50	H#B9L648
h3	13"x10 ³ / ₈ "x ¹ / ₄ " Bent Plate	ASTM A572 Gr. 50	H#B9L648
h4	12"x4"x ¹ /4", 15" Long Sloped Transition Rail	ASTM A500 Gr. C	H#NJ8018 Inv#56648
h5	12"x4"x¼", 30 1/8" Long Transition Rail	ASTM A500 Gr. C	H#NJ8018 Inv#56648
h6	HSS8x6x ¹ /4, 62 ¹⁵ / ₁₆ " Long Middle Transition Rail	ASTM A500 Gr. C	H#19197161 H#87705C
h7	HSS8x6x ¹ /4, 45 ³ /8" Long Middle Transition Rail	ASTM A500 Gr. C	H#19197161 H#87705C
h8	HSS8"x6x¼, 12 ¹³ / ₁₆ " Long Transition Rail	ASTM A500 Gr. C	H#19197161 H#87705C
h9	HSS8x6x ¹ /4, 62 ¹⁵ / ₁₆ " Long Bottom Transition Rail	ASTM A500 Gr. C	H#19197161 H#87705C
h10	HSS8x6x ¹ /4, 45 ³ /8" Long Bottom Transition Rail	ASTM A500 Gr. C	H#19197161 H#87705C

Table B-1. Bill of Materials, Test Nos. STBRT-1 and STBRT-2, Cont.

Certified Analysis

Order Number: 1324622

BOL Number: 112739

Customer PO: 3954

Document #: 1 Shipped To: NE

Use State: NE

Prod Ln Grp: 0-OE2.0

Ship Date:

As of: 6/30/20

MILFORD, NE 68405

P. O. BOX 703

Customer: MIDWEST MACH & SUPPLY CO

Project: STOCK

Trinity Highway Products LLC

Lima, OH 45801 Phn:(419) 227-1296

550 East Robb Avc.

Qty	Part #	Description	Spec	CL	TΥ	Heat Code/ Heat	Yield	TS	Elg	С	Mn	Р	S S	i Ci	Сь	Cr	Vn	ACW
40	12173G	T12/6'3/4@1'6.75"/S			F	L34919												
			M-180	A	2	245021	64,480	83,940	22.2	0.190	0.700	0.013 0.0	04 0.0	0.06	0 0.000 0.	060	0.001	4
			M-180	А	2	245984	62,860	80,840	26.2	0.190	0.720	0.008 0.0	03 0.0	0 0.08	0.000 0.	050	0.000	4
50	12365G	T12/12'6/8@1'6.75/S			2	132420												
			M-180	А	2	251386	62,920	81,060	24.4	0.200	0.720	0.010 0.0	02 0.02	0.10	0.000 0.	070	0.002	4
			M-180	В	2	248862	64,080	82,460	25.1	0.180	0.730	0.011 0.0	01 0.02	0 0.10	0.000 0.0)60 (0.001	4
			M-180	в	2	249478	61,020	80,630	27.0	0.190	0.720	0.010 0.0	0.02	0 0.09	0.000 0.0	60 (0.000	4
	12365G				2	L31920												
			M-180	A	2	249480	63,400	81,930	25.1	0.190	0.740	0.010 0.0	0.01	0 0.06	0.000 0.0	60 0	0.000	4
			M-180	в	2	248862	64.080	82,460	25.1	0.180	0.730	0.011 0.0	0.02	0 0.10	0.000 0.0	60 0	0.001	4
180	54043G	7'0 PST/6X15/DB:3HI	A-572		-	59091538	62,786	81,568	20.0	0.090	1.330	0.015 0.02	9 0.24	0.340	0.000 0.2	0 0.	.049	4

Upon delivery, all materials subject to Trinity Highway Products , LLC Storage Stain Policy QMS-LG-002.

ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND COMPLIES WITH THE BUY AMERICA ACT, 23 CFR 635.410.

ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED.

ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT", 23 CFR 635.410. ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 (US DOMESTIC SHIPMENTS)

ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 & ISO 1461 (INTERNATIONAL SHIPMENTS)

FINISHED GOOD PART NUMBERS ENDING IN SUFFIX B,P, OR S, ARE UNCOATED

2 of 3

Figure B-1. 12-gauge Thrie Beam Sections, Test Nos. STBRT-1 and STBRT-2

NLL SUCOR ST	E C LOCH	IN LLC	P	hone. 1	Nucc 4831 U. Gheni 1(800)58	r Ster S Hig t, KY 81-385	el Gallatin hway 42 We 41045-9704 53 Fax: (859)	st 567-3165		3			
nvoice To	o: Metals US 702 Port F Jeffersony	A-Flat Rolled d /ille, IN 4713	Jeffer	sonville	Ship T	o: Me Rc Me Rc 70	etals USA-FI biled-Jefferso etals USA -F biled-Jefferso 2 Port Road	at onville lat onville	Custo	Date: 2/ omer No: 27 ner P.O.: C4	18/2019 7599 4974		
will Orde	No: 22405	5-1 Cu	tome	r Refer	ence N	0:	TEISCOVIUE.	NA	Loa	d No: 77967	5		
This proc in the US Coll Num	luct was me A to meet th ber(s): 1538	elted and mane requireme	nufac nts of	tured	ASTM 0.02ma HR Sh	A1011 ax, S 0 eet Ste	1-18a SS Gr 0.05 max, Si eel Bands Or	50 modified v 0.04 max dered Size:	v/ 70 ksi min ten, C 0.26 max, P Min 0 125 (in.) X 51.50 (in.) X Coil Min 3.175 (mm) X 1308 (mm) X Coil				
			0()										
CHEMICA	C	Mr.	70)		S		Si	Cu	Ni	Cr	Mo		
Heat NO	0.20	0.49	0.0	14	0.00	2	0.03	0.09	0.03	0.06	0.01		
069636	0.20	Ca	N	b	V		B	Ti	N	Sn			
	0.025	0.0018	0.0	01	0.00	1	0.0001	0.001	0.0084	0.006			
	0.025	DTIEC	0.0										
MECHAN	ICAL PROPE	1538	01	153800	7			1					
Coll lest	ed	1556	B4	59	3								
Vield Stre	ength(mpa)		03	40	9								
Tensile S	trenath(ksi) 8	2.9	81	6								
Tensile S	trength(mp	a) !	72	56	3			-					
% Elonga	ation	2	3.3	24	.2								
N-Value		0	14	0.1	4								
N-Value	Range	5-1	5%	5-15	10					1			
Hardness	(HRBW)		0.0	Mill	.4			-					
Test Sec	tion	1	na	Lor									
Tost Met	hod	AS	TM	AST	M								
Test men		1 110			-								
Coil ID #	Orientation	Diameter/rad of mandre		lo. of racks	Size of cracks	Pass							
Hot rolled co Mercury wa size of 6 or This produc Above tests determined The elongat Above test 1 Bend tests 1 Bend tests 1 Bend tests 1 Determined This report The inform above. If it	bils manufacture s not added durin iner according le t is in compliance performed in ac- using al fracture incongrinal gaug- were conducted d at a 180 degre shall not be repr anical property i nation contain he reader of th	d through Nucor S ng production of It ASTM E112. e with DFARS 252 cordance to ASTM method) or JIS Z the length is 2 inch- ormed in accordance will be bend. Bend tesi boduced, except in has been tested ap od in this roppor is mossage is	225, the s mater 225, the standa 2241, E1 stor AS ice to El iSO 74 specimi full, with a subco may b ot the l	atin do no ial. The m e Buy Ame rds E8 (yie 8, E415, a strikes m v 10204 3 38, ASTM en is longe out writter intractor s o conflide intended	I contain v aterial was erican Act eld strengt and E 1019 hethod and 1 E290, or er than 6" e approval laboratory ential info recipient	h determ and are 1.97 Ind UIS Z224 and wide of the un mmatio	weld repairs at it and using a fully it correct as contain the standard of the press of the press of the press of the press of the press of the press of the press of the pres	ne time of shipme ilited fine grain pro- offset method an ined in the record method s, guided, two sup atory managers y for the use of fied that any dis micration in error	nt (fca mill) actice with a grain d elongation s of the company. opport and a mandre the individual o ssemination, dis r, please notify	-Aui - Neil M Lab Sup neil.miller@ r ontity named tribution, or us immediately	Miller Allier Inucor.com Page 1 of 1		

Figure B-2. 10-ga. W-to-Thrie Transition Segment, Test Nos. STBRT-1 and STBRT-2

					Nuc	or Ste	eel Gallati	n			-
NU	COR'				4831 Ghe	U.S. Hig ent, KY	ghway 42 W 41045-9704	est 4			
NUCOR	STEEL GAL	LATIN	v	Phone	: 1(800)581-38	53 Fax: (85	9)567-3165		55	ব
				METAI	LUR	GICA	L TEST	REPORT			
Invoice	To: Gregory 4100 13t	Industri	ies at SW	A STATE	Ship	To: G	regory Indu	stries reet SW		Date: 1/	21/2018
	Canton, (OH 44	710			č	anton, OH	44710	Cust	omer No: 10	019
									Custo	mer P.O.: 39	620
Mill Ord	er No: 21407	8-1	-	Custom	er Refe	erence	No: 39620		Load No:	736148	
This pro in the U	oduct was m SA to meet	elted a the req	and man juiremen	ufactured ts of:	I 1020 tensi HR S	steel fo le, 0.10 Sheet St	or SS 50 gra % max Si, a teel Bands	de for Guard nd 0.06% Cr	Rails - 50 ksi ı max	min yield, 70	ksi min
							0	rdered Size:	Min 0.095 (Ir	n.) X 56.88 (In	.) X Coil
Coil Nur	mber(s): 146	5177							Min 2.413 (m	nm) X 1445 (n	nm) X Coi
CHEMIC		10 4	Noicht	~			The second				
Heat No	C C	15 (I	In I	P		s I	Si	Cu	Ni	Cr	Mo
C85187	0.20	0.4	48	0.008	0.0	003	0.03	0.06	0.02	0.05	0.01
	AI	C	a	Nb	1	/	В	Ti	N	Sn	
	0.029	0.0	017	0.000	0.0	001	0.0001	0.001	0.0080	0.003	
MECHA	NICAL PROPI	ERTIES	1	223					1		
Coil Tes	ted			-	-						
Yield Str	rength(mpa)										
Tensile \$	Strength(ksi)									
Tensile	Strength(mp	a)									21
% Elong	ation			1000	-	1000					1
N-Value	Range						I LAS FAR		1.5		
Hardnes	s(HRBW)		1						1000		12 March
Orientat	ion	-		-							-
Test Met	thod	10.14									
BEND T	EST RESUL	TS	Second s	126.5							
Coil ID #	Orientation	Diamet	ter/radiu	s No. of	Size o	f Pass	5/	Ht CGA	le		
		orm	lanurei	Clacks	Clack		100	17.7			
								1201			
							-				
	5.5 S.S.							a la cara a	126 6 2	1 Aurilia	100
Hot rolled c	oils manufacture	d through	Nucor Stee	I Gallatin do n	ot contain	welds or v	weld repairs at the	ne time of shipmer	nt (fca mill). ctice with a grain		
size of 6 or	finer according to	ASTM E	112.								
This produc	ct is in compliance	e with DF	ARS 252.22	5, the Buy Am	erican Ac	L				Stal. Q	2 Sint
Above tests determined	s performed in ac using at fracture	method)	to ASTM st or JIS Z224	andards E8 (y 1, E18, E415,	and E101	th determ 9 and are	ined using 0.2% correct as conta	offset method and ined in the records	d elongation s of the company.	proprin f	s. Joyan
The elonga	tion original gaug	e length i	is 2 inches fo	or ASTM test	method an	d 1.97 inc	hes for JIS test	method.		Stephen S.	Sipple
Bend tests	were conducted i	n accorde	ance with IS	0 7438 ASTA	1 E290 or	JIS 7224	8 using the pres	s auided two surv	port and a mandrel	Chemical La	boratory
bend metho This report	od at a 180 degre shall not be repro	e bend. B oduced, e	Send test spe xcept in full,	without writte	er than 6" n approva	and wider	than 0.8" dersigned labora	atory managers.		steve.sipple@	nucor.com
The inform	nation contains	as been t	ested at a s	ubcontractor's	antial inf	ormation	intended only	for the use of	the individual or	entity named	-
above. If t	he reader of this communi	is messa cation is	age is not	the intended rohibited. If	recipien you hav	it, you ar	e hereby notif	ied that any dis	semination, distr r, please notify u	ibution, or is immediately	Page 1 of

Figure B-3. 12-gauge W-Beam Sections, Test Nos. STBRT-1 and STBRT-2

NUCOR	STEEL GA	LLATIN	Phon	Nucor S 4831 U.S. Ghent, H e: 1(800)581-	iteel Gallat Highway 42 W (Y 41045-970 3853 Fax: (85	in Vest 4 9)567-3165		N. A.	325
			META	LURGIC	AL CERT	FICATIO	N		
Invoice 1	To: Metals L 702 Port Jefferson	JSA-Flat Rolle Rd nville, IN 471	d-Jeffersonv 30	ville Ship To:	Metals USA-R Rolled-Jeffers Pick Up 702 Port Roa Jeffersonville	Flat sonville d , IN 47130	Cust	Date: tomer No: omer P.O.:	9/29/2016 27599 C42117
Mill Orde	r No: 2018	15-1	Custor	ner Referenc	e No: NA		Load No:	680178	
This pro in the US	duct was n SA to meet	the requirem	ents of:	d ASTM A10 0.02max, s HR Sheet	011-15 SS Gr S 0.05 max, S Steel Bands	50 modified v i 0.04 max	v/ 70 ksi min t	en, C 0.26	max, P
Coil Nun	nber(s): 137	76986			0	rdered Size:	Min 0.126 (I Min 3.2 (mm	n.) X 62.25 n) X 1581 (r	(ln.) X Coil mm) X Coil
CHEMIC	AL ANALYS	SIS (Weigh	t %)						
leat No	С	Mn	Р	S	Si	Cu	Ni	Cr	Mo
A81568	0.20	0.70	0.010	0.002	0.03	0.11	0.03	0.04	0.02
	AI	Ca	Nb	V	В	TI	N	Sn	
	0.025	0.0014	0.000	0.001	0.0001	0.001	0.0065	0.005	
MECHAN	ICAL PROP	ERTIES							
oil Test	ed	1376	985 1376	986					
ield Stre	angth(ksi)	E	6.1 5	7.6					
ield Stre	ength(mpa)		387	397					
ensile S	trength(ks	1 7	8.8 8	1.5			+		
Elonga	trength(mp	(a)	68 2	3.0			++		
I-Value		0	.16 0	.15		1	1		
I-Value F	Range	5-1	5% 5-1	5%				and the same surgery and	
lardness	(HRBW)	8	8.8 8	5.4					
est Sect	ion	Mi	l Mi	1					
Prientatio	on	L	ong Lo	png					
est Meth	nod	AS	IM AS	IM					
BEND TE	ST RESUL	TS							
oil ID # C	Drientation	of mandre	cracks	cracks Fa	il				
			_						
					-				
lot rolled coi	ls manufactured	through Nucor S	eel Gallatin do n	ct contain welds o	weld repairs at th	e time of shipmen	t (fca mili).		
lercury was	not added durin	g production of th	s material. The r	naterial was produ	ced using a fully ki	lied fine grain prac	XICO.		
his product	is in compliance	with DFARS 252	225, the Buy Am	erican Act			dana da T	0	0 0
bove tests p etermined u ompany.	erlormed in acc sing after fractu	cordance to ASTM re method) or JIS	slandards E8 (y 22241, E18, E41	eld strength deten 5, and E1019 and	are correct as con	offset method and tained in the recor	ds of the	Stephen,	X. Xipp
he elongatio bove test re	on original gauge sults were perfo	e length is 2 inche armed in accordan	s for ASTM test r ce to EN 10204 3	nethod and 1.97 ir 3.1	ches for JIS test m	nethod.		Stephen	S. Sipple Laboratory
end lests we	ere conducted in at a 180 degree	n accordanca wilh e bend. Bend test	ISO 7438, AST M specimen is long	E290, or JIS Z22 er than 6" and wide	48 using the press, ar than 0.8"	, gulded, two supp	ort and a mandrol	Mechanica steve.sipple	@nucor.com
his report st This mecha	nical property h	duced, except in f as been tested at	all, without written subcontractor's	approval of the u laboratory.	ngersigned laboral	iory menagers.			
he informa	tion containe reader of this	d in this report s message is no cation is strictly	may be confident the intended prohibited. If	recipient, you a you have receiv	n intended only re hereby notific red this commun	for the use of the data any dissociation in error	he individual or emination, distr , please notify u	entity named ibution, or is immediated	Page 1 of

Figure B-4. 10-gauge Thrie Beam Terminal Connector, Test Nos. STBRT-1 and STBRT-2

Figure B-5. 6 ft - 3 in., 12-gauge W-Beam, Test Nos. STBRT-1 and STBRT-2

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015			META TEST	REF	PORT	PAGE 1 of 1 DATE 12/12/2018 TIME 05:49:02					
s L L T 66031-1127			SH LP TO	1371 Kans 401 I NEW	6 sas City W New Cent / CENTUF	/arehouse ury Parkwa RY KS	ay				
Order Material No. 40321447-0010 701072120A2	Description S/16 72 X 120 A572	GR50 STP MIL PLT	Quan	tity 1	Weight 765.600	Custome	er Part	c	ustomer PO	SI 12	hip Date 2/11/2018
Heat No. 1 <mark>8170241)</mark>	Vendor BIG RIVER STE	EL LLC	Chemical Ana DOMESTIC	ysis	Mil	BIG RIVER S	TEEL LLC	ŝ	Melted and Ma	nufactured in	n the USA
Carbon Manganese Phosphorus	Sulphur Silicon	Nickel Chromium	Molybdenum 0.0100	Boron 0.0001	Copper 0.0900	Aluminum 0.0280	Titanium 0.0010	Vanadium 0.0040	Columbium 0.0160	Nitrogen 0.0064	Tir 0.0047
		Mech	anical / Physica	Proper	rties						
Tensile Yield 73700.000 65900.000 72800.000 62900.000	Elong 29.60 33.20	Rckwl	Grain	Charpy 187 182 183	C Lo Lo	harpy Dr ngitudinal ngitudinal ngitudinal	c	harpy Sz 6.7 6.7 6.7	Temper	20 F 20 F 20 F 20 F	Olser
Batch 0005584036 1 EA 765.6	00 LB										

This test report shall not be reproduced, except in full, without the written approval of Steel & Pipe Supply Company, Inc.

Figure B-6. $^{5}/_{16}$ -in. Plates, Test Nos. STBRT-1 and STBRT-2

SPS Coil Processing Tulsa 5275 Bird Creek Ave. Port of Catoosa, OK 74015							RE	JRGI POR	PAGE 1 of 1 DATE 11/01/2018 TIME 05:59:17					
s o b c 66031-1127							S 137 H Kar P 401 T NE O	16 Isas City V New Cen W CENTU	Varehouse tury Parkw RY KS	ay				
Order N 40317778-0010 7	laterial No. 21296120A2	Descrip (318)	ntion 96 X 120 A5	72GR50 M	MILL PLATE	Qu	antity 3	Weigh 3,676.800	t Custom	er Part	(Customer PO	S 11	hip Date 0/31/2018
Heat No. E8H296	Vend	or SSAB - N	IONTPELIEF	WORKS		Chemical Ar DOMESTIC	nalysis	Mill SSAB	- MONTPELIE	R WORKS		Melted and Ma	nufactured i Produced	n the USA
Carbon Manganese	Phosphorus	Sulphur	Silicon	Nickel	Chromium	Molybdenum	Boron	Copper	Aluminum	Titanium	Vanadium	Columbium	Nitrogen	Tin
3.1800 1.0300	0.0100	0.0020	0.0400	0.1500	0.0900	0.0300	0.0000	0.3000	0.0410	0.0010	0.0240	0.0010	0.0000	0.0000
					Mecha	nical / Physic	cal Prop	erties						
AIII Coll No. E8H296	0947		Flores		100	Des la	01		0h D-			-		01
1ensile 80100.000	57500.000		27.50	RCKWI		arain	Charpy		Charpy Dr	U	narpy sz	remper	ature	Ulsen
82100.000	61500.000		30 30				0		NA					
84500.000	65900.000		28.00				0		NA					
79600.000	58500.000		27.00				0		NA					
Batch 000553	96674 3 EA 3,676	5.800 LB												
THE OHEN		OR MECHA	NICAL TES		TED ABOVE			FORMATIO			BECORDS		RATION	

The materials is in compliance with EM 10204 Section 4.1 Inspection Certificate Type 3.1 This test report shall not be reproduced, except in full, without the written approval of Steel 8 Pipe Supply Company, Inc. Figure B-7. 3/8-in. Plates, Test Nos. STBRT-1 and STBRT-2

Figure B-8. 17³/₄-in. x 13-in. x 1-in. Post Plate, Test Nos. STBRT-1 and STBRT-2

SPS Coil Process 5275 Bird Creek A Port of Catoosa, C	AND SUPPLY ing Tulsa Ave. OK 74015					META TEST	ILLU REI	JRGI POR	CAL T	PAC DA TIM	GE 1 of TE 11/30/2 E 05:54:	1 2018 18		
s о L D 66031-1127							s 137 H Кап P 401 т NE\ 0	16 sas City V New Cen V CENTU	Varehouse tury Parkw IRY KS	ay				
Order Ma 40320870-0010 728	terial No. 396240A2	Descrip <mark>(1/4</mark>	otion 96 X 240 <mark>A5</mark>	72GR50 N	1ILL PLATE	Qu	antity 2	Weigh 3,267.200	t Customo	er Part	c	ustomer PO	S 1	hip Date 1/29/2018
Heat No. E8I347	Vende	or SSAB-N	ONTPELIER	WORKS		Chemical Ar DOMESTIC	alysis	Mill SSAB	- MONTPELIE	R WORKS		Melted and Ma	nufactured i Produced	n the USA I from Coil
Carbon Manganese	Phosphorus	Sulphur	Silicon	Nickel	Chromium	Molybdenum	Boron	Copper	Aluminum	Titanium	Vanadium	Columbium	Nitrogen	Tin
0.1600 1.0100	0.0070	0.0040	0.0300	0.1200	0.0700	0.0400	0.0000	0.2100	0.0370	0.0010	0.0210	0.0000	0.0000	0.0000
Mill Coil No. E8134705	10				Mecha	unical / Physic	al Prope	erties						
Tensile	Yield		Elona	Rckwl		Grain	Charpy		Charpy Dr	C	harpy Sz	Temper	ature	Olsen
78500.000	59700.000		27.40				56	L	ongitudinal		5.0		-20 F	
75600.000	56900.000		32.40				50	L	ongitudinal		5.0		-20 F	
77700.000	59600.000		29.60				43	L	ongitudinal		5.0		-20 F	
78500.000	60400.000		25.00				0		NA					
Batch 0005571	830 2 EA 3,267	7.200 LB												

THE CHEMICAL, PHYSICAL, OR MECHANICAL TESTS REPORTED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECORDS OF THE CORPORATION. The material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1 This test report shall not be reproduced, except in full, without the written approval of Steel & Pipe Supply Company, Inc.

Figure B-9. ¹/₄-in. Gusset Plate, Test Nos. STBRT-1 and STBRT-2
Fax: 7	73-646-	-6128		N	IATEF	RIAL -	TEST	REP	ORT					×	
Sold to	5					2. A.					Shi	aned to			
Tubula 1031 E ST. LO USA	r Stee xecuti UIS N	l ive Parkwa 10 63141	зу								Tub 722 HA2 US/	ular Ste D Polson ELWO	el n Lane OD MO	63042	
Material: 20.0x	8 0x500)x43'0"0(1x2)	NMH		Ma	terial No	: 200080	500	*******	n Stear an Island Star (Spanish		Made in	n: USA		and an and a second
Sales order; 1	216180	þa -			Pu	rchase C	order: PC	-064074		Cust Mate	eriai #: I	013969	ar, von		
leat No	C	Mn	P	S	SI	AI	Ċu	Ċb	Мо	NÌ	Cr	V	Ti	В	N
44934	0.200	0.800	0.010	0.008	0.010	0.046	0.020	0.004	0.006	0.010	0.030	0.001	0.001	0.000	0.006
undle No	PCs	Yield	Ter	isile	Eln.2in	10-10 Dataset /		Ce	rtificatio	m		derfangelange .	CE: 0.34		
1900960662	2	058209 Ps	075	i041 Psi	36 %	and residenced		AS	TM A50	0-13 GRAD	E B&C				
laterial Note: ales Or.Note:				10-10-10-10-10-10-10-10-10-10-10-10-10-1				Monocontrast Change and					1.00	H+)300-0-1-1-0-1-0-0-0-0-0-0-0-0-0-0-0-0-0-	
Aaterial: 4 0x4	0x500x	(40'0''0(4x2).			Ma	terial No	: 400405	004000				Made () Melted	n: USA In: USA		
ales order: 1	236805			4	Pu	rchase C	Order: PC	-065525		Cust Mab	erial #:	012007			12
leat No	C	Mn	P	S	SI	Al	Cu	СЬ	Mo	Ni	Cr	V	Ti	B	N
7117241	0.200	0.740	0.006	0.002	0,030	0.029	0.110	0.001	0.010	0.040	0.030	0.003	0.000	0.000	0.008
lundle No	PCs	Yield	Ter	Isile	Ein.2in			Ce	minicatio		E DAO	ing in the	CE: 0.35		
1800744469	8	073296 Ps	1 084	1367 PSI	31 %			Az	STW AOU	U-13 GRAL	IE BOC				
Aaterial Note: Sales Or.Note:															
Aaterial Note: lales Or.Note: laterial: 5.0x4	.0x500x	«40'0"0(3x3).	an an far an far an far an an a	adigand ng managan din jaran di ka	Ма	iterial No	: 500405	004000				Made in Meited	n: USA In: USA		
faterial Note: ales Or.Note: faterial: 5.0x4 ales order: 1	.0x500x 236805	«40°0"0(3x3).	<mark>an se je na se na se 1</mark>	ang pang ang managang pang pang pang pang pang pang pa	Ma Pu	iterial No rchase C	o: 500405 Drder: P(004000)-065525		Cust Mat	erial #:	Made in Meited 012321	n: USA In: USA		
Aaterial Note: ales Or.Note: faterial: 5.0x4 ales order: 1 leat No	.0x500x 236805 C	«40'0"0(3x3). ; Mn	р	S	Ma Pu Si	iterial No rchase C Al	o: 500405 Dirder: PC Cu	004000)-065525 Cb	Мо	Cust Mat	erial #: Cr	Made in Meited 012321 V	n: USA In: USA Ti	в	N
laterial Note: ales Or.Note: laterial: 5.0x4 ales order: 1 leat No 7111221	.0x500x 236805 C 0.210	<40'0"0(3x3). ; <u>Mn</u> 0.740	P 0.005	S 0.002	Ma Pu Si 0.030	rchase C Al 0.031	o: 500405 Drder: PC Cu 0.060	004000)-065525 Cb 0.001	Mo 0.017	Cust Mat Ni 0.030	ertal #: Cr 0.030	Made in Melted 012321 V 0.003	n: USA In: USA Ti 0.001	B 0.000	N 0.006
laterial Note: ales Or.Note: laterial: 5.0x4 iales order: 1 leat No 7111221 Jundle No	.0x500x 236805 C 0.210 PCs	 <40'0"0(3x3). Mn 0.740 Yield 	P 0.005 Ter	S 0.002 Isile	Mi Pu Si 0.030 Ein.2in	rchase C Al 0.031	o: 500405 Dirder: PC Cu 0.060	004000 0-065525 Cb 0.001 Ce	Mo 0.017 ertificatio	Cust Mat Ni 0.030	erial #; Cr 0.030	Made in Melted 012321 V 0.003	n: USA In: USA Ti 0.001 CE: 0.35	B 0.000	N 0.006
Aaterial Note: Sales Or.Note: Aaterial: 5.0x4 Iales order: 1 leat No 7111221 Jundle No 1800743105	.0x500x 236805 C 0.210 PCs 9	40'0''0(3x3). Min 0.740 Yield 066916 Ps	P 0.005 Ter 1 077	S 0.002 1sile '416 Psi	M: Pu Si 0.030 Ein.2in 36 %	nterial Nc rchase C <u>Al</u> 0.031	500405 Dider: P0 Cu 0.060	004000 0-065525 Cb 0.001 Ct As	Mo 0.017 ortificatio STM A50	Cust Mat Ni 0.030 Dn 0-13 GRAD	ertal #: Cr 0.030 DE B&C	Made In Melted 012321 V 0.003	n: USA In: USA Ti 0.001 CE: 0.35	B 0.000	N 0.006
laterial Note: ales Or.Note: laterial: 5.0x4 ales order: 1 leat No 7111221 bundle No 1800743105 laterial Note: ales Or Note	.0x500x 236805 C 0.210 PCs 9	40'0"0(3x3). Mn 0.740 Yield 066916 Ps	P 0.005 Ter 1 077	S 0.002 nsile '416 Psi	M: Pu Si 0.030 Ein.2in 36 %	nterial No rchase C <u>Al</u> 0.031	500405 Drder: PC Cu 0.060	004000 0-065525 Cb 0.001 Ct As	Mo 0.017 ertificatio	Cust Mat Ni 0.030 on 0-13 GRAD	erial #: Cr 0.030 DE B&C	Made II Meited 012321 V 0.003	n: USA In: USA Ti 0.001 CE: 0.35	B 0.000	N 0.006
laterial Note: ales Or.Note: laterial: 5.0x4 ales order: 1 leat No 7111221 uundle No 1800743105 laterial Note: ales Or.Note:	.0x500x 236805 C 0.210 PCs 9	40'0"0(3x3). Mn 0.740 Yield 066916 Ps	P 0.005 Ter 1 077	S 0.002 nsile 7416.Psi	M: Pu Si 0.030 Ein.2in 36 %	rchase C Al 0.031	500405 Dirder: PC Cu 0.060	004000 0-065525 Cb 0.001 <u>Ct</u>	Mo 0.017 ertificatio	Cust Mat Ni 0.030 on 0-13 GRAD	erial #: Cr 0.030 DE B&C	Made II Meited 012321 V 0.003	n: USA In: USA Ti 0.001 CE: 0.35	B 0.000	N 0.006
laterial Note: ales Or.Note: laterial: 5.0x4 ales order: 1 leat No 7111221 lundle No 1800743105 laterial Note: ales Or.Note:	.0x500x 236805 C 0.210 PCs 9	40'0"0(3x3). Mn 0.740 Yield 066916 Ps	P 0.005 Ter 1 077	S 0.002 nsîle /416 Psi	Mi Pu Sj 0.030 Ein.2in 36 %	nterial Nc rchase C <u>Al</u> 0.031	: 500405 Drder: PC Cu 0.080	004000 0-065525 Cb 0.001 <u>Ct</u> As	Mo 0.017 ortificatio	Cust Mat Ni 0.030 on 0-13 GRAE	erial #; Cr 0.030 DE B&C	Made In Meited 012321 V 0.003	n: USA In: USA Ti 0.001 CE: 0.35	B 0.000	N 0.006
laterial Note: ales Or.Note: laterial: 5.0x4 ales order: 1 leat No 7111221 undle No 1800743105 laterial Note: ales Or.Note:	.0x500x 236805 C 0.210 PCs 9	40'0"0(3x3). Mn 0.740 Yield 066916 Ps	P 0.005 Ter 1 077	S 0.002 nsile 7416 Psi	Mi Pu Si 0.030 Eln.2in 36 %	nterial Nc rchase C Al 0.031	:: 500405 Dirder: PC Cu 0.06D	004000 0-065525 Cb 0.001 <u>Ce</u> As	Mo 0.017 artificatio	Cust Mat Ni 0.030 Dn 0-13 GRAD	erial #; Cr 0.030 DE B&C	Made In Melted 012321 V 0.003	n: USA in: USA <u>Ti</u> 0.001 CE: 0.35	B 0.000	N 0.006
laterial Note: ales Or.Note: laterial: 5.0x4 ales order: 1 leat No 7111221 Nundle No 1800743105 laterial Note: ales Or.Note:	.0x500x 236805 C 0.210 PCs 9	40'0'0(3x3). Mn 0.740 Yield 066916 Ps	P 0.005 Ter 1 077	S 0.002 nsile 7416 Psi	Mi Pu Si 0.030 Ein.2in 36 %	nterial Nc rchase C Al 0.031	9: 500405 Dirder: PC Cu 0.06D	004000 0-065526 Cb 0.001 Cc As	Mo 0.017 ertificatio STM A50	Cust Mat Ni 0.030 on 0-13 GRAD	erial #: Cr 0.030)E B&C	Made In Melted 012321 V 0.003	n: USA In: USA Ti 0.001 CE: 0.35	B 0.000	N 0.006
laterial Note: ales Or.Note: laterial: 5.0x4 ales order: 1 leat No 7111221 Jundle No 1800743105 laterial Note: ales Or.Note:	.0x500x 236805 C 0.210 PCs 9	40'0''0(3x3). Mn 0.740 Yield 066916 Ps	P 0.005 Ter 1 077	S 0.002 nsile /416 Psi	Mi Pu Sj 0.030 Ein.2in 36 %	nterial No rchase C <u>Al</u> 0.031	9: 500405 Dirder: PC Cu 0.06D	004000 0-065526 Cb 0.001 Ct As	Mo 0.017 ertificatio	Cust Mat Ni 0.030 on 0-13 GRAD	erial #: Cr 0.030 DE B&C	Made In Meited 012321 V 0.003	n: USA In: USA <u>Ti</u> 0.001 CE: 0.35	B 0.000	N 0.006
laterial Note: ales Or.Note: laterial: 5.0x4 ales order: 1 leat No 7111221 lundle No 1800743105 laterial Note: ales Or.Note:	0x500x 236805 C 0.210 PCs 9	<0'0'0(3x3). Min 0.740 Yield 066916 Ps	P 0.005 Ter 1 077	S 0.002 nsile /416 Psi	M: Pu Si 0.030 Ein.2in 36 %	nterial No erchase (Al 0.031	9: 500405 Dirder: PC Cu 0.060	004000 0-065525 Cb 0.001 Cc As	Mo 0.017 ortificati STM A50	Cust Mat Ni 0.030 on 0-13 GRAD	erial #: Cr 0.030 DE B&C	Made In Meited 012321 V 0.003	n: USA In: USA Ti 0.001 CE: 0.35	B 0.000	N 0.006
laterial Note: ales Or.Note: laterial: 5.0x4 ales order: 1 eat No 7111221 undle No 1800743105 laterial Note: ales Or.Note:	0x500x 236805 C 0.210 PCs 9	 <40'0"0(3x3). Mn 0.740 Yield 066916 Ps 	P 0.005 Ter 1 077	S 0.002 nsile /416 Psi	M: Pu Si 0.030 Ein.2in 36 %	nterial Nc rchase (Al 0.031	9: 500405 Dirder: PC Cu 0.060	004000 0-065525 Cb 0.001 Cr As	Mo 0.017 entificatio	Cust Mat Ni 0.030 m 0-13 GRAD	erial #; Cr 0.030 DE B&C	Made In Meited 012321 V 0.003	n: USA In: USA Ti 0.001 CE: 0.35	B 0.000	N 0.006
Asterial Note: ales Or.Note: Aaterial: 5.0x4 ales order: 1 leat No 7111221 Jundle No 1800743105 Taterial Note: ales Or.Note: uthorized by he results rep pecification a	Quality optical contractions of the second s	Assurance on this report	P 0.005 Ter 1 077	S 0.002 rsile 7416 Psi 7416 Psi accessed	Mi Pu Si 0.030 Ein.2in 36 %	iterial Nc rchase (<u>Al</u> 0.031	500405 Dirder: PC Cu 0.060	004000 0-065525 Cb 0.001 <u>Cr</u> As	Mo 0.017 ortificatio STM A50	Cust Mat Ni 0.030 Dn 0-13 GRAD	ertal #; Cr 0.030 DE B&C	Made In Meited 012321 V 0.003	n: USA In: USA Ti 0.001 CE: 0.35	B 0.000	N 0.006
Atterial Note: lales Or.Note: laterial: 5.0x4 laterial: 5.0x4	Quality optical Quality optical Quality optical Quality optical Quality Quality optical Quality Quality Quality Optical Quality Optical Quality Optical Quality Optical Quality Optical Optica	Assurance on this report Assurance	P 0.005 Ter 077 077 077 i 077 i 077 i 077 i 077	S 0.002 nsile 7416 Psi 7416 Psi asent the s	Mi Pu Si 0.030 Ein.2in 36 %	iterial Nc rchase (<u>Al</u> 0.031	500405 Dirder: PC Cu 0.060	004000 0-065525 Cb 0.001 <u>Cr</u> As	Mo 0.017 ortificatio STM A50	Cust Mat Ni 0.030 on 0-13 GRAD	full con	Made In Meited 012321 V 0.003	n: USA In: USA Ti 0.001 CE: 0.35	B 0.000	N 0.006
Atterial Note: ales Or.Note: Atterial: 5.0x4 ales order: 1 leat No 7111221 Jundle No 7800743105 Atterial Note: ales Or.Note: Atterial Note: ales Or.Note: Atterial Note: ales Or.Note: Atterial Note: Atterial	Ox500x 236805 C 0.210 PCs 9 9	Assurance on this report Assurance of this report tract require	P 0.005 Ter 1 077 1 077 1 077 1 077 1 077	S 0.002 nsile 7416 Psi 7416 Psi asent the s	Mi Pu Si 0.030 Ein.2in 36 %	ibutes of Page : 2	500405 Dirder: PC Cu 0.060	004000 0-065525 Cb 0.001 <u>Cr</u> As	Mo 0.017 ortificatio STM A50	Cust Mat Ni 0.030 on 0-13 GRAD	ertal #; Cr 0.030 DE B&C full con	Made In Meited 012321 V 0.003	n: USA In: USA Ti 0.001 CE: 0.35	B 0.000 oplicabl	N 0.006

Figure B-10. 20-in. Long HSS5x4x¹/₂, Test Nos. STBRT-1 and STBRT-2

MATERIAL TEST REPORT Shipod Jo Shipod Jo OB Sox 1686 Material: 16.0x4.0x375x4010°0(1x2). Material No: 160040375 Material: 16.0x4.0x375x4010°0(1x2). Material No: 160040375 Material: 16.0x4.0x375x4010°0(1x2). Material No: 160040375 Material No: 200318744 Outs of No Outs of No Material No: 200318744 Quest Naterial No: 200318744 Naterial Not: 200318744 Subod Naterial No: 200007477 <td c<="" th=""><th></th><th>80852636 11/13/2018 179</th><th>REF.B/L: Date: Customer:</th><th></th><th></th><th>TRIES</th><th></th><th>ST ZEKELMA</th><th></th><th></th><th></th><th></th><th></th><th></th><th>nada o Canada -3541</th><th>Atlas Tube Ca 200 Clark St. Harrow Ontari NOR 1G0 Tel: 519-738</th></td>	<th></th> <th>80852636 11/13/2018 179</th> <th>REF.B/L: Date: Customer:</th> <th></th> <th></th> <th>TRIES</th> <th></th> <th>ST ZEKELMA</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>nada o Canada -3541</th> <th>Atlas Tube Ca 200 Clark St. Harrow Ontari NOR 1G0 Tel: 519-738</th>		80852636 11/13/2018 179	REF.B/L: Date: Customer:			TRIES		ST ZEKELMA							nada o Canada -3541	Atlas Tube Ca 200 Clark St. Harrow Ontari NOR 1G0 Tel: 519-738
Naterial:16.0x4.0x375x40'0°0(1x2).Naterial No:160040375Nade in:OSales Order:1340914Purchase Order:4500318744Cust Material#:OBasses Order:1340914Purchase Order:4500318744Cust Material#:OBasses Order:1340914O.0130.0080.0170.0420.0360.0050.0030.0110.0470.0020.0020.04Basses Order:1340914ImasileEin.2inOctober 10,036October 10,0370.0020.0020.0020.002Bundle No2060925 Psi073628 Psi37.8 %ASTM A500-18 GRADE BacCE: 0Material:8.0x6.0x250x40'0°0(3x2).Material No:800602504000Made in:Material:8.0x6.0x250x40'0°0(3x2).Material No:800602504000Made in:Material:8.0x6.0x250x40'0°0(3x2).Material No:800602504000Made in:Material:8.0x6.0x250x40'0°0(3x2).Material No:800602504000Made in:Bastes Order:1337754Purchase Order:C45007477Cust Material#:Heat NoCMnPSSiAICuCbMutorizeds260.0580.0110.0220.0460.0050.0210.0320.0020.0220.022Material No:Ein.2inCertificationGertificationCertificationCertificationCertificationMutorizeds26058363 Psi065766 Psi3.3.9 %ASTM A5	any	2 ipe Supply Company Fort Gibson < 74015	<u>Shipped To</u> Steel & Pi 1020 West CATOOSA OK USA				ORT	TEST REPO	TERIAL 1	MA				npany	-3537 Supply Co 66505	Fax: 519-738 Sold To Steel & Pipe PO Box 1688 MANHATTAN KS USA	
Sales Order: 1340914Purchase Order: 6500318744Cust Material #: 0Heat NoCMnPSSiAlCuCbMoNiCrVTiB8358450.2000.8100.0130.0080.0170.0020.0030.00110.0020.0030.0110.0220.0450.0660.0050.0210.0350.002 <th></th> <th>Canada Canada</th> <th>n: in:</th> <th>Made ir Melted</th> <th></th> <th></th> <th></th> <th>160040375</th> <th>No:</th> <th>Material</th> <th></th> <th></th> <th>'0(1x2).</th> <th>375x40'0'</th> <th>16.0x4.0x</th> <th>terial:</th>		Canada Canada	n: in:	Made ir Melted				160040375	No:	Material			'0(1x2).	375x40'0'	16.0x4.0x	terial:	
Heat No C Mn P S Si Al Cu Cb Mo Ni Cr V Ti B 835845 0.200 0.810 0.013 0.008 0.017 0.042 0.036 0.003 0.011 0.047 0.002 0.002 0.002 0.003 Bases 0. 2 Vield Iensile Ein.2in Or3628 Psi 37.8 % Astm A500-18 GRADE B&C Mater ial No CE: 0 Material Note: Sales 0r. Note: Naterial Not: 800602504000 Made in: Melted in: Sales 0r. Note: Naterial No: 800602504000 Made in: Melted in: Cust Material#: Heat No C Mn P S Si Al Cu Cb Mo Ni Cr V Ti B 835188 0.190 0.800 0.008 0.011 0.022 0.046 0.005 0.021 0.035 0.002 0.002 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.002 0.025 0.025	540	66160040037540	aterial#:	Cust Ma				4500318744	Order:	Purchase					1340914	les Order:	
asses 0.200 0.013 0.013 0.014 0.002 0.003 0.011 0.047 0.002 0.002 0.012 Bundle No PCs Yield Tensile Eln.2in Detrification CE: 0. M201325206 2 060925 Psi 073628 Psi 37.8 % ASTM A500-18 GRADE B&C CE: 0. Material Note: Sales Or. Note:	Ca	B N		V	Cr	Ni	Mo	Cb	Cu		Si	S	P	Mn	0.000	at No	
Material: 8.0x6.0x250x40'0"0(3x2). Material No: 800602504000 Made in: Melted in: Sales Order: 1337754 Purchase Order: C450007477 Cust Material#: Heat No C Mn P S Si Al Cu Cb Mo Ni Cr V Ti B 835188 0.190 0.800 0.008 0.011 0.022 0.046 0.066 0.005 0.001 0.035 0.002<	J4U U.UU	0.0002 0.0040	0.002 Ce	0.002 iC	GRADE B&	ification M A500-18	0.003 <u>Cert</u> AST	0.005	0.036	0.042 <u>Eln.2in</u> 37.8 %	nsile 73628 Psi	0.008 <u>Ie</u> 0'	0.013 <u>Yield</u> 060925 Psi	0.810 <u>Cs</u>	0.200 <u>P</u> 2	ndle No 201325206 sterial Note:	
Heat No C Mn P S Si Al Cu Cb Mo Ni Cr V Ti B 835188 0.190 0.800 0.008 0.011 0.022 0.046 0.066 0.005 0.001 0.035 0.002 0.0	040	Canada Canada 6680060025040	n: in: aterial#:	Made in Melted Cust M			000	800602504	No: Order:	Material Purchase			0(3x2).	50x40'0"	8.0x6.0x2	iterial:	
835188 0.190 0.800 0.008 0.011 0.022 0.046 0.066 0.005 0.021 0.035 0.002 <t< td=""><td>Ca</td><td>B N</td><td>Ti</td><td>v</td><td>Cr</td><td>Ni</td><td>Mo</td><td>Сь</td><td>Cu</td><td>AI</td><td>Si</td><td>S</td><td>P</td><td>Mn</td><td>с</td><td>eat No</td></t<>	Ca	B N	Ti	v	Cr	Ni	Mo	Сь	Cu	AI	Si	S	P	Mn	с	eat No	
Authorized by Quality Assurance: Jacom Richard The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contr CE calculated using the AWS D1.1 method. Steel Tube Metals Service Cente	050 0.00	0.0002 0.0050 E: 0.34	0.002 CI	0.002 &C	0.035 GRADE B	0.021 tification M A500-18	0.005 <u>Cer</u> AST	0.005	0.066	0.046 <u>Eln.2in</u> 33.9 %	1 0.022 ensile 65756 Psi	0.01 I 0	0.008 <u>Yield</u> 058363 Psi	0.800	0.190 I	35188 andle No 1101826832 aterial Note: ales Or. Note	
The results reported on this report represent the actual attributes of the material furnished and indicate full compliance with all applicable specification and contr CE calculated using the AWS D1.1 method.								_	++++	HE	HIS	S 7	ECES	ssurance	- 4C Quality A	ALL authorized by	
Steel Tube 🛞 Metals Service Cente	ents.	contract requirements.	cation and c	ble specific	all applical	pliance with	e full com	I and indicat	al furnished	f the materi	attributes o	e actual	represent the method.	ws D1.1	orted on the A	he results repo E calculated u	
OF NORTH AMERICA	le	nter Institute	vice Cer	als Ser	> Met	Q							ibe e		Stee Inst		

Figure B-11. HSS8x6x¹/₄, Test Nos. STBRT-1 and STBRT-2

12Sep18 13:39 TEST CERTIFICATE No: DCR 865273 P/O No 4500315602 ENDISPENDENCE HUBB CORPORATION CHICAGO, IL 60638 Tel: 708-496-0380 Fax: 708-563-1950 Rel S/O No DCR 107708-005 B/L No DCR 73528-004 Shp 12Sep18 Inv No Inv Ship To: (1) STEEL & PIPE SUPPLY 4750 W. MARSHALL AVENUE LONGVIEW, TX 75604 Sold To: (5018) STEEL & PIPE SUPPLY 4750 W. MARSHALL AVENUE LONGVIEW, TX 75604 Tel: 785-587-5100 Fax: 785 587-5339 CERTIFICATE of ANALYSIS and TESTS Cert. No: DCR 865273 06Sep18 Part No TUEING A500 GRADE B(C) 12" X 4" X 1/4" X 40' Pcs Wgt 6,197 6 Tag No 28422 YLD=61100/TEN=70900/ELG=33 Heat Number NH4681 Pcs Wgt 6,197

 YLD=61100/TEN=70900/ELG=33

 8-PIECES
 "B" THIS HEAT #

 Heat Number
 *** Chemical Analysis ***

 NH4681
 C=0.0600 Mn=0.5800 P=0.0050 S=0.0010 Si=0.2520 Al=0.0310

 Cu=0.0700 Cr=0.0300 Mo=0.0100 V=0.0020 Ni=0.0200 Nb=0.0090

 Cb=0.0090 Sn=0.0020 N=0.0048 B=0.0001 Ti=0.0010 Ca=0.0010

 MELTED AND MANUFACTURED IN THE USA

 WE PROUDLY MANUFACTURE ALL OUR PRODUCT IN THE USA. INDEPENDENCE TUBE PRODUCT IS MANUFACTURED, TESTED, AND INSPECTED IN ACCORDANCE WITH ASTM STANDARDS. MATERIAL IDENTIFIED AS ASOO GRADE B (C) MEETS BOTH ASTM ASOO GRADE B AND ASOO GRADE C SPECIFICATIONS. CURRENT STANDARDS: A252-10 A500/A500M-18 A513/A513M-15 ASTM A53/A53M-12 | ASME SA-53/SA-53M-13 A847/A847M-14 A1085/A1085M-15 22Aug18 22:57 TEST CERTIFICATE No: DCR 852468 INDEPENDENCE TUBE CORPORATION P/O No 4500314328 CHICAGO, IL 60638 Tel: 708-496-0380 Fax: 708-563-1950 F/0 NO DCR 107030-001 S/O NO DCR 107030-001 B/L NO DCR 73089-002 Shp 22Aug18 Tor NO Inv Sold To: (5018) STEEL & PIPE SUPPLY 4750 W, MARSHALL AVENUE Ship To: (1) STEEL & PIPE SUPPLY 4750 W. MARSHALL AVENUE LONGVIEW, TX 75604 LONGVIEW, TX 75604 Tel: 785-587-5100 Fax: 785 587-5339 CERTIFICATE of ANALYSIS and TESTS Cert. No: DCR 852468 17Aug18 Part No TUBING A500 GRADE B(C) 12" X 4" X 1/4" X 40' Pcs 6 Wgt 6,197 Heat Number Tag No 21552 Pcs 6 Wgt 6,197 TH4011 YLD=66200/TEN=78000/ELG=25 12- PIECES NOT MARKED THIS HEAT # *** Chemical Analysis *** C=0.0600 Mn=0.6200 P=0.0080 S=0.0010 Si=0.2530 Al=0.0350 Cu=0.1200 Cr=0.0500 Mo=0.0200 V=0.0030 Ni=0.0400 Nb=0.0090 Ch=0.0090 Sn=0.0070 N=0.0087 B=0.0002 Ti=0.0010 Ca=0.0016 MELTED AND MANUFACTURED IN THE USA Heat Number TH4011 WE PROUDLY MANUFACTURE ALL OUR PRODUCT IN THE USA. INDEPENDENCE TUBE PRODUCT IS MANUFACTURED, TESTED, AND INSPECTED IN ACCORDANCE WITH ASTM STANDARDS. MATERIAL IDENTIFIED AS A500 GRADE B(C) MEETS BOTH ASTM A500 GRADE B AND A500 GRADE C SPECIFICATIONS. CURRENT STANDARDS: A252-10 A500/A500M-18 A513/A513M-15 ASTM A53/A53M-12 | ASME SA-53/SA-53M-13 A847/A847M-14 A1085/A1085M-15

Figure B-12. HSS12x4x¹/₄, Test Nos. STBRT-1 and STBRT-2

THE CHEMICAL, PHYSICAL, OR MECHANICAL TESTS REPORTED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECORDS OF THE CORPORATION. The material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1 This test report shall not be reproduced, except in full, without the written approval of Steel & Pipe Supply Company, Inc.

Figure B-13. 20-in. x 15-in. x $^{3}/_{16}$ -in. Steel Plate, Test Nos. STBRT-1 and STBRT-2

Figure B-14. BCT Timber Post, Test Nos. STBRT-1 and STBRT-2

CHANGE 62 Team min Team min <th></th> <th></th> <th></th> <th></th> <th></th> <th>$\mathcal{F} = \mathcal{K}$</th> <th></th> <th>*</th> <th></th> <th></th>						$\mathcal{F} = \mathcal{K}$											*		
CLIACY 0.32 Transmer TRINITY GUARDRAIL Change Out Resson: 29.5 mark 0.0 Canzal Metrulas Pressurvative CCA Board Ft: 4,672 331 Names, NE EPA Rep. No. 3083 00 Transmer Transmer Transmer Transmer Transmer Transmer Mark Add (9000) D'In D/D/D/D/D/D/D/D 368 / 331 D/D/D/D/D/D/D 368 / 331 D/D/D/D/D/D/D/D 368 / 331 D/D/D/D/D/D/D/D 368 / 331 D/D/D/D/D/D/D/D 368 / 331 D/D/D/D/D/D/D/D/D/D/D/D/D/D/D/D/D/D/D/	Char	~~~		65		a.						1	Total Tir	ne:	01:4	+1			
Time Canno Mermala Date: 8/5/20/9 IL-44 AM Change Ontageneous Marcol Name, NE EPA/Rep. No. 300436 Retention Trage: 0.6 Cable PS 331 Time: 2 Time: 1 Void (9000) Time: 1 April 1000 April 10000 April 1000 April 10000	Cilai	.gc		05	Le		Treatmen	nt: TRIN	IITY GUA	RDRAI	L	Change	e Out (mi	in):	29	.5			
Preservative CCA Decade Fig. * 4,972 Dimme, NB PEA Reg, No. 3004-30 Terminion Target 0.6 Cable Fig. * 331 Dimme, NB Tarket 20 Dimme, NB Dimme fig. Dimme fig. Dimme fig. NB NB Max Act Min	Plant: (02)) Cer	tral Nebras	ka			Dai	te: 8/5/2	019 11:41	AM		Change (Jut Reas	on:	10	10			
Same, NS EXA RS, No. 3008-30 Retenting 1 aget 0.0 Utilize 1 Void (2000) Tark 2 DVIA /DVIG: 368 / 511 Date 2 SAT DST DST DST Step To	-				11 0000	24	Preservativ	re: CCA					Board	FT:	4,0.	12			
Ling Ling Ling Ling Ling Ling 1	Sutton, NE			EPAK	eg. No. 3008-	30	Retention larg	et: 0.6	Ve	14 (900)	2)	DVI	In / DVC	Jut: 368	/ 35	1			
Dyname: Bol Date Off Ditpert: 8/6/19 1:22.AT Date off Ditpert: 8/6/19 1:22.AT 1 Step Atta Atta Min Mas Att Min Mas Att Min Mas Att Min Mas Att Min Mas Atta							Tar	1k: 2		14 (500)	<i>.</i> ,	211	Treat	By:	Tal	ly	DXFOR	D LAB-	-X CCA
Step Time Presure Injection Retention For Rat Act Time For Initial Vacuum 6.0 3.2 -2.2 0.00 0.000 3.3395 11.44:50 11.54:52 40.11 11.25 0.000 0.0000 11.54:53 12.23:27 12.23:27 12.23:27 12.23:17 12.23:17 12.23:17 12.23:17 12.23:17 12.23:17 12.23:17 12.23:17 12.23:17 12.23:17 12.12:17							Operati	or: Bob				Date C)ff DripP	ad: 8/6/	19 1:22	AM	WOOD	ANAL W	SIS
Min Min Max Act Min Max Max <td>Step</td> <td></td> <td>Time</td> <td></td> <td>Pressu</td> <td>re</td> <td>Injection</td> <td></td> <td>Retentio</td> <td>n </td> <td>Flow 1</td> <td>Rate</td> <td>Temp</td> <td></td> <td>Time</td> <td></td> <td>5/8/2019</td> <td>15.94</td> <td>1</td>	Step		Time		Pressu	re	Injection		Retentio	n	Flow 1	Rate	Temp		Time		5/8/2019	15.94	1
Initial Years 10 7.0 22 22 0.00 0.000 114148 11448 11448 Raise Press 7.0 0.5 7.5 7.8 0.00 0.000 33395 115405 115405 Raise Press 7.0 0.5 7.5 7.8 0.00 0.000 0.000 115405 115405 Press Raid 4.0 3.15 2.5 4.1 1.88 0.302 0.000 12323.4 123105 Binny 7.0 7.6 -1 2.45 0.414 0.0000 12323.4 123105 151165 52.0 1.86 9.6 1.86 9.6 1.86 9.6 1.86 9.6 1.86 9.6 1.86 9.6 1.86 9.6 1.86 9.6 1.86 9.8 1.86 9.8 1.86 9.8 1.86 9.8 1.86 9.8 1.86 9.8 1.83 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 <td>~</td> <td>N</td> <td>Iin Max</td> <td>Act</td> <td>Min Max</td> <td>Act</td> <td>Min Max</td> <td>Act M</td> <td>lin Max</td> <td>Act</td> <td>Min Ma</td> <td>x Act</td> <td></td> <td>Ramp</td> <td>Start</td> <td>End</td> <td>P-1-1</td> <td>Paint 00</td> <td>UDUOT</td>	~	N	Iin Max	Act	Min Max	Act	Min Max	Act M	lin Max	Act	Min Ma	x Act		Ramp	Start	End	P-1-1	Paint 00	UDUOT
PRI 6.0 9.2 -22 -3 0.00 0.000 3.335 11.5465 11.5465 Press 70 0.5 75 0.00 0.000 0.3335 11.5465 11.5465 Press 70 0.5 1.1 2.4 0.302 0.0000 11.5465 11.5465 Press 70 7.5 1.1 2.4.5 0.414 0.0000 12.232.41 12.3165 13.22.51 Press Press Press Press Press 0.000 11.5465 11.5465 Press	Initial Vacuu	ım	7.0	7.0	-2.2	-22		0.00		0.000		0.0000.			11:41:48	11:48:50	Ualibratio	n title: SA	HUUS1-pcf
Rade Press 7.0 0.5 75 78 0.00 0.000 11:54:63 11:54:54 12:152 11:54:54 12:152 11:54:54 12:152 11:54:54 12:152 11:54:54 12:152 11:54:54 12:152 12:152 11:54:54 12:152 12:152 11:54:54 12:152 12:154 11:54:54 12:152 12:154 12:154 12	Fill		6.0	5.2	-22	-3		0.00		0.000		3.3395			11:48:50	11:54:05			
Pressue 20 25.0 25.0 140 140 3.40 0.01 0.323 0.0000 11:54:44 12:193 Instant 12:193 Press Reliff 4.0 3.8 15 2.5 4 1.88 0.302 0.0000 4 12:1937 Instant 12:1937 Ins	Raise Press		7.0	0.5	75	78		0.00		0.000		0.0000			11:54:05	11:54:34	SAHPLE ID:	652	
Press Relief 4.0 3.8 15 2.5 4 1.88 0.302 0.0000 4 12:1937 13:1930 13:1910 0:01 0:01 0:01 0:01 0:01 12:1937 10:01 10	Pressure	1941 - 1- 1963 4 1949 194	20 25.0	25.0	140	140	3.40	2.01		0.323	0.03	00 0.0159		• 1 41-181-1111-1-111-1-111-1-11-1	11:54:34	12:19:3(******	**********	*******
Simply 7.0 7.0 -1 2.45 0.414 0.0000 [122324] [12316] [12316] [12316] <td>Press Relief</td> <td></td> <td>4.0</td> <td>3.8</td> <td>15 25</td> <td>4</td> <td></td> <td>1.88</td> <td></td> <td>0.302</td> <td></td> <td>0.0000</td> <td></td> <td>4</td> <td>12:19:37</td> <td>12:23:24</td> <td>DENSITY =</td> <td>32.0 pcf</td> <td></td>	Press Relief		4.0	3.8	15 25	4		1.88		0.302		0.0000		4	12:19:37	12:23:24	DENSITY =	32.0 pcf	
Strad Vacuum 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 43.0 123.133 133.26.0 III BUIRDS IIII BUIRDS IIIII BUIRDS IIII BUIRDS IIII BUIRDS IIII BUIR	Empty		7.0	7.6		-1		2.45		0.414		0.0000			12:23:24	12:31:0:	******	******	********
rman mappy 7.0 0.2 -1 1.25 0.221 0.0000 13:1605 15:22:10 Mar and the statute Finish 0.5 0.5 -1 1.25 0.221 0.0000 13:1605 15:22:10 Mar and the statute Chemical Current Target As Mixed Unit Required Actual Difference Water 6,662 7,860 7,835 Gels 1,173.9 1,170.0 -3.9 CCA 1.8500 % 1.900 % 1.902 % Gals 24.1 24.1 24.2 0.1 Type Chemical Sourdon List / Gal List Used Retendon Comm Type Chemical Sourdon List / Gal List Used Retendon Comm Type Chemical Sourdon List (Active) 0.1606 0.2017 6.564 7.340 0.2016 O.2016 Totals Retreat Pisels Guardal List (Active) 0.1606 0.1577 6.564 7.340 0.2016 O.2016 Totals Gative Chemical <th< td=""><td>Final Vacuu</td><td>m</td><td>45 45.0</td><td>45.0</td><td>-24</td><td>-24</td><td>2.10</td><td>2.48</td><td></td><td>0.418</td><td></td><td>0.0000</td><td></td><td>-</td><td>12:31:03</td><td>13:16:0-</td><td>20</td><td>T OXINES</td><td>YRAI ANDE</td></th<>	Final Vacuu	m	45 45.0	45.0	-24	-24	2.10	2.48		0.418		0.0000		-	12:31:03	13:16:0-	20	T OXINES	YRAI ANDE
Imitin 0.3 0.3 -1 1.23 0.221 0.0000 1522/20 1522.50 0.000 0	Final Empty	-	7.0	6.2		-1		1.26		0.222		0.0000			13:16:05	13:22:1	CP03 =	0 010 1	AD 1
Automatic Mix Information utomatic Mix Information Water 6,662 7,860 7,858 Gais 1,173.0 -5.9 CCA 1.8500 % 1.9000 % 1.9002 % Gais 24.1 24.2 0.1 Chemical Usage Constrained Usage	Finish		0.5	0.5		-1		1.25		0.221		0.0000			13:22:20	13:22:5	010 -	0.014 #	40.1
Chemical Current Target As Mixed Unit Required Active Chemical Solution Solution Solution Solution Solution Chemical Usage Addive Chemical Solution Chemical Solution Chemical Solution Lbs / Gal Lbs / Gal Lbs / Gal Chemical Referention Compte Type Chemical Statt Finish Gauge Adjusted Gauge Adjusted Compte Compte Compte Referention Compte Ull = 0.00 Ref TENT 101N				_		Aut	omatic Mix Infor	mation									100 =	0.344 %	18.1
Water 6,662 7,860 7,253 Gals 1,173.9 1,170.0 -3.9 CCA 1.8500 % 1.9000 % 1.9007 % Gals 24.1 24.2 0.1 Chemical Usage Chemical Start Finish Unit Start Finish Gauge Adjusted Googe Googe </td <td>Cher</td> <td>mical</td> <td></td> <td>Current</td> <td>-</td> <td>Target</td> <td>As M</td> <td>lixed</td> <td>Unit</td> <td>Requi</td> <td>red Act</td> <td>tual Dif</td> <td>fference</td> <td></td> <td></td> <td></td> <td>AS205 =</td> <td>0.643 %</td> <td>33.8</td>	Cher	mical		Current	-	Target	As M	lixed	Unit	Requi	red Act	tual Dif	fference				AS205 =	0.643 %	33.8
CCA 1.8300 % 1.9007 % Gais 24.1 24.2 0.1 Chemical Usage Chemical Cauge Adjusted Gauge Adjusted Gauge Adjusted Copper RE I ENT I INN Type Chemical Start Finish Gauge Adjusted Gauge Adjusted Gauge Adjusted Competition 0.000 perf 0.000 per	Water			6,662		7,860	7,85	8	Gals.	1	,173.9 1	1,170.0	-3.9				TOTAL =	1.902 XHT	100.0
Chemical Usage RETENTION Solution Lbs/Gal Lbs/Gal Cauge Adjusted Copper Type Chemical Start Finish Unit Start Finish Gauge Adjusted Copper Active CCA 1.9000 % 1.8894 % Lbs (Active) 0.1606 0.1397 66.54 73.40 0.2011 0.2216 Totals Material Information TOTAL TOTAL Material Information 1 6x8x45s4s Guage Majusted Mill Retreat Custor TOTAL 2 6x8x23s4s Rough Timber 84 1@84 482 45 3 6x6x20 Timber 48 1@24 768 40 0 Other Mimber 4 5/8x48x8 Phywood 24 1@24 768 40 0	CCA		1	.8500 %		1.9000 %	. 1.902	7 %	Gals.		24.1	24.2	0.1				*********	*****	
Solution Lbs / Gal Lbs / Gal Retention Comp Co							Chemical Usag	ge									RETEN	TION	
Type Chemical Start Finish Unit Start Finish Gauge Adjusted Guge Guge Adjusted Guge				Sc	olution			Lbs	/ Gal	Lb	s Used	Reter	ntion	10		Comport	ORDa	= 6,29	3 pcf
Active CCA 1.9000 % 1.8894 % Los (Active) 0.1605 0.1597 66.64 73.40 0.2011 0.2216 1100mm Material Information Item Code Description Pieces Pack/Size BF CF Std Mill Retreat Custo 1 6x8x453x4s Guardrail 42 1.042 541 45 5 5 5 0 0 2 6x8x453x4s Guardrail 42 1.0648 2,880 202 0 0 0 4 5/8x48x8 Plywood 24 1.024 768 40 0 0 0 Printed On: 8/5/2019 1:22:53 PM Charge Number 672 Page 1 of 1 Page 1 of 1	Туре	Chen	ical	Start	t	Finish	Unit	Start	Finish	Gauge	Adjusted	Gauge	Adjusted		1	Totals	CVII =	0.1	0 pcf
Material Information TI TAL= 0.608 pc.f 1 fxemCode Description Pieces Packs/Size BF CF Std Mill Retreat Custor 1 fxex8x45s4s Guardrail 42 1 @ 42 541 45	Active	CCA	ana ina	1.9000	% 1.	.8894 %	Lbs (Active)	0.1606	0.1597	66.6	4 73.40	0.2011	0.2216	5		Totals	A\$205	= 0.20	Pof
Item Code Description Pieces Pack/Size BF CF Std Mill Retreat Custor 1 6x8x45s4s Guardrall 42 1@42 541 45 2 6x8x23s4s Rough Timber 84 1@84 482 45 3 6x6x20 Timber 48 1@48 2,880 202 0 4 5/8x48x8 Plywood 24 1@24 768 40 0					-				Mate	rial Infor	mation						TOTAL -		N8 not
1 6x8x45x4s Guardrall 42 1@42 541 45 2 6x8x23x4s Rough Timber 84 1@84 482 45 3 6x6x20 Timber 48 1@48 2,880 202 0 4 5/8x48x8 Plywood 24 1@24 768 40 0	ItemC	ođe		De	scription		Pieces Pa	cks/Size	BF		CF	Std	M	ill R	etreat	Custor	*******	***********	50 F21
2 6x8x23s4s Rough Timber 84 1@ 84 482 45 3 6x6x20 Timber 48 1@ 48 2,880 202 0 4 5/8x48x8 Phywood 24 1@ 24 768 40 0	1 6x8x	c45s4s		G	huardrail		42 1	@ 42	541		45							*****	<u> </u>
3 6x6x20 Timber 48 1@48 2,880 202 0 4 5/8x48x8 Plywood 24 1@24 768 40 0	2 6x8x	c23s4s		Rou	igh Timber		84 1	@ 84	482		45								
4 5/8x48x8 Plywood 24 1@24 768 40 0	3 6x6	5x20		7	Timber		48 1	@ 48	2,880		202							0	
Printed On: 8/5/2019 1-22-53 PM Charge Mumber 652	4 5/8x	(48x8		P	lywood		24 1	@ 24	768		40							0	
Printed On: 8/5/2019 1-22-53 PM Charge Mumber 652																			
Printed On: 8/5/2019 1-22-53 PM Charge Number 652																			
Printed On: 8/5/2019 1-22-53 PM Charge Number 652			100																
Printed On: 8/5/2019 1-22-53 PM Charge Mumber 652																			
Printed On: 8/5/2019 1-22-53 PM Charge Mumber 652																			
Printed On: 8/5/2019 1-22-53 PM Charge Mumber 652																			
Printed On: 8/5/2019 1-22-53 PM Charge Mumber 652 Page 1 of 1											19								
Printed On: 8/5/2019 1-22-53 PM Charge Mumber 52 Page 1 of 1																			

Figure B-15. BCT Timber Post, Test Nos. STBRT-1 and STBRT-2

													3	046	HD	6
	Atlas To 1855 Es Chicago 60633 Tel: Fax:	ube Cor ast 122r o, Illinois 773-64 773-64	p (Chicago) nd Street s, USA 6-4500 6-6128				DIVISIO	a NOF Z	S7 ekelmi		e USTRIES	Re Da Cu	f.B/L: te: stomer	8072 08.17 2908	8203 7.2016	
					MA	TERI	AL TE	EST R	EPO	RT						
	Sold Grego 4100 CANT USA	to ory Ind 13th S ON O	lustries Ind Street SW. 9H 44710	с.	ł							<u>Sh</u> Tru 120 HA US	ipped <u>t</u> I-Form D4 Gilke RTFOF A	o Steel & ' Ave D CITY	Wire IN 47	348
Materia	al: 8.0x6	0x188x	27'0"0(2x2)S	SILDOMU	JS	Ma	aterial No	: 800601	188				Made in	n: USA		
Sales o	order: 1	105121				Pu	Irchase C)rder: 35	569		Cust Mat	terial #: 1	RB3/16-	8-6-27		
Heat N	0	С	Mn	Р	S	Si	Al	Cu	Cb	Мо	Ni	Cr	v	Ti	В	N
A616137 Bundle M8006 Materia	e No 50076 al Note:	0.210 PCs 4	0.930 Yield 058210 Psi	0.011 Ten 073	0.003 sile 148 Psi	0.020 Eln.2in 32 %	0.041	0.020	0.008 C	0.020 ertification STM A50	0.020 on 0-13 GRAI	0.030 DE B&C	0.008	0.001 CE: 0.38	0.000	0.003
Materia Sales o	al: 8.0x6.	0x188x 105121	30'0"0(2x3)S	BILDOMU	IS	Ma	aterial No Irchase C	: 800601 Order: 35	88		Cust Mat	erial #: 1	Made in Melted	n: USA in: USA 8-6-30		
Heat N	0	С	Mn	Р	S	Si	Al	Cu	Cb	Мо	Ni	Cr	v	Ti	В	N
Bundle M8006 Materia Sales (≥ No 50038 al Note: Or.Note:	PCs 6	Yield 057275 Psi	Ten 1 070	934 Psi	Eln.2in 32 %		0,100	C.UUZ	ertificatio	0-13 GRAI	DE B&C		CE: 0.37	0.000	0.007
Materia Sales d	al: 8.0x6	0x188x	30'0"0(2x3)S	SILDOMU	IS	Ma	aterial No	: 800601 Order: 35	188		Cust Mat	erial #:]	Made in Melted	n: USA in: USA 8-6-30		
Heat N	0	C	Mn	Р	S	Si	Al	Cu	Cb	Mo	Ni	Cr	V	Ti	в	N
821TO	3220 e No	0.220 PCs	0.810 Yield	0.013 Ten	0.006 sile	0.006 Eln.2in	0.041	0.160	0.002 C	0.005 ertificati	0.010 on	0.020	0.002	0.002 CE: 0.37	0.000	0.007
Materia Sales (al Note: Or.Note:	D	057275 PS	1 070	934 251	32 %			A	STWADU	0-13 GRA	DE BAC				
Jaso Jaso Auth The r spec CE c	n Richar orized b results n ification alculate St OF N	d y Quality eported and cod using CCI Stitu	ty Assurance t on this rep intract requi the AWS D LUBC LEC ERICA	e: ort repro irements 1.1 meth	esent the s. iod.	e actual a	ttributes Page :	of the ma 1 Of 6	aterial fu	rnished a	and indica	te full co tals Ser	mpliance Vice Cel	e with all a	applica itute	ble

Figure B-16. 72-in. Long Foundation Tube, Test Nos. STBRT-1 and STBRT-2

	Certified Analysi	is	ay Products
Trinity Highway Products, LLC			
550 East Robb Ave.	Order Number: 1275017	Prod Ln Grp: 3-Guardrail (Dom)	
Lima, OH 45801 Phn:(419) 227-1296	Customer PO: 3400		As of: 3/22/17
Customer: MIDWEST MACH.& SUPPLY CO.	BOL Number: 99202	Ship Date:	
P. O. BOX 703	Document #: 1		
*	Shipped To: NE		
MILFORD, NE 68405	Use State: NE		
Project: RESALE			

Qty	Part #	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	С	Mn	P	S	Si	Cu	Cb	Cr	Vn A	ACW
400	3380G	5/8"X1.5" HEX BOLT A307	HW			0052429-113200													
600	3400G	5/8"X2" GR BOLT	HW			29221													
500	3480G	5/8"X8" GR BOLT A307	HW			29369													
450	3500G	5/8"X10" GR BOLT A307	HW			29550-В													
700	3540G	5/8"X14" GR BOLT A307	HW			29567													
300	3580G	5/8"X18" GR BOLT A307	HW			29338													
600	4235G	3/16"X1.75"X3" WSHR	HW			C7001													
10	9852A	STRUT & YOKE ASSY	A-36			195070	52,940	69,970	31.1	0.190	0.520	0.014	0.004	0.020	0.110	0.000	0.050	0.000	4
	9852A		A-36			A82292	54,000	73,300	31.0	0.200	0.460	0.010	0.003	0.020	0.150	0.000	0.060	0.001	4
	9852A		A-36			645887	39,900	62,500	32.0	0.190	0.400	0.009	0.015	0.009	0.054	0.001	0.038	0.001	4
	9852A		A-36			645887	39,900	62,500	32.0	0.190	0.400	0.009	0.015	0.009	0.054	0.001	0.038	0.001	4
	9852A		HW			15056184													
20	12173G	T12/6'3/4@1'6.75"/S			2	L35216													
			M-180	A	2	209331	62,090	81,500	28.1	0.190	0.72	0 0.01	3 0.002	0.020	0.110	0.000	0.070	0.002	4
			M-180	A	2	209332	61,400	81,290	25.3	0.190	0.73	0 0.01	4 0.003	0.020	0.120	0.000	0.060	0.001	4
			M-180	A	2	209333	61,200	80,050	25.8	0.200	0.74	0 0.01	6 0.005	0.010	0.120	0.000	0 0.070	0.002	4
	1																2 0	of 4	

Figure B-17. Ground Strut Assembly, Test Nos. STBRT-1 and STBRT-2

SEMBLY

NC 14700 Brookpark Rd Cleveland, OH 44135-5166 customerservice@assemblyspecialty.com

Certificate of Conformance

ISO 9001:2008

Date: September 24, 2018

PH 216.676.5600

FX 216.676.6761 www.assemblyspecialty.com

> To: Gregory Industries, Inc. Gregory Galv. & Metal Processing 4100 13th St. SW Canton, OH 44710

We certify that our system and procedures for the control of quality assures that all items furnished on the order will meet applicable tests, requirements and inspection requirements as required by the purchase order and applicable specifications and drawings.

PURCHASE ORDER #: 40299

DATE SHIPPED: 09/24/18

ASPI SALES ORDER #: 122160

MANUFACTURER: ASSEMBLY SPECIALTY PRODUCTS, INC.

QTY	CUST P/N	ASPI P/N	ASPI LOT#	DESCRIPTION
250	3012G	C-2028	89315	6' 6" BCT Cable Assembly
250	3012G	C-2028	89316	6' 6" BCT Cable Assembly
250	3012G	C-2028	89318	6' 6" BCT Cable Assembly
250	3012G	C-2028	89864	6' 6" BCT Cable Assembly
250	3012G	C-2028	89865	6' 6" BCT Cable Assembly
250	. 3012G	C-2028	89866	6' 6" BCT Cable Assembly
250	3012G	C-2028	89929	6' 6" BCT Cable Assembly
250	3012G	C-2028	89930	6' 6" BCT Cable Assembly
250	3012G	C-2028	89931	6' 6" BCT Cable Assembly
250	3012G	C-2028	89932	6' 6" BCT Cable Assembly

REMARKS: NOMINAL BREAKING STRENGTH: 46,000 lbs

WIRE ROPE MANUFACTURED IN ACCORDANCE WITH AASHTO DESIGNATION: M3D-02 and ASTM A741 TYPE 2, CLASS A FITTINGS GALVANIZED IN ACCORDANCE WITH ASTM A-153 CLASS C.

STEEL USED TO MANUFACTURE THESE ITEMS WAS MELTED AND MANUFACTURED IN THE U.S.A ALL MANUFACTURING PROCESSES SUPPLIED OR PERFORMED BY ASSEMBLY SPECIALTY PRODUCTS, INC. TOOK PLACE IN THE U.S.A.

Signature Certification and Compliance Manager

Figure B-18. BCT Cable Anchor Assembly, Test Nos. STBRT-1 and STBRT-2

GREGORY HIGHWAY PRODUCTS, INC. 4100 13th St. SW Canton, Ohio 44710

	MIDWEST MA	CHINERY & 8 58405	SUPPLY CC				Test Report Ship Date: Customer P.O.: Shipped to: Project: GHP Order No:	11/17/2017 3515 MIDWEST MACHI 128AA	NERY & SL	IPPLY CO.		*	
HT # code	LOT#	C.	Mn.	P.	S.	Si.	Tensile	Yield	Elong.	Quantity	Class	Туре	Description
A74070		0.21	0.46	0.012	0.002	0.03	76100	58800	25.2	4	A	2	12GA TB TRANS
4181496		0.24	0.84	0.014	0.01	0.01	72400	44800	34	4		2	5/8IN X 8IN X 8IN BRG. PL,
4181489		0.09	0.45	0.012	0.004	0.01	58000	43100	27	4		2	350 STRUT & YOKE
196828BM		0.04	0.84	0.014	0.003	0.008	76000	74000	25			2	350 STRUT & YOKE
E22965 811T08220		0.17	0.51	0.013	0.008	0.008	72510	64310	29.5	4		2	2IN X 5 1/2IN PIPE SLEEVE 3/15IN X 6IN X 8IN X 6ETOIN THRE SLEEVE
	All Galvanizi All steel used All Steel used All Guardrai All Bolts and All material fa All controlled	ig has occu in the mard and Termi Nuts are of btricated in oxidized/oc	urred in the nufacture i le 23CFR inal Sectio accordan orrosion re	e United S s of Dom 635.410 ons meets c Origin ce with N ssistant G	States estic Origin Buy Ameu AASHTO ebraska D uardrail an	n, "Made an ica M-180, Ail epartment c d terminal s	d Melted in the Unit structural steel meo d'Transportation ections meet ASTN	ited States" ets AASHTO M-183 M A606, Type 4.	& M270	STATE OF	OHIO: OI	DUNTY OF STAR	James P. Definke Notary Public, State of Ohio W Commission Expires 10-19-2019
	By:	-le	2 La	for						Sworn to a Andrew Afr	nd subscri ar this 21	and before me, a lay of November,	Notary Public, by
										Notary Pub	lic State	t Ohio	
Figure B-1	9. 8-in	. x 8	-in.	X 5/2	s-in.	Plat	e, Test	Nos. ST	BR'	T-1 a	nd S	STBR	Γ-2
Trinity High	way Products	LLC					Certif	ieu Alla	arys	15			in the second se
Imity High	Iway Floudes	, LLC							CO 400	D			
550 East Ro	bb Ave.						Ord	ier Number: 12	09489	Prod L	n Grp:	-Guardrail (I	Dom)
Lima, OH 45	801 Phn:(419)	227-1296					Cu	istomer PO: 334	6				Asof: 11/7/16
Customer: J	MIDWEST M	ACH.& S	SUPPLY	CO.			BC	OL Number: 97	457	S	hip Date		

Customer:	MIDW	EST MACH.& SUPPLY (co.			BOI	Number: 97457		Ship D	Date:					1		LI HIC	·	
	P. O. I	3OX 703				Do	cument #: 1												
						Sh	ipped To: NE												
	MILFC	DRD, NE 68405				τ	Jse State: NE												
Project:	RESA	LE																	
Otv	Part #	Description	Spec	CL	TY	Heat Code/ Heat	Yield	TS	Elg	с	Mn	р	s	Si	Cu	Ch	Cr	Va	
	701A	ANCHOT Box	A-36			JK16101488	56,172	75,460	25.0	0,160	0.780	0.017	0.028	0.200	0.280	0.001	0.140	0.028	n
	701A		A-36			535133	43,300	68,500	33.0	0.019	0.460	0.013	0.016	0.013	0.090	0.001	0.090	0.002	
4	729G	TS 8X6X3/16X8'-0" SLEEVE	A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	
20	738A	5'TUBE SL.188X6X8 1/4 /PL	A-36		2	4182184	45,000	67,900	31.0	0.210	0.760	0.012	0.008	0.010	0.050	0.001	0.030	0.002	
	738A.		A-500			A49248	64,818	78,412	32.0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	,
6	749G	TS 8X6X3/16X6'-0" SLEEVE	A-500			A49248	64,818	78,412	32,0	0.200	0.810	0.014	0.002	0.040	0.020	0.000	0.040	0.001	
6	782G	5/8"X8"X8" BEAR PL/OF	A-36			DL15103543	58,000	74,000	25.0	0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	
20	783A	5/8X8X8 BEAR PL 3/16 STP	A-36			PL14107973	48,167	69,811	25.0	0.160	0.740	0.012	0.041	0.190	0.370	0.000	0.220	0.002	1
	783A		A-36			DL15103543	58,000	74,000	25.0	0.150	0.750	0.013	0.025	0.200	0.360	0.003	0.090	0.000	
45	3000G	CBL 3/4X6'6/DBL	HW			(119048)													
7,000	3340G	5/8" GR HEX NUT	HW			0055551-116146													
4,000	3360G	5/8"X1.25" GR BOLT	HW			0053777-115516													
450	3500G	5/8"X10" GR BOLT A307	HW			28971-B													
1,225	3540G	5/8"X14" GR BOLT A307	HW			29053-В													

	and the second	and the second	-	
	Atlas Tube (Alabama), Inc. 171 Cleage Dr Birmlegham; Alabama, USA 35217 Tal;			of.B/L: 80791452 ate: 11.10.2017 ustomer: 179
	Fax:	MATERIAL TEST REPO	RT	
	Sold to		sh	hinned to
	Steel & Pipe Supply Comp PO Box 1688 MANHATTAN KS 66505 USA	ban	St 40 NE US	eel & Pipe Supply Compan J1 New Century Parkway W CENTURY KS 66031 SA
	Material: 3.0x2.0x188x40'0"0(5x4).	Material No: 0300201884000)-B Cust Material #	Made in: USA Melted in: USA
	Heat No C Mn P B704212 0.200 0.450 0.010 Bundle No PCs Yield Te 40867002 20 064649 Psi 06 Material Note: Sales Cr.Note:	S Si Al Cu Cb 0.004 0.020 0.000 0.000 0.000 0. neile Eln.2in	Mo Ni Cr .000 0.000 0.000 Certification M A500-13 GRADE B	V Ti B N 0.000 0.000 0.000 0.000
	Material: 2.375x154x42'0"0(34x1). Sales order: 1226976	Material No: R023751544200 Purchase Order: 4500296656) Cust Material #	Made in: USA Melted in: USA #: 642004042
	Heat No C Mn P B712810 0.210 0.460 0.012 Bundle No PCs Yield Ta MCC00006947 34 063688 Pai 08	S Si Al Cu Cb 0.002 0.020 0.024 0.100 0.002 0. maile Ein.2in Rb 1	Mo Ni Cr 020 0.030 0.060 Certification M A500-13 GRADE B	V Ti B N 0 0.004 0.002 0.000 0.008 CE: 0.32
	Material Note: Sales Or.Note:			
	Material: 2.375x154x42'0"0(34x1). Sales order: 1226976 Héat No C Mn P	Material No: R023751544200 Purchase Order: 4500296656 S Si Al Cu Cb) Cust Material # Mo Ni Cr	Made in: USA Melted in: USA 1: 642004042 V Ti B N
	Bundle No PCs Yield Te 41532001 34 066144 Psi 06 Material Note: Sales Or.Note:	nsile Eln.2in 32159 Psi 27 % ASTr	Certification M A500-13 GRADE B	CE: 0.35
	Authorized by Quality Assurance: The results reported on this report repr specification and contract requirements institute Institute	esent the actual attributes of the material furni thod. Page : 3 Of 4	ished and indicete full	compliance with all applicable rvice Center Institute
Figure B-21. 2	2 ³ / ₈ -in. O.D. x 6-in. 1	Post Sleeve, Test Nos.	STBRT-1	l and STBRT-2
1	McMASTER-CA	RR. Cert	ificate o	f Compliance
600	N County Line Rd	University of Nebraska	Purchase Order	Page 1 of 1
Elm 630 chi.	ιhurst IL 60126-2081 ⊧600-3600 sales@mcmaster.com	Midwest Roadside Safety Facility M W R S F 4630 Nw 36TH St Lincoln NE 68524-1802 Attention: Shaun M Tighe Midwest Roadside Safety Facility	E000548963 Order Placed By Shaun M Tighe McMaster-Carr No 7204107-01	08/02/2018 umber
Line	e Product		C	ordered Shipped
1	97812A109 Raised-Head Removable N	lails, 16D Penny Size, 3" Long, Packs of 5		5 5 Packs
Cer	tificate of compliance			
This only	s is to certify that the above items were s y to our terms and conditions, available a	upplied in accordance with the description and t www.mcmaster.com or from our Sales Depa	d as illustrated in the artment. Sath Wei-C Sarah Weinberg Compliance Manage	catalog. Your order is subject

Figure B-22. Bent 16D Double Head Nail, Test Nos. STBRT-1 and STBRT-2

GÐ	GERDA	U STEEL	HER SHIP TO AND PIPE SUPPLY MARSHALL AVE	COINC	CUSTOMER BI	LL TO PIPE SUPP	LY CO INC		GRADE A992/A5	\$72-50		SHAPE / Wide Fla 13 5	SIZE nge Beam / 6 X	9#7150.X	DOCUMENT ID: 0000329181
S-ML-CARTE	SVILLE	LONG ³ USA	/1EW, TX 75604-481	7	MANHATTA) USA	N,KS 6650	5-1688	12	LENGTI 20' 00"	н	PCS 81	W 14	EIGITT 1,580 LB	11E. 550	AT / BATCH 166998703
ARTERSVILL SA	5, GA 30121	SALES 890448	ORDER 6/000010		CUSTOME 000000000	R MATER 037690020	IAL Nº		SPECIFI ASTM A ASTM A	ICATION / D 6-17 709-17	ATE or R	EVISION			
USTOMER PU 500348119	CHASE ORDER NUM	BER	BILL OF 1 1323-0000	ADING 159221	1	DATE 06/15/2020			ASTM AS CSA G40	092-11 (2015), . 21-13 345WM	4572-15				
HEMICAL COM	OSITION Mn P 0.83 0.01	\$ 6 0.03	Si 9% 2 0.19	Su 0.33	Ni % 0.20	0	Çr 0.12	Mo %	\$	5n 0.010	2 0.0	00	Nb %		
dechanical pr YS 0 PS 5750 5820	OPERTIES 2% 0	UTS PSI 76200 76700		YS MPa 396 401		11TS MPa 525 529			Y/F_rat 0.760 0.760	ti		G.J. Inch 8.000 8.000			
MECHANICAL PR Elon 23.1 25.2	OPERTIES g. 0														
OMMENTS / NO	ES														
	The above figures specified requiren 10204 3 1.	are certified che sents. Weld repai	mical and physical te r has not been perform	t records as a ned on this m	contained in the j naterial. This mat	permanent terial, inclu	records of comp ding the billets,	any. We was melt	certify the d and n	hat these data nanufactured	are correction the US/	t and in o A. CMTR	ompliance with complies with E	N	1
	Ma	enery	BHASKAR YAL3MA	NCHIILA L					2	jours	5	YAN WAS QUALITY	G ASSURANCE MGR		

Figure B-23. W6x9 or W6x8.5, 72-in. Long Steel Post, Test Nos. STBRT-1 and STBRT-2

GÐ	GE	RDA	U	CUSTOMER SI STEEL AND I 1003 FORT GI	IIP TO PIPE SUPPLY C IBSON RD	CO INC	CUSTOMER I STEEL AND	BILL TO PIPE SUPPLY	CO INC	GRADI A992/A	3 572-50	_	SHAPE7 Wide Flat 13 5	SIZE nge Beam / 6 X	9#7150 X	DOCUMENT ID: 0000467681
S-ML-MID	LOTHIAN			CATOOSA,OI USA	K 74015-3033		MANHATT/ USA	AN,KS 66505-1	1688	LENGT 50'00"	н	PCS 24	W 10	(EIGHT),800 LB	HEA 5909	T/BATCH 1883/02
IDLOTHIA SA	AN, TX 76065	5		SALES ORDE 8992383/0000	3R 10		CUSTON 00000000	IER MATERIA 0037690050	AL Nº	SPECH ASTM A ASTM A	FICATION / D/ 46-17 4709-17	ATE or R	EVISION	4		
USTOMER 500349334	PURCHASE	DRDER NUM	BER		BILL OF LA 1327-00003	ADING 73778		DATE 06/19/2020		ASTM / CSA G4	A992-11 (2015), A 0 21-13 345WM	.572-15				
HEMICAL C C (%) 0.09	OMPOSITION Mn (%) 0.91	P (%) 0.015	S (%) 0.037	Si (%) 0.23	Cu (%) 0.32	Ni (%) 0,11	Cr (%) 0.20	Mo(%) 0.024	Sn (%) 0,005	V (%) 0.001	Nb (%) 0.012	Al (%	6) CEqv	vA6 (%) 0.32		
IECHANICA YS 0.2 59 58	L PROPERTIES % (PS1) 778 424	UTS 73 70	(PSI) 289 802		YS (MPa) 412 403		UTS (MP: 505 488	a)	Y/T rati (%) 0.820 0.820		G/L. (Inche 8.000 8.000	5)		G/L (mm) 200.0 200.0		Elong. (%) 24.10 24.00
	The spe	e above figure critica requirem	s are cetti nents. We	fied chemical a	nd physical test	records as e ed on this m	ontained in the	e permanent rec	cords of company.	We certify melted and	that these data a manufactured in	are correction of the USA	et and in e	emplance with	4	
	Тін эре 102	e above figure cified requirem 204 3.1. AMa	s are certi nents. We	fied chemical a leid repair has n Bib	ad physical test of been perform SKAR VALTY DBUCKOR	records as e ed on this na ctura	ontained in th	e permanent recipi	ords of company.	We certify melted and	that these data a manufactured in Dala A.	are correct in the US.	et and in ce A. CMTR WARE MO	compliance with complies with 19 MFKINS	4	

Figure B-24. W6x9 or W6x8.5, 72-in. Long Steel Post, Test Nos. STBRT-1 and STBRT-2

CEDDAU	CUSTOMER SH NORFOLK IR	IP TO ON & METAL CO I	CUSTO NC NORF	MER BILL TO DLK IRON & M	TETAL CO INC	GRAD A992//	GRADE SHAPE / SIZE A992/A572-50 Wide Flange B D2 5			2 3cam / 6 X 15∉ / 150 X 0	
	3001 N VICTO NORFOLK,NI USA	ORY ROAD E 68701-0833	NORFO	NORFOLK, NE 68702-1129 USA			LENGTH P 50'00" 11		WEIGHT 9,000 LB	/ BATCH 1494/02	
0 WARD ROAD IDLOTHIAN, TX 76065 SA	SALES ORDE 8396750/0000	ER 20	CU 258	STOMER MAT 55	ERIAL Nº	SPECT ASTM ASTM	FICATION / D A6-17 A709-17	ATE or REVI	SION		
USTOMER PURCHASE ORDER NUMBER 1030121		BILL OF LADIN 1327-0000369454	3	DATE 05/15/20	020	ASTM CSA G	A992-11 (2015), 40.21-13 345WM	A 572-15			
HEMICAL COMPOSITION C Mn P 0.09 0.86 0.013	\$ 0.021	\$j 0.21	Сµ 0.37	Ni 0.09	Cr 0.15	Mo % 0.023	Sn 0.011	×	Nb 0.016	AI % 0.003	
HEMICAL COMPOSITION CEgyA6 0.30											
VECHANICAL PROPERTIES VS 0.2% V PSI V 56168 74 55381 74	TS SI 857 091	YS MPa 387 382		10 M 51 51	S 6 1	¥/Ţ 0.7: 0.7:	rati SO 50		G/L Inch 8.000 8.000		
IECHANICAL PROPERTIES G/L EI mm 200.0 22 200.0 2	ong. 3.90 3.80							-			_
DMMENTS / NOTES					6						

The above tigures are certified chemical and physical test records as contained in the perms specified requirements. Weld repair has not been performed on this material. This material 10204 3.1.	abent records of company. We certify that these data are correct and in compliance with including the billets, was melted and manufactured in the USA. CMTR complies with EN
Mackay OULITY DIRECTOR	Wal A. IL WADE LUNPENS QUALTY ASSURANCE MOR
Phone: (409) 267-1071 Email: Bhaskar, Valanunchili@grdau.com	Phone: 972-779-3118 Email: Wade.Luzupkins@gerdan.com

Figure B-25. W6x15, 84-in. Long Steel Post, Test Nos. STBRT-1 and STBRT-2

	-		CERTIFIED M.	ATERIAL TEST RE	PORT	20		2		_	Page 1/1
GƏ GERDAU	CUSTOMER SH STEEL AND F	IP TO TPE SUPPLY CO INC INDUSTRIAL PARK	CUSTOMER STEEL AN	BILL TO D PIPE SUPPLY CO	INC	GRADE A992/A572-50		SHAPE /: Wide Flag X 22.5	SIZE nge Beam / <mark>6 X 13</mark>	8/ 150	DOCUMENT ID: 0000000000
US-ML-MIDLOTHIAN	JONESBURG, USA	MO 63351	MANHATI USA	TAN,KS 66505-1688		LENGTH 60'00"	PCS 0	WE 10,1	IGHT 800 LB	HEA 5908	T/BATCH 2360/02
MIDLOTHIAN, TX 76065 USA	SALES ORDE 7177340/0000	R 10	CUSTO: 0000000	MER MATERIAL Nº 100376150060	2	SPECIFICATION / D/ ASTM A6-17 ASTM A709-17	TE or R	EVISION			
CUSTOMER PURCHASE ORDER NUMBER 4500319529		BILL OF LADING 1327-0000300764		DATE 11/12/2018		ASTM A992-11 (2015), A CSA G40.21-13 345WM	572-15				
$ \begin{array}{c} \text{CHEMICAL COMPOSITION} \\ C \\ C \\ C \\ C \\ 0.09 \\ 0.81 \\ 0.015 \end{array} \\ \begin{array}{c} P \\ C \\$	5 0.036	Şi 0.20 (Çu % 0.37 0	Ni Çr 0.12 0.14	۲ 0.0	to Şn 90124 0.011	0.0	(02	Nb 0.016	AJ 0.003	
CHEMICAL COMPOSITION CEgyA6 0.29											
MECHANICAL PROPERTIES YS 0,2% PS7 P \$2633 74 53070 74	15 SI 340 956	MPa 363 366		513 517		Y/L rati 0.710 0.710		G/L Inch 8.000 8.000			
MECHANICAL PROPERTIES G/L Ely mm 200.0 24 200.0 23	20 .60										
COMMENTS/NOTES											

The above figures are certified chemical and physical test records as contained in the per specified requirements. This material, including the billets, was melled and manufacture	manent records of company. We certify that these data are correct and in compliance with in the USA, CMTR complies with EN 10204 3.1.
Mackay UNISKAR VALAMANCHILI QUALITY DIRECTOR	Dale A. Le wade lumpens quality assurance more.
Phone: (469) 267-1071 Email: Bhaskar Yalamanchili@jgerdau.com	Phone: 972-779-3118 Email: Wade.Lumpkins@gerdau.com

Figure B-26. W6x15, 53¹/₂-in. Long Steel Post, Test Nos. STBRT-1 and STBRT-2

Figure B-27. 6-in. x 8-in. x 19-in. Timber Blockout, Test Nos. STBRT-1 and STBRT-2

Figure B-28. 6-in. x 12-in. x 19-in. Timber Blockout, Test Nos. STBRT-1 and STBRT-2

CC	CA Charg	e Rep	ort				Centra 105 N. Owe Sutton, NE (Tel: (402) 77	al Neb n 68979 73-4319	ras !	
Chai Tally Cylir	rge C1-25698/U2 25698/U2 nder CYL <u>1</u>	8/Uo 26795	Recipe Preset Operat	Defau Guard or Bob	lt Rail -	S E E	Start Time End Time Duration	7/23/11 7/23/11	B 11:1 B 12:6	DXFORD LAB-X CCA WOOD AMALYSIS 20/7/2010 13:4
0				FLW	INJ	MNT	MXT	PRS	VAC	Calibration title: SANDUSI-pef
1 -	Initial Vacuum	Time	SP ACT		1		7.00 11.75	1	22	9AMPLE ID: 25698
2	Vacuum Fill	Cylinder Full	. SP ACT			1	4.80		22 20	triestriction 32.0 pcf
3	Atm Absorption	Time	SP ACT				1.00 1.00			X#11XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
.4	Pressure	Time	SP ACT	0.00	4.10 15.39	25.00 25.00	25.00 25.00	140.00 149.33		CR03 = 1.067 % 49.0 CUD = 0.376 % 17.5
5	Release Pressure	Pressure	SP				6.00 6.60	10.00 9.99		A9205 = 0:702 % 32.7 Total = 2.145 XVT 100.0
6	Emptying	Cylinder Empty	SP ACT				5.92		•• •• ••	RETENTION
7	Final Vacuum	Operator Stepped	SP ACT			40.00 30.02	40.00 30.02		24. 24.	CR03 = 0.842 pcf CU0 = 0.120 pcf
8 .	Drain Cylinder	Cylinder Empty	SP ACT				5.47			A8205 = 0.225 pcf TOTAL= 0.686 pcf
ank l	nformation for T02 CC			Char	ge Data	w bars de chineses				
ase ilal Va cuum essure d of C	icuum Fill Aarge	FT GAL 9.3 7880 2.2 1836 0.4 349 7.8 6570	LBS 66715 15543 2952 55629	Solutio Calcul Net Inj Estima Calcula Total G	in Concentrated Chemie ection (Gal/ ted Heartwo ated Retenti alions Used	ation Cal Use (Lbs CuFt) Dod (%) on d (Gal)	1.9 9) 210 9 1,308	00% Vol 0.48 Dis 3.24 Tarr Ass 0.52 0.46	ume Ba p. Volui get Ass ay (Lbs	isis Tally me (CuFT) 424.16 ay Retention 0.60 9/CuFT) / NC /
ally					RATE REPORT	Canadama a	BF/	SF 4,836.	00 T	Fotal Volume 404.24 CuFt
	tion Description	Qty 50	Specie SYP	Gra 1	de	Lot	N	1C % Dress	sing	CuFt BdFt 116.67 1,400.00
sigria lick lick lick lick	6x12x19\"Rgh T006298B	168 16	SYP SYP	1				÷		154.58 1,840.00

Figure B-29. 6-in. x 12-in. x 19-in. Timber Blockout, Test Nos. STBRT-1 and STBRT-2

						1										• • · · · ·
														· · · /		
						l					Т	otal Time:		01:49	e. set i	1
Charge	2	16	72		3	Freatmen	t: TRIN	ITY GUAR	DRAIL	C	hange	Out (min)	1.1	35:1	10.14	$f = \delta \hat{f}_{ij} \hat{f}_{j} f^{ij}$ (4)
	Central Nehr	নহাবে	-			Dat	e: 3/26/2	2020 7:20 A	M	· Ch	ange C	ut Reason	1.0	30 T . 1	4 2	1 1 1 1
FIALL (UZ)	Ochicia 24002				Pre	eservativ	e: CCA					Board Ft		. 5,394	P	erens of a
Sutton NE		EPA F	Reg. No. 30	008-36	Retenti	ion Targe	et: 0.6					Cubic Ft	Ŧ	**450	So. 7	
						Cylinde	er: 1	Voi	d (9000)		DVI	n / DVOut	: 415	3 / 435		OXFORD LAB-X GGA
						Tan	ik: 2					Treat By		Tall	9	WOOD ANALASTS
			de la			Operato	or: Bob				Date O	H DripPac	: 3/26	/20 9:09 P	M	75/3/2020 12.01
Step	Ti	ne	Pre	essure	1	Injection		Retention	1.1	Flow Rate	1.1	Temp	T	Start	End	
	Min M	ax Act	Min N	Max Act	Min	Max	Act M	in Max	Act	Min Max	ACT	K	amp	07-20-51	07-20-52	L bailoration titler SAUDUSI-pof
Initial Vacuum	12	2.0 12.0		-12 -22			0.00		0.000		0.0000			07-32-52	07-27-50	- ,
Fill		5.0 4.9		-22 -3	7		1.04		0.092	······	0.0000			07-37-50	07-32-31	- SAHPLE ID: 1672
Raise Press		1.0 0.7		10 T	, 	340	3.60		0.107	0.0300	0.0000			07-38-31	08-03-37	**************************************
Pressure	25 2	5.0 25.0	15	75 140	2		3.50		0.565	0.0300	0.0120		4	08-03-32	08-07-32	DEWSITY = 32 D prf
Press Rehet		70 54	13	<u>ل</u> ک	3 1410	~~~ <u>+</u> ~~~	336		0 560	1 M dae 1 dae di mana anna y mana agenta ya 1 m	0.0000			08:07:32	08:12:58	
Empty	50 F	0.0 50.0		-23 .21	2	2,10	3.49		0.581	an a	0.0000			08-12:59	09:03:01	NOT DUTCH
Final Vacuum	20 2	70 61		-w %	1	210	2.38		0.402		0.0000			09:03:02	09:09:06	ZWI UKIDES ZBALANCE
Pinich		05 05			1		2.38		0.402		0.0000	A.1117527501361125		09:09:07	09:09:38	GRU3 = 1.101 % 50.9
rmsa		0.0 0.0														CUO = 0.383 % 17.7
				Ar	tomatic l	Mix Infor	mation				1.					A6205 = 0.680 % 31.4
Chemical	1	Curren	t	Targo	at l	AsM	uxed	Unit	Require	Actual	Di	12 C				TOTAL = 2.164 XWT 100.0
Water		6,780	14	1,860	04	1,87	19.96	Gale	1,0	176 1	77	0.1				2*************************************
CCA		1.9200	/0	1.9000	70	1.09		0415.								RETENTION
					Cher	mical Usa	ge								Came	
			Solution				Lbs	Gal	Lbs	Used	Refe:	ntion			Comp	ulua - ulaz por
1 Tyme 1 C			, 1			WT	0.	124-1-1	0-	1.72	1	1 32		1	Copper	010 - 0.400
rahe c	Chemical	Sta	urt	Finish		Unit	Start	Finish	Gauge	Adjusted 0	Fauge	Adjusted			Copper Totals	CVO = 0.123 pct
Active CCA	Chemical A	Sta 1.900	urt 10 %	Finish 1.8843	% Lt	Unit os (Active)	Start 0.1606	Finish 6 0.1592	Gauge 171,83	Adjusted 0 180.96	Fauge 0.3822	Adjusted 0.4025			Totals	CVO = 0.123 pcf AS205 = 0.218 pcf
Active CCA	Chemical A	Sta 1.900	urt 10 %	Finish 1.8843	u % Ľb	Unit os (Active)	Start 0.1606	Finish 6 0.1592 Mate	Gauge 171,83 rial Inform	Adjusted 0 180.96	Fauge 0.3822	Adjusted 0.4025			Totals	CUO = 0.123 pcf A3205 = 0.210 pcf TOTAL = 0.692 pcf
Active CCA	Chemical A	Sta 1.900	ut 10 % Description	Finish 1.8843	v Lb	Unit os (Active) Pieces Pa	Start 0.1606	Finish 6 0.1592 Mate BF	Gauge 171,83 rial Inform	Adjusted C 180.96 nation CF	Std	Adjusted 0.4025 Mil	1	Retreat	Copper Totals Cnstow	CNG = 0.123 pcf A9205 = 0.218 pcf TOTAL = 0.692 pcf
Active CCA ItemCode	Chemical A.	Sta 1.900 1 Tri	urt (0 % Description nity Guard	Finish 1.8843 n rail	u Lt	Unit os (Active) Pieces Pa 175 1	Start 0.1600 acks/Size . @ 175	Finish 6 0.1592 Mate: BF 4,200	Gauge 171.83 rial Inform	Adjusted C 180.96 nation CF 350	Sauge 0.3822 Std	Adjusted 0.4025 Mil	- 1 .[Retreat	Copper Totals Cnstow	CWD = 0.123 pcf A3205 - 0.218 pcf TOTAL = 0.692 pcf
Active CCA ItemCode 1 t004063b 2 t004660b	Chemical A b b	Sta 1.900 I Tri Tri	urt 0 % Description nity Guard nity Guard	Finish 1.8843 ' n rail rail	1	Unit os (Active) Pieces Pa 175 1 84	Start 0.1600 acks/Size @ 175 1 @ 84	Finish 6 0.1592 Mate BF 4,200 606	Gauge 171.83 rial Inform	Adjusted 0 180.96 nation CF 350 51	Std	Adjusted 0.4025 Mil	1	Retreat	Copper Totals Cnstow	CWD = 0.123 pcf A3205 - 0.218 pcf TOTAL = 0.692 pcf
Active CCA ItemCode 1 1 t0040631 2 t0046601 3 6x12x14rg	Chemical A b b gh	Sta 1.900 I Tri Tri	urt 0 % Description nity Guard Guardrail	Finish 1.8843 · n rail rail	v Lb	Unit Dis (Active) Pieces Pa 175 I 84 84	Start 0.1606 acks/Size .@175 1@84 1@84	Finish 5 0.1592 Mate BF 4,200 606 588	Gauge 171.83 rial Inform	Adjusted 0 180.96 nation CF 350 51 49	Std	Adjusted 0,4025 Mil	1	Retreat	Copper Totals Cnstow	CWD = 0.123 pcf A3205 - 0.218 pcf TOTAL = 0.692 pcf
Active CCA ItemCode 1 1 10040631 2 10046601 3 6x12x14m	Chemical A b b gh	5ta 1.900 1 1 Tri Tri	urt 0 % Description nity Guard nity Guard Guardrail	Finish 1.8843 [.] n rail rail	LE	Unit DS (Active) Pieces Pa 175 1 84 84	Start 0.16000 0.16000 0.16000 0.16000 0.160000000000	Finish 5 0.1592 Mate: BF 4,200 606 588	Gauge 171.83 rial Inform	Adjusted C 180.96	Stal	Adjusted 0,4025 Mil		Retreat	Copper Totals Coston	CWD = 0.123 pcf A3205 - 0.218 pcf TOTAL = 0.692 pcf
Active CCA ItemCode 1 1 1004063b 2 1004660b 3 6x12x14rp	Chemical A b b gh	Sta 1.900 I Tri Tri	urt 0 % Description nity Guard nity Guard Guardrail	Finish 1.8843 ' n rail rail	% Lt	Unit Dis (Active) Pieces Pa 175 I 84 84	Start 0.1600 ecks/Size .@ 175 1 @ 84 1 @ 84	Finish 5 0.1592 Mate: BF 4,200 606 588	Gauge 171.83 rial Inform	Adjusted (180.96 nation CF 350 51 49	Gauge 0.3822 Std	Adjusted 0.4025 Mil	1	Retreat	Copper Totals Costom	CWD = 0.123 pcf A3205 = 0.218 pcf TOTAL = 0.692 pcf
Active CCA Active CCA 1 10040631 2 10046601 3 6x12x14rg	Chemical A b b gh	Sta 1.900 I Tri Tri	urt 0 % Description mity Guard Guardrail	Finish 1.8843 ' n n n n n l n n l n n l	K Lt	Unit Ds (Active) Pieces Pa 175 1 84 84	Start 0.1600 	Finish 6 0.1592 Mate: BF 4,200 606 588	Gauge 171.83 rial Inform	Adjusted 0 180.96 nation CF 350 51 49	Gauge 0.3822 Std	Adjusted 0.4025 Mil	1	Retreat	Copper Totals Cnstow	CWD = 0.123 pcf A3205 = 0.218 pcf TOTAL = 0.632 pcf
Active CCA Active CCA ItemCode 1 1 10040631 2 10046601 3 6x12x14rg	Chemical A b b gh	Sta 1.900 I Thi Thi	urt 0 % Description mity Guard mity Guard Guardraii	Finish 1.8843 ' n rail rail	K Lt	Unit Dis (Active) Pieces Pa 175 I 84 84	Start 0.1600 acks/Size .@ 175 1 @ 84 1 @ 84	Finish 6 0.1592 Mate: BF 4,200 606 588	Gauge 171.83 rial Inform	Adjusted C 180.96 - cr - 350 - 51 - 49 -	Gauge 0.3822 Std	Adjusted 0,4025 Mil	1	Retreat	Copper Totals Conston	CWD = 0.123 pcf A3205 = 0.218 pcf TOTAL = 0.532 pcf
Active CCA Active CCA ItemCode 1 1 10040631 2 10046601 3 6x12x14rg	Chemical A b b gh		urt 0 % Description nity Guard nity Guard Guardrail	Finish 1.8843 a rail rail trail	% Lt	Unit Dis (Active) Pieces Pa 175 1 84 84 84	Start 0.1606 	Finish 6 0.1592 Mate: BF 4,200 606 588	Gauge 171.83 rial Inform	Adjusted C 180.96 - nation - CF - 350 51 49 -	Sauge 0.3822 Std	Adjusted 0.4025 Mil		Retreat	Copper Totals Cnstom	CWO = 0.123 pcf AS205 - 0.218 pcf TOTAL = 0.692 pcf
Active CCA Active CCA ItemCode 1 1 10040631 2 10046601 3 6x12x14m	Chemical A. b b gh	I 1.900	ort 0 % Description mity Guard mity Guard Guardrail	Finish 1.8843 a rail rail trail	% Lt	Unit Dis (Active) Pieces Pa 175 I 84 84 84	Start 0.1600 @ 175 @ 175 1 @ 84 1 @ 84	Finish 6 0.1592 Mate BF 4,200 606 588	Gauge 171.83 rial Inform	Adjusted C 180.96 180.96 ation CF 350 51 49 .	Sauge 0.3822 Std	Adjusted 0.4025 0.4025 Mäl		Retreat	Copper Totals Cnstom	CWO = 0.123 pcf A3205 - 0.218 pcf TOTAL = 0.692 pcf
Active CCA Active CCA ItemCode 1 1 t004063t 2 t004660t 3 6x12x14rg	Chemical A b b gh	Sta 1.900	ort 0 % Description mity Guard mity Guard Guardrali	Finish 1.8843 a rail rail	% Lt	Unit Dis (Active) Pieces Pa 175 I 84 84 84	Start 0.1600 @ 175 0.1638 1 @ 84 0.1638	Finish 6 0.1592 Mate BF 4,200 606 588	Gauge 171.83 rial Inform	Adjusted C 180.96 180.96 inition CF 350 51 49 49	Sauge 0.3822 Std	Adjusted 0,4025 Mil		Retreat	Copper Totals Cnstow	CW0 = 0.123 pcf A3205 - 0.218 pcf TOTAL = 0.692 pcf
Active CCA ItemCode 1 1 t004063t 2 t004660t 3 6x12x14rg	Chemical A b b gg,	Sta 1.900	urt 0 % Description hity Guard hity Guard Guardrail	Finish 1.8843 a rail rail	% Lt	Unit (Active) Pieces Pa 175 I 84 84	Start 0.1606	Finish 6 0.1592 Mate BF 4,200 606 588	Gauge 171.83 rial Inform	Adjusted C 180.96 180.96 nation CF 350 51 49 .	3auge 0.3822 Std	Adjusted 0,4025 Mil	·	Retreat	Copper Totals Cnstom	CW0 = 0.123 pcf A3205 - 0.218 pcf TOTAL = 0.692 pcf
Active CC4 Active CC4 ItemCode 1 1 1004063b 2 1004660b 3 6x12x14rg	Chemical A b b b gh	Sta 1.900 I Tri Tri	urt 0 % Description nity Guard nity Guard Guardrail	Finish 1.8843 a rail rail	12 % 12 P	Unit Dis (Active) Pieces Pa 175 I 84 84	Start 0.1606	Finish 6 0.1592 Mate BF 4,200 606 588	Gauge 171.83 rial Inform	Adjusted C 180.96 1 nation CF 350 51 49 .	Std	Adjusted 0,4025 0.4025 Mil		Retreat	Copper Totals Cnstom	CWD = 0.123 pcf A3205 - 0.218 pcf TOTAL = 0.692 pcf
Active CCA ItemCode 1 1 10040631 2 10046601 3 6x12x14tg	Chemical A b b gh	Sta 1.900 I Tri Tri	urt 0 % Description nity Guard nity Guard Guardrail	Finish 1.8843 · a rail trail	4	Unit Dis (Active) Pieces Pa 175 I 84 84 84	Start 0.1606 @ 175 1@ 84 1 @ 84 1@ 84	Finish 6 0.1592 Mate BF 4,200 606 588	Gauge 171.83 rial Inform	Adjusted C 180.96 - nation - 350 51 49 -	Range 0.3822 Std	Adjusted 0,4025 Mil	1	Retreat	Copper Totals Cnstom	CWO = 0.123 pcf AS205 • 0.218 pcf TOTAL = 0.692 pcf
Active CCA Active CCA 1 10040631 2 10046601 3 6x12x14xp	Chemical A b b g j 3/26/2020 :	Sta 1.900	672 Treatment: TRINITY GUARDRALL Change Out (mb): 353 Date: 3226/2020 7:20 AM Change Out Reason: 539 A Reg. No. 3008-36 Retention Target: 0.6 Void (9000) DVIn / DVOu: 415 435 Tark: 2 Treat: DVin / DVOu: 415 7435 Tail: 0 Cylinder: 1 Void (9000) DVIn / DVOu: 415 7435 10 Coperator: Bob Retention on Flow Rate Teamp Tail: 2 10 -22 22 0.00 0.0000 0.0000 0.720251 07 149 42 -3 0.58 0.0992 2.5462 0732359 07 27 77 1.04 0.167 0.0000 0.0228 073253 07 26 -1 2.38 0.560 0.0000 0.82372 08 20.1 -23 2.38 0.402 0.0000 081282 09 27 10 3.40 0.579 0.320 0.222 0.200 0.993932 09				Copper Totals Costow	CWO = 0.123 pef A3205 - 0.218 pef TOTAL = 0.692 pcf 0 0 0 0 0 0 0 0 0 0 0 0 0								
Active CCA I temCode 1 t004063t 2 t004660t 3 6x12x14tp	harge 1672 (02) Central Nebraska NE EPA Reg. No. 3008- Step Time Pressu Min Max Act Min Max 1Vacuum 12.0 12.0 -22 -6.0 4.9 -22 1Vacuum 12.0 12.0 -27 -6.0 4.9 -22 2Preas 7.0 0.7 72				F	Unit (Active)	Start 0.1600	Finish 6 0.1592 Mate BF 4,200 606 588 588	Gauge 171.83 rial Inform	Adjusted C 180.96 180.96 antion CF 350 51 49 49	Sange 0.3822 Std	Adjusted 0.4025 Mil	;	Retreat	Copper Totals	CW0 = 0.123 pcf A3205 • 0.218 pcf TOTAL = 0.692 pcf 0 0 0 0 0 0 0 0 0 0 0 0 0
Active CCA ItemCode 1 t0040631 2 t0046600 3 6x12x14u	arge 1672 (02) Central Nebraska IE EPA Reg. No. 3008-36 Step Time Pressure Min <max< td=""> Act Min<max< td=""> acoumn 12.0 12.0 -22 acoumn 12.0 12.0 -22 ccss 7.0 0.7 75 2 25 25.0 140 etief 4.0 4.0 15 25 cross 7.0 5.4 acoum 50 50.0 50 acoum 50 50.0 50.0 -23 mpty 7.0 6.1 0.5 0.5 </max<></max<>			Finish 1.8843 · n rail rail	F	Unit (Active) (ieces Pa 175 1 84 84 84	Start 0.1600	Finish 6 0.1592 Mate BF 4,200 606 588 588	Gauge 171.83 rial Inform	Adjusted C 180.96 180.96 antion CF 350 51 49 49 572 572	Sange 0.3822 Std	Adjusted 0.4025 Mil	1	Retreat	Copper Totals	CWO = 0.123 perf AS205 • 0.218 perf TOTAL = 0.692 perf

Figure B-30. 6-in. x 12-in. x 14¹/₄-in. Timber Blockout, Test Nos. STBRT-1 and STBRT-2

CERTIFICATE OF COMPLIANCE

ROCKFORD BOLT & STEEL CO. 126 MILL STREET ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

CUSTOMER N/	AME:	TRINITY IN	DUSTRIES					
CUSTOMER PO	D:	187087	1			Ship Date Shi	PER #: IPPED:	061972 11/06/2017
LOT#:	30361-P							
SPECIFICATIO	N:	ASTM A30	7, GRADE A N	NILD CARBO	N STE	el Bolts		
TENSILE:	SPEC:	60,000 psi*	min	RESULTS:		66,566 66,832		
HARDNESS:		100 max				82.60 82.70		
Pounds Per Squar	re Inch.							
COATING: ROGERS GAL	ASTM SP VANIZE:	ECIFICATIO 30361-P	IN F-2329 HO	T DIP GALV	ANIZE			
		Cł	IEMICAL CON	POSITION				
MILL		GRADE	HEAT#	C	Mn	Р	S	Si
NUCOR		1010	DL17100590	.10	.41	.005	.005	.05

QUANTITY AND DESCRIPTION:

4,825 PCS 5/8" X 14" GUARD RAIL BOLT P/N 3540G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS november DAY OF

OFFICIAL SEAL MERRY F. SHANE NOTARY PUBLIC - STATE OF ILLINOIS MY COMMISSION EXPIRES OCTOBER 3, 2019

20/7 APPROVED SIGNATORY

11/6/1 DATE nda Milomas

Figure B-31. 5%-in. Dia., 14-in. Long Guardrail Bolt, Test Nos. STBRT-1 and STBRT-2

CERTIFICATE OF COMPLIANCE

ROCKFORD BOLT & STEEL CO. **126 MILL STREET** ROCKFORD, IL 61101 815-968-0514 FAX# 815-968-3111

CUSTOMER NAME:	GREGORY	INDUSTRI	ES					
CUSTOMER PO:	39864					SHI DATE SI	PPER #: 06 HPPED: 05	13466 5/24/2018
LOT#: 30920-B								
SPECIFICATION:	ASTM A30	7, GRADE A	MILD CA	RBON	STEEL BC	LTS		
TENSILE: SPEC:	60,000 psi*	min	RESULT	S:	79,300			
HARDNESS:	100 max				90.00 90.80			
*Pounds Per Square Inch.								
COATING: ASTM SPEC	FICATION	F-2329 HO	T DIP GA	LVANIZ	E		3	
AZZ GALVANIZING:	30920-B							
	CHEN	NICAL COM	POSITIO	N				••
MILL	GRADE	HEAT#	C	Mn	Р	S	Si	
MID AMERICAN STEEL & WIR	E 1012	1721198	.13	.51	.016	.027	.19	

20,700 PCS 5/8" X 10" GUARD RAIL BOLT P/N 1010G

WE HEREBY CERTIFY THE ABOVE BOLTS HAVE BEEN MANUFACTURED BY ROCKFORD BOLT AND STEEL AT OUR FACILITY IN ROCKFORD, ILLINOIS, USA. THE MATERIAL USED WAS MELTED AND MANUFACTURED IN THE USA. WE FURTHER CERIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIALS SUPPLIER, AND THAT OUR PROCEDURES FOR THE CONTROL OF PRODUCT QUALITY ASSURE THAT ALL ITEMS FURNISHED ON THIS ORDER MEET OR EXCEED ALL APPLICABLE TESTS, PROCESS, AND INSPECTION REQUIREMENT PER ABOVE SPECIFICATION.

18

STATE OF ILLINOIS COUNTY OF WINNEBAGO SIGNED BEFORE ME ON THIS a

OFFICIAL SEAL MERRY F. SHANE NOTARY PUBLIC - STATE OF ILLINOIS MY COMMISSION EXPIRES OCTOBER 3, 2018

nda Mclomas ROVED SIGNATORY DATE

5/31/18

Figure B-32. %-in. Dia., 10-in. Long Guardrail Bolt, Test Nos. STBRT-1 and STBRT-2

Merted in USA Manufactured in USA	P38843-1 10090 7009199 1062636 461276 19/32 RNDCOI HRS/ 19/32 16-OCT-11 d that it satisfies der federal statute V .001
Rockford Bolt & Steel 7 126 Mill St. Rockford Ll-6f101 Kind Attn : Linda McComas Ship Lot # I hereby certify that the material described herein has been manufactured in accordances Ship date I hereby certify that the material described herein has been manufactured in accordances Ship date I hereby certify that the material described herein has been manufactured in accordances Ship date I hereby certify that the material described herein has been manufactured in accordances on this document may be punishable as a falony under feder Lab Code: 7388 Test results of Heat Lot # 10625350 CHEM C XWX .09 .37 .095 .090 .04 .035 .0080 .0001 .035 .0080 .0001 .001 .001 .002 .003 .035 .0080 .0001 .001 .001 .001 .002 .003 .0036 .0031 .0036 .0031 .0036 .0030 .0036 .0031 .004 .003	P38843-1 10090 7009199 1062636 461276 19/32 RNDCOI HRS/ 19/32 16-OCT-11 d that it satisfies der federal statute V .001
Rockford Bolt & Steel 7 126 Mill St. Ship Lot # Rockford,IL-61101 Ship Lot # Kind Attn :Linda McComas Finish Size I hereby certify that the material described harein has been manufactured in accordance with the specifications and standards listed below and that it is these requirements. The recording of false, fictitious and fraudulent statements or entries on this document may be punishable as a felony under feder. Lab Code: 7388 Test results of Heat Lot # 10628380 CHEM C MN P S SI N CR MO CU SN V AL N B TI NB .005 .005 .001 .001 Specifications: Manufactured per Charter Steel Quality Manual Bar Data Assess Steered Steered Steered	v v v v v v v v v v v v v v
Rockford Bolt & Steel 126 Mill St. Rockford,IL-61101 Kind Attn :Linda McComas 7 Breaction and the steel Ship Lot # 7 Breaction and the steel Ship Lot # I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and that it is these requirements. The recording of false, fictitious and fraudulent statements or entries on this document may be punishable as a felony under federa these requirements. The recording of false, fictitious and fraudulent statements or entries on this document may be punishable as a felony under federa Test results of Heat Lot # 10628360 CHEM Lab Code: 7388 CHEM C MN P S SI NI CR MO CU SN V AL N B TI NB .036 .0080 .001 .001 AL N B TI NB .001 .001 .001 Specifications: Manufactured per Charter Steel Quality Manuel Bau Date according .006 .001 .001	7009199 1062636 461276 19/32 RNDCOI HRS/ 19/32 16-OCT-11 Id that it satisfies der federal statute V .001
Rockford Bolt & Steel 1 126 Mill St. Grade 1010 A AK FG RHQ 19/32 R Rockford,IL-61101 Process Kind Attn : Linda McComas Finish Size I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and that it s Lab Code: 7388 Test results of Heat Lot # 10628360 CHEM C MN P S SI NI CR MO CU SN V AL N B TI NB .036 .0080 .001 .001 Test results of Rolling Lot # 1280744	1062636 461276 19/32 RNDCOI HRS/ 19/3: 16-OCT-11 Id that it satisfies der fedoral statute V .001
126 Mill St. Grade 1010 A AK FG RHQ 19/32 R Rockford,IL-61101 Kind Attn :Linda McComas Process 16 I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and that it is these requirements. The recording of false, fictitious and fraudulent statements or entries on this document may be punishable as a felony under feder. 16 Lab Code: 7388 CHEM C MN P S SI NI CR MO CU SN V AL N B TI NB .036 .0080 .001 .001 .001 Test results of Rolling Lot # 1280744	19/32 RNDCOI HRS; 19/3 16-OCT-11 Id that it satisfies der federal statute V .001
Rockford,IL-61101 Kind Attn :Linda McComas Process Finish Size I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and that it is these requirements. The recording of false, fictitious and fraudulent statements or entries on this document may be punishable as a felony under feder. Lab Code: 7388 CHEM C MN P S SI NI CR MO CU SN V Lab Code: 7388 CHEM 0.99 .37 .008 .009 .090 .04 .08 .01 .08 .006 .001 AL N B TI NB .036 .0080 .001 <	HRS/ 19/3; 16-OCT-11 nd that it satisfies der federal statute V .001
Kind Attn :Linda McComas Ship date 16 I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and that it is these requirements. The recording of false, fictitious and fraudulent statements or entries on this document may be punishable as a felony under feder. 16 Lab Code: 7388 Test results of Heat Lot # 10626350 16 CHEM C MN P S SI N CR MO CU SN V AL N B TI NB .036 .0080 .001	19/3; 16-OCT-11 nd that it satisfies der federal statute V .001
I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and that it is these requirements. The recording of false, fictitious and fraudulent statements or entries on this document may be punishable as a felony under feder. 16 Lab Code: 7388 Test results of Heat Lot # 10626360 Test results of Heat Lot # 10626360 CHEM C MN P S SI N CR MO CU SN V AL N B TI NB .036 .008 .001 .001 .036 .0080 .0001 .001 .001 .001 .001 .001 Test results of Rolling Lot # 1280744	16-OCT-11 nd that it satisfies der federal statute V .001
these requirements. The recording of false, ficitious and fraudulent statements or entries on this document may be punishable as a felony under feder. Lab Code: 7388 Test results of Heat Lot # 10626380 CHEM Chem C MIN P S SI NI CREM C MN P S SI NI CR MO CU SN V AL N B TI NB Test results of Rolling Lot # 10263360 CUL SN V AL N B TI NB .036 .0080 .0001 .001 Test results of Rolling Lot # 1280744 REDUCTION RATIO=109:1 Specifications: Manufactured per Charter Steel Quality Manuel Bay Date Statements	nd that it satisfies der federal statute V .001
Lab Code: 7388 Test results of Heat Lot # 10626360 CHEM C MN P S SI NI CR MO CU SN V AL N B TI NB .036 .006 .001 .036 .006 .001 .001 .006 .001 .001 .006 .001 .0	der federal statute V .001
CHEM C MN P S SI NI CR MO CU SN V Xwit .09 .37 .008 .009 .090 .04 .03 .01 .08 .006 .001 AL N B TI NB .036 .006 .001 .001 .001 .003 .01 .08 .006 .001 <td>.001</td>	.001
AL N B TI NB AL N B TI NB .036 .0080 .0001 .001 .001	.001
.036 .0080 .0001 .001 .001 Test results of Rolling Lot # 1280744 REDUCTION RATIO=109:1	
Test results of Rolling Lot # 1280744 REDUCTION RATIO=109:1 specifications: Manufactured per Charter Steel Quality Manual Res Data Statement	
REDUCTION RATIO=109:1	: 1
REDUCTION RATIO=109:1	2
REDUCTION RATIO=109:1	÷
REDUCTION RATIO=109:1 pecifications: Manufactured per Gharter Steel Quality Manual Rev Data Stream	
Charter Steel certifies this product is indistinguishable from background radiation levels by having process radiation detectors in place to measure for the presence of radiation within our process & products. Meets customer specifications with any applicable Charter Steel exceptions for the following customer documents: Customer Document = ASTM A28/A28M	radiation uments:
dditional Comments:	
	• •
	4
	4
all Source:	S for this and
If Source: arter Steel ukville, WI, USA	s for this order
If Source: Iarter Steel ukville, WI, USA Janke Barnard Division Mar of Ourlin. According Janke Barnard Division Mar of Ourlin. According	s for this order

Figure B-33. ⁵/₈-in. Dia., 2-in. Long Guardrail Bolt, Test Nos. STBRT-1 and STBRT-2

CHARTËR STEEL	CHART STEEL	Cumpany. Inc	c.	СНА	TER ST	LOAD FEL TES	T REP	ORT		1658 Saukvill	3 Cold Springs Road le, Wisconsin 53080 (262) 268-2400 1-800-437-8789 Fax (262) 268-2570
Melted in U	5A Manufactur	ed in US	A	CHA	TEN OT		/ // _/	0	65	17.	2
					0.1	Cust P.O.					040048854
					Cusio Charter S	ales Order					70095515
					Unanter o	Heat #	1			a desta d	10641050
						Ship Lot #					4635987
						Grade			1018 R S	K FG RHQ	19/32 RNDCOIL
Fas	tenal Company					Process					19/32
580	Industrial Ave	э,				Chin date					03-APB-20
Lov	es Park, IL-6111	1			L	Ship date	1				00-411120
I hereby certify these requirem Lab Code: 738 CHEM %WI	that the material des ents. The recording B C 16	scribed here of false, fict MN .75	ein has bee titious and P .009	en manufad fraudulent Test i S .006	statements or esults of Hea SI .190	rdance with th entries on thi t Lot # 106410 NI .04	ne specific is docume 050 CR .09	ations and s nt may be p MO .02	tandards lis unishable as CU .07	ted below ar s a felony un SN .005	nd that it satisfies ider federal statute V .003
	AL	N	в	ті	NB						
	.037	.0080	.0001	.002	.001						
	42 23 JOMINY SAMPLE	JJ 21 TYPE ENG	LISH=C	Testr	esults of Rolli	ing Lot # 1293	3231				
	#	of Tests		Min Val	16	Max Valu	e	Mean 71.1	Value	TE	NSILE LAB = 0358-0
TENSILE (KSI)	1 1 1			71.1 43		43		43		RA	LAB = 0358-02
ROCKWELL B	HRBW) 1			76		76		76		RB	LAB = 0358-02
REDUCT	ION RATIO=109:1										
Specifications	s: Manufa Charle detectr Meets Custon ments:	actured pei r Steel cer ors in placa customer: ner Docume	r Charter S tiflies this p e to measu specificati ent = ASTM	Steel Quali product is ure for the ons with a I F2282	ty Manual Re Indistinguis presence of ny applicable Revision	iv Date 05/12 hable from bi radiation wit e Charter Ste ⊨ 18 Datec	2/17 ackgroun: hin our pi sel except s = 01-MA	d radiation rocess & pr ions for the Y-19	levels by h raducts. • following	aving proce	ess radiation ocuments:
							This M	TR superse	des all previ	jously dated	MTBs for this orde

Figure B-34. 5%-in. Dia., 11/4-in. Long Guardrail Bolt, Test Nos. STBRT-1 and STBRT-2

		Birm	PO Bo PO Bo Birmingha (205)	tener Manufact ox 10323 im, AL 35202 595-3512	uring		
Customer	Midwest M	achinery & Su	pply	Date Sh	ipped	11/28	/2018
Customer Ore	der Number	3664	-	BFM Or	der Number	1553	3751
			ltem Des	scription			
Description		5/8"-1	11 x 10" Hex	Bolt		Qty	298
Lot #	81342	Specifi	cation AST	TM <mark>A307</mark> -14 Gr /	A Finish	ASTM	F2329
		Ra	w Materi	ial Analys	is		
Heat#	J	(18104124					
Chemical Co C 0.18	omposition (v Mn 1.19	vt% Heat Analy P 0.012 0.	vsis) By Mat S S .034 0.	erial Supplier Si Cu .20 0.29	Ni 0.13	Cr 0.11	Mo 0.04
		Ме	chanica	l Propertie	25		
Sample # 1 2 3 4 5	Hardness 93 HRBW	Ten	sile Strengt 22,049	th (Ibs)	Tensile St 99,	rength (psi 410)
This informat customer ord All steel melt	tion represents ler. The samp ed and manufs	s the most recer les tested confo actured in the U	nt analysis of orm to the AS J.S.A.	f the product su STM standard I	upplied on the isted above.	stated	
Authorized Signature:	Bi Qua	Bull rian Hughes lity Assurance	~	Dat	te: 11/29	0/2018	

Figure B-35. 5%-in. Dia., 10 in. Long Hex Bolt, Test Nos. STBRT-1 and STBRT-2

CERTIFIED MATERIAL TEST REPORTFORASTM A307, GRADE A - MACHINE BOLTS

FACTORY:	IFI & MOI	RGAN LTD.	loth Bood W	umon Tourn I	Jairon	REPORT D	ATE:2019/	4/2	
ADDRESS.	Zhejiang, (, Chang an N China	ionin Koad, wi	iyuan Town, r	iaiyan,	MANUFAC	CTURE DA	TE:2019/3/1	4
CUSTOMER:	FASTENA	L				MFG LOT	NUMBER <mark>1</mark>	M-2019HT1	38-5
SAMPE SIZE:	ACC. TO	ASME B18.1	8 CATEGOR	Y 2-2011; AS	FI470-12	TABLE 3			
MANU QTY:	2450PCS					SHIPPED (QTY:2400P0	CS	
SIZE: 5/8-112	X1 1/2 HD	G							
HEADMARK	S: <mark>(307A)</mark> Pl	LUS NY				PO NUMB PART NO:	ER:2101796 1 <mark>191919</mark>	596	
STEEL PROP	ERTIES:								585000405004000000555
MATERIAL 1	YPE:Q195	C				HEAT NUN	ABER:5-01:	570	
CHEMISTRY	SPEC:		C %*100	Mn%*100	P %*1000	S %*1000			
Grade A AST	M A307-12		0.29max	1.20 max	0.04max	0.15max			
TEST:			0.07	0.33	0.015	0.022			
					1				
DIMENSION	AL INSPEC	TIONS	Unit:inc	h		SPECIFICA	TION: ASM	ME B18.2.1	- 2012
CHARACTER	HARACTERISTICS SPEC					ACTUAL	RESULT	ACC.	REJ.
******	*****	******	******	*******	****	******	******	*****	*****
VISUAL			ASTM F788-	2013		PASSED		18	0
THREAD			ASME B1.1-2	2003, 3A GO,	2A NO GO	PASSED		13	0
WIDTH A/F			0.906	-0.938		0.916-0.928		3	0
WIDTH A/C			1.033	-1.083		1.048	1.057	3	0
HEAD HEIGH	IT		0.378	-0.444		0.394	-0.428	3	0
BODY DIA.			0.605	-0.642		0.617-	0.634	3	0
THREAD LEN	NGTH		1.420	-1.560		1.436-	1.543	13	0
LENGTH			1.420	-1.560		1.436-	1.543	13	0
MECHANICA	L PROPER	TIES:			SPECIFICA	TION: ASTM	A307 - 14e	el GR.A	
CHARACTER	ISTICS	TEST M	ETHOD	SPEC	IFIED	ACTUAL	RESULT	ACC.	REJ.
*****	*****	******	*****	******	*****	*******	*****	******	*****
CORE HARD	NESS :	ASTM F60	6/F606M-2016	69-100	HRB	75-80	HRB	3	0
WEDGE TEN	SILE:	ASTM F60	6/F606M-2016	Min 6	0 KSI	65-69	KSI	3	0
CHARACTER	ISTICS	TEST M	ETHOD	SPEC	IFIED	ACTUAL	RESULT	ACC.	REJ.
COATINGS O	F ZINC:			SPECIFIAT	ION <mark>: ASTM I</mark>	F2329/F23291	M-2015		
HOT DIP GAL	VANIZED	ASTM B56	8-98(2014)	Min 0.	0017"	0.0017"	-0.0018"	3	0
We hereby cer	tify that abo	ve products :	supplied are in	compliance w	vith all the rec	uirements of	the order.		
We here by cer	rtify that this	s MTR is in o	compliance to l	DIN EN 10204	4 3.1 content.				

ALL TESTS IN ACCORDANCE WITH THE METHODS PRESCRIBED IN THE APPLICABLE ASTM SPECIFICATION. WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. Maker's ISO 9001:2015 SGS Certificate # HK04/0105

念验专用意 (SIGNATURE ON Q.A. LAB MYR.)

(NAME OF MANUFACTURER)

Figure B-36. ⁵/₈-in. Dia., 1¹/₂-in. Long Hex Bolt, Test Nos. STBRT-1 and STBRT-2

Web: www.portlandbolt.com | Email: sales@portlandbolt.com

Phone: 800-547-6758 | Fax: 503-227-4634

3441 NW Guam Street, Portland, OR 97210

Cr: .110

N: .010

LOT#19779

Pb:

.000

Mo:

.040

V: .000

Cu: .280

.001

.6057

Cb:

CE:

CERTIFICATE OF CONFORMANCE

For: MIDWEST ROADSIDE SAFETY FACIL PB Invoice#: 132406 Cust PO#: STBRT Date: 7/16/2020 Shipped: 7/17/2020

We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.

De	sci	iption:	3/4 2	K 7-1/2	GALV AS	STM A449	ROUND HEAD	BOLT				
Ţ	Hea	t#: 3090	536	+ !	Base S	teel: 10	45	Diam:	3/4			
sc	urc	e: COMM	ERCIAI	L METALS	G CO		Proof Loa	d: 28	,400	LBF		
C	:	.460	Mn:	.750	P :	.011	Hardness:	269	HBN			
S	:	.021	Si:	.250	Ni:	.070	Tensile:	48,000	LBF	RA:		.00%
Cr	:	.110	Mo:	.040	Cu:	.280	Yield:	0		Elon	:	.00%
Pb	:	.000	v :	.000	Cb:	.001	Sample Le	ngth:	0			
N	:	.010			CE:	.6057	Charpy:			CVN	Temp:	
LC)T#1	9779										
De +-	scr	iption:	3/4 2	(21 GAI	JV ASTM	A449 RC	OUND HEAD BO	LT				
1	Hea	t#: 3090	536	+	Base S	teel: 10	145	Diam:	3/4			
So	urc	e: COMM	ERCIAI	METALS	G CO		Proof Loa	d: 28	,400	LBF		
C	:	.460	Mn:	.750	P :	.011	Hardness:	269	HBN			
s	:	.021	Si:	.250	Ni:	.070	Tensile:	48,000	LBF	RA:		.00%

Yield:

Charpy:

Sample Length: 0

0

Elon:

CVN Temp:

.00%

Figure B-37. Round Head Bolts, Test Nos. STBRT-1 and STBRT-2

Phone: 800-547-6758 Fax: 503-227-4634 3441 NW Guarn Street, Portland, OR 97210 Web: www.portlandbolt.com Email: sales@portland	NY For: MIDWEST PB Invoice#: Cust PO#: Date: bolt.com Shipped:	ROADSIDE SAFETY FACIL 115687 JIM HOLLOWAY 12/10/2018
		12/12/2018
We certify that the following items with the chemical, mechanical, dime specifications referenced.	were manufactured and nsional and thread fit	tested in accordance requirements of the
Description: 3/4 X 9-1/2 GALV ASTM Heat#: 3078659 Base Stee	F3125 GRADE A325 HEAVY	HEX BOLT
Source: COMMERCIAL METALS CO	Proof Load: 28	,560 LBF
C: .440 Mn: .740 P: .0	14 Hardness: 285	HBN
S: .024 Si: .210 Ni: .0	70 Tensile: 48,220	LBF RA: .00%
Cr: .100 Mo: .013 Cu: .2	10 Yield: 0	Elon: .00%
Pb: .000 V: .000 Cb: .0	00 Sample Length:	0
N: .000 CE: .5	818 Charpy:	CVN Temp:
LOT#19059		

By: Pertification Department Quality Assurance Dane McKinnon

Figure B-38. Heavy Hex and Round Head Bolts, Test Nos. STBRT-1 and STBRT-2

Pt 34 W	none: 800-54 141 NW Guar /eb: www.port	7-6758 n Street, F landbolt.c	Fax: 503-22 Portland, OR om Email: s	7-4634 97210 sales@port	landbolt.com	For: M PB Invo Cust Po Date: Shipped	IDWEST pice#: D#: 1:	ROADS 11989 70ACC 4/17, 4/25,	IDE SAFE 1 F /2019 /2019	TY FACII
∛e c vith spec	ertify t the che ificatio	hat th mical, ns ref	e follow mechani erenced	ving it ical, d	ems were imension	manufacture al and threa	ed and ad fit	testeo requi:	l in accorements of	ordance of the
Desc	ription:	7/8	X 8 GALV	/ ASTM	A307A HE	X BOLT				
He	at#: 489	517		Base S	teel: A3	6	Diam:	7/8		
Sour	ce: CAS	CADE S	TEEL RLC	G MILL		Proof Loa	1:	0		
: :	.180	Mn:	.680	P :	.013	Hardness:	0			
: :	.015	Si:	.240	Ni:	.080	Tensile:	72,500	PSI	RA:	42.00%
lr:	.130	Mo:	.028	Cu:	.240	Yield:	48,800	PSI	Elon:	24.00%
b:	.000	v :	.000	Cb:	.000	Sample Le	ngth:	8 ING	СН	
i :	.000			CE:	.3157	Charpy:			CVN Te	mp:
Coat	ings: ITEMS H	OT DIP	GALVANI	IZED PE	R ASTM F	2329/A153C				

Certification Department Quality Assurance Dane McKinnon

Figure B-39. 7%-in. Dia., 8-in. Long Hex Bolt, Test Nos. STBRT-1 and STBRT-2

CHARTER STEEL STEEL A Di Charter Manufacturing Company, Inc. EMAIL

1658 Cold Springs Road Saukville, Wisconsin 53080 (262) 268-2400 1-800-437-8789 Fax (262) 268-2570

CHARTER STEEL TEST REPORT

Melted in USA Manufactured in USA

					Г		CustPO	-							135820
			-	Custor	ner Part #							955	612619A1		
						Charter Sa	les Order								10240117
							Heat #							-	10552460
							Ship Lot #								4534855
							Grade LEBA1 M SK FG RHQ 1					1-1/32	RNDCOIL		
Foi	ntana Fas	steners	Inc				Process								HRCC
359	3595 West State Road 28						inish Size								1-1/32
Fra	nkfort,IN	-46041					Ship date							1	1-JUN-18
I hereby certify	n manufactu	ired in accord	lance with th	e spec	ification	ns and st	andards	listed	below a	and that it	t satisfies				
Lab Code: 738	19	coording c	1 12100, 1101	nous and n	Test res	sults of Heat I	Lot # 105524	60	inchi in	ay be pu	TISTED IC		ciony c		enan statute.
CHEM	C C		MN	Р	S	SI	NI	CR		MO	CU		SN	v	
%Wt	.31		.92	.007	.007	.230	.05	.17		.09	.09		.006	.003	
	AL	_	N	В	TI	NB	SB	AS							
	.02	/	.0070	.0028	.023	.002	.001	.003							
JOMINY(HRC)	J1	.12	.13	.14	.15	.16	.17		.18	.19		J10		J11	J12
	51	50	50	49	48	48	43		37	34		31		28	27
	J13	J14	J15	J16	J18	J20	J22		J24	J2	6	J28			
	25	25	25	24	23	22	21		21	20		20			
	JOMINY I	_AB=0358	-01		JOMINY S	AMPLE TYPE	E ENGLISH=	R	CAT	DI=3.22					
					Test res	ults of Rolling	1 of # 12418	18							
		# 0	fTests		Min Value		Max Value			Mean \	/alue				
ROCKWELL B	(HRBW)	3			81		83			82			RE	LAB = 03	358-02
ROD SIZE (Inc	n) ROUND (Inc	12 h) 6			1.024		1.037			1.030					
	toons (me						1000								
NUM DEC	CARB=1						AVE DECAR	B (Inch	n)= 005						
REDUCT	ION RATIO	36:1						- (.,						
Specifications		Manufac	tured per l	Charter Ste	el Quality	Manual Rev	Date 05/12/1	17							
	·	Charter S	Steel certif	ies this pro	oduct is inc	listinguishal	ole from bac	kgrou	nd rad	iation le	vels by	having	proce	ess radia	tion
		detector	s in place	to measure	e for the pre	esence of rad	diation with	in our	proces	is & proc	ducts.				
		Meets cu	istomer sp	ecification	is with any	applicable C	harter Stee	l excep	ptions	for the fe	ollowing	g custo	omer d	ocument	s:
Additional Cor	nments:	GRADE 3	o Cr Mn B1	t=LE 1.1	Revis	ion = 9 Da	ted = 2/-int	JV-07							
Melt Source:								Thie 1	ATP	noreodor	all prov	ioueh	dated 1		this order
Charter Steel								1115 14	arn su	persedes		R		11 145 101	una order
Saukville, WI,	USA		Saukville, WI, USA						Janua Januar Januar						
	Saukville, Wi, USA										V				
						ACCREDIT		-	Janice	Barnard	Division	Mgr. o	f Quali	ty Assura	nce
Trip: 1271794						ACCREDIT			Janice	Barnard barn	Division ardJ@cl	Mgr. o harters	f Qualiteel.co	ty Assura m	nce

Figure B-40. 1-in. Dia, 3¹/₂-in. Long Heavy Hex Bolt, Test Nos. STBRT-1 and STBRT-2

Testing Laboratory Page 1 of 2

EMAIL

1658 Cold Springs Road Saukville, Wisconsin 53080 (262) 268-2400 1-800-437-8789 Fax (262) 268-2570

CHARTER STEEL TEST REPORT

Melted in USA Manufactured in USA

Fontana Fasteners Inc 3595 West State Road 28 Frankfort, IN-46041

STEEL

HARTER

STEEL

CHARTER

narter Manufacturing Company, Inc.

118874	Cust P.O.
955610992A1	Customer Part #
30106122	Charter Sales Order
10415990	Heat #
4385224	Ship Lot #
LEBA1 M SK FG RHQ 25/64	Grade
HRCC	Process
25/64	Finish Size
09-JAN-16	Ship date

I hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and that it satisfies these requirements. The recording of false, fictitious and fraudulent statements or entries on this document may be punishable as a felony under federal statute Test results of Heat Lot # 10415990

Lab Code: 7388	3												
CHEM		С	MN	P	S	SI	NI	CR	MO	CU	SN	v	
%Wt		32	.91	.007	.008	.220	.04	.17	.08	.08	.006	.004	
	4	AL.	N	в	ті	NB	SB	AS					
	.0	23	.0060	.0028	.022	.001	.002	.004					
JOMINY(HRC)													
	J1	J2	J3	J4	J5	J6	J7	J8	J	3	J10	J11	J12
	51	51	51	50	49	48	45	39	33	3	30	27	25
	J13	J14	J15	J16	J18	J20	J22						
	24	23	23	22	21	21	20						
	JOMIN	Y LAB=035	8-01		JOMINY SA	MPLE TYPE	ENGLISH=F	R CA	T DI=3.18				

		Test results of	Rolling Lot # 1174376		
	# of Tests	Min Value	Max Value	Mean Value	
TENSILE (KSI)	1	91.7	91.7	91.7	TENSILE LAB = 0358-02
REDUCTION OF AREA (%)	1	65	65	65	RA LAB = 0358-02
ROCKWELL B (HRBW)	1	91	91	91	RB LAB = 0358-02
ROD SIZE (Inch)	4	.388	.393	.391	
ROD OUT OF ROUND (Inch)	1	.005	.005	.005	
NUM DECARB=1 REDUCTION RATIO=252:	1		AVE DECARB (Inch)=.003	

Manufactured per Charter Steel Quality Manual Rev Date 12/12/13

Manuaa-uneu per charter steel quality Manual KeV Date 12/12/13 Charter Steel certifies this product is indistinguishable from background radiation levels by having process radiation detectors in place to measure for the presence of radiation within our process & products. Meets customer specifications with any applicable Charter Steel exceptions for the following customer documents: Customer Document = LE 1.1 Revision = 9 Dated = 27-NOV-07 GRADE 30 Cr Mn B1

Additional Comments:

Specifications:

Melt Source: Charter Steel Saukville, WI, USA

Rem: Load1,Fax0,Mail0

This MTR supersedes all previously dated MTRs for this order JanuceBarnard Janice Barnard Manager of Quality Assurance Printed Date : 01/09/2016

Figure B-41. 1-in. Dia., 21/4-in. Long Heavy Hex Bolt, Test Nos. STBRT-1 and STBRT-2

TEST REPORT

USS FLAT WASHER, HDG

CUSTOMER:		DATE: 30/12/201	8						
PO NUMBER: 180164126	MFG LC	OT NUMBER: M-SWE04	12454-8						
SIZE: 5/8		PART NO: 1133185							
HEADMARKS:		QNTY:	6,000	PCS					
DIMENSIONAL INSPECTIO	INS SPEC	CIFICATION: ASME B1	8.21.1(200	9)					
CHARACTERISTICS	SPECIFIED	ACTUAL RESULT	ACC.	REJ.					
*****	*****	*****	*******	******					
APPEARANCE	ASTM F788-07	PASSED	100	0					
OUTSIDE DIA	1.743-1.780	1.752-1.756	8	0					
INSIDE DIA	0.681-0.718	0.700-0.707	8	0					
THICKNESS	0.108-0.160	0.114-0.119	8	0					
HOT DIP GALVANIZED	/I A <mark>153</mark> class C. Min 0.0017" HS Compliant	Min 0.0019 In	8	0					
ALL TESTS IN ACCORDANCE WITH THE METHODS PRESCRIBED IN THE APPLICABLE ASTM SPECIFICATION. WE CERTIFY THAT THIS DAIA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. MFG ISO 9001:2015 SGS Certificate # HK04/0105 We hereby certify that above products supplied are in compliance with all the requirements of the order. We here by certify that this MTR is in compliance to DIN EN 10204 3.1 content. (SIGNATURE OF OXAL 1 LABORATOR). (NAME OF MANUFACTURER)									
IFI & MORGAN LTD.	ADDRESS: Chang'an North Road, Wu	yuan Town, Haiyan, Zhejiang,	China						

Figure B-42. 5%-in. Dia. SAE Plain Round Washer, Test Nos. STBRT-1 and STBRT-2

CERTIFIED MATERIAL TEST REPORT FOR USS FLAT WASHERS HDG

FACTORY: IF1 & Morga	an Ltd		REPORT DATE:	23/4/2019	
ADDRESS: Chang'an No	orth Road, Wuyuan Town,	Haiyan,Zhejia	ung, China		
			MFG LOT NUMBE	R: 1844804	
SAMPLING PLAN PER ASI	ME B18.18-11		PO NUMBER:	170089822	
SIZE: USS 7/8 HDG	QNTY(Lot size):	7200PCS			
HEADMARKS: NO MARK			PART NO:	33187	
DIMENSIONAL INSPECTIO	ONS	SPECIFIC	CATION: ASTM B18.	21.1-2011	
CHARACTERISTICS	SPECIFIED		ACTUAL RESUL	Г ACC.	REJ.
*****	*****	*****	****	*: 赤赤赤赤赤赤赤	******
APPEARANCE	ASTM F844		PASSED	100	0
OUTSIDE DIA	2.243-2.280		2.246-2.254	10	0
INSIDE DIA	0.931-0.968		0.956-0.965	10	0
THICKNESS	0.136-0.192		0.136-0.157	10	0
CHARACTERISTICS	TEST METHOD	SPECIFIED	ACTUAL RESUL	Г ACC.	REJ.
********	*****	*****	****	** ******	*****
HOT DIP GALVANIZED	ASTM F2329-13	Min 0.0017"	0.0017-0.0020 i	n 8	0
ALL TESTS IN ACCOR	DANCE WITH THE ME	ETHODS PRES	CRIBED IN THE	PPLICABLE	
ASTM SPECIFICATION	WE CERTIFY THAT	THIS DAIA	IS A TRUE REF	RESENTAT	ION OF
INFORMATION PROVID	ED BY THE MATERIA	I SUPPLIE	AND OUR TESTI	NG LABOR	ATORY
ISO 0001-2015 SCS Contis	insta # UV04/0105	LOUILIN	MORGAM	NO LADOP	AIORI.
150 9001.2015 505 Centil	Icale # IIK04/0105	A	161		
		一检	验专田音 }		
		11.4			
		QUANI	ITY CONTROL		
		(SIGNAT	URE OF QA. LA	AB MGR.)	

Figure B-43. 7/8-in. Dia. USS Plain Round Washer, Test Nos. STBRT-1 and STBRT-2

CERTIFIED MATERIAL TEST REPORT FOR USS FLAT WASHERS HDG

FACTORY: IF ADDRESS: CI	I & Morgan Ltd hang'an North Roa	ad, Wuyuan Towi	n, Haiyan,Zhejia	REPORT DATE: ing, China	22/10/2018	
SAMPLING PLA SIZE: US	N PER ASME B18. SS 1 HDG	18-11 ONTY(Lot size):	3240PCS	PO NUMBER:	210151571	
HEADMARKS: 1	NO MARK	C (PART NO:	33188	
DIMENSIONAL	INSPECTIONS		SPECIFIC	CATION: ASTM B1	8.21.1-2011	
CHARACTERIS'	TICS ******* *****	SPECIFIED **********	*****	ACTUAL RESU	LT ACC.	REJ. *******
APPEARANCE		ASTM F844		PASSED	100	0
OUTSIDE DIA		2.492-2.529		2.496-2.504	10	0
INSIDE DIA		1.055-1.092		1.080-1.089	10	0
THICKNESS		0.135-0.192		0.135-0.157	10	0
CHARACTERIS	TICS TEST M	1ETHOD ********* ***	SPECIFIED	ACTUAL RESUI	LT ACC. *** *******	REJ. *******
HOT DIP GALV.	ANIZED ASTM	F2329-13	Min 0.0017"	0.0017-0.0020	in 8	0
ALL TESTS I	N ACCORDANCE	WITH THE M	METHODS PRES	CRIBED IN THE	APPLICABLE	ION OF
INFORMATION	N PROVIDED B	V THE MATERI		AND OTR TEST	TING LABOR	ATORY
ISO 9001-2015	SGS Certificate #1	TK04/0105	NE DOIT EN	MORGAN	inter Eribert	
150 9001.2015	505 continente in 1	1110 00105	E.	~@)		
			检	验专用章		
			V OLIANI	TTV CONTROL		
			(SINA)	TURE OF OA. L	AB MGR.)	

Figure B-44. 1-in. Dia. USS Plain Round Washer, Test Nos. STBRT-1 and STBRT-2

HEXICO ENTERPRISE CO., LTD.

NO.355-3,SEC. 3,CHUNG SHAN ROAD,KAU-JEN,TAINAN,TAIWAN,R.O.C. TEL : 886 - 6 - 2390616 FAX : 886 - 6 - 2308947

INSPECTION CERTIFICATE

CUST	OMER	FASTENAL	COMP	ANY		REPO	RT DATE	2020/1/14					
PART	NAME	Flat Washer,	SAE, Ed	coGuard									
SIZE		3/4"				MAF.	DATE	2019/11/20					
PART	NO.	W2A2C6003	S2LK7		-	REPO	RT NO.	1090114-22					
CUST	PART NO.	11137087				ORDE	R NO.	210199442					
MATE	ERIAL	10B21 / 24 m	ım			MAT.	CER. NO.	10707001					
HEAT	C(COIL) NO.		_	LOT	NO.	8C2C6FNR6	;						
LOT QTY 8,960 PCS					_	MAF.	QTY	8,960	PCS				
THE F	PRODUCTS S	UPPLIED AR	E IN CO	MPLIAN	CE WITH	REQUI	REMENT OF	F THE ORDE	R.				
THE F	REPORT IS IS	SUED ACCC	RDING	FO EN10	0204 3.1								
SAMF	PLING PLAN	STANDARD		ASM	E B18.18-20	017 / A	STM F1470-	2018					
DIME	NSION STAN	JDARD		ASM	E B18.21.1	-2009							
COAT	ING STAND	ARD		FNL.	FNL.C.1000.ECO.S REV-002								
HARI	DNESS TEST	METHOD		ASTM	1 F606/F60	5M-201	6						
COAT	TING TEST M	ETHOD											
SALT	SPRAY TES	T METHOD		ASTM	1 B117-201	6							
MECH	IANICAL PR	OPERTIES		ASTM	1 F436/F43	5M							
				0 				DIMENS	SIONS IN inch				
	INCRECTION	TEM	CDI		TION	TEST	INSPECTIO	N RESULTS	INSPECTION				
	INSPECTION		SPI		TION	QTY	MIN.	MAX.	EQUIPMENT				
1	OUTSIDE I	DIAMETER	1.462		1.499	8	1.4720	1.4874	Caliper				
2	INSIDE D	IAMETER	0.805		0.842	8	0.8350	0.8370	Caliper				
3	THICK	NESS	0.108	1	0.160	8	0.1161	0.1185	Caliper				
4	HARE	DNESS	HRC	38	- 45	5	40.8	42.4	Hardness tester				
5 COATING GEOMET 32						5	C)K					
							C	W	S S T taatar				
6 SALTSPRAYTEST 1000				Hrs No	Red Rust	5		OK S.S. I teste					
7	APPEA	RANCE		VISUA	.L	100	C)K					

INSPECTED BY <u>Jutain Lin</u>

CERTIFIED BY

Alex.tsao

Figure B-45. ¾-in. Dia. SAE Hardened Flat Washer, Test Nos. STBRT-1 and STBRT-2

Figure B-46. ¹/₄-in. Thick, 2¹/₄-in. Square Washer, Test Nos. STBRT-1 and STBRT-2

	uco	R	LOT NO. 426929D			Post Office Box 6100 Saint Joe, Indiana 46785
FAS	TENER D.	IVISION				Telephone 260/337-1600
8001 FAST	ENAL COMPANY-K	8	NUCOR ORDER #	188482		
TEST REPORT	ISSUE DATE 1	0/30/19	CUSTOMER P.O. A	210211604	Paus	
NAME OF LAB	SAMPLER: K	ELLEY HARTER, LA	B TECHNICIAN	210211004		
NUCOR PART	NO QUANTI	D MATERIAL TEST	REPORT************************************	****	(())	\rangle
175657 MANUEACTURE	18 DATE 8/05/19	00 426929D 3	/4-10 GR DH HV H	.D.G.	n /	
					- interest	
CHEMISTRY MATERIAL	HEAT	**CHEMISTRY COM	GRADE -1045L POSITION (WT% HE	AT ANALYSIS) BY	MATERIAL SUPPLIER	
NUMBER RM033367	NUMBER 100798971	C MN P	S SI 006 .015 .19		NUCOR STEEL	- NEBRASKA
MECHANICA	L PROPERTIES I	N ACCORDANCE WIT	H ASTM A563-15			
SURFACE	CORE	PRDOF LOAD	TENSIL	E STRENGTH EG-WEDGE		
(R30N)	(RC)	50100 255	(LBS)	STRESS (PSI	3	
N/A N/A	25.1 26.0	PASS PASS	N/A N/A	N/A N/A		
N/A	27.9	PASS	N/A	N/A		
N/A	27.4	PASS	N/A	N/A		
AVERAGE VAL	UES FROM TESTS 26.6					
PRODUCTION	LOT SIZE	200000 PCS				
VISUAL IN	SPECTION IN AC	CORDANCE WITH AS	TM A563-15		160 PCS, SAMPLED	LOT PASSED
COATING 1. 0.0045 8. 0.0026 15. 0.0031 AVERAGE THI	HOT DIP GALVA 9 2. 0.004 56 9. 0.003 9 9 CKNESS FROM 15	NIZED TO ASTM F2 53 3. 0.002 56 10. 0.002 TESTS .00348	329-15 - GALVANI 63 4. 0.0032 40 11. 0.0032	ZING PERFORMED 1 5. 0.00262 9 12. 0.00355	IN THE U.S.A. 6. 0.00270 7 13. 0.00777 14	0.00219 5. 0.00288
HEAT TREA	TMENT - AUSTEN	ITIZED, OIL QUEN	CHED & TEMPERED	(MIN 800 DEG F)		
DIMENSION CHARAC	IS PER ASME B18 TERISTIC #1	.2.6-2010 SAMPLES TESTED	MINIMUM N	AXIMUM		
Width Thickr	Across Corners	8 32	1.404	1.415		
ALL TESTS SPECIFICAT FREE OF ME	ARE IN ACCORDANIES ARE IN ACCORDANIES ARE IN ACCORDANIES AND A A A A A A A A A A A A A A A A A A	NCE WITH THE LAT Ples tested conf Ation. No inten	EST REVISIONS OF ORM TO THE SPECI TIONAL ADDITIONS	THE METHODS PR FICATIONS AS DE DF BISMUTH, SE	ESCRIBED IN THE APPLI SCRIBED/LISTED ABOVE LENIUM, TELLURIUM, OF	CABLE SAE AND ASTM AND WERE MANUFACTURED R LEAD WERE USED IN THE
THE STEEL	WAS MELTED AND	MANUFACTURED IN	THE U.S.A. AND	THE PRODUCT WAS	MANUFACTURED AND TES	STED IN THE U.S.A.
PROVIDED I	BY THE MATERIAL	SUPPLIER AND OU	R TESTING LABORA	TORY. THIS CER	TIFIED MATERIAL TEST	REPORT RELATES ONLY
		TIS DOCOMENT AND	HAT NOT DE REFR	ODUCED EXCEPT I	N FOLL. CERTIFICATION	FORMAT HEETS ENTOZOG 3.1
2			NUCOR FAST A DIVISION	TENER		
ACC	REDITED		5	01	1	
			. Hol	1 Leas		
CERTIFICAT	E NO. AZLA 013	9.01	BOB HAYWOD			
EXPIRATION	UATE 12/31/19		QUALITY AS	SUMANCE SUPERVI	ISUK	
				<u> </u>		
			Page 1 of			
			raşe i Ur	÷1		
						2 2

Figure B-47. ¾-in. 10 UNC Heavy Hex Nut, Test Nos. STBRT-1 and STBRT-2

CHARTER STEEL ADdition of Criterer Manufacturing Company, Inc.				СНА	RTER STI	EEL TE	ST RE	PORT		rð Seukv	на сана Spfir (126, Wiscons) (262) 2 1-800-4 Fax (262) 2	n 53080 68-2400 37-8789 68-2570
						Cust P.O.					5036	6-1909
					Custon Charter Sa	les Order					1.12	5 1010
						Heat #				The second second	106	524590
						Grade			1010 4 4	K FO PUC	4	810588
Deci	ker Manufac	turing Cor	p.		-	Process		THE ALL AND A TO A	IUIUAF	IN FORMU	- 1- 1/8 KN	HRCC
703	N. Clark St.				F	inish Size						1-1/8
AIDI	U.1,001-49424					onip date					29-5	SEP-19
ab Code: 7388 CHEM WA	C .11 AL .024	MN .45 N .0076	P .008 B .0001	Test .010 Ti .001	resuits of Heat I Si .070 NB .001	Lot # 108245 Ni .08	90 CR .08	MO .02	CU .De	9N .005	V .001	
OCKWELL B (F	ANGOL	# of Tests		Min Valu	8	Max Value	1	Mean	Value			145
REDUCTIO	NUND (Inch)	1 12 6		82 1.123 .904		62 1,131 .007		62 1.127 .008		RB I	LAD = 0308-4	12
ROD SUZE (Inch) ROD OUT OF RC REDUCTIO	Many NRATIO=30:1 Manu Char detec Meet Custo nents:	1 12 6 ifactured per ter Steel cert tore in place a customer a mer Documer	Charter S Hee this p to measu pecification nt = ASTM	82 1.123 .904 teel Quality roduct is in roduct is in roduct is in ra for the p one with an A28/A26M	y Manual Rev I ndistinguishat presence of rac y applicable C Revisior	62 1.131 .607 Date 06/12/1 le from bac llation with harter Stee 1 = 16 Dat	17 Ekground In our pr I excepti ied = 01-	62 1.127 .009 I radiation la Ocease & pro- cons for the DEC-18	avels by ha ducts. following c	RB I ving pročee ustomer do	ss radiation cuments;	12
ROD SUZE (Inch) ROD UTT OF RC REDUCTIO Specifications:	Many NRATIO=30:1 Mani Char deter Ments:	1 12 6 factured per ter Staal cert tors in piece a customer s mer Documer	Charter S Hes this p to measu pecification t = ASTM	E2 1.123 .004	y Manual Rev I nclastingulehat presence of rac y applicable C Revisior	62 1.1.51 .607 Data 06/12/ Data 16/12/ Data 16/12/ Data 16/12/ Data 16/12/ Data 16/12/ Data	17 Ekground exception and = 01-	62 1.32 .008	avels by ha ducts. following c	RB I	s radiation cuments;	12

Figure B-48. 5%-in. Dia. Guardrail Nut, Test Nos. STBRT-1 and STBRT-2

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER :GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z.,JIASHAN,ZHEJIANG,P.R.CHINA

PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 110216407 COMMODITY : FINISHED HEX NUT GR-A

SIZE : 6/8-11 NC 0/T 0.51MM LOT NO : 111680027 SHIP QUANTITY : 23,400 PCS LOT QUANTITY 170,278 PCS HEADMARKS : Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567 DATE: 2017/03/23 PACKING NO: GEM160919007 INVOICE NO: GEM/FNL-160929WI PART NO: 36713 SAMPLING PLAN: ASME B18.18-2011 (Category. 2) / ASTM F1470-2012 HEAT NO: 331608011 MATERIAL: ML08 FINISH: HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

MANUFACTURE DATE : 2016/08/26 COUNTRY OF ORIGIN : CHINA R#17-507 H#331608011 BCT Cable Bracket Nuts

Chemistry	AL%	C%	MN%	P%	S%	SI%	
Spec. : MIN. MAX.		0. 5800		0. 1300	0. 2300		
Test Value	0.0350	0.0700	0.4100	0.0160	0.0060	0.0500	

DIMENSIONAL INSPECTIONS : ACCORDING TO ASME B18. 2. 2-2010

			SAMPLE	DBY: DWTING		
INSPECTIONS ITEM	SAMPLE	SP	ECIFIED	ACTUAL RESULT	ACC.	REJ.
WIDTH ACROSS CORNERS	6 PCS		1.0510-1.0830 inch	1.0560-1.0690 inch	6	0
FIM	15 PCS	ASME B18. 2. 2-2010	Max. 0.0210 inch	0.0020-0.0040 inch	15	0
THICKNESS	6 PCS		0.5350-0.5590 inch	0.5390-0.5570 inch	6	0
WIDTH ACROSS FLATS	6 PCS		0.9220-0.9380 inch	0.9240-0.9340 inch	6	0
SURFACE DISCONTINUITIES	29 PCS		ASTM F812-2012	PASSED	29	0
THREAD	15 PCS		GAGING SYSTEM 21	PASSED	15	0

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2007

				SAMPLE	DBY: GDAN LIAN		
INSPECTIONS ITEM	SAMPLE	TEST METHOD	REF	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	15 PCS	ASTM F606-2014		68-107 HRB	79-81 HRB	15	C
PROOF LOAD	4 PCS	ASTM F606-2014		Min. 90 KSI	OK	4	C
PLATING THICKNESS(µm)	5 PCS	ASTM B568-1998		>=53	70. 02-75. 81	5	C

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY .WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER

Quality Supervisor:

Grin

page 1 of 1

Figure B-49. ⁵/₈-in. Dia. Hex Nut, Test Nos. STBRT-1 and STBRT-2

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567

PACKING NO: GEM181128011

INVOICE NO: GEM/FNL-181212ED-1

ASME B18.18-2017(Category.2)/ASTM F1470-2018

FINISH : HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

DATE : 2019/04/23

PART NO : 3671

SAMPLING PLAN

HEAT NO: 18108473-3 MATERIAL: X1008A

MANUFACTURER GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD, E.D.Z., JIASHAN, ZHEJIANG, P.R. CHINA PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : (210167591) COMMODITY : FINISHED HEX NUT GR-A SIZE : 7/8-9 NC O/T 0.56 MM LOT NO : 1N1880113 SHIP QUANTITY : 2,250 PCS

LOT QUANTITY 2,250 PCS LOT QUANTITY 31,764 PCS HEADMARKS :

MANUFACTURE DATE : 2018/10/12 COUNTRY OF ORIGIN : CHINA

PERCENT		POSITION	OF CHEM	ISTRY:A	CCORDIN	G TO AST	FM A563-201
Chemistry	AL%	C%	MN%	P%	S%	SI%	
Spec. : MIN.							
MAX.		0.5800		0.1300	0.2300		
Test Value	0.0300	0.0600	0.2800	0.0160	0.0060	0.0300	

DIMENSIONAL INSPECTIONS :ACCORDING TO ASME B18.2.2-2015

			SAMPLED	BY: WANGYAN				
INSPECTIONS ITEM	SAMPLE	SPECI	FIED	ACTUAL RESULT	ACC.	REJ.		
WIDTH ACROSS CORNERS	4PCS		1.4470-1.5160 inch	1.4650-1.4690 inch	4	0		
FIM	15PCS	ASME B18.2.2-2015	Max. 0.0250 inch	0.0040-0.0060 inch	15	0		
THICKNESS	4PCS		0.7240-0.7760 inch	0.7430-0.7460 inch	4	0		
WIDTH ACROSS FLATS	4PCS		1.2690-1.3120 inch	1.2830-1.2840 inch	4	0		
SURFACE DISCONTINUITIES	29PCS		ASTM F812-2012	PASSED	29	0		
THREAD	15PCS	G	AGING SYSTEM 21	PASSED	15	0		
MINOR DIAMETER	15PCS		0.7890-0.7970 inch	PASSED	15	0		

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2015

SAMPLED BY: GDAN LIAN SAMPLE TEST METHOD REP SI 13 PCS ASTM F606-2014 SPECIFIED ACTUAL RESULT ACC. REJ. INSPECTIONS ITEM _____ 81-82 HRB 13 13 PCS ASTM F606-2014 116-302 HRB CORE HARDNESS PROOF LOAD 3 PCS ASTM F606-2014 Min. 90 KSI OK 3 PLATING THICKNESS(µm) 5 PCS ASTM B568-1998 >=53 72.03-95.08 5

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. WHICH ACCREDITED BY ISO/IEC17026(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER WE CERTIFY THAT ALL PRODUCTS WE SUPPLIED ARE IN COMPLIANCE WITH DIN EN 10204 3.1 CONTENT

Quality Supervisor:

Grin

page 1 of 1

Figure B-50. ⁷/₈-in. Dia. Hex Nut, Test Nos. STBRT-1 and STBRT-2

GEM-YEAR TESTING LABORATORY CERTIFICATE OF INSPECTION

MANUFACTURER GEM-YEAR INDUSTRIAL CO., LTD. ADDRESS : NO.8 GEM-YEAR ROAD,E.D.Z.,JIASHAN,ZHEJIANG,P.R.CHINA PURCHASER : FASTENAL COMPANY PURCHASING PO. NUMBER : 21(016759) COMMODITY : FINISHED HEX NUT GR-A SIZE : 7/8-9 NC O/T 0.56MM

LOT NO: 11/18BC001 SHIP QUANTITY: 2,250 PCS LOT QUANTITY: 3,910 PCS HEADMARKS:

MANUFACTURE DATE : 2018/11/05

COUNTRY OF ORIGIN : CHINA

PERCENTAGE COMPOSITION OF CHEMISTRY: ACCORDING TO ASTM A563-2015

Chemistry	AL%	C%	MN%	P%	S%	SI%
Spec. : MIN.						
MAX.		0.5800		0.1300	0.2300	
Test Value	0.0300	0.0700	0.2700	0.0080	0.0050	0.0300

DIMENSIONAL INSPECTIONS :ACCORDING TO ASME B18.2.2-2015

				IUQIAI		
INSPECTIONS ITEM	SAMPLE	SPECIFIED		ACTUAL RESULT	ACC.	REJ.
WIDTH ACROSS CORNERS	4PCS	1	1.4470-1.5160 inch	1.4730-1.4770 inch	4	0
FIM	15PCS	ASME B18.2.2-2015	Max. 0.0250 inch	0.0010-0.0050 inch	15	0
THICKNESS	4PCS	0	0.7240-0.7760 inch	0.7280-0.7480 inch	4	0
WIDTH ACROSS FLATS	4PCS	1	1.2690-1.3120 inch	1.2840-1.2990 inch	4	0
SURFACE DISCONTINUITIES	22PCS		ASTM F812-2012	PASSED	22	0
THREAD	15PCS	GAG	GING SYSTEM 21	PASSED	15	0
MINOR DIAMETER	15PCS	0	0.7890-0.7970 inch	PASSED	15	0

MECHANICAL PROPERTIES : ACCORDING TO ASTM A563-2015

SAMPLED BY: GDAN LIAN

Tel: (0573)84185001(48Lines) Fax: (0573)84184488 84184567

PACKING NO: GEM181128011

SAMPLED BY . VUOTAN

INVOICE NO: GEM/FNL-181212ED-1

ASME B18.18-2017(Category.2)/ASTM F1470-2018

FINISH : HOT DIP GALVANIZED PER ASTM A153-2009/ASTM F2329-2013

DATE : 2019/04/23

PART NO : 36717

SAMPLING PLAN :

HEAT NO: 18108472-3

MATERIAL : X1008A

INSPECTIONS ITEM	SAMPLE	TEST METHOD	REP	SPECIFIED	ACTUAL RESULT	ACC.	REJ.
CORE HARDNESS	13 PCS	ASTM F606-2014	[]	116-302 HRB	81-82 HRB	13	0
PROOF LOAD	3 PCS	ASTM F606-2014	: :	Min. 90 KSI	OK	3	0
PLATING THICKNESS(µm)	5 PCS	ASTM B568-1998	i	>=53	70.22-75.66	5	0

WE CERTIFY THAT THIS DATA IS A TRUE REPRESENTATION OF INFORMATION PROVIDED BY THE MATERIAL SUPPLIER AND OUR TESTING LABORATORY. WHICH ACCREDITED BY ISO/IEC17025(CERTIFICATE NUMBER:3358.01) WE CERTIFY THAT THE PRODUCTS SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER WE CERTIFY THAT ALL PRODUCTS WE SUPPLIED ARE IN COMPLIANCE WITH THE REQUIREMENTS OF THE ORDER WE CERTIFY THAT ALL PRODUCTS WE SUPPLIED ARE IN COMPLIANCE WITH THE NOT ALL ON ALL ON THE ORDER

Quality Supervisor:

Grin

page 1 of 1

Figure B-51. 7/8-in. Dia. Hex Nut, Test Nos. STBRT-1 and STBRT-2

No.5947 P. 2

Certificate of Compliance

Sold To:	Purchase Order:	STBR
UNL TRANSPORTATION	Job:	Item# f3, h1 and i1
	Invoice Date:	11/8/2018
. THIS IS TO CERTIFY THAT WE I THESE PARTS WERE PURC	AVE SUPPLIED YOU WITH THE FOL THASED TO THE FOLLOWING SPECI	LOWING PARTS. FICATIONS.
80 PCS 1"-8 Hot Dipped Galvanized A563 Grade DH He 210157128 AND UNDER PART NUMBER 38210	avy Hex Nut Made In USA SUPPLIED U	NDER OUR TRACE NUMBER
450 PCS:3/4"-10 Hot Dipped Galvanized A563 Grade Dl 210169774 AND UNDER PART NUMBER 38208.	H Heavy Hex Nut Made In USA SUPPLIE	ED UNDER OUR TRACE NUMBER
80 PCS 1"-8 Hot Dipped Galvanized A563 Grade DH He 210157128 AND UNDER PART NUMBER 38210	avy Hex Nut Made In USA SUPPLIED U	NDER OUR TRACE NUMBER
	~	
This is to certify that the above document is true and accurate to the best of my knowledge.	Please check current revis	ion to avoid using obsolete copies.
ASULA	This document was printe time.	d on 11/26/2018 and was current at the
Fastenal Account Representative Signature	Fastenal Store Location	/Address
Ashly Stanczyk Printed Name	3201 N. 23rd Street STE . LINCOLN, NE 68521 Phone #: (402)476-7900	-
11/29/18	Fax #: 402/476-7958	
Date	Page 1 of 1	
•	1	

Figure B-52. 1-in. 8 UNC Heavy Hex Nut, Test Nos. STBRT-1 and STBRT-2

No. 6648 P. 2

Certificate of Compliance

· · · · · · · · · · · · · · · ·	 	
Sold To:	Purchase Order:	70acct BCTAnchorCableHardware
UNL TRANSPORTATION/Midwest Roadside Safe	Job:	
	Invoice Date:	10/19/2018

THIS IS TO CERTIFY THAT WE HAVE SUPPLIED YOU WITH THE FOLLOWING PARTS. THESE PARTS WERE PURCHASED TO THE FOLLOWING SPECIFICATIONS.

200 PCS 1" x 2.500" OD Low Carbon Hot Dipped Galvanized Finish Steel USS General Purpose Flat Washer SUPPLIED UNDER OUR TRACE NUMBER 210151571 AND UNDER PART NUMBER 33188

200 PCS 1"-8 Hot Dipped Galvanized A563 Grade DH Heavy Hex Nut Made In USA SUPPLIED UNDER OUR TRACE NUMBER 210157128 AND UNDER PART NUMBER 38210

This is to certify that the above document is true and accurate to the best of my knowledge.

Fastenal Account Representative Signature

Please check current revision to avoid using obsolete copies.

This document was printed on 04/17/2019 and was current at that time.

Fastenal Store Location/Address

3201 N, 23rd Street STE 1 LINCOLN, NE 68521 Phone #: (402)476-7900 Fax #: 402/476-7958

Page 1 of 1

Figure B-53. 1-in. Dia. Hex Nut, Test Nos. STBRT-1 and STBRT-2

1000 BURLINGTON STREET, NORTH KANSAS CITY, MO 64116 1-816-474-5210 TOLL FREE 1-800-892-TUBE

STEEL VENTURES, LLC dba EXLTUBE

Certified Test Report

Customer: SPS - New Centur 401 New Century NEW CENTURY F	ry Parkway KS 66031-1127		Size Gau Date	04.00X06.0 ge: 1/4 4/20/2020		ustomer Order No: 450000425 elivery No: 8357 and No: 429516	3496	Custor 6660 Length	ner Part No: 040025040 n: 40 FT		_
		_	Spec	sification: STM A500-13	Gr.B/C						
Heat No 90992C	Yield KSI 61.9		Tensile KSI 77.6	Elongation % 2 Inch 29.00							
Heat No	C 0.2300	MN 0.8100	P 0.0110	S 0.0070	SI 0.0150	CU 0.0200	NI 0.0100	CR 0.0400	MO 0.0000	V 0.0000	

This material was melted & manufactured in the U.S.A. This material meets the Buy America requirement of 23 CFR 635.410. Coil Producing Mill: UNITED STATES STEEL, Granite City, IL

We hereby certify that all test results shown in this report are correct as contained in the records of our company. All testing and manufacturing is in accordance to A.S.T.M. parameters encompassed within the scope of the specifications denoted in the specification and grade tiles above. This product was manufactured in accordance with your purchase order requirements.

This material has not come into direct contact with mercury, any of its compounds, or any mercury bearing devices during our manufacturing process, testing, or inspections.

This material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1

Tensile test completed using test specimen with 3/4" reduced area.

STEEL VENTURES, LLC dba EXLTUBE

Jonathan Wolfe Quality Assurance Manager

Figure B-54. HSS6x4x1/4, Test Nos. STBRT-1 and STBRT-2

METALLURGICAL TEST REPORT

PAGE 1 of 1 DATE 02/03/2020 TIME 06:13:30

S 13716
 H Kansas City Warehouse
 P 401 New Century Parkway
 NEW CENTURY KS
 O

т о 66031-1127

SOLD

Order 4034321	1 2-0010 7	Aaterial No. 2896240A2	Descri 1/4	ption 96 X 240 A	572GR50 N	1ILL PLATE	Qu	antity 1	Weigh 1,633.600	t Custome	r Part	c	Sustomer PO	SI 01	nip Date /31/2020
							<u></u>	•							
							Chemical Ar	alysis							
Heat No.	B9L648	Vend	or SSAB - I	MONTPELIE	RWORKS		DOMESTIC		MIII SSAB -	MONTPELIE	RWORKS		Melted and Mar	Disadured in	1 the USA
Carbon	Manganes	e Phoenhorue	Sulphur	Silicon	Nickel	Chromium	Molybdenum	Boron	Copper	Aluminum	Titanium	Vanadium	Columbium	Nitrogen	Tin
0.1600	0.840	0 0.0100	0.0030	0.0400	0.1500	0.1300	0.0400	0.0000	0.3300	0.0350	0.0060	0.0180	0.0010	0.0000	0.0000
						Mecha	nical / Physic	cal Prope	erties						
Mill Coil	No. B9L648	0434													
1	Fensile	Yield		Elong	Rckwl	c	Brain	Charpy		Charpy Dr	CI	narpy Sz	Tempera	ture	Olsen
747	00.000	56200.000		28.50				66	L	ongitudinal		5.0		20 F	
759	00.000	57000.000		27.30				60	L	ongitudinal		5.0	-	20 F	
762	00.000	58100.000		25.00				62	Ŀ	ongitudinal		5.0	-	20 F	
776	00.000	59600.000		25.90				0		NA					
E	Batch 00061 Batch 00061	90954 1 EA 1,633 90860 6 EA 9,801	.600 LB .600 LB			Batch 0006	190945 6 EA 9,	801.600 LE	3		Batch 0	006190939 6	EA 9,801.600 I	В	

THE CHEMICAL, PHYSICAL, OR MECHANICAL TESTS REPORTED ABOVE ACCURATELY REFLECT INFORMATION AS CONTAINED IN THE RECORDS OF THE CORPORATION. The material is in compliance with EN 10204 Section 4.1 Inspection Certificate Type 3.1 This test report shall not be reproduced, except in full, without the written approval of Steel & Pipe Supply Company, Inc.

Figure B-55. ¼-in. Plates, Test Nos. STBRT-1 and STBRT-2

22Jan20 13:49 TEST CERTIFICATE No: DCR 244763 NUCOR TUBULAR PRODUCTS INC. P/O No 4500342208 DECATUR DIVISION 2000 INDEPENDENCE AVENUE N.W. DECATUR, AL 35601 Tel: 256 340-7420 Fax: 256 340-7415 Rel S/O NO DCR 120285-001 B/L NO DCR 85166-002 Shp 22Jan20 Inv No Inv Sold To: (5017) STEEL & PIPE SUPPLY 401 NEW CENTURY PARKWAY KANSAS CITY WHSE. NEW CENTURY, KS 66031 Ship To: (1) STEEL & PIPE SUPPLY 401 NEW CENTURY PKWY NEW CENTURY, KS 66031 Tel: 913-768-4333 Fax: 913 768-6683 CERTIFICATE of ANALYSIS and TESTS Cert. No: DCR 244763 _____<u>20Jan20</u> Part No TUBING A500 GRADE B(C) 12" X 4" X 1/4" X 20' PCS Wat 12 6,196 Wgt Heat Number Tag No 90266 PCS NJ8018 3,098 6 YLD=65100/TEN=71800/ELG=27.5 90267 3,098 NJ8018 6 YLD=65100/TEN=71800/ELG=27.5 Heat Number ____ NJ8018 WE PROUDLY MANUFACTURE ALL OUR PRODUCTS IN THE USA NUCOR TUBULAR PRODUCTS ARE MANUFACTURED, TESTED AND INSPECTED IN ACCORDANCE WITH ASTM STANDARDS. MATERIAL IDENTIFIED AS A500 GRADE B(C) MEETS BOTH ASTM A500 GRADE B AND A500 GRADE C SPECIFICATIONS. CURRENT STANDARDS: A252-10 A500/A500M-18 A513/A513M-15 ASTM A53/A53M-12 | ASME SA-53/SA-53M-13 A847/A847M-14 A1085/A1085M-15 IN COMPLIANCE WITH EN 10204 SECTION 4.1 INSPECTION CERTIFICATE TYPE 3.1 Page: 1 Last

Figure B-56. HSS12x4x1/4 Transition Rail, Test Nos. STBRT-1 and STBRT-2

72315 Tel: Fax:					01		ISION O	OF ZEKELM	IAN INDU	STRIES						
Steel & PO Box MANHA USA	Pipe Supply (1688 ATTAN KS 66	Company 8505				MATE	ERIAL 1	TEST RE	PORT				Shipped Steel & P 401 New NEW CEI USA	Io ipe Sup Century NTURY	ply Compar 7 Parkway KS 66031	ту
Material:	8.0x6.0	0x250x40'0	"0(3x2).			Material N	lo:	8006025	604000			Ma Me	de in: Ited in:	US. US.	A	
Sales Or	der: 15216	53				Purchase	Order:	C452003	3663			Cus	st Material#:	668	300600250	40
Heat No	С	Mn	Р	S	Si	AI	Cu	Cb	Мо	Ni	Cr	V	Ti	В	N	Ca
19197161 Bundle N	0.220	0.760	0.012 Viold	0.002	0.030	0.028	0.090	0.001	0.018	0.060	0.050	0.003	0.001	0.0002	2 0.0073	0.0
M5002970	76	6	059854 Psi	0751	34 Psi	34 %			AST	M A500-18	GRADE B&C	;	U	L. 0.50		
	MILL	Mill Locati	on	Method	Recy 76.00	cled_Content	Post95.00%	<u>Consumer</u> %	Pre-C. 5.00 %	onsumer (F %	Post Industri	al)	<u>% Harvested</u> 75%	١	Within Miles 500	of Loca
Heat 19197161 Material N Sales Or.	BIGRIVER Note: Note:	Osceola,Al	ĸ					-								
Heat 19197161 Material N Sales Or.	BIGRIVER Note: Note:	Osceola,Al	K													
Heat 19197161 Material N Sales Or.	BIGRIVER Note: Note:	Assurance	: Jason	Ribert												
Heat 19197161 Material N Sales Or. Sales Or. The result CE calcula	BIGRIVER Note: Note: Note: s reported on fited using the	Assurance this report re AWS D1.1 m	2: Jacom opresent the a ethod.	Quilerest actual attrib	poutes of th	e material fur	nished an	nd indicate f	ull complia	nce with a	l applicable	specific	ation and contr	act requ	irements.	
Heat 19197161 Material N Sales Or.	BIGRIVER Note: Note: Note: sreported on ted using the Stee	Assurance this report re AWS D1.1 m	:: Jacom popresent the a ethod. be	C.L.actual attrib	butes of th	ie material fur	nished an	nd indicate fr	ull complia	nce with a	I applicable	specific:	ation and contr	act requ	uirements. Stitute	

1000 BURLINGTON STREET, NORTH KANSAS CITY, MO 64115 1-816-474-5210 TOLL FREE 1-800-892-TUBE

STEEL VENTURES, LLC dba EXLTUBE

Certified Test Report

Figure B-58. HSS8x6x¹/₄ Transition Rails, Test No. STBRT-2

Appendix C. Shop Drawings for Transition Tube Rails

Figure C-1. Shop Drawings for Middle and Lower Transition Tube Rails

279

Figure C-2. Shop Drawings for Upper Transition Tube Rail

December 23, 2020 MwRSF Report No. TRP-03-411-20

280

Appendix D. Vehicle Center of Gravity Determination

Date:	8/24/2020	Test Name:	STBRT-1	VIN:	kmh	cn46c69u3	67008
Model Year:	2009	Make:	Hyundai	Model:		Accent	
		_					
Vehicle CG	Determinat	tion			Weight	Vertical	Vertical M
	Vehicle Equ	lipment			(lb)	CG (in.)	(lb-in.)
	+	Unballasted C	ar (Curb)		2447	22,811	55819.1
	+	Hub			19	10.625	201.875
	+	Brake activatio	on cylinder &	frame	7	16.0	112.0
	+	Pneumatic tar	k (Nitrogen)		30	13.0	390.0
	+	Strobe/Brake	Battery		5	19.0	95.0
	+	Brake Receive	r/Wires		5	31.0	155.0
	+	CG Plate inclu	iding DAQ		22	17.0	374.0
	-	Battery	•		-30	26.0	-780.0
	-	Oil			-7	9.5	-66.5
	-	Interior			-63	14.0	-882.0
	-	Fuel			-19	10.0	-190.0
	-	Coolant			-7	21.0	-147.0
	-	Washer fluid			-9	18.0	-162.0
	+	Water Ballast	(In Fuel Tank	.)	0		0
	+	Onboard Supp	lemental Bat	tery			0
							0
							0
							 Interview of the second se second second sec
	Note: (+) is ac	lded equipment to	vehicle, (-) is re nated Total V	emoved equi	pment from ve 2400	hicle	54919.5
Vehicle Dim	Note: (+) is ac	Ided equipment to Estin C.G. Calculat	vehicle, (-) is re nated Total V ions	emoved equi	pment from ve	hicle	
Vehicle Dime Wheel Base:	ensions for 98.5	Ided equipment to Estin C.G. Calculat in.	vehicle, (-) is re nated Total V <u>ions</u> Front Tra	woved equi	2400 57.5	hicle	_ 54919.5
Vehicle Dim Wheel Base: Roof Height:	ensions for 98.5 57.75	lded equipment to Estin <u>C.G. Calculat</u> in. in.	vehicle, (-) is re nated Total V ions Front Tra Rear Tra	woved equi Veight (Ib) ck Width: ck Width:	2400 2400 57.5 57.188	hicle in. in.	54919.5
Vehicle Dime Wheel Base: Roof Height: Center of Gradient	ensions for 98.5 57.75	Ided equipment to Estin C.G. Calculat in. in. 1100C MAS	vehicle, (-) is re nated Total V ions Front Tra Rear Tra H Targets	woved equi Veight (Ib) ck Width: ck Width:	pment from ve 2400 57.5 57.188 Test Inertia	hicle in. in.	Difference
Vehicle Dim Wheel Base: Roof Height: Center of Gra Test Inertial V	ensions for 98.5 57.75 avity Veight (Ib)	Ided equipment to Estin C.G. Calculat in. in. 1100C MAS 2420 ±	vehicle, (-) is re nated Total V ions Front Tra Rear Tra H Targets ± 55	woved equi Veight (Ib) ck Width: ck Width:	2400 27.5 57.5 57.188 Fest Inertia 2404	hicle in. in.	<u>54919.5</u>
Vehicle Dim Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal C	ensions for 98.5 57.75 avity Veight (lb) CG (in.)	Ided equipment to Estin C.G. Calculat in. in. <u>1100C MAS</u> 2420 ± 39 ±	vehicle, (-) is re nated Total W ions Front Tra Rear Tra Rear Tra <u>H Targets</u> 55 ± 4	woved equi	2400 27.5 57.5 57.188 Fest Inertia 2404 35.483	in. in.	Difference -16. -3.51
Vehicle Dim Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal C Lateral CG (ii	ensions for 98.5 57.75 avity Veight (lb) CG (in.) n.)	Ided equipment to Estin C.G. Calculat in. in. 1100C MAS 2420 ± 39 ± NA	vehicle, (-) is re nated Total W ions Front Tra Rear Tra Rear Tra <u>H Targets</u> 55 t 4	woved equi	2400 57.5 57.188 Fest Inertia 2404 35.483 0.429	hicle in. in.	Difference -16. -3.51
Vehicle Dime Wheel Base: Roof Height: Center of Gr Test Inertial V Longitudinal C Lateral CG (ii Vertical CG (ensions for 98.5 57.75 avity Veight (lb) CG (in.) n.) (in.)	Ided equipment to Estin in. in. 1100C MAS 2420 = 39 = NA NA	vehicle, (-) is re nated Total W Front Tra Rear Tra H Targets 55 5 4	woved equi	2400 57.5 57.188 Test Inertia 2404 35.483 0.429 22.883	hicle in. in.	Difference -16. -3.51 N/ N/
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal C Lateral CG (in Vertical CG (Note: Long. CG	ensions for 98.5 57.75 avity Veight (lb) CG (in.) n.) (in.) is measured fr	Ided equipment to Estin C.G. Calculat in. in. 1100C MAS 2420 = 39 = NA NA NA rom front axle of to	vehicle, (-) is re nated Total V ions Front Tra Rear Tra H Targets ± 55 ± 4	woved equi	pment from ve 2400 57.5 57.188 Test Inertia 2404 35.483 0.429 22.883	hicle in. in.	Difference -16. -3.51 N/ N/
Vehicle Dime Wheel Base: Roof Height: Center of Gr. Test Inertial V Longitudinal C Lateral CG (in Vertical CG (Note: Long. CG Note: Lateral CC	ensions for 98.5 57.75 avity Veight (Ib) CG (in.) n.) (in.) is measured from the source of the sourc	Ided equipment to Estin C.G. Calculat in. in. 1100C MAS 2420 = 39 = NA NA NA com front axle of to om centerline - pos	vehicle, (-) is re nated Total W ions Front Tra Rear Tra H Targets 55 5 4 est vehicle sitive to vehicle	right (passe	2400 57.5 57.188 Fest Inertia 2404 35.483 0.429 22.883 nger) side	hicle in. in.	Difference -16. -3.51 N/ N/
Vehicle Dime Wheel Base: Roof Height: Center of Gr. Test Inertial V Longitudinal C Lateral CG (in Vertical CG (Note: Long. CG Note: Lateral CC	ensions for 98.5 57.75 avity Veight (Ib) CG (in.) n.) (in.) is measured fro HT (Ib)	Ided equipment to Estin C.G. Calculat in. in. 1100C MAS 2420 = 39 = NA NA NA com front axle of to om centerline - pos	vehicle, (-) is re nated Total W ions Front Tra Rear Tra H Targets ± 55 ± 4 est vehicle sitive to vehicle	moved equi Veight (Ib) ck Width: ck Width:	2400 57.5 57.188 Fest Inertia 2404 35.483 0.429 22.883 nger) side TEST INER	in. in. I TIAL WEIG	Difference -16. -3.51 N/ N/
Vehicle Dime Wheel Base: Roof Height: Test Inertial V Longitudinal C Lateral CG (in Vertical CG (Note: Lateral CC Note: Lateral CC	ensions for 98.5 57.75 avity Veight (lb) CG (in.) n.) (in.) is measured fro HT (lb)	Ided equipment to Estin C.G. Calculat in. in. 1100C MAS 2420 = 39 = NA NA NA rom front axle of to om centerline - pos	vehicle, (-) is re nated Total W ions Front Tra Rear Tra H Targets 55 55 4 4	right (passe	pment from ve 2400 57.5 57.188 Test Inertia 2404 35.483 0.429 22.883 nger) side TEST INER	hicle in. in. I TIAL WEIG	Difference -16. -3.51 N/ N/ SHT (Ib) Bight
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal C Lateral CG (in Vertical CG (Note: Lateral CC Note: Lateral CC CURB WEIGI	ensions for 98.5 57.75 avity Veight (lb) CG (in.) n.) (in.) is measured fro HT (lb) Left	Ided equipment to Estin C.G. Calculat in. in. 1100C MAS 2420 = 39 = NA NA vom front axle of to om centerline - pos Right	vehicle, (-) is re nated Total W ions Front Tra Rear Tra H Targets 55 55 4 est vehicle sitive to vehicle	moved equi veight (Ib)	pment from ve 2400 57.5 57.188 Test Inertia 2404 35.483 0.429 22.883 nger) side TEST INER	hicle in. in. I TIAL WEIG	Difference -16. -3.51 N/ BHT (Ib) Right
Vehicle Dime Wheel Base: Roof Height: Center of Gra Test Inertial V Longitudinal C Lateral CG (in Vertical CG (in Vertical CG (in Note: Lateral CC Note: Lateral CC CURB WEIGH Front	ensions for 98.5 57.75 avity Veight (lb) CG (in.) n.) (in.) is measured fro HT (lb) Left 810	Ided equipment to Estin C.G. Calculat in. in. 1100C MAS 2420 = 39 = NA NA NA rom front axle of to om centerline - pos Right 740	vehicle, (-) is re nated Total W ions Front Tra Rear Tra H Targets 55 55 54 55	right (passe	pment from ve 2400 57.5 57.188 Test Inertia 2404 35.483 0.429 22.883 nger) side TEST INER Front	hicle in. in. I TIAL WEIG Left 760	Difference -16. -3.51 N/ BHT (Ib) Right 778
Vehicle Dime Wheel Base: Roof Height: Center of Gr. Test Inertial V Longitudinal C Lateral CG (in Vertical CG (Note: Long. CG Note: Lateral CC CURB WEIGH Front Rear	ensions for 98.5 57.75 avity Veight (Ib) CG (in.) n.) (in.) is measured fro HT (Ib) Left 810 445	Ided equipment to Estin C.G. Calculat in. in. 1100C MAS 2420 ± 39 ± NA NA com front axle of to om centerline - pos Right 740 452	vehicle, (-) is re nated Total W ions Front Tra Rear Tra H Targets ± 55 ± 4 est vehicle sitive to vehicle	veight (Ib)	2400 2400 57.5 57.188 Fest Inertia 2404 35.483 0.429 22.883 nger) side TEST INER Front Rear	hicle in. in. I TIAL WEIG Left 760 424	Difference -16./ -3.51' N/ SHT (Ib) Right 778 442
Vehicle Dime Wheel Base: Roof Height: Center of Gr. Test Inertial V Longitudinal C Lateral CG (in Vertical CG (Note: Lateral CC Note: Lateral CC Rote: Lateral CC Front Rear FRONT	ensions for 98.5 57.75 avity Veight (Ib) CG (in.) n.) (in.) is measured fro HT (Ib) Left 810 445 1550	Ided equipment to Estin C.G. Calculat in. in. 1100C MAS 2420 = 39 = NA NA NA Tom front axle of to om centerline - pos Right 740 452 Ib	vehicle, (-) is re nated Total W ions Front Tra Rear Tra H Targets 55 t 4	moved equi	2400 57.5 57.188 Fest Inertia 2404 35.483 0.429 22.883 nger) side TEST INER Front Rear FRONT	hicle in. in. I TIAL WEIG Left 760 424 1538	Difference -16.0 -3.51 N/ BHT (Ib) Right 778 442 Ib
Vehicle Dime Wheel Base: Roof Height: Test Inertial V Longitudinal C Lateral CG (in Vertical CG (Note: Lateral CC Note: Lateral CC Rote: Lateral CC Front Rear FRONT REAR	ensions for 98.5 57.75 avity Veight (lb) CG (in.) n.) (in.) is measured from HT (lb) Left 810 445 1550 897	Ided equipment to Estin C.G. Calculat in. in. 1100C MAS 2420 = 39 = NA NA NA rom front axle of to om centerline - pos Right 740 452 Ib Ib	vehicle, (-) is re nated Total W ions Front Tra Rear Tra H Targets 55 t 4	moved equi	2400 57.5 57.188 Test Inertia 2404 35.483 0.429 22.883 nger) side TEST INER Front Rear FRONT REAR	hicle in. in. I TIAL WEIG Left 760 424 1538 866	Difference -16.(-3.51' N/ BHT (Ib) Right 778 442 Ib Ib

Figure D-1. Vehicle Mass Distribution, Test No. STBRT-1

D)ate: 9/22/2020	Test Name:	STBRT-2	VIN:	1C6F	RR6FT9ES23	38613
Model Y	'ear: 2014	Make:	Dodge	Model:	Ram	1500 Quad	Cab
Vehicle	CG Determinat	tion					
venicie	e oo beterminat	lon		Weight	Vertical	Vertical M	
Vehicle I	Equipment			(lb)	CG (in.)	(lb-in.)	
+	Unballasted	Truck (Curb)		5133	28,464038	146105.91	1
+	Hub			19	15	285	
+	Brake activa	ation cylinder &	& frame	7	28 1/2	199.5	
+	Pneumatic 1	tank (Nitrogen))	30	27	810	
+	Strobe/Brak	e Battery	/	5	26	130	
+	Brake Rece	iver/Wires		6	52	312	
+	CG Plate in	cluding DAQ		30	31 1/8	933.75	
_	Battery			-53	40	-2120	
_	Oil			-13	16	-208	
_	Interior			-97	29	-2813	
_	Fuel			-163	18	-2934	
-	Coolant			-12	36	-432	
-	Washer fluir	h		-8	36	-288	
+	Water Balla	a ist (In Fuel Tan	nk)	109	16	1744	
+	Onhoard Su	innlemental Ba	atterv	5	26	130	
	Chibbara Ca		attory		20	0	
						0	
Note: (+) is	s added equipment to	o vehicle, (-) is re Estimated Tota Vertical CG	moved equipme al Weight (lb) Location (in.)	4998 28.3824	le	141855.16	
Note: (+) is Vehicle Wheel B	s added equipment to I Dimensions for Base: 140.5	o vehicle, (-) is re Estimated Tota Vertical CG <u>C.G. Calcula</u> in.	moved equipme al Weight (Ib) Location (in.) tions Front Tra	4998 28.3824 ck Width:	68.0625	141855.16 in.	
Note: (+) is Vehicle Wheel B	s added equipment to I Dimensions for Base: 140.5	o vehicle, (-) is re Estimated Tota Vertical CG C.G. Calcula in.	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra	4998 28.3824 ck Width: ck Width:	68.0625 67.875	141855.16 in. in.	
Note: (+) is Vehicle Wheel B	s added equipment to Dimensions for Base: 140.5	e vehicle, (-) is ref Estimated Tota Vertical CG C.G. Calculat in. 2270P MAS	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra GH Targets	4998 28.3824 ck Width: ck Width:	68.0625 67.875	141855.16 in. in.	Difference
Note: (+) is Vehicle Wheel B Center of Test Iner	s added equipment to Dimensions for ase: 140.5 of Gravity tial Weight (lb)	e vehicle, (-) is rep Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110	4998 28.3824 ck Width: ck Width:	68.0625 67.875 Test Inertia 5007	141855.16 in. in.	Difference 7.0
Note: (+) is Vehicle Wheel B Center o Test Iner Longitud	s added equipment to Dimensions for ase: 140.5 of Gravity tial Weight (lb) inal CG (in.)	e vehicle, (-) is rep Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4	4998 28.3824 ck Width: ck Width:	68.0625 67.875 Fest Inertia 5007 60.975934	141855.16 in. in.	Difference 7.0 -2.02407
Note: (+) is Vehicle Wheel B Center o Test Iner Longitud Lateral C	s added equipment to Dimensions for Jase: 140.5 of Gravity tial Weight (lb) inal CG (in.) CG (in.)	e vehicle, (-) is rep Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4	4998 28.3824 ck Width: ck Width:	68.0625 67.875 Fest Inertia 5007 60.975934 0.2782823	141855.16 in. in.	Difference 7.0 -2.02407 NA
Note: (+) is Vehicle Wheel B Center of Test Iner Longitud Lateral C Vertical 0	s added equipment to Dimensions for ase: 140.5 of Gravity tial Weight (lb) inal CG (in.) CG (in.)	e vehicle, (-) is represented Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4 or greater	4998 28.3824 ck Width: ck Width:	68.0625 67.875 Fest Inertia 5007 60.975934 0.2782823 28.38	141855.16 in. in.	Difference 7.0 -2.02407 NA 0.38238
Note: (+) is Vehicle Wheel B Center of Test Iner Longitudi Lateral O Vertical of Note: Long Note: Late	s added equipment to Dimensions for Base: 140.5 of Gravity tial Weight (Ib) inal CG (in.) CG (in.) CG (in.) g. CG is measured fro eral CG measured fro	e vehicle, (-) is re- Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28 fom front axle of to m centerline - po	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4 or greater test vehicle witive to vehicle	right (passe	68.0625 67.875 Fest Inertia 5007 60.975934 0.2782823 28.38 nger) side	141855.16 in. in.	Difference 7.0 -2.02407 NA 0.38238
Note: (+) is Vehicle Wheel B Center of Test Iner Longitud Lateral C Vertical O Note: Long Note: Later CURB W	s added equipment to Dimensions for Base: 140.5 of Gravity tial Weight (Ib) inal CG (in.) CG (in.) CG (in.) g. CG is measured fro eral CG measured fro /EIGHT (Ib.)	e vehicle, (-) is re- Estimated Tota Vertical CG C.G. Calculat in. 2270P MAS 5000 63 NA 28 rom front axle of t om centerline - po	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4 or greater test vehicle witive to vehicle	right (passe	68.0625 67.875 Test Inertia 5007 60.975934 0.2782823 28.38 nger) side TEST INER	141855.16 in. in. I	Difference 7.0 -2.02407 NA 0.38238
Note: (+) is Vehicle Wheel B Center of Test Iner Longitud Lateral O Vertical O Note: Lon Note: Late CURB W	s added equipment to Dimensions for base: 140.5 of Gravity tial Weight (lb) inal CG (in.) CG (in.)	e vehicle, (-) is re- Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28 rom front axle of to m centerline - po	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4 or greater test vehicle witive to vehicle	right (passe	68.0625 67.875 Fest Inertia 5007 60.975934 0.2782823 28.38 nger) side TEST INER	in. in. TIAL WEIG	Difference 7.0 -2.02407 NA 0.38238 HT (Ib.)
Note: (+) is Vehicle Wheel B Center of Test Iner Longitudi Lateral O Vertical O Note: Lon; Note: Late CURB W Erent	s added equipment to Dimensions for base: 140.5 of Gravity tial Weight (lb) inal CG (in.) CG (in.) CG (in.) CG (in.) CG (in.) CG (in.) CG (in.) Left Left	e vehicle, (-) is re- Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28 rom front axle of to m centerline - po Right	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4 or greater test vehicle sitive to vehicle	right (passe	68.0625 67.875 Fest Inertia 5007 60.975934 0.2782823 28.38 nger) side TEST INER	141855.16 in. in. TIAL WEIG	Difference 7.0 -2.02407 NA 0.38238 HT (Ib.) Right 1422
Note: (+) is Vehicle Wheel B Center of Test Iner Longitudi Lateral O Vertical O Note: Long Note: Later CURB W Front Desc	s added equipment to Dimensions for base: 140.5 of Gravity tial Weight (lb) inal CG (in.) CG (in.) CG (in.) CG (in.) CG (in.) CG (in.) CG (in.) Left 1476 1476	Estimated Tota Vertical CG C.G. Calculat in. 2270P MAS 5000 63 NA 28 rom front axle of to m centerline - po Right 1446	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4 or greater test vehicle sitive to vehicle	right (passe	68.0625 67.875 Fest Inertia 5007 60.975934 0.2782823 28.38 nger) side TEST INER Front	141855.16 in. in. I TIAL WEIG Left 1412	Difference 7.0 -2.02407 NA 0.38238 HT (Ib.) Right 1422
Note: (+) is Vehicle Wheel B Center of Test Iner Longitudi Lateral O Vertical O Note: Late CURB W Front Rear	s added equipment to Dimensions for Jase: 140.5 of Gravity tial Weight (lb) inal CG (in.) CG (in.) CG (in.) g. CG is measured fro reral CG measured fro /EIGHT (lb.) Left 1476 1121	Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28 rom front axle of to m centerline - po Right 1446 1090	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4 or greater test vehicle witive to vehicle	right (passe	68.0625 67.875 Fest Inertia 5007 60.975934 0.2782823 28.38 nger) side TEST INER Front Rear	141855.16 in. in. I TIAL WEIG Left 1412 1071	Difference 7.0 -2.02407 NA 0.38238 HT (Ib.) Right 1422 1102
Note: (+) is Vehicle Wheel B Center of Test Iner Longitud Lateral O Vertical O Note: Late CURB W Front Rear ERONT	s added equipment to Dimensions for ase: 140.5 of Gravity tial Weight (lb) inal CG (in.) CG (in.) CG (in.) g. CG is measured fro reral CG measured fro /EIGHT (lb.) Left 1476 1121 2022	Estimated Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28 fom front axle of to m centerline - po Right 1446 1090	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4 or greater test vehicle witive to vehicle	right (passe	68.0625 67.875 Fest Inertia 5007 60.975934 0.2782823 28.38 nger) side TEST INER Front Rear	141855.16 in. in. I TIAL WEIG Left 1412 1071 2824	Difference 7.0 -2.02407 NA 0.38238 HT (Ib.) Right 1422 1102
Note: (+) is Vehicle Wheel B Center of Test Iner Longitudi Lateral C Vertical O Note: Late CURB W Front Rear FRONT PEAP	s added equipment to Dimensions for ase: 140.5 of Gravity tial Weight (lb) inal CG (in.) CG (in.) g. CG is measured fro reral CG measured fro /EIGHT (lb.) Left 1476 1121 2922 2211	e vehicle, (-) is represented Tota Vertical CG C.G. Calcular in. 2270P MAS 5000 63 NA 28 form front axle of to m centerline - po Right 1446 1090 Ib	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4 or greater test vehicle witive to vehicle	right (passe	68.0625 67.875 Fest Inertia 5007 60.975934 0.2782823 28.38 nger) side TEST INER Front Rear FRONT REAP	141855.16 in. in. I TIAL WEIG Left 1412 1071 2834 2173	Difference 7.0 -2.02407 NA 0.38238 HT (Ib.) Right 1422 1102 Ib
Note: (+) is Vehicle Wheel B Center of Test Iner Longitudi Lateral C Vertical O Note: Late CURB W Front Rear FRONT REAR TOTAL	s added equipment to Dimensions for Base: 140.5 of Gravity tial Weight (lb) inal CG (in.) CG (in.) g. CG is measured fro reral CG measured fro /EIGHT (lb.) Left 1476 1121 2922 2211 5122	e vehicle, (-) is represented Tota Vertical CG C.G. Calculat in. 2270P MAS 5000 63 NA 28 form front axle of to m centerline - po Right 1446 1090 Ib	moved equipme al Weight (lb) Location (in.) tions Front Tra Rear Tra BH Targets ± 110 ± 4 or greater test vehicle sitive to vehicle	right (passe	68.0625 67.875 67.875 Fest Inertia 5007 60.975934 0.2782823 28.38 nger) side TEST INER Front Rear FRONT REAR	141855.16 in. in. I I Left 1412 1071 2834 2173	Difference 7.0 -2.02407 NA 0.38238 HT (Ib.) Right 1422 1102 Ib Ib

Figure D-2. Vehicle Mass Distribution, Test No. STBRT-2

Appendix E. Static Soil Tests

Figure E-1. Soil Strength, Initial Calibration Tests

Figure E-2. Static Soil Test, Test No. STBRT-1

Figure E-3. Static Soil Test, Test No. STBRT-2

Appendix F. Vehicle Deformation Records

The following figures and tables describe all occupant compartment measurements taken on the test vehicles used in full-scale crash testing herein. MASH 2016 defines intrusion as the occupant compartment being deformed and reduced in size with no penetration. Outward deformations, which are denoted as negative numbers within this Appendix, are not considered as crush toward the occupant, and are not subject to evaluation by MASH 2016 criteria.

Date: Model Year:	8/24/	/2020			Test Name: Make:	STB	3RT-1 undai	8		VIN: Model:	kmh	cn46c69u36 Accent	37008
					VEH	ICLE DEF SIDE FLC	FORMATIC	N SET 1					
ſ		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔΥΑ	ΔZ ^A	Total ∆	Crush ^B	Directions for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
	1	62.0338	-9.4107	5.0833	62.0159	-9.4286	5.4051	0.0179	-0.0179	-0.3218	0.3228	0.0179	X
	2	62.0252	-5.5753	4.9334	61.9871	-5.6487	5.1358	0.0381	-0.0734	-0.2024	0.2186	0.0381	X
. 1	3	62.2922	-2.0541	5.0758	62.2486	-2.1352	5.3228	0.0436	-0.0811	-0.2470	0.2636	0.0436	X
AN NE	4	62.2564	2.3796	5.1833	62.2220	2.3490	5.3264	0.0344	0.0306	-0.1431	0.1503	0.0344	X
X II P	5	61.2730	0.5975	4.1885	61.3415	0.4596	4.4840	-0.0685	0.13/9	-0.2961	0.3337	0.0000	NA
	7	59 2978	-9.0009	7 1394	58 2335	-9.7459	7.0030	-0.0009	-0.0690	-0.2762	0.2057	0.0643	X
T IN	8	58,6160	-1.8061	7 3725	58 5823	-0.9403	7.6303	0.0043	-0.0050	-0.2602	0.2550	0.0337	X
	9	58 4404	2 5768	7 4444	58 3883	2 6080	7 6556	0.0521	-0.0312	-0 2112	0.2198	0.0521	X
	10	57 6906	6.6181	4 2630	57 6855	6.5304	4 4359	0.0051	0.0877	-0.1729	0.1939	0.0051	X
	11	53 6791	-13 6107	7 9989	53 6336	-13 6896	8 2356	0.0455	-0.0789	-0.2367	0.2536	-0.2367	7
	12	53 8357	-7 9186	7 8975	53 7744	-7 9604	8 1601	0.0400	-0.0418	-0.2626	0.2729	-0.2626	7
ł	13	53 5725	-3 4742	7 9065	53 5244	-3 5249	8 1651	0.0481	-0.0507	-0.2586	0.2679	-0.2586	7
ł	14	53 3841	1 3082	8 1473	53 3480	1 2091	8.0313	0.0361	0.0991	0 1160	0.1568	0 1160	7
ł	15	53 0631	6 6084	4 3081	53 0497	6 4591	4.5211	0.0134	0 1493	-0 2130	0 2605	-0 2130	Z
1	16	47.7564	-13.5655	8.3695	47.6936	-13.6362	8.5990	0.0628	-0.0707	-0.2295	0.2482	-0.2295	Z
1	17	47.8853	-8.0150	8.0368	47.8476	-8.0660	8.2884	0.0377	-0.0510	-0.2516	0.2595	-0.2516	Z
	18	47.8196	-3.5540	8.0631	47.8254	-3.6748	8.3112	-0.0058	-0.1208	-0.2481	0.2760	-0.2481	Z
AN	19	47.9734	1.5755	8.7853	47.9355	1.5167	8.8953	0.0379	0.0588	-0.1100	0.1304	-0.1100	Z
A CI	20	47.4528	6.4130	4.7611	47.4708	6.2984	4.8963	-0.0180	0.1146	-0.1352	0.1781	-0.1352	Z
100	21	43.0473	-13.5155	8.3682	43.0437	-13.5888	8.5952	0.0036	-0.0733	-0.2270	0.2386	-0.2270	Z
D1-	22	43.4944	-7.9832	8.0941	43.4521	-8.0525	8.3267	0.0423	-0.0693	-0.2326	0.2464	-0.2326	Z
-	23	43.9211	-3.4231	8.1341	43.9245	-3.5119	8.3556	-0.0034	-0.0888	-0.2215	0.2387	-0.2215	Z
	24	44.1804	1.6905	8.7740	44.1565	1.6258	8.9537	0.0239	0.0647	-0.1797	0.1925	-0.1797	Z
	25	44.2930	6.5204	4.7187	44.2855	6.4337	4.7796	0.0075	0.0867	-0.0609	0.1062	-0.0609	Z
	26	38.9248	-12.1649	8.1463	38.9105	-12.1926	8.3603	0.0143	-0.0277	-0.2140	0.2163	-0.2140	Z
1	27	39.2065	-8.0162	8.1456	39.2048	-8.1046	8.3477	0.0017	-0.0884	-0.2021	0.2206	-0.2021	Z
	28	39.1903	-3.7194	8.2053	39.1788	-3.8511	8.4227	0.0115	-0.1317	-0.2174	0.2544	-0.2174	Z
1	29	39.1796	1.8061	8.2482	39.1514	1.7030	8.4247	0.0282	0.1031	-0.1765	0.2063	-0.1765	Z
	30	39.9680	6.7025	4.5455	39.8945	6.5543	4.6819	0.0735	0.1482	-0.1364	0.2144	-0.1364	Z
ompartment. Crush calculate leforming inwa	ations that ard toward t Crush colu	use multiple the occupar imn denotes	e directional it compartm which direct	component.	nts will disree	gard compo	inents that a	If "NA" ther	and only in	clude positi n is recorde	ive values w	here the co	imponent i
		Prete	est Floor F	an					Post	test Floor	Pan		
		-		İ							ß		

Figure F-1. Floor Pan Deformation Data – Set 1, Test No. STBRT-1

Date: _ Nodel Year: _	8/24/ 20	/2020)09			Test Name: Make:	STB Hyu	RT-1 Indai	8		VIN: Model:	kmho	cn46c69u3 Accent	67008
					VEI DRIVER	HICLE DE	FORMATI OOR PAN	ON - SET 2					
ſ		Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Directions for
	POINT	(in.)	(in.)	(in.)	(111.)	(in.)	(111.)	(in.)	(in.)	(in.)	(III.)	(in.)	Crush ^C
	1	62.7125	-24.6301	4.7239	62.7493	-24.5256	4.4140	-0.0368	0.1045	0.3099	0.3291	0.3099	Z
	2	62.5877	-20.7963	4.5861	62.5827	-20.7014	4.2285	0.0050	0.0949	0.3576	0.3700	0.3576	X, Z
	3	62.7493	-17.2691	4.7383	62.7454	-17.1704	4.4625	0.0039	0.0987	0.2758	0.2930	0.2758	X, Z
N. N.	4	62.5806	-12.8388	4.8600	62.5736	-12.7142	4.5425	0.0070	0.1246	0.3175	0.3411	0.3176	X, Z
PA	5	61.4656	-8.6494	3.8834	61.5506	-8.6177	3.7196	-0.0850	0.0317	0.1638	0.1872	0.1638	Z
M II X	6	59.0598	-25.0177	7.0438	59.1164	-25.0011	6.7394	-0.0566	0.0166	0.3044	0.3101	0.3044	Z
PH	7	58.8825	-21.2190	6.8101	58.9137	-21.1556	6.5363	-0.0312	0.0634	0.2738	0.2828	0.2738	Z
>	8	59.0792	-17.1387	7.0543	59.1444	-17.0969	6.8006	-0.0652	0.0418	0.2537	0.2653	0.2537	Z
	9	58.7721	-12.7634	7.1409	58.7625	-12.6594	6.9148	0.0096	0.1040	0.2261	0.2491	0.2263	X, Z
	10	57.8846	-8.7370	3.9762	57.9349	-8.6918	3.7918	-0.0503	0.0452	0.1844	0.1964	0.1844	Z
	11	54.5031	-29.0885	7.6687	54.5120	-29.0169	7.3192	-0.0089	0.0716	0.3495	0.3569	0.3495	Z
	12	54.4878	-23.3939	7.5843	54.4997	-23.3673	7.3165	-0.0119	0.0266	0.2678	0.2694	0.2678	Z
	13	54.0910	-18.9595	7.6086	54.1503	-18.9131	7.3884	-0.0593	0.0464	0.2202	0.2327	0.2202	Z
	14	53.7600	-14.1858	7.8655	53.7808	-14.1971	7.3276	-0.0208	-0.0113	0.5379	0.5384	0.5379	Z
	15	53.2598	-8.8862	4.0446	53.2964	-8.8747	3.8930	-0.0366	0.0115	0.1516	0.1564	0.1516	Z
	16	48.5838	-29.2228	8.0693	48.6306	-29.2243	7.7391	-0.0468	-0.0015	0.3302	0.3335	0.3302	Z
	17	48.5438	-23.6699	7.7535	48.5908	-23.6015	7.5227	-0.0470	0.0684	0.2308	0.2453	0.2308	Z
_	18	48.3440	-19.2130	7.7941	48.3740	-19.2084	7.6121	-0.0300	0.0046	0.1820	0.1845	0.1820	Z
AN	19	48.3470	-14.0834	8.5317	48.3935	-14.0344	8.2678	-0.0465	0.0490	0.2639	0.2724	0.2639	Z
d X	20	47.6603	-9.2518	4.5255	47.6933	-9.2183	4.3633	-0.0330	0.0335	0.1622	0.1689	0.1622	Z
JO D	21	43.8754	-29.3147	8.0921	43.9325	-29.2506	7.8229	-0.0571	0.0641	0.2692	0.2826	0.2692	Z
C I	22	44.1543	-23.7706	7.8332	44.1576	-23.7396	7.6257	-0.0033	0.0310	0.2075	0.2098	0.2075	Z
L n	23	44.4438	-19.1999	7.8853	44.4731	-19.1798	7.7130	-0.0293	0.0201	0.1723	0.1759	0.1723	Z
-	24	44.5523	-14.0827	8.5400	44.6145	-14.0594	8.3802	-0.0622	0.0233	0.1598	0.1731	0.1598	Z
	25	44.4985	-9.2395	4.4995	44.5657	-9.1867	4.3075	-0.0672	0.0528	0.1920	0.2102	0.1920	Z
ŕ	26	39.7130	-28.0882	7.8954	39.7125	-27.9958	7.6513	0.0005	0.0924	0.2441	0.2610	0.2441	Z
	27	39.8696	-23.9329	7.9063	39.9411	-23.8777	7.7052	-0.0715	0.0552	0.2011	0.2205	0.2011	Z
~	28	39 7244	-19 6387	7 9796	39 7823	-19 6947	7 8408	-0.0579	-0 0560	0 1388	0 1605	0 1388	Z
	29	39 5476	-14 1162	8 0399	39 5768	-14 0849	7 9148	-0.0292	0.0313	0 1251	0 1322	0 1251	Z
~	30	40 1692	-9 1872	4 3487	40 2619	-9 1881	4 2389	-0.0927	-0 0009	0.1098	0.1437	0 1098	7
Positive va compartment Crush calc component Direction 1	alues deno nt. culations th is deformir for Crush c	te deformati nat use mult ng inward to olumn deno	on as inward tiple directio ward the occ tes which di	d toward th nal compo cupant con irections a	ie occupant nents will dis npartment. re included i	compartme sregard com n the crush	nt, negative ponents that calculations	values den at are negat 3. If "NA" th	ote deforma tive and only hen no intru:	itions outwa y include po sion is reco	rd away fror sitive values rded, and C	n the occu s where the rush will be	pant e 0.
		Pret	test Floor	Pan					Post	test Floor	Pan		
										4	Í		

Figure F-2. Floor Pan Deformation Data – Set 2, Test No. STBRT-1

del Year:	20	09			Make:	Hyu	indai			Model:		Accent	
					VE	HICLE DE	FORMATIC	ON					
					DRIVER S		RIOR CRUS	SH - SET 1	l				
Γ		Pretest	Pretest	Pretest	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction
	POINT	(in.)	Y (in.)	∠ (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush ^C
	1	49.2387	-12.9290	-19.6555	49.1732	-12.7047	-19.6351	0.0655	0.2243	0.0204	0.2346	0.2346	X, Y, Z
0	2	45.8383	-3.2440	-23.0668	45.9069	-3.0902	-23.3240	-0.0686	0.1538	-0.2572	0.3074	0.3074	X, Y, Z
HS Z	3	47.8732	10.7719	-20.5296	47.5001	10.8874	-20.8794	0.3731	-0.1155	-0.3498	0.5243	0.5243	X, Y, Z
AÇ [4	46.8492	-11.9394	-14.2077	46.7888	-11.4223	-14.2915	0.0604	0.5171	-0.0838	0.5273	0.5273	X, Y, Z
- C [5	47.3210	-2.2229	-8.9880	47.2687	-1.6727	-8.9264	0.0523	0.5502	0.0616	0.5561	0.5561	X, Y, Z
	6	44.2722	10.3204	-13.7701	44.4168	10.4874	-14.0118	-0.1446	-0.1670	-0.2417	0.3274	0.3274	X, Y, Z
	7	53.3647	-16.4832	-0.4209	53.2176	-15.8508	-0.2558	0.1471	0.6324	0.1651	0.6699	0.6324	Y
3 Z Z	8	52.9343	-16.4776	2.0083	52.7831	-16.1073	2.2001	0.1512	0.3703	0.1918	0.4436	0.3703	Y
s 4	9	58.5201	-16.4210	-0.1028	58.2787	-15.8269	0.0612	0.2414	0.5941	0.1640	0.6619	0.5941	Y
ш	10	21.6106	-17.4118	-10.4384	21.0447	-18.3052	-10.4261	0.5659	-0.8934	0.0123	1.0576	-0.8934	Y
	11	34.2756	-17.7942	-10.1962	33.6415	-19.3081	-10.1785	0.6341	-1.5139	0.0177	1.6414	-1.5139	Y
-"BC	12	41.9941	-17.5270	-9.6849	41.3063	-18.2631	-9.6701	0.6878	-0.7361	0.0148	1.0075	-0.7361	Y
2 Q C	13	24.1893	-17.6423	-1.8429	23.7446	-17.9923	-1.8041	0.4447	-0.3500	0.0388	0.5672	-0.3500	Y
	14	33.3005	-17.8006	0.5099	32.7966	-18.2775	0.4406	0.5039	-0.4769	-0.0693	0.6972	-0.4769	Y
≤	15	41.2641	-18.3032	-0.1252	40.7189	-18.9613	-0.0478	0.5452	-0.6581	0.0774	0.8581	-0.6581	Y
	16	29.5019	-6.7293	-37.2458	29.2837	-7.5686	-37.3585	0.2182	-0.8393	-0.1127	0.8745	-0.1127	Z
	17	30.0719	-2.9207	-37.4913	29.8483	-3.7691	-37.5875	0.2236	-0.8484	-0.0962	0.8826	-0.0962	Z
	18	30.4496	1.3648	-37.7033	30.2743	0.4544	-37.7477	0.1753	0.9104	-0.0444	0.9282	-0.0444	Z
	19	30.6437	5.4836	-37.8331	30.4908	4.5482	-37.8386	0.1529	0.9354	-0.0055	0.9478	-0.0055	Z
	20	30.6693	9.8390	-37.8998	30.5595	8.9637	-37.8549	0.1098	0.8753	0.0449	0.8833	0.0449	Z
G [21	25.1038	-6.3399	-37.9790	24.9552	-7.1879	-38.0755	0.1486	-0.8480	-0.0965	0.8663	-0.0965	Z
	22	25.3062	-2.7921	-38.2782	25.1436	-3.6436	-38.3573	0.1626	-0.8515	-0.0791	0.8705	-0.0791	Z
ц Г	23	25.7935	1.2363	-38.4849	25.6429	0.3998	-38.5618	0.1506	0.8365	-0.0769	0.8534	-0.0769	Z
8	24	25.9378	5.2250	-38.6299	25.7851	4.4079	-38.6973	0.1527	0.8171	-0.0674	0.8340	-0.0674	Z
°≃ [25	26.0441	9.3540	-38.6864	25.8713	8.4344	-38.6020	0.1728	0.9196	0.0844	0.9395	0.0844	Z
	26	21.9347	-6.1441	-38.3438	21.7362	-6.9886	-38.4499	0.1985	-0.8445	-0.1061	0.8740	-0.1061	Z
	27	21.9750	-2.3437	-38.6840	21.7791	-3.1818	-38.7890	0.1959	-0.8381	-0.1050	0.8671	-0.1050	Z
	28	22.4967	0.9718	-38.8497	22.3146	0.1489	-38.9670	0.1821	0.8229	-0.1173	0.8509	-0.1173	Z
	29	22.1143	4.8291	-39.0551	21.9602	4.0094	-39.2032	0.1541	0.8197	-0.1481	0.8471	-0.1481	Z
	30	21.9122	8.1583	-39.1516	21.7678	7.3374	-39.0625	0.1444	0.8209	0.0891	0.8383	0.0891	Z
	31	54.0879	-15.6599	-21.9489	53.8660	-15.4327	-21.8969	0.2219	0.2272	0.0520	0.3218	0.3218	X, Y, Z
⊈ ⊑ Ω [32	51.4069	-15.1918	-23.9788	51.2036	-15.0747	-23.9766	0.2033	0.1171	0.0022	0.2346	0.2346	X, Y, Z
	33	48.3190	-14.5501	-25.9179	48.1593	-14.6211	-26.0051	0.1597	-0.0710	-0.0872	0.1953	0.1597	Х
X axi	34	44.5102	-13.7040	-28.1781	44.3952	-13.9933	-28.3458	0.1150	-0.2893	-0.1677	0.3536	0.1150	X
₹≥℃	35	41.5367	-13.0324	-29.7878	41.3759	-13.4588	-29.9806	0.1608	-0.4264	-0.1928	0.4948	0.1608	X
	36	35.2953	-11.8009	-32.4490	35.1157	-12.5014	-32.6573	0.1796	-0.7005	-0.2083	0.7526	0.1796	X
	31	54.0879	-15.6599	-21.9489	53.8660	-15.4327	-21.8969	0.2219	0.2272	0.0520	0.3218	0.2272	Y
48	32	51.4069	-15.1918	-23.9788	51.2036	-15.0747	-23.9766	0.2033	0.1171	0.0022	0.2346	0.1171	Y
a L	33	48.3190	-14.5501	-25.9179	48.1593	-14.6211	-26.0051	0.1597	-0.0710	-0.0872	0.1953	-0.0710	Y
Ter	34	44.5102	-13.7040	-28.1781	44.3952	-13.9933	-28.3458	0.1150	-0.2893	-0.1677	0.3536	-0.2893	Y
- La	35	41.5367	-13.0324	-29.7878	41.3759	-13.4588	-29.9806	0.1608	-0.4264	-0.1928	0.4948	-0.4264	Y
	36	35.2953	-11.8009	-32.4490	35.1157	-12.5014	-32.6573	0.1796	-0.7005	-0.2083	0.7526	-0.7005	Y
¥ ⊑ Ω I	37	11.5590	-10.8227	-33.6200	11.4298	-11.4960	-33.6623	0.1292	-0.6733	-0.0423	0.6869	0.1292	X
	38	15.6318	-14.0523	-26.7138	15.5015	-14.6730	-26.6357	0.1303	-0.6207	0.0781	0.6390	0.1519	X, Z
i și și l	39	12.7403	-14.9742	-22.8698	12.5675	-15.5150	-22.8600	0.1728	-0.5408	0.0098	0.5678	0.1731	X, Z
± ≥ ⊂ [40	16.9767	-15.4978	-20.1327	16.8387	-16.2293	-20.1096	0.1380	-0.7315	0.0231	0.7448	0.1399	X, Z
ųγ	37	11.5590	-10.8227	-33.6200	11.4298	-11.4960	-33.6623	0.1292	-0.6733	-0.0423	0.6869	-0.6733	Y
	38	15.6318	-14.0523	-26.7138	15.5015	-14.6730	-26.6357	0.1303	-0.6207	0.0781	0.6390	-0.6207	Y
Ter	39	12.7403	-14.9742	-22.8698	12.5675	-15.5150	-22.8600	0.1728	-0.5408	0.0098	0.5678	-0.5408	Y
E h	40	16.9767	-15.4978	-20.1327	16.8387	-16.2293	-20.1096	0.1380	-0.7315	0.0231	0.7448	-0.7315	Y

deforming inward toward the occupant compartment.

^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

odel Year:	20	009	<u>.</u>		Make:	Нус	ındai			Model:		Accent	
					VE		FORMATI	ON					
					DRIVER S		RIOR CRUS	SH - SET 2	2				
ſ		Pretest	Pretest	Pretest	Postfest X	Posttest Y	Posttest 7	۸¥A	AVA	A7 ^A	Total A	Crush ^B	Direction
	POINT	X (in.)	Y (in.)	Z (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	for Crush ^C
	1	49.8303	-28.2403	-20.0855	49.8229	-27.6413	-20.4973	0.0074	0.5990	-0.4118	0.7269	0.7269	X, Y, Z
- 🕅	2	46.1182	-18.6472	-23.4308	46.1806	-18.0916	-23.9974	-0.0624	0.5556	-0.5666	0.7960	0.7960	X, Y, Z
Υς Υς	3	47.7597	-4.5870	-20.8545	47.3347	-4.1044	-21.3677	0.4250	0.4826	-0.5132	0.8227	0.8227	X, Y, Z
ů×.	4	47.4573	-27.3420	-14.6147	47.4734	-26.5179	-15.1028	-0.0161	0.8241	-0.4881	0.9579	0.9579	X, Y, Z
Ŭ	5	47.6851	-17.6353	-9.3605	47.7000	-16.8357	-9.6006	-0.0149	0.7996	-0.2401	0.8350	0.8350	X, Y, Z
	0	44.2290	-5.1697	-14.0000	44.3000	-4.7079	-14.4040	-0.1305	0.4616	-0.3966	0.6240	0.0240	Λ, Υ, Ζ
UH⊂ I	0	52 2050	-31.7429	-0.8990	54.2490	-30.9262	-1.2248	-0.0320	0.6167	-0.3258	0.8799	0.5265	ř V
SIL	9	59 3701	-31.7391	-0.6222	59 3104	-31.2320	-0.9775	0.0527	0.5205	-0.3007	0.0000	0.5205	V V
	10	22 4226	33 5707	10.6630	22 0350	34 3282	10.08/1	0.3876	0.7575	0.3202	0.0101	0.7575	v
B	11	35.0950	-33 5802	-10.0000	34 6608	-34 9051	-10.9041	0.3070	-1 3249	-0.3202	1.4506	-1 3249	v
SR (12	42 8062	-33 0873	-10.0751	42 2924	-33 6071	-10.5280	0.5138	-0.5198	-0.4329	0.8495	-0.5198	Y
502	13	25.0771	-33,7571	-2.0904	24.8462	-34.0475	-2.3966	0.2309	-0.2904	-0.3062	0.4810	-0.2904	Ý
	14	34.2080	-33.6552	0.1882	33.9339	-34.0566	-0.2819	0.2741	-0.4014	-0.4701	0.6762	-0.4014	Y
≧ :	15	42.1775	-33.9202	-0.5130	41.8670	-34.4631	-0.8900	0.3105	-0.5429	-0.3770	0.7303	-0.5429	Y
	16	29.7762	-22.5602	-37.4913	29.5189	-22.9312	-37.8655	0.2573	-0.3710	-0.3742	0.5864	-0.3742	Z
	17	30.2317	-18.7355	-37.7264	29.9513	-19.1117	-38.0458	0.2804	-0.3762	-0.3194	0.5676	-0.3194	Z
	18	30.4812	-14.4400	-37.9244	30.2318	-14.8743	-38.1491	0.2494	-0.4343	-0.2247	0.5489	-0.2247	Z
	19	30.5527	-10.3168	-38.0394	30.3082	-10.7746	-38.1821	0.2445	-0.4578	-0.1427	0.5383	-0.1427	Z
[20	30.4494	-5.9623	-38.0890	30.2273	-6.3595	-38.1338	0.2221	-0.3972	-0.0448	0.4573	-0.0448	Z
Ñ	21	25.3627	-22.2980	-38.1876	25.1702	-22.6877	-38.5167	0.1925	-0.3897	-0.3291	0.5452	-0.3291	Z
<u> </u>	22	25.4580	-18.7447	-38.4743	25.2345	-19.1355	-38.7485	0.2235	-0.3908	-0.2742	0.5271	-0.2742	Z
Ч	23	25.8246	-14.7029	-38.6689	25.5937	-15.0748	-38.8997	0.2309	-0.3719	-0.2308	0.4949	-0.2308	Z
8	24	25.8501	-10.7111	-38.7992	25.5982	-11.0627	-38.9776	0.2519	-0.3516	-0.1784	0.4679	-0.1784	Z
_	25	25.8342	-6.5807	-38.8402	25.5495	-7.03/4	-38.8237	0.2847	-0.4567	0.0165	0.5384	0.0165	
	20	22.1803	-22.1944	-38.3201	21.9413	10 7022	-38.8430	0.2450	-0.3984	-0.3175	0.5653	-0.3175	7
	27	22.1110	-15.0632	-30.0014	21.0000	-10.7023	-39.1200	0.2013	-0.3690	-0.2752	0.5207	-0.2732	7
	20	22.0366	-11 2181	-39 1952	21 7821	-11 5830	-39 4364	0.2000	-0.3658	-0.2343	0.5207	-0.2343	7
	30	21 7356	-7 8961	-39 2769	21.7021	-8 2667	-39 2436	0.2564	-0.3706	0.0333	0.4519	0.0333	7
	31	54 7390	-30 8184	-22 4287	54 5725	-30 1752	-22 8641	0.1665	0.6432	-0.4354	0.7944	0.6644	XY
κ ε~	32	52 0289	-30 4221	-24 4350	51 8699	-29 8782	-24 9012	0.1590	0.5439	-0.4662	0.7338	0.5667	XY
LAI	33	48.9077	-29.8645	-26.3467	48,7833	-29,4993	-26.8804	0.1244	0.3652	-0.5337	0.6585	0.3858	X.Y
⊇ xir	34	45.0572	-29.1227	-28.5727	44.9669	-28.9665	-29.1592	0.0903	0.1562	-0.5865	0.6136	0.1804	X, Y
-₩ C	35	42.0521	-28.5332	-30.1556	41.9081	-28.5117	-30.7440	0.1440	0.0215	-0.5884	0.6061	0.1456	X, Y
	36	35.7557	-27.4765	-32.7615	35.5814	-27.7295	-33.3193	0.1743	-0.2530	-0.5578	0.6368	0.1743	X
	31	54.7390	-30.8184	-22.4287	54.5725	-30.1752	-22.8641	0.1665	0.6432	-0.4354	0.7944	0.6432	Y
34	32	52.0289	-30.4221	-24.4350	51.8699	-29.8782	-24.9012	0.1590	0.5439	-0.4662	0.7338	0.5439	Y
) al (33	48.9077	-29.8645	-26.3467	48.7833	-29.4993	-26.8804	0.1244	0.3652	-0.5337	0.6585	0.3652	Y
-PI	34	45.0572	-29.1227	-28.5727	44.9669	-28.9665	-29.1592	0.0903	0.1562	-0.5865	0.6136	0.1562	Y
L A	35	42.0521	-28.5332	-30.1556	41.9081	-28.5117	-30.7440	0.1440	0.0215	-0.5884	0.6061	0.0215	Y
	36	35.7557	-27.4765	-32.7615	35.5814	-27.7295	-33.3193	0.1743	-0.2530	-0.5578	0.6368	-0.2530	Y
AR U	37	11.9920	-27.1947	-33.7373	11.8631	-27.5170	-33.9813	0.1289	-0.3223	-0.2440	0.4243	0.1289	X
≓ ŝ ≻ l	38	16.2145	-30.3285	-26.8770	16.1403	-30.6542	-27.0597	0.0742	-0.3257	-0.1827	0.3807	0.0742	X
X a	39	13.3830	-31.3496	-23.0136	13.2908	-31.6497	-23.2566	0.0922	-0.3001	-0.2430	0.3970	0.0922	X
~ ~ ~	40	11.0002	-31./362	-20.3128	11.0228	-32.23//	-20.5765	0.0324	-0.4995	-0.203/	0.0000	0.0324	<u>^</u>
4F	31	16.0445	-21.1947	-33./3/3	11.8631	-27.5170	-33.9813	0.1289	-0.3223	-0.2440	0.4243	-0.3223	Y
eral	30	13 3830	-30.3285	-20.0770	13 2009	-30.0042	-21.0097	0.0742	-0.3257	-0.1827	0.3807	-0.3257	Y V
3-P	40	17.6552	-31.3490	-20.3128	17 6228	-32 2577	-20.2000	0.0922	-0.3001	-0.2430	0.5970	-0.3001	v v
	-0	11.0002	-01.7002	-20.0120	17.0220	-52.2011	-20.0700	0.0324	-0.4880	-0.2001	0.0000	-0.4000	1 1

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Reference Set 1 Maximum MASH Directions of Maximum MASH Allowable Directions of Location 0.1 ≤ 4 Z X Maximum Deformation ^{A,B} MASH Allowable Directions of Roof 0.1 ≤ 4 Z X Maximum Deformation (in.) Deformation ^C Roof 0.0 ≤ 4 Z Windshield ^O 2.1 ≤ 3 X Z A-Pillar Maximum 0.7 ≤ 5 X Y A-Pillar Maximum 0.2 ≤ 5 X Z A-Pillar Maximum 0.6 ≤ 3 Y B-Pillar Maximum 0.2 ≤ 3 Y B-Pillar Maximum 0.1 ≤ 5 X Z B-Pillar Maximum 0.2 ≤ 3 Y B-Pillar Maximum 0.1 ≤ 5 X Z B-Pillar Lateral 0.6 ≤ 12 Y Side Front Panel 0.8 ≤ 12 Y Side Door (above seat) -1.5 ≤ 9 Y Side Door (above seat) -1.3 ≤ 9 Y Side Door (below seat) -0.7 ≤ 12				Driver Side Maxi	mum Deformations			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Reference Se	et 1			Reference Se	t 2	
Roof0.1 ≤ 4 ZWindshield ^D 2.1 ≤ 3 X,ZA.Pillar Maximum0.3 ≤ 5 X,Y,ZA.Pillar Lateral0.2 ≤ 3 YB.Pillar Maximum0.2 ≤ 5 X,ZB.Pillar Lateral0.2 ≤ 5 X,ZB.Pillar Lateral0.2 ≤ 5 X,ZB.Pillar Lateral0.2 ≤ 3 YB.Pillar Lateral0.2 ≤ 3 YB.Pillar Lateral0.1 ≤ 9 XB.Pillar Lateral0.6 ≤ 12 YSide Door (above seat)-1.5 ≤ 9 YSide Door (below seat)-0.7 ≤ 12 YSide Door (below seat)-0.7 ≤ 12 YFloor Pan0.1 ≤ 12 YSide Door (below seat)-0.7 ≤ 12 YFloor Pan0.1 ≤ 12 ZDash - no MASH requirement0.6NAX,Y,ZAftems highlighted in red do not meet MASH allowable deformations. a ZPositive values denote deformation as inward toward the occupant compartment, negative values denote deformation so utward away from the occupant compartment. C For Toe Pan - Wheel Well the direction of deformation max include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation max include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation max include X and Z direction.	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C
Windshield2.1 ≤ 3 X,ZA-Pillar Maximum0.3 ≤ 5 X,Y,ZA-Pillar Lateral0.2 ≤ 3 YB-Pillar Maximum0.2 ≤ 5 X,ZB-Pillar Maximum0.2 ≤ 5 X,ZB-Pillar Lateral0.2 ≤ 3 YB-Pillar Lateral0.2 ≤ 3 YB-Pillar Lateral0.2 ≤ 3 YB-Pillar Lateral0.2 ≤ 3 YB-Pillar Lateral0.1 ≤ 9 XB-Pillar Lateral0.6 ≤ 12 YSide Door (below seat)-1.5 ≤ 9 YSide Door (below seat)-0.7 ≤ 12 YFloor Pan0.1 ≤ 12 YSide Door (below seat)-0.7 ≤ 12 YFloor Pan0.1 ≤ 12 ZDash - no MASH requirement0.6NAX,Y,ZAftems highlighted in red do not meet MASH allowable deformations.Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.C For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X and Z direction.	Roof	0.1	<u>≤</u> 4	Z	Roof	0.0	<u>≤</u> 4	Z
A-Pillar Maximum0.3 \leq 5X, Y, ZA-Pillar Maximum0.7 \leq 5X, YA-Pillar Lateral0.2 \leq 3YA-Pillar Maximum0.6 \leq 3YB-Pillar Maximum0.2 \leq 5X, ZB-Pillar Lateral0.6 \leq 3YB-Pillar Lateral0.2 \leq 3YB-Pillar Maximum0.1 \leq 5XB-Pillar Lateral0.2 \leq 3YB-Pillar Maximum0.1 \leq 5XB-Pillar Lateral0.2 \leq 3YB-Pillar Maximum0.1 \leq 5XB-Pillar Lateral0.6 \leq 12YB-Pillar Maximum0.4 \leq 9XSide Door (above seat)-1.5 \leq 9YSide Front Panel0.8 \leq 12YSide Door (below seat)-0.7 \leq 12YSide Door (above seat)-1.3 \leq 9YFloor Pan0.1 \leq 12ZYSide Door (below seat)-0.5 \leq 12YDash - no MASH requirement0.6NAX Y, ZDash - no MASH requirement0.6NAX Y,A^I tems shighlighted in red do not meet MASH allowable deformations.B-Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. C For Toe Pan - Wheel Well the direction of defromation may include X and Z direction.For A-Pillar Maximum and B-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X and Z direction.	Windshield ^D	2.1	<u>≤</u> 3	X, Z	Windshield	NA	<u>≤</u> 3	X, Z
A-Pillar Lateral 0.2 ≤ 3 YB-Pillar Maximum 0.2 ≤ 5 X, ZB-Pillar Lateral 0.2 ≤ 5 X, ZB-Pillar Lateral 0.2 ≤ 3 YB-Pillar Lateral 0.2 ≤ 3 YB-Pillar Lateral 0.1 ≤ 9 XB-Pillar Lateral 0.6 ≤ 12 YSide Front Panel 0.6 ≤ 12 YSide Door (above seat) -1.5 ≤ 9 YSide Door (below seat) -0.7 ≤ 12 YFloor Pan 0.1 ≤ 12 YDash - no MASH requirement 0.6 NAX, Y, ZA tems highlighted in red do not meet MASH allowable deformations. A X, Y, ZPositive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. C For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X and Z direction.	A-Pillar Maximum	0.3	≤ 5	X, Y, Z	A-Pillar Maximum	0.7	≤ 5	X, Y
B-Pillar Maximum 0.2 ≤ 5 X, ZB-Pillar Lateral 0.2 ≤ 3 YB-Pillar Lateral 0.2 ≤ 3 YToe Pan - Wheel Well 0.1 ≤ 9 XSide Front Panel 0.6 ≤ 12 YSide Door (above seat) -1.5 ≤ 9 YSide Door (below seat) -0.7 ≤ 12 YFloor Pan 0.1 ≤ 12 YSide Door (below seat) -0.7 ≤ 12 YFloor Pan 0.1 ≤ 12 ZDash - no MASH requirement 0.6 NAX, Y, ZPositive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.C For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X and Z direction.	A-Pillar Lateral	0.2	<u>≤</u> 3	Y	A-Pillar Lateral	0.6	<u>≤</u> 3	Y
B-Pillar Lateral 0.2 ≤ 3 YToe Pan - Wheel Well 0.1 ≤ 9 XSide Front Panel 0.6 ≤ 12 YSide Door (above seat) -1.5 ≤ 9 YSide Door (below seat) -0.7 ≤ 12 YFloor Pan 0.1 ≤ 12 YSide Door (below seat) -0.7 ≤ 12 YSide Door (below seat) 0.1 ≤ 12 YFloor Pan 0.1 ≤ 12 ZDash - no MASH requirement 0.6 NAX, Y, ZA ttems highlighted in red do not meet MASH allowable deformations. \mathbb{R}^{P} positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. C For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X and Z direction.	B-Pillar Maximum	0.2	≤ 5	X, Z	B-Pillar Maximum	0.1	≤ 5	Х
Toe Pan - Wheel Well0.1 \leq 9XSide Front Panel0.6 \leq 12YSide Door (above seat)-1.5 \leq 9YSide Door (below seat)-0.7 \leq 12YFloor Pan0.1 \leq 12YDash - no MASH requirement0.6NAX Y, ZA ttems highlighted in red do not meet MASH allowable deformations.BPositive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.C For Toe Pan - Wheel Well the direction of deformation may include X and Z direction.	B-Pillar Lateral	0.2	<u>≤</u> 3	Y	B-Pillar Lateral	-0.5	<u>≤</u> 3	Y
Side Front Panel 0.6 ≤ 12 YSide Front Panel 0.8 ≤ 12 YSide Door (above seat) -1.5 ≤ 9 YSide Door (above seat) -1.3 ≤ 9 YSide Door (below seat) -0.7 ≤ 12 YSide Door (below seat) -1.3 ≤ 9 YFloor Pan 0.1 ≤ 12 ZFloor Pan 0.5 ≤ 12 YDash - no MASH requirement 0.6 NAX, Y, ZDash - no MASH requirement 0.6 NAX, Y,A Items highlighted in red do not meet MASH allowable deformations.B Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.C For Toe Pan - Wheel Well the direction of deformation may include X and Z direction.For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X and Z direction.	Toe Pan - Wheel Well	0.1	≤ 9	Х	Toe Pan - Wheel Well	0.4	≤ 9	ХZ
Side Door (above seat)-1.5 \leq 9YSide Door (above seat)-1.3 \leq 9YSide Door (below seat)-0.7 \leq 12YSide Door (below seat)-0.5 \leq 12YFloor Pan0.1 \leq 12ZFloor Pan0.5 \leq 12ZDash - no MASH requirement0.6NAX, Y, ZDash - no MASH requirement0.6NAX, Y, ^A Items highlighted in red do not meet MASH allowable deformations. ^B Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. ^C For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X	Side Front Panel	0.6	<u>≤</u> 12	Y	Side Front Panel	0.8	<u>≤</u> 12	Y
Side Door (below seat)-0.7 ≤ 12 YSide Door (below seat)-0.5 ≤ 12 YFloor Pan0.1 ≤ 12 ZFloor Pan0.5 ≤ 12 ZDash - no MASH requirement0.6NAX Y, ZDash - no MASH requirement0.6NAX Y, ^A Items highlighted in red do not meet MASH allowable deformations. ^B Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. ^C For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X	Side Door (above seat)	-1.5	<u>≤</u> 9	Y	Side Door (above seat)	-1.3	<u>≤</u> 9	Y
Floor Pan 0.1 \leq 12 Z Floor Pan 0.5 \leq 12 Z Dash - no MASH requirement 0.6 NA X, Y, Z Dash - no MASH requirement 0.6 NA X, Y, ^A Items highlighted in red do not meet MASH allowable deformations. * B Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. * * ° For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X and Z direction.	Side Door (below seat)	-0.7	<u>≤</u> 12	Y	Side Door (below seat)	-0.5	≤ 12	Y
Dash - no MASH requirement 0.6 NA X, Y, Z Dash - no MASH requirement 0.6 NA X, Y, ^A Items highlighted in red do not meet MASH allowable deformations. ^B Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. ^C For Toe Pan - Wheel Well the direction of defromation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X	Floor Pan	0.1	≤ 12	Z	Floor Pan	0.5	<u>≤</u> 12	Z
^A Items highlighted in red do not meet MASH allowable deformations. ^B Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. ^C For Toe Pan - Wheel Well the direction of defromation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X	Dash - no MASH requirement	0.6	NA	X, Y, Z	Dash - no MASH requirement	0.6	NA	X, Y, Z
and Z directions. The direction of deformation for Toe Pan-Wheel Well, A-Pillar Maximum, and B-Pillar Maximum only include components where the deformation is positive ntruding into the occupant compartment. If direction of deformation is "NA" then no intrusion is recorded and deformation will be 0. ^D If deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is meas and recorded.	³ Positive values denote deform ^C For Toe Pan - Wheel Well the and Z directions. The direction intruding into the occupant com ^D If deformation is observered for and recorded.	ation as inward to direction of defrom of deformation for partment. If direct or the windshield th	ward the occupant (ation may include) Toe Pan -Wheel We ion of deformation is nen the windshield	compartment, negat K and Z direction. Fo ell, A-Pillar Maximun s "NA" then no intrus deformation is mea	ive values denote deformations out or A-Pillar Maximum and B-Pillar Ma n, and B-Pillar Maximum only includ sion is recorded and deformation w sured posttest with an examplar vel	ward away from th ximum the directio e components wh II be 0. nicle, therefore onl	e occupant compar n of deformation m ere the deformation y one set of referen	tment. ay include X, Y, is positive and ce is measured

Figure F-5. Max. Occupant Compartment Deformations by Location, Test No. STBRT-1

Figure F-6. Exterior Vehicle Crush (NASS) - Front, Test No. STBRT-1

Figure F-7. Exterior Vehicle Crush (NASS) - Side, Test No. STBRT-1

Date:	9/22	/2020			Test Name:	STE	RT-2			VIN:	1C6F	R6FT9ES2	38613
vlodel Year:	20)14			Make	Do	dge			Model:	Ram	1500 Qua	d Cab
					VEH	ICLE DE	FORMATI	ON					
					DRIVER	SIDE FL	OOR PAN	- SET 1					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔY ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^c
	1	57.7222	-22.4783	-2.1482	57.2549	-22.1189	-2.0935	0.4673	0.3594	-0.0547	0.5921	0.4673	X
I	2	58.9884	-19.0746	-0.8223	58.5764	-18.7658	-0.7648	0.4120	0.3088	-0.0575	0.5181	0.4120	X
[3	59.2205	-15.5699	-0.4845	59.0776	-15.3795	-0.3354	0.1429	0.1904	-0.1491	0.2809	0.1429	X
ż IJ	4	58.6744	-10.3003	-0.5678	58.5439	-10.0122	-0.3365	0.1305	0.2881	-0.2313	0.3918	0.1305	X
A S N	5	55.9283	-4.6685	-1.7346	55.8727	-4.4702	-1.5538	0.0556	0.1983	-0.1808	0.2740	0.0556	X
N II N	6	54.2006	-23.9109	2.1900	53.4935	-23.2746	2.1008	0.7071	0.6363	0.0892	0.9554	0.7127	X, Z
21	7	54.1463	-19.0590	2.2361	53.7553	-18.6609	2.1523	0.3910	0.3981	0.0838	0.5643	0.3999	X, Z
5	8	54.0653	-14.2442	2.2844	53.8922	-13.8977	2.5472	0.1731	0.3465	-0.2628	0.4681	0.1731	X
[9	54.1150	-8.7859	2.2530	54.1037	-8.4394	2.5031	0.0113	0.3465	-0.2501	0.4275	0.0113	X
Ĩ	10	52.7552	-4.0075	-1.0263	52.6868	-3.7438	-0.8342	0.0684	0.2637	-0.1921	0.3333	0.0684	X
1	11	47.9191	-24.2377	5.1207	47.8992	-23.7750	5.8099	0.0199	0.4627	-0.6892	0.8304	-0.6892	Z
1	12	47.7495	-19.0934	5.0725	47.7628	-18.7272	5.6476	-0.0133	0.3662	-0.5751	0.6819	-0.5751	Z
Ĩ	13	47.7369	-14.5965	5.0860	47.7285	-14.1821	5.4865	0.0084	0.4144	-0.4005	0.5764	-0.4005	Z
[14	47.8387	-9.4217	5.1003	47.8075	-9.0587	5.3273	0.0312	0.3630	-0.2270	0.4293	-0.2270	Z
1	15	46.1846	-4.4397	0.5500	46.1243	-4.2043	0.7240	0.0603	0.2354	-0.1740	0.2989	-0.1740	Z
ſ	16	44.1711	-24.5310	5.1710	44.1481	-24.0936	5.8227	0.0230	0.4374	-0.6517	0.7852	-0.6517	Z
	17	44.0780	-18.8540	5.0985	44.0767	-18.4927	5.6414	0.0013	0.3613	-0.5429	0.6521	-0.5429	Z
-	18	43.8919	-14.2521	5.1205	43.9147	-13.8323	5.4951	-0.0228	0.4198	-0.3746	0.5631	-0.3746	Z
AN	19	43.9520	-8.8986	5.1392	43.9158	-8.5199	5.3408	0.0362	0.3787	-0.2016	0.4305	-0.2016	Z
H RI	20	42.8127	-4.7389	1.2900	42.7683	-4.4695	1.3673	0.0444	0.2694	-0.0773	0.2838	-0.0773	Z
DO CO	21	38.2428	-24.3285	5.1853	38.2716	-23.9835	5.7489	-0.0288	0.3450	-0.5636	0.6614	-0.5636	Z
E [22	38.0740	-18.7248	5.1778	38.0715	-18.4396	5.6567	0.0025	0.2852	-0.4789	0.5574	-0.4789	Z
-	23	37.9489	-13.9594	5.1949	37.9352	-13.6427	5.4748	0.0137	0.3167	-0.2799	0.4229	-0.2799	Z
	24	37.9827	-8.7621	5.2277	37.9472	-8.4319	5.3628	0.0355	0.3302	-0.1351	0.3585	-0.1351	Z
	25	37.4955	-4.8234	0.8767	37.4572	-4.6028	1.0074	0.0383	0.2206	-0.1307	0.2593	-0.1307	Z
	26	32.7568	-23.6803	4.4189	32.7732	-23.3752	4.6720	-0.0164	0.3051	-0.2531	0.3968	-0.2531	Z
	27	32.6418	-17.8509	4.4316	32.7048	-17.5909	4.6316	-0.0630	0.2600	-0.2000	0.3340	-0.2000	Z
[28	32.5114	-13.0068	4.4577	32.5288	-12.6801	4.5952	-0.0174	0.3267	-0.1375	0.3549	-0.1375	Z
	29	32.5285	-8.2196	4.4489	32.5139	-7.8790	4.5174	0.0146	0.3406	-0.0685	0.3477	-0.0685	Z
	30	32.4292	-4.7914	1.3750	32.3690	-4.5925	1.4895	0.0602	0.1989	-0.1145	0.2373	-0.1145	Z

^A Positive value compartment. note deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant

^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure F-8. Floor Pan Deformation Data – Set 1, Test No. STBRT-2

Date: Nodel Year:	9/22 20	/2020)14			Test Name: Make:	STE	BRT-2 odge			VIN: Model:	1C6F Ram	R6FT9ES2	38613 d Cab
					VEI DRIVER	HICLE DE	FORMATI	ON - SET 2					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔΧ ^Α (in.)	ΔY ^A (in.)	ΔΖ ^Α (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^C
	1	58 9641	_42 4677	-6 2105	58 4970	_42 3306	-6 2802	0.4671	0 1371	0.0697	0 4918	0.4723	X 7
	2	60 2751	-39 0868	-4 8700	59 8633	-39 0053	-4 9272	0.4118	0.0815	0.0572	0.4310	0.4158	X Z
	3	60 5558	-35 5869	-4 5197	60 4113	-35 6293	-4 4747	0 1445	-0.0424	-0.0450	0.1572	0 1445	X
	4	60 0844	-30 3099	-4 5862	59 9532	-30 2551	-4 4413	0 1312	0.0548	-0 1449	0 2030	0 1312	X
A NO	5	57.4210	-24 6359	-5.7403	57.3625	-24.6681	-5.6265	0.0585	-0.0322	-0.1138	0.1319	0.0585	X
乱火	6	55,4122	-43.8651	-1.8856	54,7123	-43,4607	-2.1000	0.6999	0.4044	0.2144	0.8363	0.7320	XZ
2 뿐	7	55,4263	-39.0131	-1.8230	55.0390	-38.8516	-2.0176	0.3873	0.1615	0.1946	0.4626	0.4334	XZ
3	8	55,4131	-34,1978	-1.7585	55.2422	-34.0935	-1.5911	0.1709	0.1043	-0.1674	0.2610	0.1709	X
	9	55,5401	-28,7407	-1.7712	55,5306	-28.6386	-1.5989	0.0095	0.1021	-0.1723	0.2005	0.0095	X
	10	54.2558	-23.9325	-5.0373	54.1858	-23.9017	-4.9075	0.0700	0.0308	-0.1298	0.1507	0.0700	Х
	11	49,1196	-44.1130	1.0290	49,1050	-43,9066	1.5964	0.0146	0.2064	-0.5674	0.6040	-0.5674	Z
	12	49.0227	-38,9666	0.9980	49.0399	-38.8564	1.4671	-0.0172	0.1102	-0.4691	0.4822	-0.4691	Z
	13	49.0736	-34,4701	1.0269	49,0699	-34.3104	1.3359	0.0037	0.1597	-0.3090	0.3478	-0.3090	Z
	14	49.2485	-29.2974	1.0590	49.2212	-29.1876	1.2106	0.0273	0.1098	-0.1516	0.1892	-0.1516	Z
	15	47.6760	-24.2771	-3.4781	47.6147	-24.2799	-3.3634	0.0613	-0.0028	-0.1147	0.1301	-0.1147	Z
	16	45.3677	-44.3534	1.0694	45.3497	-44.1724	1.6008	0.0180	0.1810	-0.5314	0.5617	-0.5314	Z
	17	45.3550	-38.6755	1.0162	45.3575	-38.5700	1.4563	-0.0025	0.1055	-0.4401	0.4526	-0.4401	Z
-	18	45.2338	-34.0715	1.0534	45.2614	-33.9069	1.3404	-0.0276	0.1646	-0.2870	0.3320	-0.2870	Z
AN	19	45.3695	-28.7195	1.0905	45.3375	-28.5942	1.2211	0.0320	0.1253	-0.1306	0.1838	-0.1306	Z
L N	20	44.2984	-24.5312	-2.7471	44.2542	-24.5020	-2.7276	0.0442	0.0292	-0.0195	0.0564	-0.0195	Z
0 C	21	39.4428	-44.0672	1.0704	39.4756	-43.9790	1.5178	-0.0328	0.0882	-0.4474	0.4572	-0.4474	Z
ELC	22	39.3532	-38.4618	1.0816	39.3536	-38.4325	1.4619	-0.0004	0.0293	-0.3803	0.3814	-0.3803	Z
-	23	39.2954	-33.6951	1.1147	39.2852	-33.6330	1.3113	0.0102	0.0621	-0.1966	0.2064	-0.1966	Z
	24	39.4025	-28.4989	1.1654	39.3707	-28.4222	1.2336	0.0318	0.0767	-0.0682	0.1074	-0.0682	Z
	25	38.9815	-24.5391	-3.1734	38.9424	-24.5581	-3.0972	0.0391	-0.0190	-0.0762	0.0877	-0.0762	Z
[26	33.9684	-43.3390	0.2932	33.9882	-43.2864	0.4357	-0.0198	0.0526	-0.1425	0.1532	-0.1425	Z
[27	33.9357	-37.5086	0.3255	34.0013	-37.5014	0.4333	-0.0656	0.0072	-0.1078	0.1264	-0.1078	Z
	28	33.8737	-32.6633	0.3679	33.8944	-32.5885	0.4290	-0.0207	0.0748	-0.0611	0.0988	-0.0611	Z
	29	33.9585	-27.8768	0.3754	33.9473	-27.7873	0.3828	0.0112	0.0895	-0.0074	0.0905	-0.0074	Z
[30	33 9151	-24 4372	-2 6870	33 8540	-24 4793	-2 6236	0.0611	-0.0421	-0.0634	0.0976	-0.0634	7

^A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant

compartment. ^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment. ^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure F-9. Floor Pan Deformation Data – Set 2, Test No. STBRT-2

iodel Year:	20	14			Make:	Do	dge			Model:	Ram	1500 Qua	d Cab
								SH - SEI 1		-			
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔΥ ^Α (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directio for
	1	44 7943	-25 5194	-26 7423	44 7566	-25 1076	-26 6690	0.0377	0 4118	0.0733	0 4200	0.4200	XY
	2	41.3286	-13.8267	-29.6817	41.4057	-13.3973	-29.6573	-0.0771	0.4294	0.0244	0.4369	0.4369	X, Y, 1
HS N	3	43.4547	3.5109	-27.8708	43.6974	3.9255	-27.9271	-0.2427	-0.4146	-0.0563	0.4837	0.4837	X, Y, 1
AS I	4	40.2527	-25.0599	-16.2534	40.1967	-24.4403	-16.1907	0.0560	0.6196	0.0627	0.6253	0.6253	X, Y, 1
с -	5	38.2248	-14.2603	-15.6618	38.2107	-13.6790	-15.6506	0.0141	0.5813	0.0112	0.5816	0.5816	X, Y,
	6	36.8454	4.4709	-16.7907	37.0307	4.9768	-16.8705	-0.1853	-0.5059	-0.0798	0.5446	0.5446	X, Y,
	7	49.0428	-27.7458	-2.1969	48.9883	-25.9191	-1.9420	0.0545	1.8267	0.2549	1.8452	1.8267	Y
SAN	8	51.7873	-27.6273	-0.8357	51.7468	-26.4597	-0.7131	0.0405	1.1676	0.1226	1.1747	1.1676	Y
	9	52.0463	-27.8069	-4.2682	51.9809	-26.1790	-4.1942	0.0654	1.6279	0.0740	1.6309	1.6279	Ŷ
H	10	18.3548	-30.7730	-16.0679	17.7941	-31.24/8	-16.0/94	0.5607	-0.4/48	-0.0115	0.7348	-0.4/48	Y
IN R	10	29.7133	-31.0203	-15.7576	29.1100	-30.9384	-10.9602	0.5953	0.0879	-0.2280	0.0437	0.0879	Y
385	12	18 2492	-30.1700	-13.2744	17 8774	-29.3949	-10.0002	0.3718	-0.2043	-0.3010	0.9104	-0.2043	Y V
A D	14	27 8184	-31.0621	-2.8867	27 4879	-31 1784	-3.0354	0.3305	-0.1163	-0 1487	0.4240	-0.2043	Y
2	15	35.9511	-30.5065	-3.1760	35.5356	-30.2981	-3.5266	0.4155	0.2084	-0.3506	0.5822	0.2084	Y
	16	26 2264	-16 5087	-45 1174	26 3488	-16 5336	-45 1327	-0 1224	-0.0249	-0.0153	0 1258	-0.0153	7
	17	27.6867	-10.1813	-45.3916	27.7840	-10.1609	-45.4220	-0.0973	0.0204	-0.0304	0.1040	-0.0304	Z
	18	28.4419	-3.8030	-45.5801	28.4986	-3.8033	-45.6292	-0.0567	-0.0003	-0.0491	0.0750	-0.0491	Z
(Z) -	19	29.0228	2.2933	-45.6074	29.1500	2.2701	-45.6483	-0.1272	0.0232	-0.0409	0.1356	-0.0409	Z
	20	28.9618	8.0091	-45.5966	29.0644	8.0147	-45.6483	-0.1026	-0.0056	-0.0517	0.1150	-0.0517	Z
	21	20.1432	-15.8230	-45.9652	20.1495	-15.8111	-45.9907	-0.0063	0.0119	-0.0255	0.0288	-0.0255	Z
	22	21.4378	-9.0336	-46.2363	21.5253	-9.0940	-46.2666	-0.0875	-0.0604	-0.0303	0.1106	-0.0303	Z
Ч	23	22.0233	-3.5251	-46.4764	22.1467	-3.5425	-46.5233	-0.1234	-0.0174	-0.0469	0.1332	-0.0469	Z
8	24	22.5354	2.0963	-46.5381	22.6405	2.0355	-46.5984	-0.1051	0.0608	-0.0603	0.1356	-0.0603	Z
-	25	22.8890	1.5532	-46.4953	23.0024	1.5562	-46.5640	-0.1134	-0.0030	-0.0687	0.1326	-0.0687	2
-	20	12.4536	-15.7544	-46.3095	12.6078	-15.7497	-46.3900	-0.1542	0.0047	-0.0205	0.1556	-0.0205	Z 7
-	27	12.4747	-2 4109	-40.7301	13.0438	-9.0243	-40.7730	-0.0900	-0.0302	-0.0555	0.1172	-0.0555	7
ŀ	29	13 4204	1 9233	-47 0321	13 5699	1 8644	-47.0982	-0.1495	0.0589	-0.0661	0.1737	-0.0661	7
	30	13.3879	7.7196	-47.0226	13.5809	7.7359	-47.1053	-0.1930	-0.0163	-0.0827	0.2106	-0.0827	Z
	31	47.0777	-26.0110	-29.8539	47.2151	-25.8424	-29.8127	-0.1374	0.1686	0.0412	0.2214	0.1736	Y. Z
4 8	32	43.1356	-24.9353	-32.6026	43.2849	-24.8172	-32.5769	-0.1493	0.1181	0.0257	0.1921	0.1209	Y, Z
A mu	33	39.7963	-24.2260	-34.9352	39.9735	-24.1652	-34.9723	-0.1772	0.0608	-0.0371	0.1910	0.0608	Y
A axi	34	36.6738	-23.5748	-37.0020	36.8205	-23.4891	-37.0295	-0.1467	0.0857	-0.0275	0.1721	0.0857	Y
Ϋ́ΣΎ	35	33.0305	-23.0957	-39.1498	33.2713	-23.0619	-39.1620	-0.2408	0.0338	-0.0122	0.2435	0.0338	Y
	36	30.2982	-21.7922	-41.4069	30.4750	-21.7752	-41.4196	-0.1768	0.0170	-0.0127	0.1781	0.0170	Y
	31	47.0777	-26.0110	-29.8539	47.2151	-25.8424	-29.8127	-0.1374	0.1686	0.0412	0.2214	0.1686	Y
3AR	32	43.1356	-24.9353	-32.6026	43.2849	-24.8172	-32.5769	-0.1493	0.1181	0.0257	0.1921	0.1181	Y
ial L	33	39.7963	-24.2260	-34.9352	39.9735	-24.1652	-34.9/23	-0.1772	0.0608	-0.0371	0.1910	0.0608	Y
A-PI Late	34	30.0738	-23.5/48	-37.0020	30.8205	-23.4891	-37.0295	-0.1467	0.0857	-0.0275	0.1721	0.0857	Y
	36	30 2982	-23.0907	-41 4069	30 4750	-21 7752	-39.1020	-0.2400	0.0330	-0.0122	0.2433	0.0330	Y Y
B-PILLAR Maximum (X, Y, Z)	27	4 2027	22.0006	40.9050	4 4796	22.0595	40 7109	0.0840	0.0110	0.0852	0.1271	0.0046	
	38	8 1045	-25.8486	-33 2130	8.0748	-25 7656	-33 1533	0.0297	0.0830	0.0606	0.1070	0.1070	X Y
	39	5.2701	-27.0596	-28,9675	5.3259	-26,9247	-28,9175	-0.0558	0.1349	0.0500	0.1543	0.1439	Y.7
	40	8.9739	-27.5905	-23.9149	9.0370	-27.4627	-23.8506	-0.0631	0.1278	0.0643	0.1564	0.1431	Y. Z
I ()	37	4.3937	-23.0996	-40.8050	4.4786	-23.0585	-40.7198	-0.0849	0.0411	0.0852	0.1271	0.0411	Y
	38	8.1045	-25.8486	-33.2139	8.0748	-25.7656	-33.1533	0.0297	0.0830	0.0606	0.1070	0.0830	Ý
PIL	39	5.2701	-27.0596	-28.9675	5.3259	-26.9247	-28.9175	-0.0558	0.1349	0.0500	0.1543	0.1349	Y
La P	40	8.9739	-27.5905	-23.9149	9.0370	-27.4627	-23.8506	-0.0631	0.1278	0.0643	0.1564	0.1278	Y

deforming inward toward the occupant compartment. ^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure F-10. Interior Crush Deformation Data – Set 1, Test No. STBRT-2

odel Year:	20	14			Make:	Do	dge			Model:	Ram	1500 Quad	d Cab
					VE	HICLE DE	FORMATIO	N					
					DRIVER S	IDE INTER	RIOR CRUS	H - SET 2	2				
[Pretest	Pretest	Pretest	Posttost V	Posttost V	Posttost 7	AVA	ANA	A 7A	Total A	Cruch ^B	Direction
	POINT	X (in.)	Y (in.)	Z (in.)	(in.)	(in.)	(in.)	۵۸ (in.)	۵۴ (in.)	۵۲ (in.)	(in.)	(in.)	for Crush ^C
	1	46.0656	-45,2535	-30.8309	46.0427	-44,9479	-30.8798	0.0229	0.3056	-0.0489	0.3103	0.3103	X. Y. Z
~	2	42.7727	-33.5047	-33.7450	42.8602	-33.1726	-33.7957	-0.0875	0.3321	-0.0507	0.3472	0.3472	X. Y. Z
HS N	3	45.1376	-16.2041	-31.8775	45.3819	-15.8949	-31.9378	-0.2443	0.3092	-0.0603	0.3987	0.3987	X, Y, Z
Ϋ́Υ	4	41.5026	-44.7607	-20.3529	41.4613	-44.2915	-20.4103	0.0413	0.4692	-0.0574	0.4745	0.4745	X, Y, Z
- ° [5	39.6253	-33.9353	-19.7348	39.6201	-33.5082	-19.8006	0.0052	0.4271	-0.0658	0.4322	0.4322	X, Y, Z
	6	38.5126	-15.1834	-20.8122	38.6973	-14.8300	-20.8932	-0.1847	0.3534	-0.0810	0.4069	0.4069	X, Y, Z
шШ	7	50.2161	-47.6109	-6.2810	50.1895	-45.9889	-6.1471	0.0266	1.6220	0.1339	1.6277	1.6220	Y
ΩZΣ.	8	52.9584	-47.5349	-4.9122	52.9368	-46.5756	-4.9140	0.0216	0.9593	-0.0018	0.9595	0.9593	Y
° 2	9	53.2241	-47.7082	-8.3445	53.1850	-46.2739	-8.3924	0.0391	1.4343	-0.0479	1.4356	1.4343	Y
ų T	10	19.5261	-50.1655	-20.2423	18.9680	-50.7941	-20.4112	0.5581	-0.6286	-0.1689	0.8574	-0.6286	Y
	11	30.8791	-50.5796	-19.9026	30.2946	-50.6395	-20.2831	0.5845	-0.0599	-0.3805	0.7000	-0.0599	Y
505	12	37.7815	-49.8282	-19.3986	37.2118	-49.3923	-19.9239	0.5697	0.4359	-0.5253	0.8891	0.4359	Y
AD C	13	19.3905	-49.7244	-6.6153	19.0208	-50.1405	-6.7519	0.3697	-0.4161	-0.1366	0.5731	-0.4161	Y
ž i	14	28.9492	-50.6261	-7.0369	28.6229	-50.9475	-7.3391	0.3263	-0.3214	-0.3022	0.5487	-0.3214	Y
-	15	37.0896	-50.1842	-7.3029	30.0834	-50.1733	-7.8010	0.4062	0.0109	-0.4981	0.6428	0.0109	ř
F - (Z)	16	27.6759	-35.9290	-49.2287	27.8081	-35.9959	-49.3360	-0.1322	-0.0669	-0.1073	0.1829	-0.1073	2
	17	29.2259	-29.6220	-49.4803	29.3307	-29.6415	-49.5765	-0.1048	-0.0195	-0.0962	0.1436	-0.0962	Z 7
	10	30.0712	-23.2040	40.6550	30.1322	-23.2920	-49.7371	-0.0010	-0.0303	-0.0690	0.1140	-0.0690	7
	20	30 7572	-11.4508	-49.0003	30,8586	-11 4837	-49.7119	-0.1202	-0.0020	-0.0300	0.1350	-0.0300	7
	20	21 6053	-35 1553	-50.0204	21 6218	-35 1831	-50 2068	-0.0165	-0.0023	-0.1161	0.1205	-0.1161	7
	22	22,9960	-28.3841	-50.3383	23.0895	-28,4836	-50.4317	-0.0935	-0.0995	-0.0934	0.1654	-0.0934	7
	23	23.6596	-22.8836	-50.5607	23.7872	-22.9394	-50.6477	-0.1276	-0.0558	-0.0870	0.1642	-0.0870	Z
8	24	24.2509	-17.2699	-50.6044	24.3568	-17.3682	-50.6823	-0.1059	-0.0983	-0.0779	0.1642	-0.0779	Z
2	25	24.6811	-11.8186	-50.5446	24.7936	-11.8534	-50.6083	-0.1125	-0.0348	-0.0637	0.1339	-0.0637	Z
	26	13.9186	-34.9774	-50.5151	14.0829	-35.0162	-50.6274	-0.1643	-0.0388	-0.1123	0.2028	-0.1123	Z
	27	14.0277	-28.7909	-50.8655	14.1306	-28.8884	-50.9684	-0.1029	-0.0975	-0.1029	0.1752	-0.1029	Z
	28	14.5438	-21.6398	-51.0155	14.7014	-21.7061	-51.1087	-0.1576	-0.0663	-0.0932	0.1947	-0.0932	Z
	29	15.1358	-17.3132	-51.1232	15.2863	-17.4124	-51.2094	-0.1505	-0.0992	-0.0862	0.1998	-0.0862	Z
	30	15.1847	-11.5171	-51.0966	15.3771	-11.5417	-51.1754	-0.1924	-0.0246	-0.0788	0.2094	-0.0788	Z
recorders and the set	31	48.3503	-45.7681	-33.9379	48.5004	-45.6941	-34.0215	-0.1501	0.0740	-0.0836	0.1871	0.0740	Y
AR UN	32	44.4311	-44.6291	-36.6938	44.5927	-44.5963	-36.7898	-0.1616	0.0328	-0.0960	0.1908	0.0328	Y
A-PILL Maximi (X, Y,	33	41.1084	-43.8661	-39.0332	41.2976	-43.8827	-39.1901	-0.1892	-0.0166	-0.1569	0.2464	0.0000	NA
	34	38.0010	-43.1650	-41.1004	38.1602	-43.1494	-41.2516	-0.1592	0.0156	-0.1452	0.2160	0.0156	Y NIA
	36	31,6631	-42.0200	-45.2020	31.8517	-42.0091	-45.3912	-0.2329	-0.0300	-0.1207	0.2004	0.0000	NA
	21	49.2502	45 7691	22 0270	49.5004	45 6041	-45.0470	-0.1000	-0.0300	-0.1249	0.1271	0.0000	
~ C	32	40.0000	-40.7001	-36 6039	40.0004	-40.0941	-36 7808	-0.1001	0.0740	-0.0030	0.1071	0.0740	T V
A-PILLAF Lateral ()	33	41 1084	-43 8661	-39 0332	41 2976	-43 8827	-39 1901	-0 1892	-0.0166	-0 1569	0 2464	-0.0166	Y
	34	38.0010	-43,1650	-41.1064	38,1602	-43,1494	-41.2516	-0.1592	0.0156	-0.1452	0.2160	0.0156	Ý
	35	34.3706	-42.6285	-43.2625	34.6235	-42.6591	-43.3912	-0.2529	-0.0306	-0.1287	0.2854	-0.0306	Ý
	36	31.6631	-41.2800	-45.5229	31.8517	-41.3188	-45.6478	-0.1886	-0.0388	-0.1249	0.2295	-0.0388	Y
PILLAR aximum X, Y, Z)	37	5.7412	-42.2245	-44.9938	5.8382	-42.2531	-45.0319	-0.0970	-0.0286	-0.0381	0.1081	0.0000	NA
	38	9.3925	-45.0475	-37.4009	9.3749	-45.0614	-37.4741	0.0176	-0.0139	-0.0732	0.0766	0.0176	X
	39	6.5299	-46.2308	-33.1657	6.5979	-46.2124	-33.2545	-0.0680	0.0184	-0.0888	0.1133	0.0184	Y
ģΣ℃	40	10.2121	-46.8285	-28.1048	10.2863	-46.8361	-28.1808	-0.0742	-0.0076	-0.0760	0.1065	0.0000	NA
¥£	37	5.7412	-42.2245	-44.9938	5.8382	-42.2531	-45.0319	-0.0970	-0.0286	-0.0381	0.1081	-0.0286	Y
a (38	9.3925	-45.0475	-37.4009	9.3749	-45.0614	-37.4741	0.0176	-0.0139	-0.0732	0.0766	-0.0139	Y
ter	39	6.5299	-46.2308	-33.1657	6.5979	-46.2124	-33.2545	-0.0680	0.0184	-0.0888	0.1133	0.0184	Y
Lat B-	40	10.2121	-46.8285	-28.1048	10.2863	-46.8361	-28.1808	-0.0742	-0.0076	-0.0760	0.1065	-0.0076	Y

deforming inward toward the occupant compartment. ^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure F-11. Interior Crush Deformation Data – Set 2, Test No. STBRT-2

			Driver Side Maxi	mum Deformation					
	Reference Se	t 1		Reference Set 2					
Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation		
Roof	-0.1	<u>≤</u> 4	Z	Roof	-0.1	<u>≤</u> 4	Z		
Windshield ^D	0.0	<u>≤</u> 3	X, Z	Windshield ^D	NA	<u>≤</u> 3	X, Z		
A-Pillar Maximum	0.2	≤5	Y, Z	A-Pillar Maximum	0.1	≤ 5	Y		
A-Pillar Lateral	0.2	≤ 3	Y	A-Pillar Lateral	0.1	≤ 3	Y		
B-Pillar Maximum	0.1	≤ 5	Y, Z	B-Pillar Maximum	0.0	≤ 5	Y		
B-Pillar Lateral	0.2	≤ 3	Y	B-Pillar Lateral	0.0	≤ 3	Y		
Toe Pan - Wheel Well	0.7	≤ 9	X, Z	Toe Pan - Wheel Well	0.7	≤ 9	X, Z		
Side Front Panel	1.8	≤ 12	Y	Side Front Panel	1.6	≤ 12	Y		
Side Door (above seat)	0.6	≤ 9	Y	Side Door (above seat)	0.4	≤ 9	Y		
Side Door (below seat)	0.2	≤ 12	Y	Side Door (below seat)	0.0	≤ 12	Y		
Floor Pan	-0.7	<u>≤</u> 12	Z	Floor Pan	-0.6	<u>≤</u> 12	Z		
Dash - no MASH requirement	0.6	NA	X, Y, Z	Dash - no MASH requirement	0.6	NA	X, Y, Z		
³ Positive values denote deform ² For Toe Pan - Wheel Well the or and Z directions. The direction intruding into the occupant com ³ If deformation is observered for and recorded.	ation as inward to direction of defrom of deformation for partment. If directi or the windshield th	ward the occupant of ation may include > Toe Pan -Wheel We on of deformation is nen the windshield	compartment, negat K and Z direction. Fo ell, A-Pillar Maximun s "NA" then no intrus deformation is mea	ive values denote deformations out or A-Pillar Maximum and B-Pillar Ma n, and B-Pillar Maximum only includ sion is recorded and deformation w sured posttest with an examplar vel	ward away from th ximum the directio e components wh ill be 0. hicle, therefore onl	e occupant compar in of deformation ma ere the deformation yone set of referen	tment. ay include X, Y, is positive and ce is measure		
Notes on vehicle interior cr	ush:								

Figure F-12. Max. Occupant Compartment Deformations by Location, Test No. STBRT-2

Figure F-13. Exterior Vehicle Crush (NASS) - Front, Test No. STBRT-2

Figure F-14. Exterior Vehicle Crush (NASS) - Side, Test No. STBRT-2

Appendix G. Accelerometer and Rate Transducer Data Plots, Test No. STBRT-1

Figure G-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. STBRT-1

Figure G-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. STBRT-1

Figure G-3. Longitudinal Occupant Displacement (SLICE-1), Test No. STBRT-1

Figure G-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. STBRT-1

Figure G-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. STBRT-1

Figure G-6. Lateral Occupant Displacement (SLICE-1), Test No. STBRT-1

Figure G-7. Vehicle Angular Displacements (SLICE-1), Test No. STBRT-1

Figure G-8. Acceleration Severity Index (SLICE-1), Test No. STBRT-1

Figure G-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. STBRT-1

Figure G-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. STBRT-1

Figure G-11. Longitudinal Occupant Displacement (SLICE-2), Test No. STBRT-1

Figure G-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. STBRT-1

Figure G-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. STBRT-1

Figure G-14. Lateral Occupant Displacement (SLICE-2), Test No. STBRT-1

Figure G-15. Vehicle Angular Displacements (SLICE-2), Test No. STBRT-1

Figure G-16. Acceleration Severity Index (SLICE-2), Test No. STBRT-1

Appendix H. Accelerometer and Rate Transducer Data Plots, Test No. STBRT-2

Figure H-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. STBRT-2

Figure H-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. STBRT-2

Figure H-3. Longitudinal Occupant Displacement (SLICE-1), Test No. STBRT-2

Figure H-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. STBRT-2

Figure H-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. STBRT-2

Figure H-6. Lateral Occupant Displacement (SLICE-1), Test No. STBRT-2

Figure H-7. Vehicle Angular Displacements (SLICE-1), Test No. STBRT-2

Figure H-8. Acceleration Severity Index (SLICE-1), Test No. STBRT-2

Figure H-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. STBRT-2

Figure H-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. STBRT-2

Figure H-11. Longitudinal Occupant Displacement (SLICE-2), Test No. STBRT-2

Figure H-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. STBRT-2

Figure H-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. STBRT-2

Figure H-14. Lateral Occupant Displacement (SLICE-2), Test No. STBRT-2

Figure H-15. Vehicle Angular Displacements (SLICE-2), Test No. STBRT-2

Figure H-16. Acceleration Severity Index (SLICE-2), Test No. STBRT-2

END OF DOCUMENT