

Research Project Number TPF-5(193) Supplement #153

MASH 2016 TEST LEVEL 4 EVALUATION OF MNDOT CONCRETE PARAPET WITH BRUSH CURB AND UPPER BEAM AND POST RAIL WITH NEW TAPERED END SECTION

Submitted by

Miguel A. Hinojosa, B.S.M.E. Graduate Research Assistant

Scott Rosenbaugh, M.S.C.E. Research Engineer

Robert W. Bielenberg, M.S.M.E. Research Engineer

Joshua S. Steelman, Ph.D, P.E. Associate Professor Ronald K. Faller, Ph.D., P.E. Director and Research Full Professor

> Cody S. Stolle, Ph.D. Research Assistant Professor

Jennifer D. Rasmussen, Ph.D., P.E. Former Research Associate Professor

James C. Holloway, M.S.C.E. Research Engineer & Assistant Director – Physical Testing Division

MIDWEST ROADSIDE SAFETY FACILITY

Nebraska Transportation Center University of Nebraska-Lincoln

Main Office Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street

> Lincoln, Nebraska 68583-0853 (402) 472-0965

Outdoor Test Site 4630 N.W. 36th Street Lincoln, Nebraska 68524

Submitted to

MINNESOTA DEPARTMENT OF TRANSPORTATION

395 John Ireland Blvd St. Paul, Minnesota 55155

MwRSF Research Report No. TRP-03-403-21

March 26, 2021

TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
 4. Title and Subtitle MASH 2016 Test Level 4 Evaluation of MnDOT Concrete Parapet with Brush Curb and Upper Beam and Post Rail with New Tapered End Section 		5. Report Date March 26, 2021
		6. Performing Organization Code
7. Author(s) Hinojosa, M.A., Faller, R.K., Rosenbaugh, S.K., Stolle, C.S., Bielenberg, R.W, Rasmussen J.D., Steelman, J.S., and Holloway, J.C.		8. Performing Organization Report No. TRP-03-403-21
9. Performing Organization Name and Ad Midwest Roadside Safety Facility (MwRSF) Nebraska Transportation Center University of Nebraska-Lincoln	dress	10. Work Unit No.
Main Office: Prem S. Paul Research Center at Whittier School Room 130, 2200 Vine Street Lincoln, Nebraska 68583-0853	Dutdoor Test Site: 4630 N.W. 36th Street Lincoln, Nebraska 68524	11. Contract TPF-5(193) Supplement #153
12. Sponsoring Agency Name and Address Minnesota Department of Transportation		13. Type of Report and Period Covered Final Report: 2019-2021
St. Paul, Minnesota 55155		14. Sponsoring Agency Code TPF-5(193) Supplement #153

15. Supplementary Notes

Prepared in cooperation with U.S. Department of Transportation, Federal Highway Administration

16. Abstract

The Minnesota Department of Transportation (MnDOT) desires to use a concrete parapet with a brush curb, upper beam and post rail, and a new tapered end section along high-speed highways and roadways when bridge structures are encountered. The MnDOT combination bridge railing system was full-scale crash tested according to the Test Level 4 (TL-4) procedures described in the *Manual for Assessing Safety Hardware* (MASH 2016). The combination bridge railing system consisted of a 21-in. tall concrete parapet with a 6-in. tall and 2-in. wide brush curb at the lower front face and eight rail and post assemblies, which consisted of one steel rail welded onto two or three steel posts with their own welded base plates. The steel assemblies were anchored to the top face of the concrete parapet.

In full-scale crash test nos. MNCBR-1, MNCBR-2, and MNCBR-3, the bridge railing system was evaluated according to MASH 2016 test designation nos. 4-12, 4-11, and 4-10, respectively. The 2013 International Durastar 4300 SBA single-unit truck impacted the system 60¹/₈ in. upstream from the centerline of the splice between post nos. 6 and 7 with a speed of 57.4 mph at an angle of 15.4 degrees. The 2014 Dodge Ram 1500 crew cab pickup truck impacted the system 69.9 in. upstream from the centerline of post no. 23 with a speed of 63.9 mph at an angle of 25.1 degrees. The 2009 Kia Rio small car impacted the system 70⁷/₆ in. upstream from the centerline of 62.5 mph at an angle of 25.5 degrees. The vehicles were successfully contained and redirected, resulting in minimal plastic deformation to the upper steel railing and moderate to minimal scraping and gouging of the concrete parapet. The combination bridge railing system was found to meet the AASHTO MASH 2016 TL-4 impact safety criteria.

17. Key Words		18. Distribution Statement	
Highway Safety, Crash Test, Roadside Appurtenances, Compliance Test, MASH 2016, Test Level 4, TL-4, High-Speed Highways and Roadways, Concrete Parapet, Brush Curb, Beam and Post, Hybrid Bridge Rail, and Combination Bridge Rail		No restrictions. This document is available through the National Technical Information Service. 5285 Port Royal Road Springfield, VA 22161	
19. Security Classification (of this report) Unclassified	20. Security Classification (of this page) Unclassified	21. No. of Pages 313	22. Price

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

DISCLAIMER STATEMENT

This material is based upon work supported by the Federal Highway Administration, U.S. Department of Transportation and the Minnesota Department of Transportation. The contents of this report reflect the views and opinions of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the University of Nebraska-Lincoln, Minnesota Department of Transportation, nor the Federal Highway Administration, U.S. Department of Transportation. This report does not constitute a standard, specification, or regulation. Trade or manufacturers' names, which may appear in this report, are cited only because they are considered essential to the objectives of the report. The United States (U.S.) government, the State of Nebraska, and the State of Minnesota do not endorse products or manufacturers.

UNCERTAINTY OF MEASUREMENT STATEMENT

The Midwest Roadside Safety Facility (MwRSF) has determined the uncertainty of measurements for several parameters involved in standard full-scale crash testing and non-standard testing of roadside safety features. Information regarding the uncertainty of measurements for critical parameters is available upon request by the sponsor and the Federal Highway Administration.

INDEPENDENT APPROVING AUTHORITY

The Independent Approving Authority (IAA) for the data contained herein was Dr. Cheng Feng, Post-Doctoral Research Associate.

ACKNOWLEDGEMENTS

The authors wish to acknowledge several sources that made a contribution to this project: (1) the Minnesota Department of Transportation and (2) MwRSF personnel for constructing the barriers and conducting the crash tests. Acknowledgement is also given to the following individuals who contributed to the completion of this research project.

Midwest Roadside Safety Facility

J.D. Reid, Ph.D., Professor K.A. Lechtenberg, M.S.M.E., Research Engineer M. Asadollahi Pajouh, Ph.D., P.E., Research Assistant Professor A.T. Russell, B.S.B.A., Testing and Maintenance Technician II E.W. Krier, B.S., Construction and Testing Technician I S.M. Tighe, Construction and Testing Technician I D.S. Charroin, Construction and Testing Technician I R.M. Novak, Construction and Testing Technician I T.C. Donahoo, Construction and Testing Technician I J.T. Jones, Construction and Testing Technician I J.E. Kohtz, B.S.M.E., Former CAD Technician E.L. Urbank, B.A., Research Communication Specialist Z.Z. Jabr, Engineering Technician Undergraduate and Graduate Research Assistants

Minnesota Department of Transportation

Michael Elle, P.E., Design Standards Engineer Paul Rowekamp, P.E., Bridge Standards and Research Engineer Joe Black, P.E., Bridge Standards Unit David Dahlberg, P.E., Bridge Design Manual & Policy Unit Jihshya Lin, P.E., Bridge Evaluation and Fabrication Methods Engineer

SI* (MODERN METRIC) CONVERSION FACTORS				
	APPROXI	MATE CONVERSIONS	S TO SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
in.	inches	25.4	millimeters	mm
ft	teet	0.305	meters	m
yd mi	yards	0.914	lilomotors	m
1111	lilles		knometers	KIII
in^2	square inches	645 2	square millimeters	mm ²
ft ²	square feet	0.093	square meters	m ²
vd ²	square vard	0.836	square meters	m ²
ac	acres	0.405	hectares	ha
mi ²	square miles	2.59	square kilometers	km ²
		VOLUME		
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft ³	cubic feet	0.028	cubic meters	m ³
yd ³	cubic yards	0.765	cubic meters	m ³
	NOTE:	volumes greater than 1,000 L shall	be shown in m ³	
		MASS		
OZ 11-	ounces	28.35	grams	g 1
IU T	short top (2,000 lb)	0.434	megagrams (or "metric ton")	Kg Mg (or "t")
1	Short ton (2,000 10)	FMPFRATURE (evact de	arrage)	wig (of t)
	1	$\frac{1}{2} EWH EKAT OKE (exact ue) 5(E 32)/9$	(grees)	
°F	Fahrenheit	3(1-32)/9 or $(E_{-}32)/1.8$	Celsius	°C
fc	foot-candles	10.76	lux	lx
fl	foot-Lamberts	3.426	candela per square meter	cd/m ²
	F	ORCE & PRESSURE or S	TRESS	
lbf	poundforce	4.45	newtons	Ν
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa
	APPROXIM	IATE CONVERSIONS	FROM SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		~
mm	millimeters	0.039	inches	in.
m	meters	3.28	feet	ft
m	meters	1.09	yards	yd
km	kilometers	0.621	miles	mi
		AREA		
mm^2	square millimeters	0.0016	square inches	in ²
m ²	square meters	10.764	square feet	ft ²
m ²	square meters	1.195	square yard	yd-
km^2	square kilometers	0.386	square miles	ac mi ²
KIII	square knometers	VOLUME	square miles	1111
mL	milliliter	0.034	fluid ounces	floz
L	liters	0.264	gallons	gal
m ³	cubic meters	35.314	cubic feet	ft ³
m ³	cubic meters	1.307	cubic yards	yd ³
		MASS		
g	grams	0.035	ounces	OZ
kg	kilograms	2.202	pounds	lb
Mg (or "t")	megagrams (or "metric ton")	1.103	short ton (2,000 lb)	Т
	7	EMPERATURE (exact de	egrees)	
°C	Celsius	1.8C+32	Fahrenheit	°F
		ILLUMINATION		
lx	lux	0.0929	foot-candles	fc
cd/m ²	candela per square meter	0.2919	foot-Lamberts	fl
	FORCE & PRESSURE or STRESS			
N 1-D-	newtons	0.225	poundforce	lbf
кра	KIIODASCAIS	0.145	poundiorce per square inch	101/1n ⁻

*SI is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

TABLE OF CONTENTS

DISCLAIMER STATEMENT	ii
UNCERTAINTY OF MEASUREMENT STATEMENT	ii
INDEPENDENT APPROVING AUTHORITY	ii
ACKNOWLEDGEMENTS	ii
LIST OF FIGURES	vi
LIST OF TABLES	xiii
1 INTRODUCTION 1.1 Background 1.2 Research Objective 1.3 Scope	1 12 12
2 TEST REQUIREMENTS AND EVALUATION CRITERIA 2.1 Test Requirements 2.2 Critical Impact Point 2.3 Evaluation Criteria	13 13 15 16
3 DESIGN DETAILS	17
 4 TEST CONDITIONS. 4.1 Test Facility	56 56 56 70 70 70 71 71
 5 FULL-SCALE CRASH TEST NO. MNCBR-1 5.1 Weather Conditions 5.2 Test Description 5.3 Barrier Damage 5.4 Vehicle Damage 5.5 Occupant Risk 5.6 Barrier Loads 5.7 Discussion 	76 76 76 85 105 113 114 116
6 FULL-SCALE CRASH TEST NO. MNCBR-2 6.1 Weather Conditions 6.2 Test Description	118 118 118

6.3 Barrier Damage
6.4 Vehicle Damage
6.5 Head Ejection
6.6 Occupant Risk
6.7 Barrier Loads
6.8 Discussion
7 FULL-SCALE CRASH TEST NO. MNCBR-3
7.1 Weather Conditions 155
7.2 Test Description
7.3 Barrier Damage
7.4 Vehicle Damage
7.5 Head Ejection
7.6 Occupant Risk
7.7 Barrier Loads
7.8 Discussion
8 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS
8.1 Summary
8.2 Conclusions
8.3 Recommendations
9 MASH EVALUATION
10 REFERENCES
11 APPENDICES
Appendix A. Material Specifications
Appendix B. Vehicle Center of Gravity Determination
Appendix C. Vehicle Deformation Records
Appendix D. Accelerometer and Rate Transducer Data Plots, Test No. MNCBR-1 247
Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. MNCBR-2 279
Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. MNCBR-3 296

LIST OF FIGURES

Figure 1. Typical Concrete Parapet with Brush Curb and Upper Beam and Post Rail	1
Figure 2. 2020 MnDOT Standard Plans FIG.5-397.157(E) Sheets 1 of 2 [6]	3
Figure 3. 2020 MnDOT Standard Plans FIG.5-397.157(E) Sheets 2 of 2 [6]	4
Figure 4. 2020 MnDOT Standard Plans FIG.5–397.157(A) Sheets 1 of 2 [7]	5
Figure 5. 2020 MnDOT Standard Plans FIG.5-397.157(A) Sheets 2 of 2 [7]	6
Figure 6. 1995 MnDOT Detail Design No. 1 [5], Test Nos. MN-1 and MN-2	9
Figure 7. 1995 MnDOT Details Design No. 2 [5], Test No. MN-3 and MN-4	10
Figure 8. 1995 MnDOT-MwRSF Design No. 3 [5]	11
Figure 9. System Layout, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	19
Figure 10. Parapet Approach Details, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	20
Figure 11. Parapet Approach Details, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	21
Figure 12. Profile View, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	22
Figure 13. Parapet Transition, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	23
Figure 14. New Taper End Section, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	24
Figure 15. Concrete Parapet, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	25
Figure 16. New Taper End Section Rebar Details, Test Nos. MNCBR-1, MNCBR-2, and	
MNCBR-3	26
Figure 17. Rebar Details, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	27
Figure 18. Additional Rebar Details, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	28
Figure 19. End Plate Assembly, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	29
Figure 20. End Plate Assembly Components, Test Nos. MNCBR-1, MNCBR-2, and	
MNCBR-3	30
Figure 21. Rail and Post Assemblies, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	31
Figure 22. Post Attachment Details, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	32
Figure 23. Rail Assemblies, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	33
Figure 24. Rail Components, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	34
Figure 25. Rail Sleeve Assembly Option 1, Test Nos. MNCBR-1, MNCBR-2, and	
MNCBR-3	35
Figure 26. Rail Sleeve Option 2, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	36
Figure 27. Rail Sleeve Assembly Option 3, Test Nos. MNCBR-1, MNCBR-2, and	
MNCBR-3	37
Figure 28. Rail Sleeve Assembly Option 4, Test Nos. MNCBR-1, MNCBR-2, and	20
MNCBR-3	38
Figure 29. Post Components, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	39
Figure 30. Post Components, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	40
Figure 31. System Rebar, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	41
Figure 32. System Rebar, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	42
Figure 33. System Rebar, Test Nos. MINCBR-1, MINCBR-2, and MINCBR-3	43
Figure 34. Hardware, Test Nos. MINCBR-1, MINCBR-2, and MINCBR-3	44
Figure 35. Bill of Materials, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	45
Figure 36. Bill of Materials, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	46
rigure 57. New Concrete Tapered End Kedar Installation, Test Nos. MINCBR-1, MNCDD 2 and MNCDD 2	17
WINCOK-2, dilu WINCOK-3	4/
MNCPD 2 and MNCPD 2	10
IVIINUDK-2, AIIU IVIINUDK-3	4ð

Figure 39.	New Concrete Tapered End Installation, Test Nos. MNCBR-1, MNCBR-2, and	
	MNCBR-3	49
Figure 40.	System Installation, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	50
Figure 41.	Downstream End, Post Nos. 23, 22, 23, and Upper Rail, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	51
Figure 42.	Downstream and Upstream Ends, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	52
Figure 43.	Splice Connection, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	53
Figure 44.	Post Assembly, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	54
Figure 45.	Post Assembly, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	55
Figure 46.	Test Vehicle, Test No. MNCBR-1	58
Figure 47.	Test Vehicle's Interior Floorboards and Undercarriage, Test No. MNCBR-1	59
Figure 48.	Vehicle Dimensions, Test No. MNCBR-1	60
Figure 49.	Target Geometry, Test No. MNCBR-1	61
Figure 50.	Test Vehicle, Test No. MNCBR-2	62
Figure 51.	Test Vehicle's Interior Floorboards and Undercarriage, Test No. MNCBR-2	63
Figure 52.	Vehicle Dimensions, Test No. MNCBR-2	64
Figure 53.	Target Geometry, Test No. MNCBR-2	65
Figure 54.	Test Vehicle, Test No. MNCBR-3	66
Figure 55.	Test Vehicle's Interior Floorboards and Undercarriage, Test No. MNCBR-3	67
Figure 56.	Vehicle Dimensions, Test No. MNCBR-3	68
Figure 57.	Target Geometry, Test No. MNCBR-3	69
Figure 58.	Camera Locations, Speeds, and Lens Settings, Test No. MNCBR-1	73
Figure 59.	Camera Locations, Speeds, and Lens Settings, Test No. MNCBR-2	74
Figure 60.	Camera Locations, Speeds, and Lens Settings, Test No. MNCBR-3	75
Figure 61.	Impact Location, Test No. MNCBR-1	77
Figure 62.	Sequential Photographs, Test No. MNCBR-1	79
Figure 63.	Sequential Photographs, Test No. MNCBR-1	80
Figure 64.	Sequential Photographs, Test No. MNCBR-1	81
Figure 65.	Documentary Photographs, Test No. MNCBR-1	82
Figure 66.	Documentary Photographs, Test No. MNCBR-1	83
Figure 67.	Vehicle Final Position and Trajectory Marks, Test No. MNCBR-1	84
Figure 68.	System Damage, Test No. MNCBR-1	87
Figure 69.	System Damage, Test No. MNCBR-1	88
Figure 70.	Concrete Gouging and Spalling, Test No. MNCBR-1	89
Figure 71.	Concrete Gouging and Spalling, Test No. MNCBR-1	90
Figure 72.	Rail and Post Damage, Test No. MNCBR-1	91
Figure 73.	Rail and Post Damage, Test No. MNCBR-1	92
Figure 74.	Rail and Post Damage, Post No. 8, Test No. MNCBR-1	93
Figure 75.	Rail and Post Damage, Post No. 7, Test No. MNCBR-1	94
Figure 76.	Rail and Post Damage, Post No. 6, Test No. MNCBR-1	95
Figure 77.	Vehicle Final Position and Trajectory Marks, Test No. MNCBR-1	96
Figure 78.	Upstream View of End of Rail, Test No. MNCBR-1	97
Figure 79.	Vehicle Debris on Bridge Railing, Test No. MNCBR-1	98
Figure 80.	Non-Traffic Side Rail and Post Damage, Post No. 14, Test No. MNCBR-1	99
Figure 81.	Rail and Post Damage, Post No. 13, Test No. MNCBR-1	100
Figure 82.	Rail and Post Damage, Post Nos. 12 and 11, Test No. MNCBR-1	101

Figure 83. Rail and Post Damage, Post Nos. 11 and 10, Test No. MNCBR-1	102
Figure 84. Rail and Post Damage, Post Nos. 10 and 9, Test No. MNCBR-1	103
Figure 85. Permanent Set, Dynamic Deflection, and Working Width, Test No. MNCBR-1	104
Figure 86. Vehicle Damage, Test No. MNCBR-1	106
Figure 87. Vehicle Damage, Test No. MNCBR-1	107
Figure 88. Undercarriage Damage, Test No. MNCBR-1	108
Figure 89. Vehicle Floor Pan Damage, Test No. MNCBR-1	109
Figure 90. Vehicle Floor Pan Damage, Test No. MNCBR-1	110
Figure 91. Undercarriage Damage, Test No MNCBR-1	111
Figure 92. Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-1)	
Located at c.g., Test No. MNCBR-1	114
Figure 93. Perpendicular and Tangential Forces Imparted to the Barrier System (TDAS-1)	
Located at Rear Axle, Test No. MNCBR-1	115
Figure 94. Perpendicular and Tangential Forces Imparted to the Barrier System (TDAS-2)	
Located at Rear Axle, Test No. MNCBR-1	115
Figure 95. Summary of Test Results and Sequential Photographs, Test No. MNCBR-1	117
Figure 96. Impact Location, Test No. MNCBR-2	119
Figure 97. Sequential Photographs, Test No. MNCBR-2	121
Figure 98. Sequential Photographs, Test No. MNCBR-2	122
Figure 99. Documentary Photographs, Test No. MNCBR-2	123
Figure 100. Vehicle Final Position and Trajectory Marks, Test No. MNCBR-2	124
Figure 101. System Damage, Test No. MNCBR-2	126
Figure 102. System Damage, Test No. MNCBR-2	127
Figure 103. Damage on Splice between Post Nos. 22 and 21, Test No. MNCBR-2	128
Figure 104. Concrete Gouging and Spalling, Test No. MNCBR-2	129
Figure 105. Rail and Post No. 22 Damage, Test No. MNCBR-2	130
Figure 106. Rail and Post No. 22 Damage, Test No. MNCBR-2	131
Figure 107. Rail and Post No. 23 Damage, Test No. MNCBR-2	132
Figure 108. Rail and Post No. 23 Damage, Test No. MNCBR-2	133
Figure 109. End Post, Tapered End, and Rail and Post No. 23 Damage, Test No.	
MNCBR-2	134
Figure 110. Post No. 23 Damage, Test No. MNCBR-2	135
Figure 111. End Post, Tapered End, and Rail Damage, Test No. MNCBR-2	136
Figure 112. Permanent Set, Dynamic Deflection, and Working Width, Test No. MNCBR-2.	137
Figure 113. Vehicle Damage, Test No. MNCBR-2	139
Figure 114. Vehicle Damage, Test No. MNCBR-2	140
Figure 115. Vehicle Damage, Test No. MNCBR-2	141
Figure 116. Vehicle Damage, Test No. MNCBR-2	142
Figure 117. Vehicle Damage, Test No. MNCBR-2	143
Figure 118. Vehicle Damage, Test No. MNCBR-2	144
Figure 119. Vehicle Floor Pan Damage, Test No. MNCBR-2	145
Figure 120. Undercarriage Damage, Test No. MNCBR-2	146
Figure 121. Undercarriage Damage, Test No. MNCBR-2	147
Figure 122. Documentary Photographs, Test No. MNCBR-2	149
Figure 123. Overhead View of Head Ejection During Impact Event, Test No. MNCBR-2	150
Figure 124. Downstream Behind View of Head Ejection During Impact Event, Test No.	
MNCBR-2	151

Figure 125. Perpendicular and Tangential Forces Imparted to the Barrier System	
(SLICE-2), Test No. MNCBR-2	153
Figure 126. Summary of Test Results and Sequential Photographs, Test No. MNCBR-2	154
Figure 127. Impact Location, Test No. MNCBR-3	156
Figure 128. Sequential Photographs, Test No. MNCBR-3	158
Figure 129. Sequential Photographs, Test No. MNCBR-3	159
Figure 130. Documentary Photographs, Test No. MNCBR-3	160
Figure 131. Vehicle Final Position and Trajectory Marks, Test No. MNCBR-3.	161
Figure 132. System Damage. Test No. MNCBR-3	163
Figure 133. System Damage. Test No. MNCBR-3	164
Figure 134. Concrete Gouging. Test No. MNCBR-3	
Figure 135. Concrete Gouging, Test No. MNCBR-3	
Figure 136 Rail and Post No 4 Damage. Test No MNCBR-3	.167
Figure 137 Rail and Post No 4 Damage, Test No MNCBR-3	168
Figure 138 Rail and Post No. 4 Damage, Test No. MNCBR-3	169
Figure 139 Permanent Set Dynamic Deflection and Working Width Test No MNCBR-3	170
Figure 140 Vehicle Damage Test No. MNCBR-3	172
Figure 141 Vehicle Damage, Test No. MNCBR-3	173
Figure 142 Vehicle Damage, Test No. MNCBR-3	174
Figure 143 Vehicle Floor Pan Damage Test No. MNCBR-3	175
Figure 144 Undercarriage Damage Test No. MNCBR-3	176
Figure 145 Windshield Damage (Post-Test) Test No. MNCBR-3	177
Figure 146 Documentary Photographs Test No MNCBR-3	179
Figure 147 Documentary Photographs, Test No. MNCBR-3	180
Figure 148 Overhead View of Head Ejection During Impact Event Test No MNCBR-3	181
Figure 149 Downstream Behind View of Head Fiection During Impact Event, Test No.	
MNCBR-3	182
Figure 150 Unstream View of Head Fiection During Impact Event Test No MNCBR-3	183
Figure 150. Upstream Rehind View of Head Frection During Impact Event, Test No. Mittebrt 5	
MNCBR-3	184
Figure 152 Perpendicular and Tangential Forces Imparted to the Barrier System	
(SLICE-1) Test No MNCBR-3	186
Figure 153 Summary of Test Results and Sequential Photographs Test No. MNCBR-3	187
Figure A-1 HSS 10x/x ¹ / ₄ Test Nos MNCBR-1 MNCBR-2 and MNCBR-3 (Item Nos	
a) and a?)	202
Figure A_2 HSS 7x5x ⁵ / ₄ Test Nos MNCBR-1 MNCBR-2 and MNCBR-3 (Item No. 33)	202
Figure A-3 Rail Sleeve Assembly and 1/-in Plate Test Nos MNCBR-1 MNCBR-2 and	205
MNCBR-3 (Item Nos 24, 25 and 26)	204
Figure A-4 Post Base Plate Test Nos MNCBR-1 MNCBR-2 and MNCBR-3	204
(Item No. 27)	205
Figure A-5 Post Bent Plate Test Nos MNCBR-1 MNCBR-2 and MNCBR-3	205
(Item No. 28)	206
Figure A_6 Concrete Mix Test Nos MNCBP 1 MNCBP 2 and MNCBP 2	200
(Item No. b1) (1 tem No. b1)	207
Figure A-7 Concrete Compression Test Test Nos MNCRP_1 MNCRP_2 and	207
MNCBR-3 (Item No. b1)	208
$\mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} \mathbf{M} $	200

Figure A-8. Concrete Compression Test, Test Nos. MNCBR-1, MNCBR-2, and	
MNCBR-3 (Item No. b1)	209
Figure A-9. Concrete Compression Test, Test Nos. MNCBR-1, MNCBR-2, and	
MNCBR-3 (Item No. b1)	210
Figure A-10. Concrete Compression Test, Test Nos. MNCBR-1, MNCBR-2, and	
MNCBR-3 (Item No. b1)	211
Figure A-11. #5 Rebar, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item Nos. b2,	
b3, and b4)	212
Figure A-12. #5 Rebar, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item Nos. b2,	
b3, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15, b16, and b17)	213
Figure A-13. Backer Rod, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item Nos.	
b18 and b19)	214
Figure A-14. Anchor Rod, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	
(Item No. c1)	215
Figure A-15. Anchor Plate and Plate Washer, Test Nos. MNCBR-1, MNCBR-2, and	
MNCBR-3 (Item Nos. c2 and c4)	216
Figure A-16. Heavy Hex Nut, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	015
(Item No. c3)	217
Figure A-17. SAE Washer, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	010
(Item No. c5)	218
Figure A-18. End Plate, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item No. d1)	219
Figure A-19. Standard Pipe, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	220
(Item No. 02)	220
Figure A 21 Concrete Joint Scalant Test Nos MNCDR 1 MNCDR 2 and MNCDR 2	
Figure A-21. Concrete Joint Seatant. Test Nos. MINUDK-1, MINUDK-2, and MINUDK-5	
(Item No, 2)	าาา
(Item No. e2) Figure P. 1. Vehicle Mass Distribution, Test No. MNCPP, 1	222
(Item No. e2) Figure B-1. Vehicle Mass Distribution, Test No. MNCBR-1 Figure B-2. Vehicle Mass Distribution, Test No. MNCBR-2	222
(Item No. e2) Figure B-1. Vehicle Mass Distribution, Test No. MNCBR-1 Figure B-2. Vehicle Mass Distribution, Test No. MNCBR-2 Figure B-3. Vehicle Mass Distribution, Test No. MNCBR-3	222 224 225 225
(Item No. e2) Figure B-1. Vehicle Mass Distribution, Test No. MNCBR-1 Figure B-2. Vehicle Mass Distribution, Test No. MNCBR-2 Figure B-3. Vehicle Mass Distribution, Test No. MNCBR-3 Figure C-1 Eloor Pan Deformation Data – Set 1 Test No. MNCBR-1	222 224 225 226 228
(Item No. e2) Figure B-1. Vehicle Mass Distribution, Test No. MNCBR-1 Figure B-2. Vehicle Mass Distribution, Test No. MNCBR-2 Figure B-3. Vehicle Mass Distribution, Test No. MNCBR-3 Figure C-1. Floor Pan Deformation Data – Set 1, Test No. MNCBR-1 Figure C-2 Eloor Pan Deformation Data – Set 2 Test No. MNCBR-1	222 224 225 226 228 229
(Item No. e2) Figure B-1. Vehicle Mass Distribution, Test No. MNCBR-1 Figure B-2. Vehicle Mass Distribution, Test No. MNCBR-2 Figure B-3. Vehicle Mass Distribution, Test No. MNCBR-3 Figure C-1. Floor Pan Deformation Data – Set 1, Test No. MNCBR-1 Figure C-2. Floor Pan Deformation Data – Set 2, Test No. MNCBR-1 Figure C-3. Occupant Compartment Deformation Data – Set 1, Test No. MNCBR-1	222 224 225 226 228 229 230
(Item No. e2) Figure B-1. Vehicle Mass Distribution, Test No. MNCBR-1 Figure B-2. Vehicle Mass Distribution, Test No. MNCBR-2 Figure B-3. Vehicle Mass Distribution, Test No. MNCBR-3 Figure C-1. Floor Pan Deformation Data – Set 1, Test No. MNCBR-1 Figure C-2. Floor Pan Deformation Data – Set 2, Test No. MNCBR-1 Figure C-3. Occupant Compartment Deformation Data – Set 2 Test No. MNCBR-1 Figure C-4 Occupant Compartment Deformation Data – Set 2 Test No. MNCBR-1	222 224 225 226 228 229 230 231
(Item No. e2) Figure B-1. Vehicle Mass Distribution, Test No. MNCBR-1 Figure B-2. Vehicle Mass Distribution, Test No. MNCBR-2 Figure B-3. Vehicle Mass Distribution, Test No. MNCBR-3 Figure C-1. Floor Pan Deformation Data – Set 1, Test No. MNCBR-1 Figure C-2. Floor Pan Deformation Data – Set 2, Test No. MNCBR-1 Figure C-3. Occupant Compartment Deformation Data – Set 1, Test No. MNCBR-1 Figure C-4. Occupant Compartment Deformation Data – Set 2, Test No. MNCBR-1 Figure C-5. Maximum Occupant Compartment Deformations by Location. Test No.	222 224 225 226 228 229 230 231
 (Item No. e2) Figure B-1. Vehicle Mass Distribution, Test No. MNCBR-1 Figure B-2. Vehicle Mass Distribution, Test No. MNCBR-2 Figure B-3. Vehicle Mass Distribution, Test No. MNCBR-3 Figure C-1. Floor Pan Deformation Data – Set 1, Test No. MNCBR-1 Figure C-2. Floor Pan Deformation Data – Set 2, Test No. MNCBR-1 Figure C-3. Occupant Compartment Deformation Data – Set 1, Test No. MNCBR-1 Figure C-4. Occupant Compartment Deformation Data – Set 2, Test No. MNCBR-1 Figure C-5. Maximum Occupant Compartment Deformations by Location, Test No. MNCBR-1 	222 224 225 226 228 229 230 231
 (Item No. e2) Figure B-1. Vehicle Mass Distribution, Test No. MNCBR-1 Figure B-2. Vehicle Mass Distribution, Test No. MNCBR-2 Figure B-3. Vehicle Mass Distribution, Test No. MNCBR-3 Figure C-1. Floor Pan Deformation Data – Set 1, Test No. MNCBR-1 Figure C-2. Floor Pan Deformation Data – Set 2, Test No. MNCBR-1 Figure C-3. Occupant Compartment Deformation Data – Set 1, Test No. MNCBR-1 Figure C-4. Occupant Compartment Deformation Data – Set 2, Test No. MNCBR-1 Figure C-5. Maximum Occupant Compartment Deformations by Location, Test No. MNCBR-1	222 224 225 226 228 229 230 231 232 232
 (Item No. e2) Figure B-1. Vehicle Mass Distribution, Test No. MNCBR-1 Figure B-2. Vehicle Mass Distribution, Test No. MNCBR-2 Figure B-3. Vehicle Mass Distribution, Test No. MNCBR-3 Figure C-1. Floor Pan Deformation Data – Set 1, Test No. MNCBR-1 Figure C-2. Floor Pan Deformation Data – Set 2, Test No. MNCBR-1 Figure C-3. Occupant Compartment Deformation Data – Set 1, Test No. MNCBR-1	222 224 225 226 228 229 230 231 232 233 234
 (Item No. e2) Figure B-1. Vehicle Mass Distribution, Test No. MNCBR-1 Figure B-2. Vehicle Mass Distribution, Test No. MNCBR-2 Figure B-3. Vehicle Mass Distribution, Test No. MNCBR-3 Figure C-1. Floor Pan Deformation Data – Set 1, Test No. MNCBR-1 Figure C-2. Floor Pan Deformation Data – Set 2, Test No. MNCBR-1 Figure C-3. Occupant Compartment Deformation Data – Set 1, Test No. MNCBR-1 Figure C-4. Occupant Compartment Deformation Data – Set 2, Test No. MNCBR-1 Figure C-5. Maximum Occupant Compartment Deformations by Location, Test No. MNCBR-1 Figure C-6. Floor Pan Deformation Data – Set 1, Test No. MNCBR-2 Figure C-7. Floor Pan Deformation Data – Set 2, Test No. MNCBR-2 Figure C-8. Occupant Compartment Deformation Data – Set 1, Test No. MNCBR-2 	222 224 225 226 228 229 230 231 232 233 234 235
 (Item No. e2)	222 224 225 226 228 229 230 231 232 233 234 235 236
 (Item No. e2)	222 224 225 226 228 229 230 231 232 233 233 235 236 237
 (Item No. e2) Figure B-1. Vehicle Mass Distribution, Test No. MNCBR-1 Figure B-2. Vehicle Mass Distribution, Test No. MNCBR-2 Figure B-3. Vehicle Mass Distribution, Test No. MNCBR-3 Figure C-1. Floor Pan Deformation Data – Set 1, Test No. MNCBR-1 Figure C-2. Floor Pan Deformation Data – Set 2, Test No. MNCBR-1 Figure C-3. Occupant Compartment Deformation Data – Set 1, Test No. MNCBR-1 Figure C-4. Occupant Compartment Deformation Data – Set 2, Test No. MNCBR-1 Figure C-5. Maximum Occupant Compartment Deformations by Location, Test No. MNCBR-1 Figure C-6. Floor Pan Deformation Data – Set 1, Test No. MNCBR-2 Figure C-7. Floor Pan Deformation Data – Set 2, Test No. MNCBR-2 Figure C-8. Occupant Compartment Deformation Data – Set 1, Test No. MNCBR-2 Figure C-9. Occupant Compartment Deformation Data – Set 1, Test No. MNCBR-2 Figure C-9. Occupant Compartment Deformation Data – Set 1, Test No. MNCBR-2 Figure C-10. Exterior Vehicle Crush (NASS) – Front, Test No. MNCBR-2 	222 224 225 226 228 229 230 231 232 233 234 235 236 237 238
 (Item No. e2) Figure B-1. Vehicle Mass Distribution, Test No. MNCBR-1	222 224 225 226 228 229 230 231 232 233 234 235 236 237 238
 (Item No. e2)	222 224 225 226 228 229 230 231 232 233 234 235 236 237 238 238
 (Item No. e2) Figure B-1. Vehicle Mass Distribution, Test No. MNCBR-1	222 224 225 226 228 229 230 231 232 233 235 236 237 238 239 239 240
 (Item No. e2)	222 224 225 226 228 229 230 231 232 233 233 234 235 236 237 238 238 239 240 241
 (Item No. e2) Figure B-1. Vehicle Mass Distribution, Test No. MNCBR-1 Figure B-2. Vehicle Mass Distribution, Test No. MNCBR-2 Figure B-3. Vehicle Mass Distribution, Test No. MNCBR-3 Figure C-1. Floor Pan Deformation Data – Set 1, Test No. MNCBR-1 Figure C-2. Floor Pan Deformation Data – Set 2, Test No. MNCBR-1 Figure C-3. Occupant Compartment Deformation Data – Set 1, Test No. MNCBR-1 Figure C-4. Occupant Compartment Deformation Data – Set 2, Test No. MNCBR-1 Figure C-5. Maximum Occupant Compartment Deformations by Location, Test No. MNCBR-1 Figure C-6. Floor Pan Deformation Data – Set 1, Test No. MNCBR-2 Figure C-7. Floor Pan Deformation Data – Set 2, Test No. MNCBR-2 Figure C-8. Occupant Compartment Deformation Data – Set 1, Test No. MNCBR-2 Figure C-9. Occupant Compartment Deformation Data – Set 2, Test No. MNCBR-2 Figure C-10. Exterior Vehicle Crush (NASS) – Front, Test No. MNCBR-2 Figure C-11. Exterior Vehicle Crush (NASS) – Side, Test No. MNCBR-2 Figure C-12. Maximum Occupant Compartment Deformations by Location, Test No. MNCBR-2 Figure C-13. Floor Pan Deformation Data – Set 1, Test No. MNCBR-3 Figure C-14. Floor Pan Deformation Data – Set 2, Test No. MNCBR-3 	222 224 225 226 228 229 230 231 232 233 234 235 236 237 238 239 239 240 241 242

Figure C-17. Exterior Vehicle Crush (NASS) – Front, Test No. MNCBR-3......244 Figure C-19. Maximum Occupant Compartment Deformations by Location, Test No. Figure D-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MNCBR-1......248 Figure D-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MNCBR-1249 Figure D-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MNCBR-1250 Figure D-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MNCBR-1......251 Figure D-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MNCBR-1......252 Figure D-6. Lateral Occupant Displacement (SLICE-1), Test No. MNCBR-1......253 Figure D-7. Vehicle Angular Displacements (SLICE-1), Test No. MNCBR-1......254 Figure D-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MNCBR-1......256 Figure D-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MNCBR-1257 Figure D-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MNCBR-1258 Figure D-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MNCBR-1......259 Figure D-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MNCBR-1......260 Figure D-14. Lateral Occupant Displacement (SLICE-2), Test No. MNCBR-1......261 Figure D-15. Vehicle Angular Displacements (SLICE-2), Test No. MNCBR-1......262 Figure D-17. 10-ms Average Longitudinal Deceleration (TDAS-1), Test No. MNCBR-1264 Figure D-18. Longitudinal Occupant Impact Velocity (TDAS-1), Test No. MNCBR-1......265 Figure D-19. Longitudinal Occupant Displacement (TDAS-1), Test No. MNCBR-1......266 Figure D-20. 10-ms Average Lateral Deceleration (TDAS-1), Test No. MNCBR-1......267 Figure D-21. Lateral Occupant Impact Velocity (TDAS-1), Test No. MNCBR-1268 Figure D-23. Vehicle Angular Displacements (TDAS-1), Test No. MNCBR-1......270 Figure D-24. Acceleration Severity Index (TDAS-1), Test No. MNCBR-1......271 Figure D-25. 10-ms Average Longitudinal Deceleration (TDAS-2), Test No. MNCBR-1272 Figure D-26. Longitudinal Occupant Impact Velocity (TDAS-2), Test No. MNCBR-1.....273 Figure D-27. Longitudinal Occupant Displacement (TDAS-2), Test No. MNCBR-1.....274 Figure D-28. 10-ms Average Lateral Deceleration (TDAS-2), Test No. MNCBR-1......275 Figure D-29. Lateral Occupant Impact Velocity (TDAS-2), Test No. MNCBR-1276 Figure D-31. Acceleration Severity Index (TDAS-2), Test No. MNCBR-1......278 Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MNCBR-2......281 Figure E-3. Longitudinal Occupant Displacement (SLICE-2), Test No. MNCBR-2......282 Figure E-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. MNCBR-2......284 Figure E-7. Vehicle Angular Displacements (SLICE-2), Test No. MNCBR-2......286 Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MNCBR-2......289 Figure E-11. Longitudinal Occupant Displacement (SLICE-1), Test No. MNCBR-2......290

Figure E-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. MNCBR-2	292
Figure E-14. Lateral Occupant Displacement (SLICE-1), Test No. MNCBR-2	293
Figure E-15. Vehicle Angular Displacements (SLICE-1), Test No. MNCBR-2	294
Figure E-16. Acceleration Severity Index (SLICE-1), Test No. MNCBR-2	295
Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MNCBR-3	297
Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MNCBR-3	298
Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MNCBR-3	299
Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MNCBR-3	300
Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MNCBR-3	301
Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. MNCBR-3	302
Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. MNCBR-3	303
Figure F-8. Acceleration Severity Index (SLICE-1), Test No. MNCBR-3	304
Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MNCBR-3	305
Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MNCBR-3	306
Figure F-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MNCBR-3	307
Figure F-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MNCBR-3	308
Figure F-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MNCBR-3	309
Figure F-14. Lateral Occupant Displacement (SLICE-2), Test No. MNCBR-3	310
Figure F-15. Vehicle Angular Displacements (SLICE-2), Test No. MNCBR-3	311
Figure F-16. Acceleration Severity Index (SLICE-2), Test No. MNCBR-3	312

LIST OF TABLES

Table 1. MASH 2016 TL-4 Crash Test Conditions for Longitudinal Barriers	13
Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barriers	14
Table 3. Weather Conditions, Test No. MNCBR-1	76
Table 4. Sequential Description of Impact Events, Test No. MNCBR-1	78
Table 5. Maximum Occupant Compartment Intrusion by Location, Test No. MNCBR-1	112
Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MNCBR-1	113
Table 7. Weather Conditions, Test No. MNCBR-2	118
Table 8. Sequential Description of Impact Events, Test No. MNCBR-2	120
Table 9. Maximum Occupant Compartment Intrusion by Location, Test No. MNCBR-2	148
Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MNCBR-2	152
Table 11. Weather Conditions, Test No. MNCBR-3	155
Table 12. Sequential Description of Impact Events, Test No. MNCBR-3	157
Table 13. Maximum Occupant Compartment Intrusion by Location, Test No. MNCBR-3	178
Table 14. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MNCBR-3	185
Table 15. Summary of Safety Performance Evaluation, Test No. MNCBR-1	190
Table 16. Summary of Safety Performance Evaluation, Test Nos. MNCBR-2 and	
MNCBR-3	191
Table A-1. Bill of Materials, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3	199
Table A-2. Bill of Materials, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3, Cont	200
Table A-3. Bill of Materials, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3, Cont	201

1 INTRODUCTION

1.1 Background

The Minnesota Department of Transportation (MnDOT) currently uses a combination bridge railing system that is configured with a concrete parapet, a lower brush curb, and an upper steel beam and post railing structure, as shown in Figure 1. The crashworthiness of this bridge railing system was previously recognized as meeting the National Cooperative Highway Research Program (NCHRP) Report 350, *Recommended Procedures for the Safety Performance Evaluation of Highway Features* [1], Test-Level 4 (TL-4) safety performance standards. NCHRP Report 350 has since been superseded by the American Association of State Highway and Transportation Officials' (AASHTO) *Manual for Assessing Safety Hardware* (MASH 2009 [2] and MASH 2016 [3]). Thus, it was desired to evaluate the bridge railing system to the MASH 2016 impact safety standards. In an effort to encourage state departments of transportation (DOTs) and hardware developers to advance their designs, the Federal Highway Administration (FHWA) and AASHTO developed an implementation policy that included sunset dates for various categories of roadside safety hardware. The new policy recommended that all bridge rails installed on federal-aid roadways were to be evaluated under MASH 2016 by December 31, 2019 [4]. MNDOT began to plan for this crash testing effort in 2018.

Figure 1. Typical Concrete Parapet with Brush Curb and Upper Beam and Post Rail

MnDOT plans to use the combination bridge railing system with a new, tapered concrete end section between the top of the parapet and the bottom of the steel tube rail while incorporating a standardized concrete end post at each end. Two different end region scenarios would be considered: (1) the combination bridge railing system with a 2-in. long expansion joint on the roadway, as shown in Figures 2 and 3 and (2) the combination bridge railing system with a ¹/₄-in. long saw cut joint on the roadway, as shown in Figures 4 and 5. The combination bridge railing system shown in Figures 2 through 5 (MnDOT's Standard Plan FIG.5–397.157(A)) would be the focus of the research study reported herein.

In 1995, MwRSF conducted a crash testing program for MnDOT on the original bridge railing system consisting of a concrete parapet, a lower brush curb, and an upper steel beam and post rail [5]. Through the effort, three design variations were tested and evaluated according to TL-4 safety performance standards under NCHRP Report 350 [1]. Results from these full-scale vehicle crash tests were described in MwRSF's report entitled *Test Level 4 Evaluation of Minnesota Combination Bridge Rail* [5].

Figure 2. 2020 MnDOT Standard Plans FIG.5-397.157(E) Sheets 1 of 2 [6]

 ω

March 26, 2021 MwRSF Report No. TRP-03-403-21

Figure 3. 2020 MnDOT Standard Plans FIG.5-397.157(E) Sheets 2 of 2 [6]

March 26, 2021 MwRSF Report No. TRP-03-403-21

4

Figure 4. 2020 MnDOT Standard Plans FIG.5–397.157(A) Sheets 1 of 2 [7]

March 26, 2021 MwRSF Report No. TRP-03-403-21

S

Figure 5. 2020 MnDOT Standard Plans FIG.5-397.157(A) Sheets 2 of 2 [7]

For the testing conducted in 1995, design no. 1 consisted of a TS 6-in. x 3-in. x $\frac{1}{4}$ -in. steel structural tube rail mounted on 10 $\frac{1}{4}$ -in. tall, TS 6-in. x 6-in. x $\frac{1}{4}$ -in. vertical steel posts that were anchored on a 20-in. tall by 12-in. wide concrete parapet with a 6-in. tall by 6-in. wide brush curb [5], as shown in Figure 6. The steel post was welded to an ASTM A709 Grade 50 post base plate with round oversized holes for the anchor bolts measuring 11 in. x 9 $\frac{1}{2}$ in. x $\frac{3}{4}$ in. and with a $\frac{3}{8}$ -in. 3-way pass weld around all edges [5], as shown in Figure 6. Test no. MN-1 consisted of a 1987 Ford F600 single-unit truck impacting the combination bridge rail (design no. 1) at 50.8 mph and 16.2 degrees, as shown in Figure 6. The impact point was located 5 ft upstream from the splice between post nos. 4 and 5. The performance of test no. MN-1 was determined to be satisfactory according to NCHRP Report 350 [5].

For test no. MN-2 on design no. 1, a 1986 Ford F250 pickup truck impacted the combination bridge railing system at 60.6 mph and 25.5 degrees. The critical impact point was located 4 ft – 11 in. upstream from the splice between post nos. 8 and 9. The post-test investigation on the combination bridge railing system revealed that the pickup truck's wheel climbed the 6-in. tall brush curb, causing the vehicle's front bumper to rise up and extend between the concrete parapet and the upper steel railing system. This extension allowed the front bumper to snag on the steel base plate, steel nuts, anchor bolt ends, and structural steel tube post. Further, the post-test investigation into the vehicle's damage confirmed the snagging evidence observed on the bridge railing hardware. The pickup truck's front bumper contacted the right-front tire, which then was pushed backward into the right-side floorboard, which caused the right-side door and lower body to buckle. Significant undercarriage damage and deformation to the frame was observed due to the vehicle's front bumper contact on the upper railing system. As a result of this occupant compartment deformation, the performance of test no. MN-2 was determined to be unsatisfactory according to the occupant risk criteria set forth in NCHRP Report 350 [5, 1].

Following test no. MN-2, several retrofit options were considered to reduce the potential for vehicle snagging on the vertical steel posts. A retrofit option was chosen to continue the research effort, which consisted of extending the structural steel tube rail forward and expanding the concrete barrier by 4 in. toward the roadway. This option would also reduce the width of the brush curb in front of the concrete barrier, thereby reducing the potential for the brush curb to cause vehicle instabilities during wheel ride up on the curb [5].

Design no. 2 consisted of a 20-in. tall by 16-in. wide concrete parapet. The upper steel railing system was extended by welding a TS 4-in. x 3-in. x $\frac{1}{4}$ -in. steel rail to the front face of the existing TS 6-in. x 3-in. x $\frac{1}{4}$ -in. steel structural tube that was mounted on 10 $\frac{1}{4}$ -in. tall, TS 6-in. x 6-in. x $\frac{1}{4}$ -in. steel posts, as shown in Figure 7. For test no. MN-3, a 1986 Ford F250 pickup truck impacted the modified combination bridge railing system (design no. 2) at 62.5 mph and 25.9 degrees. The critical impact point was located 4 ft – 11 in. upstream from the splice between post nos. 8 and 9. Although the test vehicle's front bumper snagged on the steel posts, the occupant compartment deformation criteria was judged to be marginally acceptable. All occupant risk evaluation criteria for test no. MN-3 were well below recommended limits. Hence, test no. MN-3 was determined to be acceptable to the criteria set forth in NCHRP Report 350 [5, 1].

For test no. MN-4 on design no. 2, a 1988 Ford Festiva small car impacted the modified combination bridge railing system at 61.0 mph and 20.6 degrees. The critical impact point was located 3 ft – $7\frac{1}{4}$ in. upstream from the centerline of post no. 8. There was virtually no damage to the upper steel railing system, and the vehicle damage was deemed to be relatively minor. The

performance of test no. MN-4 on the MnDOT combination bridge railing system was determined to be satisfactory according to the criteria set forth in NCHRP Report 350 [5, 1].

Following the completion of the crash testing program, MwRSF worked with MnDOT to develop design no. 3 as a recommendation. Design no. 3 consisted of a TS 10-in. x 4-in. x $\frac{1}{4}$ -in. steel tube rail mounted across the TS 7-in. x 5-in. x $\frac{5}{16}$ -in. steel posts, which were anchored on a 20-in. tall by 16-in. wide reinforced concrete parapet [5], as shown in Figure 8.

Since the 1995 study and during the planning of the MASH crash testing program, MnDOT, in consultation with MwRSF, made further modifications to the bridge railing system. Some of these updates included: (1) the brush curb geometry changed from an inclined slope to a vertical front face, measuring 6 in. tall and 2 in. wide with a 1-in. radius at the top, as shown in Figure 4; (2) a new concrete end post was incorporated in combination with a tapered end section between the parapet and upper metal rail, as shown in Figure 4; (3) the post assembly and anchorage hardware was updated; and (4) the anchor holes were updated from oversized to slotted holes. The slotted holes for the anchor bolts were designed to facilitate the construction tolerances at the bridge site. For the last modification, the post was fabricated with a TS 7-in. x 5-in. x 5/16-in. steel post that was welded to the post base plate with a ³/₈-in. three pass weld, as shown in Figure 8. The new detail used an HSS $7x5x^{5/16}$ steel structural tube that was welded to the post base plate with a 5/16-in. fillet weld, as shown in Figures 3 and 5. The threaded anchor rod length was updated from 10 in. to 12 in. long. The 16-in. x 9¹/₂-in. x ³/₄-in. post base plate was fabricated with a 2-in. diameter vent hole, while the new detail specified a 6-in. by 4-in. rectangular vent hole. MnDOT's prior design set the ³/₄-in. thick steel post base plate on top of a 1-in. thick epoxy grout pad, while the new revision did not use the epoxy grout pad for the anchorage assembly.

Figure 6. 1995 MnDOT Detail Design No. 1 [5], Test Nos. MN-1 and MN-2

Figure 7. 1995 MnDOT Details Design No. 2 [5], Test No. MN-3 and MN-4

Figure 8. 1995 MnDOT-MwRSF Design No. 3 [5]

1.2 Research Objective

The objective of this research effort was to conduct an AASHTO MASH 2016 TL-4 safety performance evaluation on MnDOT's modified concrete parapet with a brush curb, an upper steel beam and post railing, and a new tapered concrete end section adjacent to a concrete end post.

1.3 Scope

The research objectives included the construction of a test installation consisting of a concrete parapet with a brush curb, an upper steel beam and post railing, and a new tapered concrete end section adjacent to a concrete end post. The test installation was full-scale crash tested and evaluated according to TL-4 safety performance criteria, as published in MASH 2016 [3]. The full-scale vehicle crash tests were conducted in accordance with MASH 2016 test designation nos. 4-10, 4-11, 4-12 with an 1100C small car sedan, a 2270P pickup truck, and a 10000S single-unit truck, respectively [3]. The critical impact points were selected using MASH guidance [3]. A summary of test results was provided herein, along with summary and conclusions.

2 TEST REQUIREMENTS AND EVALUATION CRITERIA

2.1 Test Requirements

Longitudinal barriers, such as rigid barriers, must satisfy impact safety standards in order to be declared eligible for federal reimbursement by the FHWA for use on the National Highway System (NHS). For new hardware, these safety standards consist of the guidelines and procedures published in AASHTO MASH 2016 [3]. According to TL-4 of MASH 2016, longitudinal barrier systems must be subjected to three full-scale vehicle crash tests, as summarized in Table 1. Note that there is no difference between MASH 2009 [2] and MASH 2016 [3] for longitudinal barriers, except that additional occupant compartment deformation measurements, photographs, and documentation are required by MASH 2016 [3].

Table 1. MASH 2016 TL-4 Crash Test Conditions for Longitudinal Barriers

Hardware Type	Test Designation No.	Test Vehicle	Vehicle Weight, lb	Target Impact Conditions		Evaluation
				Speed, mph	Angle, deg.	Criteria ¹
Longitudinal Barrier	4-10	1100C	2,420	62	25	A,D,F,H,I
	4-11	2270P	5,000	62	25	A,D,F,H,I
	4-12	10000S	22,000	56	15	A,D,G

¹ Evaluation criteria are explained in Table 2.

Structural Adequacy	А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.						
Occupant Risk	D.	Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.						
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.						
	G.	It is preferable, although not essential, that the vehicle remain upright during and after collision.						
	H. Occupant Impact Velocity (OIV) (see Appendix A, Section A5 MASH 2016 for calculation procedure) should satisfy the fol limits:							
		Occupant Impact Velocity Limits						
		Component	Preferred	Maximum				
		Longitudinal and Lateral	30 ft/s	40 ft/s				
	I. The Occupant Ridedown Acceleration (ORA) (see Appendix Section A5.2.2 of MASH 2016 for calculation procedure) sho satisfy the following limits:							
		Occupant Ridedown Acceleration Limits						
		Component	Preferred	Maximum				
		Longitudinal and Lateral	15.0 g's	20.49 g's				

Table 2. MASH 2016 Evaluation Criteria for Longitudinal Barriers

2.2 Critical Impact Point

In MASH 2016 [3], the impact point refers to the location at which the test vehicle first contacts the test article. The impact point for a redirective, longitudinal barrier can affect its overall safety performance. The potential for vehicle instability, rollover, snag, pocketing, excessive interior occupant deformation, elevated occupant risk, test article penetration, and structural failure is often associated with the selection of the impact point, used to evaluate the barrier system. Within practical limits, the impact location should be selected to represent the point along the barrier system that will maximize the risk for test failure. The impact location that maximizes the risk of test failure is known as the critical impact point (CIP).

MnDOT's combination bridge railing system is configured with a lower, rigid, reinforcedconcrete parapet along with an upper metal beam and post railing. MASH 2016 specifies that postand-beam longitudinal barriers may have two potential critical CIPs, one associated with wheel snagging and pocketing on a post (i.e., hard point) and another that induces maximum loading to a critical portion of the system, such as a rail splice [3]. For the MnDOT combination bridge railing system, wheel snag on lower posts would not be a concern, as no openings exist within the 21-in. tall concrete parapet. As such, maximum loading to the rigid concrete barrier may more likely be associated with an increase in vehicle deformation. At the time of maximum loading, one may begin to observe the engine hood, front bumper, and front fender panel extending over the top of the rigid concrete parapet, where vehicle-to-barrier contact may occur if the metal railing system is located near the front face of the barrier. If the upper metal railing is located farther away from the front face of the rigid concrete barrier, then additional longitudinal distance and time may be appropriate to allow the vehicle to maximize its lateral extent over the top of the parapet. At this point, the vehicle's upper structure may be able to contact the metal structure, snag on vertical elements, interact with horizontal elements, and laterally load elements at splice locations.

When splices are coincident with a hard point, such as at a vertical support post, a single test can be conducted to evaluate both critical points. If splices are spaced away from a hard point, it may be necessary to conduct two full-scale crash tests with a particular vehicle to properly evaluate CIPs. Due to the fact that rail splices within the new combination bridge railing system are located near vertical support posts, it was believed that vehicle snagging on a post, which is near a splice, as well as maximum loading on a post or splice above the parapet could be evaluated with one test per vehicle type. Before selecting the CIPs, it should be noted that the new combination bridge railing system installed along roads would include a standardized, reinforced-concrete end post at each end along with a lateral tapered end section extending toward the interior and located between the upper railing and the lower parapet. Each lateral tapered end section has a blunt end facing toward the interior bridge rail. This tapered end section and blunt end pose a snag risk to passenger vehicles, similar to the risk posed by the vertical support posts and was therefore evaluated as part of the test program.

For the 10000S single-unit truck, it was determined that one test would be conducted within the upstream interior region to impart maximum loading to the upper beam and post railing near a splice location while providing sufficient bridge rail length to evaluate vehicle containment and redirection without override of the barrier. Note that the tapered end section with a blunt end and vertical support posts provide similar snag risk for the bumpers, engine hoods, and quarter panels of passenger vehicles. Therefore, the 1100C and the 2270P pickup truck crash tests were targeted for the downstream end region, where all of the snag risks could be evaluated with a single test with each passenger vehicle type.

The CIP for a rigid barrier under test designation nos. 4-10, 4-11, and 4-12 are 43.3 in. (1,100 mm), 51.2 in. (1,300 mm), and 59.1 in. (1,500 mm), respectively, as provided in Table 2.7 of MASH 2016 [3]. Each metal rail, post, and mounting plate assembly was attached to the top vertical face of the concrete parapet, which provided a lateral offset of 7¹/₂ in. between the front barrier face (excluding brush curb) and the front face of each post. As noted above, it may be prudent to provide additional longitudinal distance and time for the vehicle to maximize its lateral extent over the top of the 21-in. tall concrete parapet. Using a 25-degree impact angle in combination with a 7¹/₂-in. lateral post offset, the additional longitudinal distance required to maximize lateral vehicle extent over the top of the parapet would be approximately 16.1 in. When combining the two initial CIP lengths of 43.3 in. (test designation no. 4-10) and 51.2 in. (test designation no. 4-11) with the additional longitudinal distance of 16.1 in., one would obtain modified CIP distances of approximately 59.4 in. and 67.3 in., which would be measured upstream from the upstream face of a vertical support post. Since each vertical support post is 7 in. wide, the modified CIP distances to the centerline of a post for passenger vehicles would be approximately 62.9 in. and 70.8 in. for test designation nos. 4-10 and 4-11, respectively. Based on approximate calculations for the passenger vehicle CIPs early in the project, the target CIPs were selected to be $63\frac{1}{2}$ in. and $70^{11}\frac{1}{16}$ in. for test designation nos. 4-10 and 4-11, respectively, which were measured upstream from the centerline of post no. 23.

In comparison, test nos. MN-2, MN-3, and MN-4 [5] were conducted by MwRSF on the original combination bridge railing system [5] according to TL-4 of the NCHRP Report 350 impact safety standards [1]. For test nos. MN-2 and MN-3, which used a 2000P pickup truck (test designation no. 4-11), the CIP was 59 in. upstream from the second expansion splice, or 35 in. upstream from the centerline of post no. 8. For test no. MN-4, which used an 820C small car (test designation no. 4-10), the CIP was 67¼ in. upstream from the second expansion splice, or 43¼ in. upstream from the centerline of post no. 8.

2.3 Evaluation Criteria

Evaluation criteria for full-scale vehicle crash testing are based on three appraisal areas: (1) structural adequacy; (2) occupant risk; and (3) vehicle trajectory after collision. Criteria for structural adequacy are intended to evaluate the ability of the bridge railing to contain and redirect impacting vehicles. In addition, controlled lateral deflection of the test article is acceptable. Occupant risk evaluates the degree of hazard to occupants in the impacting vehicle. Post-impact vehicle trajectory is a measure of the potential of the vehicle to result in a secondary collision with other vehicles and/or fixed objects, thereby increasing the risk of injury to the occupants of the impacting vehicle and/or other vehicles. These evaluation criteria are summarized in Table 2 and defined in greater detail in MASH 2016. The full-scale vehicle crash test was conducted and reported in accordance with the procedures provided in MASH 2016.

In addition to the standard occupant risk measures, the Post-Impact Head Deceleration (PHD), the Theoretical Head Impact Velocity (THIV), and the Acceleration Severity Index (ASI) were determined and reported. Additional discussion on PHD, THIV and ASI is provided in MASH 2016.

3 DESIGN DETAILS

The test installation consisted of a 154-ft long concrete parapet with a brush curb, an upper steel beam and post railing system, a downstream concrete end post, and a new tapered end section beyond the last bridge post under the tube rail and above the parapet. The test plan and construction drawings are shown in Figures 9 through 36. Photographs of the construction process and test installation are shown in Figures 37 through 45. Material specifications, mill certifications, and certificates of conformity for the system materials are shown in Appendix A.

The reinforced concrete parapet consisted of a 21-in. tall by 16-in. wide vertical wall with a lower brush curb on the front face, measuring approximately 6 in. tall by 2 in. wide. A new tapered end section was constructed on the interior side of the downstream concrete end post. The tapered end section was positioned above the concrete barrier and below the tube rail and was anchored to the concrete end post and concrete parapet. Details for the reinforced concrete sections are shown in Figures 9 through 17. All steel reinforcing bars conformed to ASTM A615 Grade 60 and were epoxy-coated according to ASTM A775.

The 154-ft long reinforced, concrete barrier consisted of two different sections called the parapet approach and the concrete barrier. The parapet approach section consisted of the end post with a vertical taper and the new tapered end section with a lateral taper. This section included the downstream end of the combination bridge railing system and extended 13 ft -4 in. upstream to the saw cut and triangular control joint combination, as shown in Figures 9 through 11, 13, 14, and 16. The vertical taper section started at the end post and consisted of a 32-in. tall reinforced concrete barrier with a vertical taper of 4 in. over 24 in. upstream and ending at a height of 36 in. The vertical concrete taper was reinforced with five rebar sections, as shown in Figures 10 and 16, which consisted of twelve ASTM A615 Grade 60 #5 longitudinal rebar spaced at 11 in. at various heights and ASTM A615 Grade 60 #5 U-shape stirrups measuring 17 in. x 12 in. and embedded 10 in. into the concrete tarmac, as shown in Figure 17. The 10-in. tall, lateral concrete tapered section started with a width of 16 in. and laterally tapered to an 8¹/₂ in. width, which extended over 22¹/₂ in. It was reinforced with two rebar sections, as shown in Figures 11 and 14, which consisted of ten ASTM A615 Grade 60 #5 longitudinal rebar spaced at 11 in. at various heights, as shown in Figure 17. The lateral tapered end section of the parapet approach was reinforced with four types of stirrups tied together: (1) ASTM A615 Grade 60 #5 vertical stirrups measuring 27 in. long, as shown in Figure 33; (2) ASTM A615 Grade 60 #5 square-shape stirrups measuring 17 in. x 12 in.; (3) ASTM A615 Grade 60 #5 vertical bent stirrups measuring 27 in. long and bent with a 3³/₄ in. radius, as shown in Figure 33; and (4) ASTM A615 Grade 60 #5 U-shape stirrups measuring 17 in. x 12 in. and embedded 10 in. into the concrete tarmac, as shown in Figure 17.

The concrete barrier section started at the saw cut joint and extended 140 ft upstream. The 140 ft – 8 in. long reinforced-concrete barrier section consisted of a 21-in. tall by 16-in. wide vertical wall with a 2-in. wide by 6-in. tall brush curb, which was cast using a Nebraska 47BD concrete mix with a minimum compressive strength of 4,000 psi. This section was reinforced with six ASTM A615 Grade 60 #5 longitudinal rebar spaced at 11 in. at heights of 4 in., $12^{5/16}$ in., and $17^{1/8}$ in., as shown in Figure 17. This section was reinforced with two stirrup types tied together, an ASTM A615 Grade 60 #5 square-shape stirrup measuring 17 in. x 12 in. and an ASTM A615 Grade 60 #5 u-shape stirrup embedded 10 in. into the concrete tarmac, as shown in Figures 12 and 17. Although the barrier may be anchored to various foundations, such as bridge decks, the vertical steel was anchored into existing concrete tarmac for testing purposes, as shown in Figure 37 [8].

All steel reinforcing bars were epoxy-coated according to ASTM A775. The overall height of the system with the parapet and the steel railing was 36 in.

The combination bridge railing system utilized a total of eight rail and post assemblies, which consisted of one rail and post assembly anchored to the top face of the concrete parapet near the new tapered end section. This rail and post assembly consisted of: (1) one $122\frac{1}{2}$ -in. long ASTM A500 Grade B HSS $10x4x^{1/4}$ steel tube; (2) one ASTM A709 Grade 50 rail end plate, measuring 10 in. x 4 in. x $\frac{1}{4}$ in., which was welded to the downstream end of the rail with a $\frac{3}{16}$ -in. fillet weld on the sides; (3) two ASTM A500 Grade B HSS $7x5x\frac{5}{16}$ steel tubes; (4) four ASTM A709 Grade 50 post base plates, measuring 16 in. x $9\frac{1}{2}$ in. x $\frac{3}{4}$ in.; (6) two ASTM A709 Grade 50 post bent plates, measuring $6\frac{1}{2}$ in. x $4\frac{7}{8}$ in. x $\frac{5}{16}$ in.; and (7) one ASTM A500 Grade B rail sleeve, measuring $9\frac{3}{8}$ in. x $3\frac{3}{8}$ in. x $\frac{1}{4}$ in. on the upstream end of the assembly with a $\frac{3}{16}$ -in. fillet weld on the sides and a 6-in. long overhang that is used to connect the next rail and post assembly with a 1-in. gap between rail ends. All components for rail and post assemblies were treated according to ASTM A123 hot-dip galvanizing, as shown in Figure 21.

The post and rail assemblies for the next seven assemblies used: (1) 239-in. long ASTM A500 Grade B HSS 10x4x¹/₄ posts; (2) three ASTM A500 Grade B HSS 7x5x⁵/₁₆ posts; (3) six ASTM A709 Grade 50 post plates, measuring 4 in. x 2 in. x ¹/₄ in.; (4) three ASTM A709 Grade 50 post base plates, measuring 16 in. x 9¹/₂ in. x ³/₄ in.; (5) three ASTM A709 Grade 50 post bent plates, measuring $6^{1}/_{2}$ in. x $4^{7}/_{8}$ in. x $5^{1}/_{16}$ in.; and (6) one ASTM A500 Grade B rail sleeve, measuring $9^{3}/_{8}$ in. x $3^{3}/_{8}$ in. x $4^{7}/_{8}$ in. x $5^{1}/_{16}$ in.; and (6) one ASTM A500 Grade B rail sleeve, measuring $9^{3}/_{8}$ in. x $3^{3}/_{8}$ in. x $4^{7}/_{8}$ in. a $5^{1}/_{16}$ in.; and (6) one ASTM A500 Grade B rail sleeve, measuring $9^{3}/_{8}$ in. x $3^{3}/_{8}$ in. x $4^{7}/_{8}$ in. a $5^{1}/_{16}$ in.; and (6) one ASTM A500 Grade B rail sleeve, measuring $9^{3}/_{8}$ in. x $3^{3}/_{8}$ in. x $4^{7}/_{8}$ in. a $5^{1}/_{16}$ in.; and (6) one ASTM A500 Grade B rail sleeve, measuring $9^{3}/_{8}$ in. x $3^{3}/_{8}$ in. x $4^{7}/_{8}$ in. a $5^{1}/_{16}$ in.; and of the assembly with a $3^{1}/_{16}$ -in. fillet weld on the sides and a 6-in. overhang that is used to connect the next rail and post assembly with a 1-in. gap between rail ends. All components for rail and post assemblies were treated according to ASTM A123 hot-dip galvanizing, as shown in Figure 23.

The post attachment consisted of ASTM A500 Grade B HSS $7x5x^{5/16}$ posts, which was welded to an ASTM A709 Grade 50 post base plates, measuring 16 in. x 9¹/₂ in. x ³/₄ in. with a ⁵/₁₆-in. fillet weld around all edges. An ASTM A709 Grade 50 post bent plate, measuring 6¹/₂ in. x 4⁷/₈ in. x ⁵/₁₆ in., was welded to the back side of the top of the steel tubing. The back side of the rail consisted of an ASTM A500 Grade B HSS 10x4x¹/₄ with two weld options, as shown in Figures 22, 29, and 30.

Four fabrication methods were developed for the $9\frac{3}{8}$ -in. x $3\frac{3}{4}$ -in. x $1\frac{4}{4}$ -in. rail sleeve assembly. Option 1 consisted of two ASTM A709 Grade 50 plates, each measuring 10 in. x $87\frac{3}{8}$ in. x $\frac{1}{4}$ in., which were welded at the corners with a $\frac{1}{4}$ -in. fillet weld to two ASTM A709 Grade 50 plates, each measuring 10 in. x $27\frac{3}{8}$ in. x $\frac{1}{4}$ in., as shown in Figure 25. Option 2 consisted of an HSS $9x3x\frac{1}{4}$ with a 10-in. x 8-in. x $\frac{3}{16}$ -in. ASTM A709 Grade 50 plate welded to the top and bottom faces of the HSS tube with a $\frac{1}{4}$ -in. fillet weld on all sides, as shown in Figure 26. A 10-in. x 2-in. x $\frac{3}{16}$ -in. ASTM A709 Grade 50 plate was welded to each of the side faces of the HSS tube with a $\frac{1}{4}$ -in. fillet weld on all sides, as shown in Figure 26. Option 3 consisted of two ASTM A709 Grade 50 plates, each bent to an L-shape and measuring $9\frac{1}{8}$ in. x $\frac{3}{8}$ in. x $\frac{3}{8}$ in. x $3\frac{3}{8}$ in. x $\frac{1}{4}$ in., as shown in Figure 27. Option 4 consisted of two ASTM A709 Grade 50 plates, each bent to an C-shape with a radius of $\frac{1}{2}$ in. at the corners and measuring $9\frac{3}{8}$ in. x $1\frac{11}{16}$ in. x $\frac{1}{4}$ in., which were welded together along the side corners with a $\frac{1}{4}$ -in. fillet weld to comply with the rail sleeve dimensions of $9\frac{3}{8}$ in. x $3\frac{3}{8}$ in. x $\frac{3}{4}$ in. x $\frac{1}{4}$ in. as shown in Figure 27. Option 4 consisted of two ASTM A709 Grade 50 plates, each bent to an C-shape with a radius of $\frac{1}{2}$ in. at the corners and measuring $\frac{9}{8}$ in. x $1\frac{11}{16}$ in. x $\frac{1}{4}$ in., which were welded together along the side corners with a $\frac{1}{4}$ -in. fillet weld to comply with the rail sleeve dimensions of $\frac{9}{8}$ in. x $\frac{3}{4}$ in. x $\frac{1}{4}$ in., as shown in Figure 28.

Figure 9. System Layout, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 10. Parapet Approach Details, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 11. Parapet Approach Details, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 12. Profile View, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 13. Parapet Transition, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

23

Figure 14. New Taper End Section, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

	►						
││⋪⋬⋶⋽₋⋏∊⋩∊⋧⋶⋳∊⋴∊⋴ │⋪ ⋹∊ ⋪∊⋳⋪⋬∊⋹⋳⋕⋺⋠∊⋠			1 1 n				
│ │ ⋴ ┿╼╞╾┿┍╞╾┿┼ ┫╶┣ ═╋	╪╪╬╧╬╧╧╪╧┝╢┝╵		╊╴┥ ╡				
	╇╫┽╴╋╴╴╇╶┝╢╴ ╋╺╬╸╋╴╴┢╺╞╢╴	╸┫╼╼╺╢╾╺╢╸╫┝╋╸┫┥┫┝┝╧╡╋┝╱ ╕╋╼═╋╼═╫╋╧╋╋╋╋╋╋╋╋╋╋╋╋╋╋	╗┙┠╷╎╌╌╢╌╌╌╢┍╌╌╢┍╌╌╴╟╌╌╌╢╌╌╌╢╌╌╎╴╢ ╞╫┠╍╌╢╍╌╴╢╌╌╢┠╌╌╴╢╌╌╌╴╟╌╌╴╢╌╌╴╢╌╴	forestransformations and forest forest for the state of t			
		<u>I I I I I I I I I I I I I I I I I I I </u>	w Leq				
Itom No	ΟΤΥ	Description	Material Specification	Treatment Specification			
iterri no.	1	Canarata Derenet Assembly	Material Specification				
	1	End Plate Assembly					
h1	1	Concrete	$Min_{in} f'_{in} = 4000 psi$	ASTM A125			
b1 b2	160	#5 Bebar 50" Total Linbent Length	ASTM A615 Cr 60				
b2	1	#5 Rebar, 30 Total Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775)			
b3 b4	2	#5 Rebar, 46 3/4" Total Unbent Length	ASTM A615 Gr. 60	Epoxy-Cooled (ASTM A775)			
b5	156	#5 Rebar, 70" Total Unbent Length	ASTM A615 Gr. 60	Epoxy=Codted (ASTM A775)			
b6	2	#5 Rebar, 100" Total Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775)			
b7	1	#5 Rebar, 98" Total Unbent Length	ASTM A615 Gr. 60	Epoxy-Cogted (ASTM A775)			
b8	1	#5 Rebar, 96" Total Unbent Length	ASTM A615 Gr. 60	Epoxy-Cogted (ASTM A775)			
b9	2	#5 Rebar, 90" Total Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775)			
b10	2	#5 Rebar, 109 5/16" Total Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775)			
b11	2	#5 Rebar, 32" Total Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775)			
b12	4	#5 Rebar, 27" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775)			
b13	4	#5 Rebar, 33 7/8" Total Unbent Length	ASTM A615 Gr. 60	Epoxy—Coated (ASTM A775)			
b14	46	#5 Rebar, 45 3/8" Total Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775)			
b15	22	#5 Rebar, 46" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775)			
b16	6	#5 Rebar, 156" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775)			
b17	6	#5 Rebar, 1672" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775)			
b18	2	1/4" Dia., 8 5/8" Long Vertical Backer Rod	_	Not Needed			
b19	1	1/4" Dia., 15 1/4" Long Horizontal Backer Rod	ASTM D5249 Type 3	Not Needed			
c1	92	7/8"-9 UNC, 12" Long Vertical Anchor Rod	ASTM F1554 Gr. 105	ASTM A153			
cЗ	152	7/8"-9 UNC Heavy Hex Nut	ASTM A563DH	ASTM A153			
c4	23	13"x8"x1/4" Anchor Plate	ASTM A709 Gr. 50	ASTM A123			
c5	184	7/8" Dia. SAE Washer	ASTM A709 Gr. 50	ASTM A153			
				Concrete Parapet with 7 of 28			
			MARSE	Brush Curb and Post Rail			
Notes: (1) Re	Notes: (1) Rebar should be epoxy-coated.			Test Series MNCBR 1/21/2021			
	emical epoxy ad	hesive with a minimum bond strength of 1.670 psi		TEST SETTES WINGER			
	ented openy du	the stand of the standard stranger of 14070 part	Midwest Roadside	Concrete Parapet Assembly			
			Safety Facility	G. NAME. SCALE: 1:50 REV. BY:			
				MCBR-1-3_R32 UNITS: in. KAL/JEK/M AHP/MH/RF			

Figure 15. Concrete Parapet, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 16. New Taper End Section Rebar Details, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 17. Rebar Details, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 18. Additional Rebar Details, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 19. End Plate Assembly, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 20. End Plate Assembly Components, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 21. Rail and Post Assemblies, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 22. Post Attachment Details, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 23. Rail Assemblies, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 24. Rail Components, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 25. Rail Sleeve Assembly Option 1, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 26. Rail Sleeve Option 2, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 27. Rail Sleeve Assembly Option 3, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 28. Rail Sleeve Assembly Option 4, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 29. Post Components, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 30. Post Components, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 31. System Rebar, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 32. System Rebar, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 33. System Rebar, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 34. Hardware, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Item No.	QTY.	Description	Materia Specificatio	n	Treatmer	nt Specification	Hardware Guide
a1	7 HSS10'	"x4"x1/4", 19' 11" Long Tube Rail	ASTM A500 Gr. B		See Assembly		-
a2	1 HSS10'	"x4"x1/4", 10'-2 1/4" Long Tube Rail	ASTM A500 Gr. B		See	Assembly	_
a3	23 HSS 7'	"x5"x5/16", 10 1/4" Long Tube Post	ASTM A500 Gr. B		See Assembly		_
a4 ¹	7 HSS 9'	"x3"x1/4" x10" Rail Sleeve	See Assembly		AS	TM A123	_
a5	46 4"x2"x ⁻	1/4" Post Plate	ASTM A709 Gr. 50		See	Assembly	-
a6	1 10"x4":	x1/4" Rail End Plate	ASTM A709 Gr. 50		See	Assembly	-
۵7	23 16"x9	1/2"x3/4" Post Base Plate	ASTM A709 Gr. 50		See Assembly		-
a8	23 6 1/2'	x4 7/8x5/16 Post Bent Plate	ASTM A709 Gr. 50		See Assembly		_
a9 ²	14 10"x8	7/8"x1/4" Plate	ASTM A709 Gr. 50		See	Assembly	-
a10 ²	14 10"x2	7/8"x1/4" Plate	ASTM A709 Gr. 50		See	Assembly	-
a11	14 10"x8":	x3/16"Plate	ASTM A709 Gr. 50		See	Assembly	_
a12 ³	14 10"x2"	x3/16"Plate	ASTM A709 Gr. 50		See	Assembly	_
a13	7 9"x3"x ⁻	1/4", 10" Long Rail Sleeve	ASTM A500 Gr. B		See	Assembly	-
a14	14 10"x11	13/16"x1/4" Rail Sleeve Bent Plate	ASTM A709 Gr. 50		See Assembly		_
a15 ⁵	14 10"x11	15/16"x1/4" Rail Sleeve Bent Plate	ASTM A709 Gr. 50		See	Assembly	_
b1	1 Concre	te	Min. f'c = 4000 ps	si		-	-
b2	160 #5 Ret	oar, 50" Total Unbent Length	ASTM A615 Gr. 60		Epoxy-Coc	ted (ASTM A775)	_
b3	1 #5 Ret	oar, 48" Total Unbent Length	ASTM A615 Gr. 60		Epoxy-Coo	ted (ASTM A775)	-
b4	2 #5 Ret	oar, 49" Total Unbent Length	ASTM A615 Gr. 60		Epoxy-Coc	ted (ASTM A775)	-
b5	157 # 5 Ret	oar, 70" Total Unbent Length	ASTM A615 Gr. 60		Ероху—Сос	ted (ASTM A775)	-
b6	2 #5 Ret	oar, 100" Total Unbent Length	ASTM A615 Gr. 60		Ероху-Сос	ted (ASTM A775)	-
b7	1 #5 Ret	oar, 98" Total Unbent Length	ASTM A615 Gr. 60		Ероху—Сос	ted (ASTM A775)	-
b8	1 #5 Ret	oar, 96" Total Unbent Length	ASTM A615 Gr. 60		Epoxy-Coc	ted (ASTM A775)	-
Ь9	2 #5 Ret	oar, 90" Total Unbent Length	ASTM A615 Gr. 60		Ероху-Сос	ted (ASTM A775)	-
b10	2 #5 Ret	#5 Rebar, 104 1/4" Total Unbent Length ASTM A615 Gr. 60 Epoxy—Coated (ASTM A775)		ted (ASTM A775)	-		
Nc	te: (1) Raii the (2) Raii (3) Opt (4) Opt (5) Opt	I sleeve assembly will be fabricated using four contained herein. I sleeve assembly option 1 will use parts ion 2 will use parts a11, a12, and a13. ion 3 will use part a14. ion 4 will use part a15.	only one option out of a9 and a10.	Midwess Safet	st Roadside Facility	Concrete Parapet Brush Curb and P Test Series MNCBR Bill of Materials DWG. NAME. MNCBR-1-3_R32	SHEET: 27 of 28 05t Rail DATE: 1/21/2021 1/21/2021 DRAWN BY: JPF/SBW/M, JW/JEK/LP JV/JEK/LP SCALE: None REV. BY: JUNTS: in. KAHP/ARK/LP KAHP/JW/KR

Figure 35. Bill of Materials, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Item No.	QTY.	Description	Material Specification	Treatment Specification	Hardware Guide
b11	2	#5 Rebar, 32" Total Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775)	_
b12	4	#5 Rebar, 27" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775)	_
b13	4	#5 Rebar, 33 7/8" Total Unbent Length	ASTM A615 Gr. 60	Epoxy—Coated (ASTM A775)	_
b14	46	#5 Rebar, 43 3/8" Total Unbent Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775)	_
b15	22	#5 Rebar, 46" Total Length	ASTM A615 Gr. 60	Epoxy—Coated (ASTM A775)	-
b16	6	#5 Rebar, 156" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775)	-
b17	6	#5 Rebar, 1672" Total Length	ASTM A615 Gr. 60	Epoxy-Coated (ASTM A775)	_
b18	2	1/4" Dia., 8 5/8" Long Vertical Backer Rod	ASTM D5249 Type 3	Not Needed	_
b19	1	1/4" Dia., 15 1/4" Long Horizontal Backer Rod	ASTM D5249 Type 3	Not Needed	-
c1	92	7/8"-9 UNC, 12" Long Vertical Anchor Rod	ASTM F1554 Gr. 105	ASTM A153	_
c2	92	3" Dia. x 1/4" Circular Plate Washer	ASTM A709 Gr. 50	ASTM A153	_
cЗ	276	7/8"-9 UNC Heavy Hex Nut	ASTM A563DH	ASTM A153	FNX22b
c4	23	13"x8"x1/4" Anchor Plate	ASTM F436 TYPE 1	ASTM A153 or B695 CLASS 55	-
c5	184	7/8" Dia. SAE Washer	ASTM A709 Gr. 50	ASTM A153	-
d1	1	12"x20"x3/8" End Plate	ASTM A709 Gr. 50	See Assembly	_
d2	5	1.049" ID 1.68 Ib/ft Standard Pipe, 15 1/8" Long	ASTM A53 Schedule 40	See Assembly	-
e1	-	Chemical Adhesive	Min. Bond Strength = 1,670 psi	_	_
e2	-	Joint Sealant	ASTM D5893	_	_

MARSE			Concrete Parapet	SHEET: 28 of 28	
			Brush Curb and P	ost Rai	DATE:
			Test Series MNCBR	1/21/2021	
	Midwest	Roadside	Bill of Materials	JRF/SBW/M JM/JEK/LJP /GHR	
	Safety	Facility	DWG. NAME.	SCALE: None	REV. BY:
			MNCBR-1-3_R32	UNITS: in.	KAL/JEK/M AHP/MH/RF

Figure 36. Bill of Materials, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

46

Figure 37. New Concrete Tapered End Rebar Installation, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 38. New Concrete Tapered End Rebar Installation, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 39. New Concrete Tapered End Installation, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 40. System Installation, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 41. Downstream End, Post Nos. 23, 22, 23, and Upper Rail, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 42. Downstream and Upstream Ends, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

52

March 26, 2021 MwRSF Report No. TRP-03-403-21

Figure 43. Splice Connection, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 44. Post Assembly, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Figure 45. Post Assembly, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

4 TEST CONDITIONS

4.1 Test Facility

The Outdoor Test Site is located at the Lincoln Air Park on the northwest side of the Lincoln Municipal Airport and is approximately 5 miles northwest of the University of Nebraska-Lincoln.

4.2 Vehicle Tow and Guidance System

A reverse-cable, tow system with a 1:2 mechanical advantage was used to propel the test vehicle. The distance traveled and the speed of the tow vehicle were one-half that of the test vehicle. The test vehicle was released from the tow cable before impact with the barrier system. A digital speedometer, located on the tow vehicle, was used to increase the accuracy of the test vehicle's impact speed.

A vehicle guidance system developed by Hinch [9] was used to steer the test vehicle. A guide flag, attached to the left-front wheel and the guide cable, was sheared off before impact with the barrier system. The ³/₈-in. diameter guide cable was tensioned to approximately 3,500 lb and supported both laterally and vertically every 100 ft by hinged stanchions. The hinged stanchions stood upright while holding up the guide cable, but as the vehicle was towed down the line, the guide flag struck and knocked each stanchion to the ground.

4.3 Test Vehicles

For test no. MNCBR-1, a 2013 International Durastar 4300 SBA 4x2 single-unit truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 14,852 lb, 22,042 lb, and 22,202 lb, respectively. The test vehicle is shown in Figures 46 and 47, and vehicle dimensions are shown in Figures 48 and 49.

For test no. MNCBR-2, a 2014 Dodge Ram 1500 quad cab pickup truck was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 5,134 lb, 5,003 lb, and 5,162 lb, respectively. The test vehicle is shown in Figures 50 and 51, and vehicle dimensions are shown in Figures 52 and 53.

For test no. MNCBR-3, a 2009 Kia Rio small sedan was used as the test vehicle. The curb, test inertial, and gross static vehicle weights were 2,448 lb, 2,442 lb, and 2,600 lb, respectively. The test vehicle is shown in Figures 54 and 55, and vehicle dimensions are shown in Figures 56 and 57. MASH 2016 requires test vehicles used in crash testing to be no more than six model years old. A 2009 model was used for this test because the vehicle geometry of newer models did not comply with recommended vehicle dimension ranges specified in Table 4.1 of MASH 2016. The use of older test vehicles due to recent small car vehicle properties falling outside of MASH 2016 recommendations was allowed by FHWA and AASHTO in MASH implementation guidance dated May 2018 [10].

The longitudinal component of the center of gravity (c.g.) was determined using the measured axle weights for all three vehicle types. The Elevated Axle Method [11] was used to determine the vertical component of the c.g. for the 10000S vehicle. This method converted

measured wheel weights at different elevations to the location of the vertical component of the c.g. The Suspension Method [12] was used to determine the vertical component of the c.g. for the pickup truck. This method is based on the principle that the c.g. of any freely-suspended body is in the vertical plane through the point of suspension. The vehicle was suspended successively in three positions, and the respective planes containing the c.g. were established. The intersection of these planes pinpointed the final c.g. location for the test inertial condition. The vertical component of the c.g. for the 1100C vehicle was determined utilizing a procedure published by SAE [13]. The location of the final c.g. for test no. MNCBR-1 is shown in Figures 48 and 49. The location of the final c.g. for test no. MNCBR-2 is shown in Figures 52 and 53. The location of the final c.g. for test no. MNCBR-2 is shown in Figures 56 and 57. Data used to calculate the location of the c.g. and ballast information are shown in Appendix B.

Square, black- and white-checkered targets were placed on the vehicles for reference to be viewed from the high-speed digital video cameras and aid in the video analysis, as shown in Figures 49, 53, and 57. Round, checkered targets were placed at the c.g. on the left-side door, the right-side door, and the roof of the vehicles.

The front wheels of the test vehicles were aligned to vehicle standards, except the toe-in value was adjusted to zero such that the vehicle would track properly along the guide cable. For test no. MNCBR-1, a 5B flash bulb was mounted under the vehicle's left-side windshield wiper. For test nos. MNCBR-2 and MNCBR-3 a 5B flash bulb was mounted under the vehicle's right-side windshield wiper. The 5B flash bulb was fired by a pressure tape switch mounted at the impact corner of the bumper. The flash bulb was fired upon initial impact with the test article to create a visual indicator of the precise time of impact on the high-speed digital videos. A radio-controlled brake system was installed in the test vehicles so the vehicles could be brought safely to a stop after the tests.

Figure 46. Test Vehicle, Test No. MNCBR-1

Figure 47. Test Vehicle's Interior Floorboards and Undercarriage, Test No. MNCBR-1

			Test Name	: MNC	BR-1		VIN No:	1	тим	AAM7DH105	190
Model Year:	2013	_	Make	: Interna	itional	Model:		Durastar 4300 SBA 4x2		4x2	
Tire Size:	11R22.5	Tire Infla	ation Pressure	e: 105	psi	0	dometer:			207303	
	IIII		V				Vehicle G Target Range	Geometry es listed below	- in. (r v	nm)	
110					1	A:	90 5/8	(2302)	_ B:	98 7/8	(2511)
		٩	N		T	C:	378 2/3 Max: 394	(9619) 4 (10000)	_ D:	43 1/2	(1105)
IVV U						E:	236 3/4 Max: 24	(6013)	_ F:	98	(2489)
						G:	50 3/16	(1275)	н:	143 1/16	(3634)
	-+ 	W Test In	ertial CG			I:	21 3/4	(552)	J:	34 7/8	(886)
	z					K:	15 3/8	(391)	_ L:	47 1/2	(1207)
P-+ +			Q R		×	M:	79 3/8	(2016)	_ N:	74	(1880)
в						O :	60 3/8	(1534)	_ P:	4 1/2	(114)
	S S	G			<u>к</u> ,	Q:	41 1/4	(1048)	_ R:	23 1/4	(591)
)_ 	-EC		-F		S:	37 3/4	(959)	_ т:	95 3/4	(2432)
Ballast						U:	107 3/4	(2737)	_ V:	256	(6502)
Weight Ib (kg):	7860 (3565)	-				w :	2 1/2	(64)	_ X:	146	(3708)
in. (mm):	63 (1601) 63±2 (1600±50)	-				Y:	31	(787)	_ Z:	45	(1143)
Mass Distributio	n - Ib (kg)			IW (In	npact Wid	lth):	91	(2311)	_ AA:	70 1/2	(1791)
Gross Static LF	4454 (2020)		(1998)								
LR	6556 (2974)	RR 6788	(3079)					Wheel (Height (F	Center Front):	19 3/4	(502)
Weights								Wheel (Height (Whee	Center Rear): Well	20 1/8	(511)
lb (kg)	Curb	Test	Inertial	Gross	Static		с	learance (F	ront):	46 3/8	(1178)
W-front	7338 (3328)	8722	(3956)	8858	(4018)		C	Clearance (Rear):	42 1/5	(1072)
W-rear	7514 (3408)	13320	(6042)	13344	(6053)			Height (F	rame ront):	26 1/4	(667)
W-total	14852 (6737) 13200±2200 (6000±1000)	22042	(9998) 46±660 00±300)	22202	(10071)			Bottom Height (-rame Rear):	27 3/4	(705)
GVWR Ratings -	lb	Surroga	te Occupant E	Data				Engine ⁻	Гуре:	Dies	el
Front	10000		Type:	Hybrid	11			Engine	Size:	7.6L	L6
Rear	17500		Mass:	160 lk)		Trans	mission [.]	Туре:	Autom	atic
Total	25999	Sea	t Position:	Right/Pass	enger			Drive ⁻	Туре:	RW	D
Note any damage prior to test:None											

Figure 48. Vehicle Dimensions, Test No. MNCBR-1

Figure 49. Target Geometry, Test No. MNCBR-1

Figure 50. Test Vehicle, Test No. MNCBR-2

Figure 51. Test Vehicle's Interior Floorboards and Undercarriage, Test No. MNCBR-2

				Test Name	:MNC	BR-2	VIN No:	1C6R	R6FT2ES278	3435
Model Year:	2014	<u>ا</u>		Make	:Do	dge	Model:		Ram 1500	
Tire Size:	275/60F	R20	Tire Inflat	ion Pressure	: 39	psi	Odometer:		216437	
		_					Vehicle G Target Range	eometry - in s listed below	n. (mm)	
		6				Ť	A: 77 1/4 78±2 (11 C: 229 237±13 (6 E: 140 1/4 148±12 (3 G: 29 5/8 min: 22	(1962) 950±50) (5817) 0020±325) (3562) 0760±300) (752) 3 (710) (221)	$B: 75 1/4$ $D: 38 39\pm3 (1)$ $F: 47 1/2$ $H: 60 3/8 63\pm4 (10)$	(1911) (965) 000±75) (1207) (1534) ^{375±100)}
				s		н н н к ц	$H: 12 5/8$ $K: 20 5/8$ $M: 68 1/4$ $67 \pm 1.5 (7)$ $O: 46$	(321) (524) (1734) (170±38) (1168)	J: <u>25</u> L: <u>29 1/2</u> N: <u>68 1/5</u> ^{67±1.5 (} P: 4	(635) (749) (1732) (170±38) (102)
-		-H		+	F	<u>, , , ,</u>	43±4 (1 Q: <u>32 1/2</u>	100±75) (826)	R: 21 1/2	(546)
-			C		-		S: <u>14 3/4</u>	(375)	T: <u>76</u>	(1930)
Mass Distribu	ution - Ib (kg)						U (ii	mpact widtl	h): <u> </u>	(927)
Gross Static	LF <u>1477</u> LR <u>1098</u>	(670) (498)	RF <u>1470</u> RR <u>1117</u>	(667) (507)				Wheel Cen Height (Fror Wheel Cen Height (Rea Wheel W	ter nt): <u>15 5/8</u> ter ar): <u>15 7/8</u> /ell	(397) (403)
Weights Ib (kg)	Cı	ırb	Test li	nertial	Gross	Static	Cle	earance (Fror Wheel W earance (Rea	nt): <u>36 1/4</u> /ell ar): <u>38 1/2</u>	(921) (978)
W-front	2926	(1327)	2850	(1293)	2947	(1337)		Bottom Frai Height (Fror	me nt): 13 5/8	(346)
W-rear	2208	(1002)	2153	(977)	2215	(1005)		Bottom Frai Height (Rea	me ar): 26	(660)
W-total	5134	(2329)	5003	(2269)	5162	(2341)		Engine Typ	be: Gas	oline
		<u>/</u>	5000±110	(2270±50)	5165±110	(2343±50)		Engine Siz	ze: 5.71	_ V8
GVWR Rating	ys - Ib		Surrogate	Occupant Da	ata		Transr	nission Typ	e: Auto	matic
Front	3700			Type:	Hybrid	111		Drive Typ	be:RV	VD
Rear	3900			Mass:	159 I	b		Cab Sty	le: Quad	l Cab
Total	6900		Seat	Position:	Right/Pas	senger		Bed Lengt	th:70	6"
Note ar	ıy damage prio	or to test: _				No	ne			

Figure 52. Vehicle Dimensions, Test No. MNCBR-2

Figure 53. Target Geometry, Test No. MNCBR-2

Figure 54. Test Vehicle, Test No. MNCBR-3

Figure 55. Test Vehicle's Interior Floorboards and Undercarriage, Test No. MNCBR-3

				Test Name:	MNC	BR-3	VIN No:	KNADE2	23196557	7772
Model Year:	2009			Make:	K	a	Model:		Rio	
Tire Size:	185/65R	14	Tire Inflat	tion Pressure:	32	psi	Odometer:	1	05814	
	Per					ł	Vehicle Ge Target Ranges	e ometry - in. (i s listed below	mm)	
	M			N		 	A: $65 \frac{4}{65\pm3}$ (16) C: 167 E: $98 \frac{1}{2}$ 98±5 (25)	(1665) B: 50±75) D: (4242) D: 00±200) F: (2502) F: 00±125) He	57 3/8 32 35±4 (9 36 1/2	(1457) (813) 00±100) (927)
			Te	st Inertial CG			G: <u>ZZ 5/16</u>	(567) H:	36 //8 39±4 (9	(937) 90±100)
Р — •	- Q -	K				ł	l: <u>8 5/8</u> K: <u>12 3/4</u>	(219) J: (324) L:	22 25	(559) (635)
			s				M: <u>57 3/8</u> 56±2 (14	(1457) N:	57 1/8 56±2 (1	(1451) 425±50)
<u>·</u> •		_н_+	t		f		O: <u>27 1/4</u> 24±4 (60	(692) P: _	1 1/4	(32)
	- D		— Е — — — — — — — — — — — — — — — — — —		F —		Q: 22 3/4	(578) R:	15 1/4	(387)
			0				S: <u>11 1/4</u>	(286) T:	64 5/8	(1641)
Mase Distrib	ution - lb (kg)						U (ir	npact width):	28 1/2	(724)
Croco Statio	1 E 944	(260)	DE 704	(260)			Тор	of radiator core	20	(744)
Gross Static	LF <u>014</u>	(309)	KF <u>/ 94</u>	(360)				Wheel Center	20	(711)
	LR <u>4/1</u>	(214)	RR <u>521</u>	(236)				Height (Front): _ Wheel Center	10 1/2	(267)
Weights								Height (Rear): _ Wheel Well	11	(279)
lb (kg)	Cu	rb	Test I	nertial	Gross	Static	Cle	arance (Front): _ Wheel Well	24 3/4	(629)
W-front	1564	(709)	1528	(693)	1608	(729)	Cl	earance (Rear):	24 4/5	(630)
W-rear	884	(401)	914	(415)	992	(450)		Height (Front):	5 1/2	(140)
W-total	2448	(1110)	2442	(1108)	2600	(1179)		Bottom Frame Height (Rear):	15 5/8	(397)
			2420±55	(1100±25)	2585±55 (1175±50)		Engine Type:	Gase	oline
GVWR Rating	gs Ib		Surrogate	e Occupant Da	ata			Engine Size:	1.4L	4 Cyl
Front	1918			Туре:	Hybrid	П	Transm	nission Type:	Auto	matic
Rear	1874			Mass:	158 lt)		Drive Type:	FV	VD
Total	3638		Seat	Position:	Right/Pass	enger				
Note any damage prior to test: Dent in leading edge of hood, left fender, right rocker panel.										

Figure 56. Vehicle Dimensions, Test No. MNCBR-3

Figure 57. Target Geometry, Test No. MNCBR-3

4.4 Simulated Occupant

For test nos. MNCBR-1, MNCBR-2, and MNCBR-3, a Hybrid II 50th-Percentile, Adult Male Dummy equipped with footwear was placed in the right-front seat of the test vehicle with the seat belt fastened. The simulated occupant had a final weight of 160 lb, 159 lb, and 158 lb for test nos. MNCBR-1, MNCBR-2, and MNCBR-3, respectively. As recommended by MASH 2016, the simulated occupant was not included in calculating the c.g. location.

4.5 Data Acquisition Systems

4.5.1 Accelerometers

Accelerometer systems used in the full-scale crash testing were the SLICE-1, SLICE-2, and TDAS systems described below. Test no. MNCBR-1 used all three systems and test nos. MNCBR-2 and MNCBR-3 used only the SLICE-1 and SLICE-2 units. Data obtained in dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filter conforming to the SAE J211/1 specifications [14].

The SLICE-1 and SLICE-2 units were environmental shock and vibration sensor/recorder systems used to measure the accelerations in the longitudinal, lateral, and vertical directions. The units were modular data acquisition systems manufactured by Diversified Technical Systems, Inc. of Seal Beach, California. The acceleration sensors were mounted inside the body of custom-built, SLICE 6DX event data recorders and recorded data at 10,000 Hz to the onboard microprocessor. Each SLICE 6DX was configured with 7 GB of non-volatile flash memory, a range of \pm 500 g's, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-aliasing filter. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

The TDAS unit was a two-arm piezoresistive accelerometer system manufactured by Endevco of San Juan Capistrano, California. The unit was configured to record two sets of triaxial data along with roll and yaw data. Two sets of accelerometers were used to measure each of the longitudinal, lateral, and vertical accelerations independently at a sample rate of 10,000 Hz. The accelerometers were configured and controlled using a system developed and manufactured by Diversified Technical Systems, Inc. of Seal Beach, California. More specifically, data was collected using a DTS Sensor Input Module (SIM), Model TDAS3-SIM-16M. The SIM was configured with 16 MB SRAM and eight sensor input channels with 250 kB SRAM/channel. The SIM was mounted on a TDAS3-R4 module rack. The module rack was configured with isolated power/event/communications, 10BaseT Ethernet and RS232 communication, and an internal backup battery. Both the SIM and module rack were crashworthy. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the accelerometer data.

For test no. MNCBR-1, the SLICE-1 unit was mounted near the c.g., the SLICE-2 unit was mounted in the cab, and the TDAS unit was mounted on the rear axle of the single-unit truck. The SLICE-1 unit was designated as the primary unit. For test nos. MNCBR-2 and MNCBR-3, the SLICE-1 and SLICE-2 units were mounted near the c.g. of the test vehicles. SLICE-2 was designated as the primary unit for test no. MNCBR-2 and SLICE-1 was the primary unit for test no. MNCBR-3.

4.5.2 Rate Transducers

Two identical angular rate sensor systems mounted inside the body of the SLICE-1 and SLICE-2 event data recorders were used to measure the rates of rotation of the test vehicles. The units were positioned as described in Section 4.5.1. Each SLICE MICRO Triax ARS had a range of 1,500 degrees/sec in each of the three directions (roll, pitch, and yaw) and recorded data at 10,000 Hz to the onboard microprocessors. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "SLICEWare" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data.

For test no. MNCBR-1, a third angular rate sensor, the ARS-1500, with a range of 1,500 degrees/sec was configured to measure the rates of rotation of the test vehicle in two directions (roll and yaw). The angular rate sensor was mounted on an aluminum block at the rear axle of the single-unit truck and recorded data at 10,000 Hz to the DTS SIM. The raw data measurements were then downloaded, converted to the proper Euler angles for analysis, and plotted. The "DTS TDAS Control" computer software program and a customized Microsoft Excel worksheet were used to analyze and plot the angular rate sensor data. Normally, triaxial rate transducer data is required to determine Euler angles in all three directions (roll, pitch, and yaw). The pitch rate and angle of the vehicle were assumed to be low at the time of peak lateral loading to the bridge railing. Therefore, when determining Euler angles, a pitch rate equal to zero was assumed for the third rotational axis at the rear-axle rate sensor location. Then, the modified Euler angles for all three axes were combined with the accelerations from the two TDAS sets of triaxial accelerometers at the rear axle to determine barrier loading.

4.5.3 Retroreflective Optic Speed Trap

A retroreflective optic speed trap was used to determine the speed of the test vehicles before impact. Five retroreflective targets, spaced at approximately 18-in. intervals, were applied to the right side of all test vehicles. When the emitted beam of light was reflected by the targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer, recording at 10,000 Hz, as well as the external LED box activating the LED flashes. The speed was then calculated using the spacing between the retroreflective targets and the time between the signals. LED lights and high-speed digital video analysis are used as a backup if vehicle speeds cannot be determined from the electronic data.

4.5.4 Digital Photography

Five AOS high-speed digital video cameras, seven GoPro digital video cameras, and five Panasonic digital video cameras were utilized to film test no. MNCBR-1. Five AOS high-speed digital video cameras, ten GoPro digital video cameras, and six Panasonic digital video cameras were utilized to film test no. MNCBR-2. Five AOS high-speed digital video cameras, ten GoPro digital video cameras, and five Panasonic digital video cameras were utilized to film test no. MNCBR-3. Camera details, camera operating speeds, lens information, and a schematic of the camera locations relative to the systems are shown in Figures 58 through 60.

The high-speed videos were analyzed using TEMA Motion and Redlake MotionScope software programs. Actual camera speed and camera divergence factors were considered in the analysis of the high-speed videos. A digital still camera was also used to document pre- and post-test conditions for all tests.

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-1	AOS Vitcam CTM	500	Kowa 16 mm	
AOS-5	AOS X-PRI Gigabit	500	100 mm	
AOS-8	AOS S-VIT 1531	500	Kowa 25 mm	
AOS-9	AOS TRI-VIT 2236	1000	Kowa 12 mm	
AOS-10	AOS Vitcam CTM	500	Fujinon 50 mm	
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-19	GoPro Hero 6	240		
GP-20	GoPro Hero 6	240		
GP-21	GoPro Hero 6	240		
GP-22	GoPro Hero 7	240		
GP-23	GoPro Hero 7	240		
PAN-2	Panasonic HC-V770	120		
PAN-3	Panasonic HC-V770	120		
PAN-4	Panasonic HC-V770	120		
PAN-5	Panasonic HC-VX981	120		
PAN-6	Panasonic HC-VX981	120		

Figure 58. Camera Locations, Speeds, and Lens Settings, Test No. MNCBR-1

Figure 59. Camera Locations, Speeds, and Lens Settings, Test No. MNCBR-2

No.	Туре	Operating Speed (frames/sec)	Lens	Lens Setting
AOS-1	AOS Vitcam CTM	500	Fujinon 50mm	
AOS-5	AOS X-PRI Gigabit	500	100 mm	
AOS-8	AOS S-VIT 1531	500	75 mm	
AOS-9	AOS TRI-VIT 2236	1000	Kowa 12 mm	
AOS-10	AOS TRI-VIT 2236	500	Nikor M86 mm	
GP-8	GoPro Hero 4	120		
GP-9	GoPro Hero 4	120		
GP-17	GoPro Hero 4	240		
GP-18	GoPro Hero 6	240		
GP-19	GoPro Hero 6	240		
GP-20	GoPro Hero 6	240		
GP-21	GoPro Hero 6	240		
GP-22	GoPro Hero 7	240		
GP-23	GoPro Hero 7	240		
GP-24	GoPro Hero 7	240		
PAN-1	Panasonic HC-V770	120		
PAN-2	Panasonic HC-V770	120		
PAN-3	Panasonic HC-V770	120		
PAN-4	Panasonic HC-V770	120		
PAN-6	Panasonic HC-V770	120		

Figure 60. Camera Locations, Speeds, and Lens Settings, Test No. MNCBR-3

5 FULL-SCALE CRASH TEST NO. MNCBR-1

5.1 Weather Conditions

Test no. MNCBR-1 was conducted on September 2, 2020 at approximately 2:00 p.m. The weather conditions as reported by the National Oceanic and Atmospheric Administration (station 14939/LNK) are shown in Table 3.

Temperature	87°F
Humidity	23%
Wind Speed	10 mph
Wind Direction	230° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.06 in.
Previous 7-Day Precipitation	0.09 in.

Table 3. Weather Conditions, Test No. MNCBR-1

5.2 Test Description

Test no. MNCBR-1 was conducted on a concrete parapet with a brush curb and upper beam and post rail with a new tapered end section under MASH 2016 TL-4 guidelines for test designation no. 4-12, which involved an impact with a 10000S vehicle at 56 mph and 15 degrees. The CIP for this system was selected to impart significant lateral loading into the upper railing system as well as increase the potential for vehicle interaction and snag on the vertical support posts and upper metal tube rail.

Initial vehicle impact was to occur 60 in. upstream from the centerline of splice between post nos. 6 and 7, as shown in Figure 61, which was selected as discussed in Chapter 2.2. The 22,042-lb single-unit box truck impacted the concrete parapet with a brush curb and upper beam and post rail with a new tapered end section at a speed of 57.4 mph and at an angle of 15.4 degrees. The actual point of impact was $60\frac{1}{8}$ in. upstream from the target impact location. In the test, the vehicle was captured and redirected by the concrete parapet with brush curb and upper beam and post rail with new tapered end section.

A detailed description of the sequential impact events is contained in Table 4. Sequential photographs are shown in Figures 62 through 65. Documentary photographs of the crash test are shown in Figure 66. The vehicle trajectory and final position are shown in Figure 67.

Figure 61. Impact Location, Test No. MNCBR-1

Time (sec)	Event
0.000	Vehicle's right-front bumper impacted concrete barrier 601/8 in. upstream from
0.000	centerline of splice between post nos. 6 and 7.
0.006	Vehicle's right-front tire contacted concrete parapet.
0.014	Vehicle's right-front wheel contacted concrete barrier, and concrete barrier was
0.011	gouged and spalled on front side.
0.024	Vehicle's right step plates deformed.
0.032	Vehicle's right mudguards deformed.
0.038	Vehicle's right mudguard contacted upper steel rail.
0.047	Vehicle yawed away from system.
0.048	Vehicle right step plates contacted upper steel rail.
0.056	Vehicle's right-front door deformed.
0.078	Vehicle rolled toward system.
0.082	Vehicle's right-front door contacted upper steel rail. Vehicle pitched upward.
0.098	Vehicle's right-side box contacted upper steel rail and deformed.
0.180	Vehicle's left-front tire became airborne.
0.264	Vehicle's right-rear tire contacted concrete barrier.
0.294	Vehicle's rear bumper contacted concrete barrier.
0.308	Vehicle's left-rear tire became airborne.
0.316	Vehicle was parallel to system at a speed of 50.5 mph.
0.406	Vehicle's left-front tire regained contact with ground.
0.458	Vehicle's left-front tire became airborne.
1.262	Vehicle's left-rear tire regained contact with ground.
1.270	Vehicle's left-front tire regained contact with ground.
1.006	Vehicle's right-front tire became airborne. Vehicle exited system at a speed of
1.900	38.7 mph and at an angle of 12 degrees.
2.114	Vehicle's right-front tire regained contact with ground.
2.196	System came to rest.
2.274	Vehicle pitched upward.
2.460	Vehicle yawed away from system.
2.486	Vehicle pitched downward.
0 000	Vehicle came to rest 330 ft downstream and 11 ft $- 2$ in. laterally in front of
9.900	system.

Table 4. Sequential Description of Impact Events, Test No. MNCBR-1

0.200 sec

0.000 sec

0.050 sec

0.250 sec

0.100 sec

0.350 sec

0.150 sec Figure 62. Sequential Photographs, Test No. MNCBR-1

0.400 sec

0.000 sec

0.100 sec

0.500 sec

0.200 sec

0.600 sec

0.300 sec

0.700 sec

Figure 63. Sequential Photographs, Test No. MNCBR-1

0.000 sec

0.100 sec

0.500 sec

0.200 sec

0.600 sec

0.300 sec

0.700 sec

Figure 64. Sequential Photographs, Test No. MNCBR-1

Figure 65. Documentary Photographs, Test No. MNCBR-1

Figure 66. Documentary Photographs, Test No. MNCBR-1

Figure 67. Vehicle Final Position and Trajectory Marks, Test No. MNCBR-1.

5.3 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 68 through 84. Barrier damage largely consisted of contact marks on the front face of the concrete barrier, gouging and spalling of the concrete, and contact marks on the upper steel rail. Note that the cracking shown in the system photographs was identified before the test and was related to shrinkage, which was not a result of test no. MNCBR-1. The length of vehicle contact along the barrier extended downstream approximately 122 ft – $3\frac{1}{2}$ in., starting $8\frac{1}{2}$ in. upstream from the centerline of post no. 5.

Contact marks measuring 5 in. wide were found across the front face of the brush curb, starting 5 in. upstream from the impact point and extending 158 in. downstream. Contact marks 4 in. wide were found across the front face of the brush curb, starting 15 in. upstream from the centerline of post no. 9 and extending 152 in. downstream. Contact marks 21/2 in. wide were found across the front face of the brush curb, starting 75 in. upstream from the centerline of post no. 18 and extending 122 in. downstream. Contact marks were found on across the entire top face of the upper steel rail, starting 24 in. upstream from the impact point and extending 98 ft $-2\frac{1}{2}$ in. downstream. Contact marks were found across the entire front face of the upper steel rail, starting $8\frac{1}{2}$ in. upstream from the centerline of post no. 5 and extending 82 ft – $4\frac{1}{2}$ in. downstream. Contact marks were found across the entire front face of the upper steel rail, starting 971/4 in. downstream from the centerline of splice between post nos. 15 and 16 and extending 115 in. downstream from the centerline of splice between post nos. 18 and 19. Contact marks were found on the front face of the bridge railing system, starting 201/2 in. upstream from the centerline of splice between post nos. 21 and 22 and extending 40 in. upstream. Contact marks were found on the front face of the bridge railing system, starting 28 in. downstream from the centerline of the splice between post nos. 21 and 22 and extending 11¹/₂ in. downstream. Contact marks were found across the entire front face of the upper steel rail, starting 1 in. upstream from the downstream side of the new tapered end and extending 441/2 in. downstream. Contact marks 1 in. wide were found on the bottom face of the upper steel rail, starting 15³/₄ in. downstream from the impact point and extending 32¹/₂ in. downstream from the centerline of post no. 7. Contact marks 6¹/₄ in. wide were found on the bottom face of the upper steel rail, starting 161/4 in. downstream from the centerline of post no. 8 and extending 15 in. downstream from the centerline of post no. 12.

Tire marks were visible on the front face of the 21-in. tall concrete barrier, starting 62 in. upstream from the impact point and extending 118 ft – 6 in. downstream across the traffic side of the concrete barrier. Contact marks 1¹/₄ in. wide were found on the top face of base plate of post no. 7, starting 2¹/₂ in. from the traffic-side edge and extending 12¹/₂ in. downstream. Contact marks 2¹/₂ in. wide were found across the entire length of the traffic side of post no. 10. A 3¹/₂-in. tall contact mark was found across the entire traffic side of post no. 10, starting 4 in. above the base plate. Contact marks 6¹/₂ in. wide were found on the traffic side of post no. 11, starting 1 in. above the base plate and extending 6¹/₂ in. downstream from the upstream corner. Contact marks 1 in. wide were found on the non-traffic side of post no. 12, starting 6 in. from the top of post and extending downward. Contact marks 3 in. wide were found on top of the traffic side of post no. 13 and extended across the entire length of post. Contact marks 2¹/₂ in. wide were found on the top of traffic side of post no. 18, starting on the upstream edge and extending 7 in. downstream.

Scuff marks were also found along the length of vehicle contact. Gouging, measuring $\frac{1}{4}$ in. wide by 77 in. long, was found on the front face of the concrete parapet and located 21 in. upstream

from post no. 6 and 15 in. above the ground. Gouging, measuring 25 in. wide by 34 in. long, was located 33 in. upstream from post no. 20. Gouging, measuring $2\frac{1}{2}$ in. wide by 28 in. long, was located 90 in. upstream from post no. 21. Gouging, measuring $\frac{1}{2}$ in. wide by 19 $\frac{1}{2}$ in. long, was located 46 in. upstream from post no. 21. Concrete chipping, measuring 9 $\frac{1}{2}$ in. wide by 9 in. long, was located 36 in. upstream from the new tapered end and 26 in. above the ground.

Figure 68. System Damage, Test No. MNCBR-1

March 26, 2021 MwRSF Report No. TRP-03-403-21

Figure 69. System Damage, Test No. MNCBR-1

Figure 70. Concrete Gouging and Spalling, Test No. MNCBR-1

March 26, 2021 MwRSF Report No. TRP-03-403-21

Figure 71. Concrete Gouging and Spalling, Test No. MNCBR-1

Figure 72. Rail and Post Damage, Test No. MNCBR-1

March 26, 2021 MwRSF Report No. TRP-03-403-21

Figure 73. Rail and Post Damage, Test No. MNCBR-1

Figure 74. Rail and Post Damage, Post No. 8, Test No. MNCBR-1

Figure 75. Rail and Post Damage, Post No. 7, Test No. MNCBR-1

Figure 76. Rail and Post Damage, Post No. 6, Test No. MNCBR-1

95

Figure 77. Vehicle Final Position and Trajectory Marks, Test No. MNCBR-1

Figure 78. Upstream View of End of Rail, Test No. MNCBR-1

Figure 79. Vehicle Debris on Bridge Railing, Test No. MNCBR-1

Figure 80. Non-Traffic Side Rail and Post Damage, Post No. 14, Test No. MNCBR-1

Figure 81. Rail and Post Damage, Post No. 13, Test No. MNCBR-1

Figure 82. Rail and Post Damage, Post Nos. 12 and 11, Test No. MNCBR-1

Figure 83. Rail and Post Damage, Post Nos. 11 and 10, Test No. MNCBR-1

Figure 84. Rail and Post Damage, Post Nos. 10 and 9, Test No. MNCBR-1

The maximum lateral permanent set of the barrier system was 0.2 in. at post no. 9, as measured in the field. The maximum lateral dynamic barrier deflection, including tipping of the upper metal rail along the top surface, was 0.9 in., as determined from high-speed digital video analysis. The working width of the system was found to be 51.6 in., also determined from high-speed digital video analysis. The Zone of Intrusion (ZOI) was determined to be 49.6 in. Barrier deflections are shown schematically in Figure 85.

Figure 85. Permanent Set, Dynamic Deflection, and Working Width, Test No. MNCBR-1

5.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 86 through 91. The maximum occupant compartment intrusions are listed in Table 5 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix C. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment, and none of the established MASH 2016 deformation limits were violated.

The majority of the damage was concentrated on the right-front corner and right side of the vehicle, where impact had occurred, as shown in Figure 86. The left side of the front bumper was crushed inward due to the vehicle impact into a downstream portable concrete barrier far beyond the bridge railing system. The right side of the bumper was crushed inward. The right-front fender was pushed upward near the door panel and torn behind the right-front wheel, as shown in Figure 87. The right-side upper control arm was bent. The right-front steel rim was moderately deformed with concentrated crushing along the edge, as shown in Figure 87.

Denting and scraping were observed across the entire right side. The right-front door was slightly ajar, and creases were found in the door's sheet metal. The right-side window glass shattered, as shown in Figures 87 through 90. The right-rear door was dented and ajar. The right side of the truck bed was dented, and the fuel hatch was ajar. The right-rear wheel detached, as shown in Figures 87 through 90. The right side of the rear bumper was torn and pushed downward. The roof and remaining window glass remained undamaged. The undercarriage and the box were scraped, as shown in Figure 91.

The right-side edge or seam of the floor pan released, as shown in Figures 88 and 89. The right-front wheel and/or rubber tire pushed on the supporting member and the floor pan was held in place at the edge until the partially-rusted spot welds along the seam failed. As such, the spot-weld region was pulled downward along this seam in more of a tensile loading manner, where the spot welds eventually tore out of the fabricated holes. Based on a review of the post-test results, researchers confirmed that the right-front wheel and/or rubber tire did not penetrate at the floor edge or seam since the floor did not reveal upward bending (prying up) at the edge but rather downward bending (tension down with tear out) at the edge, as shown in Figures 88 and 89. The maximum measured floor pan deformation was 5.6 in., which is within AASHTO MASH 2016 [3] occupant compartment deformation limits. The doorsill remained intact and did not show evidence of vehicle components prying through the edge opening at the doorsill region.

Figure 86. Vehicle Damage, Test No. MNCBR-1

Figure 87. Vehicle Damage, Test No. MNCBR-1

Figure 88. Undercarriage Damage, Test No. MNCBR-1

Figure 89. Vehicle Floor Pan Damage, Test No. MNCBR-1

Figure 90. Vehicle Floor Pan Damage, Test No. MNCBR-1

110

Figure 91. Undercarriage Damage, Test No MNCBR-1

Location	Maximum Intrusion in.	MASH 2016 Allowable Intrusion in.
Wheel Well & Toe Pan	5.5	≤ 9
Floor Pan & Transmission Tunnel	5.6	≤ 12
A-Pillar	1.4	<i>≤</i> 5
A-Pillar (Lateral)	1.4	<i>≤</i> 3
B-Pillar	1.4	<i>≤</i> 5
B-Pillar (Lateral)	1.4	<i>≤</i> 3
Side Front Panel (in Front of A-Pillar)	0.7	≤ 12
Side Door (Above Seat)	0.7	≤ 9
Side Door (Below Seat)	0.5	≤ 12
Roof	0.8	≤ 4
Windshield	0.0	<i>≤</i> 3
Side Window	Shattered due to contact with simulated occupant's head	No shattering resulting from contact with structural member of test article
Dash	1.4	N/A

Table 5. Maximum Occupant Compartment Intrusion by Location, Test No. MNCBR-1

N/A – Not Applicable

5.5 Occupant Risk

The calculated occupant impact velocities (OIVs) and maximum 0.010-sec average occupant ride down accelerations (ORAs) in both the longitudinal and lateral directions are shown in Table 6. Although not required for TL-4 crash testing with 10000S vehicle, the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 6. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix D.

Evaluation Criteria		Transducer			
		SLICE-1 at c.g. (primary)	SLICE-2 in cab	Limits	
OIV	Longitudinal	-6.54	-3.58	not required	
ft/s	Lateral	-13.47	-15.12	not required	
ORA	Longitudinal	-6.36	-6.60	not required	
g's	Lateral	-18.08	-15.14	not required	
Maximum	Roll	25.8	21.0	not required	
Angular	Pitch	2.6	-3.8	not required	
deg.	Yaw	-14.9	-17.2	not required	
THI	V – ft/s	19.33	26.97	not required	
PHI	D-g's	18.10	9.70	not required	
	ASI	0.68	0.85	not required	

Table 6. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MNCBR-1

5.6 Barrier Loads

The longitudinal and lateral vehicle accelerations, as measured at the vehicle's c.g. and at the rear axle, were also processed using a SAE CFC-60 filter and a 50-msec moving average. The 50-msec moving average vehicle accelerations were then combined with the uncoupled yaw angle versus time data in order to estimate the vehicular loading applied to the barrier system. From the data analysis, the perpendicular impact forces were determined for the bridge rail, as shown in Figures 92 through 94. The maximum perpendicular (i.e., lateral) loads imparted to the barrier were 133.8, 119.5, and 106.1 kips, as determined by the SLICE-1 (primary) unit and the two data sets from the TDAS unit, TDAS-1 and TDAS-2. The two lateral barrier load estimates from the TDAS system at the rear axle of the single-unit truck used modified Euler angles based on the assumptions described in Section 4.5.2.

Figure 92. Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-1) Located at c.g., Test No. MNCBR-1

Figure 93. Perpendicular and Tangential Forces Imparted to the Barrier System (TDAS-1) Located at Rear Axle, Test No. MNCBR-1

Figure 94. Perpendicular and Tangential Forces Imparted to the Barrier System (TDAS-2) Located at Rear Axle, Test No. MNCBR-1

5.7 Discussion

The analysis of the results for test no. MNCBR-1 showed that the bridge railing system adequately contained and redirected the 10000S vehicle with negligible displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 95. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix D, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle approximated to be 12 degrees, and its trajectory did not violate the bounds of the exit box. During the test, the ZOI was measured to be 49.6 in. Therefore, test no. MNCBR-1 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 4-12.

0.000 sec 0.150 sec	0.250 sec	P	0.350 sec	0.45	50 sec	
15.4 10 LF LF LF RF RT			ā	1. <u> </u>		
Test Agency MwRSF						
Test Number MNCBR-1						
• Date 9/2/2020						
MASH 2016 Test Designation No. 4-12						
Test Article Minnesota Combination Bridge Rail						
Total System Length 154 ft						
Total Bridge Rail Height 36 in.						
• Bridge Rail Elements	•	Vehicle Stopping	Distance			30 ft downstream
Length					11 ft - 2 in	laterally in from
• Bridge Post Assembly (Main Components)	•	Vehicle Damage.				Moderate
PostHSS 7x5x5/16 by 101/4 in. long		VDS [15]				01-RFQ-5
Base Plate (Welded)		CDC [16]				01-RYEW-5
Concrete Parapet		Maximum Int	erior Deformatio	n		5.6 in.
Length	•	Test Article Dama	ige			Minimal
Width	•	Maximum Test A	rticle Deflections			0.0.
Height		Permanent Se	t			0.2 in
Concrete Tapered End Section (Excluding End Post)		Dynamic				0.9 in
Length		Working Wid	th			
Height10 in.	_	ZUI Turu a du a su Data				
Width16 in. at downstream end and 81/2 in. wide at the upstream end	•	Transducer Data		_		
Brush Curb				Transc	lucer	MASH 2016
Width2 in.		Evaluatio	n Criteria	SLICE-1	SLICE-2	Limit
Height6 in.			T.	at c.g. (primary)	in cab	
Vehicle Make /Model		OIV	Longitudinal	-6.54	-3.58	not required
Curb		ft/s	Lateral	-13.47	-15.12	not required
Test Inertial			Longitudin 1	6.20	6.00	not ro
Gross Static		ORA	Longitudinal	-0.30	-0.00	not required
Impact Conditions 57.4 mmb		g's	Lateral	-18.08	-15.14	not required
Spece		Maximum	Roll	25.8	21.0	not required
Impact Location. 60% in. upstream from splice centerline between post nos. 6 and 7		Angular	Pitch	26	_3.8	not required
Impact Severity (IS)		Displacement	1 1001	2.0	5.6	not required
Exit Conditions		deg.	Yaw	-14.9	-17.2	not required
Speed		THIV	- ft/s	19.33	26.97	not required
Angle Approximation 12 deg.		РНО	$-\sigma$'s	18.10	9.70	not required
Exit Box CriterionPass			<u> </u>	0.69	0.05	
Vehicle StabilitySatisfactory		A	51	0.68	0.85	not required

Figure 95. Summary of Test Results and Sequential Photographs, Test No. MNCBR-1

117

6 FULL-SCALE CRASH TEST NO. MNCBR-2

6.1 Weather Conditions

Test no. MNCBR-2 was conducted on September 16, 2020 at approximately 1:45 p.m. The weather conditions as reported by the National Oceanic and Atmospheric Administration (station 14939/LNK) are shown in Table 7.

Temperature	79°F
Humidity	45%
Wind Speed	22 mph
Wind Direction	360° from True North
Sky Conditions	Sunny
Visibility	6.0 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.00 in.
Previous 7-Day Precipitation	0.00 in.

Table 7. Weather Conditions, Test No. MNCBR-2

6.2 Test Description

Test no. MNCBR-2 was conducted on a concrete parapet with brush curb and upper beam and post rail with new tapered end section under the MASH 2016 TL-4 guidelines for test designation no. 4-11, which involved an impact with a 2270P pickup truck at 62 mph and 25 degrees. The CIP for this system was selected to maximize the potential for vehicle interaction and snag on the vertical support posts, the upper metal tube rail, and the tapered end section.

Initial vehicle impact was to occur $70^{11/16}$ in. upstream from the centerline of post no. 23, as shown in Figure 96, which was selected as discussed in Chapter 2.2. The 5,003-lb crew cab pickup truck impacted the concrete parapet with a brush curb and upper beam and post rail with a new tapered end section at a speed of 63.9 mph and at an angle of 25.1 degrees. The actual point of impact was 0.78 in. downstream from the target impact point. In the test, the vehicle was captured and redirected by the concrete parapet with brush curb and upper beam and post rail with new tapered end section.

A detailed description of the sequential impact events is contained in Table 8. Sequential photographs are shown in Figures 97 through 98. Documentary photographs of the crash test are shown in Figure 99. The vehicle trajectory and final position are shown in Figure 100.

Figure 96. Impact Location, Test No. MNCBR-2

Time (sec)	Event
0.000	Vehicle's front bumper impacted concrete barrier 69.9 in. upstream from post no. 23.
0.002	Vehicle's front bumper cover deformed.
0.006	Vehicle's right headlight contacted upper steel rail at post no. 22 and deformed.
0.012	Vehicle's right fender contacted upper steel rail and deformed.
0.024	Vehicle's grille deformed.
0.038	Vehicle's engine hood deformed, and vehicle's right-front door contacted upper steel rail.
0.046	Vehicle's right-front door contacted concrete barrier and deformed.
0.048	Vehicle grille contacted upper steel rail.
0.054	Vehicle's front bumper contacted post no. 23.
0.066	Barrier's traffic-side face spalled near post no. 23. Vehicle's right headlight shattered.
0.084	Vehicle's left headlight became disengaged.
0.090	Vehicle's right-front window shattered and simulated occupant's head passed through right-front window
0.092	Vehicle's left-front tire became airborne.
0.140	Vehicle's left-rear tire became airborne.
0.144	Vehicle's right-rear door contacted upper steel rail and deformed.
0.172	Vehicle's right quarter panel contacted upper steel rail and deformed.
0.178	Simulated occupant's head reentered through right-front window. Vehicle was parallel to system at a speed of 46.5 mph.
0.198	Vehicle's rear bumper contacted concrete barrier and deformed. Vehicle's right-rear tire contacted concrete barrier.
0.200	Vehicle pitched downward.
0.362	Vehicle exited system at a speed of 45.1 mph and at an angle of 5.1 degrees.
0.364	System came to rest.
0.660	Vehicle's left-front tire regained contact with ground.
0.908	Vehicle's left-rear tire regained contact with ground.
1.110	Vehicle's left-rear tire became airborne.
1.354	Vehicle rolled away from system.
1.418	Vehicle left-rear tire regained contact with ground.
3.700	Vehicle came to rest 176 ft – 3 in. downstream and 12 ft – 6 in. laterally in front of system.

Table 8. Sequential Description of Impact Events, Test No. MNCBR-2

0.000 sec

0.050 sec

0.100 sec

0.200 sec

0.300 sec

0.450 sec

0.000 sec

0.050 sec

0.100 sec

0.200 sec

0.300 sec

0.450 sec

Figure 97. Sequential Photographs, Test No. MNCBR-2

0.000 sec

0.050 sec

0.100 sec

0.150 sec

0.250 sec

0.000 sec

0.050 sec

0.100 sec

0.150 sec

0.200 sec

0.250 sec

Figure 98. Sequential Photographs, Test No. MNCBR-2

Figure 99. Documentary Photographs, Test No. MNCBR-2

Figure 100. Vehicle Final Position and Trajectory Marks, Test No. MNCBR-2

6.3 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 101 through 111. Barrier damage largely consisted of contact marks on the front face of the concrete barrier and spalling of the concrete. Note that the cracking shown in the system photographs was identified before the test as being related to shrinkage, and was not a result of test no. MNCBR-2. The length of vehicle contact along the barrier extended downstream approximately 12 ft – 10 in., starting at 21½ in. upstream from post no. 22.

Tire marks were visible on the front face of the 21-in. tall concrete barrier, starting 16 in. upstream from the centerline of post no. 22 and extending 9 ft - 9 in. downstream across the traffic side of the barrier. Contact marks 15 in. wide were found across the front face of the concrete barrier above the brush curb, starting 211/2 in. upstream from the centerline of post no. 22 and extending 9 ft - 11 in. downstream. Contact marks 15 in. wide were found across the entire length of the front face of the end post, including the horizontal tapered end, starting 9 in. downstream from the centerline of post no. 23 and extending 56 in. downstream. Contact marks measuring 4 in. wide were found on front face of the steel upper rail, starting 6¹/₂ in. downstream from the centerline of the splice between post nos. 21 and 22 and extending 9 ft - 9 in. downstream. Contact marks measuring 8¹/₂ in. wide were found on the top face of the steel upper rail, starting 7 in. downstream from the centerline of splice between post nos. 21 and 22 and extending 9 ft - 8 in. downstream. Contact marks measuring 51/2 in. wide were found on the front face of the steel upper rail, starting 13 in. downstream from the centerline of the splice between post nos. 21 and 22 and extending 8 ft $-8\frac{1}{2}$ in. downstream. Contact marks measuring $\frac{1}{8}$ in. wide were found on the upstream face of post no. 22, starting 12 in. from the top of plate and extending 1 in. downward. Contact marks measuring 1 in. wide were found on the upstream face of post no. 23, starting 6¹/₂ in. from the top of the plate and extending 2 in. upward. Contact marks measuring 61/2 in. were found on the front face of post no. 23, starting $\frac{1}{2}$ in. from the top of the plate and extending $\frac{81}{2}$ in. upward. Contact marks measuring 1/2 in. wide were found on the upstream corner of the front face of post no. 23, starting at the post base plate and extending across the entire height of the post. The vehicle's lateral overlap/contact distance at the upstream end of the tapered end section was 1 in. The vehicle's overlap/contact distance at the upstream corner of the front face of post no. 23 was $\frac{1}{2}$ in.

Scuff marks were also found along the length of vehicle contact. Gouging was found on the top corner of the front face of the concrete parapet, measuring 75 in. long and located 2 in. upstream from post no. 22 with a width of 7 in. Gouging with a width of 3 in. and measuring 25 in. long was located 48 in. upstream from post no. 23. Gouging was found on the upstream face of the mid horizontal tapered section measuring ³/₄ in. long located 8 in. from the top front corner of the upstream face. Gouging was found on the upstream face of the mid horizontal tapered section measuring ¹/₂ in. long located 3¹/₂ in. from the top front corner of the upstream face. Gouging with a width of 1¹/₂ in. and measuring 10 in. long was located 20 in. upstream from post no. 23. Gouging with a width of 1¹/₂ in. and measuring 17¹/₂ in. long was located 11¹/₂ in. upstream from post no. 23. Concrete chipping, measuring 21¹/₂ in. long, was located at upstream edge of end post with a width of 9 in.

Figure 101. System Damage, Test No. MNCBR-2

Figure 102. System Damage, Test No. MNCBR-2

Figure 103. Damage on Splice between Post Nos. 22 and 21, Test No. MNCBR-2

Figure 104. Concrete Gouging and Spalling, Test No. MNCBR-2

Figure 105. Rail and Post No. 22 Damage, Test No. MNCBR-2

Figure 106. Rail and Post No. 22 Damage, Test No. MNCBR-2

Figure 107. Rail and Post No. 23 Damage, Test No. MNCBR-2

March 26, 2021 MwRSF Report No. TRP-03-403-21

Figure 108. Rail and Post No. 23 Damage, Test No. MNCBR-2

Figure 109. End Post, Tapered End, and Rail and Post No. 23 Damage, Test No. MNCBR-2

Figure 110. Post No. 23 Damage, Test No. MNCBR-2

Figure 111. End Post, Tapered End, and Rail Damage, Test No. MNCBR-2

The maximum lateral permanent set of the barrier system was 0.3 in. between post nos. 22 and 23, as measured in the field. The maximum lateral dynamic barrier deflection, including tipping of the barrier along the top surface, was 0.4 in. on the upper rail, as determined from high-speed digital video analysis. The working width of the system was found to be 18 in., also determined from high-speed digital video analysis. The ZOI was found to be 16 in. Barrier deflections are shown schematically in Figure 112.

Figure 112. Permanent Set, Dynamic Deflection, and Working Width, Test No. MNCBR-2

6.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 113 through 121. The maximum occupant compartment intrusions are listed in Table 9 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix C. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment, and none of the established MASH 2016 deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix C, are not considered crush toward the occupant, and are not evaluated by MASH 2016 criteria.

The majority of the damage was concentrated on the right-front corner and right side of the vehicle, where impact had occurred, as shown in Figure 113. The right side of the front bumper plastic cover was shattered after impact, and the entire front bumper detached soon thereafter. The right-front fender was pushed inward and dented and torn behind the right-front wheel, as shown in Figure 114. The right-front cast aluminum rim was severely deformed with tears and significant crushing, as shown in Figures 114 and 116. The grille disengaged and fractured soon after impact. Both headlights were disengaged from the vehicle, as shown in Figure 115. The right side of the radiator was pushed backward. Denting and scraping were observed across the entire right side. The right-front door was slightly ajar, and creases were found in the door's sheet metal. The right-side window glass shattered, as shown in Figure 117. The right-rear door was dented and ajar. The right side of the truck bed was dented, and the fuel hatch was ajar, as shown in Figure 118. The right side of the rear bumper was scraped and pushed downward. The roof and remaining window glass remained undamaged. The floor pan was pushed inward, as shown in Figure 119. The right-side upper control arm was fractured, and undercarriage was scraped, as shown in Figure 121 and Figure 122.

Figure 113. Vehicle Damage, Test No. MNCBR-2

Figure 114. Vehicle Damage, Test No. MNCBR-2

Figure 115. Vehicle Damage, Test No. MNCBR-2

Figure 116. Vehicle Damage, Test No. MNCBR-2

Figure 117. Vehicle Damage, Test No. MNCBR-2

Figure 118. Vehicle Damage, Test No. MNCBR-2

March 26, 2021 MwRSF Report No. TRP-03-403-21

Figure 119. Vehicle Floor Pan Damage, Test No. MNCBR-2

Figure 120. Undercarriage Damage, Test No. MNCBR-2

Figure 121. Undercarriage Damage, Test No. MNCBR-2

Location	Maximum Intrusion in.	MASH 2016 Allowable Intrusion in.
Wheel Well & Toe Pan	4.1	≤ 9
Floor Pan & Transmission Tunnel	0.7	≤ 12
A-Pillar	0.2	<i>≤</i> 5
A-Pillar (Lateral)	0.2	≤ 3
B-Pillar	0.5	<i>≤</i> 5
B-Pillar (Lateral)	0.5	<i>≤</i> 3
Side Front Panel (in Front of A-Pillar)	5.8	≤ 12
Side Door (Above Seat)	0.7	≤ 9
Side Door (Below Seat)	1.9	≤ 12
Roof	0.0	<i>≤</i> 4
Windshield	0.0	<i>≤</i> 3
Side Window	Shattered due to contact with simulated occupant's head	No shattering resulting from contact with structural member of test article
Dash	1.6	N/A

Table 9. Maximum Occupant Compartment Intrusion by Location, Test No. MNCBR-2

N/A – Not Applicable

6.5 Head Ejection

It is noted in MASH 2016 under the occupant risk evaluation criteria that no shattering of a side window from direct contact with a structural member of the test article should occur. This requirement is believed to extend to direct contact between a test article and the side window as an occupant's head would be considered to be at elevated risk of contacting the test article, thus increasing the potential for serious injury, even if an impact does not violate any other MASH 2016 evaluation criteria. Thus, occupant head ejection out of the occupant compartment should be tracked for tall barriers and considered a pass/fail test evaluation criterion.

High-speed footage with camera views of the occupant's head movement for test no. MNCBR-2 are shown in Figures 122 and 123. Video analysis of the positioning of the dummy's head during test no. MNCBR-2 showed that head contact did not occur, as shown in Figures 123 and 124. Therefore, the test was deemed to have successfully passed MASH 2016 evaluation criteria using a stringent interpretation of the occupant risk criteria.

Figure 122. Documentary Photographs, Test No. MNCBR-2

Figure 123. Overhead View of Head Ejection During Impact Event, Test No. MNCBR-2

Figure 124. Downstream Behind View of Head Ejection During Impact Event, Test No. MNCBR-2

6.6 Occupant Risk

The calculated OIVs and maximum 0.010-sec average ORAs in both the longitudinal and lateral directions are shown in Table 10. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 10. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix E.

Evaluation Criteria		Transducer		
		SLICE-1	SLICE-2 (primary)	Limits
OIV	Longitudinal	-21.33	-21.20	±40
ft/s	Lateral	-23.04	-25.28	±40
ORA	Longitudinal	-8.98	-9.80	±20.49
g's	Lateral	-9.03	-7.34	±20.49
Maximum	Roll	33.3	29.8	±75
Angular Displacement	Pitch	-7.0	-8.7	±75
deg.	Yaw	-48.1	-47.9	not required
THI	V – ft/s	30.70	32.36	not required
PHI	D-g's	9.23	10.03	not required
	ASI	1.48	1.64	not required

Table 10. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MNCBR-2

6.7 Barrier Loads

The longitudinal and lateral vehicle accelerations, as measured at the vehicle's c.g., were also processed using a SAE CFC-60 filter and a 50-msec moving average. The 50-msec moving average vehicle accelerations were then combined with the uncoupled yaw angle versus time data in order to estimate the vehicular loading applied to the barrier system. From the data analysis, the perpendicular impact forces were determined for the bridge rail, as shown in Figure 125. The maximum perpendicular (i.e., lateral) load imparted to the barrier was 76.5 kips, as determined by the SLICE-2 (primary) unit.

Figure 125. Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-2), Test No. MNCBR-2

6.8 Discussion

The analysis of the results for test no. MNCBR-2 showed that the bridge railing system adequately contained and redirected the 2270P vehicle with negligible displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 126. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix E, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at an angle of 5.1 degrees, and its trajectory did not violate the bounds of the exit box. During the test, the simulated occupant's head protruded from the right-side window and extended into the ZOI but did not contact the metal railing system. Therefore, test no. MNCBR-2 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 4-11.

Figure 126. Summary of Test Results and Sequential Photographs, Test No. MNCBR-2

154

March 26, 202 MwRSF Report No. TRP-03-403-2

7 FULL-SCALE CRASH TEST NO. MNCBR-3

7.1 Weather Conditions

Test no. MNCBR-3 was conducted on September 29, 2020 at approximately 1:30 p.m. The weather conditions as reported by the National Oceanic and Atmospheric Administration (station 14939/LNK) are shown in Table 11.

Temperature	79°F
Humidity	51%
Wind Speed	15 mph
Wind Direction	260° from True North
Sky Conditions	Sunny
Visibility	10 Statute Miles
Pavement Surface	Dry
Previous 3-Day Precipitation	0.12 in.
Previous 7-Day Precipitation	0.03 in.

Table 11. Weather Conditions, Test No. MNCBR-3

7.2 Test Description

Test no. MNCBR-3 was conducted on a concrete parapet with a brush curb and upper beam and post rail with a new tapered end section under the MASH 2016 TL-4 guidelines for test designation no. 4-10, which involved an impact with a 1100C small car vehicle at 62 mph and 25 degrees. The CIP for this system was selected to maximize the potential for vehicle interaction and snag on the vertical support posts, the upper metal tube rail, and the tapered end section.

Initial vehicle impact was to occur 63¹/₂ in. upstream from the centerline of post no. 23, as shown in Figure 127, which was selected as discussed in Chapter 2.2. The 2,442-lb small car vehicle impacted the concrete parapet with brush curb and upper beam and post rail with new tapered end section at a speed of 62.5 mph and at an angle of 25.5 degrees. The actual point of impact was 6.9 in. upstream from target impact point. In the test, the vehicle was captured and redirected by the concrete parapet with brush curb and upper beam and post rail with new tapered end section.

A detailed description of the sequential impact events is contained in Table 12. Sequential photographs are shown in Figures 128 through Figure 129. Documentary photographs of the crash test are shown in Figure 130. The vehicle trajectory and final position are shown in Figure 131.

March 26, 2021 MwRSF Report No. TRP-03-403-21

Figure 127. Impact Location, Test No. MNCBR-3

Time	Event	
0.000	Vehicle's front bumper impacted post no. 22.	
0.002	Vehicle's front bumper deformed.	
0.004	Vehicle's right-front tire contacted barrier near post no. 22.	
0.012	Vehicle's right fender contacted concrete barrier near post no. 22, and vehicle's	
engine hood contacted upper steel rail.		
0.014	Vehicle's engine hood and right fender deformed.	
0.020	Vehicle pitched downward.	
0.030	Vehicle's roof experienced flexure.	
0.034	Vehicle's top-left door deformed outward. Vehicle's door became ajar.	
0.044	Vehicle's right-front door contacted post no. 22, and vehicle's right-side mirror	
	contacted upper steel rail.	
0.046	Vehicle's right-front door and right-side mirror deformed.	
0.056	Vehicle's right headlight contacted post no. 23.	
0.060	Vehicle's right headlight shattered.	
0.000	Simulated occupant's head exited cabin and shattered right-front window. Vehicle's	
0.008	right fender snagged on tapered end.	
0.138	Vehicle's left-rear tire became airborne.	
0.149	Vehicle was parallel to system at a speed of 47.5 mph.	
0.150	Vehicle's right quarter panel contacted post no. 22.	
0.152	Vehicle's right quarter panel deformed.	
0.154	Simulated occupant's head reentered through right-front window. Vehicle's rear	
0.154	bumper contacted post no. 22.	
0.158	Vehicle's right tailgate contacted upper steel rail.	
0.180	Vehicle's right tailgate cover shattered.	
0.278	Vehicle exited system at a speed of 46.0 mph and at an angle of 5.8 degrees.	
0.389	Vehicle's left-rear tire regained contact with ground.	
0.396	Vehicle pitched upward.	
0.628	Vehicle rolled away from system.	
4.849	Vehicle came to rest 190 ft -7 in. downstream and 36 ft -3 in. laterally in front	
	from system.	

Table 12. Sequential Description of Impact Events, Test No. MNCBR-3

0.000 sec

0.050 sec

0.100 sec

0.200 sec

0.300 sec

0.450 sec

0.000 sec

0.050 sec

0.100 sec

0.200 sec

0.300 sec

0.450 sec

Figure 128. Sequential Photographs, Test No. MNCBR-3

0.225 sec

0.000 sec

0.025 sec

0.050 sec

0.100 sec

0.150 sec

0.225 sec

Figure 129. Sequential Photographs, Test No. MNCBR-3

Figure 131. Vehicle Final Position and Trajectory Marks, Test No. MNCBR-3.

7.3 Barrier Damage

Damage to the barrier was minimal, as shown in Figures 132 through 138. Barrier damage largely consisted of contact marks on the front face of the concrete barriers and spalling of the concrete. Note that the cracking shown in the system photographs was identified before the test as being related to shrinkage, and was not a result of test no. MNCBR-3. The length of vehicle contact along the barrier extended downstream approximately 10 ft starting at 18 in. upstream from the impact point.

Tire marks were visible on the front face of the 21-in. tall concrete barrier, starting 18 in. upstream from the centerline of post no. 22 and extending 110 in. downstream across the traffic side of the barrier. Contact marks 15 in. wide were found across the front face of the concrete barrier above the brush curb, starting 18 in. upstream from the impact point and extending 102 in. downstream. Contact marks 9 in. wide were found across the entire length of the front face of midhorizontal taper section of end post, starting 95 in. downstream from the impact point and extending 24 in. downstream. Contact marks measuring 91/2 in. wide were found on front face of steel upper rail, starting 98 in. downstream from the impact point and extending 12 in. downstream. Contact marks measuring 4¹/₂ in. wide were found on the front face of steel upper rail, starting 9¹/₂ in. downstream from the impact point and extending 100¹/₂ in. downstream. Contact marks measuring 1 in. wide were found on the top face of the steel upper rail, starting 70¹/₂ in. downstream from the impact point and extending 6 in. downstream. Contact marks measuring $\frac{1}{2}$ in. wide were found on the bottom face of the upper steel rail, starting 67 in. downstream from the impact point and extending 241/2 in. downstream. Contact marks measuring 73/4 in. wide were found on the front face of post no. 23 and extending 51/2 in. downward. Contact marks measuring 8 in. were found on the upstream front corner of the upstream face of post no. 23 and extending 1 in. downward. Contact marks measuring 1 in. wide were found on the upstream face of post no. 23 and extended 8 in. upward from the post base plate. The vehicle's lateral overlap/contact distance at the upstream end of the tapered end section was 1¹/₂ in. The vehicle's lateral overlap/contact distance at the upstream corner of the front face of post no. 23 was $2\frac{1}{2}$ in.

Scuff marks were also found along the length of vehicle contact. Gouging was found on the front face of the concrete parapet measuring $36\frac{1}{2}$ in. long and located 32 in. upstream from the impact point with a width of 2 in. Gouging, measuring 2 in. wide by 28 in. long, was located $64\frac{1}{2}$ in. downstream from the impact point. Gouging was found on the upstream face of the middle horizontal tapered end section, measuring $\frac{1}{4}$ in. long and located 2 in. from the top front corner of the upstream face. Gouging, measuring $\frac{9}{2}$ in. wide by 24 in. long, was located $\frac{95}{2}$ in. upstream from the impact point. Gouging $\frac{2}{2}$ in. wide by 18 in. long, was located $\frac{6}{2}$ in. upstream from the impact point.

Figure 132. System Damage, Test No. MNCBR-3

March 26, 2021 MwRSF Report No. TRP-03-403-21

Figure 133. System Damage, Test No. MNCBR-3

Figure 134. Concrete Gouging, Test No. MNCBR-3

Figure 135. Concrete Gouging, Test No. MNCBR-3

166

March 26, 2021 MwRSF Report No. TRP-03-403-21

Figure 136. Rail and Post No. 4 Damage, Test No. MNCBR-3

Figure 137. Rail and Post No. 4 Damage, Test No. MNCBR-3

Figure 138. Rail and Post No. 4 Damage, Test No. MNCBR-3

The maximum lateral permanent set of the barrier system was 0.1 in. between post nos. 22 and 23, as measured in the field. The maximum lateral dynamic barrier deflection, including tipping of the barrier along the top surface, was 0.3 in. on the upper rail, as determined from high-speed digital video analysis. The working width of the system was found to 18 in., also determined from high-speed digital video analysis. The ZOI was found to be 10 in. Barrier deflections are shown schematically in Figure 139.

Figure 139. Permanent Set, Dynamic Deflection, and Working Width, Test No. MNCBR-3

7.4 Vehicle Damage

The damage to the vehicle was moderate, as shown in Figures 140 through 145. The maximum occupant compartment intrusions are listed in Table 13 along with the intrusion limits established in MASH 2016 for various areas of the occupant compartment. Complete occupant compartment and vehicle deformations and the corresponding locations are provided in Appendix C. MASH 2016 defines intrusion or deformation as the occupant compartment being deformed and reduced in size with no observed penetration. There were no penetrations into the occupant compartment, and none of the established MASH 2016 deformation limits were violated. Outward deformations, which are denoted as negative numbers in Appendix C, are not considered crush toward the occupant, and are not evaluated by MASH 2016 criteria.

The majority of the damage was concentrated on the right-front corner and right side of the vehicle, where impact had occurred, as shown in Figure 140. The vehicle's steel engine hood was deformed across its entirety, and the right edge was torn from front to back. The left side of the front bumper was pushed downward. The right side of the bumper was torn and crushed inward. The right-front fender was pushed upward near the door panel, and torn behind the right-front wheel, as shown in Figure 141. The right-front steel rim was deformed with significant crushing, as shown in Figure 142. The right-side headlight was disengaged from the vehicle, as shown in Figure 141. Denting and scraping were observed across the entire right side. The right-front door was crushed inward at the leading edge, and it was slightly ajar. The right-side front window glass was shattered by the simulated occupant's head, as shown in Figure 142. The right-rear door was scraped along its entirety and dented at the door handle. The right-side quarter panel was slightly crushed inward, as shown in Figure 143. The right side of the rear bumper was slightly scraped. The right side of the windshield had a various hairline cracks, as shown in Figure 145. The roof and remaining window glass remained undamaged.

Figure 140. Vehicle Damage, Test No. MNCBR-3

Figure 141. Vehicle Damage, Test No. MNCBR-3

Figure 142. Vehicle Damage, Test No. MNCBR-3

Figure 143. Vehicle Floor Pan Damage, Test No. MNCBR-3

Figure 144. Undercarriage Damage, Test No. MNCBR-3

Figure 145. Windshield Damage (Post-Test), Test No. MNCBR-3

Location	Maximum Intrusion in.	MASH 2016 Allowable Intrusion in.
Wheel Well & Toe Pan	1.7	≤ 9
Floor Pan & Transmission Tunnel	2.2	≤ 12
A-Pillar	0.8	<i>≤</i> 5
A-Pillar (Lateral)	0.2	≤ 3
B-Pillar	0.4	≤ 5
B-Pillar (Lateral)	0.0	<i>≤</i> 3
Side Front Panel (in Front of A-Pillar)	2.5	≤ 12
Side Door (Above Seat)	0.1	≤ 9
Side Door (Below Seat)	0.5	≤ 12
Roof	0.4	<i>≤</i> 4
Windshield	0.0	<i>≤</i> 3
Side Window	Shattered due to contact with simulated occupant's head	No shattering resulting from contact with structural member of test article
Dash	0.7	N/A

Table 13. Maximum Occupant Compartment Intrusion by Location, Test No. MNCBR-3

N/A – Not Applicable

7.5 Head Ejection

It is noted in MASH 2016 under the occupant risk evaluation criteria that no shattering of a side window from direct contact with a structural member of the test article should occur. This requirement is believed to extend to direct contact between a test article and the side window as an occupant's head would be considered to be at elevated risk of contacting the test article, thus increasing the potential for serious injury, even if an impact does not violate any other MASH 2016 evaluation criteria. Thus, occupant head ejection out of the occupant compartment should be tracked for tall barriers and considered a pass/fail test evaluation criterion.

Onboard high-speed footage with camera views of the occupant's head movement for test no. MNCBR-3 are shown in Figures 146 and 147. Video analysis of the positioning of the dummy's head during test no. MNCBR-3 showed that head contact did not occur, as shown in Figures 148 and 151. Therefore, the test was deemed to have successfully passed MASH 2016 evaluation criteria using a stringent interpretation of the occupant risk criteria.

Figure 146. Documentary Photographs, Test No. MNCBR-3

Figure 147. Documentary Photographs, Test No. MNCBR-3

Figure 148. Overhead View of Head Ejection During Impact Event, Test No. MNCBR-3

Figure 149. Downstream Behind View of Head Ejection During Impact Event, Test No. MNCBR-3

Figure 150. Upstream View of Head Ejection During Impact Event, Test No. MNCBR-3

Figure 151. Upstream Behind View of Head Ejection During Impact Event, Test No. MNCBR-3

7.6 Occupant Risk

The calculated OIVs and maximum 0.010-sec average ORAs in both the longitudinal and lateral directions are shown in Table 14. Note that the OIVs and ORAs were within suggested limits, as provided in MASH 2016. The calculated THIV, PHD, and ASI values are also shown in Table 14. The recorded data from the accelerometers and the rate transducers are shown graphically in Appendix F.

Evaluation Criteria		Transducer		MASH 2016	
		SLICE-1 (primary)	SLICE-2	Limits	
OIV	Longitudinal	-19.58	-20.67	± 40	
ft/s	Lateral	-34.25	-31.47	± 40	
ORA g's	Longitudinal	-4.53	2.83	±20.49	
	Lateral	-10.87	-12.05	±20.49	
Maximum Angular Displacement deg.	Roll	12.9	9.8	±75	
	Pitch	-7.0	-7.9	±75	
	Yaw	-45.2	-45.3	not required	
THIV – ft/s		0.28	0.18	not required	
PHD – g's		37.20	38.51	not required	
ASI		2.47	2.33	not required	

Table 14. Summary of OIV, ORA, THIV, PHD, and ASI Values, Test No. MNCBR-3

7.7 Barrier Loads

The longitudinal and lateral vehicle accelerations, as measured at the vehicle's c.g., were also processed using a SAE CFC-60 filter and a 50-msec moving average. The 50-msec moving average vehicle accelerations were then combined with the uncoupled yaw angle versus time data in order to estimate the vehicular loading applied to the barrier system. From the data analysis, the perpendicular impact forces were determined for the bridge rail, as shown in Figure 152. The maximum perpendicular (i.e., lateral) load imparted to the barrier was 56.5 kips, as determined by the SLICE-1 (primary) unit.

Figure 152. Perpendicular and Tangential Forces Imparted to the Barrier System (SLICE-1), Test No. MNCBR-3

7.8 Discussion

The analysis of the results for test no. MNCBR-3 showed that the bridge railing system adequately contained and redirected the 1100C small car vehicle with negligible displacements of the barrier. A summary of the test results and sequential photographs are shown in Figure 153. Detached elements, fragments, or other debris from the test article did not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or work-zone personnel. Deformations of, or intrusions into, the occupant compartment that could have caused serious injury did not occur. The test vehicle did not penetrate nor ride over the barrier and remained upright during and after the collision. Vehicle roll, pitch, and yaw angular displacements, as shown in Appendix F, were deemed acceptable because they did not adversely influence occupant risk nor cause rollover. After impact, the vehicle exited the barrier at a speed of 46.0 mph and at an angle of 5.8 degrees, and its trajectory did not violate the bounds of the exit box. During the test, the simulated occupant's head protruded out of the right-side window and extended into the ZOI but did not contact the metal railing system. Therefore, test no. MNCBR-3 was determined to be acceptable according to the MASH 2016 safety performance criteria for test designation no. 4-10.

0.000 sec	0.100 sec	0.200 sec		0.300 se	c (0.40	0 sec
25	190-7* (38.1 m)	38'-3' [11.0 m]					
Test Agency	2122 23	MwRSF]	
Test Number	М	NCBR-3					
Date	9	/29/2020					
MASH 2016 Test Designation No.	······································	4-10					
Test Article	Minnesota Combination Br	idae Rail					
Total System Length		154 ft					
Total Bridge Bail Height		36 in					
Bridge Rail Elements	HSS 10v4	v ¹ /4 Tube	Vehicle Stopping	Distance			- 7 in. downstream
I ength	150 ft	$-2^{1/2}$ in				36 ft – 3 i	n. laterally in front
Bridge Post Assembly (Main Comr	oonents)	£72 m. ●	Vehicle Damage				Moderate
Post	HSS $7x5x^{5/6}$ by $10^{1/2}$	in long	VDS [15]				01-RFQ-5
Base Plate (Welded)	16 in x 9½ ir	$x \frac{3}{4}$ in	CDC [16]				01-RYEW-5
Concrete Parapet	10 m. x 3/2 m		Maximum Int	erior Deformation			2.5 in.
Length	140	ft – 8 in	Test Article Dama	ıge			Minimal
Width	110		Maximum Test A	rticle Deflections			
Height			Permanent Se	t			0.1 in.
Concrete Tapered End Section (Exc	cluding End Post)		Dynamic				0.3 in.
Length		$22\frac{1}{2}$ in.	Working Wid	th			18 in.
Height		10 in.	Z0I				10 in.
Width16 in. at	downstream end and 81/2 in. wide at the upstr	eam end	Transducer Data				
Brush Curb	×.				Trans	ducer	MASH 2016
Width		2 in.	Evaluatio	on Criteria	SLICE-1		Limit
Height		6 in.			(primary)	SLICE-2	Lillin
Vehicle Make /Model		Kia Rio	OIV	Longitudinal	-19.58	-20.67	$\pm 40(12.2)$
Curb		2,448 lb	ft/s	Lateral	-34.25	-31.47	+40(122)
Test Inertial		2,442 lb			-54.25	-31.47	±+0 (12.2)
Gross Static		2,600 lb	ORA	Longitudinal	-4.53	2.83	±20.49
Impact Conditions			g's	Lateral	-10.87	-12.05	±20.49
Speed		52.5 mph	Maximum	Roll	12.9	9.8	±75
Angle		25.5 deg.	Angular	Pitch	-69	-79	+75
Impact Location		ost no. 23	Displacement	V-	45.0	45.2	
Impact Severity (IS)	59.1 kip-ft $>$ 51 kip-ft limit from MA	SH 2016	deg.	Yaw	-45.2	-45.3	not required
Exit Conditions			THIV	′ – ft/s	0.28	0.18	not required
Speed		16.0 mph	PHD	- g's	37.20	38.51	not required
Angle		. 5.8 deg.		SI	2 47	2 33	not required
Exit Box Criterion		Pass	A	51	2.47	2.33	not required
Vehicle Stability	Sat	istactory					

Figure 153. Summary of Test Results and Sequential Photographs, Test No. MNCBR-3

187

8 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

8.1 Summary

The objective of this study was to crash test and evaluate a concrete parapet with brush curb, an upper beam and post rail, and a new tapered end section system according to MASH 2016 TL-4 safety performance criteria. An early variation of the MnDOT combination bridge railing system was previously crash tested by MwRSF according to NCHRP Report 350 impact safety standards [1]. Thus, MnDOT desired to have its combination bridge railing system, with a few design modifications, crash tested according to MASH 2016 TL-4 impact safety standards. The combination bridge railing system was evaluated using three full-scale vehicle crash tests according to MASH 2016 test designation nos. 4-12 (MNCBR-1), 4-11 (MNCBR-2), and 4-10 (MNCBR-3), which involved a 10000S single-unit box truck, a 2270P pickup truck, and a 1100C small car sedan, respectively. The critical impact point for each impact scenario was selected using the critical impact point analysis and guidance found in MASH 2016 [3], which is detailed in Section 2.2.

For test no. MNCBR-1, the 22,042-lb single-unit box truck impacted the combination bridge railing system at a speed of 57.4 mph and at an angle of 15.4 degrees. The initial vehicle impact was to occur 60 in. upstream from the centerline of splice between post nos. 6 and 7, as shown in Figure 61. The actual point of impact was 0.15 in. upstream from the target impact location. The vehicle was captured and safely redirected by the bridge railing. During vehicle redirection, the right-side edge or seam of floor pan released, as shown in Figures 88 and 89. The right-front wheel and/or rubber tire pushed on the supporting member and floor pan was held in place at the edge until the partially-rusted spot welds along the seam failed. As such, the spot-weld region was pulled downward along this seam in more of a tensile loading manner, where the spot welds eventually tore out of the fabricated holes. Based on a review of the post-test results, researchers confirmed that the right-front wheel and/or rubber tire did not penetrate at the floor edge or seam since the floor did not reveal upward bending (prying up) at the edge but rather downward bending (tension down with tear out) at the edge, as shown in Figures 88 and 89. The maximum measured floor pan deformation was 5.6 in., which is within MASH 2016 [3] occupant compartment deformation limits. The vehicle snag did not pose a risk to the occupant compartment and did not result in elevated occupant risk measures. The vehicle exited the barrier in a stable manner and came to rest 330 ft downstream and 11 ft - 2 in. laterally behind the barrier. The maximum lateral permanent set, dynamic deflection, and working width of the barrier was 0.2 in., 0.9 in., and 51.6 in., respectively. The ZOI was found to be 49.6 in. All occupant risk values were found to be within evaluation limits, and the occupant compartment deformations were also deemed acceptable. Subsequently, test no. MNCBR-1 was determined to satisfy the safety performance criteria for MASH 2016 test designation no. 4-12. A summary of the test evaluation is shown in Table 15.

For test no. MNCBR-2, the 5,003-lb crew cab pickup truck impacted the combination bridge railing system at a speed of 63.9 mph and at an angle of 25.1 degrees. The initial vehicle impact was to occur $70^{11/16}$ in. upstream from the centerline of post no. 23, as shown in Figure 96. The actual point of impact was 0.78 in. upstream from the target impact location. The vehicle was captured and safely redirected by the bridge railing. During vehicle redirection, the right-front fender and right-front corner of the engine hood contacted the upstream side of the post

downstream from the impact point. This contact resulted in sufficient snag to crush the entire rightfront fender inward. However, the vehicle snag did not pose a risk to the occupant compartment and did not result in elevated occupant risk measures. The vehicle exited the barrier in a stable manner and came to rest 176 ft – 3 in. downstream from impact point and 12 ft – 6 in. laterally in front of the barrier. The maximum lateral permanent set, dynamic deflection, and working width of the barrier was 0.3 in., 0.4 in., and 18 in., respectively. The ZOI was found to be 16 in. All occupant risk values were found to be within evaluation limits, and the occupant compartment deformations were also deemed acceptable. Subsequently, test no. MNCBR-2 was determined to satisfy the safety performance criteria for MASH 2016 test designation no. 4-11. A summary of the test evaluation is shown in Table 16.

For test no. MNCBR-3, the 2,442-lb small car sedan impacted the combination bridge railing system at a speed of 62.5 mph and at an angle of 25.5 degrees. Initial vehicle impact was to occur 63¹/₂ in. upstream from the centerline of post no. 23, as shown in Figure 127. The actual point of impact was 6.9 in. upstream from the target impact location. The vehicle was captured and safely redirected by the bridge railing. During vehicle redirection, the right-front fender and right-front corner of the engine hood contacted the upstream side of the post downstream from the impact point. This contact resulted in sufficient snag to peel back the entire right-front fender and tear the hood of the vehicle. However, the vehicle snag did not pose a risk to the occupant compartment and did not result in elevated occupant risk measures. The vehicle exited the barrier in a stable manner and came to rest 190 ft -7 in. downstream from impact point and 36 ft -3 in. laterally in front of the barrier. The maximum lateral permanent set, dynamic deflection, and working width of the barrier was 0.1 in., 0.3 in., and 18 in., respectively. The ZOI was found to be 10 in. All occupant risk values were found to be within evaluation limits, and the occupant compartment deformations were also deemed acceptable. Subsequently, test no. MNCBR-3 was determined to satisfy the safety performance criteria for MASH 2016 test designation no. 4-10. A summary of the test evaluation is shown in Table 16.

8.2 Conclusions

MnDOT's concrete parapet with brush curb, an upper beam and post rail, and a new tapered end section was evaluated through three full-scale vehicle crash tests, test designation nos. 4-10, 4-11, and 4-12, according to the MASH 2016 TL-4 [3] safety criteria. MnDOT's concrete parapet with brush curb, an upper beam and post rail, and a new tapered end section was found to satisfy all evaluation criteria for MASH 2016 test designation nos. 4-10, 4-11, and 4-12.

Evaluation Factors	Evaluation Criteria			
Structural Adequacy	A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.			
Occupant Risk	D. 1. Detached elements, fragments or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	S		
	2. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH 2016.	S		
	G. It is preferable, although not essential, that the vehicle remain upright during and after collision.	S		
MASH 2016 Test Designation No.				
Final Evaluation (Pass or Fail)				
S – Satisfactory U – Unsatisfactory N/A – Not Applicable				

Table 15. Summary of Safety Performance Evaluation, Test No. MNCBR-1

Evaluation Factors		Evaluation Criteria			Test No. MNCBR-2	Test No. MNCBR-3
Structural Adequacy	A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.			S	S
	D.	1. Detached elements test article should n penetrating the occu undue hazard to othe a work zone.	s, fragments or other del tot penetrate or show p upant compartment, or r traffic, pedestrians, or	bris from the potential for present an personnel in	S	S
		2. Deformations of compartment should 5.2.2 and Appendix	, or intrusions into, t not exceed limits set for E of MASH 2016.	he occupant th in Section	S	S
	F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.			S	S
Occupant	 H. Occupant Impact Velocity (OIV) (see Appendix A, Section A5.2.2 of MASH 2016 for calculation procedure) should satisfy the following limits: 					
KISK		Occupant Impact Velocity Limits			S	S
		Component	Preferred	Maximum		
		Longitudinal and Lateral	30 ft/s	40 ft/s		
	I.	The Occupant Rid Appendix A, Secti calculation procedu limits:	edown Acceleration fon A5.2.2 of MASI re) should satisfy th	(ORA) (see H 2016 for e following		
		Occupant Ridedown Acceleration Limits		S	S	
		Component	Preferred	Maximum		
		Longitudinal and Lateral	15.0 g's	20.49 g's		
MASH 2016 Test Designation No.				4-11	4-10	
Final Evaluation (Pass or Fail)				Pass	Pass	
S - Satisfactory $U - Unsatisfactory$ $N/A - Not Applicable$						

Table 16. Summary of Safety Performance Evaluation, Test Nos. MNCBR-2 and MNCBR-3

8.3 Recommendations

Based on the successful MASH 2016 crash testing under TL-4 impact conditions, MnDOT's bridge railing denoted in Figures 2 and 3 would similarly be deemed to be crashworthy. For scenarios where future 3-in. thick pavement overlays may be expected, the parapet height could be increased by 3 in. to an overall height of 24 in. This modification would also result in an overall bridge railing height of 39 in. This configuration would be expected to meet MASH TL-4 conditions both before and after the pavement overlay with corresponding top rail heights of 39 in. and 36 in., respectively. Under the pavement overlay scenario, the vertical taper at the end of the concrete end post would need to continue to 39 in. using the same slope.

9 MASH EVALUATION

The objective of this research effort was to evaluate the safety performance of MnDOT's modified concrete parapet with brush curb, an upper steel beam and post railing, and a new tapered concrete end section adjacent to a concrete end post. The combination bridge railing system consisted of a 154-ft long concrete parapet with a brush curb, an upper steel beam and post railing system, a downstream concrete end post, and a new tapered end section beyond the last bridge post under the tube rail and above the parapet. The combination bridge railing system utilized a total of eight rail and post assemblies, which consisted of eight rail and post assemblies anchored to the top face of the concrete parapet.

According to TL-4 evaluation criteria in MASH 2016, three tests are required for evaluation of longitudinal barrier systems: (1) test designation no. 4-10 - an 1100C small car, (2) test designation no. 4-11 - a 2270P pickup truck, and (3) test designation no. 4-12 - a 10000S single-unit box truck.

During test no. MNCBR-1, a 22,042-lb single-unit box truck with a simulated occupant seated in the right-front passenger seat impacted the combination bridge railing system at a speed of 57.4 mph and at an angle of 15.4 degrees, resulting in an impact severity of 171.2 kip-ft. At 0.316 sec after impact, the vehicle became parallel to the system at a speed of 50.5 mph. At 1.906 sec, the vehicle exited the system at a speed of 38.7 mph and at an angle of 12 degrees. The vehicle was successfully contained and smoothly redirected.

Exterior vehicle damage was moderate. Interior occupant compartment deformations were moderate with a maximum of 5.6 in., which did not violate the limits established in MASH 2016. Damage to the barrier was also moderate, consisting of contact marks on the front face of the concrete parapet as well as concrete gouging and scuff marks along the length of vehicle contact which, extended downstream approximately 122 ft – $3\frac{1}{2}$ in., starting $8\frac{1}{2}$ in. upstream from the centerline of post no. 5. The maximum lateral permanent set, dynamic deflection, and working width of the barrier was 0.2 in., 0.9 in., and 51.6 in., respectively. The ZOI was found to be 49.6 in. All occupant risk values were found to be within evaluation limits, and the occupant compartment deformations were also deemed acceptable. Therefore, MnDOT's modified concrete parapet with brush curb, an upper steel beam and post railing, and a new tapered concrete end section adjacent to a concrete end post successfully met all the safety performance criteria of MASH 2016 test designation no. 4-12.

During test no. MNCBR-2, a 5,003-lb crew cab pickup truck with a simulated occupant seated in the right-front passenger seat impacted the combination bridge railing system at a speed of 63.9 mph and at an angle of 25.1 degrees, resulting in an impact severity of 122.9 kip-ft. At 0.178 sec after impact, the vehicle became parallel to the system at a speed of 46.5 mph. At 0.362 sec, the vehicle exited the system at a speed of 45.1 mph and at an angle of 5.1 degrees. The vehicle was successfully contained and smoothly redirected.

Exterior vehicle damage was moderate. Interior occupant compartment deformations were moderate with a maximum of 5.8 in., which did not violate the limits established in MASH 2016. Damage to the barrier was also moderate, consisting of contact marks on the front face of the concrete parapet as well as concrete gouging and scuff marks along the length of vehicle contact which, extended downstream approximately 12 ft – 10 in., starting 1 ft – 9½ in. upstream from

post no. 22. The maximum lateral permanent set, dynamic deflection, and working width of the barrier was 0.3 in., 0.4 in., and 18 in., respectively. The ZOI was found to be 16 in. All occupant risk values were found to be within evaluation limits, and the occupant compartment deformations were also deemed acceptable. Therefore, MnDOT's modified concrete parapet with brush curb, an upper steel beam and post railing, and a new tapered concrete end section adjacent to a concrete end post successfully met all the safety performance criteria of MASH 2016 test designation no. 4-11.

During test no. MNCBR-3, a 2,442-lb small car sedan with a simulated occupant seated in the right-front passenger seat impacted the combination bridge railing system at a speed of 62.5 mph and at an angle of 25.5 degrees, resulting in an impact severity of 59.1 kip-ft. At 0.149 sec after impact, the vehicle became parallel to the system at a speed of 47.5 mph. At 0.278 sec, the vehicle exited the system at a speed of 46.0 mph and at an angle of 5.8 degrees. The vehicle was successfully contained and smoothly redirected.

Exterior vehicle damage was moderate. Interior occupant compartment deformations were moderate with a maximum of 2.5 in., which did not violate the limits established in MASH 2016. Damage to the barrier was also moderate, consisting of contact marks on the front face of the concrete parapet as well as concrete gouging and scuff marks along the length of vehicle contact, which extended downstream approximately 10 ft starting 18 in. upstream from the impact point. The maximum lateral permanent set, dynamic deflection, and working width of the barrier was 0.1 in., 0.3 in., and 18 in., respectively. The ZOI was found to be 10 in. All occupant risk values were found to be within evaluation limits, and the occupant compartment deformations were also deemed acceptable. Therefore, MnDOT's modified concrete parapet with brush curb, an upper steel beam and post railing, and a new tapered concrete end section adjacent to a concrete end post successfully met all the safety performance criteria of MASH 2016 test designation no. 4-10.

MnDOT's modified concrete parapet with brush curb, an upper steel beam and post railing, and a new tapered concrete end section adjacent to a concrete end post was successfully crash tested and evaluated according to the AASHTO MASH 2016 TL-4 criteria.

10 REFERENCES

- 1. Ross, H.E., Sicking, D.I., Zimmer, R.A., and Michie, J.D., *Recommended Procedures for the Safety Performance Evaluation of Highway Features*, National Cooperative Highway Research Program (NCHRP) Report 350, Transportation Research Board, Washington, D.C., 1993.
- 2. *Manual for Assessing Safety Hardware*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2009.
- 3. *Manual for Assessing Safety Hardware (MASH), Second Edition*, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2016.
- 4. AASHTO/FHWA Joint Implementation Agreement for the AASHTO Manual for Assessing Safety Hardware, American Association of State Highway and Transportation Officials (AASHTO), Washington, D.C., 2015.
- 5. Pfeifer B.G., Holloway J.C., Faller R.K, and Rosson B.T., *TL-4 Evaluation of the Minnesota Combination Bridge Rail*, Research Report No. TRP-03-53-96, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, 1995.
- Minnesota Department of Transportation (DOT), Design *Structural Tube Railing (Design T-2)*, Fig. 5-397.157e(E), <u>https://www.dot.state.mn.us/bridge/bridgedetails2.html</u>, October 15, 2020.
- Minnesota Department of Transportation (DOT), Design *Structural Tube Railing (Design T-*2), Fig. 5-397.157e(A), <u>https://www.dot.state.mn.us/bridge/bridgedetails2.html</u>, October 15, 2020.
- 8. Bielenberg, R.W., Reid, J.D., Rosenbaugh, S.K., Haase, A.J., and Faller, R.K., *Attachment of a Combination Bridge Rail to Concrete Parapet Utilizing Epoxy Adhesive Anchors*, Research Report No. TRP-03-325-15, Midwest Roadside Safety Facility, University of Nebraska-Lincoln, Lincoln, Nebraska, November 3, 2015.
- 9. Hinch, J., Yang, T.L., and Owings, R., *Guidance Systems for Vehicle Testing*, ENSCO, Inc., Springfield, Virginia, 1986.
- Clarifications on Implementing the AASHTO Manual for Assessing Safety Hardware, 2016, FHWA and AASHTO, <u>https://design.transportation.org/wp-content/uploads/sites/</u> 21/2019/11/Clarifications-on-Implementing-MASH-2016-aka-MASH-QA-Updated-Nov-19-2019.pdf, November 2019.
- 11. Taborck, J.J., Mechanics of Vehicle 7, Machine Design Journal, May 30, 1957
- 12. Center of Gravity Test Code SAE J874 March 1981, SAE Handbook Vol. 4, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1986.

- 13. MacInnis, D., Cliff, W., and Ising, K., A Comparison of the Moment of Inertia Estimation Techniques for Vehicle Dynamics Simulation, SAE Technical Paper Series – 970951, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1997.
- 14. Society of Automotive Engineers (SAE), *Instrumentation for Impact Test Part 1 Electronic Instrumentation*, SAE J211/1 MAR95, New York City, NY, July 2007.
- 15. *Vehicle Damage Scale for Traffic Investigators*, Second Edition, Technical Bulletin No. 1, Traffic Accident Data (TAD) Project, National Safety Council, Chicago, Illinois, 1971.
- 16. *Collision Deformation Classification Recommended Practice J224 March 1980*, Handbook Volume 4, Society of Automotive Engineers (SAE), Warrendale, Pennsylvania, 1985.

11 APPENDICES

Appendix A. Material Specifications

Item No.	Description	Material Specification	Reference
a1	HSS10"x4"x¼", 19' 11" Long Tube Rail	ASTM A500 Gr. B	H#2101855
a2	HSS10"x4"x¼", 10'-2½" Long Tube Rail	ASTM A500 Gr. B	H#2101855
a3	HSS 7"x5"x ⁵ /16", 10 ¹ ⁄4" Long Tube Post	ASTM A500 Gr. B	H#SC5168
a4	Rail Sleeve Assembly	$\begin{array}{l} MnDOT - ASTM A709 \ Gr \ 50\\ Supplied - ASTM A1018 \ Gr.50\\ \sigma_y = 69 \ ksi, \ \sigma_u = 77.7 \ ksi,\\ \ \% \ elong = 30 \ in \ 2'' \ , \end{array}$	H#NLK1756788
a5	4"x2"x¼" Post Plate	$\begin{array}{l} MnDOT - ASTM A709 \ Gr \ 50\\ Supplied - ASTM A1018 \ Gr.50\\ \sigma_y = 69 \ ksi, \ \sigma_u = 77.7 \ ksi,\\ \ \% \ elong = 30 \ in \ 2'' \ , \end{array}$	H#NLK1756788
a6	10"x4"x¼" Rail End Plate	$\begin{array}{l} \text{MnDOT - ASTM A709 Gr 50} \\ \text{Supplied - ASTM A1018 Gr.50} \\ \sigma_y = 69 \text{ ksi}, \sigma_u = 77.7 \text{ ksi}, \\ \% \text{ elong } = 30 \text{ in } 2'' \text{ ,} \end{array}$	H#NLK1756788
a7	16"x9½"x¾" Post Base Plate	$\begin{array}{l} \text{MnDOT - ASTM A709 Gr 50} \\ \text{Supplied - ASTM A1018 Gr.50} \\ \sigma_y = 63 \text{ ksi}, \sigma_u = 73 \text{ ksi}, \\ \% \text{ elong } = 50 \text{ in } 2'' \text{ ,} \end{array}$	H#4129785
a8	6½"x47%"x5/16" Post Bent Plate	$\begin{array}{l} \text{MnDOT - ASTM A709 Gr 50} \\ \text{Supplied - ASTM A1018 Gr.50} \\ \sigma_y = 62.1 \text{ ksi}, \sigma_u = 69 \text{ ksi}, \\ \% \text{ elong } = 36 \text{ in } 2'' \text{ ,} \end{array}$	H#Y0171
b1	Concrete	Min. f'c = 4000 psi	Ticket#1253155 Benesch Concrete Sample Test Reports
b2	#5 Rebar, 50" Total Unbent Length	ASTM A615 Gr. 60	H#62150950 H#62150922
b3	#5 Rebar, 48" Total Unbent Length	ASTM A615 Gr. 60	H#62150950 H#62150922
b4	#5 Rebar, 46¾" Total Unbent Length	ASTM A615 Gr. 60	H#62150922
b5	#5 Rebar, 70" Total Unbent Length	ASTM A615 Gr. 60	H#62150950
b6	#5 Rebar, 100" Total Unbent Length	ASTM A615 Gr. 60	H#62150950

Table A-1. Bill of Materials, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3

Item No.	Description	Material Specification	Reference
b7	#5 Rebar, 98" Total Unbent Length	ASTM A615 Gr. 60	H#62150950
b8	#5 Rebar, 96" Total Unbent Length	ASTM A615 Gr. 60	H#62150950
b9	#5 Rebar, 90" Total Unbent Length	ASTM A615 Gr. 60	H#62150950
b10	#5 Rebar, 109 ⁵ /16" Total Unbent Length	ASTM A615 Gr. 60	H#62150950
b11	#5 Rebar, 32" Total Unbent Length	ASTM A615 Gr. 60	H#62150950
b12	#5 Rebar, 27" Total Length	ASTM A615 Gr. 60	H#62150950
b13	#5 Rebar, 33 ⁷ / ₈ " Total Unbent Length	ASTM A615 Gr. 60	H#62150950
b14	#5 Rebar, 45 ³ / ₈ " Total Unbent Length	ASTM A615 Gr. 60	H#62150950
b15	#5 Rebar, 46" Total Length	ASTM A615 Gr. 60	H#62150950
b16	#5 Rebar, 156" Total Length	ASTM A615 Gr. 60	H#62150950
b17	#5 Rebar, 1672" Total Length	ASTM A615 Gr. 60	H#62150950
b18	¹ ⁄4" Dia., 85⁄8" Long Vertical Backer Rod	ASTM D5249 Type 3	FillPro Standard Backer Rod
b19	¹ /4" Dia., 15 ¹ /4" Long Horizontal Backer Rod	ASTM D5249 Type 3	FillPro Standard Backer Rod
c1	7/8"-9 UNC, 12" Long Vertical Anchor Rod	ASTM F1554 Gr. 105	H#10551610

Table A-2. Bill of Materials, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3, Cont.

Item No.	Description	Material Specification	Reference
c2	3" Dia. x ¼" Circular Plate Washer	ASTM A709 Gr. 50	H#B9L648
c3	⅔"-9 UNC Heavy Hex Nut	ASTM A563 Gr. DH	H#G7310000508
c4	13"x8"x¼" Anchor Plate	ASTM A709 Gr. 50	H#B9L648
с5	⅛" Dia. SAE Washer	ASTM F436, Type I	H#63019 P#0156031 PO#210201802
d1	12"x20"x ³ / ₈ " End Plate	ASTM A709 Gr. 50	H#B9G672
d2	1.049" ID 1.68 lb/ft Standard Pipe, 151/8" Long	ASTM A53 Schedule 40	H#A1808219
e1	Epoxy	Min. Bond Strength = 1670 psi	Hilti Tech Data available online
e2	Joint Sealant	ASTM D5893	301NS Expansion Joint Sealant Pecora #LI061687

Table A-3. Bill of Materials, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3, Cont.

No: MAR 352817 18Jun20 21:10 CERTIFICATE TEST NUCOR TUBULAR PRODUCTS INC. P/O No 01031798 6226 W. 74TH STREET CHICAGO, IL 60638 Rel S/O NO MAR 394796-001 B/L NO MAR 233465-003 Shp 18Jun20 Tel: 708-496-0380 Fax: 708-563-1950 Inv Inv No Sold To: (1403) NORFOLK IRON & METAL P.O. BOX 1129 NORFOLK, NE 68701 Ship To: (1) NORFOLK IRON & METAL 3001 NORTH VICTORY RD NORFOLK, NE 68702 Tel: 402-371-1810 Fax: 402 379-5409 -----Cert. No: MAR 352817 CERTIFICATE of ANALYSIS and TESTS 08Jun20 Part No 01233 TUBING A500 GRADE B(C) 10" X 4" X 1/4" X 20' Wgt 8,070 Pcs 18 Wgt 2,690 Heat Number Tag No PCS 2101855 399852 6 YLD=54040/TEN=68640/ELG=34.4 399853 21'01855 6 2,690 2101855 399854 6 2,690 *** Chemical Analysis *** C=0.2100 Mn=0.7800 F=0.0080 S=0.0015 Si=0.0300 Al=0.0300 Cu=0.0800 Cr=0.0300 Mo=0.0100 V=0.0030 Ni=0.0300 Nb=0.0000 Cb=0.0000 Sn=0.0030 N=0.0060 B=0.0000 Ti=0.0020 Sb=0.0000 Ca=0.0010 Heat Number 2101855 MELTED AND MANUFACTURED IN THE USA THE SPECIFICATIONS LISTED BELOW REPRESENT THE CURRENT ISSUED DATES OF THESE STANDARDS. THIS DOES NOT INDICATE THAT THE MATERIAL ABOVE CONFORMS TO EACH OR ALL OF THE STANDARDS. WE CERTIFY THE MATERIAL ABOVE TO THE SPECIFICATION LISTED IN THE LINE DESCRIPTION LINE DESCRIPTION. CURRENT STANDARDS: A252-19 A500/A500M-18 A513/A513M-19 ASTM A53/A53M-18 | ASME SA-53/SA-53M-18 A847/A847M-14 A1085/A1085M-15 IN COMPLIANCE WITH EN 10204 SECTION 4.1 INSPECTION CERTIFICATE TYPE 3.1 Page: 1 Last

Figure A-1. HSS 10x4x¹/₄, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item Nos. a1 and a2)
TOBOLERN STELL INC	Fax+3146019330 U	CC 20 2014 21:16 P.01
Independence Tube	6226 W. 74th St Chicago, IL 60638 708-496-0380 Fax: 708-653-1950	independencetube.com itctube.com Certificate Number: DCR 222398
 Cald D		
INDEPENDENCE TUBE CORPORATION 6226 W. 74th St. Chicago, IL 60638 Tel: 708-496-0380 Fax: 708-563-1950	Sales Order No: DCR 62616 - 2 Bill of Lading No: DCR 41642 - 3 Invoice No: DCR 88455 - 2	Shipped: 10/17/2014 Invoiced: 10/17/2014
Sold To: 4008 - TUBULAR STEEL 7440 DEER TRAIL LANE LORAIN, OH 44053	Ship To: 1 - TUBULAR STEEL 7440 DEER TRAIL LANE LORAIN, OH 44053	
CERTIFICATE of ANALYSIS and TESTS Customer Part No:		Certificate No: DCR 222398 Test Date: 10/15/2014
TUBING A500 GRADE B(C) 7" X 5" X 5/16"		Total Pieces Total Weight 9 10,083
* DO NOT SWITCH TAGS * OLD STOCK		<u></u>
Heat #: SC5168 Yield: 69,300 psi Tensile: 75,600 psi	i Elongation: 23.50 % Y/T Ratio:	0.9167 Carbon Eq: 0.1402
C Mn P S Si Ai 0.0500 0.4000 0.0100 0.0010 0.2480 0.0230	Cu Cr Mo 0 0.1300 0.0500 0.0100 0.0	V Ni 0010 0.0400
Bundle Tag Pieces Weight		
MELTED & MFG USA		
Catiliaation		
Certification: I certify that the above results are a true and correct cop Corporation. Swom this day, 10/15/2014	y of records prepared and maintaine	d by Independence Tube
Certification: I certify that the above results are a true and correct cop Corporation. Swom this day, 10/15/2014 WE PROUDLY MANUFACTURE ALL OF OUR HSS IN INDEPENDENCE TUBE PRODUCT IS MANUFACTURE AND INSPECTED IN ACCORDANCE WITH ASTM STA	y of records prepared and maintaine THE USA, EO, TESTED, INDARDS,	nd by Independence Tube
Certification: I certify that the above results are a true and correct cop Corporation. Swom this day, 10/15/2014 WE PROUDLY MANUFACTURE ALL OF OUR HSS IN INDEPENDENCE TUBE PRODUCT IS MANUFACTURE AND INSPECTED IN ACCORDANCE WITH ASTM STA CURRENT STANDARDS: 	y of records prepared and maintaine THE USA. ED, TESTED, INDARDS.	nd by Independence Tube
Certification: I certify that the above results are a true and correct cop Corporation. Swom this day, 10/15/2014 WE PROUDLY MANUFACTURE ALL OF OUR HSS IN INDEPENDENCE TUBE PRODUCT IS MANUFACTURE AND INSPECTED IN ACCORDANCE WITH ASTM STA CURRENT STANDARDS: 	y of records prepared and maintaine THE USA. ED, TESTED, INDARDS.	d by Independence Tube
Certification: I certify that the above results are a true and correct copy Corporation. Swom this day, 10/15/2014 WE PROUDLY MANUFACTURE ALL OF OUR HSS IN INDEPENDENCE TUBE PRODUCT IS MANUFACTURE AND INSPECTED IN ACCORDANCE WITH ASTM STA CURRENT STANDARDS: 	y of records prepared and maintaine THE USA. ED, TESTED, INDARDS.	d by Independence Tube
Certification: I certify that the above results are a true and correct copy Corporation. Swom this day, 10/15/2014 WE PROUDLY MANUFACTURE ALL OF OUR HSS IN INDEPENDENCE TUBE PRODUCT IS MANUFACTURE AND INSPECTED IN ACCORDANCE WITH ASTM STA CURRENT STANDARDS: 	y of records prepared and maintaine THE USA. ED, TESTED, INDARDS.	nd by Independence Tube
Certification: I certify that the above results are a true and correct cop Corporation. Swom this day, 10/15/2014 WE PROUDLY MANUFACTURE ALL OF OUR HSS IN INDEPENDENCE TUBE PRODUCT IS MANUFACTURE AND INSPECTED IN ACCORDANCE WITH ASTM STA CURRENT STANDARDS: 	y of records prepared and maintaine THE USA. ED, TESTED, INDARDS.	nd by Independence Tube
Certification: I certify that the above results are a true and correct cop Corporation. Swom this day, 10/15/2014 WE PROUDLY MANUFACTURE ALL OF OUR HSS IN INDEPENDENCE TUBE PRODUCT IS MANUFACTURE AND INSPECTED IN ACCORDANCE WITH ASTM STA CURRENT STANDARDS: 	y of records prepared and maintaine THE USA, ED, TESTED, INDARDS, SBOTH SATIONS.	d by Independence Tube
Certification: I certify that the above results are a true and correct cop Corporation. Swom this day, 10/15/2014 WE PROUDLY MANUFACTURE ALL OF OUR HSS IN INDEPENDENCE TUBE PRODUCT IS MANUFACTURE AND INSPECTED IN ACCORDANCE WITH ASTM STA CURRENT STANDARDS: 	y of records prepared and maintaine THE USA. ED, TESTED, INDARDS.	nd by Independence Tube
Certification: I certify that the above results are a true and correct cop Corporation. Swom this day, 10/15/2014 WE PROUDLY MANUFACTURE ALL OF OUR HSS IN INDEPENDENCE TUBE PRODUCT IS MANUFACTURE AND INSPECTED IN ACCORDANCE WITH ASTM STA CURRENT STANDARDS: 	y of records prepared and maintaine THE USA. ED, TESTED, INDARDS.	nd by Independence Tube
Certification: I certify that the above results are a true and correct copy Corporation. Swom this day, 10/15/2014 WE PROUDLY MANUFACTURE ALL OF OUR HSS IN INDEPENDENCE TUBE PRODUCT IS MANUFACTURE AND INSPECTED IN ACCORDANCE WITH ASTM STA CURRENT STANDARDS: 	y of records prepared and maintaine THE USA, ED, TESTED, INDARDS, BOTH SATIONS.	d by Independence Tube
Certification: I certify that the above results are a true and correct cop Corporation. Swom this day, 10/15/2014 WE PROUDLY MANUFACTURE ALL OF OUR HSS IN INDEPENDENCE TUBE PRODUCT IS MANUFACTURE AND INSPECTED IN ACCORDANCE WITH ASTM STA CURRENT STANDARDS: 	y of records prepared and maintaine THE USA. ED, TESTED, INDARDS. BOTH SATIONS.	d by Independence Tube
Certification: I certify that the above results are a true and correct cop Corporation. Swom this day, 10/15/2014 WE PROUDLY MANUFACTURE ALL OF OUR HSS IN INDEPENDENCE TUBE PRODUCT IS MANUFACTURE AND INSPECTED IN ACCORDANCE WITH ASTM STA CURRENT STANDARDS: 	y of records prepared and maintaine THE USA, ED, TESTED, INDARDS.	d by Independence Tube
Certification: I certify that the above results are a true and correct cop Corporation. Swom this day, 10/15/2014 WE PROUDLY MANUFACTURE ALL OF OUR HSS IN INDEPENDENCE TUBE PRODUCT IS MANUFACTURE AND INSPECTED IN ACCORDANCE WITH ASTM STA CURRENT STANDARDS: 	y of records prepared and maintaine THE USA, ED, TESTED, INDARDS.	d by Independence Tube
Certification: I certify that the above results are a true and correct cop Corporation. Swom this day, 10/15/2014 WE PROUDLY MANUFACTURE ALL OF OUR HSS IN INDEPENDENCE TUBE PRODUCT IS MANUFACTURE AND INSPECTED IN ACCORDANCE WITH ASTM STA CURRENT STANDARDS: 	y of records prepared and maintaine THE USA. ED, TESTED, INDARDS. BOTH SATIONS. Page - 1	d by Independence Tube

Figure A-2. HSS 7x5x⁵/₁₆, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item No. a3)

Figure A-3. Rail Sleeve Assembly and ¹/₄-in. Plate, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item Nos. a4, a5, and a6)

AM/NS Calvert LLC 1 AM/NS Way Calvert, Al. 36513 USA

				M	ill Certificat	e	CU	STOMER	ORIGIN	AL
Order - Item 188542-10	Certii 1190	ficate Numb 888740	er Di 82	r Delivery No Ship 82490193-10 03/1				Pag 1 of	je 1	
Customer No:	10779				Cust PO: 010	30558				
Customer Part	No: 31982									
Customer Sold to: C Norfolk Iron & Metal Company N 3001 North Victory Rd. 3 NORFOLK NE 68701 V USA N			Customer Norfolk Irc 3003 Nort West Pit NORFOLI USA	Customer Ship to: Norfolk Iron & Metal Company 3003 North Victory Rd. West Pit NORFOLK NE 68701 USA			Contact - Stan Bevans AM/NS Calvert LLC 1 AM/NS Way CALVERT AL 36513 USA Email: Stanley.Bevans@ArcelorMittal.com Ph : 1-251-289-3000			
Steel Grade / C Hot Roll Black (0.230"(6)-1"(25)	ustomer Sp Coil Conv Gi 4)}-Hot Roll	ecification R50 ASA57 Base	2ASA656 Ty	p7 N	/IM / 0.7490 " X	60.0000	" ACCORDIN	G TO A10	18 (Hvy	
Type of Product Hot Roll Black (t/Surface Coil Dry Exp	osed LASE	R CUT PAR	TS/	EXP PAINTED					
TEST METHOD			Melted in L	JSA			Manufacture	d in USA		
ASTM										
	RIPTION									
					Weig	ht	Weight			
		Hei	at C	oil	N	et	Gross			
	ORDERED	N	o. N	lo.	L	.в	LB			
(mm) (in)	19.025 0.7490	412978	11908887	40	44,114.00	0	44,114.000			
CHEMICAL CON	IPOSITION C	F THE COIL	.*							
Heat	c	Si	Mo		D 8	Δ1	Cr	Cu	Mo	N
4129785	0.0660	0.01	0.85	0.01	1 0.007	0.047	0.04	0.026	0.005	0.0048
	Ni	Nb	Ti	,	в v	Ca				
	0.016	0.031	0.001	0.000	0 0.001	0.0000				
TENSILE TEST										
Test	Yield	Tensile	% Total							
Direction	Strength	Strength	Elong.							
Т	63 ksi	73 ksi	50							

AM/NS Calvert LLC certify that the material herein described has been manufactured, sampled, tested and inspected in accordance with the contract requirements and is fully in compliance.

* - This test is not covered by our current A2LA accreditation

Mour prase-

Yasunori Iwasa Quality Management Director AM/NS Calvert

Rev.

Figure A-4. Post Base Plate, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item No. a7)

Figure A-5. Post Bent Plate, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item No. a8)

Ready Mixed Concrete Company 6200 Cornhusker Hwy, Lincoln, NE 68529

Phone: (402) 434-1844 Fax: (402) 434-1877

Customer's Signature:

PLANT	TRUCK	DRIVER	CUSTON	MER PROJ	ECT	TAX	PO NUMBE	R D/	TE	TIME	TICKET
1	239	3978	6246	1			MNCBR	7/2	2/20	11:44 AM	1253155
Customer UNL-MID\	WEST RC	ADSIDE	SAFETY	Delivery Addr 4630 NW 36	ess TH ST			Special In: NORTH C	structions OF OLD GO	OODYEAR	HANGERS
LOAD	QUANT			PRODUCT	PR	ODUC	T DESCRIPTION	UOM			PRICE
8.25	16	.50	16.50	NL3244	24 47	BD1P	=4000	yd	\$1	124.00	\$1,023.00
Water Add Custome	ded On Job er's Reques	At t: 4	SLUMP .00 in	Notes:				TICKET SALES TICKET	SUBTOT TAX TOTAL	AL	\$1,023.00 \$0.00 \$1,023.00
								PREVIO	US TOTA TOTAL	AL	\$1,023.00 \$2,046.00
Contains Po concrete or contact with Equipment thoroughly v attention pro	KEEP ortland ceme grout may o skin. Alway (PPE). In ca with water. It omptly.	CHILDRI CHILDRI ause skin ir s wear app se of conta f irritation pe	EN AWAY mixed ceme njury. Avoid njury. Avoid ropriate Per ct with eyes ersists, seek	ent, mortar, prolonged sonal Protect or skin, flush a medical	Ve This concu the m accel there drawn Read unles perso The p within to inw price	concret rete. St btance of, Cyli n by a l y Mixer s expre- onal or burchas n 3 day restigat of the	e is produced with the rengths are based on coced this slump, exce of any decrease in co- onder tests must be ha- licensed testing lab and d Concrete Company essly told to do so by o property damage that ser's exceptions and c is from time of delivery e any such claim. Se materials against whic	ASTM stand a 3" slump. D ept under the mpressive str ndled accordi d/or certified will not delive customer and may occur as laims shall be , In such a ce lier's liability s ch any claims	ard specific privers are n authorizatio ength and a mg to ACI/A technician r any produ customer a s a result of e deemed w ase, seller s shall in no e are made.	ations for rea ot permitted any risk of los STM specific ct beyond an assumes all li any such diri aived unless hall be given vent exceed	ady mix to add water to omer and their is as a result cations and y curb lines ability for any ective. made in writing full opportunity the purchase
		L.									
	MNCBR									R#21-101	

Figure A-6. Concrete Mix, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item No. b1)

7/17

Concrete Sample Test Report Cylinder Compressive Strength

Project Name:	Midwest Roadside Safety - Misc Testing
Project Number:	00110546.00
Client:	Midwest Roadside Safety Facility
Location:	MNPD
Sample:	003
Description:	T1-S-C

Field Data (ASTM C172, C143, C173/C231, C138, C1064)

Supplier:		Property	Test Result
Mix Name:		Slump (in):	
Ticket Number:		Air Content (%):	
Truck Number:		Unit Weight (Ib/ft3):	
Load Volume (yd3):		Air Temp (°F):	
Mold Date:	07/02/2020	Mix Temp (°F):	
Molded By:	MNCBR		

Laboratory Test Data (ASTM C39)

	. ,		
Sample Number:	003		
Set Number:	001		
Specimen Number:	1		
Age:	62		
Length (in):	12		
Diameter (in):	6.02		
Area (in ²):	28.46		
Test Date:	09/02/2020		
Break Type:	6		
Max Load (lbf):	149,316		
Strength (psi):	5,250		
Spec Strength (psi):			

Remarks: Set 001, Specimen 1, 62-day Compressive Strength (psi): 5,250						Date received: 09/02/2020 Curing: ☑Standard □Field ASTM C511		
Concrete tes were submitt presented re	t specimens alo ed by the Midwe late to the concr	ng with docu est Roadside rete specimei	mentation and Safey. Test r ns as received	Submitted by: Mit Roculer				
$\times \times$	以人	5)			\frown	Distribution:		
Type 1	Type 2	Type 3	Type 4	Type 5	Туре б	Report Date: 9/2/20		

This report shall not be reproduced, except in full, without prior approval of Alfred Benesch & Company. Results relate only to items tested.

825 M Street Suite 100 Lincoln, NE 68508

Alfred Benesch & Company

Figure A-7. Concrete Compression Test, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item No. b1)

Concrete Sample Test Report Cylinder Compressive Strength

Project Name:	Midwest Roadside Safety - Misc Testing
Project Number:	00110546.00
Client:	Midwest Roadside Safety Facility
Location:	MNPD
Sample:	004
Description:	t1-N-C

Field Data (ASTM C172, C143, C173/C231, C138, C1064)

Supplier:		F	Property	Test Result
Mix Name:		5	Slump (in):	
Ticket Number:		4	Air Content (%):	
Truck Number:		l	Unit Weight (Ib/ft3):	
Load Volume (yd ³):		4	Air Temp (°F):	
Mold Date:	07/02/2020	r	Mix Temp (°F):	
Molded By:	MNCBR			

Laboratory Test Data (ASTM C39)

	· · · · · · · · · · · · · · · · · · ·		
Sample Number:	004		
Set Number:	001		
Specimen Number:	1		
Age:	62		
Length (in):	12		
Diameter (in):	6.01		
Area (in²):	28.37		
Test Date:	09/02/2020		
Break Type:	3		
Max Load (lbf):	160,647		
Strength (psi):	5,660		
Spec Strength (psi):			

Remarks

https://forneytools.forneyvault.com/Report?id=16acbeda-aeed-46d3-8a25-0e19bbcdd94c

Remarks:				Date received: 09/02/2020				
Set 001, Specimen 1, 62-day Compressive Strength (psi): 5,660						Curing: XStandard Field ASTM C511		
Concrete tes were submit presented re	at specimens alo ted by the Midwa late to the conci	ng with docur est Roadside rete specimer	mentation an Safey. Test is as receive	Submitted by: Mit Rocules				
$\times \times$	入风	5				Distribution:		
Type 1	Type 2	Type 3	Type 4	Type 5	Туре б	Report Date: 9/2/20		

This report shall not be reproduced, except in full, without prior approval of Alfred Benesch & Company. Results relate only to items tested.

825 M Street Suite 100 Lincoln, NE 68508

Alfred Benesch & Company

Figure A-8. Concrete Compression Test, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item No. b1)

Concrete Sample Test Report Cylinder Compressive Strength

Project Name:	Midwest Roadside Safety - Misc Testing
Project Number:	00110546.00
Client:	Midwest Roadside Safety Facility
Location:	MNPD
Sample:	005
Description:	T2-S-C

Field Data (ASTM C172, C143, C173/C231, C138, C1064)

Supplier:		Property	Test Result
Mix Name:		Slump (in):	
Ticket Number:		Air Content (%):	
Truck Number:		Unit Weight (Ib/ft ³):	
Load Volume (yd ³):		Air Temp (°F):	
Mold Date:	07/02/2020	Mix Temp (°F):	
Molded By:	MNCBR		

Laboratory Test Data (ASTM C39)

Sample Number:	005		
Set Number:	001		
Specimen Number:	1		
Age:	62		
Length (in):	12		
Diameter (in):	6		
Area (in²):	28.27		
Test Date:	09/02/2020		
Break Type:	6		
Max Load (lbf):	111,302		
Strength (psi):	3,940		
Spec Strength (psi):			

https://forneytools.forneyvault.com/Report?id=1c544a07-d55b-4e88-a836-d1bad40b3005

Remarks: Set 001, Spec	cimen 1, 62-c	lay Compre	ssive Stren	Date received: 09/02/2020 Curing: 💽 Standard 🔲 Field ASTM C511				
Concrete test were submitte presented rela	specimens alo d by the Midwe te to the conce	ng with docu est Roadside rete specimer	mentation ar Safey. Test ns as receive	Submitted by: Mil Roculer				
$\times \times$		5)				Distribution:		
Type 1	Type 2	Type 3	Type 4	Type 5	Туре б	Report Date: 9/2/2	20	

This report shall not be reproduced, except in full, without prior approval of Alfred Benesch & Company. Results relate only to items tested.

825 M Street Suite 100 Lincoln, NE 68508

Alfred Benesch & Company

Figure A-9. Concrete Compression Test, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item No. b1)

Concrete Sample Test Report Cylinder Compressive Strength

Project Name:	Midwest Roadside Safety - Misc Testing
Project Number:	00110546.00
Client:	Midwest Roadside Safety Facility
Location:	MNPD
Sample:	006
Description:	T2-N-C

Field Data (ASTM C172, C143, C173/C231, C138, C1064)

Supplier:		Property	Test Result
Mix Name:		Slump (in):	
Ticket Number:		Air Content (%):	
Truck Number:		Unit Weight (lb/ft ³):	
Load Volume (yd3):		Air Temp (°F):	
Mold Date:	07/02/2020	Mix Temp (°F):	
Molded By:	MNCBR		

Laboratory Test Data (ASTM C39)

	-		
Sample Number:	006		
Set Number:	001		
Specimen Number:	1		
Age:	62		
Length (in):	12		
Diameter (in):	6.01		
Area (in²):	28.37		
Test Date:	09/02/2020		
Break Type:	6		
Max Load (lbf):	130,298		
Strength (psi):	4,590		
Spec Strength (psi):			

Remarks: Set 001, Sp	ecimen 1, 62-o	day Compre	essive Stren	Date received: 09/02/2020 Curing: 🗶 Standard 🔲 Field ASTM C511 Submitted by:			
Concrete test specimens along with documentation and test data were submitted by the Midwest Roadside Safey. Test results presented relate to the concrete specimens as received.						Mit Roculer	
$\times \times$	人员	51)			\frown	Distribution:	
Type 1	Type 2	Type 3	Type 4	Type 5	Туре б	Report Date: 9/2/20	

This report shall not be reproduced, except in full, without prior approval of Alfred Benesch & Company. Results relate only to items tested.

825 M Street Suite 100 Lincoln, NE 68508

Alfred Benesch & Company

Figure A-10. Concrete Compression Test, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item No. b1)

		CERTIFI	ED MATERIAL TI	EST REPORT						Page 1/1
😁 GERDAU	SIMCOTE INC 1645 RED ROCK RD	CUST SIM 1645	IOMER BILL TO COTE INC RED ROCK ROAD		GRADE 60 (420)		SHAPE/ Rebar /	'SIZE #5 (16MM)	II C	X0CUMENT ID-)000036750
US-ML-ST PAUL 1678 RED ROCK ROAD	SAINT PAUL,MN 551 USA	119 SAIN USA	NT PAUL, MN 55119	-6014	LENGTH 40°60"		W 8,	EIGHT 594 LB	HEAT / 621505	/ BATCH 22/02
SAINT PAUL, MN 55119 USA	SALES ORDER 8328518/000050	C	USTOMER MATER	NAL Nº	SPECIFIC ASTM A61	ATION / DATE of 5/A615M-16	REVISION			
CUSTOMER PURCHASE ORDER NUMBER MN-3734	B111 1332-	- OF LADING -0000075667	DATE 11/21/2019							
CHEMICAL COMPOSITION C Ma P 0.42 1.09 0.009	Ş Şi 0.021 0.2	୍ବିଆ 3 0.29	Ni % 0.12	Çr N 0.19 0.0	40 %)29	5gr 0.012 0	¥ 004	N5 %		
MECHANICAL PROPERTIES VSI 68545	YS AFa 473	UTS PSI :07801	UTS MPa 743		G/2. Inch 8.000		G/L 1815 - 203.2	0.1402		
MECHANICAL FROPERTIES Elong. Ber (3.80 (idTosi. DK		······································							
GEOMETRIC CHARACTERISTICS %Light Def Hgt Def Gap Inch Inch 1.75 0.380 0.131	DefSpace Inch 0.439						· .			
COMMENTS / NOT28 Material 100% includ and rolled in the USA. Ma and hot rolling, have been performed at Gerdau St cast billets. Silicon killed (deavidized) steel. No- liquid at ambient temperatures during processing o provided by Gerdae-Sc. Paul Mill without the expr report shall not be reproduced except in full, without responsible for the isability of this material to mee Roll batch 62/150922/02 roll date 8/26/2019	nufacturing processes for t Paul Mill. 1578 Red Rock weld repairment performed or while in Cerdau SL Paul ressed written consent of G wit the expressed written co it specific applications.	his steel, which may inclu & Road, Saint Paul, Minnet I. Steel not exposed to me Mills possession. Any m erdau St. Paul Mill negat basent of Gerdau St. Paul	ide scrap mettod in an sota, USA. All prod azoury or any liquid a codification to chis ce as the validity of this Mill. Gerdau St. Pau	n electric àrc furnace wat produced from str lloy which is ruffocation as test report. This al Mill is not	and					
								· · ·		
The above figures are cer specified requirements. Y 10204.3.1.	tiñed chemical and physics Veld repair has not been pe	al test records as containe rformed on this material.	d in the permanent re This material, includi	cords of company. W ing the billets, was the	e certify that the and mai	these data are corre- plactured in the US	ct and in co A. CMTR (mpliance with complies with EN		
Marke	BBASKAR YAL	AMANCHEJ NTOR				m ng	ALEA BRAN QUALITY A	DENBUNG ISURANCE MOR.		
Phone: (409) 267-1071 1	Etnail: Bhaskar Yalamanchili@	ð gerðau.com			Phone: (6)	11) 731-5662 Email:	Alea, Brande	nburg@gerúau.com		

Figure A-11. #5 Rebar, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item Nos. b2, b3, and b4)

				CERTIFIED M	ATERIAL T	EST REPOR	RT				Page 1/1
GÐ GERDAU		CUSTOMER SHIP TO CUSTOMER BIL SIMCOTE INC SIMCOTE INC 1645 RED ROCK ROAD 1645 RED ROC			ER BILL TO E INC	D	G 60	GRADE SHAPE / SIZE 60 (420) Rebar / #5 (16MM)		PE / SIZE r / #5 (16MM)	DOCUMENT ID 0000034231
US-ML-ST PAUL		SAINT PAUL, USA	SAINT P/ USA	AUL.MN 5511	9-6014	L. 60	LENGTH WEIGHT 60'00" 8.636 LB			HEAT / BATCH (62150950/02	
SAINT PAUL, MN 55119 USA		SALES ORDE 8050886/0000	R 20	CUST	OMER MATE	ERIAL Nº	S A	PECIFICATION / D/ ASTM <mark>A615/A615M-</mark> 16	SION		
CUSTOMER PURCHASE ORDE MN-3726	R NUMBER		BILL OF LAD	PING	DATE 09/10/201	9					
CHEMICAL COMPOSITION C Mn % % 0.45 1.02	Р % 0.010	§ 0.027	Si %	Си % 0.34	Ni % 0.12	Çr 0.20	Mo % 0.025	Sn %	V % 0.004	Nb % 0.002	
MECHANICAL PROPERTIES YS PSI 72026	N 4	(S IPa 97	UT PS 1100	S 1 143	UTS MPa 759	i		G/L Inch 8.000	2	G/L mm 03.2	
MECHANICAL PROPERTIES Elong. 15.00	Ben	dTest DK									
GEOMETRIC CHARACTERISTICS %Light Def Hgt % Inch 1.50 0.038	Def Gap Inch 0.180	DefSpace Inch 0.415									
COMMENTS / NOTES Material 100% melted and rolled i and hot rolling, have been perform cast billets. Silicon killed (deoxid liquid at ambient temperatures dur provided by Gerdau-St. Paul Mill report shall not be reproduced exo responsible for the inability of this Roll bach 62150950/02 roll date & ASTM (A615-MN-DOT-SPEC-33)	n the USA. Ma ed at Gerdau St ized) steel. No ing processing (without the exp ept in full, without material to mee 3/23/2019 02	nufacturing proce . Paul Mill, 1678 weld repairment p or while in Gerdau ressed written con out the expressed et specific applica	sses for this steel, Red Rock Road, S erformed, Steel r I St. Paul Mills po sent of Gerdau St written consent of ions.	which may include : Saint Paul, Minnesott oot exposed to mercu sseession. Any modi Seession. Any modi Paul Mill negates th Gerdau St. Paul Mil	scrap melted ir a, USA. All p rry or any liqui fication to this ne validity of t II. Gerdau St.	n an electric an roduct produce d alloy which certification a his test report. Paul Mill is no	c furnace ed from strand is s This ot	d			

The above figures are certified chemical and physical test records as contained in the permanent records of company. We certify that these data are correct and in compliance with specified requirements. Weld repair has not been performed on this material. This material, including the billets, was melted and manufactured in the USA. CMTR complies with EN 10204 3.1.

BHASKAR YALAMANCHILI Mackar QUALITY DIRECTOR

M S ALEA BRANDENBURG QUALITY ASSURANCE MGR.

Phone: (409) 267-1071 Email: Bhaskar. Yalamanchili@gerdau.com

Phone: (651) 731-5662 Email: Alea.Brandenburg@gerdau.com

Figure A-12. #5 Rebar, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item Nos. b2, b3, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15, b16, and b17)

Technical Data: FillPro™ Standard Backer Rod (Formerly ITP Standard)

Description: Flexible, gray or white, extruded round, closed-cell polyethylene foam backer rod in continuous coils or 6 foot lengths.

Typicati Toperties							
Property		Value		Test Methods			
Density (nominal)		> 1.5		ASTM D1622			
Outgassing (# of bubb	assing (# of bubbles)			ASTM C12	53		
Tensile Strength psi ((Pa)	> 24		ASTM D16	23		
Compression Recover	y, %, min	> 96		ASTM D52	49		
Compression Deflecti	on 61 25%	7 PSI mini	mum	ASTM D52	49		
Water Absorption		0.03 gm,	/cc	ASTM C1016 – Pro	cedure B		
Temperature Range		-90°F to 2	10°F	-			
Classification		Type 3	3	ASTM D52	49		
Sizes							
Diameter	Shipping Format	Feet per Carton	Metric Diameter	Meters per Carton	Color		
*1/4"	2 Spools	4000	6 mm	1219	Grav		
*3/8"	1 Spool	2100	9 mm	640	Gray		
1/2"	2 Spools	2500	12 mm	762	Gray		
5/8"	2 Spools	1550	15 mm	472	Gray		
3/4"	1 Spool	1100	19 mm	335	Gray		
7/8"	1 Spool	850	22 mm	259	Gray		
1"	1 Spool	600	25 mm	182	Gray		
1-1/4"	1 Spool	400	31 mm	121	Gray		
1-1/2"	6' Lengths	396	38 mm	121	Gray		
2"	6' Lengths	228	50 mm	70	Gray		
2-1/2"	6' Lengths	144	63 mm	44	White		
3"	6' Lengths	102	76 mm	31	White		
4"	6' Lengths	48	101 mm	15	White		
5"	6' Lengths	90	127 mm	27	White		
6"	6' Lengths	60	152 mm	18	White		

Size and lengths per spool are those at times of packaging and may vary with climatic condition after manufacture.

Carton Sizes & Weights			Proper Sizing Chart	(Size to Joint Width)
Rod Diameter	Weight / Carton	Carton Measurement	Joint Width	Use Rod Diameter
1/4" - 3/8" 6 mm to 9 mm	6 lbs 2 7 kgs	18" x 18" x 15" /57 mm x /57 mm x 381 mm	1/8" - 3/16"	1/4"
1/2" - 1-1/4"	11 lbs	18" x 18" x 30"	1/4" - 3/8"	3/8
12 mm to 31 mm	5 kgs	457 mm x 457 mm x 762 mm	3/8" - 1/2"	5/8"
1-1/2" - 4" 38 mm to 101 mm	14 lbs 6.4 kgs	17" x 10" x 74" 432 mm x 254 mm x 1880 mm	1/2" - 5/8"	3/4"
5" - 6"	35 lbs	17" x 23" x 74"	3/4" - 7/8"	//8
127 mm to 152 mm	15.9 kgs	432 mm x 584 mm x 1880 mm	7/8" - 1"	1 1/4"
Shipping Information			1" - 1 1/4"	1 1/2"

1 1/4" - 1 1/2"

1 1/2" - 2"

2" - 2 1/2"

2 1/2" - 3"

3" - 4 3/4"

4 3/4" - 5 3/4"

2

2 1/2"

3"

4"

5"

6'

Rectangular cartons with convenient hand holes for carrying, are ideal for warehousing and handling.
Most other express services will accept all cartons for reshipment.

• Truckload quantities furnished on pallets and may be warehoused 2 pallets high to maximize space.

Armacell Canada Inc.

153 Van Kirk Drive Brampton, ON L7A 1A4 TOLL FREE: 800-387-3847 ext. 161401 TEL: 905.846.3666 Fax: 905.846.0363

Web: www.tundrafoam.com | www.armacell.us

Armacell provides this information as a technical service. To the extent the information is derived from sources other than Armacell, Armacell is substantially, if not wholly, relying upon the other sourcels to provide accurate information. Information provided as a result of Armacell's own technical analysis and testing is accurate to the extent of our knowledge and ability, as of date of printing, using effective standardized methods and procedures. Each user of these products, or information, should perform their own tests to determine the safety, fitness and suitability of the products, or combination of products, for any foreseeable purposes, applications and uses by the user and by any thing harty to which the user may convey the products. Since Armacell cannot control the end use of this product, Armacell does not guarantee that the user will obtain the same results as published in this document. The data and information are provided as a technical service and are subject to change without notice.

FillPro-Standard Data Sheet 5430 Eng/US 9/2017

© 2017 Armacell LLC. Printed in United States of America

Figure A-13. Backer Rod, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item Nos. b18 and b19)

Tel (205) 620-5100 SOB WATERIAL CERTIFICATION READED PRODUCTS, INC. Fax (205) 620-5150
Job No: 590453 Job Information Certified Date: 8/31/18
Containers: S14697464
Customer: Conklin and Conklin Ship To: 34201 Seventh Street Union City, CA 94587
Vulcan Part No: BAR B7 .7987x144 SC
Customer Part No: RAWSTEEL796-B
Customer PO No: 19136 Shipped Qty: 3105 lbs
Order No: 368176 Line No: 1
Note:
Applicable Specifications
Type Specification Rev Amend Option
- ASTM F1554 Gd 105 S4 2015
Heat Treat ASME SA-193/SA-193M B7 2013
ASTM A193 B7 2016
Quality EN 10204 3.1 2004
t Results
following pages for tests
Certified Chemical Analysis
Heat No: (10551610) Origin: USA
C Mn P S Si Cr Mo Ni V Cu
U.41 U.57 U.007 0.024 0.29 U.91 0.21 0.05 0.003 0.14
0.028 0.002 0.006 0.003 0.0060 0.0002 5.23 5411 Eine 2
0.028 0.002 0.006 0.003 0.0060 0.0002 5.23 54:1 Fine 2 Jacro R. Macro C. J1 J2 J3 J4 J5 J6 J7 J8
0.028 0.002 0.006 0.003 0.0060 0.0002 5.23 54:1 Fine 2 lacro R Macro C J1 J2 J3 J4 J5 J6 J7 J8 2 2 57 57 57 57 56 55
0.028 0.002 0.006 0.003 0.0060 0.0002 5.23 54:1 Fine 2 lacro R Macro C J1 J2 J3 J4 J5 J6 J7 J8 2 2 57 57 57 57 57 56 55 J9 J10 J12 J14 J16 J18 J20 J24 J28 J32
0.028 0.002 0.006 0.003 0.0060 0.002 5.23 54:1 Fine 2 lacro R Macro C J1 J2 J3 J4 J5 J6 J7 J8 2 2 57 57 57 57 57 56 55 J9 J10 J12 J14 J16 J18 J20 J24 J28 J32 54 50 48 46 46 45 42 40 38

PORTLAND BOLT PO# 41910 INV# 078677 50 7/8" X 144" B7 ATR, HDG AUGUST 5, 2019

https://www.plexonline.com/b7e2cf83-6155-4673-8f8b-c1fc57a3338b/Sales/Report_Job_Cert.asp?Mode=... 3/8/2019 0

Figure A-14. Anchor Rod, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item No. c1)

Figure A-15. Anchor Plate and Plate Washer, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item Nos. c2 and c4)

1718	HACUSTONED	1.1	****	口。小和小师客家	gn-s 1古阻/	peed	1 411	e K	H H	uall 占非而	LY L	MED (TITC					ム同り	LCONTD	(0512) S	8330366,	5855081	8 71 WOOD PC	0000
的贝	STERI CRADE	-	G/17.	SWDCH25	N H PR	4.11			/11/	退货单		TVERY	t	1/23161		-		台作日	THENATI	T OF DEL	IVERV	^	2017021	8
/FF =	STELL UNADE			Switchio	A	-			15.33	:北县(COTI	TCAT	2 NO	11221610003	¥71W0	00000	6	灰山口	1 HEDATI	T OF TES			2017021	0
SPE	と近标准 CIFICATION		Q	/320582 SGY3	03-201	4	•		<u>Л</u> Д ш	11-10	日途15	E	5 110.	0231010000	5 X11#0	100400	5 0	立 及 に 精炼プ	TREF	INING M	THOD		位外精	т. Т.
-	1				1	-	化些	the Act	ENTC	1 00	DOCT	TON			15.(由2-P)	ATENCI	IP TPO	T			1			1
-		5.1	1.1		C	Si	Mn	P	S	Cr	Ni	Cu	N		1114 IL	MICNOL	LE IES	1					1.1	1.1
序	炉批号	直径	盘数	重量	2	2	2	3	3	.2	2	2	4	Rm	ReL	A	A11. 3	Z	顶端	硬度	脱碳层	晶粒度	索氏体	备注
号NO	HEAT NO.	Dia.	Coils	Kg											10		-		试验	试验 HRB	D. of. D	Micro- Grade	Sorbite %	REMARK
														h	IPa		%							
	-				· 1	=×10	2=×1	00 3=	×100	0 4=>	<1000	0 5=>	<1000	00	1		1		100.100					
1	G731000508	34.0	21	48750 -	35	13	74	16	4	1	1	1*	34	552	309			34.0	完好		0.01	8		
	0501000510		10	11120	0.0		70		-				50	554	320			36.0	c= 117		0.01	8		
2	G731000510	30. 0	19	44179	36	14	12	14	5	1	1	1	50	592	355			38.0	元好		0.01	8		-5
	0721000510	20.0	19	27965	36	14	72	14	5	1	1	1	50	502	355			38 0	宗样		0.01	- 8	•	1
2	6751000510	30.0	14	21000	30	14	14	14	0	-			00	594	362			43.0	76,51		0.01	8	1.1	1.1
4	6731000510	30.0	12	27224	36	14	72	14	5	1	1	1	50	592	355			38.0	完好		0.01	8		101
*	0151000510	50.0	12	21221			10	11			-		00	594	362			43.0	1011		0.01	8	12	
5	G731000511	30, 0	21	48306	36	13	72	12	5	1	1	2	55	579	349			33.0	完好		0.01	8	1	
			-		1								1	587	359		-	35.0			0.01	8		1.00
6	G731000511	30.0	1	2228	36	13	72	12	5	1	1	2	55	579	349			33.0	完好		0.01	8		
	5.7	in.												587	359			35.0			0.01	8		
	合计 Total		86	198552	iې NO	.明 TES	本质1 impai	赴证明 ritie: H.T.一	书适用 6. Head-	于合金 coldi	o类线材 ng Te	才;本产 st;	*品不 *2 D	含有任何辐射 .of D.—Dep	元素。I	l îs gu Decarbu	uarante urizati	ed tha	t the	product.	s dọn't (contain	radioche	emical
综合 FI RE	syl定 NAL SULT	格 SS	ATT	意事项 ENTIVE TEMS	1. 质 stamp 2. 用) and 1 mater	量证明 bed. 白验货 the he rial(:	书复印 后使用 eat nu s) and	1件不作 如有身 Imber i the	F有效i F(这应) of ur marki	正明文 及时告 ider q B A M	件,除 知炉号 uanli urd	非盖着 、牌 fied	五; Th 子, 升 mater bead	e copy of t 保留实物及标 rial(s) four	his Cer 志, Ple nd in i	tifica ase in nspect	te is form us ion on	not va the s time,s	lid exe steel g and kee	cept rade p the	质检 SE/	印章 IL	数 VI	证人 SA

Figure A-16. Heavy Hex Nut, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item No. c3)

217

Wrought Washer Mfg., Inc 1901 Chicory Road Mount Pleasant, WI 53403	Certificate Of Conformance
Date: Certification To: Fastenal Company 9911 Woodend Road Edwardsville, KS 66111 USA	
Pa	rt Info
PO No Revision: Customer Part No: 0156031 Part Name: 7/8 F436 S MARK HDG Quantity: 2,000 Supplier: Master Unit No(s): M006605 Piece List: Wrought Washer Mfg., Inc. Part No: 017305 Heat Code(s): 63019 Shipper No: WW01813 Job No(s): 317722 HT 314372	Customer Part Rev Level: Customer PO No: 210201802 Line No: 3 Revision:
Supplier Heat No	Attachment
We hereby certify that the subject parts conform to the purcha further certify that all hardening and/or plating meet full purcha We hereby certify that all statutory requirements as to Americ purchase applicable to the transaction have been complied wi	se order and any applicable specification indicated above. We ase order specification requirements. an Production and Labor Standards and all conditions of th and that the subject parts were manufactured in the USA.
	Paul J. Sapplink
	Signature Date

Figure A-17. SAE Washer, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item No. c5)

Figure A-18. End Plate, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item No. d1)

	Jan	teora Stat	الحزيرة ال	حديد			AL .	JAZE	ERA	PO	TEE BOX 40 St Phone :	L PR	7, Suhar I ATE OF C	CTS C adustrial E MAN 668 26751766	OM) Estate	PAN	Y S/	OG	(OR	GI	AAU	
	MTC INV CUS ADD	CNO. DICE NO TOMER RESS). 'S NAME	E	:216/08/201 : AJSPC/EJ :SUNBELT SUITE 950, HOUSTON USA	8 (P/172 GROUP I POST OA ,TX 77056	DATED DATED LP K BOUL -3817	14/08/2018 14/08/2018 EVARD		3	MILL	TEST	CERTI	FICATE	C		P.O. NO.	: 23.704			PAGE	71	
													М	CHANICAL	TESTING	1	HYADR	-	CHEM	ICAL AN	ALYSIS (%)	T
	SR NO.	NPS (lach)	NPS (MM)	WT (locb)	LENGTH (Feet)	TYPE	Lb/Ft	HEAT NO.	HUNDL	PCS	TOTAL (FEET)	MET WT. (MT)	UTS (psl)	YS (psi)	% EL IN GL 2"	FLATT ENING / BEND	AULIC TEST (psi)	c	Ma	P	s	SI	Zine Coating
	-		Lin	1	J			ERW STEE	L PIPE	CONF	FORMIN	GTOTH	E SPECIFI	CATION AS	TM A53	-12 GRA	SCH 40	Cu	Ni	Cr	Mo	V.	<u> </u>
~	1	1 1-	1 1.315	0 133	1 21.0	BPE	1.68	A1603219	1 146	8760	1 183960	1 140,186	63802/64532	46720/47 596	18/40	1 or	1 700	0.164	1 0 704		1		
~,		UL+FM		0.137	210	DDE	1.69	41907317		480	10000	7 601	67364/64346	AREC 2/48.120	2040		100	0.134	0.027	0.013	0.005	0.012	-
	2	UL+FM	1 1 3 1 5	0.133	21.0	BPE	1.68	A180/21/		480	10080	7.081	03364/04240	45552/46428	38/40	OK	700	0.146	0.793	0.009	0.006	0.008	-
	3	1 1"	1.315	0.133	21.0	BPE	1.68	A1804209	1	60	1260	0.960	59015/59885	41470/42340	34/35	OK	700	0.149	0.822	0.005	0.004	0.004	1 -
	4	6	6.625	0.780	21.0	BPE	18.99	A1808436	80.	560	11760	101.298	63510/64386	41464/42340	35/37	OK	1520	0.005	0.007	0.010	0.001	0.001	
	1.	(UL+FM	0.840	0.109	210	RPE	0.85	A1806312	18	2160	45360	17 489	63656/64386	47450/48326	35/37	OF	-	0.022	0.003	0.011	0.002	0.001	-
	1	(UL)	0,010	0.107											1		100	0.004	0.012	0.009	0.012	0.025	-
	6	UL+FM	1 1.315	0.133	21.0	GPE	1,68	A1808219	19	1140	23940	18.244	63802/64532	46720/47596	38/40	OK	700	0.154	0.795	0.013	0.005	0.012	1.87/1.89
	7	1 12	1.315	0.133	21.0	GPE	1.68	A1807217	13	780	16380	12.482	63364/64240	45552/46428	38/40	ок	700	0.146	0.793	0.009	0.001	0.002	1.88/1.90
	8	1.1/4"	1.660	0.140	21.0	GPE	2.27	A1805212	3	126	2646	2.724	63218/63948	45990/46866	35/37	ок	1200	0.009	0.026	0.007	0.002	0.004	
	1	TUL+FM	2	0.316		CTC	7 69		1.		204	1004	63610/64396	19010/1000				0.009	0.012	0.005	0.003	0.002	1.88/1.90
	1	UL+FM)	0.210	21.0	uic	7.00	Alousitis			274	1.024	05510/04560	46310/49040	3//34	UK	2220	0.148	0,792	0.005	0.005	0.015	1.87/1.89
	10	3"	3.500	0.216	21.0	GTC	7.68	A1807431	3	42	882	3.073	63364/64094	43800/44676	34/36	OK	2220	0.143	0.822	0.010	0.003	0.007	1.86/1.88
	-n	3"	3.500	0.216	21.0	GTC	7.68	A1802405	1	14	294	1.024	63364/64240	46866/47596	36/38	OK	2220	0.145	0.897	0.007	0.001	0.003	1.87/1 89
	-	(UL+FM					GRANE	TOTAL	293	14136	296856	306.185				العار	A State	0.004	0.006	0.012	0.001	0.001	
	THIS	IS TOCER	TUFY THA	T THE MA	TERIAL CONF	ORMS TO T	HE SPECE	FICATION AST	M A53 -12	GRA	CALLY TES	TED			1.	The For	ALLAN	hend	Dandarat		1		
	ATT	HE PRESSL	IRE MENT	TONED A	BOVE.									t	13	1001	· 4.00	FL	Froduce	Compa	NO SKOL	;	
	1														A	عمان	(الرمز البريد	1.	5	-			
															1 in	Postal Co	40 Sohar	8A	uthorized	Signatory		•	1
															1 2	Solo	man	5/1	Quantity O	ontrol			1

Figure A-19. Standard Pipe, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item No. d2)

,

Date: 12/13/2016

Subject: Certificate of Conformance

Product: HIT RE-500 V3 Adhesive

To Whom it May Concern:

This is to certify that the HIT-RE 500 V3 is a high-strength, slow cure two-part epoxy adhesive contained in two cartridges separating the resin from the hardener.

Additionally, this certifies that the product has been seismically and cracked concrete qualified as represented in ICC-ES report ESR- 3814.

Sincerely,

Hilti, Inc. 5400 South 122 East Avenue Tulsa, Oklahoma 74146

800-879-8000 800-879-7000 fax <u>US-Sales@hilti.com</u>

Figure A-20. Epoxy, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item No. e1)

Pecora 301 NS

Non-Sag Silicone Highway & Pavement Joint Sealant

I. BASIC USES

Sealing of transverse contraction and expansion joints, longitudinal, centerline and shoulder joints in Portland cement concrete (PCC) and asphalt.

2. MANUFACTURER

Pecora Corporation 165 Wambold Road Harleysville, PA 19438 Phone: 215-723-6051 800-523-6688 Fax: 215-721-0286 Website: www.pecora.com

3. PRODUCT DESCRIPTION

Pecora 301 NS Silicone Pavement Sealant is a one part, ultra low modulus product designed for sealing joints in concrete or asphalt pavement. It has excellent unprimed adhesion to concrete, metal and asphalt substrates, superior weather resistance and remains flexible at extremely low temperatures.

Pecora 301 NS Silicone Pavement Sealant is a non-sag product designed for applications on flat and sloped surfaces.

Advantages:

- Reduces pavement deterioration by restricting surface water penetration into underlying base and sub base layers.
- Convenient one component, neutral moisture curing system.
- Ultra low modulus resulting in high movement capability.
- Ease of application with standard automated bulk dispensing equipment such as Graco or Pyles.
- VOC compliant.
- Primerless adhesion to concrete and asphalt.
- Aids in elimination of non-compressables entering expansion joints.

Limitations:

Pecora 301 NS Silicone Pavement Sealant should not be used:

- for continuous water immersion conditions.
- when ambient temperatures is below 40°F (4°C) or above 120°F (49°C).
- flush with traffic surface. (Sealant must be recessed below surface.)
- for applications requiring support of hydrostatic pressures.
- with solvents for dilution purposes.
- with concrete that is cured less than 7 days.

Specification Data Sheet

- with newly applied asphalt until cooled to ambient temperature (usually 24-48 hours).
- as a structural component or in longitudinal joints greater than 3/4" in width that are intended to be used as a constant travelling surface.

PACKAGING

- 30 fl. oz. (887ml) cartridges • 20 fl. oz. (592ml) sausages • 4.5 gallon pails (17.0L)
- •50 gallon drum (188.9L)
- Color: pavement gray

	SEA	LANT COV RECESS GI	ERAGE CHART JIDELINES		
Joint Width (inches)	Sealant Depth (inches)	Recess (inches)	Backer Rod Diameter (in)	Minimum Joint Depth (in)	Linear ft./gal
1/4	1/4	1/8	3/8	3/4	308
3/8	1/4	1/8	1/2	7/8	205
1/2	1/4	1/8	5/8	1-1/4	154
3/4	3/8	1/4	7/8	1-1/4	68
1.0	1/2	1/4	1-1/4	2	38

TABLE I:TYF	PICAL UNCURED	PROPERTIES
Test Property	Value	Test Procedure
Cure Through (days)	7	0.5" cross section
Extrusion Rate (grams/min)	90-250	Mil-S-8802
Rheological Properties	non-sag	
Tack Free Time (mins)	60	ASTM C679
VOC Content (g/L)	50	ASTM D3960
TABLE 2:T		PROPERTIES
(After 7 day	s cure at 77°F (25	°C), 50% RH)
Test Property	Value	Test Procedure
Adhesion minimum elongation		ASTM D5329*
Asnhalt	500	A311105527
Concrete	500	
Metal	500	
Elongation (%)	>1400	ASTMD412
Resilience (%)	>95	ASTM D5329
Stress @ 150% Elongation (psi)	22	ASTMD412
Hardness, maximum		
21 day cure (Shore 00) Joint	60	ASTM C661
Movement Capability		
+100/-50%; 10 cycles	Pass	ASTM C719
*modified section 14		

Since Pecora architectural sealants are applied to varied substrates under diverse environmental conditions and construction situations it is recommended that substrate testing be conducted prior to application.

Figure A-21. Concrete Joint Sealant, Test Nos. MNCBR-1, MNCBR-2, and MNCBR-3 (Item No. e2)

Appendix B. Vehicle Center of Gravity Determination

		Test Name:	VIN:1HTMMAAM7DH105190				
Model Year	: 2013	Make:	International	Model:	Dui	astar 4300 SE	BA 4x2
		_					
	Vahiala O						
	venicie C	G Determination	on		Maight		Vertical
					vveignt		
	venicie Eq	uipment	much (Cumh)		(ID)	(IN.)	
	+	Unballasted I	ruck (Curb)		14852	42.601	632703.156
	+	Hub			34	19.75	671.5
	+	Brake activati	on cylinder & fra	ame	9	44.5	400.5
	+	Pheumatic ta	nk (Nitrogen)		30	43.5	1305.0
	+	Strobe/Brake	Battery		5	43.0	215.0
	+	Tow Pin Plate) 		9	13.5	121.5
	+	Brake Receiv	er/vvires	-	6	99.5	597.0
	+	Cab DAQ Un	It & Mouting Plat	e	11	43.313	476.438
	+	CG DAQ Unit	s & Enclosure	(T	6	31.5	189.0
	+	Rear Axle DA	Q Unit and Encl	osure/1d	30	50.0	1500.0
	-	Battery			-184	28.5	-5244.0
	-	Oil			-51	21.0	-1071.0
	-	Interior			-66	70.0	-4620.0
	-	Fuel			-368	25.5	-9384.0
	-	Coolant			-57	52.0	-2964.0
	-	Washer fluid			-6	27.0	-162.0
	+	Pump battery			40	53.0	2120.0
	+	Tdas			10	50.0	500.0
BALLAST	+	PCB			5100	69.25	353175.0
	+	Hardware			178	47.0	8366.0
	+	Concrete Blog	cks		1286	51.25	65907.5
	+	Steel Blocks			875	50.25	43968.75
	+	Foam 8" thic	k under PCB on	ly	18	51.75	931.5
	+	Steal plates			403	57.25	23071.75
	Note: (+) is ad	ded equipment to	vehicle, (-) is remov	ed equipme	ent from vehicle	•	1112774.593
			_				
Estimated Tot	al Weight (Ib) 22170	290		Total Balla	ast Weight (lb)	7860
Vertical CG	Location (in.) 50.193		Ballas	t Vertical CG	Location (in.)	63.031
Vehicle Dim	ensions for	C.G. Calculati	ons				
Wheel Base	236.75	in.	Front Trac	k Width:	79.375	in.	•
		-	Rear Trac	k Width:	74.0	in.	
Center of Gr	ravity	10000S MA	SH Targets		Test Inertia		Difference
Test Inertial	Weight (lb)	22046	± 660		22042		-4.0
Longitudinal	CG (in.)	NA			143.068		NA
Lateral CG (in.)	NA			0.129		NA
Vertical CG	(in.)	NA			50,193		NA
Ballast Vertic	al CG (in.)	63	+ 2		63.031		0.03060
Note: Long. CG	is measured fr	om front axle of tes	t vehicle				
Note: Lateral C	G measured fro	m centerline - posi	tive to vehicle right (passenger) side		
Hole. Eulerar of	e measured no	in contenine poor	are to remole right (pubberiger) 5140		
CURB WEIG	HT (lb)		1		TEST INER	TIAL WEIGHT	(lb)
							(10)
	l oft	Right				l eft	Right
Front	3708	3630			Front	4400	4322
Rear	2770	2726			Rear	4400 6604	4322
	3//0	0100			INEAI	0004	0730
EDONT	7000	lb			EDONT	0700	њ
	1330	iD Ib				0122	
TOTAL	/014	=""			TOTAL	10020	
LIOTAL	14852	a			TOTAL	22042	a

Figure B-1. Vehicle Mass Distribution, Test No. MNCBR-1

Test Name: MNCBR-2 VIN: 1C6RR6FT2ES2784										
Model Year:	2014	Make:	Dodge	Model:		Ram 1500				
Vehicle CG De	eterminatic	'n								
				Weight	Vertical CG	Vertical M				
Vehicle Equipm	nent			(lb)	(in.)	(lb-in.)				
+ L	Jnballasted	Truck (Curb)		5134	29.702401	152492.13				
+ F	Hub			19	15.625	296.875				
+ E	Brake activa	tion cylinder &	frame	7	30.25	211.75				
+ F	Pneumatic t	ank (Nitrogen)		30	27.5	825				
+ 5	Strobe/Brak	e Battery		5	27 1/2	137.5				
+ E	Brake Rece	ver/Wires		7	52 3/4	369.25				
+ (CG Plate inc	luding DAQ		30	32	960				
- E	Battery			-44	44	-1936				
- (Dil			-12	19	-228				
- I	nterior			-87	32	-2784				
- F	-uel			-155	21	-3255				
- (Coolant			-12	34	-408				
- V	Nasher fluid	łk		0	36	0				
+ V	Nater Balla	st (In Fuel Tan	k)	73	17	1241				
+ (Onboard Su	pplemental Ba	ttery	5	27 1/2	137.5				
						0				
						0				
Note: (+) is added e	equipment to v	vehicle, (-) is remo Estimated Tot Vertical CG	ved equipment fr al Weight (lb) Location (in.)	om vehicle 5000 29.612		148060				
Note: (+) is added a Vehicle Dimen Wheel Base:	equipment to v sions for C 140.25	rehicle, (-) is remo Estimated Tot Vertical CG C.G. Calculatic in.	ived equipment fr al Weight (lb) Location (in.) ons Front Tra	5000 29.612 ack Width:	68.25	148060				
Note: (+) is added e Vehicle Dimen Wheel Base: _	equipment to v sions for C 140.25	rehicle, (-) is remo Estimated Tot Vertical CG 2.G. Calculatic in.	ved equipment fr al Weight (lb) Location (in.) ons Front Tra Rear Tra	om vehicle 5000 29.612 ack Width: ack Width:	68.25 68.1875	in.				
Note: (+) is added of Vehicle Dimen Wheel Base: _	equipment to v sions for C 140.25	rehicle, (-) is remo Estimated Tot Vertical CG C.G. Calculatic in. 2270P MAS	al Weight (lb) Location (in.) Dons Front Tra Rear Tra SH Targets	om vehicle 5000 29.612 ack Width: ack Width:	68.25 68.1875 Test Inertial	in.	Difference			
Note: (+) is added of Vehicle Dimen Wheel Base: Center of Grav Test Inertial We	equipment to v Isions for C 140.25 /ity eight (lb)	rehicle, (-) is remo Estimated Tot Vertical CG C.G. Calculatic in. 2270P MAS 5000	al Weight (lb) Location (in.) Dons Front Tra Rear Tra SH Targets ± 110	om vehicle 5000 29.612 ack Width: ack Width:	68.25 68.1875 Test Inertial 5003	in. in.	Difference 3.0			
Note: (+) is added a Vehicle Dimen Wheel Base: Center of Grav Test Inertial We Longitudinal CO	equipment to v Isions for C 140.25 Vity eight (Ib) G (in.)	rehicle, (-) is remo Estimated Tot Vertical CG C.G. Calculatic in. 2270P MAS 5000 63	ved equipment fr al Weight (lb) Location (in.) ons Front Tra Rear Tra SH Targets ± 110 ± 4	om vehicle 5000 29.612 ack Width: ack Width:	68.25 68.1875 Test Inertial 5003 60.355437	in.	Difference 3.0 -2.64456			
Note: (+) is added a Vehicle Dimen Wheel Base: Center of Grav Test Inertial We Longitudinal CC Lateral CG (in.	equipment to v sisions for C 140.25 /ity eight (lb) G (in.)	rehicle, (-) is remo Estimated Tot Vertical CG C.G. Calculatic in. 2270P MAS 5000 63 NA	ved equipment fr al Weight (lb) Location (in.) ons Front Tra Rear Tra SH Targets ± 110 ± 4	om vehicle 5000 29.612 ack Width: ack Width:	68.25 68.1875 Test Inertial 5003 60.355437 -0.511334	in.	Difference 3.0 -2.64456 NA			
Note: (+) is added a Vehicle Dimen Wheel Base: Center of Grav Test Inertial We Longitudinal CC Lateral CG (in. Vertical CG (in)	equipment to v asions for C 140.25 vity eight (lb) G (in.))	rehicle, (-) is remo Estimated Tot Vertical CG C.G. Calculatic in. 2270P MAS 5000 63 NA 28	ved equipment fr al Weight (lb) Location (in.) ons Front Tra Rear Tra SH Targets ± 110 ± 4 or greater	om vehicle 5000 29.612 ack Width: ack Width:	68.25 68.1875 Test Inertial 5003 60.355437 -0.511334 29.61	in.	Difference 3.0 -2.64456 NA 1.61200			
Note: (+) is added a Vehicle Dimen Wheel Base: Center of Grav Test Inertial We Longitudinal CC Lateral CG (in. Vertical CG (in. Note: Long. CG is Note: Lateral CG n	equipment to v sisions for C 140.25 /ity eight (lb) G (in.))) measured from	rehicle, (-) is remo Estimated Tot Vertical CG C.G. Calculatic in. 2270P MAS 5000 63 NA 28 m front axle of test n centerline - positi	ved equipment fr al Weight (lb) Location (in.) ons Front Tra Rear Tra SH Targets ± 110 ± 4 or greater t vehicle ive to vehicle righ	ack Width: ack Width: ack Width:	68.25 68.1875 Test Inertial 5003 60.355437 -0.511334 29.61) side	in. in.	Difference 3.0 -2.64456 NA 1.61200			
Note: (+) is added a Vehicle Dimen Wheel Base: Center of Grav Test Inertial We Longitudinal CC Lateral CG (in. Vertical CG (in. Vertical CG (in. Note: Long. CG is Note: Lateral CG n CURB WEIGH	equipment to v asions for C 140.25 /ity eight (lb) 3 (in.))) measured from neasured from T (lb.)	rehicle, (-) is remo Estimated Tot Vertical CG C.G. Calculatic in. 2270P MAS 5000 63 NA 28 m front axle of test a centerline - positi	ved equipment fr al Weight (lb) Location (in.) ons Front Tra Rear Tra SH Targets ± 110 ± 4 or greater t vehicle ive to vehicle righ	om vehicle 5000 29.612 ack Width: ack Width:	68.25 68.1875 Test Inertial 5003 60.355437 -0.511334 29.61) side TEST INER	in. in. TIAL WEIGH	Difference 3.0 -2.64456 NA 1.61200			
Note: (+) is added a Vehicle Dimen Wheel Base: Center of Grav Test Inertial We Longitudinal CC Lateral CG (in. Vertical CG (in. Vertical CG (in. Vertical CG (in. Note: Long. CG is Note: Lateral CG references Note: Lateral CG references CURB WEIGH	equipment to v sions for C 140.25 vity eight (lb) G (in.))) measured from measured from T (lb.) Left	rehicle, (-) is remo Estimated Tot Vertical CG C.G. Calculatic in. 2270P MAS 5000 63 NA 28 m front axle of test a centerline - positi	ved equipment fr al Weight (lb) Location (in.) ons Front Tra Rear Tra SH Targets ± 110 ± 4 or greater t vehicle ive to vehicle righ	om vehicle 5000 29.612 ack Width: ack Width:	68.25 68.1875 Test Inertial 5003 60.355437 -0.511334 29.61) side TEST INER	in. in. TIAL WEIGH	Difference 3.0 -2.64456 NA 1.61200			
Note: (+) is added a Vehicle Dimen Wheel Base: Center of Grav Test Inertial We Longitudinal CC Lateral CG (in. Vertical CG (in. Vertical CG (in. Vertical CG (in. CURB WEIGHT Front	equipment to v sisions for C 140.25 vity eight (Ib) G (in.))) measured from measured from T (Ib.) Left 1499	rehicle, (-) is remo Estimated Tot Vertical CG C.G. Calculatic in. 2270P MAS 5000 63 NA 28 m front axle of test o centerline - positi Right 1427	ved equipment fr al Weight (lb) Location (in.) ons Front Tra Rear Tra BH Targets ± 110 ± 4 or greater t vehicle ive to vehicle righ	om vehicle 5000 29.612 ack Width: ack Width:	68.25 68.1875 Test Inertial 5003 60.355437 -0.511334 29.61) side TEST INER Front	148060 in. in. TIAL WEIGH Left 1468	Difference 3.0 -2.64456 NA 1.61200 IT (Ib.) Right 1382			
Note: (+) is added a Vehicle Dimen Wheel Base: Center of Grav Test Inertial We Longitudinal CC Lateral CG (in. Vertical CG (in. Vertical CG (in. Note: Long. CG is Note: Lateral CG n CURB WEIGHT Front Rear	equipment to v sisions for C 140.25 vity eight (lb) G (in.)) measured from measured from T (lb.) Left 1499 1099	rehicle, (-) is remo Estimated Tot Vertical CG C.G. Calculatic in. 2270P MAS 5000 63 NA 28 m front axle of test centerline - positi Right 1427 1109	ved equipment fr al Weight (lb) Location (in.) ons Front Tra Rear Tra SH Targets ± 110 ± 4 or greater t vehicle ive to vehicle righ	ack Width: ack Width: ack Width:	68.25 68.1875 Test Inertial 5003 60.355437 -0.511334 29.61) side TEST INER Front Rear	in. in. TIAL WEIGH Left 1468 1071	Difference 3.0 -2.64456 NA 1.61200 IT (Ib.) Right 1382 1082			
Note: (+) is added a Vehicle Dimen Wheel Base: Center of Grav Test Inertial We Longitudinal CC Lateral CG (in. Vertical CG (in. Vertical CG (in. Vertical CG (in. Note: Long. CG is Note: Lateral CG r CURB WEIGH Front Rear FRONT	equipment to v asions for C 140.25 vity eight (lb) G (in.)) measured from measured from T (lb.) Left 1499 1099 2926	rehicle, (-) is remo Estimated Tot Vertical CG 2.G. Calculatic in. 2270P MAS 5000 63 NA 28 m front axle of test centerline - posit Right 1427 1109 lb	ved equipment fr al Weight (lb) Location (in.) ons Front Tra Rear Tra SH Targets ± 110 ± 4 or greater t vehicle ive to vehicle righ	om vehicle 5000 29.612 ack Width: ack Width:	68.25 68.1875 Test Inertial 5003 60.355437 -0.511334 29.61) side TEST INER Front Rear FRONT	0 148060 in. in. TIAL WEIGH Left 1468 1071 2850	Difference 3.0 -2.64456 NA 1.61200 IT (Ib.) Right 1382 1082 Ib			
Note: (+) is added a Vehicle Dimen Wheel Base: Center of Grav Test Inertial We Longitudinal CC Lateral CG (in. Vertical CG (in. Vertical CG (in. Note: Long. CG is Note: Lateral CG n CURB WEIGH Front Front FRONT REAR	equipment to v asions for C 140.25 vity eight (lb) G (in.)) measured from measured from T (lb.) Left 1499 1099 2926 2208	rehicle, (-) is remo Estimated Tot Vertical CG 2.G. Calculatic in. 2270P MAS 5000 63 NA 28 m front axle of test n centerline - positi Right 1427 1109 lb	ved equipment fr al Weight (lb) Location (in.) ons Front Tra Rear Tra SH Targets ± 110 ± 4 or greater t vehicle ive to vehicle righ	om vehicle 5000 29.612 ack Width: ack Width:	68.25 68.1875 Test Inertial 5003 60.355437 -0.511334 29.61) side TEST INER Front Rear FRONT REAR	in. in. in. TIAL WEIGH Left 1468 1071 2850 2153	Difference 3.0 -2.64456 NA 1.61200 IT (Ib.) Right 1382 1082 Ib			
Note: (+) is added Vehicle Dimen Wheel Base: _ Center of Grav Test Inertial We Longitudinal CG Lateral CG (in. Vertical CG (in. Front Rear FRONT REAR TOTAL	equipment to v asions for C 140.25 /ity eight (lb) G (in.)) measured from reasured from T (lb.) Left 1499 1099 2926 2208 5134	rehicle, (-) is remo Estimated Tot Vertical CG C.G. Calculatic in. 2270P MAS 5000 63 NA 28 m front axle of test in centerline - positi Right 1427 1109 Ib Ib Ib	ved equipment fr al Weight (lb) Location (in.) ons Front Tra Rear Tra SH Targets ± 110 ± 4 or greater t vehicle ive to vehicle righ	ack Width: ack Width: ack Width:	68.25 68.1875 Test Inertial 5003 60.355437 -0.511334 29.61) side TEST INER Front Rear FRONT REAR TOTAL	in. in. in. TIAL WEIGH Left 1468 1071 2850 2153 5003	Difference 3.0 -2.64456 NA 1.61200 IT (Ib.) Right 1382 1082 Ib Ib Ib			

Figure B-2. Vehicle Mass Distribution, Test No. MNCBR-2

		Test Name:	MNCBR-3	VIN:	KNA	DE2231965	557772
Model Year:	2009	Make:	Kia	Model:		Rio	
Vehicle CG D	eterminati	on					
					Weight		
<u>\</u>	Vehicle Eq	uipment			(lb)		
-	+	Unballasted C	ar (Curb)		2448		
-	+	Hub			19		
-	+	Brake activation	on cylinder & f	frame	7		
-	ł	Pneumatic tar	k (Nitrogen)		30		
-	÷	Strobe/Brake	Battery		5		
-	+	Brake Receive	er/Wires		5		
-	+	CG Plate inclu	iding DAQ		22		
-	-	Battery			-31		
-	•	Oil			-14		
-	-	Interior			-60		
-	-	Fuel			-19		
-	•	Coolant			-5		
-	-	Washer fluid			0		
+	+	Water Ballast	(In Fuel Tank)	41		
-	+	Onboard Supp	plemental Batt	tery			
_							
1	Note: (+) is ac	Ided equipment to v Esti	rehicle, (-) is rem mated Total V	oved equipme Veight (Ib)	ent from vehicle 2448		
 ▼ Vehicle Dimen	Note: (+) is ac	Ided equipment to v Esti C.G. Calculatic	rehicle, (-) is rem mated Total V ons	oved equipme Veight (Ib)	ent from vehicle 2448		
Vehicle Dimen Wheel Base:	Note: (+) is ac nsions for 98.5	Ided equipment to v Esti C.G. Calculatic in.	vehicle, (-) is rem mated Total V ons Front Tra	oved equipme Veight (Ib)	2448 57.375	in.	_
Vehicle Dimen Wheel Base: Roof Height:	Note: (+) is ac nsions for 98.5 57.375	Ided equipment to v Esti <u>C.G. Calculatic</u> _ in. _ in.	rehicle, (-) is rem mated Total V ons Front Tra Rear Tra	oved equipme Weight (Ib) ack Width: ack Width:	2448 27.375 57.125	in. in.	_
Vehicle Dimen Wheel Base: Roof Height: _	Note: (+) is ac nsions for 98.5 57.375	Ided equipment to v Esti <u>C.G. Calculatic</u> _ in. _ in.	rehicle, (-) is rem mated Total V ons Front Tra Rear Tra	oved equipme Weight (Ib) ack Width: ack Width:	2448 2448 57.375 57.125	in. in.	_
Vehicle Dimen Wheel Base: Roof Height:	Note: (+) is ac nsions for 98.5 57.375	Ided equipment to v Esti C.G. Calculatic _in. _in.	mated Total V mated Total V ons Front Tra Rear Tra	oved equipme Weight (Ib) ack Width: ack Width:	2448 2448 57.375 57.125	in. in.	
Vehicle Dimen Wheel Base: Roof Height: Center of Grav	Note: (+) is ac nsions for 98.5 57.375 vity eight (lb)	Ided equipment to v Esti <u>C.G. Calculatic</u> in. in. 1100C MAS 2420	rehicle, (-) is rem mated Total V ons Front Tra Rear Tra SH Targets + 55	oved equipme Weight (Ib) ack Width: ack Width:	2448 2448 57.375 57.125 Test Inertial 2442	in. in.	Difference
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We	Note: (+) is ac nsions for 98.5 57.375 /ity eight (lb) F (in)	Ided equipment to v Esti <u>C.G. Calculatic</u> _ in. _ in. _ 1100C MAS _ 2420 _ 39	rehicle, (-) is rem mated Total V ons Front Tra Rear Tra SH Targets ± 55 + 4	oved equipme Weight (Ib) ack Width: ack Width:	2448 2448 57.375 57.125 Test Inertial 2442 36 867	in. in.	Difference 22.0 -2 133
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial Wo Longitudinal CO Lateral CG (in	Note: (+) is ac nsions for 98.5 57.375 /ity eight (lb) G (in.))	Ided equipment to v Esti <u>C.G. Calculatic</u> in. in. 1100C MAS 2420 39 	rehicle, (-) is rem mated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4	oved equipme Weight (Ib) ack Width: ack Width:	2448 27.375 57.125 Test Inertial 2442 36.867 -0.61	in. in.	Difference 22.0 -2.133 NA
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CO Lateral CG (in.	Note: (+) is ac nsions for 98.5 57.375 vity eight (lb) G (in.) .) .)	Ided equipment to v Esti 	rehicle, (-) is rem mated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4	oved equipme Veight (Ib) ack Width:	2448 27.375 57.375 57.125 Test Inertial 2442 36.867 -0.61 22.292	in. in.	Difference 22.0 -2.133 NA NA
Vehicle Dimen Wheel Base: Roof Height: Test Inertial We Longitudinal CC Lateral CG (in. Vertical CG (in.	Note: (+) is ac nsions for 98.5 57.375 vity eight (lb) G (in.) .) measured from	Ided equipment to v Esti C.G. Calculatio in. in. 1100C MAS 39 39 39 NA NA NA	rehicle, (-) is rem mated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4	oved equipme Weight (Ib) ack Width: ack Width:	2448 27.375 57.125 Test Inertial 2442 36.867 -0.61 22.292	in. in.	Difference 22.0 -2.133 NA NA
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CC Lateral CG (in. Vertical CG (in. Note: Long. CG is Note: Lateral CG r	Note: (+) is ac nsions for 98.5 57.375 /ity eight (lb) G (in.) .) measured from measured from	Ided equipment to v Esti C.G. Calculatio in. in. 1100C MAS 2420 39 NA NA om front axle of test m centerline - positi	rehicle, (-) is rem mated Total V ons Front Tra Rear Tra BH Targets ± 55 ± 4	oved equipme Weight (Ib) ack Width: ack Width:	2448 27.375 57.375 57.125 Test Inertial 2442 36.867 -0.61 22.292	in. in.	Difference 22.0 -2.133 NA NA
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CC Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG r	Note: (+) is ac nsions for 98.5 57.375 /ity eight (lb) G (in.) .) measured from measured from	Ided equipment to v Esti C.G. Calculatic _ in. _ in. _ 1100C MAS _ 2420 _ 39 _ NA _ NA _ om front axle of test m centerline - positi	rehicle, (-) is remainded Total V mated Total V ons Front Tra Rear Tra BH Targets ± 55 ± 4	oved equipme Weight (Ib) ack Width: ack Width:	2448 57.375 57.125 Test Inertial 2442 36.867 -0.61 22.292) side	in. in.	Difference 22.0 -2.133 NA NA
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CO Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG r	Note: (+) is ac nsions for 98.5 57.375 vity eight (lb) G (in.) .) measured from measured from T (lb)	Ided equipment to v Esti C.G. Calculatic in. in. 1100C MAS 2420 39 NA NA om front axle of test m centerline - positi	rehicle, (-) is remainded Total V mated Total V ons Front Tra Rear Tra BH Targets ± 55 ± 4	oved equipme Weight (Ib) ack Width: ack Width:	2448 57.375 57.125 Test Inertial 2442 36.867 -0.61 22.292) side TEST INER	in. in.	
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CO Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG r	Note: (+) is ac nsions for 98.5 57.375 vity eight (lb) G (in.) .) measured from measured from T (lb)	Ided equipment to v Esti C.G. Calculatic in. in. in. 	rehicle, (-) is remainded Total V mated Total V ons Front Tra Rear Tra BH Targets ± 55 ± 4	oved equipme Weight (Ib) ack Width: ack Width:	2448 27.375 57.375 57.125 Test Inertial 2442 36.867 -0.61 22.292 side TEST INER	in. in. TIAL WEIG	Difference 22.0 -2.133 NA NA
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CC Lateral CG (in. Vertical CG (in. Vertical CG (in. Note: Long. CG is Note: Lateral CG r	Note: (+) is ac asions for 98.5 57.375 vity eight (lb) G (in.) .) measured from measured from T (lb) Left	Ided equipment to v Esti C.G. Calculatio in. in. in. 1100C MAS 2420 39 NA 2420 39 NA MA mfront axle of test m centerline - positi	rehicle, (-) is rem mated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4	oved equipme Weight (Ib) ack Width: ack Width:	2448 57.375 57.125 Test Inertial 2442 36.867 -0.61 22.292) side TEST INER	in. in. TIAL WEIG	Difference 22.0 -2.133 NA NA SHT (Ib) Right
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial Wa Longitudinal CC Lateral CG (in. Vertical CG (in. Vertical CG (in. Note: Long. CG is Note: Lateral CG r CURB WEIGH	Note: (+) is ac nsions for 98.5 57.375 vity eight (lb) G (in.)) measured from measured from T (lb) Left 797	Ided equipment to v Esti C.G. Calculatio in. in. 	rehicle, (-) is remainded Total V mated Total V ms Front Tra Rear Tra BH Targets ± 55 ± 4	oved equipme Weight (Ib) ack Width: ack Width:	2448 57.375 57.125 Test Inertial 2442 36.867 -0.61 22.292) side TEST INER Front	in. in. TIAL WEIG	
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CC Lateral CG (in. Vertical CG (in. Vertical CG (in. Note: Long. CG is Note: Lateral CG r CURB WEIGH Front Rear	Note: (+) is ac nsions for 98.5 57.375 /ity eight (lb) G (in.) .) measured from measured from T (lb) Left 797 442	Ided equipment to v Esti C.G. Calculatic in. in. 1100C MAS 2420 39 NA 2420 39 NA NA om front axle of test m centerline - positi Right 767 442	rehicle, (-) is remainded Total V mated Total V ons Front Tra Rear Tra BH Targets ± 55 ± 4	oved equipme Weight (Ib) ack Width: ack Width:	2448 57.375 57.125 Test Inertial 2442 36.867 -0.61 22.292) side TEST INER Front Rear	in. in. TIAL WEIG Left 804 443	Difference 22.0 -2.133 NA NA SHT (Ib) Right 724 471
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CO Lateral CG (in. Vertical CG (in. Verti	Note: (+) is ac nsions for 98.5 57.375 vity eight (lb) G (in.)) measured fro measured fro T (lb) Left 797 442 452 (Ided equipment to v Esti C.G. Calculatic inin 1100C MAS 2420 39 NA 2420 39 NA 000 front axle of test m centerline - positi Right 767 442	rehicle, (-) is remainded Total V mated Total V ons Front Tra Rear Tra BH Targets ± 55 ± 4	oved equipme Weight (Ib) ack Width: ack Width:	2448 57.375 57.125 Test Inertial 2442 36.867 -0.61 22.292) side TEST INER Front Rear	in. in. TIAL WEIG Left 804 443	Difference 22.0 -2.133 NA NA SHT (Ib) Right 724 471
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial Wa Longitudinal CC Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG r CURB WEIGH Front Rear	Note: (+) is ac nsions for 98.5 57.375 vity eight (lb) G (in.) .) measured fro T (lb) Left 797 442 1564 201	Ided equipment to v Esti C.G. Calculatic inin 1100C MAS 2420 39 NA 2420 39 NA 000 front axle of test m centerline - positi Right 767 442 Ib	rehicle, (-) is remainded Total V mated Total V ons Front Tra Rear Tra BH Targets ± 55 ± 4	oved equipme Veight (Ib) ack Width: ack Width:	2448 2448 57.375 57.125 Test Inertial 2442 36.867 -0.61 22.292 side TEST INER Front Rear FRONT PEAD	in. in. TIAL WEIG Left 804 443 1528	Difference 22.0 -2.133 NA NA SHT (Ib) Right 724 471
Vehicle Dimen Wheel Base: Roof Height: Center of Grav Test Inertial We Longitudinal CO Lateral CG (in Vertical CG (in Note: Long. CG is Note: Lateral CG r CURB WEIGH Front Rear FRONT REAR	Note: (+) is ac nsions for 98.5 57.375 vity eight (lb) G (in.) .) measured fro T (lb) Left 797 442 1564 884	Ided equipment to v Esti C.G. Calculatio in in 1100C MAS 2420 39 NA 2420 39 NA 00 front axle of test m centerline - positi Right 767 442 lb = lb	rehicle, (-) is remainded Total V mated Total V ons Front Tra Rear Tra SH Targets ± 55 ± 4	oved equipme Veight (Ib) ack Width: ack Width:	2448 27.375 57.375 57.125 Test Inertial 2442 36.867 -0.61 22.292) side TEST INER Front Rear FRONT REAR	in. in. TIAL WEIG Left 804 443 1528 914	

Figure B-3. Vehicle Mass Distribution, Test No. MNCBR-3

Appendix C. Vehicle Deformation Records

The following figures and tables describe all occupant compartment measurements taken on the test vehicles used in full-scale crash testing herein. MASH 2016 defines intrusion as the occupant compartment being deformed and reduced in size with no penetration. Outward deformations, which are denoted as negative numbers within this Appendix, are not considered as crush toward the occupant, and are not subject to evaluation by MASH 2016 criteria.

Model Year:	20	13			Test Name: Make:	MNC Intern	BR-1 ational			VIN: Model:	1HTM Duras	MAAM7DH tar 4300 SI	105190 3A 4x2
					VE	HICLE DE	FORMATIC	ON					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔY ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^c
	1	45.3773	22.7163	1.5856	44.9116	23.4973	1.8776	0.4657	-0.7810	-0.2920	0.9550	0.4657	X
1 1	2	45.7548	25.3638	1.4524	45.3522	26.0994	1.8770	0.4026	-0.7356	-0.4246	0.9399	0.4026	X
	3	46.0788	28.0969	1.3148	45.7067	28.7276	1.3692	0.3721	-0.6307	-0.0544	0.7343	0.3721	Х
- II	4	46.2555	33.0143	1.2006	45.4123	32.7961	-1.1784	0.8432	0.2182	2.3790	2.5334	2.5240	X, Z
AV (2	5	46.5288	37.9063	-0.1314	45,7760	37.9168	-1.9812	0.7528	-0.0105	1.8498	1.9971	1.9971	X.Z
Ш×Ш×	6	37.2702	14,7691	2.4503	37.0401	15.3884	2.4576	0.2301	-0.6193	-0.0073	0.6607	0.2301	X
으뿟)	7	37.1153	22.0681	2.4309	36,7704	22.6878	2.2770	0.3449	-0.6197	0.1539	0.7257	0.3777	X.Z
	8	37.1334	26.5479	2.4968	36.6613	27.0843	1.8242	0.4721	-0.5364	0.6726	0.9813	0.8217	X, Z
	9	37.8188	32.4162	2.4986	36.9737	31.4865	-1.8225	0.8451	0.9297	4.3211	4.5000	4.4030	X.Z
	10	37.5818	38.9384	2.4628	36.2617	37.9743	-2.4670	1.3201	0.9641	4.9298	5.1938	5.1035	X, Z
	11	30.8657	14,4853	2.4803	30.6129	15.0102	2.4484	0.2528	-0.5249	0.0319	0.5835	0.0319	Z
	12	30.2719	20.4875	2.5402	29,9209	21.0089	2.0929	0.3510	-0.5214	0.4473	0.7715	0.4473	z
	13	29.6180	26.2601	2.5182	29.1949	26.7618	2.0558	0.4231	-0.5017	0.4624	0.8028	0.4624	z
	14	29.9033	31.8148	2.5114	29.1112	30.8777	-0.9361	0.7921	0.9371	3.4475	3.6593	3.4475	Z
	15	30.7756	39.0982	2.4151	29.6670	37.9395	-2.7544	1.1086	1.1587	5.1695	5.4125	5.1695	Z
	16	25.4710	14.4625	2.4426	25.2552	14.9475	2.3496	0.2158	-0.4850	0.0930	0.5389	0.0930	Z
	17	25.3494	20.2029	2.4396	25.0960	20.6774	2.2264	0.2534	-0.4745	0.2132	0.5786	0.2132	Z
_	18	25.1065	26.1782	2.5060	24,7243	26.4399	1.5256	0.3822	-0.2617	0.9804	1.0843	0.9804	Z
AP	19	25.0364	31.7371	2.4149	24.5327	31.2747	0.1259	0.5037	0.4624	2.2890	2.3889	2.2890	Z
н с	20	25.1953	39.0610	2.3636	24.4819	38.2501	-0.4719	0.7134	0.8109	2.8355	3.0342	2.8355	Z
6 D	21	20.4677	14.0926	1.8780	20.2080	14.5586	1.7495	0.2597	-0.4660	0.1285	0.5487	0.1285	Z
LC LC	22	20.4135	19.5750	1.9397	20.1722	19.9791	1.5744	0.2413	-0.4041	0.3653	0.5958	0.3653	Z
ш	23	20.4419	26.1515	2.4659	20.0205	26.3054	1.5824	0.4214	-0.1539	0.8835	0.9909	0.8835	Z
	24	20.3995	31.6733	1.8480	19.8649	31.5012	0.4309	0.5346	0.1721	1.4171	1.5243	1.4171	Z
	25	20.2059	39.0033	2.3549	19.7635	38.6056	1.2478	0.4424	0.3977	1.1071	1.2568	1.1071	Z
	26	14.9978	13.8292	1.8667	14.7318	14.2632	1.6927	0.2660	-0.4340	0.1740	0.5379	0.1740	Z
	27	14.7644	19.6311	2.4166	14.4309	20.0413	2.1427	0.3335	-0.4102	0.2739	0.5954	0.2739	Z
	28	14.5492	26.1734	2.4474	14.1952	26.4536	2.1928	0.3540	-0.2802	0.2546	0.5183	0.2546	Z
	29	14.4994	31.7299	2.3907	14.1706	31.8659	1.4138	0.3288	-0.1360	0.9769	1.0397	0.9769	Z
	30	14.1383	39.1785	2.3339	13.8572	39.1529	1.9596	0.2811	0.0256	0.3743	0.4688	0.3743	Z

compartment.

⁸ Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-1. Floor Pan Deformation Data – Set 1, Test No. MNCBR-1

Model Year:	20	13	•		Test Name: Make:	MNC Intern	BR-1 ational			VIN: Model:	1HTM Duras	MAAM7DH tar 4300 SE	105190 3A 4x2
					VE	HICLE DE	FORMATI	ON					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔΥ ^Α (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^c
	1	45.1532	-1.5484	-0.9212	44.9319	-1.5903	-0.8439	0.2213	-0.0419	-0.0773	0.2381	0.2213	Х
	2	45.5411	1.0963	-1.0785	45.4027	1.0049	-0.9366	0.1384	0.0914	-0.1419	0.2183	0.1384	Х
	3	45.8759	3.8268	-1.2403	45.7781	3.6109	-1.5354	0.0978	0.2159	0.2951	0.3785	0.3109	X, Z
z U	4	46.0733	8.7423	-1.3942	45.4831	7.5990	-4.2070	0.5902	1.1433	2.8128	3.0931	2.8741	X, Z
A A A	5	46.3554	13.6227	-2.7664	45.8912	12.6865	-5.1811	0.4642	0.9362	2.4147	2.6311	2.4589	X, Z
U III X	6	37.0196	-9.4522	0.0821	36.9789	-9.5794	0.1429	0.0407	-0.1272	-0.0608	0.1467	0.0407	Х
121	7	36.8969	-2.1528	0.0077	36.7909	-2.2868	-0.2679	0.1060	-0.1340	0.2756	0.3243	0.2953	X, Z
5	8	36.9355	2.3272	0.0389	36.7244	2.0940	-0.8602	0.2111	0.2332	0.8991	0.9525	0.9235	X, Z
	9	37.6468	8.1922	-0.0112	37.0192	6.3730	-4.6521	0.6276	1.8192	4.6409	5.0241	4.6831	X, Z
	10	37.4383	14.7150	-0.0951	36.3707	12.8450	-5.4922	1.0676	1.8700	5.3971	5.8108	5.5017	X, Z
	11	30.6146	-9.7069	0.1753	30.5487	-9.8789	0.2649	0.0659	-0.1720	-0.0896	0.2048	-0.0896	Z
	12	30.0479	-3.7017	0.1945	29.9200	-3.8866	-0.2710	0.1279	-0.1849	0.4655	0.5169	0.4655	Z
	13	29.4193	2.0734	0.1341	29.2605	1.8706	-0.4802	0.1588	0.2028	0.6143	0.6661	0.6143	Z
	14	29.7292	7.6265	0.0817	29.1682	5.8893	-3.6012	0.5610	1.7372	3.6829	4.1105	3.6829	Z
	15	30.6328	14.9050	-0.0792	29.7718	12.8818	-5.6562	0.8610	2.0232	5.5770	5.9948	5.5770	Z
	16	25.2196	-9.7057	0.1892	25.1896	-9.8791	0.2674	0.0300	-0.1734	-0.0782	0.1926	-0.0782	Z
	17	25.1234	-3.9650	0.1430	25.0949	-4.1546	-0.0376	0.0285	-0.1896	0.1806	0.2634	0.1806	Z
7	18	24.9077	2.0117	0.1656	24.7772	1.5866	-0.9168	0.1305	0.4251	1.0824	1.1702	1.0824	Z
AI	19	24.8613	7.5700	0.0322	24.6156	6.3761	-2.4680	0.2457	1.1939	2.5002	2.7815	2.5002	Z
2	20	25.0522	14.8925	-0.0773	24.6348	13.3289	-3.2893	0.4174	1.5636	3.2120	3.5967	3.2120	Z
	21	20.2096	-10.0574	-0.3248	20.1278	-10.2251	-0.2263	0.0818	-0.1677	-0.0985	0.2110	-0.0985	Z
	22	20.1803	-4.5745	-0.3049	20.1518	-4.8131	-0.5754	0.0285	-0.2386	0.2705	0.3618	0.2705	Z
LL 0	23	20.2428	2.0057	0.1701	20.0741	1.5117	-0.7687	0.1687	0.4940	0.9388	1.0742	0.9388	Z
	24	20.2189	7.5227	-0.4900	19.9573	6.6694	-2.0840	0.2616	0.8533	1.5940	1.8269	1.5940	Z
	25	20.0627	14.8572	-0.0379	19.9542	13.7971	-1.4949	0.1085	1.0601	1.4570	1.8051	1.4570	Z
	26	14.7388	-10.2963	-0.2820	14.6485	-10.4551	-0.1721	0.0903	-0.1588	-0.1099	0.2132	-0.1099	Z
	27	14.5363	-4.4893	0.2253	14.4235	-4.6624	0.0967	0.1128	-0.1731	0.1286	0.2434	0.1286	Z
	28	14.3504	2.0540	0.2077	14.2635	1.7507	-0.0556	0.0869	0.3033	0.2633	0.4109	0.2633	Z
	29	14.3247	7.6100	0.1085	14.2873	7.1352	-1.0081	0.0374	0.4748	1.1166	1.2139	1.1166	Z
	30	13.9960	15.0595	-0.0024	14.0691	14.4393	-0.6919	-0.0731	0.6202	0.6895	0.9303	0.6895	Z

^A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-2. Floor Pan Deformation Data – Set 2, Test No. MNCBR-1

odel Year:	20	13			Test Name: Make:	MNC Intern	BR-1 ational			VIN: Model:	1HTM Duras	MAAM7DH star 4300 SI	105190 BA 4x2
					VE	HICLE DE	FORMATIC)N					
					IN.	TERIOR C	RUSH - SE	Γ1					
		Pretest	Pretest	Pretest	Postfest X	Posttest Y	Posttest 7	۸XA	۸VA	47 ^A	Total A	Cruch ^B	Directio
	POINT	X (in)	Y (in.)	Z (in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	for Cruch
	1	40.8163	4.7562	-29.6452	41.5513	4.2320	-28,9944	-0.7350	0.5242	0.6508	1.1129	1.1129	X. Y.
_ î	2	40.2042	20.2526	-28.8919	41.0925	19.7820	-28.1591	-0.8883	0.4706	0.7328	1.2440	1.2440	X, Y,
SH Υ.Ζ	3	40.6330	35.8507	-28.2587	41.6701	35.3461	-27.5366	-1.0371	0.5046	0.7221	1.3607	1.3607	X, Y,
Δ×	4	37.4469	4.5573	-17.6939	37.9510	4.1724	-17.1325	-0.5041	0.3849	0.5614	0.8470	0.8470	X, Y,
Ŭ	5	36.8129	21.1665	-18.6266	37.2620	20.7330	-18.0588	-0.8553	0.4335	0.5678	0.8438	0.8438	X, Y,
	7	46 3166	41 0728	-10.0009	46.9524	40.4955	-17.5555	-0.8358	0.4317	0.7334	1.2100	0.5773	<u></u>
۳ñ ۳	8	44.3118	41.0720	-8.6149	44 9764	40.4555	-7 8503	-0.0330	0.5684	0.7646	1 1616	0.5773	V V
∾ < _	9	44.8740	41.0407	-6.0275	45.4532	40.2973	-5.2566	-0.5792	0.7434	0.7709	1.2175	0.7434	Ý
ш	10	35.5780	42.1179	-22.0413	36.4067	41.7730	-21.3076	-0.8287	0.3449	0.7337	1.1593	0.3449	Y
	11	21.0728	41.0649	-23.1598	22.0170	40.9535	-22.7196	-0.9442	0.1114	0.4402	1.0477	0.1114	Y
Ξğε	12	10.1096	41.0466	-23.4906	11.0340	41.0629	-23.2167	-0.9244	-0.0163	0.2739	0.9643	-0.0163	Y
20C	13	36.3909	41.1242	-0.8497	36.9172	40.5892	-0.2108	-0.5263	0.5350	0.6389	0.9856	0.5350	Y
Σ	14	23.9826	41.0836	-0.5021	24.5013	40.6829	-0.0083	-0.5187	0.4007	0.4938	0.6062	0.4007	Ý
	10	20.7172	40.4132	-1.0000 E1 7501	12.0300	40.1010	-1.4045 E1.0021	1.0274	0.2322	0.2035	1.2720	0.2322	7
	17	39.7173	4.0139	-51.6903	40.7447	11 2112	-50.9608	-1.0274	0.3502	0.0000	1 4273	0.0000	7
	18	38.9594	17.7563	-51.6710	40.1413	17.4465	-50.9671	-1.1819	0.3098	0.7039	1.4101	0.7039	z
	18 38.9594 17.7563 -51.6710 40.1413 17.465 -50.9671 -1.1819 0.3098 0.7036 19 37.9309 25.5403 -51.5249 39.2499 25.2126 -50.8056 -1.3190 0.3277 0.7192 20 36.9317 30.8830 -51.3303 38.2601 30.5223 -50.6429 -1.3284 0.3607 0.6874 21 35.6104 4.9428 -54.1590 36.6435 4.6421 -55.5965 -1.0331 0.3007 0.5624	0.7193	1.5377	0.7193	z								
	20	36.9317	30.8830	-51.3303	38.2601	30.5223	-50.6429	-1.3284	0.3607	0.6874	1.5386	73 0.7293 01 0.7039 77 0.7193 86 0.6874 41 0.5625 09 0.5765 17 0.5752 09 0.5055	Z
Ñ	21	35.6104	4.9428	-54.1590	36.6435	4.6421	-53.5965	-1.0331	0.3007	0.5625	1.2141		Z
0	22	35.0429	11.1666	-54.3886	36.1727	10.7636	-53.8121	-1.1298	0.4030	0.5765	1.3309	0.5765	<u>Z</u>
Ь Ц	23	34.2891	17.6245	-54.4266	35.4822	17.3084	-53.8514	-1.1931	0.3161	0.5752	1.3617	0.5752	
ъ В	25	32.0377	24.4704	-34.1170	33 3472	24.1500	-53.5240	1 3005	0.3400	0.5952	1.4490	0.5952	
	26	27.9474	4.5640	-55.7076	29.0958	4.3747	-55.2275	-1.1484	0.1893	0.3403	1.2590	0.4801	7
	27	26.2750	10.8574	-54.6945	27.4222	10.6336	-54.2235	-1.1472	0.2238	0.4710	1.2602	0.4710	Z
	28	26.3541	16.6925	-55.8935	27.6373	16.4384	-55.3974	-1.2832	0.2541	0.4961	1.3990	0.4961	Z
	29	25.5198	23.8700	-55.6392	26.7638	23.6582	-55.1539	-1.2440	0.2118	0.4853	1.3520	0.4853	Z
	30	25.1425	30.3174	-54.7529	26.5491	30.0503	-54.2046	-1.4066	0.2671	0.5483	1.5331	0.5483	Z
	31	43.1109	40.3533	-28.9439	44.2611	39.8772	-28.0845	-1.1502	0.4761	0.8594	1.5127	0.9825	Y, Z
AR mu	32	41.5897	40.3256	-32.7931	42.7796	39.8534	-31.9449	-1.1899	0.4722	0.8482	1.5357	0.9708	Y, Z
Į Ę Y	34	38 8186	39 7812	-30.1204	41.31/3	39.0003	-35.0232	-1.1/34	0.4490	0.7022	1.4393	0.0335	Y 7
-∀ a A	35	37.0198	39.4323	-43,1417	38.3174	39.0672	-42.4319	-1.2976	0.3651	0.7098	1.5234	0.7982	Y. 7
	36	35.2744	38.9226	-46.8289	36.5920	38.5749	-46.1677	-1.3176	0.3477	0.6612	1.5146	0.7470	Y, Z
	31	43.1109	40.3533	-28.9439	44.2611	39.8772	-28.0845	-1.1502	0.4761	0.8594	1.5127	0.4761	Y
34	32	41.5897	40.3256	-32.7931	42.7796	39.8534	-31.9449	-1.1899	0.4722	0.8482	1.5357	0.4722	Y
1 e	33	40.3439	40.1353	-35.7254	41.5173	39.6863	-35.0232	-1.1734	0.4490	0.7022	1.4393	0.4490	Y
ate	34	38.8186	39.7812	-39.1281	40.0779	39.4187	-38.4223	-1.2593	0.3625	0.7058	1.4884	0.3625	Y
Ϋ́	35	37.0198	39.4323	-43.1417	38.31/4	39.06/2	-4Z.4319	-1.2976	0.3651	0.7098	1.5234	0.3651	\
Υ E _	37	4 5827	30.9220	-47 7652	5.0180	30.3749	-47 3874	-1.3170	0.0477	0.0012	1.3140	0.3477	
Ā Ē Ā	38	-1.3289	39.6606	-41 4639	-0.0876	39.6376	-41 1879	-1.3333	0.0230	0.2760	1.3078	0.3703	Y 7
두 듯 ≻	39	4.2486	40.3807	-35.5437	5.3578	40.3299	-35.2048	-1.1092	0.0508	0.3389	1.1609	0.3427	Y, Z
ä₩č	40	-1.0188	40.6182	-31.7011	-0.0088	40.5620	-31.4786	-1.0100	0.0562	0.2225	1.0357	0.2295	Y, Z
35	37	4.5827	39.2625	-47.7652	5.9180	39.2440	-47.3874	-1.3353	0.0185	0.3778	1.3878	0.0185	Ý
al (38	-1.3289	39.6606	-41.4639	-0.0876	39.6376	-41.1879	-1.2413	0.0230	0.2760	1.2718	0.0230	Y
Ifer PI	39	4.2486	40.3807	-35.5437	5.3578	40.3299	-35.2048	-1.1092	0.0508	0.3389	1.1609	0.0508	Y
Ľè	40	-1.0188	40.6182	-31.7011	-0.0088	40.5620	-31.4786	-1.0100	0.0562	0.2225	1.0357	0.0562	Y

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

deforming inward toward the occupant compartment. ^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

del Year:	20	13			Test Name: Make:	MNC Intern	BR-1 ational			VIN: Model:	1HTM Duras	MAAM7DH tar 4300 St	105190 3A 4x2
					VE		FORMATIC	DN T o					
					IN	IERIOR CI	RUSH - SE	12					
Г		Pretest	Pretest	Pretest									Direction
		X	Y	Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔΥΑ	ΔZ ^A	Total ∆	Crush ^B	for
	POINT	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush
	1	40.2186	-19.9373	-31.9520	40.5189	-20.9205	-31.2357	-0.3003	-0.9832	0.7163	1.2530	1.2530	X, Y, Z
- 🕤	2	39.6715	-4.4334	-31.3108	39.9576	-5.3537	-30.9693	-0.2861	-0.9203	0.3415	1.0225	1.0225	X, Y, Z
ES C	3	40.1644	11.1673	-30.8006	40.4270	10.2264	-30.9418	-0.2626	0.9409	-0.1412	0.9870	0.9870	X, Y, Z
89 I	4	36.9640	-20.0328	-19.9676	37.2135	-20.5611	-19.2935	-0.2495	-0.5283	0.6741	0.8921	0.8921	X, Y, Z
с С	5	36.3829	-3.4289	-21.0206	36.3705	-4.0520	-20.8188	0.0124	-0.6231	0.2018	0.6551	0.6551	X, Y, 2
	6	36.9850	11.3378	-21.1186	37.2114	10.7225	-21.1879	-0.2264	0.6153	-0.0693	0.6593	0.6593	X, Y, Z
	7	46.0547	16.5149	-11.4644	46.1484	16.1388	-11.7992	-0.0937	0.3761	-0.3348	0.5122	0.3761	Y
Båδ∣	8	44.0520	16.4846	-11.2331	44.1783	16.1019	-11.5487	-0.1263	0.3827	-0.3156	0.5119	0.3827	Y
0 A	9	44.6391	16.5095	-8.6514	44.7203	16.0349	-8.9633	-0.0812	0.4746	-0.3119	0.5737	0.4746	Y
Ш Ш	10	35.1930	17.5006	-24.5827	35.2684	16.8451	-24.8269	-0.0754	0.6555	-0.2442	0.7036	0.6555	Y
	11	20.6739	16.4942	-25.5536	20.8552	15.8726	-25.8472	-0.1813	0.6216	-0.2936	0.7110	0.6216	Y
Ëğεl	12	9.7081	16.5150	-25.7786	9.8627	15.8864	-26.0733	-0.1546	0.6286	-0.2947	0.7113	0.6286	Y
A C C	13	36.2068	16.6645	-3.3929	36.3097	16.4557	-3.7200	-0.1029	0.2088	-0.3271	0.4015	0.2088	Y
AP	14	23.8024	16.6736	-2.9257	23.9022	16.4701	-3.2109	-0.0998	0.2035	-0.2852	0.3643	0.2035	Y
=	15	11.3814	16.0420	-3.9070	11.4706	15.8295	-4.2768	-0.0892	0.2125	-0.3698	0.4357	0.2125	Y
	16	38.9064	-20.0430	-54.0531	39.1643	-21.5284	-53.3054	-0.2579	-1.4854	0.7477	1.6828	0.7477	
	17	38.7387	-13.2942	-54.0348	39.0690	-14.7750	-53.4187	-0.3303	-1.4808	0.6161	1.6375	0.6161	Z
_	18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5315	0.4138	Z								
	19	37.1995	0.6912	-53.9605	37.5128	-0.7880	-53.7492	-0.3133	1.4792	0.2113	1.5267	Crush ^B (in.) 1.2530 1.0225 0.9870 0.6551 0.6553 0.3761 0.3827 0.4746 0.6553 0.2216 0.6553 0.216 0.6555 0.2216 0.6555 0.2125 0.7477 0.6161 0.4138 0.2113 0.0372 0.5493 0.3634 0.1923 -0.0098 0.7507 0.5811 0.3634 0.2193 0.03634 0.9940 0.99033 1.0310 1.1141 1.3990 1.4401 1.3249 1.2861 1.3990 1.4401 1.3249 1.1448 1.0674	Z
	20	36.2221	6.0390	-53.7970	36.4853	4.5170	-53.7598	-0.2632	1.5220	0.0372	1.5450		<u> </u>
Ñ	21	34.7770	-19.9167	-56.4152	35.0013	-21.4663	-55.7057	-0.2243	-1.5496	0.7095	1.7190	0.7095	2
. ·	22	34.2305	-13.6927	-56.6867	34.4768	-15.3606	-56.1374	-0.2463	-1.6679	0.5493	1.7732	0.5493	2
ö	23	33.5004	-7.2325	-50.7666	33.7337	-8.8269	-56.4032	-0.2333	-1.5944	0.3634	1.6518	0.3634	4
8	24	32.5280	-0.3747	-50.5004	32.7714	-2.0038	-56.3081	-0.2428	-1.6291	0.1923	1.6583	0.1923	
	20	31.2993	5.2734 50.5794	-50.4021	31.0009	3.0340	-30.4719	-0.2096	1.6194	-0.0098	1.0329	-0.0098	
-	20	27.0901	-20.2781	-57.0071	27.4100	-21.04/4	-57.1304	-0.3199	-1.5093	0.7007	1.7000	0.7507	7
	20	25.4369	-13.9709	-00.9009	25.7202	-10.00/2	-30.3240	-0.2013	-1.0903	0.3011	1.7165	0.3011	
-	20	20.0403	-0.1400	-56,1500	20.0001	2.5015	-07.719Z	-0.3110	1.6284	0.4306	1.7400	0.4306	7
	29	24.7432	-0.9031	57 1015	24.5557	3 8300	57.0075	0.1923	1 6622	0.2193	1.6009	0.2193	7
	30	24.3304	15.5522	-31.1013	42.000	3.0300	-37.0013	0.2304	0.0022	0.0340	0.0700	0.0040	
~ 1	31	42.0524	15.0002	-31.3439	42.90//	14.7519	-31.7227	-0.3153	0.9033	-0.1/00	0.9733	0.9033	1 V
¥ 5 Q	32	41.0940	15.0041	-35.3119	41.3913	14.070	-30.5413	-0.2975	1.0310	-0.1634	1.0004	1.0310	T V
글늦거나	34	39.0192	15.0002	-30.2900	28 5240	13 9773	-30.5767	0.2300	1.141	0.2021	1.17.52	1.141	
₽ ŝ ×	35	36.4211	14 6497	-45.6750	36 6777	13 3636	-41.5204	-0.2741	1.2861	-0.2400	1 3269	1.1445	- v
`-	36	34 6383	14 1187	-49 3412	34 8644	12 7197	-49.5475	-0.2261	1.3990	-0.2010	1 4321	1.3990	Υ Υ
	31	42 6524	15 6552	-31 5430	42 9677	14 7519	-31 7227	_0 3153	0.0033	-0.1788	0.9732	0.9033	
201	32	41 0940	15.6041	-35 2770	41 3015	14 5731	-35 5412	-0.2975	1 0310	-0.1700	1 0854	1.0310	
₹ <u></u>	33	39 8192	15 3962	-38 2966	40 0548	14 2821	-38 5787	-0.2356	1 1141	-0.100-	1 1732	1 1141	l Ý
ea -	34	38,2599	15.0222	-41,6816	38,5340	13.8773	-41.9284	-0.2741	1.1449	-0.2468	1.2028	1,1449	Ý
-at A	35	36 4211	14 6497	-45 6750	36 6777	13 3636	-45 8768	-0 2566	1 2861	-0.2018	1 3269	1 2861	Ý
H	36	34.6383	14.1187	-49.3412	34.8644	12.7197	-49.5475	-0.2261	1.3990	-0.2063	1.4321	1.3990	Ý
<u>۳ ۲ ۲ ۲</u>	37	3 9405	14 5680	-49 9847	4 1654	13 1279	-50 0240	-0 2249	1 4401	-0.0393	1 4581	1 4401	Y
₹ į į į	38	-1.9085	15.0363	-43.6299	-1.6881	13.7114	-43.6953	-0.2204	1.3249	-0.0654	1.3447	1.3249	Υ Υ
금했거니	39	3,7285	15,7801	-37 7694	3,8978	14,6653	-37,8802	-0.1693	1.1148	-0.1108	1.1330	1.1148	Υ Υ
诺물조 h	40	-1.5007	16.0666	-33.8782	-1.3766	14,9992	-34.0322	-0.1241	1.0674	-0.1540	1.0856	1.0674	Y
щΩ	37	3 9405	14 5680	-49 9847	4 1654	13 1279	-50 0240	-0 2249	1 4401	-0.0393	1 4581	1 4401	V V
₹₽ŀ	38	-1.9085	15,0363	-43.6299	-1.6881	13.7114	-43.6953	-0.2204	1.3249	-0.0654	1.3447	1.3249	Y
18	39	3.7285	15.7801	-37,7694	3.8978	14.6653	-37,8802	-0.1693	1.1148	-0.1108	1.1330	1.1148	Ý
1 të	40	1.5007	16 0666	33 0703	1 2766	14.0000	01.0002	0.1000	4.0074	0.1100	4,0050	4.0074	1 5

compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Reference Set 1 Maximum Deformation ^{AB} MASH Allowable Directions of Deformation ^C Qof 0.7 ≤ 4 Z Windshield ⁰ 0.0 ≤ 3 X, Z A-Pillar Maximum 1.0 ≤ 5 Y, Z A-Pillar Maximum 0.5 ≤ 3 Y B-Pillar Maximum 0.4 ≤ 5 Y, Z A-Pillar Lateral 0.1 ≤ 3 Y B-Pillar Lateral 0.1 ≤ 3 Y B-Pillar Lateral 0.1 ≤ 9 Y, Z Side Foor Panel 0.7 ≤ 12 Y Side Door (above seat) 0.3 ≤ 9 Y Side Door (below seat) 0.5 ≤ 12 Y Side Door (below seat) 0.5 ≤ 12 Z Dash - no MASH requirement 1.4 NA X, Y, Z ¹ Pores highlighted in red do not meet MASH allowable deformations. Pollar Maximum ond Pollar Maximum and B-Pillar Maximum the direction of deformation and the orcupant compartment. ¹ Por Pan 5.2 ≤ 12 Z Side Door (below seat) 0.2 ≤ 12 <th>Model Year:</th> <th>2013</th> <th>-</th> <th>Make:</th> <th>International</th> <th>VIN: Model:</th> <th colspan="3">Durastar 4300 SBA 4x2</th>	Model Year:	2013	-	Make:	International	VIN: Model:	Durastar 4300 SBA 4x2		
Maximum MASH Allowable Directions of Location (in.) Deformation (in.) <td></td> <td>Reference Se</td> <td>t 1</td> <td></td> <td></td> <td>Reference Se</td> <td>+2</td> <td></td>		Reference Se	t 1			Reference Se	+2		
Maximum Deformation ^{A,B} (in.) MASH Allowable Deformation ^C Deformation ^C Directions of Deformation ^C Maximum Deformation ^{C,B} Directions of Deformation ^C Roof 0.7 ≤ 4 Z Z Mindshield ⁰ 0.0 ≤ 3 X, Z A-Pillar Maximum 1.0 ≤ 5 Y, Z A-Pillar Maximum 1.4 ≤ 5 Y A-Pillar Maximum 0.4 ≤ 5 Y, Z A-Pillar Lateral 1.4 ≤ 5 Y B-Pillar Maximum 0.4 ≤ 5 Y, Z A-Pillar Lateral 1.4 ≤ 5 Y B-Pillar Lateral 0.1 ≤ 3 Y B-Pillar Maximum 1.4 ≤ 5 Y Side Fornt Panel 0.7 ≤ 12 Y Side Door (above seat) 0.5 ≤ 12 Y Side Door (below seat) 0.5 ≤ 12 Y Side Door (below seat) 0.2 ≤ 12 Y Side Door (below seat) 0.5 ≤ 12 Z Dash - no MASH requirement 1.4 NA X, Y, Z Plans Majhighted in red do n									
Roof 0.7 ≤ 4 Z Z Mindshield ^D 0.0 < 3	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A.B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	
Windshield** 0.0 < 3 X, Z A-Pillar Maximum 1.0 < 5	Roof	0.7	≤ 4	Z	Roof	0.8	≤ 4	Z	
A-Pillar Maximum 1.0 < 5	Windshield	0.0	≤ 3	X, Z	Windshield	NA	≤ 3	X, Z	
A-Pillar Lateral0.5 \leq 3Y3-Pillar Maximum0.4 \leq 5Y, Z3-Pillar Maximum0.1 \leq 3Y3-Pillar Lateral0.1 \leq 3YB-Pillar Lateral1.4 \leq 5YB-Pillar Lateral1.4 \leq 3YB-Pillar Lateral1.4 \leq 3YB-Pillar Lateral1.4 \leq 3YB-Pillar Lateral0.5 \leq 12YSide Door (below seat)0.3 \leq 9Y, ZSide Door (below seat)0.5 \leq 12YSide Door (below seat)0.5 \leq 12YBash - no MASH requirement1.4NAX, Y, ZDash - no MASH requirement1.4NAX, Y, ZDash - no MASH requirement1.4NAX, Y, ZPositive values denote deformation as inward toward toward the occupant compartment, negative values denote deformation sureard and zincetion.		1.0	≤ 5	Υ, Ζ		1.4	≤ 5	¥	
B-Pillar Maximum 0.4 ≤ 5 Y, Z B-Pillar Lateral 0.1 ≤ 3 Y Toe Pan - Wheel Well 5.1 ≤ 9 X, Z Side Front Panel 0.7 ≤ 12 Y Side Door (above seat) 0.3 ≤ 9 Y Side Door (below seat) 0.5 ≤ 12 Y Side Door (below seat) 0.5 ≤ 12 Y Floor Pan 5.2 ≤ 12 Z Dash - no MASH requirement 1.4 NA X, Y, Z Dash - no MASH requirement 1.4 NA X, Y, Z Toe Pan - Wheel Well the direction of deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. Positive values denote deformation is "NA" then no intrusion is recorded and deformation will be 0. ² For Toe Pan - Wheel Well the direction of deformation is "NA" then no intrusion is recorded and deformation will be 0. ³ If deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and recorded. Notes on vehicle interior crush:	A-Pillar Lateral	0.5	≤ 3	Y	A-Pillar Lateral	1.4	≤ 3	Y	
B-Pillar Lateral 0.1 ≤ 3 Y Toe Pan - Wheel Well 5.1 ≤ 9 X, Z Side Front Panel 0.7 ≤ 12 Y Side Door (above seat) 0.3 ≤ 9 Y Side Door (below seat) 0.5 ≤ 12 Z Dash - no MASH requirement 1.4 NA X, Y, Z Toe Pan - Wheel Well the direction of deformations. 3 Side Door (below seat) 0.2 ≤ 12 Z Dash - no MASH requirement 1.4 NA X, Y, Z Dash - no MASH requirement 1.4 NA X, Y, Z * Items highlighted in red do not meet MASH allowable deformations. 3 Side Crope Pan Side formation of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z directions. The direction of deformation is "NA" then no intrusion is re	B-Pillar Maximum	0.4	≤ 5	Y, Z	B-Pillar Maximum	1.4	≤ 5	Y	
I de Pan - Wheel Well 5.1 ≤ 9 X, Z Side Front Panel 0.7 ≤ 12 Y Side Door (above seat) 0.3 ≤ 9 Y Side Door (below seat) 0.5 ≤ 12 Y Side Door (below seat) 0.5 ≤ 12 Y Side Door (below seat) 0.5 ≤ 12 Y Floor Pan 5.2 ≤ 12 Z Dash - no MASH requirement 1.4 NA X, Y, Z The shighlighted in red do not meet MASH allowable deformations. 3 A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformation of deformation for Toe Pan - Wheel Well, A-Pillar Maximum, and B-Pillar Maximum and B-Pillar Maximum the direction of deformation is positive and intruding into the occupant compartment. Por Toe Pan - Wheel Well the direction of deformation is "NA" then no intrusion is recorded and deformation will be 0. 0 Pild deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and recorded. Notes on vehicle interior crush: Side Door crush	B-Pillar Lateral	0.1	≤ 3	Y	B-Pillar Lateral	1.4	≤ 3	Y	
Side Front Panel 0.7 < 12 Y Side Door (above seat) 0.3 < 9	loe Pan - Wheel Well	5.1	<u>≤</u> 9	X, Z	Toe Pan - Wheel Well	5.5	<u>≤ 9</u>	<u> </u>	
Side Door (above seat)0.3 \leq 9YSide Door (below seat)0.5 \leq 12YFloor Pan5.2 \leq 12ZDash - no MASH requirement1.4NAX, Y, ZAltems highlighted in red do not meet MASH allowable deformations. \leq 12ZPositive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. \leq 12Z \geq For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation is positive and intruding into the occupant compartment. \geq 12Y \geq 6 formation of deformation is "NA" then no intrusion is recorded and deformation will be 0. \geq \geq \geq \geq 11 \geq \leq \geq \geq \geq \geq \geq \geq 12 \geq 12 \geq	Side Front Panel	0.7	≤ 12	Y	Side Front Panel	0.5	≤ 12	Y	
Side Door (below seat) 0.5 ≤ 12 Y Floor Pan 5.2 ≤ 12 Z Dash - no MASH requirement 1.4 NA X, Y, Z Side Door (below seat) 0.2 ≤ 12 Y Items highlighted in red do not meet MASH allowable deformations. 3° Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. 3° Positive values denote deformation of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z directions. The direction of deformation for Toe Pan -Wheel Well, A-Pillar Maximum, and B-Pillar Maximum only include components where the deformation is positive and intruding into the occupant compartment. If direction of deformation is "NA" then no intrusion is recorded and deformation will be 0. 0° 2° If deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and recorded. Notes on vehicle interior crush: Notes on vehicle interior crush:	Side Door (above seat)	0.3	<u>≤</u> 9	Y	Side Door (above seat)	0.7	<u>≤ 9</u>	Y	
Floor Pan 5.2 ≤ 12 Z Floor Pan 5.6 ≤ 12 Z Dash - no MASH requirement 1.4 NA X, Y, Z Dash - no MASH requirement 1.4 NA X, Y, Z ^A Items highlighted in red do not meet MASH allowable deformations. ^a Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. Sector Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z directions. The direction of deformation for Toe Pan - Wheel Well, A-Pillar Maximum, and B-Pillar Maximum only include components where the deformation is positive and intruding into the occupant compartment. If direction of deformation is "NA" then no intrusion is recorded and deformation will be 0. ^D If deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and recorded. Notes on vehicle interior crush:	Side Door (below seat)	0.5	≤ 12	Y	Side Door (below seat)	0.2	≤ 12	Y	
Dash - no MASH requirement 1.4 NA X, Y, Z Dash - no MASH requirement 1.4 NA X, Y, Z ^A Items highlighted in red do not meet MASH allowable deformations. ^B Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. ^C For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z directions. The direction of deformation for Toe Pan - Wheel Well, A-Pillar Maximum, and B-Pillar Maximum only include components where the deformation is positive and intruding into the occupant compartment. If direction of deformation is "NA" then no intrusion is recorded and deformation will be 0. ^D If deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and recorded. Notes on vehicle interior crush:	Floor Pan	5.2	≤ 12	Z	Floor Pan	5.6	≤ 12	Z	
¹ Items highlighted in red do not meet MASH allowable deformations. ² Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. ² For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z directions. The direction of deformation for Toe Pan -Wheel Well, A-Pillar Maximum, and B-Pillar Maximum only include components where the deformation is positive and intruding into the occupant compartment. If direction of deformation is "NA" then no intrusion is recorded and deformation will be 0. ² If deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and recorded. Notes on vehicle interior crush:	Dash - no MASH requirement	1.4	NA	X, Y, Z	Dash - no MASH requirement	1.4	NA NA	X, Y, Z	
Notes on vehicle interior crush:	² Positive values denote deformat ² For Toe Pan - Wheel Well the di directions. The direction of deforr occupant compartment. If directio ² If deformation is observered for t	Ion as inward toward irection of defromati nation for Toe Pan - in of deformation is the windshield then	a the occupant comp on may include X an- Wheel Well, A-Pillar "NA" then no intrusio the windshield defon	artment, negative vali d Z direction. For A-F Maximum, and B-Pill in is recorded and def mation is measured p	ues denote deformations outward awa Pillar Maximum and B-Pillar Maximum ar Maximum only include components formation will be 0. osttest with an examplar vehicle, there	y from the occupan the direction of defo where the deforma fore only one set of	t compartment. ormation may include tion is positive and in reference is measur	X, Y, and Z truding into the ed and recorded.	
	Notes on vehicle interior cru	ish:							

Figure C-5. Maximum Occupant Compartment Deformations by Location, Test No. MNCBR-1

Model Year:	20)14			Test Name: Make:	Do	BR-2 dge			VIN: Model:	1C6F	R6FT2ES2 Ram 1500	78435
					VE PASSENC	HICLE DE GER SIDE	FORMATIO	ON N - SET 1					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔY ^A (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^C
	1	52.1773	13.7646	-4.5310	51.9404	13.8186	-4.4275	0.2369	-0.0540	-0.1035	0.2641	0.2369	Х
	2	52.9073	18.2150	-2.4018	52.5653	18.0372	-1.9417	0.3420	0.1778	-0.4601	0.6002	0.3420	Х
	3	54.2706	21.9100	1.0319	53.9472	21.4364	1.7808	0.3234	0.4736	-0.7489	0.9433	0.3234	х
- IJ	4	54.5203	27.4797	1.8887	52.5358	25.1568	1.6928	1.9845	2.3229	0.1959	3.0615	1.9941	X, Z
Z Z A	5	54.2390	34.5082	1.8008	50.9416	29.7399	-0.1778	3.2974	4.7683	1.9786	6.1257	3.8455	X, Z
ШШX)	6	49.0155	12.7330	-3.1789	48.6994	12.9284	-3.3788	0.3161	-0.1954	0.1999	0.4220	0.3740	X, Z
1 C H	7	49.8575	17.8431	-0.4917	49.5469	17.5115	-0.0782	0.3106	0.3316	-0.4135	0.6143	0.3106	X
5	8	51.2601	21.9570	3.1923	50.9377	21.2205	3.9698	0.3224	0.7365	-0.7775	1.1184	0.3224	X
	9	51.3843	27.8628	3.6635	50.8386	26.4335	4.6320	0.5457	1.4293	-0.9685	1.8107	0.5457	X
	10	51.0839	34.4333	3.9547	49.1803	30.1552	3.7289	1.9036	4.2781	0.2258	4.6879	1.9169	X, Z
	11	45.2096	12.0235	-1.9716	45.1544	11.8390	-2.0483	0.0552	0.1845	0.0767	0.2073	0.0767	Z
	12	46.6351	17.1764	1.9545	46.4046	16.5085	2.3344	0.2305	0.6679	-0.3799	0.8022	-0.3799	Z
	13	47.4182	22.0629	5.0603	47.0717	21.3109	5.7427	0.3465	0.7520	-0.6824	1.0730	-0.6824	Z
	14	47.7087	28.1150	5.0730	47.6397	27.3312	6.5814	0.0690	0.7838	-1.5084	1.7013	-1.5084	Z
	15	47.8079	33.6835	5.1701	46.8218	31.0404	5.0921	0.9861	2.6431	0.0780	2.8221	0.0780	Z
	16	41.7545	12.1052	-1.3069	41.6871	12.0531	-1.3180	0.0674	0.0521	0.0111	0.0859	0.0111	Z
	17	43.2427	16.5419	4.9795	42.9959	16.0008	5.2258	0.2468	0.5411	-0.2463	0.6437	-0.2463	Z
7	18	43.8743	21.9455	5.1095	43.6798	21.3165	6.0089	0.1945	0.6290	-0.8994	1.1146	-0.8994	Z
AI	19	43.9326	28.1358	5.1019	43.8252	27.4788	7.0468	0.1074	0.6570	-1.9449	2.0557	-1.9449	Z
R CI	20	44.1431	33.6381	5.1972	43.4780	31.5929	6.2026	0.6651	2.0452	-1.0054	2.3740	-1.0054	Z
00	21	36.3943	11.8485	-0.8747	36.3134	11.8983	-0.9230	0.0809	-0.0498	0.0483	0.1066	0.0483	Z
1 2 1	22	37.9499	16.1266	5.2027	37.7139	15.6690	5.3213	0.2360	0.4576	-0.1186	0.5284	-0.1186	Z
1 "	23	38.2901	21.9529	5.2329	38.1294	21.4397	5.8260	0.1607	0.5132	-0.5931	0.8006	-0.5931	Z
	24	38.3424	28.5864	5.2191	38.3917	27.9556	6.9176	-0.0493	0.6308	-1.6985	1.8125	-1.6985	Z
	25	38.1664	33.9425	5.2252	37.8954	32.9436	7.1978	0.2710	0.9989	-1.9726	2.2276	-1.9726	Z
	26	33.0720	11.9619	-0.4713	32.9820	12.0200	-0.5599	0.0900	-0.0581	0.0886	0.1390	0.0886	Z
	27	32.7877	15.6129	4.4946	32.5992	15.2392	4.5009	0.1885	0.3737	-0.0063	0.4186	-0.0063	Z
	28	32.7582	21.6652	4.4742	32.6813	21.3077	4.9193	0.0769	0.3575	-0.4451	0.5761	-0.4451	Z
	29	32.8645	29.2295	4.4689	32.8465	28.8144	5.5539	0.0180	0.4151	-1.0850	1.1618	-1.0850	Z
	30	32.5406	33.7921	4.2299	32.6511	33.4088	6.0508	-0.1105	0.3833	-1.8209	1.8641	-1.8209	Z

^A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment. ^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-6. Floor Pan Deformation Data – Set 1, Test No. MNCBR-2

Model Year:	20	14			Test Name: Make:	MNC Do	BR-2 dge			VIN: Model:	1C6F	R6FT2ES2 Ram 1500	78435
					VE	HICLE DE GER SIDE	FORMATI	ON AN - SET 2					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔΥ ^Α (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^c
	1	53.6649	33.7952	-8.2509	53.6049	33.7817	-8.6399	0.0600	0.0135	0.3890	0.3938	0.3936	X, Z
	2	54.3499	38.2552	-6.1268	54.1974	38.0394	-6.2134	0.1525	0.2158	0.0866	0.2781	0.1754	X, Z
	3	55.6630	41.9668	-2.6915	55.5497	41.5004	-2.5372	0.1133	0.4664	-0.1543	0.5042	0.1133	X
zÿ.	4	55.8702	47.5400	-1.8460	54.1144	45.2098	-2.6811	1.7558	2.3302	0.8351	3.0348	1.9443	X, Z
A N N	5	55.5440	54.5664	-1.9527	52.4944	49.7553	-4.6201	3.0496	4.8111	2.6674	6.2898	4.0516	X, Z
	6	50.4996	32.7463	-6.9205	50.3676	32.8856	-7.5848	0.1320	-0.1393	0.6643	0.6915	0.6773	X, Z
L 문 문	7	51.2881	37.8679	-4.2391	51.1788	37.5207	-4.3484	0.1093	0.3472	0.1093	0.3801	0.1546	X, Z
5	8	52.6359	41.9993	-0.5542	52.5373	41.2962	-0.3512	0.0986	0.7031	-0.2030	0.7384	0.0986	X
	9	52.7183	47.9069	-0.0960	52.4031	46.5173	0.2363	0.3152	1.3896	-0.3323	1.4631	0.3152	X
	10	52.3732	54.4760	0.1773	50.7226	50.2149	-0.7232	1.6506	4.2611	0.9005	4.6575	1.8803	X, Z
	11	46.6893	32.0149	-5.7405	46.8271	31.7922	-6.2457	-0.1378	0.2227	0.5052	0.5690	0.5052	Z
	12	48.0515	37.1860	-1.8158	48.0381	36.5319	-1.9278	0.0134	0.6541	0.1120	0.6638	0.1120	Z
	13	48.7793	42.0846	1.2843	48.6672	41.3867	1.4128	0.1121	0.6979	-0.1285	0.7184	-0.1285	Z
	14	49.0306	48.1385	1.2849	49.1945	47.4219	2.1664	-0.1639	0.7166	-0.8815	1.1478	-0.8815	Z
	15	49.0930	53.7077	1.3696	48.3555	51.1041	0.6227	0.7375	2.6036	0.7469	2.8072	0.7469	Z
	16	43.2287	32.0757	-5.1022	43.3570	31.9942	-5.5253	-0.1283	0.0815	0.4231	0.4496	0.4231	Z
	17	44.6404	36.5365	1.1847	44.6269	36.0433	0.9640	0.0135	0.4932	0.2207	0.5405	0.2207	Z
7	18	45.2359	41.9443	1.3068	45.2748	41.3740	1.6723	-0.0389	0.5703	-0.3655	0.6785	-0.3655	Z
A I	19	45.2542	48.1349	1.2850	45.3782	47.5514	2.6223	-0.1240	0.5835	-1.3373	1.4643	-1.3373	Z
2	20	45.4284	53.6387	1.3689	45.0060	51.6507	1.7187	0.4224	1.9880	-0.3498	2.0623	-0.3498	Z
l 0 ℃	21	37.8672	31.7852	-4.7102	37.9836	31.8100	-5.1384	-0.1164	-0.0248	0.4282	0.4444	0.4282	Z
	22	39.3487	36.0874	1.3687	39.3470	35.6786	1.0539	0.0017	0.4088	0.3148	0.5160	0.3148	Z
<u> </u>	23	39.6510	41.9159	1.3877	39.7241	41.4585	1.4769	-0.0731	0.4574	-0.0892	0.4717	-0.0892	Z
	24	39.6606	48.5495	1.3586	39.9420	47.9909	2.4758	-0.2814	0.5586	-1.1172	1.2804	-1.1172	Z
	25	39.4498	53.9043	1.3508	39.4128	52.9790	2.6837	0.0370	0.9253	-1.3329	1.6230	-1.3329	Z
	26	34.5413	31.8780	-4.3323	34.6508	31.9153	-4.7835	-0.1095	-0.0373	0.4512	0.4658	0.4512	Z
	27	34.1955	35.5386	0.6226	34.2368	35.2039	0.2299	-0.0413	0.3347	0.3927	0.5176	0.3927	Z
	28	34.1270	41.5905	0.5877	34.2788	41.2781	0.5617	-0.1518	0.3124	0.0260	0.3483	0.0260	Z
	29	34.1844	49.1553	0.5654	34.3941	48.7941	1.0892	-0.2097	0.3612	-0.5238	0.6699	-0.5238	Z
	30	33.8329	53.7152	0.3131	34.1679	53.3937	1.5201	-0.3350	0.3215	-1.2070	1.2932	-1.2070	Z

^A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-7. Floor Pan Deformation Data – Set 2, Test No. MNCBR-2

iodel Year:	21	14			wake:	Do	oge			wodel:		Ram 1500	,
				PA	VE ASSENGEI	EHICLE DE R SIDE INT	FORMATI	ON RUSH - SE	⊤1				
	POINT	Pretest X	Pretest Y	Pretest Z (in)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	ΔX ^A (in.)	ΔΥ ^Α (in.)	ΔZ ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction: for
	1	40.3868	4.3516	-26,7493	40.6251	4.1188	-26.9425	-0.2383	0.2328	-0.1932	0.3851	0.3851	X. Y. Z
- 🗊	2	42.9359	17.6157	-25.9579	43.1139	17.3743	-26.3408	-0.1780	0.2414	-0.3829	0.4864	0.4864	X, Y, Z
, Z SH	3	43.9984	32.4775	-25.9597	44.0197	32.2949	-26.5761	-0.0213	0.1826	-0.6164	0.6432	0.6432	X, Y, Z
àχ	4	37.4926	4.0588	-14.5862	37.4209	3.9424	-14.8768	0.0717	0.1164	-0.2906	0.3212	0.3212	X, Y, Z
~	6	39.4168	32 5233	-16.2979	39.3155	32.0784	-16.7983	0.1012	0.4598	-0.5004	0.6871	0.6871	
	7	40.2107	26.0021	0.2072	47.6139	32.0704	-17.4105	0.5059	5 1494	-0.6407	5.4035	5 1404	X
	8	49.1200	36 9198	-3 9484	47.0150	31.6268	-0.4333	1.5070	5 2930	-0.7620	5.6069	5 2930	V V
S A C	9	52.2469	36.8778	-2.4814	50.2409	31.0969	-3.3223	2.0060	5.7809	-0.8409	6.1766	5.7809	Ý
ш	10	38.0420	39.2446	-15.2157	37.0317	38.5501	-15.5685	1.0103	0.6945	-0.3528	1.2757	0.6945	Y
<u> </u>	11	27.8355	39.4462	-15.5492	26.9140	40.3809	-15.6879	0.9215	-0.9347	-0.1387	1.3199	-0.9347	Y
μβςΙ	12	17.5886	39.6879	-15.5914	16.7174	40.7953	-15.4684	0.8712	-1.1074	0.1230	1.4144	-1.1074	Y
AG C	13	36.8431	39.4289	-2.6551	35.9308	37.5051	-3.0228	0.9123	1.9238	-0.3677	2.1607	1.9238	Y
AP -	14	28.6010	40.0569	-2.2728	27.8513	39.1081	-2.3708	0.7497	0.9488	-0.0980	1.2132	0.9488	Y
-	15	19.4514	39.2800	-3.0905	18.6640	39.4793	-3.0547	0.7874	-0.1993	0.0358	0.8130	-0.1993	Y 7
-	16	29.9957	3.5169	45.4280	30.4191	3.6168	-45.3849	-0.4234	-0.0999	0.0431	0.4372	0.0431	Z 7
-	18	29.0001	14 4120	-45.4030	29.9949	9.4050	-40.4200	-0.3346	-0.1240	0.0240	0.3579	0.0248	7
	19	27.7937	20.2135	-45.3091	28.1145	20.3980	-45.2829	-0.3208	-0.1845	0.0262	0.3710	0.0262	Z
	20	25.7173	26.1884	-45.1437	26.1407	26.3413	-45.1042	-0.4234	-0.1529	0.0395	0.4519	0.0395	z
G	21	23.9549	3.8249	-46.4084	24.3197	3.9888	-46.4362	-0.3648	-0.1639	-0.0278	0.4009	-0.0278	Z
9	22	23.1913	9.3737	-46.3669	23.5399	9.5019	-46.3903	-0.3486	-0.1282	-0.0234	0.3722	-0.0234	Z
Ц.	23	23.6701	14.0782	-46.1928	24.0201	14.2368	-46.2032	-0.3500	-0.1586	-0.0104	0.3844	-0.0104	Z
õ –	24	23.8915	20.0633	-45.8651	24.3142	20.2382	-45.8554	-0.4227	-0.1749	0.0097	0.4576	0.0097	Z
- u	25	22.5378	25.8136	-45.6309	22.8757	26.0280	-45.6121	-0.3379	-0.2144	0.0188	0.4006	0.0188	<u>∠</u>
	20	15.6659	4.3733	-46.9015	16 0818	4.4031	-46.9064	-0.3040	-0.0776	-0.0009	0.3214	-0.0669	7
	28	14 8446	15 6686	-46 7603	15 2883	15.8429	-46 7840	-0.4437	-0.1743	-0.0237	0.4773	-0.0402	7
	29	15.1061	21.5659	-46.4429	15.4885	21.6983	-46.4683	-0.3824	-0.1324	-0.0254	0.4055	-0.0254	Z
	30	14.8619	26.0746	-46.1374	15.2845	26.1803	-46.1472	-0.4226	-0.1057	-0.0098	0.4357	-0.0098	Z
	31	50.0926	35.9301	-28.2867	50.3714	36.1955	-28.2172	-0.2788	-0.2654	0.0695	0.3911	0.0695	Z
¥≦Ω	32	46.0575	35.0848	-31.6615	46.4812	35.2766	-31.7651	-0.4237	-0.1918	-0.1036	0.4765	0.0000	NA
∃ĕ× I	33	42.2284	34.2030	-34.2818	42.6756	34.3602	-34.3720	-0.4472	-0.1572	-0.0902	0.4825	0.0000	NA
- ă ₽	34	38.3966	33.3727	-36.9399	38.8215	33.5159	-36.9862	-0.4249	-0.1432	-0.0463	0.4508	0.0000	NA
₹2	35	34.8170	32.6529	-39.4893	35.2178	32.7902	-39.5650	-0.4008	-0.1373	-0.0757	0.2000	0.0000	NA NA
	30	51.0300	25.0201	-41.1078	50 2714	31.3320	-41.2200	-0.3793	0.2654	-0.0027	0.3999	0.0000	
~ C	32	46.0575	35.0848	-20.2007	46 4812	35 2766	-20.2172	-0.2788	-0.2004	-0.1036	0.3911	-0.2004	Y
A C	33	42.2284	34.2030	-34.2818	42.6756	34.3602	-34.3720	-0.4472	-0.1572	-0.0902	0.4825	-0.1572	Ý
A-PILLAR Lateral (Y)	34	38.3966	33.3727	-36.9399	38.8215	33.5159	-36.9862	-0.4249	-0.1432	-0.0463	0.4508	-0.1432	Y
	35	34.8170	32.6529	-39.4893	35.2178	32.7902	-39.5650	-0.4008	-0.1373	-0.0757	0.4304	-0.1373	Y
	36	31.8966	31.8418	-41.1579	32.2759	31.9520	-41.2206	-0.3793	-0.1102	-0.0627	0.3999	-0.1102	Y
Y S A	37	8.1518	31.6943	-41.2354	8.5103	31.7758	-41.1770	-0.3585	-0.0815	0.0584	0.3723	0.0584	Z
글흥거나	38	5.6584	35.1211	-31.8257	5.9735	34.9146	-31.7409	-0.3151	0.2065	0.0848	0.3862	0.2232	Y, Z
₩ ⁸ × I	39 40	9.0094	36,6055	-20.5701	9.7705	36 1310	-20.3864	-0.2011	0.2658	0.1397	0.3835	0.3266	<u> </u>
<u> </u>	37	8 15 19	31,6042	-20.0710	8 5102	31 7769	-20.0004	-0.1200	-0.0915	0.1302	0.3030	-0.0916	1, <u>2</u>
ΞĘ	38	5 6584	35 1211	-31 8257	5.9735	34 9146	-31 7409	-0.3305	0.2065	0.0304	0.3862	0.0015	Y
E a	39	9.5694	36.1473	-26.5761	9.7705	35.8815	-26.3864	-0.2011	0.2658	0.1897	0.3835	0.2658	Ý
EB	40	6.2754	36.6055	-20.6716	6.4007	36.1319	-20.5334	-0.1253	0.4736	0.1382	0.5090	0.4736	Y
[•] Positive va	alues denot nt.	e deformatio	on as inward	toward the	occupant c	ompartment	t, negative va	alues denote	e deformatio	ons outward a	away from t	he occupar	nt .

odel Year:	20)14			Make:		dae			Model:	ILOP	Ram 1500	78435
	20				marcor					medan		1.000	
					VE	HICLE DE	FORMATI	NC					
				PA	SSENGE	R SIDE INT	ERIOR CR	USH - SE	Τ2				
]		Pretest	Pretest	Pretest	-	-				٨			Direction
		X	Y	Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY [#]	ΔZ ^m	Total ∆	Crush [®]	for
	POINT	(in.)	(in.)	(in.)	(In.)	(In.)	(In.)	(in.)	(in.)	(in.)	(in.)	(in.)	Crush
	1	42.0834	24.0424	-30.5813	42.4100	23.6859	-31.0192	-0.3266	0.3565	-0.4379	0.6523	0.6523	X, Y, Z
- ត	2	44.5358	37.3254	-29.8015	44.8130	36.9642	-30.5995	-0.2772	0.3612	-0.7980	0.9188	0.9188	X, Y, Z
5	3	45.4959	52.1941	-29.8282	45.6245	51.8855	-31.0439	-0.1286	0.3086	-1.2157	1.2608	1.2608	X, Y, Z
	4	39.1095	23.7553	-18.4373	39.1778	23.6597	-18.9597	-0.0683	0.0956	-0.5224	0.5354	0.5354	X, Y, Z
	5	40.9485	37.8021	-20.1664	40.9900	37.3370	-21.0705	-0.0415	0.4651	-0.9041	1.0176	1.0176	X, Y, Z
	6	41.6497	52.2337	-20.4335	41.2339	51.7707	-21.8924	0.4158	0.4630	-1.4589	1.5861	1.5861	X, Y, Z
빌린	7	50.4115	56.7091	-3.6370	49.1585	51.7360	-4.8880	1.2530	4.9731	-1.2510	5.2789	4.9731	Y
응주도	8	50.4196	56.7180	-7.7927	48.9713	51.5484	-9.1631	1.4483	5.1696	-1.3704	5.5408	5.1696	Y
~~ <u>~</u>	y	53.5557	56.7008	-6.3045	51.7967	51.0563	-7.7610	1.7590	5.6445	-1.4565	6.0890	5.6445	Y
8	10	39.4209	58.9427	-19.1391	38.5701	58.2509	-20.1423	0.8508	0.6918	-1.0032	1.4862	0.6918	Y
ы М	11	29.2157	59.0731	-19.5415	28.4414	60.0151	-20.3113	0.7743	-0.9420	-0.7698	1.4420	-0.9420	Y
582	12	18.9680	59.2441	-19.6530	18.2418	60.3674	-20.1215	0.7262	-1.1233	-0.4685	1.41/3	-1.1233	. Y
ŽQ /	13	30.1303	59.1452	-0.007Z	37.4400	57.3765	-7.3857	0.6908	1.7007	-0.9985	2.1403	1./00/	ř V
ž	14	29.0011	59.7172	-0.2017	29.3043	50.9309	-0.9755	0.5334	0.7603	-0.7130	0.8782	0.7003	. T
	10	20.7433	22.0066	40.0076	20.1000	33.2330	-1.0039	0.3027	0.0042	-0.3400	0.0702	-0.3042	. 7
	10	31.0243	28.0900	49.3270	31 7000	22.6576	49.4765	-0.4279	0.2300	-0.1409	0.0121	-0.1409	7
	18	30,7567	33 08/5	-49.3079	31.1909	20.7020	-49.0042	-0.3421	0.2102	-0.2303	0.4000	-0.2303	7
	19	29 5067	39 7778	-49 2595	29.8407	39.6237	-49.6175	-0.3340	0.1541	-0.2542	0.5047	-0.3580	7
	20	27 3881	45 7386	-49 1209	27.8287	45 5562	-49.5276	-0.3340	0.1341	-0.3366	0.5155	-0.3300	7
~	21	25 7883	23 3608	-50 3491	26 1531	23 1759	-50 5472	-0.3648	0.1849	-0.1981	0.4544	-0 1981	7
Ŋ	22	24.9862	28.9043	-50.3248	25.3382	28.6840	-50.5811	-0.3520	0.2203	-0.2563	0.4880	-0.2563	ž
ų į	23	25.4314	33.6124	-50.1576	25.7878	33.4241	-50.4600	-0.3564	0.1883	-0.3024	0.5039	-0.3024	Z
8	24	25.6094	39.5995	-49.8413	26.0429	39.4315	-50.1965	-0.4335	0.1680	-0.3552	0.5851	-0.3552	Z
ř i	25	24.2147	45.3409	-49.6286	24.5670	45.2149	-50.0386	-0.3523	0.1260	-0.4100	0.5551	-0.4100	Z
	26	18.6183	23.8607	-50.8916	18.9217	23.5864	-51.1028	-0.3034	0.2743	-0.2112	0.4603	-0.2112	Z
	27	17.4608	29.4095	-50.9042	17.8778	29.2320	-51.1515	-0.4170	0.1775	-0.2473	0.5163	-0.2473	Z
	28	16.5992	35.1407	-50.7877	17.0473	34.9659	-51.0839	-0.4481	0.1748	-0.2962	0.5649	-0.2962	Z
	29	16.8180	41.0403	-50.4814	17.2096	40.8263	-50.8506	-0.3916	0.2140	-0.3692	0.5792	-0.3692	Z
	30	16.5407	45.5478	-50.1872	16.9763	45.3110	-50.5935	-0.4356	0.2368	-0.4063	0.6410	-0.4063	Z
	31	51.5818	55.6837	-32.1217	51.9551	55.8030	-32.7252	-0.3733	-0.1193	-0.6035	0.7196	0.0000	NA
품 특 교	32	47.5754	54.8035	-35.5217	48.0795	54.8092	-36.2689	-0.5041	-0.0057	-0.7472	0.9014	0.0000	NA
日原メー	33	43.7701	53.8898	-38.1657	44.2862	53.8317	-38.8714	-0.5161	0.0581	-0.7057	0.8762	0.0581	. Y
<u>a</u> <u>a</u> ×	34	39.9621	53.0275	-40.8477	40.4439	52.9258	-41.4824	-0.4818	0.1017	-0.6347	0.8033	0.1017	Y
<2~	35	36.4048	52.2776	-43.4195	36.8511	52.1407	-44.0590	-0.4463	0.1369	-0.6395	0.7918	0.1369	. Y
	30	33.5014	51.4429	-45.1059	33.9187	51.2604	-45.7095	-0.4173	0.1825	-0.6036	0.7562	0.1825	Ý
~ ~	31	51.5818	55.6837	-32.1217	51.9551	55.8030	-32.7252	-0.3733	-0.1193	-0.6035	0.7196	-0.1193	<u>Y</u>
품도	32	47.5754	54.8035	-35.5217	48.0795	54.8092	-36.2689	-0.5041	-0.0057	-0.7472	0.9014	-0.0057	¥
	33	43.7701	53.0090	-30.1057	44.2002	53.0317	-30.0714	-0.3161	0.0561	-0.7057	0.0762	0.0001	Ť V
A-P	35	36 4049	52 2774	-40.0477	36 8511	52 1407	-41.4024	-0.4462	0.1017	-0.0347	0.0000	0.1017	v T
	30	33 5014	51 4429	45 1059	33 0187	51 2604	45 7095	-0.4403	0.1305	-0.0385	0.7510	0.1309	v V
<u> </u>	27	0.7502	51 1914	45.2429	10.1549	50.0220	45 7490	0.3062	0.1025	0.2762	0.5907	0.1023	v
독들이	3/ 32	7 1700	54 5609	-40.0420	7 5750	54 1995	-36 2242	-0.3953	0.1900	-0.3703	0.0007	0.1900	T V
글동거리	30	11 0474	55 6251	-30.8073	11 3529	55 2552	-30.3342	-0.3800	0.3723	-0.3709	0.0014	0.3723	. T
문율오늘	40	7 7107	56.0730	-24 8025	7.9673	55 5669	-25 1440	-0.3054	0.5064	-0.3014	0.0004	0.5080	T Y
<u></u>	-10	0.7502	51 1214	45 2429	10.1549	50.0008	45 7190	0.2000	0.1085	0.2762	0.5023	0.0001	. ' V
국논	38	7 1700	54 6609	35 0572	7.5750	54 1995	-10.7109	-0.3903	0.1900	-0.3703	0.0007	0.1905	· ·
11E	30	11 0474	55 6251	-30.8573	11 3529	55 2552	-30.3342	-0.3900	0.3723	-0.3709	0.0014	0.3723	v
유행	 	7 7107	56.0730	-24 8025	7 0671	55 5660	-25 1440	-0.3034	0.5080	-0.3014	0.0004	0.0090	v
		1.1101	00.0100	27.0020	1.0010	00.0003	20.1440	-0.2000	0.0001	-0.0410	0.0020	0.0001	1

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^c Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-10. Exterior Vehicle Crush (NASS) - Front, Test No. MNCBR-2

Figure C-11. Exterior Vehicle Crush (NASS) - Side, Test No. MNCBR-2
Passenger Side Maximum Deformation Reference Set 1 Maximum Deformation ^{A,B} MASH Allowable Deformation (in.) Directions of Deformation ^C Maximum Deformation ^{A,B} MASH Allowable Deformation ^C Directions of Deformation ^C Xoof 0.0 ≤4 Z Maximum Deformation (in.) Deformation Deformation Deformation (in.) Deformation Deformation Deformation Ca Side Side S Y NA S X, Z A-Pillar Maximum 0.5 ≤5 Y, Z Side Front Panel 5.6 S Y B-Pillar Lateral 0.5 ≤3 Y Side Front Panel 5.6 ≤12 Y Side Door (above seat) 1.9 ≤12 Y Side	Model Year:	del Year: 2014 Make: Dodge Model:				Ram	1500	
Reference Set 1 Reference Set 2 Maximum Deformation ^{AB} (in.) MASH Allowable Deformation (in.) Directions of Deformation ^C Maximum Deformation ^{AB} MASH Allowable Directions of Deformation ^C Xindshield ^D 0.0 ≤ 4 Z Windshield ^D 0.0 ≤ 3 X, Z A-Pillar Maximum 0.1 ≤ 5 Z Maximum 0.5 ≤ 5 Y, Z Spillar Lateral -0.3 ≤ 3 Y B-Pillar Lateral 0.5 ≤ 5 Y, Z Spillar Lateral 0.5 ≤ 3 Y Side Front Panel 5.8 ≤ 12 Y Side Door (above seat) 0.7 ≤ 9 Y Side Door (below seat) 1.9 ≤ 12 Y Side Door (below seat) 1.1 NA X, Y, Z Dash - no MASH requirement 1.1 NA X, Y, Z Positive values denote deformation as inward toward the occupant compartment, negative values denote deformation or deformation is now include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum and B-Pillar Maximum and B-Pillar Maximum and B-Pillar Maximum and B-			F	assenger Side Ma	aximum Deformation			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Reference Set	t 1			Reference Se	t 2	
Koor0.0 \leq 4ZWindshield ^D 0.0 \leq 3X, ZA-Pillar Maximum0.1 \leq 5ZA-Pillar Maximum0.1 \leq 5ZA-Pillar Maximum0.5 \leq 5YB-Pillar Maximum0.5 \leq 5Y, ZB-Pillar Maximum0.5 \leq 5Y, ZB-Pillar Maximum0.5 \leq 5YB-Pillar Lateral0.5 \leq 5YB-Pillar Lateral0.5 \leq 3YB-Pillar Lateral0.5 \leq 3YBor Pan - Wheel Well3.8 \leq 9X, ZSide Front Panel5.8 \leq 12YSide Door (above seat)0.7 \leq 9YSide Door (below seat)1.9 \leq 12YFloor Pan0.1 \leq 12ZDash - no MASH requirement1.1NAX, Y, ZPositive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum and B-Pilla	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C
Windshield0.0 ≤ 3 X, ZA-Pillar Maximum0.1 ≤ 5 ZA-Pillar Lateral-0.3 ≤ 3 YB-Pillar Maximum0.5 ≤ 5 Y, ZB-Pillar Lateral0.5 ≤ 5 Y, ZB-Pillar Lateral0.5 ≤ 3 YB-Pillar Lateral0.5 ≤ 3 YToe Pan - Wheel Well3.8 ≤ 9 X, ZSide Front Panel5.8 ≤ 12 YSide Door (above seat)0.7 ≤ 9 YSide Door (below seat)1.9 ≤ 12 YSide Door (below seat)1.9 ≤ 12 YSide Door (below seat)1.9 ≤ 12 YSide Door (below seat)1.1NAX, Y, ZDash - no MASH requirement1.1NAX, Y, ZPositive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and ZToe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum and	Koot Mindahiold ^D	0.0	≤ 4	<u> </u>	Koot Mindohiold ^D	-0.4	≤ 4	<u> </u>
A-Pillar Lateral-0.3 ≤ 3 YA-Pillar Lateral0.5 ≤ 5 Y, Z3-Pillar Maximum0.5 ≤ 5 Y, Z3-Pillar Lateral0.5 ≤ 3 YB-Pillar Dave seat)0.7 ≤ 9 YBide Door (below seat)1.8 ≤ 12 YBide Door (below seat)1.8 ≤ 12 YBoor (below seat)1.8 ≤ 12 YBoor (below seat)1.6NAX, Y, ZDash - no MASH requirement1.6NAX, Y, and ZItems highlighted in red do not meet MASH allowable deformations.For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X and Z direction.For A-Pillar Maximum and B-Pillar Maximum the direction of deformation in positive and intruding into the deformation	A-Pillar Maximum	0.0	<u>≤</u> 3 <5	7	A-Pillar Maximum	0.2	<u>≤</u> 3 <5	<u> </u>
Ar hidr Edectal0.5 ≤ 5 Y, Z3-Pillar Lateral0.5 ≤ 5 Y, Z3-Pillar Lateral0.5 ≤ 3 Y $\circ e Pan - Wheel Well$ 3.8 ≤ 9 X, ZSide Front Panel5.8 ≤ 12 YSide Door (above seat)0.7 ≤ 9 YSide Door (below seat)1.9 ≤ 12 YSide Door (below seat)1.9 ≤ 12 YSide Door (below seat)1.9 ≤ 12 ZSide Door (below seat)1.1NAX, Y, ZSide Door (below seat)0.1 ≤ 12 ZSide Door (below seat)1.1NAX, Y, ZSide Door (below seat)1.6NAX, Y, ZSide Door (below	A-Pillar Lateral	-0.3	<u> </u>	<u> </u>	A-Pillar Lateral	0.2	< 3	Y
Prime internationOrePrime3-Pillar Lateral0.5 \leq 3Y3-Pillar Lateral0.7 \leq 9Y3-Pillar Lateral0.7 \leq 12Y3-Pillar Maximum0.7 \leq 12Y3-Pillar Maximum1.6NAX, Y, 23-Pillar Maximum and B-Pillar Maximum	3-Pillar Maximum	0.5	< 5	Y.Z	B-Pillar Maximum	0.5	< 5	
Foe Pan - Wheel Well 3.8 ≤ 9 X, ZSide Front Panel 5.8 ≤ 12 YSide Door (above seat) 0.7 ≤ 9 YSide Door (below seat) 1.9 ≤ 12 YSide Door (below seat) 1.9 ≤ 12 YSide Door (below seat) 0.1 ≤ 12 YSide Door (below seat) 0.1 ≤ 12 ZDash - no MASH requirement 1.1 NAX, Y, ZDash - no MASH requirement 1.6 NAX, Y, ZThe direction of deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.For Toe Pan - Wheel Well the direction of deformation for Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation is positive and intruding into the direction of deformation for Toe Pan - Wheel Well the direction of deformation for Toe Pan - Wheel Well the direction of deformation for Toe Pan - Wheel Well the direction of deformation for Toe Pan - Wheel Well the direction of deformation for Toe Pan - Wheel Well the direction of deformation for Toe Pan - Wheel Well the direction of deformation for Toe Pan - Wheel Well the direction of deformation for Toe Pan - Wheel Well the direction of deformation for Toe Pan - Wheel Well the direction of deformation for Toe Pan - Wheel Well the direction of deformation for Toe Pan - Wheel Well the direction of deformation for Toe Pan - Wheel Well the direction of deformation for Toe Pan - Wheel Well the direction of deformation for Toe Pan - Wheel Well the direction of deformation for Toe Pan - Wheel Well the direction of deformation for Toe Pan - Wheel Well the direction for Toe Pan - Wheel Well	3-Pillar Lateral	0.5	<u> </u>	Y	B-Pillar Lateral	0.5	<u> </u>	Y
Side Front Panel 5.8 ≤ 12 YSide Door (above seat) 0.7 ≤ 9 YSide Door (below seat) 1.9 ≤ 12 YSide Door (below seat) 1.9 ≤ 12 YSide Door (below seat) 0.7 ≤ 9 YSide Door (below seat) 1.8 ≤ 12 YSide Door (below seat) 0.7 ≤ 9 YSide Door (below seat) 1.8 ≤ 12 YSide Door (below seat) 0.7 ≤ 12 YSide Door (below seat) 1.8 ≤ 12 YSide Door (below seat) 0.7 ≤ 12 ZDash - no MASH requirement 1.6 NAX, Y, ZPositive values denote deformation as inward toward the occupant compartment, negative values denote deformation of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum and B-Pillar M	oe Pan - Wheel Well	3.8	<u> </u>	X, Z	Toe Pan - Wheel Well	4.1	<u>≤</u> 9	X, Z
ide Door (above seat) 0.7 ≤ 9 Yide Door (below seat) 1.9 ≤ 12 Yidor Pan 0.1 ≤ 12 Zloor Pan 0.1 ≤ 12 Zvash - no MASH requirement 1.1 NAX, Y, ZItems highlighted in red do not meet MASH allowable deformations.Dash - no MASH requirement 1.6 NAX, Y, ZPositive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z	ide Front Panel	5.8	≤ 12	Y	Side Front Panel	5.6	≤ 12	Ŷ
ide Door (below seat)1.9 \leq 12Yloor Pan0.1 \leq 12Zash - no MASH requirement1.1NAX, Y, ZFloor Pan0.7 \leq 12ZDash - no MASH requirement1.6NAX, Y, ZEtems highlighted in red do not meet MASH allowable deformations.Dash - no MASH requirement1.6NAX, Y, ZPositive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.For Toe Pan - Wheel Well the direction of deformation may include X and Z direction.For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and ZFor Toe Pan - Wheel Well the direction of deformation may include X and Z direction.For A-Pillar Maximum only include components where the deformation is positive and intruding into the direction of deformation for Toe Pan - Wheel Well the direction of deformation for toe Pan - Wheel Well the direction of deformation may include X, Y, and Z	ide Door (above seat)	0.7	≤ 9	Y	Side Door (above seat)	0.7	≤ 9	Y
Ioor Pan $0.1 \le 12$ ZFloor Pan $0.7 \le 12$ Zvash - no MASH requirement 1.1 NAX, Y, ZDash - no MASH requirement 1.6 NAX, Y, ZItems highlighted in red do not meet MASH allowable deformations.Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.For Toe Pan - Wheel Well the direction of deformation may include X and Z direction.For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z	ide Door (below seat)	1.9	≤ 12	Y	Side Door (below seat)	1.8	≤ 12	Y
Dash - no MASH requirement 1.1 NA X, Y, Z Dash - no MASH requirement 1.6 NA X, Y, Z Items highlighted in red do not meet MASH allowable deformations. Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation is positive and intruding into the direction of deformation for Toe Pan - Wheel Well A-Pillar Maximum and B-Pillar Maximum only include Components where the deformation is positive and intruding into the direction of deformation for Toe Pan - Wheel Well A-Pillar Maximum and B-Pillar Maximum on the include Components where the deformation is positive and intruding into the direction of the deformation for Toe Pan - Wheel Well A-Pillar Maximum and B-Pillar Maximum on the include Components where the deformation is positive and intruding into the direction of the deformation for Toe Pan - Wheel Well A-Pillar Maximum and B-Pillar Maximum on the include Components where the deformation is positive and intruding into the direction of the deformation for Toe Pan - Wheel Well A-Pillar Maximum and B-Pillar Maximum on the include Components where the deformation is positive and intruding into the direction of the deformation of the direction of the deformation for Toe Pan - Wheel Well A-Pillar Maximum and B-Pillar Maximum on the include Components where the deformation is positive and intruding into the direction of the deformation of the direction interval and the direction of the deformation interval and the direction of the deformation interval and the direction of the deformation interval and the dinterval and the direction of the deformation interval	loor Pan	0.1	≤ 12	Z	Floor Pan	0.7	≤ 12	Z
Items highlighted in red do not meet MASH allowable deformations. Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment. For Toe Pan - Wheel Well the direction of deformation may include X and Z direction. For A-Pillar Maximum and B-Pillar Maximum the direction of deformation may include X, Y, and Z direction. The direction of deformation for Toe Pan - Wheel Well A-Pillar Maximum and B-Pillar Maximum only include components where the deformation is positive and intruding into the	ash - no MASH requirement	1.1	NA	X, Y, Z	Dash - no MASH requirement	1.6	NA	X, Y, Z
ccupant compartment. If direction of deformation is "NA" then no intrusion is recorded and deformation will be 0. If deformation is observered for the windshield then the windshield deformation is measured posttest with an examplar vehicle, therefore only one set of reference is measured and record	Positive values denote deformat For Toe Pan - Wheel Well the di lirections. The direction of deform ccupant compartment. If directic If deformation is observered for t	ion as inward toward rection of defromati- nation for Toe Pan - n of deformation is ' the windshield then	d the occupant comp on may include X an- Wheel Well, A-Pillar "NA" then no intrusio the windshield deforr	artment, negative val d Z direction. For A-F Maximum, and B-Pill n is recorded and de nation is measured p	lues denote deformations outward awa Pillar Maximum and B-Pillar Maximum lar Maximum only include components formation will be 0. posttest with an examplar vehicle, there	y from the occupan the direction of defo where the deforma fore only one set o	t compartment. ormation may include tion is positive and ir ^r reference is measur	X, Y, and Z truding into the ed and recorded.

Figure C-12. Maximum Occupant Compartment Deformations by Location, Test No. MNCBR-2

lodel Year:	20	009	•		Test Name: Make:	MNC K	ia			VIN: Model:	KNA	DE2231965 Rio	57772
					VE PASSENC	HICLE DE GER SIDE	FORMATI	ON AN - SET 1					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔΥ ^Α (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for Crush ⁰
	1	63.2198	16.2464	5.3295	62.6456	14.5414	5.7370	0.5742	1.7050	-0.4075	1.8447	0.5742	Х
	2	63.4692	19.6365	5.0723	N/a	N/a	N/a	#VALUE!	#VALUE!	#VALUE!	NA	NA	#VALU
	3	63.9940	22.9386	4.9041	62.6009	20.6156	4.4876	1.3931	2.3230	0.4165	2.7405	1.4540	X, Z
z U	4	64.2975	27.1587	4.3955	63.1207	24.9007	4.0347	1.1768	2.2580	0.3608	2.5717	1.2309	X, Z
A > U	5	62.9921	31.4277	2.6012	61.5721	28.9663	2.6745	1.4200	2.4614	-0.0733	2.8426	1.4200	Х
Ш Ц Х	6	60.0949	16.2992	7.1882	59.9862	14.4223	7.9352	0.1087	1.8769	-0.7470	2.0230	0.1087	Х
2 H	7	60.5448	20.2787	6.7084	N/a	N/a	N/a	#VALUE!	#VALUE!	#VALUE!	NA	NA	#VALU
\$	8	61.0561	23.5632	6.6248	59.8067	21.3602	6.4821	1.2494	2.2030	0.1427	2.5366	1.2575	X, Z
	9	61.6785	27.5755	6.2173	60.7790	25.3179	6.2486	0.8995	2.2576	-0.0313	2.4304	0.8995	Х
	10	61.2778	32.7577	4.8449	59.7399	29.8764	5.0088	1.5379	2.8813	-0.1639	3.2702	1.5379	Х
	11	55.9498	16.5655	8.1713	55.4134	16.7448	5.9287	0.5364	-0.1793	2.2426	2.3128	2.2426	Z
	12	55.9491	20.1525	8.3303	54.7271	18.5885	7.5873	1.2220	1.5640	0.7430	2.1193	0.7430	Z
	13	56.2127	23.4489	8.3313	55.3505	21.3715	8.7685	0.8622	2.0774	-0.4372	2.2913	-0.4372	Z
1	14	56.4304	28.4875	8.3004	55.8510	26.4295	8.8775	0.5794	2.0580	-0.5771	2.2145	-0.5771	Z
1	15	57.4055	33.0155	8.2518	57.1046	30.9149	8.7886	0.3009	2.1006	-0.5368	2.1889	-0.5368	Z
	16	52.9326	16.2782	8.2760	52.8388	16.4767	7.5214	0.0938	-0.1985	0.7546	0.7859	0.7546	Z
	17	53.2351	19.5061	8.5903	52.2494	19.0988	6.6202	0.9857	0.4073	1.9701	2.2403	1.9701	Z
7	18	53.3966	22.9100	8.3634	52.5138	21.0577	9.0267	0.8828	1.8523	-0.6633	2.1565	-0.6633	Z
AP	19	53.9170	28.0066	8.3528	53.3404	26.1463	9.0522	0.5766	1.8603	-0.6994	2.0694	-0.6994	Z
r	20	54.2097	33.1385	8.1732	53.8728	31.1851	8.8000	0.3369	1.9534	-0.6268	2.0790	-0.6268	Z
IQ 2	21	49.8862	16.6314	8.6955	50.0619	16.7840	8.4291	-0.1757	-0.1526	0.2664	0.3537	0.2664	Z
LC LC	22	50.1596	20.0628	8.9347	49.2150	19.4514	7.4464	0.9446	0.6114	1.4883	1.8658	1.4883	Z
ш	23	50.6587	23.4175	8.3867	49.7932	21.7594	9.2445	0.8655	1.6581	-0.8578	2.0577	-0.8578	Z
	24	51.2861	27.9650	8.3932	50.6741	26.2577	9.3847	0.6120	1.7073	-0.9915	2.0670	-0.9915	Z
	25	51.6846	33.0949	8.7121	51.3876	31.3628	9.4684	0.2970	1.7321	-0.7563	1.9132	-0.7563	Z
	26	46.4491	17.2189	9.0066	46.5388	17.3890	8.4152	-0.0897	-0.1701	0.5914	0.6219	0.5914	Z
	27	46.8760	20.2812	9.0664	46.1902	19.4708	8.7447	0.6858	0.8104	0.3217	1.1093	0.3217	Z
	28	47.0329	23.3150	8.4157	46.1903	21.8753	9.4178	0.8426	1.4397	-1.0021	1.9460	-1.0021	Z
	29	47.4484	28.1406	8.4094	46.9253	26.6343	9.5395	0.5231	1.5063	-1.1301	1.9544	-1.1301	Z
	30	47.9970	33.5448	9.0159	47.7484	32.0266	9.8845	0.2486	1.5182	-0.8686	1.7667	-0.8686	Z

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment.

^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-13. Floor Pan Deformation Data – Set 1, Test No. MNCBR-3

Model Year:	20	109	8		Test Name: Make:	MNC K	BR-3 ïa			VIN: Model:	KNA	DE2231965 Rio	57772
					VE	HICLE DE GER SIDE	FORMATI	ON AN - SET 2					
	POINT	Pretest X (in.)	Pretest Y (in.)	Pretest Z (in.)	Posttest X (in.)	Posttest Y (in.)	Posttest Z (in.)	∆X ^A (in.)	ΔΥ ^Α (in.)	∆Z ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Directions for Crush ^c
	1	63.0829	-1.3344	5.0463	62.4029	-2.6711	5.9981	0.6800	-1.3367	-0.9518	1.7763	0.6800	X
	2	63.3506	2.0547	4.7946	N/a	N/a	N/a	#VALUE!	#VALUE!	#VALUE!	NA	NA	#VALUE!
	3	63.8935	5.3541	4.6305	62.3920	3.4094	4.7791	1.5015	1.9447	-0.1486	2.4614	1.5015	X
	4	64.2190	9.5733	4.1287	62.9314	7.6949	4.3530	1.2876	1.8784	-0.2243	2.2884	1.2876	X
Z ≤ Q	5	62.9301	13.8533	2.3485	61.4106	11.7728	2.9985	1.5195	2.0805	-0.6500	2.6570	1.5195	X
L L L L L	6	59.9666	-1.2674	6.9189	59.7220	-2.7917	8.1698	0.2446	-1.5243	-1.2509	1.9870	0.2446	X
[으 뿐	7	60.4371	2.7104	6.4449	N/a	N/a	N/a	#VALUE!	#VALUE!	#VALUE!	NA	NA	#VALUE!
3	8	60.9669	5.9921	6.3653	59.5813	4.1541	6.7502	1.3856	1.8380	-0.3849	2.3337	1.3856	X
	9	61.6104	10.0015	5.9629	60.5699	8.1093	6.5463	1.0405	1.8922	-0.5834	2.2368	1.0405	X
	10	61.2333	15.1887	4.6023	59.5591	12.6777	5.3196	1.6742	2.5110	-0.7173	3.1020	1.6742	X
	11	55.8274	-0.9793	7.9208	55.1771	-0.4426	6.1310	0.6503	0.5367	1.7898	1.9785	1.7898	Z
	12	55.8480	2.6072	8.0868	54.4814	1.3951	7.7921	1.3666	1.2121	0.2947	1.8503	0.2947	Z
	13	56.1305	5.9021	8.0931	55.1032	4.1699	8.9934	1.0273	1.7322	-0.9003	2.2060	-0.9003	Z
	14	56.3768	10.9394	8.0710	55.6206	9.2255	9.1329	0.7562	1.7139	-1.0619	2.1534	-1.0619	Z
	15	57.3776	15.4619	8.0268	56.8910	13.7067	9.0789	0.4866	1.7552	-1.0521	2.1034	-1.0521	Z
	16	52.8091	-1.2496	8.0383	52.5862	-0.7095	7.6973	0.2229	0.5401	0.3410	0.6765	0.3410	Z
	17	53.1315	1.9759	8.3576	52.0150	1.9193	6.8037	1.1165	0.0566	1.5539	1.9143	1.5539	Z
-	18	53.3115	5.3792	8.1365	52.2630	3.8651	9.2226	1.0485	1.5141	-1.0861	2.1381	-1.0861	Z
A A	19	53.8610	10.4728	8.1335	53.1074	8.9504	9.2819	0.7536	1.5224	-1.1484	2.0505	-1.1484	Z
	20	54.1823	15.6033	7.9626	53.6602	13.9885	9.0604	0.5221	1.6148	-1.0978	2.0212	-1.0978	Z
l Q N	21	49.7668	-0.8799	8.4719	49.8019	-0.3967	8.5796	-0.0351	0.4832	-0.1077	0.4963	-0.1077	Z
	22	50.0608	2.5494	8.7166	48.9740	2.2786	7.6023	1.0868	0.2708	1.1143	1.5799	1.1143	Z
1 ^m	23	50.5767	5.9023	8.1729	49.5429	4.5754	9.4175	1.0338	1.3269	-1.2446	2.0925	-1.2446	Z
	24	51.2301	10.4461	8.1855	50.4385	9.0698	9.5891	0.7916	1.3763	-1.4036	2.1192	-1.4036	Z
	25	51.6594	15.5730	8.5125	51.1693	14.1718	9.7056	0.4901	1.4012	-1.1931	1.9045	-1.1931	Z
	26	46.3345	-0.2733	8.7994	46.2811	0.2211	8.5347	0.0534	0.4944	0.2647	0.5633	0.2647	Z
	27	46.7791	2.7864	8.8632	45.9368	2.3024	8.8713	0.8423	0.4840	-0.0081	0.9715	-0.0081	Z
	28	46.9506	5.8205	8.2177	45.9390	4.7035	9.5566	1.0116	1.1170	-1.3389	2.0159	-1.3389	Z
	29	47.3936	10.6436	8.2190	46.6896	9.4592	9.7095	0.7040	1.1844	-1.4905	2.0298	-1.4905	Z
	30	47.9758	16.0434	8.8335	47.5286	14.8466	10.0898	0.4472	1.1968	-1.2563	1.7918	-1.2563	Z

A Positive values denote deformation as inward toward the occupant compartment, negative values denote deformations outward away from the occupant compartment.

^B Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment. ^C Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-14. Floor Pan Deformation Data - Set 2, Test No. MNCBR-3

del Year:	20	09			Make:	K	ia			Model:		Rio	
					VE	HICLE DE	FORMATIC	N					
				PA	SSENGE	R SIDE INT	ERIOR CR	USH - SE	Т 1				
[Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A	ΔZ ^A	Total ∆	Crush ^B	Direction for
	POINT	(in.)	(in.)	(in.)	(0.17)	(01.7	(ii).y	(01.)	(01.)	(01.)	furity.	(01.)	Crush
	1	49.3046	11.0021	-20.3862	49.2928	10.7565	-20.4242	0.0118	0.2456	-0.0380	0.2488	0.2488	X, Y, Z
ΞŴ	2	48.2593	32 0068	-20.1495	48.2574	32 6604	-20.2212	0.0019	0.2692	-0.0716	0.2979	0.2979	
SAS /	4	44.3632	10.4563	-12.7286	44.3277	10.1838	-12.7947	0.0355	0.2725	-0.0661	0.2826	0.2826	X.Y.Z
<u>ч</u> Я	5	45.1397	18.0799	-13.3966	45.0968	17.8243	-13.4041	0.0429	0.2556	-0.0075	0.2593	0.2593	X, Y, Z
	6	47.2714	32.4559	-13.7849	46.8679	32.1621	-13.8483	0.4035	0.2938	-0.0634	0.5031	0.5031	X, Y, Z
υШ	7	54.0048	37.1548	2.3133	53.6342	35.3724	2.4940	0.3706	1.7824	0.1807	1.8295	1.7824	Y
∃₹E	8	58.9394	37.2595	2.8352	58.4894	34.7530	2.8253	0.4500	2.5065	-0.0099	2.5466	2.5065	Y
<u>~~</u>	9	55.3407	36.9881	-2.1094	54.5450	35.2233	-2.0478	0.7957	1.7648	0.0616	1.9369	1.7648	Y
<u>ч</u>	10	48.0393	38.1142	-17.7190	47.4237	38.0103	-17.4457	0.6156	0.1039	0.2733	0.6815	0.1039	Y
<u>7</u> <u>2</u> <u>7</u>	11	36.9046	38,1008	-18.4900	30.4317 24.754E	39.2744	-18,7201	0.4729	-1.1736	0.3344	1.3087	-1.1736	Ý
3881	12	49 1182	38 3010	-6 5091	48 4152	37 8123	-16.7291	0.4360	-1.9550	0.2231	0.9040	-1.9550	Ý
₹ <u>∩</u>	14	36.6071	38.6757	-7.9149	36.2294	40.5730	-7.6870	0.3777	-1.8973	0.2279	1.9479	-1.8973	Ý
≦	15	26.8320	38.4635	-8.6014	26.4801	41.0337	-8.2667	0.3519	-2.5702	0.3347	2.6157	-2.5702	Ý
	16	35.1168	10.5473	-35.1558	35.1416	10.7610	-35.2242	-0.0248	-0.2137	-0.0684	0.2257	-0.0684	Z
(Z)	17	34.8869	15.1928	-35.1723	34.9302	15.3869	-35.2177	-0.0433	-0.1941	-0.0454	0.2040	-0.0454	Z
	18	34.8484	19.1196	-35.0225	34.9782	19.2846	-35.0313	-0.1298	-0.1650	-0.0088	0.2101	-0.0088	Z
	19	34.6755	22.9708	-34.8223	34.7752	23.1905	-34.8268	-0.0997	-0.2197	-0.0045	0.2413	-0.0045	Z
	20	34.3499	28.2854	-34.4933	34.4815	28.4609	-34.4780	-0.1316	-0.1755	0.0153	0.2199	0.0153	Z 7
	21	29.9303	14 9408	-38 1125	29 1221	15 1526	-38 1456	-0.0700	-0.1701	-0.0400	0.1969	-0.0400	7
ų į	23	28.6932	18.4076	-38.0681	28.8048	18.5951	-38.0693	-0.1116	-0.1875	-0.0012	0.2182	-0.0012	Z
8 1	24	28.2566	22.0956	-37.9366	28.3424	22.3269	-37.9211	-0.0858	-0.2313	0.0155	0.2472	0.0155	Z
≅ [25	27.9846	26.7677	-37.5997	28.0215	26.9596	-37.5671	-0.0369	-0.1919	0.0326	0.1981	0.0326	Z
	26	27.4023	10.2575	-38.4611	27.4577	10.4333	-38.5079	-0.0554	-0.1758	-0.0468	0.1902	-0.0468	Z
-	27	26.2309	15.0193	-38.5793	26.3188	15.2454	-38.5951	-0.0879	-0.2261	-0.0158	0.2431	-0.0158	Z
ŀ	28	26.0613	21 8508	-38 2007	26.0894	22 1045	-38.2816	-0.0081	-0.1917	-0.0149	0.1924	-0.0149	Z 7
ŀ	30	25.2822	26 5539	-38.0339	25 4010	26 7195	-37 9875	-0.0312	-0.2447	0.0101	0.2007	0.0101	7
	31	53 6170	36 0142	-22 1950	53 6736	35 7740	-22 0315	-0.0566	0 2402	0 1635	0.2960	0 2906	<u> </u>
¥ Ε Ω	32	49.6069	35.2268	-25.0218	49.8483	35.0696	-25.1186	-0.2414	0.1572	-0.0968	0.3039	0.1572	Y
F mu V	33	46.7177	34.6007	-26.9124	46.9888	34.6274	-26.9791	-0.2711	-0.0267	-0.0667	0.2805	0.0000	NA
ž x v	34	43.2535	33.8539	-28.8932	43.4652	33.8695	-28.9282	-0.2117	-0.0156	-0.0350	0.2151	0.0000	NA
∖∠∠∖	35	39.8763	33.1576	-30.6156	40.0629	33.1939	-30.6341	-0.1866	-0.0363	-0.0185	0.1910	0.0000	NA
	36	36.2629	32.3997	-32.3551	36.4182	32,5052	-32.3264	-0.1553	-0.1055	0.0287	0.1899	0.0287	<u> </u>
~ ~	31	53.6170	36.0142	-22.1950	53.6/36	35.7740	-22.0315	-0.0566	0.2402	0.1635	0.2960	0.2402	Y
1 <u>2</u> E	32 33	49.0009	34 6007	-20.0218	48.0403	34 6274	-20.1100	-0.2414	-0.0267	-0.0908	0.3039	-0.0267	v v
era	34	43,2535	33,8539	-28,8932	43,4652	33,8695	-28,9282	-0.2117	-0.0156	-0.0350	0.2151	-0.0156	Ý
Lat A-F	35	39.8763	33.1576	-30.6156	40.0629	33.1939	-30.6341	-0.1866	-0.0363	-0.0185	0.1910	-0.0363	Ý
	36	36.2629	32.3997	-32.3551	36.4182	32.5052	-32.3264	-0.1553	-0.1055	0.0287	0.1899	-0.1055	Y
¥ Ę Ω l	37	15.0062	32.4612	-33.5172	15.1622	32.6574	-33.2938	-0.1560	-0.1962	0.2234	0.3358	0.2234	Z
l Ç ji E	38	13.0116	34.6028	-28.9947	13.1795	34.7661	-28.6914	-0.1679	-0.1633	0.3033	0.3832	0.3033	Z
- X S	39	17.2731	36.0575	-24.5615	17.3735	36.1275	-24.2915	-0.1004	-0.0700	0.2700	0.2964	0.2700	Z
<u>~ ~ </u>	40	18.6125	37.2690	-15.2307	18.6808	37.24/7	-14.9680	-0.0683	0.0213	0.2627	0.2723	0.2636	<u>Y,Z</u>
폭놀	37	13.0110	32,4612	-33.51/2	13.1622	32.65/4	-33.2938	-0.1560	-0.1962	0.2234	0.3358	-0.1962	Y V
era	39	17 2731	36.0575	-20.9947	17 3735	36 1275	-20.0914	-0.1079	-0.1033	0.3033	0.3632	-0.1033	Y
E E	40	18.6125	37.2690	-15.2307	18.6808	37.2477	-14.9680	-0.0683	0.0213	0.2627	0.2723	0.0213	Ý

only i ega de p ega mp deforming invard to accurate the neuropheteris where the co-deforming invard to accurant compartment.

odel Year:	20	009			Make:	K	ia			Model:		Rio	=
					VE		FORMATIC	N					
				PA	SSENGE	R SIDE INT	ERIOR CR	USH - SE	Т 2				
[DOINT	Pretest X	Pretest Y	Pretest Z	Posttest X	Posttest Y	Posttest Z	ΔX ^A	ΔY ^A (in.)	ΔZ ^A (in.)	Total ∆ (in.)	Crush ^B (in.)	Direction for
		(ID.) 40.0304	(IN.) 6.4914	20.6020	40 3337	6 4004	20 2202	0.2043	0.0000	0.3826	0.4928	0.4828	
	2	48.0448	0.4014	-20.8025	48.3348	0.4904	-19.9506	-0.2943	0.0000	0.3020	0.4907	0.4907	X Y Z
H N	3	50.1381	15.4142	-19.7473	50.3053	15.3879	-19.0831	-0.1672	0.0263	0.6642	0.6854	0.6854	X. Y. Z
ĕ, i	4	44.1269	-7.0144	-12.9259	44.2844	-7.1166	-12.6504	-0.1575	-0.1022	0.2755	0.3334	0.3334	X, Y, Z
- °	5	44.9517	0.6056	-13.5772	45.1001	0.5256	-13.1708	-0.1484	0.0800	0.4064	0.4400	0.4400	X, Y, 2
	6	47.1781	14.9680	-13.9367	46.9511	14.8576	-13.4446	0.2270	0.1104	0.4921	0.5531	0.5531	X, Y, Z
ᄪᇳᆠᅡ	7	54.0109	19.5789	2.1450	53.5592	17.8595	3.0018	0.4517	1.7194	0.8568	1.9734	1.7194	Y
음록도	8	58.9482	19.6492	2.6462	58.4072	17.2106	3.3780	0.5410	2.4386	0.7318	2.6029	2.4386	Ŷ
<u> </u>	y	55.3269	19.4150	-2.2838	54.51//	17.7532	-1.5314	0.8092	1.6618	0.7524	1.9956	1.6618	¥
8	10	47.9673	20.6314	-17.8592	47.5759	20.7403	17 7974	0.3914	-0.1089	0.8854	1 6062	-0.1089	Ý
<u>0</u> K	12	25 1169	20.0940	-18.0029	24 9331	22.0707	-18.4756	0.2300	-1.5701	0.7900	2 2140	-1.3701	v
585	13	49.0948	20.7813	-6.6535	48.4464	20.4189	-5.7399	0.6484	0.3624	0.9136	1.1775	0.3624	Ý
	14	36.5807	21.2434	-8.0052	36.2917	23.2602	-7.3080	0.2890	-2.0168	0.6972	2.1534	-2.0168	Ý
≥	15	26.8015	21.0985	-8.6508	26.5516	23.7792	-7.9864	0.2499	-2.6807	0.6644	2.7731	-2.6807	Y
	16	34.7866	-6.8020	-35.3134	35.3416	-6.2543	-35.1689	-0.5550	0.5477	0.1445	0.7930	0.1445	Z
17 18 19 20 21 (S) 21	17	34.5878	-2.1550	-35.3167	35.1544	-1.6277	-35.1158	-0.5666	0.5273	0.2009	0.7997	0.2009	Z
	18	34.5763	1.7716	-35.1564	35.2208	2.2675	-34.8877	-0.6445	-0.4959	0.2687	0.8564	0.2687	Z
	19	34.4301	5.6233	-34.9453	35.0362	6.1721	-34.6440	-0.6061	-0.5488	0.3013	0.8714	0.3013	Z
	20	34.1415	10.9391	-34.6010	34.7664	11.4399	-34.2427	-0.6249	-0.5008	0.3583	0.8773	0.3583	<u></u>
	21	29.5941	-7.0737	-30.1400	20 3767	-0.0400	-36.0520	0.5700	0.5209	0.0930	0.0430	0.0930	Z 7
Ľ I	23	28 4036	1 1089	-38 1777	29.0767	1 6431	-37 9982	-0.6731	-0.5342	0.1234	0.8779	0.1234	7
8	24	27.9923	4,7994	-38.0346	28.6323	5.3756	-37.8155	-0.6400	-0.5762	0.2191	0.8886	0.2191	z
ř i	25	27.7531	9.4723	-37.6843	28.3320	10.0059	-37.4160	-0.5789	-0.5336	0.2683	0.8318	0.2683	Z
	26	27.0565	-7.0313	-38.5866	27.6915	-6.5063	-38.5374	-0.6350	0.5250	0.0492	0.8254	0.0492	Z
	27	25.9166	-2.2615	-38.6874	26.5789	-1.6875	-38.5857	-0.6623	0.5740	0.1017	0.8823	0.1017	Z
	28	25.7893	1.0289	-38.5833	26.3656	1.5678	-38.4581	-0.5763	-0.5389	0.1252	0.7989	0.1252	Z
	29	25.7889	4.5793	-38.3890	26.4003	5.1690	-38.2020	-0.6114	-0.5897	0.1870	0.8698	0.1870	2
	30	25.0475	9.2170	-30.1070	23.7150	9.7043	-37.0007	-0.0070	-0.0005	0.2409	0.0719	0.2409	- 2
~ = ~	31	10 4846	17,7520	-22.3044	50.0660	17 8674	24 6512	-0.3009	-0.0128	0.6461	0.9179	0.6260	27
A D N	33	46,5833	17.1513	-27 0561	47 2251	17.6074	-26.5466	-0.6418	-0.3089	0.5250	0.7923	0.5250	7
등 높 승	34	43,1059	16,4330	-29.0241	43,7187	16.7416	-28,5409	-0.6128	-0.3086	0.4832	0.8392	0.4832	z
¥≊°∣	35	39.7168	15.7638	-30.7340	40.3313	16.1023	-30.2899	-0.6145	-0.3385	0.4441	0.8303	0.4441	Z
	36	36.0911	15.0347	-32.4601	36.7013	15.4510	-32.0280	-0.6102	-0.4163	0.4321	0.8558	0.4321	Z
	31	53.5118	18.5060	-22.3644	53.8627	18.5188	-21.5163	-0.3509	-0.0128	0.8481	0.9179	-0.0128	Y
¥€	32	49.4846	17.7530	-25.1762	50.0669	17.8674	-24.6512	-0.5823	-0.1144	0.5250	0.7923	-0.1144	Y
10	33	46.5833	17.1513	-27.0561	47.2251	17.4602	-26.5466	-0.6418	-0.3089	0.5095	0.8757	-0.3089	<u> </u>
ate	34	43.1059	16.4330	-29.0241	43./18/	16./416	-28.5409	-0.6128	-0.3086	0.4832	0.8392	-0.3086	Y
~ -	36	36,0011	15.7030	-30.7340	36 7013	15.4510	-30.2699	-0.6102	-0.3305	0.4441	0.8558	-0.3300	v T
<u>ке</u> – I	30	14.8305	15 2/17	-32.4001	15 4570	15 7974	-33 2105	-0.6774	-0.4857	0.4021	0.8527	0.4103	7
Z E Q	38	12,8695	17.3846	-28,9953	13.4373	17,7981	-28.6164	-0.5678	-0.4135	0.3789	0.7981	0.3789	7
글동문	39	17,1594	18,7989	-24.5764	17.5911	19.0907	-24,1581	-0.4317	-0.2918	0.4183	0.6682	0.4183	z
≣≌≍∣	40	18.5463	19.9766	-15.2482	18.8046	20.1057	-14.8099	-0.2583	-0.1291	0.4383	0.5249	0.4383	Z
ا £ ي	37	14.8305	15.2417	-33.5319	15.4579	15.7274	-33.2195	-0.6274	-0.4857	0.3124	0.8527	-0.4857	Y
A S	38	12.8695	17.3846	-28.9953	13.4373	17.7981	-28.6164	-0.5678	-0.4135	0.3789	0.7981	-0.4135	Y
l fer [39	17.1594	18.7989	-24.5764	17.5911	19.0907	-24.1581	-0.4317	-0.2918	0.4183	0.6682	-0.2918	Y
Ľ à	40	18.5463	19.9766	-15.2482	18.8046	20.1057	-14.8099	-0.2583	-0.1291	0.4383	0.5249	-0.1291	Y

⁶ Crush calculations that use multiple directional components will disregard components that are negative and only include positive values where the component is deforming inward toward the occupant compartment. ⁶ Direction for Crush column denotes which directions are included in the crush calculations. If "NA" then no intrusion is recorded, and Crush will be 0.

Figure C-17. Exterior Vehicle Crush (NASS) - Front, Test No. MNCBR-3

Figure C-18. Exterior Vehicle Crush (NASS) - Side, Test No. MNCBR-3

Model Year:	2009	-	Make:	Kia	Model:	RIADEZZO	Rio		
		P	assenger Side Ma	ximum Deformations					
	Reference Set	t 1			Reference Se	t 2			
Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C	Location	Maximum Deformation ^{A,B} (in.)	MASH Allowable Deformation (in.)	Directions of Deformation ^C		
oof	0.0	≤ 4	Z	Roof	0.4	≤ 4	Z		
Vindshield ^D	0.0	<u>≤</u> 3	X, Z	Windshield	NA	<u>≤</u> 3	X, Z		
-Pillar Maximum	0.3	≤ 5	Y, Z	A-Pillar Maximum	0.8	≤ 5	Z		
-Pillar Lateral	0.2	≤ 3	Y	A-Pillar Lateral	-0.4	≤ 3	Y		
-Pillar Maximum	0.3	≤ 5	Z	B-Pillar Maximum	0.4	≤ 5	Z		
-Pillar Lateral	0.0	≤ 3	Y	B-Pillar Lateral	-0.5	≤ 3	Y		
oe Pan - Wheel Well	1.5	≤ 9	Х	Toe Pan - Wheel Well	1.7	≤ 9	Х		
ide Front Panel	2.5	≤ 12	Y	Side Front Panel	2.4	≤ 12	Y		
ide Door (above seat)	0.1	≤ 9	Y	Side Door (above seat)	-2.1	≤ 9	Y		
ide Door (below seat)	0.5	≤ 12	Y	Side Door (below seat)	0.4	≤ 12	Y		
loor Pan	2.2	≤ 12	Z	Floor Pan	1.8	≤ 12	Z		
ash - no MASH requirement	0.5	NA	X, Y, Z	Dash - no MASH requirement	0.7	NA	X, Y, Z		
Positive values denote deformation For Toe Pan - Wheel Well the directions. The direction of deformation of deformation is observered for the formation is observereed for the formation is observeree for the formation is observeree for th	on as inward toward ection of defromati lation for Toe Pan - n of deformation is ' ne windshield then	d the occupant comp on may include X and Wheel Well, A-Pillar "NA" then no intrusio the windshield deforr	artment, negative val d Z direction. For A-F Maximum, and B-Pill n is recorded and der nation is measured p	ues denote deformations outward awa Pillar Maximum and B-Pillar Maximum lar Maximum only include components formation will be 0. posttest with an examplar vehicle, there	y from the occupan the direction of defo where the deforma fore only one set of	t compartment. ormation may include tion is positive and in f reference is measur	X, Y, and Z truding into the ed and recorded.		
atao an mahiala amaha									

Figure C-19. Maximum Occupant Compartment Deformations by Location, Test No. MNCBR-3

Appendix D. Accelerometer and Rate Transducer Data Plots, Test No. MNCBR-1

Figure D-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MNCBR-1

Figure D-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MNCBR-1

Figure D-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MNCBR-1

Figure D-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MNCBR-1

Figure D-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MNCBR-1

Figure D-6. Lateral Occupant Displacement (SLICE-1), Test No. MNCBR-1

Figure D-7. Vehicle Angular Displacements (SLICE-1), Test No. MNCBR-1

Figure D-8. Acceleration Severity Index (SLICE-1), Test No. MNCBR-1

Figure D-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MNCBR-1

Figure D-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MNCBR-1

Figure D-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MNCBR-1

Figure D-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MNCBR-1

Figure D-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MNCBR-1

Figure D-14. Lateral Occupant Displacement (SLICE-2), Test No. MNCBR-1

Figure D-15. Vehicle Angular Displacements (SLICE-2), Test No. MNCBR-1

262

Figure D-16. Acceleration Severity Index (SLICE-2), Test No. MNCBR-1

Figure D-17. 10-ms Average Longitudinal Deceleration (TDAS-1), Test No. MNCBR-1

Figure D-18. Longitudinal Occupant Impact Velocity (TDAS-1), Test No. MNCBR-1

Figure D-19. Longitudinal Occupant Displacement (TDAS-1), Test No. MNCBR-1

Figure D-20. 10-ms Average Lateral Deceleration (TDAS-1), Test No. MNCBR-1

Figure D-21. Lateral Occupant Impact Velocity (TDAS-1), Test No. MNCBR-1

Figure D-22. Lateral Occupant Displacement (TDAS-1), Test No. MNCBR-1

269

Figure D-23. Vehicle Angular Displacements (TDAS-1), Test No. MNCBR-1

Figure D-24. Acceleration Severity Index (TDAS-1), Test No. MNCBR-1

Figure D-25. 10-ms Average Longitudinal Deceleration (TDAS-2), Test No. MNCBR-1

Figure D-26. Longitudinal Occupant Impact Velocity (TDAS-2), Test No. MNCBR-1

Figure D-27. Longitudinal Occupant Displacement (TDAS-2), Test No. MNCBR-1

Figure D-28. 10-ms Average Lateral Deceleration (TDAS-2), Test No. MNCBR-1

Figure D-29. Lateral Occupant Impact Velocity (TDAS-2), Test No. MNCBR-1

Figure D-30. Lateral Occupant Displacement (TDAS-2), Test No. MNCBR-1

Figure D-31. Acceleration Severity Index (TDAS-2), Test No. MNCBR-1

Appendix E. Accelerometer and Rate Transducer Data Plots, Test No. MNCBR-2

Figure E-1. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MNCBR-2

Figure E-2. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MNCBR-2

Figure E-3. Longitudinal Occupant Displacement (SLICE-2), Test No. MNCBR-2

Figure E-4. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MNCBR-2

Figure E-5. Lateral Occupant Impact Velocity (SLICE-2), Test No. MNCBR-2

Figure E-6. Lateral Occupant Displacement (SLICE-2), Test No. MNCBR-2

Figure E-7. Vehicle Angular Displacements (SLICE-2), Test No. MNCBR-2

Figure E-8. Acceleration Severity Index (SLICE-2), Test No. MNCBR-2

Figure E-9. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MNCBR-2

Figure E-10. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MNCBR-2

Figure E-11. Longitudinal Occupant Displacement (SLICE-1), Test No. MNCBR-2

Figure E-12. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MNCBR-2

Figure E-13. Lateral Occupant Impact Velocity (SLICE-1), Test No. MNCBR-2

Figure E-14. Lateral Occupant Displacement (SLICE-1), Test No. MNCBR-2

293

Figure E-15. Vehicle Angular Displacements (SLICE-1), Test No. MNCBR-2

Figure E-16. Acceleration Severity Index (SLICE-1), Test No. MNCBR-2

Appendix F. Accelerometer and Rate Transducer Data Plots, Test No. MNCBR-3

Figure F-1. 10-ms Average Longitudinal Deceleration (SLICE-1), Test No. MNCBR-3

Figure F-2. Longitudinal Occupant Impact Velocity (SLICE-1), Test No. MNCBR-3

Figure F-3. Longitudinal Occupant Displacement (SLICE-1), Test No. MNCBR-3

Figure F-4. 10-ms Average Lateral Deceleration (SLICE-1), Test No. MNCBR-3

Figure F-5. Lateral Occupant Impact Velocity (SLICE-1), Test No. MNCBR-3

Figure F-6. Lateral Occupant Displacement (SLICE-1), Test No. MNCBR-3

Figure F-7. Vehicle Angular Displacements (SLICE-1), Test No. MNCBR-3

303

Figure F-8. Acceleration Severity Index (SLICE-1), Test No. MNCBR-3

Figure F-9. 10-ms Average Longitudinal Deceleration (SLICE-2), Test No. MNCBR-3

Figure F-10. Longitudinal Occupant Impact Velocity (SLICE-2), Test No. MNCBR-3

Figure F-11. Longitudinal Occupant Displacement (SLICE-2), Test No. MNCBR-3

Figure F-12. 10-ms Average Lateral Deceleration (SLICE-2), Test No. MNCBR-3

Figure F-13. Lateral Occupant Impact Velocity (SLICE-2), Test No. MNCBR-3

Figure F-14. Lateral Occupant Displacement (SLICE-2), Test No. MNCBR-3

Figure F-15. Vehicle Angular Displacements (SLICE-2), Test No. MNCBR-3

Figure F-16. Acceleration Severity Index (SLICE-2), Test No. MNCBR-3

END OF DOCUMENT