

Test Report No. 611971-02-1 Test Report Date: June 2020

MASH TEST 3-11 EVALUATION OF COMBINATION TRAFFIC-PEDESTRIAN-BICYCLE BRIDGE RAILING

by

Chiara Silvestri Dobrovolny, Ph.D. Research Scientist

James C. Kovar Assistant Research Scientist

Wanda L. Menges Research Specialist

and

Darrell L. Kuhn, P.E. Research Specialist

Contract No.: T4541 DH / 1806520 Test No.: 611971-02-1 Test Date: 2020-04-03

Sponsored by Roadside Safety Research Program Pooled Fund Study No. TPF-5(114)

TEXAS A&M TRANSPORTATION INSTITUTE PROVING GROUND

Mailing Address: Roadside Safety & Physical Security Texas A&M University System 3135 TAMU College Station, TX 77843-3135 Located at: Texas A&M University System RELLIS Campus Building 7091 1254 Avenue A Bryan, TX 77807

DISCLAIMER

The contents of this report reflect the views of the authors, who are solely responsible for the facts and accuracy of the data, and the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Roadside Safety Research Program Pooled Fund, The Texas A&M University System, or Texas A&M Transportation Institute. This report does not constitute a standard, specification, or regulation. In addition, the above listed agencies/ companies assume no liability for its contents or use thereof. The names of specific products or manufacturers listed herein do not imply endorsement of those products or manufacturers.

The results reported herein apply only to the article tested. The full-scale crash test was performed according to TTI Proving Ground quality procedures and according to the *MASH* guidelines and standards.

The Proving Ground Laboratory within the Texas A&M Transportation Institute's Roadside Safety and Physical Security Division ("TTI Lab" or "TTI LAB") strives for accuracy and completeness in its crash test reports. On rare occasions, unintentional or inadvertent clerical errors, technical errors, omissions, oversights, or misunderstandings (collectively referred to as "errors") may occur and may not be identified for corrective action prior to the final report being published and issued. If, and when, the TTI Lab discovers an error in a published and issued final report, the TTI Lab shall promptly disclose such error to Roadside Safety Research Program Pooled Fund, and both parties shall endeavor in good faith to resolve this situation. The TTI Lab will be responsible for correcting the error that occurred in the report, which may be in form of errata, amendment, replacement sections, or up to and including full reissuance of the report. The cost of correcting an error in the report shall be borne by TTI Lab. Any such errors or inadvertent delays that occur in connection with the performance of the related testing contract shall not constitute a breach of the testing contract.

THE TTI LAB SHALL NOT BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, PUNITIVE, OR OTHER DAMAGES SUFFERED BY ROADSIDE SAFETY RESEARCH PROGRAM POOLED FUND OR ANY OTHER PERSON OR ENTITY, WHETHER SUCH LIABILITY IS BASED, OR CLAIMED TO BE BASED, UPON ANY NEGLIGENT ACT, OMISSION, ERROR, CORRECTION OF ERROR, DELAY, OR BREACH OF AN OBLIGATION BY THE TTI LAB.

Technical Report Documentation Page		
3. Recipient's Catalog No.		

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle	5. Report Date	
MASH TEST 3-11 EVALUATION	June 2020	
PEDESTRIAN-BICYCLE BRIDGE	6. Performing Organization Code	
7. Author(s) Chiara Silvestri Dobrovolny, James William Schroeder, and Darrell L. K	-	8. Performing Organization Report No. Test Report No. 611971-02-1
9. Performing Organization Name and Address Texas A&M Transportation Institute	10. Work Unit No. (TRAIS)	
3135 TAMU	11. Contract or Grant No.	
College Station, Texas 77843-3135	T4541 DH - 1806520	
12. Sponsoring Agency Name and Address	13. Type of Report and Period Covered	
Washington State Department of Tra	Technical Report:	
Transportation Building, MS 47372	December 2018 – May 2020	
Olympia, WA 98504-7372	14. Sponsoring Agency Code	

Project Title: Analysis and Testing of Florida Department of Transportation Barrier Systems for MASH Compliance

Name of Contacting Representative: Derwood C. Sheppard, Jr., P.E.

16. Abstract

The purpose of this research was to test and evaluation of a 42-inch tall combination trafficpedestrian-bicycle bridge rail system for use at MASH TL-3 conditions. Design of the new barrier considered utilization of a 36-inch single slope concrete barrier with a 6-inch bullet-profile aluminum rail mounted on top.

A full-scale crash test was performed according to MASH Test 3-11 impact conditions, which involves a 5000-lb pickup truck impacting the bridge rail at a nominal impact speed of 62 mi/h and at a nominal impact angle of 25°. This test evaluates the bridge rail's ability to successfully contain and redirect the pickup truck and occupant risk.

This report provides details of the 42-inch tall combination traffic-pedestrian-bicycle bridge rail system, detailed documentation of the crash test and results, and an assessment of the performance of the 42-inch tall combination traffic-pedestrian-bicycle bridge rail system for MASH Test 3-11 evaluation criteria.

The 42-inch tall combination traffic-pedestrian-bicycle bridge rail system passed the performance criteria for MASH Test 3-11.

^{17. Key Words} Longitudinal barrier, pedestrian rail, bicycle rail, combination rail, bridge rail, single slope barrier, crash test, roadside safety, MASH		18. Distribution Statement Copyrighted. Not to be copied or reprinted without consent from <u>Roadside Safety Pooled Fund</u> .		
19. Security Classif.(of this report) Unclassified	20. Security Classif.(of th Unclassified	is page)	21. No. of Pages 86	22. Price

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized.

SI* (MODERN METRIC) CONVERSION FACTORS					
APPROXIMATE CONVERSIONS TO SI UNITS					
Symbol	When You Know	Multiply By	To Find	Symbol	
-		LENGTH	·		
in	inches	25.4	millimeters	mm	
ft	feet	0.305	meters	m	
yd	yards	0.914	meters	m	
mi	miles	1.61	kilometers	km	
		AREA			
in ²	square inches	645.2	square millimeters	mm ²	
ft ²	square feet	0.093	square meters	m ²	
yd ²	square yards	0.836	square meters	m²	
ac	acres	0.405	hectares	ha	
mi ²	square miles	2.59	square kilometers	km ²	
<i>(</i>)	fluid anna a c	VOLUME			
floz	fluid ounces	29.57	milliliters	mL	
gal ft ³	gallons	3.785	liters	L m ³	
yd ³	cubic feet	0.028 0.765	cubic meters cubic meters	m ³	
yu	cubic yards	nes greater than 1000L		111-	
	NOTE. Volui	MASS			
oz	ounces	28.35	grams	g	
lb	pounds	0.454	kilograms	y kg	
Ť	short tons (2000 lb)	0.907	megagrams (or metric ton")	Mg (or "t")	
•		MPERATURE (exac		ing (or t)	
°F	Fahrenheit	5(F-32)/9	Celsius	°C	
		or (F-32)/1.8	000000	Ū.	
	FOR	CE and PRESSURE	or STRESS		
lbf	poundforce	4.45	newtons	Ν	
lbf/in ²					
	poundforce per square inch	6.89	kiiopascais	kPa	
	poundforce per square inch APPROXIN	6.89 IATE CONVERSION	kilopascals IS FROM SI UNITS	кра	
Symbol		IATE CONVERSION		Symbol	
	APPROXIN		IS FROM SI UNITS		
	APPROXIN	IATE CONVERSION Multiply By	IS FROM SI UNITS		
Symbol	APPROXIM When You Know	IATE CONVERSION Multiply By LENGTH	IS FROM SI UNITS To Find	Symbol	
Symbol mm	APPROXIM When You Know millimeters	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09	IS FROM SI UNITS To Find inches	Symbol in	
Symbol mm m	APPROXIM When You Know millimeters meters	IATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621	IS FROM SI UNITS To Find inches feet	in ft	
Symbol mm m m km	APPROXIM When You Know millimeters meters meters kilometers	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA	IS FROM SI UNITS To Find inches feet yards	in ft yd mi	
Symbol mm m km mm ²	APPROXIM When You Know millimeters meters meters kilometers square millimeters	IATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016	IS FROM SI UNITS To Find inches feet yards miles square inches	in ft yd mi in ²	
Symbol mm m km mm ² m ²	APPROXIM When You Know millimeters meters kilometers square millimeters square meters	IATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764	IS FROM SI UNITS To Find inches feet yards miles square inches square feet	Symbol in ft yd mi in ² ft ²	
Symbol mm m km mm ² m ² m ²	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters	IATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195	IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards	Symbol in ft yd mi in ² ft ² yd ²	
Symbol mm m km mm ² m ² ha	APPROXIM When You Know millimeters meters kilometers square millimeters square meters square meters hectares	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47	IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres	in ft yd mi in ² ft ² yd ² ac	
Symbol mm m km mm ² m ² m ²	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards	Symbol in ft yd mi in ² ft ² yd ²	
Symbol mm m km mm ² m ² ha km ²	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME	IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles	Symbol in ft yd mi in ² ft ² yd ² ac mi ²	
Symbol mm m km mm ² m ² ha km ² mL	APPROXIM When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034	IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces	Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz	
Symbol mm m km mm ² m ² ha km ² ha km ²	APPROXIM When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264	IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons	Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal	
Symbol mm m km mm ² m ² ha km ² ha km ² mL L m ³	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314	IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet	Symbol in ft yd mi in ² ft ² yd ² ac mi ² Oz gal ft ³	
Symbol mm m km mm ² m ² ha km ² ha km ²	APPROXIM When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307	IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons	Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal	
Symbol mm m km km mm ² m ² ha km ² mL L m ³ m ³	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS	IS FROM SI UNITS To Find inches feet yards miles square inches square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³	
Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ g	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035	IS FROM SI UNITS To Find inches feet yards miles square inches square feet square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces	Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz	
Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds	Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³	
Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ g	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton"	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103	IS FROM SI UNITS To Find inches feet yards miles square inches square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb)	Symbol in ft yd mi in ² ft ² yd ² ac mi ² Oz gal ft ³ yd ³ Oz lb	
Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	APPROXIM When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers Square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric ton"	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103	IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic feet cubic yards ounces pounds short tons (2000lb) t degrees)	Symbol in ft yd mi in ² ft ² yd ² ac mi ² Oz gal ft ³ yd ³ Oz lb	
Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg	APPROXIM When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers Square kilometers cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103	IS FROM SI UNITS To Find inches feet yards miles square inches square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic feet cubic yards ounces pounds short tons (2000lb) tt degrees) Fahrenheit	Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T	
Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ m ³ g kg Mg (or "t") °C	APPROXIM When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters cubic meters cubic meters frem kilograms megagrams (or "metric ton" TE	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact 1.8C+32 CE and PRESSURE	IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) tt degrees) Fahrenheit or STRESS	Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T °F	
Symbol mm m km mm ² m ² m ² ha km ² mL L m ³ m ³ m ³ g kg Mg (or "t")	APPROXIM When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers Square kilometers cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters cubic meters	ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103	IS FROM SI UNITS To Find inches feet yards miles square inches square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic feet cubic yards ounces pounds short tons (2000lb) tt degrees) Fahrenheit	Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T	

*SI is the symbol for the International System of Units

ACKNOWLEDGMENTS

This research project was performed under a pooled fund program between the following States and Agencies. The authors acknowledge and appreciate their guidance and assistance.

Roadside Safety Research Pooled Fund Committee

Revised February 2020

<u>ALABAMA</u>

Stanley (Stan) C. Biddick, P.E.

Assistant State Design Engineer Design Bureau, Final Design Division Alabama Dept. of Transportation 1409 Coliseum Boulevard, T-205 Montgomery, AL 36110 (334) 242-6833 biddicks@dot.state.al.us

Steven E. Walker

Alabama Dept. of Transportation (334) 242-6488 walkers@dot.state.al.us

<u>ALASKA</u>

Jeff C. Jeffers, P.E. Statewide Standard Specifications Alaska Depart. of Transportation & Public Facilities 3132 Channel Drive P.O. Box 112500 Juneau, AK 99811-2500 (907) 465-8962 Jeff.Jeffers@alaska.gov

CALIFORNIA

Bob Meline, P.E. Caltrans Office of Materials and Infrastructure Division of Research and Innovation 5900 Folsom Blvd Sacramento, CA 95819 (916) 227-7031 Bob.Meline@dot.ca.gov

John Jewell, P.E.

Senior Crash Testing Engineer Office of Safety Innovation & Cooperative Research (916) 227-5824 John_Jewell@dot.ca.gov

<u>COLORADO</u>

Joshua Keith, P.E. Standards & Specifications Engineer Project Development Branch Colorado Dept. of Transporation 4201 E Arkansas Ave, 4th Floor Denver, CO 80222 (303) 757-9021 Josh.Keith@state.co.us

Joshua Palmer, P.E.

Guardrail Engineer Colorado Dept. of Transportation 2829 W. Howard Pl Denver, CO 80204 (303) 757-9229 Joshua.j.palmer@state.co.us

Chih Shawn Yu (303) 757-9474 Shawn.yu@state.co.us

Andrew Pott, P.E. II

Staff Bridge (303) 512-4020 Andrew.pott@state.co.us

CONNECTICUT

David Kilpatrick State of Connecticut Depart. of Transportation 2800 Berlin Turnpike Newington, CT 06131-7546 (806) 594-3288 David.Kilpatrick@ct.gov

DELAWARE

Mark Buckalew, P.E.

Safety Program Manager Delaware Depart. of Transportation 169 Brick Store Landing Road Smyrna, DE 19977 (302) 659-4073 Mark.Buckalew@state.de.us

FLORIDA

Derwood C. Sheppard, Jr., P.E.

Standard Plans Publication Engineer Florida Depart. of Transportation Roadway Design Office 605 Suwannee Street, MS-32 Tallahassee, FL 32399-0450 (850) 414-4334 Derwood.Sheppard@dot.state.fl.us

IDAHO

Kevin Sablan

Design and Traffic Engineer Idaho Transportation Department P. O. Box 7129 Boise, ID 83707-1129 (208) 334-8558 Kevin.Sablan@ITD.idaho.gov

Rick Jensen, P.E.

ITD Bridge Design (208) 334-8589 Rick.jensen@itd.idaho.gov

Shanon M. Murgoitio, P.E. Engineer Manager 1 ITD Bridge Division (208) 334-8589 Shanon.murgoitio@ird.idaho.gov

Marc Danley, P.E.

Technical Engineer (208) 334-8558 Marc.danley@itd.idaho.gov

ILLINOIS

Martha A. Brown, P.E.

Safety Design Bureau Chief Bureau of Safety Programs and Engineering Illinois Depart. of Transportation 2300 Dirksen Parkway, Room 005 Springfield, IL 62764 (217) 785-3034 Martha.A.Brown@illinois.gov

Tim Craven Tim.craven@illinois.gov

Filberto (Fil) Sotelo Safety Evaluation Engineer (217) 785-5678 Filiberto.Sotelo@illinois.gov

Jon M. McCormick

Safety Policy & Initiatives Engineer (217) 785-5678 Jon.M.McCormick@illinois.gov

LOUISIANA

Chris Guidry Bridge Manager Louisiana Transportation Center Bridge & Structural Design Section P.O. Box 94245 Baton Rouge, LA 79084-9245 (225) 379-1933 Chris.Guidry@la.gov

Kurt Brauner, P.E.

Bridge Engineer Manager Louisiana Transportation Center 1201 Capital Road, Suite 605G Baton Rouge, LA 70802 (225) 379-1933 Kurt.Brauner@la.gov

Brian Allen, P.E. Bridge Design Engineer (225) 379-1840 Brian.allen@la.gov

Steve Mazur Bridge Design (225) 379-1094 Steven.Mazur@la.gov

MARYLAND

Jeff Robert Division Chief Bridge Design Division Office of Structures 707 N. Calvert Street, Mailstop C-203 Baltimore, MD 21202 (410) 545-8327 jrobert@sha.state.md.us

Sharon D. Hawkins

Project Manager Office of Policy and Research, Research Division 707 N. Calvert Street, Mailstop C-412 Baltimore, MD 21202 (410) 545-2920 Shawkins2@sha.state.md.us

MASSACHUSETTS

Alex Bardow Director of Bridges and Structure Massachusetts Depart. of Transportation 10 Park Plaza, Room 6430 Boston, MA 02116 (517) 335-9430 Alexander.Bardow@state.ma.us

James Danila Assistant State Traffic Engineer

(857) 368-9640 James.Danila@state.ma.us

MICHIGAN

Carlos Torres, P.E. Crash Barrier Engineer Geometric Design Unit, Design Division Michigan Depart. of Transportation P. O. Box 30050 Lansing, MI 48909 (517) 335-2852 TorresC@michigan.gov

MINNESOTA

Michael Elle, P.E. Design Standards Engineer Minnesota Depart.of Transportation 395 John Ireland Blvd, MS 696 St. Paul, MN 55155-1899 (651) 366-4622 Michael.Elle@state.mn.us

Michelle Moser Assistant Design Standards Engineer (651) 366-4708 Michelle.Moser@state.mn.us

MISSOURI

Sarah Kleinschmit, P.E. Policy and Innovations Engineer, Missouri Department of Transportation P.O. Box 270 Jefferson City, MO 65102 (573) 751-7412 sarah.kleinschmit@modot.mo.gov

MISSISSIPPI

Heath T. Patterson, P.E. MDOT-State Maintenance Engineer Emergency Coordinating Officer 401 N. West Street Jackson, MS 39201 (601) 359-7113 hpatterson@mdot.ms.gov

NEW MEXICO

David Quintana, P.E. Project Development Engineer P.O. Box 1149, Room 203 Santa Fe, NM 87503-1149 (505) 827-1635 David quintana@state.nm.us

<u>OHIO</u>

Don P. Fisher, P.E. Ohio Depart. of Transportation 1980 West Broad Street Mail Stop 1230 Columbus, OH 43223 (614) 387-6214 Don.fisher@dot.ohio.gov

<u>OKLAHOMA</u>

Hebret Bokhru, P.E.

Engineering Manager Traffic Engineering Division Oklahoma Depart. of Transportation 200 NE 21st Street, 2-A7 Oklahoma City, OK 73105-3204 Office (direct): (405) 522-5373 Office (Traffic Div.): (405) 521-2861 Hebret.Bokhru@odot.org

OREGON

Christopher Henson

Senior Roadside Design Engineer Oregon Depart. of Transportation Technical Service Branch 4040 Fairview Industrial Drive, SE Salem, OR 97302-1142 (503) 986-3561 Christopher.S.Henson@odot.state.or.us

PENNSYLVANIA

Guozhou Li Pennsylvania DOT GuLi@pa.gov

Hassan Raza

Standards & Criteria Engineer Pennsylvania Depart. of Transportation Bureau of Project Delivery 400 North Street, 7th Floor Harrisburg, PA 17120 (717) 783-5110 HRaza@pa.gov

TENNESSEE

Ali Hangul, P.E., CPESC

Assistant Director Tennessee Depart. of Transportation Roadway Design & Office of Aerial Surveys James K. Polk State Office Bldg. 505 Deaderick Street Nashville, TN 37243 (615) 741-0840 Ali.Hangul@tn.gov

<u>TEXAS</u>

Chris Lindsey Transportation Engineer Design Division Texas Department of Transportation 125 East 11th Street Austin, TX 78701-2483 (512) 416-2750 Christopher.Lindsey@txdot.gov

Taya Retterer P.E.

TXDOT Bridge Standards Engineer (512) 416-2719 Taya.Retterer@txdot.gov

Wade Odell

Transportation Engineer Research & Technology Implementation 200 E. Riverside Drive Austin, TX 78704 Wade.Odell@txdot.gov

<u>UTAH</u>

Shawn Debenham

Traffic and Safety Division Utah Depart. of Transportation 4501 South 2700 West PO Box 143200 Salt Lake City UT 84114-3200 (801) 965-4590 sdebenham@utah.gov

WASHINGTON

John Donahue Design Policy and Analysis Manager Washington State Dept. of Transportation Development Division P.O. Box 47329 Olympia, WA 98504-7246 (360) 704-6381 donahjo@wsdot.wa.gov

Mustafa Mohamedali

Assistant Research Project Manager P.O. Box 47372 Olympia, WA 98504-7372 (360) 704-6307 mohamem@wsdot.wa.gov

WASHINGTON (continued)

Anne Freeman

Program Administrator Research & Library Services (306) 705-7945 Freeann@wsdot.gov

WEST VIRGINIA

Donna J. Hardy, P.E. Safety Programs Engineer West Virginia Depart. of Transportation – Traffic Engineering Building 5, Room A-550 1900 Kanawha Blvd E. Charleston, WV 25305-0430 (304) 558-9576

Donna.J.Hardy@wv.gov

Ted Whitmore

Traffic Services Engineer (304) 558-9468 Ted.J.Whitmore@wv.gov

Joe Hall, P.E., P.S.

Division of Highways & Engineering Technical Policy QA/QC Engineer Value Engineering Coordinator 1334 Smith Street Charleston, WV 25305-0430 (304) 558-9733 Joe.H.Hall@wv.gov

WISCONSIN

Erik Emerson, P.E.

Standards Development Engineer – Roadside Design Wisconsin Department of Transportation Bureau of Project Development 4802 Sheboygan Avenue, Room 651 P. O. Box 7916 Madison, WI 53707-7916 (608) 266-2842 Erik.Emerson@wi.gov

<u>CANADA – ONTARIO</u>

Kenneth Shannon, P. Eng.

Senior Engineer, Highway Design (A) Ontario Ministry of Transportation 301 St. Paul Street St. Catharines, ON L2R 7R4 CANADA (904) 704-3106 Kenneth.Shannon@ontario.ca

FEDERAL HIGHWAY ADMINISTRATION (FHWA)

WebSite: safety.fhwa.dot.gov

Richard B. (Dick) Albin, P.E.

Safety Engineer FHWA Resource Center Safety & Design Technical Services Team 711 S. Capital Olympia, WA 98501 (303) 550-8804 Dick.Albin@dot.gov

Eduardo Arispe

Research Highway Safety Specialist U.S. Department of Transportation Federal Highway Administration Turner-Fairbank Highway Research Center Mail Code: HRDS-10 6300 Georgetown Pike McLean, VA 22101 (202) 493-3291 Eduardo.arispe@dot.gov

Greg Schertz, P.E.

FHWA – Federal Lands Highway Division Safety Discipline Champion 12300 West Dakota Ave. Ste. 210 Lakewood, CO 80228 (720)-963-3764 Greg.Schertz@dot.gov

Christine Black

Highway Safety Engineer Central Federal Lands Highway Division 12300 West Dakota Ave. Lakewood, CO 80228 (720) 963-3662 Christine.black@dot.gov

TEXAS A&M TRANSPORTATION

INSTITUTE (TTI)

WebSite: tti.tamu.edu www.roadsidepooledfund.org

D. Lance Bullard, Jr., P.E.

Senior Research Engineer Roadside Safety & Physical Security Div. Texas A&M Transportation Institute 3135 TAMU College Station, TX 77843-3135 (979) 317-2855 L-Bullard@tti.tamu.edu

Roger P. Bligh, Ph.D., P.E.

Senior Research Engineer (979) 317-2703 R-Bligh@tti.tamu.edu

Chiara Silvestri Dobrovolny, Ph.D.

Associate Research Scientist (979) 317-2687 C-Silvestri@tti.tamu.edu

REPORT AUTHORIZATION

REPORT REVIEWED BY:

— DocuSigned by: Glenn Schroeder — E692F9CB5047487...

Glenn Schroeder, Research Specialist Drafting & Reporting

- DocuSigned by: Gary Gerke

Gary Gerke, Research Specialist Construction

DocuSigned by: Scott Dobrovolny _1C613885787C44C...

Scott Dobrovolny, Research Specialist Mechanical Instrumentation

DocuSigned by: Bill Griffith

______44A122CB271845B.

Bill L. Griffith, Research Specialist Deputy Quality Manager

---- DocuSigned by:

Matt Robinson

Matthew N. Robinson, Research Specialist Test Facility Manager & Technical Manager -DocuSigned by:

Ken Reeves —60D556935596468.

Ken Reeves, Research Specialist Electronics Instrumentation

DocuSigned by:

Richard Badillo, Research Specialist Photographic Instrumentation

— DocuSigned by: Wander L. Ménger — B92179622AF24FE...

Wanda L. Menges, Research Specialist Research Evaluation and Reporting

DocuSigned by: Danell Luch D4CC23E85D5B4E7.

Darrell L. Kuhn, P.E., Research Specialist Quality Manager

DocuSigned by: Ca St Dy

Chiara S. Dobrovolny Research Scientist

This page intentionally left blank.

TABLE OF CONTENTS

	Pag	ge			
Disclaim	er	ii			
Acknow	ledgments	v			
Report A	Authorization	ĸi			
List of F	iguresxi	V			
List of T	'ablesx	V			
Chapter	1. Introduction	1			
Chapter	2. System Details	3			
2.1.					
2.2.	Design Modifications during Tests	3			
2.3.	Material Specifications				
Chapter	3. Test Requirements and Evaluation Criteria	7			
3.1.	Crash Test Performed / Matrix				
3.2.	Evaluation Criteria				
Chapter	4. Test Conditions	9			
4.1.	Test Facility	9			
4.2	Vehicle Tow and Guidance System	9			
4.3	Data Acquisition Systems				
4.	.3.1 Vehicle Instrumentation and Data Processing	9			
4	4.3.2 Anthropomorphic Dummy Instrumentation				
4.3.3 Photographic Instrumentation Data Processing					
Chapter					
5.1	Test Designation and Actual Impact Conditions 1				
5.2	Weather Conditions 1				
5.3	Test Vehicle 1				
5.4	Test Description 1	4			
5.5	Damage to Test Installation 1				
5.6	Damage to Test Vehicle 1	6			
5.7	Occupant Risk Factors 1				
Chapter	· · · · · · · · · · · · · · · · · · ·				
6.1.	Assessment of Test Results 1	9			
6.2	Conclusions1				
	References				
	x A. Details of Bridge Rail 2				
	x B. Supporting Certification Documents 3				
	x C. MASH Test 3-11 (Crash Test No. 611971-02-1)				
C1	Vehicle Properties and Information				
C2	Sequential Photographs				
C3	Vehicle Angular Displacements				
C4	Vehicle Accelerations	8			

LIST OF FIGURES

		Page
Figure 2.1.	Details of 42-inch Tall Combination Traffic-Pedestrian-Bicycle Bridge	_
	Rail System.	4
Figure 2.2.	42-inch Tall Combination Traffic-Pedestrian-Bicycle Bridge Rail System	
	prior to Testing	5
Figure 3.1.	Target CIP for MASH Test 4-22 on 42-inch Tall Combination Traffic-	
	Pedestrian-Bicycle Bridge Rail System.	7
Figure 5.1.	Bridge Rail/Test Vehicle Geometrics for Test No. 611971-02-1	13
Figure 5.2.	Test Vehicle before Test No. 611971-02-1	
Figure 5.3.	Bridge Rail after Test No. 611971-02-1.	15
Figure 5.4.	Test Vehicle after Test No. 611971-02-1.	
Figure 5.5.	Interior of Test Vehicle after Test No. 611971-02-1.	16
Figure 5.6.	Summary of Results for MASH Test 3-11 on 42-inch Tall Combination	
-	Traffic-Pedestrian-Bicycle Bridge Rail System	18
Figure C.1.	Sequential Photographs for Test No. 611971-02-1 (Frontal and Rear	
-	Views).	65
Figure C.2.	Vehicle Angular Displacements for Test No. 611971-02-1.	67
Figure C.3.	Vehicle Longitudinal Accelerometer Trace for Test No. 611971-02-1	
U	(Accelerometer Located at Center of Gravity).	68
Figure C.4.	Vehicle Lateral Accelerometer Trace for Test No. 611971-02-1	
U	(Accelerometer Located at Center of Gravity).	69
Figure C.5.	Vehicle Vertical Accelerometer Trace for Test No. 611971-02-1	
e	(Accelerometer Located at Center of Gravity).	70
	· · · · · · · · · · · · · · · · · · ·	

LIST OF TABLES

Page
_
7
17
61
64

This page intentionally left blank.

Chapter 1. INTRODUCTION

As Florida Department of Transportation (FDOT) transitions away from the 32-inch F-shape barrier as the standard shape for permanent concrete barriers to a 36-inch single slope shape, the existing 42-inch combination traffic-pedestrian-bicycle bridge rail system needed to be revised and appropriately modified to be compatible with the new barrier profile and height.

The purpose of this research was to evaluate a 42-inch tall combination traffic-pedestrianbicycle bridge rail system to American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessment of Safety Hardware (MASH)* Test 3-11 testing and evaluation conditions (1). Design of the barrier considered utilization of a 36-inch single slope concrete barrier with a 6-inch tall bullet-profile aluminum rail mounted on top.

A full-scale crash test was performed according to *MASH* Test 3-11 impact conditions, which involves a 5000-lb pickup truck impacting the bridge rail at a nominal impact speed of 62 mi/h and at a nominal impact angle of 25°. This test evaluates the bridge rail's ability to successfully contain and redirect the pickup truck and occupant risk.

This report provides details of the 42-inch tall combination traffic-pedestrian-bicycle bridge rail system, detailed documentation of the crash test and results, and an assessment of the performance of the 42-inch tall combination traffic-pedestrian-bicycle bridge rail system for *MASH* Test 3-11 evaluation criteria.

This page intentionally left blank.

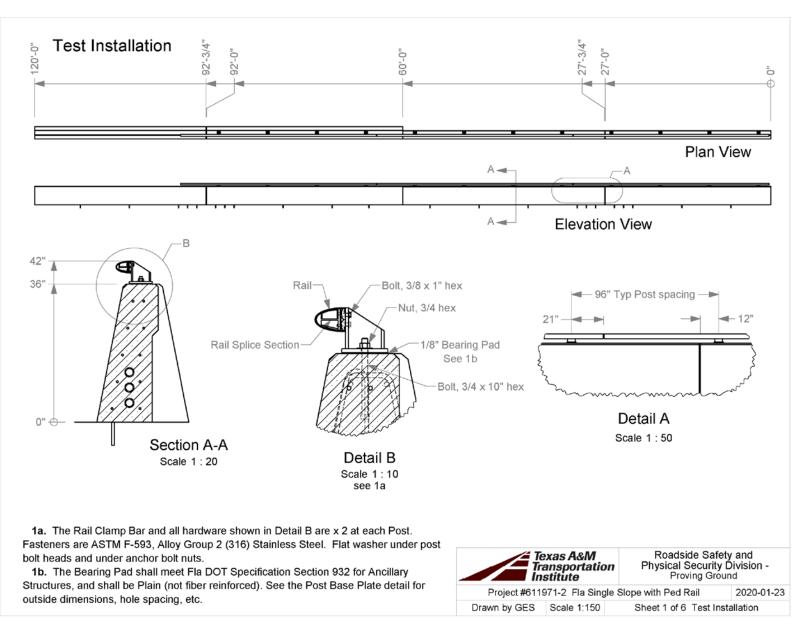
Chapter 2. SYSTEM DETAILS

2.1. TEST ARTICLE AND INSTALLATION DETAILS

The installation consisted of four sections of concrete barrier. The first two sections were single slope roadside concrete barriers, 14½ inches at the bottom, sloping up on the traffic side towards the field side for a width of 9 inches at the top. The field side consisted of two vertical sections offset from each other 1½ inches at 45 degrees. The other two barrier sections were single slope concrete median barrier. All four barriers had a height of 36 inches, and were secured to the concrete apron using Hilti RE 500 V3 epoxy anchor bars embedded to a depth of 6 inches. A single, half-elliptical, aluminum rail supported by short aluminum posts spaced at 96 inches was mounted on these barriers. The total installation length was 120 ft, and the overall rail height was 42 inches.

Figure 2.1 presents overall information on the 42-inch tall combination traffic-pedestrianbicycle bridge rail system, and Figure 2.2 provides photographs of the installation. Appendix A provides further details of the 42-inch tall combination traffic-pedestrian-bicycle bridge rail system. Drawings were developed by TTI, and construction was performed by Tucker Construction.

2.2. DESIGN MODIFICATIONS DURING TESTS


No modification was made to the installation during the testing phase.

2.3. MATERIAL SPECIFICATIONS

Concrete compressive strength was specified to be 3400 psi. On the day of the test, barriers 2 and 4 had an average compressive strength of 4507 psi at 32 days of age, and barriers 1 and 3 had an average compressive strength of 5127 psi at 28 days of age.

Appendix B provides certification documents for the materials used to install/ construct the 42-inch tall combination traffic-pedestrian-bicycle bridge rail system.

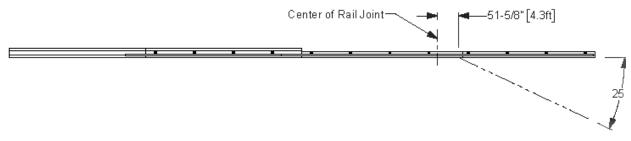
Q: Accreditation-17025-2017/EIR-000 Project Files/611971 - Florida DOT - Kovar-Sheikh-Dobrovolnyl-02 (Combination Traffic-Pedestrian-Bicycle Bridge Railing)

Figure 2.1. Details of 42-inch Tall Combination Traffic-Pedestrian-Bicycle Bridge Rail System.

4

Figure 2.2. 42-inch Tall Combination Traffic-Pedestrian-Bicycle Bridge Rail System prior to Testing.

This page intentionally left blank.


Chapter 3. TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1. CRASH TEST PERFORMED / MATRIX

Table 3.1 shows the test conditions and evaluation criteria for *MASH* TL-3 for longitudinal barriers. *MASH* Test 3-11 involves a 2270P vehicle weighing 5000 lb ±110 lb and impacting the critical impact point (CIP) of the barrier at an impact speed of 62 mi/h ±2.5 mi/h and an angle of $25^{\circ} \pm 1.5^{\circ}$. The target CIP was determined using the information provided in *MASH* Section 2.2.1, Section 2.3.2, Figure 2-1, and Table 2-7. Figure 3.1 shows the target CIP for *MASH* Test 3-11 on the 42-inch tall combination traffic-pedestrian-bicycle bridge rail system.

Table 3.1. Test Conditions and Evaluation Criteria Specified for MASH TL-3Longitudinal Barriers.

Test Article	Test			act tions	Evaluation
	Designation Vehicle		Speed	Angle	Criteria
Longitudinal	3-10	1100C	62 mi/h	25°	A, D, F, H, I
Barrier	3-11	2270P	62 mi/h	25°	A, D, F, H, I

Figure 3.1. Target CIP for *MASH* Test 3-11 on 42-inch Tall Combination Traffic-Pedestrian-Bicycle Bridge Rail System.

The crash test and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

3.2. EVALUATION CRITERIA

The appropriate safety evaluation criteria from Tables 2-2 and 5-1 of *MASH* were used to evaluate the crash test reported herein. The test conditions and evaluation criteria required for *MASH* Test 3-11 are listed in Table 3.1, and the substance of the evaluation criteria in Table 3.2. An evaluation of the crash test results is presented in detail under the section Assessment of Test Results.

Evaluation Factors	Evaluation Criteria		
Structural AdequacyA.Test article should contain and redirect the vehicle or bring the vehicle controlled stop; the vehicle should not penetrate, underride, or over installation although controlled lateral deflection of the test article is			
	D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to other traffic, pedestrians, or personnel in a work zone.		
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.		
Occupant Risk	<i>F.</i> The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.		
	H. Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.		
	I. The occupant ridedown accelerations should satisfy the following: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.		

Table 3.2. Evaluation Criteria Required for MASH Test 3-11 for LongitudinalBarriers.

Chapter 4. TEST CONDITIONS

4.1. TEST FACILITY

The full-scale crash test reported herein was performed at Texas A&M Transportation Institute (TTI) Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash test was performed according to TTI Proving Ground quality procedures, and according to the *MASH* guidelines and standards.

The test facilities of the TTI Proving Ground are located on the Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 miles northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, durability and efficacy of highway pavements, and evaluation of roadside safety hardware and perimeter protective devices. The site selected for construction and testing of the 42-inch tall combination traffic-pedestrian-bicycle bridge rail system was the surface of an out-of-service apron. The apron consists of an unreinforced jointed-concrete pavement in 12.5-ft × 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement, but are otherwise flat and level.

4.2 VEHICLE TOW AND GUIDANCE SYSTEM

The vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point, through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site.

4.3 DATA ACQUISITION SYSTEMS

4.3.1 Vehicle Instrumentation and Data Processing

The test vehicle was instrumented with a self-contained, on-board data acquisition system. The signal conditioning and acquisition system is a 16-channel, Tiny Data Acquisition System (TDAS) Pro produced by Diversified Technical Systems, Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid state units designed for crash test service. The TDAS Pro hardware and

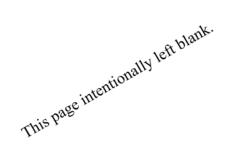
software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the 16 channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 samples per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit should the primary battery cable be severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the TDAS Pro unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each of the TDAS Pro units is returned to the factory annually for complete recalibration and all instrumentation used in the vehicle conforms to all specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCO[®] 2901, precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive a calibration via a Genisco Rate-of-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel, per SAE J211. Calibrations and evaluations are also made any time data are suspect. Acceleration data are measured with an expanded uncertainty of $\pm 1.7\%$ at a confidence factor of 95% (k=2).

TRAP uses the data from the TDAS Pro to compute occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and the highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with an SAE Class 180-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation of the vehicle-fixed coordinate systems being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k=2).

4.3.2 Anthropomorphic Dummy Instrumentation


According to *MASH*, use of a dummy in the 2270P vehicle is optional. However, it is recommended a dummy be used when testing "any longitudinal barrier with a height greater than or equal to 33 inches." Use of the dummy in the 2270P vehicle is recommended for tall rails to evaluate the "potential for an occupant to extend out of the vehicle and come into direct contact with the test article." Although this information is reported, it is not part of the impact performance evaluation. Since the rail height of the combination traffic-pedestrian-bicycle bridge rail system was 42 inches, a dummy was placed in the front seat of the 2270P vehicle on the impact side and restrained with lap and shoulder belts.

4.3.3 Photographic Instrumentation Data Processing

Photographic coverage of the test included three digital high-speed cameras:

- One overhead with a field of view perpendicular to the ground and directly over the impact point;
- One placed upstream the installation at an angle to have a field of view of the interaction of the rear of the vehicle with the installation; and
- A third placed to have a field of view parallel to and aligned with the installation at the downstream end.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the 42-inch tall combination traffic-pedestrian-bicycle bridge rail system. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

Chapter 5. MASH TEST 3-11 (CRASH TEST NO. 611971-02-1)

5.1 TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

MASH Test 3-11 involves a 2270P vehicle weighing 5000 lb \pm 110 lb impacting the CIP of the longitudinal barrier at an impact speed of 62 mi/h \pm 2.5 mi/h and an angle of 25° \pm 1.5°. The CIP for *MASH* Test 3-11 on the 42-inch tall combination traffic-pedestrian-bicycle bridge rail system was 4.3 \pm 1 ft upstream of the centerline of the first splice in the metal rail element. Figures 3.1 and 5.1 depict the target impact setup.

Figure 5.1. Bridge Rail/Test Vehicle Geometrics for Test No. 611971-02-1.

The 2270P vehicle used in the test weighed 5029 lb, and the actual impact speed and angle were 61.8 mi/h and 24.5°. The actual impact point was 4.8 ft upstream of the first splice in the metal rail element. Minimum target impact severity (IS) for *MASH* Test 3-11 is 106 kip-ft, and actual IS was 110 kip-ft.

5.2 WEATHER CONDITIONS

The test was performed on the morning of April 3, 2020. Weather conditions at the time of testing were as follows: wind speed: 4 mi/h; wind direction: 142° (vehicle was traveling at a magnetic heading of 330°); temperature: 73° F; relative humidity: 89%.

5.3 TEST VEHICLE

Figure 5.2 shows the 2014 RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 5029 lb, and its gross static weight was 5194 lb. The height to the lower edge of the vehicle bumper was 11.75 inches, and height to the upper edge of the bumper was 27.0 inches. The height to the vehicle's center of gravity was 29.0 inches. Tables C.1 and C.2 in Appendix C1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system, and was released to be freewheeling and unrestrained just prior to impact.

Figure 5.2. Test Vehicle before Test No. 611971-02-1.

5.4 TEST DESCRIPTION

Table 5.1 lists events that occurred during Test No. 611971-02-1. Figure C.1 in Appendix C2 present sequential photographs during the test.

TIME (s)	EVENTS
0.000	Vehicle impacts bridge rail
0.033	Vehicle begins to redirect
0.107	Front left tire lifts off pavement
0.217	Rear left tire lifts off pavement
0.181	Vehicle traveling parallel to barrier
0.187	Rear right bumper contacts barrier
0.395	Vehicle loses contact with bridge rail at a trajectory of 6.2° and heading of 7.4°
0.489	Front right tire contacts pavement
0.628	Front left tire contacts pavement

Table 5.1. Events during Test No. 611971-02-1.

For longitudinal barriers, it is desirable that the vehicle redirects and exits the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The test vehicle exited within the exit box criteria defined in *MASH*. Brakes on the vehicle were applied at 2.0 s after impact. After loss of contact with the barrier, the vehicle came to rest 205 ft downstream of the impact point and 7 ft toward traffic lanes.

5.5 DAMAGE TO TEST INSTALLATION

Figure 5.3 shows the damage to the 42-inch tall combination traffic-pedestrian-bicycle bridge rail system. There were scuff marks on the concrete at the site of contact. A crack was noted on the barrier's traffic side base, beginning at the field joint and extending along the base for 33 ft before stopping at the butt joint. Also, a piece of concrete broke off of the field side at

post 5, exposing the anchors. Working width^{*} was 23.3 inches, and height of working width was 68.2 inches (vehicle side mirror). Maximum dynamic deflection of the metal rail during the test was 3.1 inches, and maximum permanent deformation was 2.25 inches.

Figure 5.3. Bridge Rail after Test No. 611971-02-1.

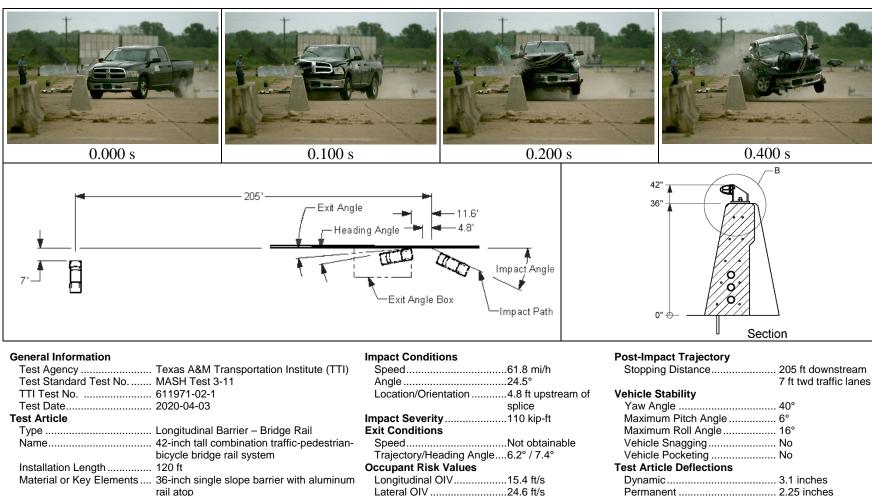
^{*} Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

5.6 DAMAGE TO TEST VEHICLE

Figure 5.4 shows the damage sustained by the vehicle. The front bumper, hood, grill, radiator and support, right front fender, right frame rail, right lower control arm, right front tire and rim, right front floor pan, right front door and window glass, right rear door, right rear cab corner, right rear exterior bed, right rear rim, and rear bumper were damaged. The windshield was cracked along the right A-post. No fuel tank damage was observed. Maximum exterior crush to the vehicle was 14.0 inches in the side plane at the right front corner at bumper height. Maximum occupant compartment deformation was 4.0 inches in the right front floor pan. Figure 5.5 shows the interior of the vehicle. Tables C.3 and C.4 in Appendix C1 provide exterior crush and occupant compartment measurements.

Figure 5.4. Test Vehicle after Test No. 611971-02-1.

Figure 5.5. Interior of Test Vehicle after Test No. 611971-02-1.


5.7 OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 5.2. Figure C.2 in Appendix C3 shows the vehicle angular

displacements, and Figures C.3 through C.5 in Appendix C4 show acceleration versus time traces. Figure 5.6 summarizes pertinent information from the test.

Occupant Risk Factor	Value	Time
Occupant Impact Velocity (OIV)		
Longitudinal	15.4 ft/s	at 0,0085 a on right side of interior
Lateral	24.6 ft/s	at 0.0985 s on right side of interior
Occupant Ridedown Accelerations		
Longitudinal	5.4 g	0.0985 – 0.1085 s
Lateral	10.4 g	0.1885 – 0.1985 s
Theoretical Head Impact Velocity (THIV)	8.8 m/s	at 0.0958 s on right side of interior
Acceleration Severity Index (ASI)	1.6	0.0579 – 0.1079 s
Maximum 50-ms Moving Average		
Longitudinal	-6.8 g	0.0195 – 0.0695 s
Lateral	-12.2 g	0.0372 – 0.0872 s
Vertical	-3.9 g	0.0151 – 0.0651 s
Maximum Roll, Pitch, and Yaw Angles		
Roll	16°	0.5761 s
Pitch	6°	0.6161 s
Yaw	40°	0.8948 s

 Table 5.2. Occupant Risk Factors for Test No. 611971-02-1.

		embedded 6 inches in concrete
(est Vehicle	
	Type/Designation	2270P
	Make and Model	2014 RAM 1500 pickup truck
		4952 lb
	Test Inertial	5029 lb
	Dummy	165 lb
	Gross Static	5194 lb

impact conditions	
Speed	61.8 mi/h
Angle	
Location/Orientation	
Impact Severity	110 kip-ft
Exit Conditions	
Speed	Not obtainable
Trajectory/Heading Angle.	6.2° / 7.4°
Occupant Risk Values	
Longitudinal OIV	15.4 ft/s
Lateral OIV	24.6 ft/s
Longitudinal Ridedown	5.4 g
Lateral Ridedown	10.4 g
THIV	8.8 m/s
ASI	1.6
Max. 0.050-s Average	
Longitudinal	6.8 g
Lateral	
Vertical	3.9 g
	<u> </u>

Permanent 2.25 inches Working Width...... 23.3 inches Height of Working Width 68.2 inches Vehicle Damage VDS......01RFQ5 CDC 01FREW4 Max. Exterior Deformation 14.0 inches OCDI RF0030000 Max. Occupant Compartment Deformation 4.0 inches

Figure 5.6. Summary of Results for MASH Test 3-11 on 42-inch Tall Combination Traffic-Pedestrian-Bicycle Bridge Rail System.

18

Chapter 6. SUMMARY AND CONCLUSIONS

6.1. ASSESSMENT OF TEST RESULTS

The crash test reported herein was performed in accordance with *MASH* Test 3-11, which involves a 2270P vehicle impacting the bridge rail at a target impact speed and impact angle of 62 mi/h and 25°. An assessment of the test based on the applicable safety evaluation criteria for *MASH* Test 3-11 for longitudinal barriers is provided in Table 6.1.

6.2 CONCLUSIONS

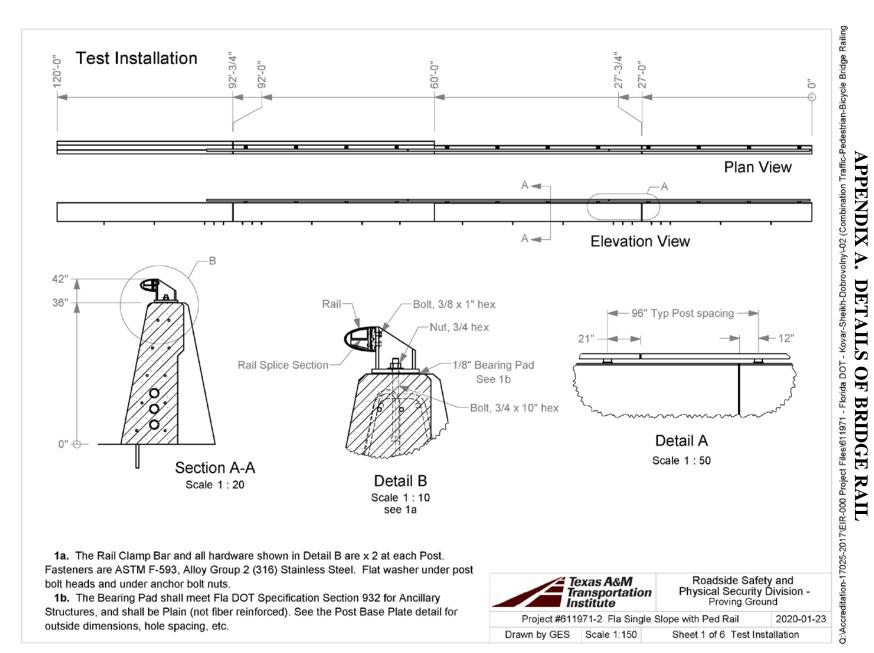
Table 6.2 shows the 42-inch tall combination traffic-pedestrian-bicycle bridge rail system passed the performance criteria for *MASH* Test 3-11 for longitudinal barriers.

105	At Agency: Texas A&M Transportation Institute MASH Test 3-11 Evaluation Criteria	Test No.: 611971-02-1 Te Test Results Test Results	st Date: 2020-04- Assessment
C14		Test Results	Assessment
<u>5tr</u> A.	uctural Adequacy Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	The 42-inch tall combination traffic-pedestrian- bicycle bridge rail system contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection of the aluminum rail element during the test was 3.1 inches.	Pass
Oce	cupant Risk		
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant	No detached elements, fragments, or other debris were present to penetrate or show potential for penetrating the occupant compartment, or to present hazard to others in the area. Maximum occupant compartment deformation	Pass
	compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	was 4.0 inches in the right front floor pan.	
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 16° and 6° .	Pass
Η.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.	Longitudinal OIV was 15.4 ft/s, and lateral OIV was 24.6 ft/s.	Pass
Ι.	The occupant ridedown accelerations should satisfy the following limits: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	Maximum longitudinal ridedown acceleration was 5.4 g, and maximum lateral ridedown acceleration was 10.4 g.	Pass

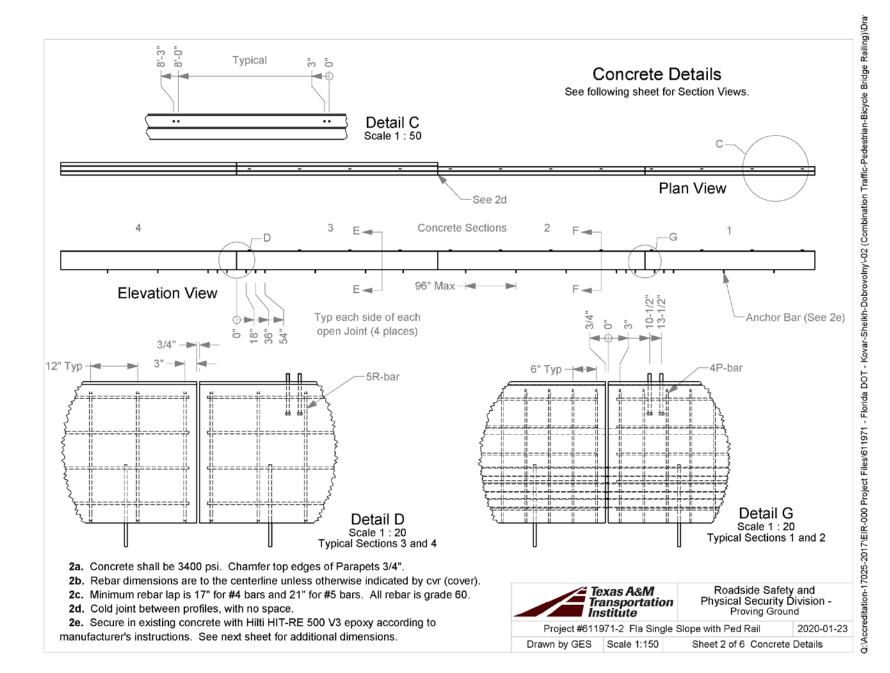
Table 6.1. Performance Evaluation Summary for MASH Test 3-11 on 42-inch Tall Combination Traffic-Pedestrian-
Bicycle Bridge Rail System.

Table 6.2. Assessment Summary for MASH Test 3-11 on 42-inch Tall CombinationTraffic-Pedestrian-Bicycle Bridge Rail System.

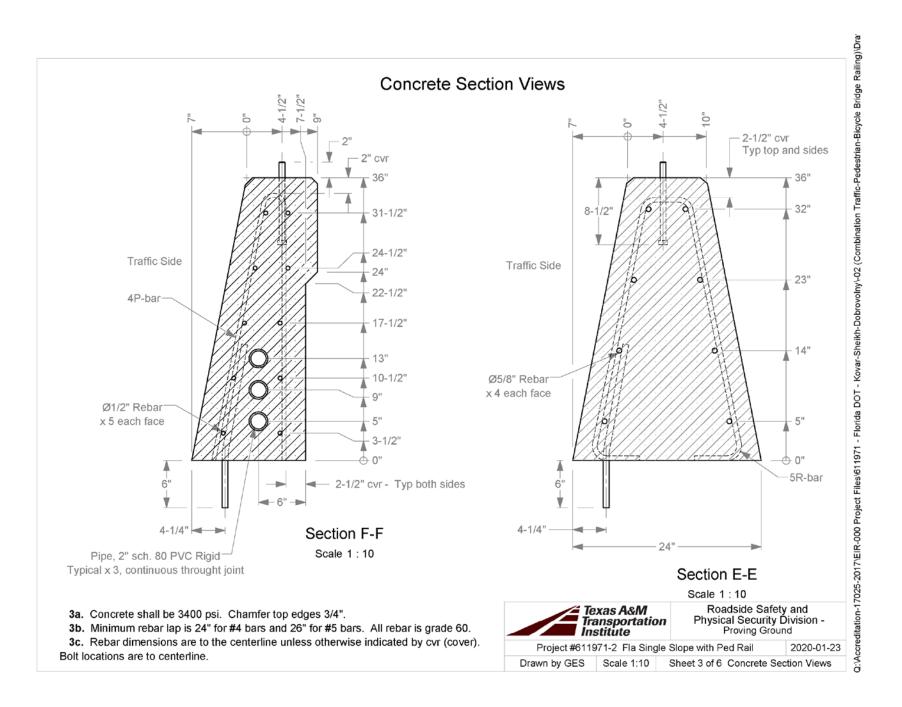
Evaluation Criteria	Test No. 611971-02-1
А	S
D	S
F	S
Н	S
Ι	S
Test No.	MASH Test 3-11
Pass/Fail	Pass
	Criteria A D F H I Test No.

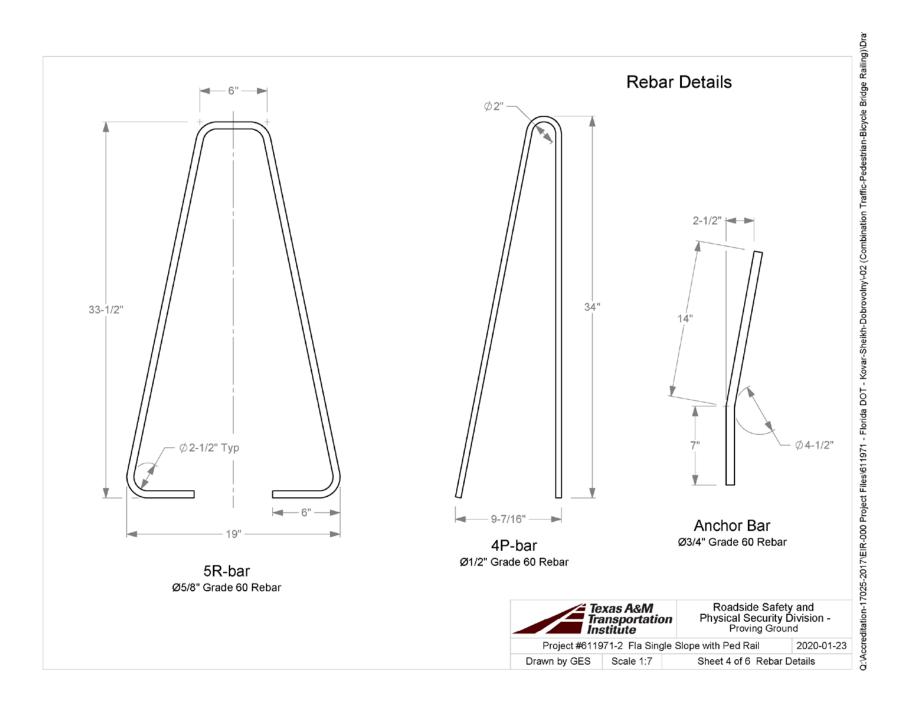

Note: S = Satisfactory

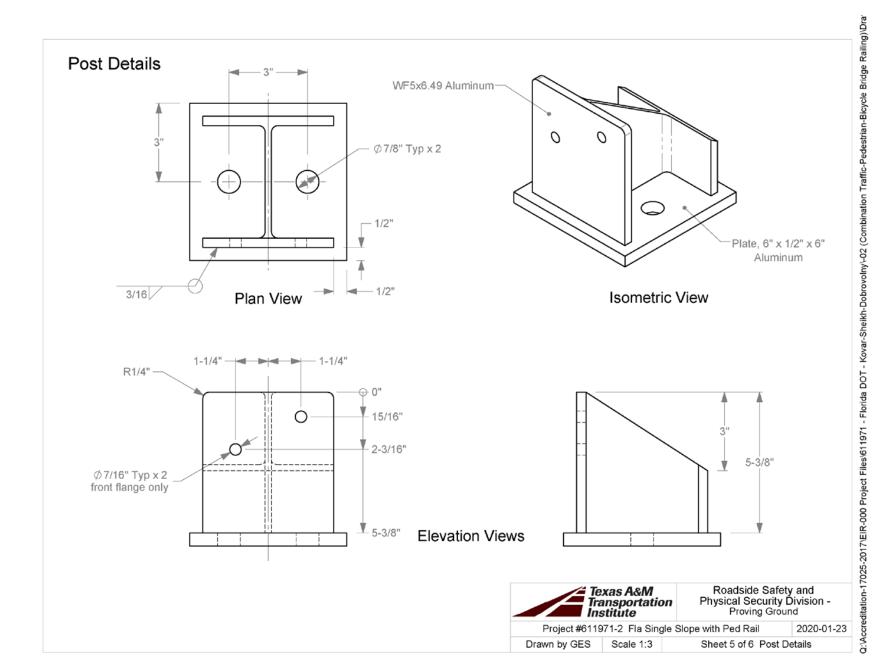
This page intentionally left blank.

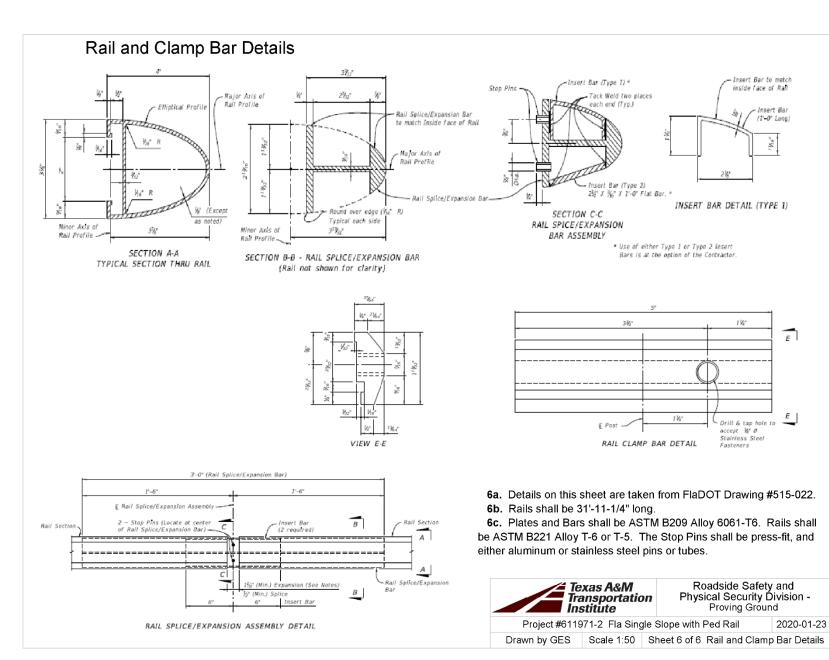

REFERENCES

1. AASHTO. *Manual for Assessing Roadside Safety Hardware, Second Edition.* American Association of State Highway and Transportation Officials: Washington, DC, 2016.


This page intentionally left blank.




TR No. 611971-02-1



TR No. 611971-02-1

Railing)\Dra

2: Accreditation-17025-2017/EIR-000 Project Files/611971 - Florida DOT - Kovar-Sheikh-Dobrovolny-02 (Combination Traffic-Pedestrian-Bicycle Bridge

APPENDIX B. SUPPORTING CERTIFICATION DOCUMENTS

Web: www.portlandbolt.com | Email: sales@portlandbolt.com

Phone: 800-547-6758 | Fax: 503-227-4634

3441 NW Guam Street, Portland, OR 97210

+ CERTIFICATE OF CONFORMANCE |

For: CUSTOM FABRICATORS & REPAIRS PB Invoice#: 128987 Cust PO#: TUCKER 25587 Date: 2/19/2020 Shipped: 2/19/2020

We certify that the following items were manufactured and tested in accordance with the chemical, mechanical, dimensional and thread fit requirements of the specifications referenced.

Description: 3/4 X 10 GALV ASTM A307A HEX BOLT +-----Heat#: 1202014242 Base Steel: A36 Diam: .68 +-----+ Source: NUCOR STEEL Proof Load: 0 **P:** .004 C: .120 Mn: .620 Hardness: 0 **S**: .036 **Si:** .180 Ni: .120 Tensile: 65,600 PSI RA: 57.00% Cr: .170 Mo: .030 Cu: .300 Yield: 49,400 PSI Elon: 28.00% **Cb:** .000 **Pb:** .000 **V:** .001 Sample Length: 8 INCH **N**: .000 CVN Temp: CE: .2531 Charpy:

Nuts: ASTM A563A HEX

Washers:

Coatings:

ASTM F436-1 RND

ITEMS HOT DIP GALVANIZED PER ASTM F2329/A153C

Other: ALL ITEMS MELTED & MANUFACTURED IN THE USA

By: Certification Department Quality Assurance Dane McKinnon

Mill Certification

07/12/2019

MTR#:220744-1 Lot #:120201424260 W CEMETERY ROAD PLYMOUTH, UT 84330 US 800-453-2886 Fax: 435-458-2309

Sold To: PORTLAND BOLT & MFG INC 3441 NW GUAM AVE PORTLAND, OR 97208 US

Ship To: PORTLAND BOLT & MFG INC 3441 NW GUAM AVE PORTLAND, OR 97208 US

Customer PO	41273	Sales Order #	12026334 - 1.2
Product Group	Hot Roll - Merchant Bar Quality	Product #	3008569
Grade	F1554 Gr 36	Lot #	120201424260
Size	0.68"	Heat #	1202014242
BOL #	BOL-307820	Load #	220744
Description	Hot Roll - Merchant Bar Quality Round 0.68" F1554 Gr 36 20' 0" [240"] 2001-6000 lbs	Customer Part #	
Production Date	07/09/2019	Qty Shipped LBS	60912
Product Country Of Origin	United States	Qty Shipped EA	2464
Original Item Description		Original Item Number	

 Interest contribution
 Interest contring contright contribution
 Interest contri

C (%)	Mn (%)	P (%)	S (%)	Sì (%)	Ni (%)	Cr (%)	Mo (%)	Cu (%)	V (%)	Nb (%)
0.12	0.62	0.004	0.036	0.18	0.12	0.17	0.03	0.30	0.001	0.000
er Test Re Yield (PSI				Yield (P	SI): 48600	1		Tensile	PSI) · 656	00
Yield (PSI): 49400 Tensile (PSI): 65800				Elongation in 8" (%) : 28.0			Tensile (PSI): 65600 Elongation in 8" (%): 27.0			

Comments:

ASTM A36/A36M-14, ASTM F1554-17e1 Gr36

Nucor-Plymouth is an ISO-9001 and an ABS certified mill. CMTR complies with DIN EN 10204 – 3.1 All manufacturing processes of the steel materials in this product, including melting, casting, and hot rolling have occurred in the United States. All products produced are weld free. Mercury, in any form, has not been used in the production or testing of this material.

Page 1 of 1

. .

DENER INTERCENTION 708 N. Clark Street Albin, Michigan 40224 P. 517.529.5555 * P. 517.629.3535

PORTLAND BOLT 8 3441 N W GUAM ST PORTLAND, OR 972	REET			Printed: 5/3 May 31, 20	1/2019 3:21:18 PM 19
	F	RODUCT MATERIAL	CERTIFICATION		
CUSTOMER PART CUSTOMER P.O. N		16275 39371		INVOICE:	514030
LOT NUMBER:	19-40-006		DESCRIPTION:	3/4-10 HX NUT DC	.020
DATE:	Sep 19, 2018		QUANTITY:	10,200	
HEAT NUMBER:	10573200		MATERIAL SUPPLIER:	CHARTER STEEL	
MATERIAL:	STEEL - C101	5			
inspected and confo	il and that said p rms to applicabl	oroduct is certified to be e specifications. We ac	R MANUFACTURING COF manufactured, randomly ditionally certify that said i raw material was manufac	sampled, tested and raw material was don	lor nestically
The items were proce No welding was perfo	assed under the armed.	Decker Quality Manua	. The current revision is d	lated January 12, 20	05
This document accur The original metallurg a period of not less th	gical test report	values and statements shall be retained on file	Provided by our suppliers	accredited testing fa URING CORPORAT	cility. 'ION for

CHEMICAL ANALYSIS BY MATERIAL SUPPLIER

CARBON :	0.140	PHOSPHOROUS :	0.007
MANGANESE :	0.360	SULFUR :	0.008
			FACTURING ODEPORATION
		Russel L. Wilson Quality Assurance	

The above results partain only to the lisms tested. This report shall not be reproduced except in full without the approval of this testing facility.

39371-3

www.deckernut.com

SINCE 1927

DECKER NANUFACTURINS CORPORATION 703 N. Clark Street Albion, Michigan 49224 P. 517.629.3955 = F. 517.629.3535

with the second

LANCAUTORI AND TROTING PREMIT Reaffirmed to be in compliance to current Rev Level. Form 8.0 ORIGINAL LABORATORY AND/OR INSPECTION REPORT THIS IS A LEGAL DOCUMENT

NAME AND ADDRESS OF CLIENT:	a para na anala ana ang kaona ana ana ana ana ana ana ana ana ana
PAGEOF	DATE OF MANUFACTURE: 07-7019
PAGE 1 OF 2 LAB FILE ID NUMBER 101 NUMBER: 19-14-00-4	s Marila de provincio en el gaménia interna compañía de la compañía de la compañía de la compañía de la compañía
DMC PART NUMBER # 026-1210-26	annanderster og synd appyren – er e n andere nnen i Selo Speljer kom – er Nade Juan av d. K. Engeljer kommen en eg at syndere
ITEM DESCRIPTION: 3/2 / 20 HEX NUT + 02.6	999.
GRADE ID MARK AND INSIGNIA: DAK NAME (S) OF PERSON (S) SAMPLING SECTEMENT PROCEDURES ARE UNDER THE SUPERVISION OF DECKER	an nunwerden wie dat eine Alderland nangenangenangen eine and find all find an der eine eine eine eine eine eine eine ei
NAME (S) OF PERSON (S) SAMPLING 3. EATELLS	SAMPLING
	MANUFACTURING CORPORATION'S
QUALITY DEPARTMENT.	
PRODUCTION LOT SIZE; <200MSUITABILITY/COND	
TOTAL NO. OF SAMPLES INSPECTED AND/OR TESTED	
INSPECTIONS AND/C	
INSPECTION/TEST DATE (S): 3-19-19 DESCRIPTION (S): BOCKWELL HRB	S-18-79
DESCRIPTION (S). ROCKWELL HRB	PROOFLOAD
SPECIFICATION (S) ASTMETS	4STM P606
REQUIREMENTS; ASIM-ASSI GRADE & GHEA MIN AHRC 32 MAX	
EQUIPMENT ID: #	
	/ TEST RESULTS:
UNIT OF MEASUREMENT: HRB W	UNIT OF MEASUREMENT: LBF
(1) <u>86.95 (5) <u>89.95</u></u>	(1) 30 800 (3) 31.200
(2) <u><u><u><u></u></u><u><u><u></u></u><u><u></u><u></u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u>(6) <u><u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u></u></u></u></u>	(2) 31,000 (6) 31,000
(3) 86.1 (7) 81.25	(3) 31,300 (7) 30,800
(4) 87.85 (8) 89.4	(4) 20.900 (8) 31.000
RESULTS OBTAINED FROM: WARRANE FORTS	L ° L − Lee en B it 1 , 2 e 1 e general en
SPECIFICATION OR MATERIAL GRADE AS EVIDENCED:	-1010
REMARKS OR DEVIATIONS: MEET AND EXCEED ASTMA	
PER ASTM F606 SECTION 4 THE HARDNESS OF EACH SAMPL	
HEAT TREAT, SURFACE TREATMENT, COATING, ETC 72.	
All parts reported on this document were manufactured at this k	seation in the United States from domestic materials.
TO THE SPECIFICATIONS ABOVE. THE SAM	
	Y: DO NOT CONFORM:
APPROVED SIGNATORY	A Specifi pertonamenten internet in Internet internet
OPHALELY MANAGER	INSPECTED AND/OR TESTED BY:
Conser and Dial	ALARO WHILM
MX	and the second
Russell L. Wilson	Authorized Lab Technician

Authorized Lab Technician

I CREVITY TRAY THE JUNNE THAT IS. TAN COMBETEN IN LECONDERNE WITH VAL ADDRES STRUCT SPECIFICATION (S) AND THAT THE RESULTS AND CORRECT AS WATERED. THE RECULERSULTS THAT THE TABLE STRUCT THE TATE OF THE TABLE FOR MANYAGED DESCRIPTION. THIS COMMENT SHELL FOR THE TRANSPORT FOR THE TABLES OF THE TRANSPORT OF THE TABLES OF THE TRANSPORT FOR THE TABLES OF THE TRANSPORT OF THE TABLES OF THE TRANSPORT FOR THE TABLES OF TABLES. TAST REPORT THE DECLETON NULS IS STAPLE ENCEPTANCE. (ET DECISICE RULE IS STAPLE BACKSTANDS.

ACCASOITED TESTING CERT 6 8499-01

DECKER MANUFACTURING CORPORATION 703 N. Clark Street Albion, Michigan A9224 Pt 517.629.3955 * Ft 517.629.3535

LABORATORY AND TESTING FACILITY Addendum to FORM 8.x Form 8.4 **ROCKWELL DATA COLLECTION WORKSHEET**

PAGE 2 OF 2 LAB FILE ID NUMBER/LOT NUMBER: 79-46	- Are	DATE OF MANUFACTURE:
DMC PART NUMBER #OZG -7200-72C ITEM DESCRIPTION: 34 × 10 28 HER NAME (SEAD DE DE SON (2) SAME DE CONSTRUCTION		an a
ITEM DESCRIPTION: 34 × 10 ± 8 HER	khr 1 020	
NAME (S) OF PERSON (S) SAMPLING 2 Sampling 3 UNDER THE SUPERVISION OF DECKER MANUFACT	LIRING CORPORA	
INSPECTION PENCOATE (S): 3-19-19		
DESCRIPTION (S): ROCKWELL HRB		o un
SPECIFICATION (S): ASTM E-18 REQUIREMENTS: <u>ASTM A-563 B</u> @HRB 69 A	1141 8. 1700 13 14 1 V	- Andreas -
EQUIPMENT ID: #FH-10000120120012	<u>IIIN IK IIKL 32 MAJ</u>	Conservation and a second of the second of t
INSPECTION / 1	EST RESULTS:	nannaganna (r. s È-r).
UNIT OF MEASUREMENT: NRB		
Individual readings		Mean Average
(1) <u>87.1</u> , <u>86.8</u> :	1739:	- 34-45-:
(2) 89.1 . 89.7 :	178.8:	89.4 :
(3) 85.6. 88.2:	173.8:	869 :
and the state of the second	4 · · · · · · · · · · · · · · · · · · ·	un val Maria de materia de la construcción de la construcción de la construcción de la construcción de la const
(4) 90.0 . 39.7 :	<u>179.7</u> :	<u>_89_85</u> :
(5) <u>\$8.9</u> .90.0:	1789:	89.45;
(6) 87.5 90.0 :	1725.	88.35
(7) 529, 59.6:	178.5:	89.25.
(8) <u>887, 901</u> :	178.8:	<u>89.4</u> :

READINGS OBTAINED FROM ______ WRENCH FLATS:____ BEARING SURFACE: CORE: PER ASTM P406 PARAGRAPH 4.12 THE REPORTED HARDNESS IS THE AVERAGE OF 2 READINGS OF EACH TEST SAMPLE. IN ADDITION ALL READINGS SHALL BE WITHIN HARDNESS VALUES LISTED IN THE PRODUCT SPECIFIC ATION. INSPECTED AND/OR TESTED BY:

<u>91. 14 p. Ro</u> Authorized Lab Technician

I CENTUPI THEN SHE ANATH CART (AT THIS CONFIDENCE IN ACCORDINGS AND THE ABOVE STATED ASSOCIATION OF THE ANY MAY RECOLD AN COMMENT AS BREARED. IS HE MADE RESIDEN ONLY PERIAD TO THE FAMILY AND SALES (SEE). THE SALES AND S STOLOGIC THE MARKER SHE INITIAL SET HEREAS OF THIS SUCCESS. (** 1915 1946) FOR CHEMINARS OF THE TEST REPORT. (ST MENTION RULE IS SIMPLE ENDEREDT

•••

EMAIL

1658 Cold Springs Road Saukville, Wisconsin 53080 (262) 265-2400 1-800-437-8789 Fax (262) 268-2570

Melted In USA Manufactured in USA

CHARTER STEEL TEST REPORT

	Cust P.O.	997 :
	Customer Part #	1.062 1015
	Charter Sales Order	30158420
	Heat #	10573200
	Ship Let #	4650525
• • • • • • •	Grade	1015 A AK FG RHQ 1-1/16 RNDCOIL
Decker Manufacturing Corp.	Process	HRCC
703 N. Clark St.	Finish Size	1/1/18
Albion,MI-49224	Ship date	16-SEP-18

i hereby certify that the material described herein has been manufactured in accordance with the specifications and standards listed below and that it satisfies these requirements. The recording of false fictitious and fraudulent statements or entries on this document may be ounlabelie as a felorie under federal statute.

Lab Code: 7388												
CHEM %WA	C .14	MN	P	\$	81	NI	CR	MO	cu	8N	v	
22441	.14	.36	.007	.008	.080	.04	.08	.81	,69	.005	.001	
	AL.	N	8	T1	NB							
	.022	.0060	.0001	.001	.001							

	·	Test results of I	Rolling Let # 1252038			
	# of Testa	Min Value	Max Value	Meen Velue		
ROCKWELL B (HRBW)	1	84	64	64	RB LAB = 0358-02	
ROD SIZE (Inch)	4	1.056	1.085	1.061		
ROD CUT OF ROUND (Inch)	2	.008	.010	.010		
REDUCTION RATIO=34:1						
an a						
Specifications: Ma	nufactured per Cha	rter Steel Quality Manual this product is Indisting	Rev Date 65/12/17	r artistics lovels by her		
Specifications: Ma Chu	nufactured per Cha erter Steel certifies	this product is indisting	ulshable from backgroun	d radiation levels by hav	ring process radiation	
Specifications: Ma Chu Let	nufactured per Cha siter Steel certifies actors in place to n	rter Steel Quality Manual this product is Indisting neasure for the presence fications with any applic	lishable from backgroun of radiation within our p	roceas & products.		

Additional Comments:

Melt Source: Charter Steel Saukville, WI, USA

This MTR supersedes all previously dated MTRs for this order JanuBarnal Janice Barnerd Division Mgr. of Quality Assurance barnerdJ@chartersteel.com Printed Date : 09/18/2018

Trip: 1306334

The following statements are applicable to the material described on the front of this Test Report:

- 1. Except as noted, the steel supplied for this order was melted, rolled, and processed in the United States meeting DFARS compliance, LEEDS compliance, REACH compliance, ROHS-WEEE compliance, and Conflict Materials Restrictions. 2. Mercury was not used during the manufacture of this product, nor was the steel contaminated with mercury during
- processing. 3. Unless directed by the customer, there are no welds in any of the colls produced for this order.

4. The laboratory that generated the analytical or test results can be identified by the following key:

Certificate Number	Lab Cods	Labora		Address
0358-01	7388	CSSM	Charter Steel Melting Division	1658 Cold Springs Road, Saukville, WI 53080
0358-02	8171	CSSR/ CSSP	Charter Steel Rolling/ Processing Division	1658 Cold Springs Road, Saukville, WI 53080
0358-03	123633	CSFP	Charter Steel Ohio Processing Division	6255 US Highway 23, Rising Sun, OH 43457
0358-04	125544		A I CONDUCTION OF BEACHING OF BEACHING ON THE STATE OF TH	4300 E. 49th St., Cuyahoga Heights, OH 44125-1004
*	1999 1997 1997 1997 1997 1997 1997 1997	PINEN	Subcontracted test performed by laborator	v not in Charter Steel System

5. When run by a Charter Steel laboratory, the following tests were performed according to the latest revisions of the specifications listed below, as noted in the Charter Steel Laboratory Quality Manual:

Test	Specifications	CSSM	CSSR/ CSSP	CSFP	CSCM/ CSCR
Chemistry Analysis	ASTM E415; ASTM E1019	X			Y
Macrostoh	ASTM E381	X	an balanta ta ta ta ta 17.754-18.4	- 	X
Hardenability (Jominy)	ASTM A255; SAE J406; JIS G0561	X	er er a starionsken og om en en en skan i bel	Medinikasi Antoni Sanakasa S	X
Grain Siza	ASTM E112	Х	X	X	x x
Tenelle Test	ASTM E8; ASTM A370		X	X X	- <u> </u>
Rockwell Hardness	ASTM E18; ASTM A370	X	X	nanon da Cara anna	Y Y
Microstructure (spheroidization)	ASTM A892	• • · · · · · · · · · · · · · · · · · ·	X	Y	
Inclusion Content (Methods A, E)	ASTM E45		x x	~	<u> </u>
Decarburization	ASTM E1077	9. 69 m a	Ŷ	Y	

Charter Steel has been accredited to perform all of the above tests by the American Association for Laboratory Accreditation (A2LA). These accreditations expire 01/31/19. All other test results associated with a Charter Steel laboratory that appear on the front of this report, if any, were performed according to documented procedures developed by Charter Steel and are not accredited by A2LA.

6. The test results on the front of this report are the true values measured on the samples taken from the production lot. They do not apply to any other sample.

7. This test report cannot be reproduced or distributed except in full without the written permission of Charter Steel. The primary customer whose name and address appear on the front of this form may reproduce this test report subject to the following restrictions:

It may be distributed only to their customers

Both sides of all pages must be reproduced in full

8. This certification is given subject to the terms and conditions of sale provided in Charter Steel's acknowledgement (designated by our Sales Order number) to the customer's purchase order. Both order numbers appear on the front page of this Report.

9. Where the customer has provided a specification, the results on the front of this test report conform to that specification unless otherwise noted on this test report.

Page 2 of 2

INDIANA GALVANIZING, LLC

Hot-Dip Galvanizing 51702 Lovejoy Dr. Middlebury IN, 46540 Phone: 574-822-9102 Fax: 574-822-9106

Customer Decker Manufacturing Corporation 783 North Clark Street Albion MI 49224

PO: 1753 DATE: 4/1/2019

Hot-Dip Galvanizing Certification

Indiana Galvanizing certifies that samples representing listed lot(s) have been tested and inspected as required by applicable specifications. The results of this inspection and testing demonstrates that the requirements for ASTM F2329, including the requirements ASTM A153 Class D, Class C that are referenced within the specification, have been met and have been galvanized in Middlebury, Indiana of the United States of America. Indiana Galvanizing LLC is RoHS compliant.

Kettle Temperature (Must be between 815 and 850 Degrees Fahrenheit)

840

Mil Readings

Part Number	Lot Number	Quantity	High	Low	Average
035-1031-92	19-42-007	20,126	3.90	2,40	3.30
035-1031-92	19-52-012	40.684	3.95	2.45	3.25
035-1031-92	19-52-013	20,103	3.95	2.40	3.30
035-1031-92	19-52-017	19,598	4,00	2.30	3.20
026-1608-92	19-44-001	12,085	3,90	2.40	3.25
026-1210-92	19-40-006	77,782	3.95	2.10	3.15
026-0813-92	19-39-006	39,250	3.80	2.15	3.10
026-0813-92	19-39-008	41,639	3.85	2.25	3.25
026-0616-92	19-36-008	228,134	3,90	2.25	3.15

Amy Jarzynski

÷.,,

,

ţ

Quality Manager or Assignee

F TSI SAMPA	>	LSTAN BELL SCHMID' ELD TWP., MI 3285 / FX(586)9	1' BLVD. 48051	, INC.	MATERIAL CERTIFICATION				
CUSTOMER NAME Portland Bolt & PART NUMBER	Mfg Co			TOMER OF 435 DT NUMBE	\$77	IBER		rte /25/19	
3/4" F436 Hdg	16445		1. J. 1. 1995	0719-210			20,00	0	
	B53150	.52	.68	.011	.001	.17	.046	REVISION ASTM F-436-10	
SPECIFICA	TION		ACT	UAL		G	AUGE		
O.D -	1.436 - 1.500		1.445 -	. 1.448		¢	ALIPER		
[.D -	.813845		.824 -	827		CALIP	ER, PIN	GAUGE	
THICKNESS-	.122177	,	.128 -	.131		MIG	CROMET	ĔR	
FLAT-	Max .010	1443-1-1444-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	.01	04		C	ALIPER		
HEAT TREAT -	<u>38 - 45 HRC</u>		40 -	- 42	unangan manga salah siya siya siya siya siya siya siya siya		1	anana mana ana amin'ny fisiana	
PLATING-			See Attac	bed Cert				و معروف المراقع	
OTHER	**.v.;v		N,	/A					
WE HEARBY CERTIFY THIS PROD ALL MATERIALB ARE MADE AND N	AELTED IN THE U.S.A. THIS P.	RODUCT WAS I	ANUFACTURED	N CHESTERFIELD	3. MICHIGAN U.S.	A: THIS PRODUK	T CONFORMS TO	YALL REOHIREMENTS	
TOR WASHERS AS PRODUCED A EXCEPT IN FULL WITHOUT PRIOF	200RDING TO A S T.M. F-435 (WRITTEN APPROVAL	10. THE ABOVI	TEST RESULTS	APPLY QNEY TO	Ċ	Herrie	Sn	clos	
							D SIGNATU) ISO 9001		

INDUSTR	AL STE	EL TRE	ATING CC	MPANY	INC
	and the second				33354

613 Carroll Street Jackson, MI 49202 P.O. Box 98 Jackson MI, 49204 Voice: 517-787-6312 Fax: 517-787-5441

HEAT TREAT CERTIFICATION

Order Details

Certification Date:

07/31/2019

Page: 1 of 1

TECHNICAL STAMPING, INC. Attn: SHANNON COX 50600 E. RUSSELL SCHMIDT

50600 E. RUSSELL SCHMIDT CHESTERFIELD, MI 48051

Part Number F0034

Packing Slip: 7184

Purchase Order.

200

Customer.

IST Order Number 762970-1

Lot Number: 0719-210

HeatNumber 853150

SPECIFICATIONS

HRC 36 -45 HEAT TREATED IN THE USA
 Blue Print Rev.
 1279

 Material Type:
 1030 - 1050

 Quantity:
 296,569

 Net Weight
 11,151.0

 Part Desc:
 WASHER

 Comments
 7 TUBS#988,C110,104,B601, 1214,C44,C117

RESULTS

HRC 40 - 42 HEAT TREATED IN THE USA

Approval

Tom Levy - Quality Assurance Supervisor

Tom Levy - Quality Assurance Supervisor Voice: 517-780-9043 Fax: 517-787-5441 E-Mail: tolevy@indsl.com

This Certification cannot be reproduced except in full, without written authorization from Industrial Steel Treating Company, LLC.

Contact

626	· · · ·									
a the first										
·····		and the second	CERTIFIC	ATE OF CO	NFORMANC	же 				
SABRE S	TEEL INC.		SAB	RE S'	TEEL			7/9/2019	2:52:13 P	M
FARMING	STON HILLS.	MI 48335			TNC					
248-615-0										

Sold To:		CAL STAMPING			Ship To:		ICAL STAN			
		ERFIELD TWP.						CHMIDT BL		
						GREGE		WP., MI 48		
Cust PO:		\$91526		Ship Det	e: 7/11/2019					
Seles Ord	er.	76481		Weight:	98,770#					
			CI	HEMICAL AN	ALYSIS					- -
**************************************										-
Heat Num		853150								- the second
C	.52	Mh:	.68	P;	.011	\$:	.001			
Si:	.17	TI:	.006	Cr:	.05	Mo:				
Cu:	.02	AI:	.046	Cb:	.00t	Va:	.005			
Ni:	.01	B:		Sn:		N:				
ļ			PH	YSICAL PRO	PERTIES				1.1.1	
YS:	1 - A.A.	TS:		E:						
Chemistry	C1050								15	
Line:		ittern;	.122min x 5.8	0 0000 040						· ·
100 T 100 T	1	260213.			200					
		Grade:	HRP&O High							
			HRP&O High : F0034M							
Comment	Tags 65		F0034M	Carbon						
Comment	E Tags 65	Cust Part:	F0034M	Carbon						
WE HER	EBY CERTIF	Cust Part: 9467 A thru Z 1	: F0034M Made & Melled II FIGI IRES AR	Carbon n US	TELV STATE	D.MEET	YOUR MA		*******	یں دی پونٹ
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	: F0034M Made & Melled II FIGI IRES AR	Carbon n US	TELV STATE	D, MEET	YOUR MA	VTERIAL OR AN ACC	REDITED	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	: F0034M Made & Melled II FIGI IRES AR	Carbon n US	TELV STATE	D, MEET	YOUR MA	VTERIAL VOR AN ACC	REDITED	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	: F0034M Made & Melled II FIGI IRES AR	Carbon n US	TELV STATE	D, MEET E PRODUK	YOUR MA	VTERIAL OR AN ACC	REDITED	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	: F0034M Made & Melled II FIGI IRES AR	Carbon n US	TELV STATE	D, MEET E PRODUC	YOUR MA CER AND	ITERIAL IOR AN ACC	REDITED	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	F0034M Made & Method II FIGURES AR BLE HOUR F	Carbon n US	TELY STATE BACK TO THE	D, MEET PRODUC	YOUR MA	VTERIAL IOR AN ACC	REDITED	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	F0034M Made & Method II FIGURES AR BLE HOUR F	Carbon n US E ACCURA XECORDS E	TELY STATE BACK TO THE	D, MEET PRODUC	YOUR MA	VTERIAL YOR AN ACC	REDITED	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	F0034M Made & Method II FIGURES AR BLE HOUR F	Carbon n US E ACCURA XECORDS E	TELY STATE BACK TO THE	D, MEET PRODUC	YOUR MA	VTERIAL YOR AN ACC	REDITED	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	F0034M Made & Method II FIGURES AR BLE HOUR F	Carbon n US E ACCURA XECORDS E	TELY STATE BACK TO THE	D, MEET E PRODUC	YOUR MA	VTERIAL YOR AN ACC	REDITED	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	F0034M Made & Method II FIGURES AR BLE HOUR F	Carbon n US E ACCURA XECORDS E	TELY STATE BACK TO THE	D, MEET	Your MA Cer and	VTERIAL IOR AN ACC	REDITEC	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	F0034M Made & Method II FIGURES AR BLE HOUR F	Carbon n US E ACCURA XECORDS E	TELY STATE BACK TO THE	D, MEET	YOUR MA	VTERIAL IOR AN ACC	REOTEC	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	F0034M Made & Method II FIGURES AR BLE HOUR F	Carbon n US E ACCURA XECORDS E	TELY STATE BACK TO THE	D, MEET E PRODUC	YOUR MA	NTERIAL IOR AN ACC	REOTEC	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	F0034M Made & Method II FIGURES AR BLE HOUR F	Carbon n US E ACCURA XECORDS E	TELY STATE BACK TO THE	D, MEET PRODUC	YOUR MA	NTERIAL IOR AN ACC	REATED	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	F0034M Made & Method II FIGURES AR BLE HOUR F	Carbon n US E ACCURA XECORDS E	TELY STATE BACK TO THE	D, MEET E PRODUC	YOUR MA	VTERIAL YOR AN ACC	RENTED	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	F0034M Made & Method II FIGURES AR BLE HOUR F	Carbon n US E ACCURA XECORDS E	TELY STATE BACK TO THE	D, MEET E PRODUC	YOUR MA	VTERIAL OR AN ACC	REOTEC	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	F0034M Made & Method II FIGURES AR BLE HOUR F	Carbon n US E ACCURA XECORDS E	TELY STATE BACK TO THE	D, MEET E PRODUC	YOUR MA	VTERIAL VOR AN ACC	REOTEC	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	F0034M Made & Method II FIGURES AR BLE HOUR F	Carbon n US E ACCURA XECORDS E	TELY STATE BACK TO THE	D, MEET E PRODUC	YOUR MA	VTERIAL OR AN ACC	REOTEC	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	F0034M Made & Method II FIGURES AR BLE HOUR F	Carbon n US E ACCURA XECORDS E	TELY STATE BACK TO THE	D, MEET E PRODUC	YOUR MA	VTERIAL OR AN ACC	REOTEC	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	F0034M Made & Method II FIGURES AR BLE HOUR F	Carbon n US E ACCURA XECORDS E	TELY STATE BACK TO THE	D, MEET PRODUC	YOUR MA	VTERIAL OR AN ACC	REOTEC	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	F0034M Made & Method II FIGURES AR BLE HOUR F	Carbon n US E ACCURA XECORDS E	TELY STATE BACK TO THE	D, MEET	YOUR MA	VTERIAL AOR AN ACC	REOTEC	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	F0034M Made & Method II FIGURES AR BLE HOUR F	Carbon n US E ACCURA XECORDS E	TELY STATE BACK TO THE	D, MEET	YOUR MA	VTERIAL OR AN ACC	REOTEC	
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	F0034M Made & Method II FIGURES AR BLE HOUR F	Carbon n US E ACCURA XECORDS E	TELY STATE BACK TO THE	D, MEET	YOUR MA	VTERIAL OR AN ACC		
WE HER	EBY CERTIF	Cust Part 467 A thru Z 1 Y THE ABOVE ARE TRACEA	F0034M Made & Method II FIGURES AR BLE HOUR F	Carbon n US E ACCURA XECORDS E	TELY STATE BACK TO THE	D, MEET	YOUR MA	VTERIAL OR AN ACC		

5/20 <i>1</i>	2019	ت عدو حرو رادم	1962 y 264 y 1960 yww.				·		1 			an a
			A	ND N	IECHA	NICAI	L TEST	L ÁNAL TS			elorN	
		1	alan)bs	in the second					44 X			Page 1 o
2	SABRE STE 3680 RESE IILLS MI	EL.	in Global (1949		ON	1:		al Riverdal th Perry Av IL 60827	e LLC.	JOR".		
C	SABRE STE C/O VOSS S RD TAYLOR	EL C/O V		LOR	I DALY	S	O#: 1 O#: ate Of Issue		o in the second s	_oadID # COMMC	0316236 DN CARR # 05002	8 IER
	C.C.T. B.S.			1-1-1-	io) (dhia		hipped:	NEORI				
	Heat	e7. 5 4%	Coll	NAMES OF STREET	ness (in)	0.5713 CAL \$	dth (in)	Contract Property		4.527.3* C :¥ Z	Senas em	
-	B53150		04418	0.124			.000	23.9	t (tons)	ېت	duction 1 % (17:1)	Kalio
										U HET.	ni er	
	sat niamen a ref	EN NOT AN OCT	nerate manage	O Yelda iya c						÷		
· 0	eat number is bein Riestroms Donoffy	ING IMPORTATIO	NOF THIS MATE	(RIAL FLEASE	CONTACT: JOSE	red size. Weight : 2 C/SHEROS; 1 S 7 S/SHEROS; 1 S	T stari ja not sa A: SUTH DEARBORI	ALA SCORAGES MASS N ST. , CHICAGO, H.	urbreant, COUN1 , 80863; TEL 14(TRY OF ORIGINA \$12,009-3796 GM	XPORT COUNTR 1, Jose, Claneros ()	Y IS USA, POR anoshincital.com
			1		(2)(0) <i>0</i>].	84 K 14 K 19 K 19	121 211 211 221	ATION	and the first of the second			
s	GAE 1050	fade	 HI	F B12448	Part Num	ber		roduct Des Band Prim			Comm	ents
							1 101	adira (filla	ω?			
. 7	fbis meterial was m	eited and macuf	lactured to the t	J\$A. Altorox	रेव्हर रूक डांग्स्स	i cast and ime	of mercular or th	stingetus pisman	ta Silonantian	: haand on 17 w		
	Nont C		. MEQ	MANI	GA (5.7) El Dir	Phil/S N-Vetue	N-Range	(STATE)	ris (17) Fi-tas		Size D	
	• .		U	11	202	<u>.</u>	2	1		+hh		
1		· .										
	Material lested in a	ocordance with	ISO 17023 by :	an accredia	d 38b.							
L· IB	A	1		read and the second second	$\sim 1 \sim 1.1$		そう 勝い	as Ular		Cb		
	Heat C	Ma.	P	s S	Si Si	- Chr	Ni	Cr				A
		Mo .68	P .011	S .001	51 .17	Cu ,02	NI .01	,05	Mo 00	,000	.005	.048
	Heat C 53150 52 N	.68 Sn	.011 B	-							1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
	Heat C 53150 52	.68	.011	.001	.17	,02					1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
8	Heat C 53150 52 N .0033	.63 Sn .005	.011 B .0001	.001 Ti .0060	.17 Ca .0013	.02 9b .0010	.01	,05	.00		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	
C W C Per	Heat C 453150 52 N .0033 Chemical analysis v /a hiereby contilly optication and in elements to the co-	.68 Sh .005 en petitomed is the above is o complance w irrent standar	.011 B .0001 y Arcelor Millel F offect as iconfi it to date unite a sixiliable re-	.001 TI .0060 Kverdala, Inc tained in the emonis of tr sa prinervise	.17 Ca .0013 c. in accordance e records of t he order. All t a nited, Une 6 Thate order.	.02 Sb .0010 e vith the Curr the tests estanties of Manales of	.01	,05 \STM E415 and E	.00 1019. Daniel	,000 Staury	.005	.046
C W C Pre- pre- ofs ac	Heat C 553150 52 N .0033 Chemical antitysic v /a hereby cently i oporation and in oporation and in the co	.68 Sn .005 see performed is compliance.wi compliance.wi intated and an stad. Test rest lifed into Test	.011 B .0001 y ArosterMillal F correct as confi /lb the require rs available in skills Tratked o certificates ar	.001 TI .0060 Kvordnis, Ing tained in the transis of it so pherwis pon request with an aste preserved	.17 Ca .0013 c. In accordance e records of t his order, All t e nisted, Unic t. These result iffer 19 wave	.02 Sb .0010 e v8h the Cum he tests estainties of his relate	.01	,05 NSTM E415 and E Timothy	.00 1019. / S. Kaur South Perry	,000 Stauri ich Man (Ave., Rive	.005 ager - Qu rdale IL 604	.046 alify

September 17, 2019

Technical Stamping 50600 E. Russell Schmidt Chesterfield TWP, MI 48051

To Whom It May Concern:

This is to certify that the hot dip gaivanizing of the following washers on your Purchase Order number 1648 conforms to specification ASTM A-153. The following sizes and lot numbers comply with the coating, workmanship, finish, and appearance requirements of ASTM F2329 specifications. The hot dip gaivanizing is ROHS compliant. The gaivanizing process was conducted in a temperature range of 830F to 855F.

PIECES 294910

PART# & SIZE F0034 3/4" Washer

برائيت والمعام وال

LOT NUMBER 0719-210 AVERAGE ZINC COATING IN MILS. 5.76

This certification in no way implies anything other than the quality of our hot dip galvanizing as it pertains to your order.

This product was galvanized in Rockford, IL USA

Yours very truly,

AZZ Galvanizing Rockford, IL

APR

Peggy Doering Office Manager

PD:mt

	A A A A A A A A A A A A A A A A A A A	
· A \ \ 1	A CONTRACTOR OF A CONTRACTOR O	
	a a constant a second	111AVFIARA UAI+
	and the second	
	and the second sec	
83 X		& MANUFACTURING COMPANY
())		& MANUFACTURING COMPANY
() }		& MANUFACTURING COMPANY
())		& MANUFACTURING COMPANY

					NY			MTR - E		AIL ONLY	/		ORDER		1:	2898	37	
	800-547-675 2866 Portla	and, OR 97	7208											JT	_			
S O T L O D	1379 HA		AITCHELL	8 & REPA _ PKWY		9888 -775 -4 29	7	S H T I O P									19/2 :15:4	
COMMENTS										extras: N ref# 4	0997							
ORE	TOMER _	FUCKER	25587	ORDERED BY	BRANDON	ORDERED	2/18/	20 PRON	Λ-	2/19/20	2	SALI MAN		Y		PAGE 1	- 1	
SHIP			I	PRI		FILLED BY	/	HOLDIN	GAR	EA		CARTONS	KEGS	SAC	KS	BUNDLES	SKIDS	3
	QTY ORDERED	B.O.	PRODUCT N			DESCRIPTIO	ON				P.O.	LINE	WT	STK CHK		QTY SHI	PPED	IN [®] SF
01	24		18008	3/4 X	10 DOM HEX	GAL BOLT	A3072	A 6"RT					28					1
02				**REMO	VE BLUE PAIN	T**												
03			14188	FREIGH	T CHARGES													2
04	24		16275	3/4	DOMESTIC	GAL A563	-A HEZ	X NUT			39371	3	3					1
05	48		16445	3/4	DOMESTIC	GAL F436	-1 RNI	D WASHER			43577	3	2					1
															-			_
															_			
																		_
	TOTAL WE	IGHT	DATE	SHIPPED	FF	REIGHT		B/O FROM	INVO	ICE NUMBER	E	8/0 ⊺O INVO	ICE NUMBER		ALES TAX	TOTAL QT SHIPP	TY ED	
														1	м			

33#

CERTIFICATION COPY

RECEIVED BY X 96

CMC STEEL TEXAS 1 STEEL MILL DRIVE SEGUIN TX 78155-7510 CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771 We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Rolando A Davila

Quality Assurance Manager

HEAT NO.:3094043 SECTION: REBAR 13MM (#4) 20'0" 42 GRADE: ASTM A615-18e1 Gr 420/60 ROLL DATE: 01/13/2020 MELT DATE: 01/11/2020 Cert. No.: 82958476 / 094043A130	20/60 O L 1 D C	CMC Construction Svcs College Stati 10650 State Hwy 30 College Station TX JS 77845-7950 979 774 5900	S CMC Construction Svcs H I I 10650 State Hwy 30 P College Station TX US 77845-7950 T 979 774 5900	College Stati Delivery#: 82958476 BOL#: 73382608 CUST PO#: 838790 CUST P/N: DLVRY LBS / HEAT: 41629.000 LB DLVRY PCS / HEAT: 3116 EA
Characteristic Va	/alue	Characteristic	Value	Characteristic Value
C 0.	.44%	Bend Test Diame	eter 1.750IN	
Mn 0.	.73%			
P 0.	.008%			
S 0.	.039%			
Si 0.	.17%			
Cu 0.	.34%			
Cr 0.	.11%			
Ni 0.	.21%			
Мо 0.	.088%			The Following is true of the material represented by this MTR:
V 0.	.000%			*Material is fully killed
Сь 0.	.002%			*100% melted and rolled in the USA
Sn 0.	.014%			*EN10204:2004 3.1 compliant
AI 0.	.001%			*Contains no weld repair
				*Contains no Mercury contamination
Yield Strength test 1 64	4.5ksi			*Manufactured in accordance with the latest version
Tensile Strength test 1 10	00.9ksi			of the plant quality manual
Elongation test 1 17	7%			*Meets the "Buy America" requirements of 23 CFR635.410, 49 CFR 661
Elongation Gage Lgth test 1 8	IN			*Warning: This product can expose you to chemicals which are
Tensile to Yield ratio test1 1.	.56			known to the State of California to cause cancer, birth defects
Bend Test 1 Pa	assed			or other reproductive harm. For more information go
				to www.P65Warnings.ca.gov

REMARKS :

Page 1 OF 1 01/17/2020 18:55:58

46

CMC STEEL TEXAS 1 STEEL MILL DRIVE SEGUIN TX 78155-7510 **CERTIFIED MILL TEST REPORT** For additional copies call

830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Rolando A Davila Quality Assurance Manager

HEAT NO.:3093615 SECTION: REBAR 13MM (#4) 40'0" 420/ GRADE: ASTM A615-18e1 Gr 420/60 ROLL DATE: 12/30/2019 MELT DATE: 12/23/2019 Cert. No.: 82948507 / 093615A371	/60 O L D T O	10650 St		S H I P T O	CMC Construction Sves Co 10650 State Hwy 30 College Station TX US 77845-7950 979 774 5900	ollege Stati	Delivery#: 82948507 BOL#: 73368452 CUST POH: 837870 CUST P/N: DLVRY LES / HEAT: 19881.000 LB DLVRY PCS / HEAT: 744 EA
Characteristic	Value		Characteristic		Value		Characteristic Value
C Mn P S Si Cu Cr Ni Mo V Cb Sn Al	0.43% 0.87% 0.011% 0.24% 0.24% 0.31% 0.11% 0.09% 0.029% 0.000% 0.001% 0.008% 0.001%		Bend Test Diar	eter	1.750IN	* Material is fully *100% melted ar *EN10204:2004 3 *Contains no wel	nd rolled in the USA 1.1 compliant
Yield Strength test 1 Tensile Strength test 1 Elongation test 1 Elongation Gage Lgth test 1 Tensile to Yield ratio test1 Bend Test 1	66.8ksi 102.8ksi 14% 8IN 1.54 Passed					of the plant q *Meets the "Buy *Warning: This j known to the	America [®] requirements of 23 CFR635.410, 49 CFR 661 product can expose you to chemicals which are State of California to cause cancer, birth defects uctive harm. For more information go

REMARKS :

Page 1 OF 1 01/27/2020 15:25:49

CMC STEEL TEXAS 1 STEEL MILL DRIVE SEGUIN TX 78155-7510 CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771 We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Rolando A Davila

Quality Assurance Manager

HEAT NO.:3093124 SECTION: REBAR 16MM (#5) 40'0 GRADE: ASTM A615-18e1 Gr 420 ROLL DATE: 12/27/2019 MELT DATE: 12/03/2019 Cert. No.: 82940286 / 093124A76	/60	O L 10650 St		S H I P T O	CMC Construction Svcs (10650 State Hwy 30 College Station TX US 77845-7950 979 774 5900	College Stati	Delivery#: 82940286 BOL#: 73355222 CUST PO#: 837155 CUST P/N: DLVRY LBS / HEAT: 48060.000 LB DLVRY PCS / HEAT: 1152 EA
Characteristic	Value		Characteristic	Valu	e	Chara	cteristic Value
С	0.43%		Bend Test Dian	neter	2.188IN		
Mn	0.90%						
Р	0.011%						
S	0.033%						
Si	0.18%						
Cu	0.31%						
Cr	0.13%						
Ni	0.23%						
Mo	0.070%					The Following is	true of the material represented by this MTR:
v	0.000%					* Material is fully	r killed
Cb	0.001%					*100% melted a	and rolled in the USA
Sn	0.011%					*EN10204:2004	3.1 compliant
AI	0.000%					* Contains no w	•
							ercury contamination
Yield Strength test 1	67.3ksi						n accordance with the latest version
Tensile Strength test 1	106.7ksi					of the plant qu	
Elongation test 1	15%						America" requirements of 23 CFR635.410, 49 CFR 661
Eongation Gage Lgth test 1	8IN					-	product can expose you to chemicals which are
Tensile to Yield ratio test1	1.59						State of California to cause cancer, birth defects
Bend Test 1	Passed						uctive harm. For more information go
						to www.P65Wa	rnings.ca.gov

REMARKS :

47

Page 1 OF 1 01/27/2020 15:13:28

CMC STEEL TEXAS 1 STEEL MILL DRIVE SEGUIN TX 78155-7510 **CERTIFIED MILL TEST REPORT** For additional copies call

830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Rolando A Davila

Quality Assurance Manager

HEAT NO.:3093404 SECTION: REEAR 19MM (#6) 40'0" 420/60 GRADE: ASTM A615-18e1 Gr 420/60 ROLL DATE: 12/16/2019 MELT DATE: 12/15/2019 Cert. No.: 82948507 / 093404A307	S O L D T O	10650 Sta		S H P T O	CMC Construction Sves Co 10650 State Hwy 30 College Station TX US 77845-7950 979 774 5900	llege Stati	Delivery#: 82948507 BOL#: 73368452 CUST PO#: 837870 CUST P/N: DLVRY LBS / HEAT: 23793.000 LB DLVRY PCS / HEAT: 396 EA
Characteristic Val	lue		Characteristic		Value		Characteristic Value
C 0.4	42%		Bend Test Dian	neter	3.750IN		
Mn 0.8	84%						
P 0.0	012%						
S 0.0	046%						
Si 0.1	19%						
Cu 0.3	35%						
Cr 0.1	14%						
Ni 0.2	25%						
Mo 0.1	101%					-	ue of the material represented by this MTR:
V 0.0	000%					*Material is fully	
	001%						d rolled in the USA
	012%					*EN10204:2004 3	·
AL 0.0	000%					*Contains no wel	
							cury contamination accordance with the latest version
	.3ksi					of the plant qu	
	5.8ksi						America" requirements of 23 CFR635.410, 49 CFR 661
Elongation test 1 15%							product can expose you to chemicals which are
Elongation Gage Lgth test 1 8IN							State of California to cause cancer, birth defects
Tensile to Yield ratio test1 1.5							ictive harm. For more information go
Bend Test 1 Pas	ssed					to www.P65Warr	-

REMARKS :

Complies with all applicable chemical composition and mechanical property limits as specified by ASTM B221, ASTM B308/B308M, ASTM B429/B429M, and the Aluminum Association Ahminum Standards & Data Manual CONFORMS TO EUROPEAN UNION DIRECTIVE "Restrictions on the use of certain Hazardous Substances" (RoHS) AND ALL AMENDMENTS.

<u>Chemical</u>	Composit	ion
-----------------	----------	-----

The material produced on the item number(s) shown below were made from the alloy specified. The following chemical properties have been provided by the original manufacturer of the ingot supplied to extrude this material. It is compared to the standards for the specified alloy as set forth by the Aluminum Association:

<u>Cast Number</u> E8D5777A	<u>Alloy</u> 6061	<u>Type</u> P	<u>Silicon (Si)</u> = 0.60	<u>Iron (Fe)</u> = 0.18	<u>Copper (Cu)</u> < 0.17	Manganese (Mn) = 0.05	Magnesium (Mg) = 0.82	<u>Cromium (Cr)</u> < 0.06	<u>Zinc (Zn)</u> < 0.01	<u>Titanium (II)</u> = 0.0,1	<u>Other</u> = 0.00	Aluminun Remaining
Country Of Orig	in: DUBAI	[
THIS PRODUC	T IS MERC	JURY F	REE							. 0.01	= 0.00	Remaining
R5797061	6061	Р	= 0.67	= 0.20	= 0.20	= 0.07	= 0.90	= 0.07	= 0.00	= 0.21	~ 0.00	Kemaimog
Country Of Orig	in: Bahrain	L	•									
This product is r	nercury free	e					······································					

Mechanical Properties

Compositions are shown as a percentage by weight maximum unless shown as a range or a minimum. Representative samples of the material produced on this order from the section listed above have been tested according to the procedures set forth by the America Society for Testing Material Method listed below, and have attained or exceeded the minimum mechanical properties for this alloy and temper as specified by the Aluminum Association, and by the American Society for Testing Materials Actual test result values are as follows:

Samule]	D Lot	Allov / Temper	Test Date	Ultimate Tensile	Yield Tensile	Elongation % (min 2")	Hardness	Conductivity Bend Test
1	1	6061 - T6	07/07/18	40.576	36.955	9.850	15.0	
2	1	6061 - T6	07/11/18	42.290	40.145	8.100	15.0	

Quality Control Supervisor Keymark Corporation Lakeland, Florida 5 PL1 CC

Page 1 of 1

Signed By: ____

Howard E. Pierce III

Data as of: 7/12/2018 5:40:22PM

Hydro Extrusion USA, LLC 53 POTTSVILLE STREET		Certified Test I	Cert Num		Page 1 of 2		
)))) Hydro	CRESSONA, PA 17929-0187	Sales Order Number Line N 1101509239	To	Customer 12/0 387939	Cert Cres		Cert Print Date 02-MAY-19
Xavales Ta Castomer EASTERN METAL SUPPLY 3600 23RD AVENUE SOUTH	Quantity Shipped 2092 I.B	scription 1 Structural Angle x 5.000 H x 0.500 BRR.		mical Composition Limits hanical Property Limits			
3600 23RD AVENUE SOUTH ATTN: ACCOUNTS FAYABLE LAKE WORTH, HL-33461 Shiy To Customer		h/L Item No. 1012689 G03971441 Delivery Id Item No. Rev			IN LN MILL 78 F 3 CS 7.1	Table 1 Ches Table 2 Mee	nical Composition Limits hanical Properties Limits 200/8 REV A 200/8 REV A
Hy To Customer EASTERN META 2224 4TH AVENU		5096333 Custome:Part No.	•				
_ LAKE WORTH, F	L 33461	11-61-335 Applicable Specifications, Revisions at	nd Exceptions				
		COMPOSITION NOTE: The value his certified inspection report. Ret	s for 'Others E		se met the limits as	spown on	
lydro Extrusion USA	, LLC hereby certifies that the extrusions covered is nulfied herein (excluding footnotes). Clumical cor	n this report are within the acceptable ranges of it position may be based on results provided by		ure And Title	3		

specification tables identified networks (examing i contories). Chemical comparison may be described in a scalable of external billet suppliers. Further information on processing, testing including ASTLM B557, and inspection is available at www.hydrocruticaions.com/industryspecifications. Sales are governed by the Extinsion North America Standard Terms and Conditions of Sale available at www.hydrocxtrusions.com/termsconditions, anless otherwise mutually agreed in writing.

٠

	Signature And Title
1	Darrell Wearich
	Quality Manager

COMPANY OF THE PARTY OF THE PARTY OF THE PARTY OF

02-MAY-19

- Í

Quantities per Lot / Packages

A CALL AND		Quantity	HUOMA	E Weight	
G12-PKG3464154	23529754	<u>59</u>	Ecs PCS	1263	1255
G12-PKG3471822	R23529754	6	PCS	845	837

(

Composition Limits	
AT MARKET AND	
King Provident Contraction	
	Man Mar
6061 0.40 0.80 -	$\frac{1}{2010} - \frac{1}{2010} - 1$
6061 0.40 0.80 -	

	Hydro Extrusion USA, LLC 53 POTTSVILLE STREET
Hydro	CRESSONA, PA
	17929-0187

Certified 7	Cast Da	nort		Cert Number	Page
Certifieu	CSL INC	port		HYDRO3059837	Fage 2 of 2
Sales Order Number			Customer P/O	Cert Creation Date	Cert Print Date
1101509239	Line No.	1	387939	02-MAY-19	02-MAY-19

۰.

1

Alloy	PCI MUA	(5)) (5))	Oike PCI	Each State	LOther PCO Min :	Total (50) Mixts
6061		0.15		0.05		0.15

Composition Results

		ano and a second second			Sector Cold	CARLES THE POINT	North Party of State	and the second second	THE PARTY OF	OthersEach	Others Total	
	Beat/Care		A REAL PROPERTY.	Resource Selficients	Sugar Billion and	Same Barriston	King a Herstern	and Green difference	- Alfanan Alfana	- Allandar Collars	AND CONTRACTOR	
	2003192	0.71	0.34	0.28	0.05	0.90) 0.05	0.04	0.02		-	
	2003131	V-1 A			-	annan Peacana	SHUP CALLES		TELL VALUES CONCERNING	Others Each	Others Latal	
	THAT CALL	STATES OF THE		CE	e Mine and	Lan Hatting	Sample Bar	Thursday and	STATES AND A STATES	Balabana and a state	AND RELEASED IN	
1	5049001	0.75	0.31	0.29	0.05	0.91	0.06	0,04	0.02	·		
1	JUHYUUI	0.10	1 1				L	l		·		

ļ

Mechanical Property - Test Limits

		SUMP IN FR	UT	s-r.	TY	S-L	EL 41	-Long
區之地自然透明這次在		ក្នុងមនុស្សភាព ស្រុក អ្ន		SI	X	IST	P	cr .
entre and a section of the section o		URASSER AMERICAN					<u>.</u>	•
Test Temper-	Lot Namper	JIET 10 %	MINVave	MAXWAUG	MIN VALSE	MAX Yeure	SIIN Value	MAXEVOVE
T6	23529754	heresagisti Blacal 1	41.9	41.9	38.9	38.9 38.9	18.0	18.0
		and the second second	OE	S-L	TY	S-L	FL 41	-Long
analajensi alahisi Analajensi alahisi Analajensi alahisi	ing and a second state of the second s	Contraction of the second s		SI	X	<u>isi</u>	P	cre l
		and and a second se		-			-	-
Test Tempered	- Lot Number		SERIES AND A VALUE OF F	MXX Value	MINVADE	IT MAXINERS	MIN Value	MAXVIN
TS	R23529754	1	44.6	44.6	42.1	42,1	19.0	19.0

Notes

Mercury is not a nonuel contaminant in alundown alloys and we do not knowingly use it in the manufacture of our goods

Extruded in the DSA

(

Extrasions produced to -I6511 temper also seet -I6 temper requirements

5465-Eastern Meta	Supply		CocLeaget	0.0-	, ADEN	14824	DATE OF SHIPM	ort /22/2018	ASTM				
линто 5478-Eastern Meta			CUSTOMER		ALLO	6061/T6	SALESHAN	Bill Petty	METALLURGIST				
ERT'CODE A9	JobKenez			TOWER PART NUMBER DESCRIPTION DOT-61-100 Builtet Rail Cap								RGIST	
Ve hereby certify the provident of the second secon	le reguirements	: described herei	n, includin	ng any specification fimits and had	ions formir i the mech	ng a part of the d anīcai properiles	shown.	and D STATES OF		e an e	JORGEIEN	RIQUEZ	•-•
Vechanical Pro	perties	1					÷		2000		· · ·		
		Test Date		ltīmate Tensile Strength (KSI)		<u>Yield Strenath</u> <u>(KSI)</u>	P	ercent Elongation		urdness HRE)			
LOT 1A	1	3/23/18	•	43.6		39.1		12 %		91			
LOT 1A		3/23/18		44.5		39,7		· 12 %		91 :		·	
LOT 1B		3/23/18		44.0		39.5		12 %		92			
Chemical Com	position for /	uloy 6061		- I ·		a a a fail a suid a status a fain a fa		• Stars - admits - to configure					
<u>CastNum</u> E7M6178A E8A5477A	<u>Sî</u> • 0.54 0.55	<u>Fe</u> 0.17 0.17	<u>Cu</u> 0.20 0.20	<u>Mn</u> 0,03 0.01	<u>Mq</u> 0.83 0.82	<u>Cr</u> 0.06 0.06	<u>Zn</u> 0.01 0.01	11 0.01 0.02					

8:37 am

UNETFRAMEUPICS20001CRW10

Printed: 8/16/18

. . .

-

RAIL

LOCK BAN

CERTIFIED TEST REPORT ALUMINUM EXTRUDED PRODUCTS

HYDRO EXTRUDER, LLC 2905 OLD OAKWOOD ROAD GAINESVILLE, GA 30504 (770)535-1349

A	(110)000-1049					
CUSTOMER SHIP TO EASTERN METAL SUPPLY, LAKELAND 4675 Drane field road Lakeland, FL 33811	ITEM DESCRIPTION DOT-61-140 HAND-RAIL CLAMP BAR	PCS SHIPPED				
CAST# SUPPLIER CUSTOMER PO 362375	ALLOY TEMPER 6061 T6 SALES ORDER 371018 - 01	PLANT 35				
PRODUCT SPECIFICATIONS Extruded Rod,Bar,Shape or Tube ASTM B221-14 AMS QQ-A-200/8A	PART REVISION	DIE REVISION 1				

MECHANICAL PROPERTIES

DIE NUMBER 049414	NO. OF	TENSILE STRENG	TH* Min-Max	.YIELD**	Min-Max	
049414	TESTS	45.0 - 45.0 ksi	310 - 310 mpa	41.0 - 41.0 ksi	283 ⁻ 283 mpa	
		ELONGATIO	N %***	CONDUCTIVITY		
371018-1		Min 15.0	Max 15.0	Min	Max	

\$	
ELEMENT	Min

ψ.

,

CHEMICAL COMPOSITION (%)

ELEMENT	Min	Max	ELEMENT	Min	Max	ELEMENT	Min	Max
SI	.4000	.8000	MN	,0000,	1500	ZN	.0000	.2500
FE	,0000,	.7000	MG	.8000	1,2000	TI	.0000	1500
CU	1500	.4000	CR	.0400	.3500	В	.0000	0000.

'n																
•	HYDRO EX	TRUDER,	LC he	ereby cert	ifies t	hat the i	metal sh	ipped	under t	his re	eport has	been	tested	in a	accordance	
*	with the	identit	Fied AS	STM and/or	ASME s	pecifica	tions an	d the	results	oft	ne chemic	al ana	lysis a	and ;	nechanical	prope
	tests ar	e withi	n the a	acceptable	ranges	of thes	e specif	icatio	ns, Any	r prodi	uct wahra	nty is	govern	ned	by the	11
•	Extrusio	n North	Americ	a Standar	d Terms	and Con	ditions	of Sal	e poste	ed at 1	www.hydro	extrus	sions.co	om/t	ermscondit	lors.

Extruded in the USA. Mercury is not a normal contaminant in aluminum alloys and we do not knowingly use it in the manufacture of our goods.

* One kel equais 1000 pounds per square inch. ** Yield strength determined by 0.2% offset method. *** Gape length measured in 2.000* section, *** Elongation leken al fracture.

AUTHORIZED SIGNATURE

5/26/18

properties

Chris Walters Quality Manager

BULGET RIML END CAP.

WESTERN EXTRUSIONS 1735 Sandy Lake Rd Carroliton,TX. 75006-3612 (972) 245-7515

CERTIFIED INSPECTION REPORT AND TEST RESULTS FOR EXTRUDED PRODUCTS

OUR ORDER NUMBER

.

254548

пем

METALLURGIST

1

JORGE ENRIQUEZ

BRL TO	Cut Longth	DIE NUMBER	DATE OF SHIPMENT	Specifications:
25465-Eastern Metal Supply	30'0"	14824	3/22/2018	ASTM B221
SHIP TO	CUSTOMER PO	ALLOY/TEMPER	SALESMAN	
25478-Eastern Metal Supply	356760	6061/T6	Bill Petty	
CERT CODE Job Namo:	CUSTOMER PART NUMBER	DESCRIPTION		
A9	DOT-61-100	В	ullet Rail Cap	

We hereby certify that the material covered by this report has been inspected in accordance with, and has been found to meet the applicable requirements described herein, including any specifications forming a part of the description, and that samples representative of the material met the composition limits and had the mechanical properties shown.

MANUFACTURED IN THE UNITED STATES OF AMERICA

	<u>Test Date</u>	Ultimate Tensile Strength (KSi)	<u>Yield Strength</u> (KSI)	Percent Elongation	Hardness (HRE)	
.OT 1A	3/23/18	43.6	39.1	12 %	91	
_OT 1A	3/23/18	44.5	39.7	12 %	· 91	
.OT 1B	3/23/18	44.0	39.5	12 %	92	

.

Chemical Com	position for						and a second state of the	
<u>CastNum</u>	Si	Fe	Cu	Mn	Ma	Cr	Zn	TÌ
E7M6178A E8A5477A	0.54 0.55	0.17 0.17	0.20 0.20	0.03 0.01	0.83 0.82	0.06 0.06	0.01 0.01	0.01 0.02

Printed: 8/15/18 8:31 am INETFRAMEVEPICS2000\CRWiCerts2014.rpt

.

Nar	The information con Project No: The of Technician Taking Sample	ality-Form¤ Itained in this document is 611971-02 Tera	43¶ confiden	Prepared by: V Approved by: tial to TTI Proving (3/2/2020 Name of Technician Breaking Sample	_Mix Do	Doc. No.¶ ¶ <i>QF·7.3-01¤</i> Revision: ← 6¤ esign (psi): <u>3</u> Terac	1 •of 1∞ 3400 psi
	Signature of Technician Taking Sample		acon		Signature of Technician Breaking Sample		Terac	con
	Load No.	Truck No.	Т	icket No.	Locat	ion (fro	om concrete	map)
⊤ 1		tucker		289	barriers 2 a	nd 4, No	orthern most	barrier is 1
							1	-
	Load No.	Break Date		linder Age	Total Load (lbs)	Bre	eak (psi)	Average

TUCKER CONCRETE 8930 LACY WELL RD CS 979-777-8748 VM1802

Job # TUCKER CONST FLORIDA RAIL 289 TICKET # 289 START DATE: 03/02/2020 TIME: 08:16:32 STOP DATE: 03/02/2020 TIME: 08:56:09

RAW CEMENT C	DESIGN B1350 COUNTS YARDS	• • • •
MATERIAL CAPTYPE1 LRMSAND RGBLEND WATER SIKA686 NC4 MAX GPM	RATE SETTING 487.4LBPM 6.5 GATE 7.8 GATE 21.1GPM 0.8GPMM 23.4 MAX GPY	TOTAL 3971.1LBS 11733.6LBS 16205.6LBS 204.6GAL 10.1GAL 6.80Z 22.53

NAME_____ NOTES:

Bullet PA14-02 611971-02

CONCRETE COMPRESSIVE STRENGTH TEST REPORT

Report Number: A1171057.0100 Service Date: 03/02/20 **Report Date:** 04/03/20 Revision 2 - 32-day results Task: PO #611971-02

Task.	FO #011	971-02		7	79-840-3707	Reg NO. 1-3272						
Client				Project								
Texas Transpo	ortation Instit	ute		Riverside Campus								
Attn: Gary Ge	erke			Riverside Campus								
TTI Business	Office			Bryan, TX								
3135 TAMU				.								
College Static	on, TX 77843	-3135		Project Number: A1171057								
Material Int	formation			Sample Information								
Specified Strength: 3,000 psi @ 28 days		Sample Date:	03/02/20	Sample Time:	0833							
•			-	Sampled By:	David Thor	npson						
Mix ID:	B1350			Weather Conditions:	Cloudy, no	wind						
Supplier:	Tucker Con	crete		Accumulative Yards:	8.45/8.45	Batch Size (cv):	8.45					
Batch Time:	0833	Plant:		Placement Method:	Direct Disc	harge						
Truck No.:	1802	Ticket No.:	289	Water Added Before (gal):	0	C						
				Water Added After (gal):	0							
Field Test I	Data			Sample Location:	25' south of	f north end						
Test		Result	Specification	Placement Location:	Barrier (PO #611971-02)							
Slump (in):		5 1/4	Not Specified			<i>,</i>						
Field Test I		Result	Specification	Water Added After (gal): Sample Location:	0 25' south of							

Laboratory Test Data

Air Content (%):

Yield (Cu. Yds.):

Concrete Temp. (F):

Ambient Temp. (F):

Plastic Unit Wt. (pcf):

Labo	ratory Te	st Data				Age at	Maximum	Compressive		
Set	Specimen	Avg Diam.	Area	Date	Date	Test	Load	Strength	Fracture	Tested
No.	ID	(in)	(sq in)	Received	Tested	(days)	(lbs)	(psi)	Туре	By
1	A	6.00	28.27	03/03/20	04/03/20	32 F	123,630	4,370	5	BRS
1	В	6.00	28.27	03/03/20	04/03/20	32 F	123,940	4,380	2	BRS
1	С	6.00	28.27	03/03/20	04/03/20	32 F	135,000	4,770	5	BRS
1	D			03/03/20		Hold				
Initial	Cure: Outsi	ide		Final C	ure: Field Cu	red				
<u> </u>										

Comments: F = Field Cured

Samples Made By: Terracon Services: Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

Terracon Rep.: David Thompson Reported To:

Contractor:

Report Distribution:

(1) Texas Transportation Institute, Gary Gerke (1) Terracon Consultants, Inc., Andrea Allen (1) Texas Transportation Institute, Bill Griffith

1.8

68

66

144.0

Not Specified

40 - 95

40 - 95

Not Specified

Reviewed By:

Start/Stop: 0730-1015

Andrea Allen

Project Manager

Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials. Page 1 of 1

CR0001, 11-16-12, Rev.6

Nar	-	ality-Form¤ Itained in this document is 611971-02 Tera	aa¶ confiden	Prepared by: V Approved by: -V		_Mix Do	DocNo.¶ ¶ <i>QF-7.3-01∝</i> Revision:-• 6∝ esign (psi): <u>:</u> Tera	1 •of 1∞ 3400 psi				
	Technician Taking Sample		acon		Technician Breaking Sample		Tera	con				
	Load No.	Truck No.	Т	icket No.	Locat	ion (fro	om concrete	map)				
⊤1		tucker		11725	barriers 1 a	barriers 1 and 3, Norther most barrier is 1						
	Load No.	Break Date	Су	linder Age	Total Load (lbs)	Bre	ak (psi)	Average				
			See a	attached Repo	orts from Terracon							

TUCKER Concrete 8930 LACY WELL RD, 77845 979 777 6749 VM1801

Job # TUCKER CONSTRUCTION

TICKET # 11725 START DATE: 03/06/2020 TIME: 08:10:51 STOP DATE: 03/06/2020 TIME: 08:53:16

		MI	X	DI	S	1	G	N		В	1	3	5	0					
RAW	CEMEN	T	CC	U	T	S				ст.	2	<u> </u>	-	17.	2		~		
RAW	CONVE	VO	D	00		N	÷.		1.72	-	77	-			1	0	2	3	5
	OONVL	10	R	50	10	N	1	>		-						3	8	2	3

TOTAL YARDS 8.15

MATERIAL	RATE SETTING	TOTAL
CAPTYPE1	448.3LBPM	3828.9LBS
LRMSAND	6.3 GATE	11348.9LBS
RGBLND	7.5 GATE	
WATER	19.4GPM	15674.2LBS
SIKA686	1.1GPM	183.2GAL
SIKANC4		9.8GAL
	0.80ZPM	6.50Z
MAA GFT	22.53 MAX GPM	21.5

NAME____NOTES:

6/157/-02

CONCRETE COMPRESSIVE STRENGTH TEST REPORT

Report Number: A1171057.0101 Service Date: 03/06/20 **Report Date:** 04/03/20 Revision 2 - 28-day results Task: PO #611971-02

Riverside Campus								
Bryan, TX								
Project Number: A1171057								
Sample Time: 0820								
is .								
erate wind								
Batch Size (cy): 8.15								
harge								
0								
urtier, center								
rier, east side (PO								
2)								

D Initial Cure: Outside

Concrete Temp. (F):

Ambient Temp. (F):

Yield (Cu. Yds.):

Set

No.

1

1

1

Plastic Unit Wt. (pcf):

Laboratory Test Data

ID

Α

В

С

Specimen Avg Diam.

(in)

6.00

6.00

6.00

Comments: F = Field Cured

Samples Made By: Terracon Services: Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231). Start/Stop: 0715-0945

Date

Tested

04/03/20

04/03/20

04/03/20

Final Cure: Field Cured

Terracon Rep.: Justin Maass **Reported To:**

Contractor:

Report Distribution:

(1) Texas Transportation Institute, Gary Gerke (1) Terracon Consultants, Inc., Andrea Allen (1) Texas Transportation Institute, Bill Griffith

62

51

149.3

Area

(sq in)

28.27

28.27

28.27

40 - 95

40 - 95

Not Specified

Date

Received

03/09/20

03/09/20

03/09/20

03/09/20

Reviewed By:

Maximum

Load

(lbs)

149,030

136,890

148,960

Compressive

Strength

(psi)

5,270

4,840

5,270

Age at

Test

(days)

28 F

28 F

28 F

Hold

Andrea Allen

Project Manager

Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials. Page 1 of 1

CR0001, 11-16-12, Rev.6

Tested

By

BRS

BRS

BRS

Fracture

Туре

5

5

4

APPENDIX C. MASH TEST 3-11 (CRASH TEST NO. 611971-02-1)

C1 VEHICLE PROPERTIES AND INFORMATION

	Table	C.1. Vehicle	e Propert	ies for T		511971-02-1.		
Date: 2	2020-04-03	Test No.:	61197	1-02	VIN No.:	1C6RR6F	T4ES	314674
Year:	2014	Make:	RA	М	Model	:	1500	
Tire Size:	265/70 R 17			Tire I	nflation Pre	essure:	35	osi
Tread Type:	Highway				Odd	ometer: <u>98219</u>		
Note any dar	nage to the ve	hicle prior to t	est: None	e				
 Denotes a 	ccelerometer I	ocation.		-	▲X			
NOTES: NO	one		1 +		77) ——	
Engine Type Engine CID:	: V-8 5.7 L		A M					WHEEL TRACK
Transmissior	or _] Manual □ 4WD		R P	•		ERTIAL C.M.	
Optional Equ None	ipment:		P-					
Dummy Data Type: Mass: Seat Positic	50th Perc	entile Male 55 lb	j lt t					
Geometry:	inches			1 1	M front	— C ———	M REAR	•
A78	.50 F	40.00	К	20.00	P _	3.00	U	26.75
	.00 G	29.00	L	30.00	_ Q _	30.50	V	30.25
C227		61.46	Μ	68.50	_ R _	18.00	W _	61.40
	. <u>00</u>	11.75	N	68.00	S	13.00	Χ_	79.00
E 140 Wheel Cer	nter ~ .	27.00	O Wheel Well	46.00	- Т_	77.00 Bottom Frame	-	
Height F	ront	14.75 Clea	arance (Front)		6.00	Height - Front	:	12.50
Wheel Ce Height R	lear		Wheel Well arance (Rear)		9.25	Bottom Frame Height - Rear		22.50
			_			nches; O=43 ±4 inches;		
GVWR Ratin	igs: 3700	Mass: Ib	<u>Cur</u>	<u>b</u> 2911	lest	<u>Inertial</u> 2829	Gros	<u>ss Static</u> 2914
	3900	M _{front} M _{rear}		2041		2029		2280
	6700 6700	M _{Total}		4952		5029		5194
Mass Distrik				(Allowable) 1441		1 GSM = 5000 lb ±110 lb;		1058
lb	LF:	1300	RF:	1441	LR:	1142 F	R:	1000

Date:2020-0	04-03 T	est No.: _	611971	-02	VIN:	1C6RR6F	T4ES31467	'4
Year:20^	14	Make:	RAM	1	Model:	1	500	
Body Style: _	ad Cab				Mileage:	98219		
Engine: 5.7 L	١	/-8		Trans	smission:	Automatic		
Fuel Level: E	mpty	Ball	ast: _172				(44) lb max)
Tire Pressure:	Front: <u>3</u>	<u>5 ps</u>	i Rea	ır: <u>35</u>	psi S	Size: 265/70 R	17	
Measured Vehicle Weights: (II			o)					
LF:	1388		RF:	1441		Front Axle:	2829	
LR:	1142		RR:	1058		Rear Axle:	2200	
Left:	2530		Riaht:	2499		Total:	5029	
							110 lb allowed	Ī
VVh	eel Base:	140.50	inches	Track: F:	68.50	inches R:	68.00	inches
	148 ±12 inche	es allowed			Track = (F+F	?)/2 = 67 ±1.5 inche	s allowed	
Center of Grav	vity SAE	1874 Sue	oonsion M	ethod				
Center of Gra	vity, OAL	507 4 003		emou				
X:	61.46	inches	Rear of F	ront Axle	(63 ±4 inches	s allowed)		
Y:	-0.21	inches	Left -	Right +	of Vehicle	e Centerline		
Ζ:	29.00	inches	Above Gr	ound	(minumum 2	8.0 inches allowed)		
Hood Heig	ht:	46.00	inches	Front	Bumper H	eight:	27.00	inches
------- -		nches allowed				J		
Front Overha	ng:	40.00	inches	Rear	Bumper H	eight:	30.00 i	inches
		nches allowed			-			
Overall Leng	th:	227.50	inches					
	237 ±1	3 inches allow	ed					

Table C.2. Measurements of Vehicle Vertical CG for Test No. 611971-02-1.

Date:	2020-04-03	Test No.:	611971-02	VIN No.:	1C6RR6FT4ES314674
Year:	2014	Make:	RAM	Model:	1500

Table C.3. Exterior Crush Measurements for Test No. 611971-02-1.

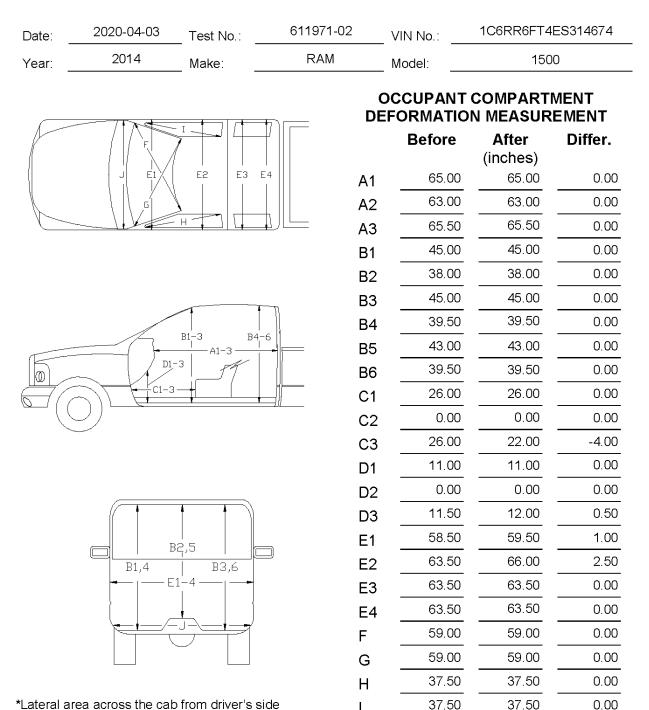
VEHICLE CRUSH MEASUREMENT SHEET¹

Complete Wh	en Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2 _
< 4 inches	2
\geq 4 inches	

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

G	Direct Damage		Damage								
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**	C1	C_2	C_3	C ₄	C ₅	C_6	±D
1	Front plane at bmp ht	14	10	30	0	1	3	6	8	10	7
2	Side plane at bmp ht	14	14	48	1.5	4	7	10	12	14	72
	Measurements recorded										
	√inches or ☐mm										

¹Table taken from National Accident Sampling System (NASS).


*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Table C.4. Occupant Compartment Measurements for Test No. 611971-02-1.

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

-3.00

37.50

22.00

25.00

L

J*

C2 SEQUENTIAL PHOTOGRAPHS

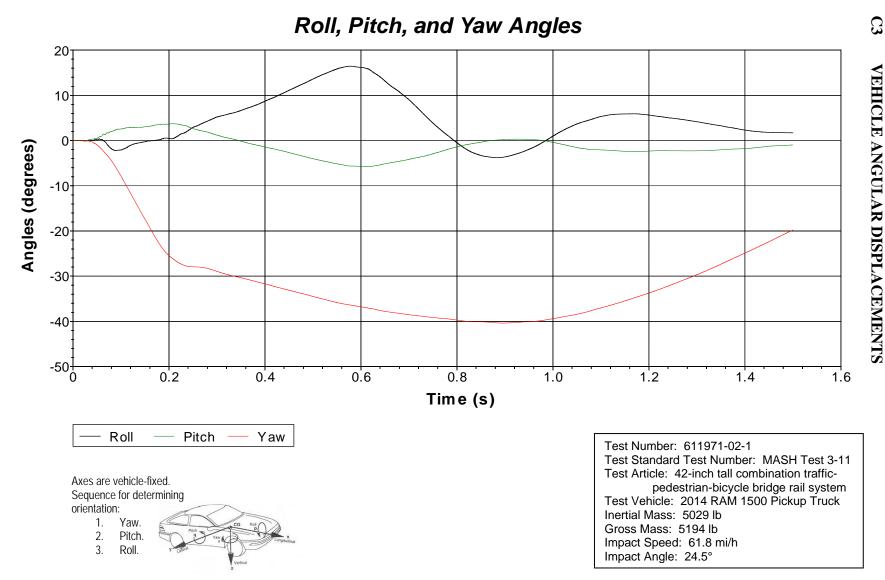
Figure C.1. Sequential Photographs for Test No. 611971-02-1 (Frontal and Rear Views).

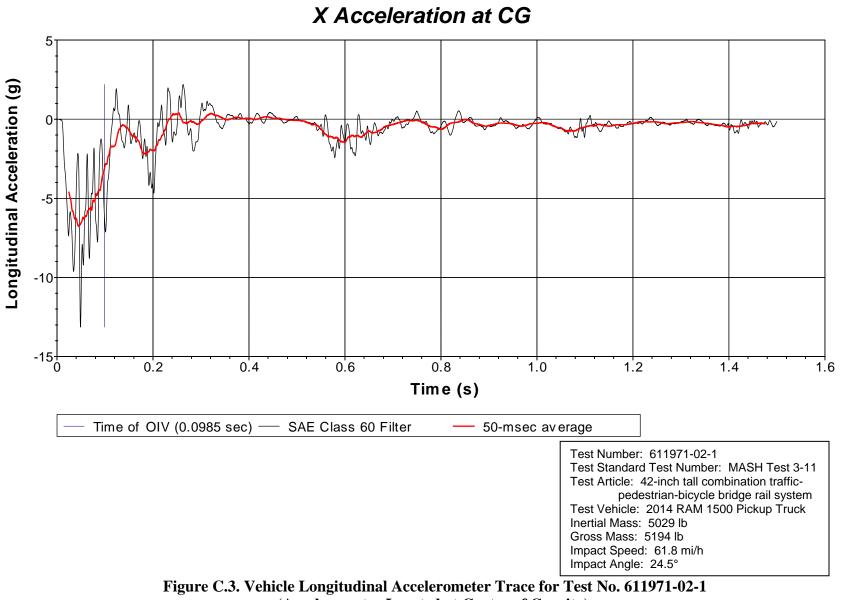
0.200 s

0.400 s

0.500 s

Figure C.1. Sequential Photographs for Test No. 611971-02-1 (Frontal and Rear Views) (Continued).

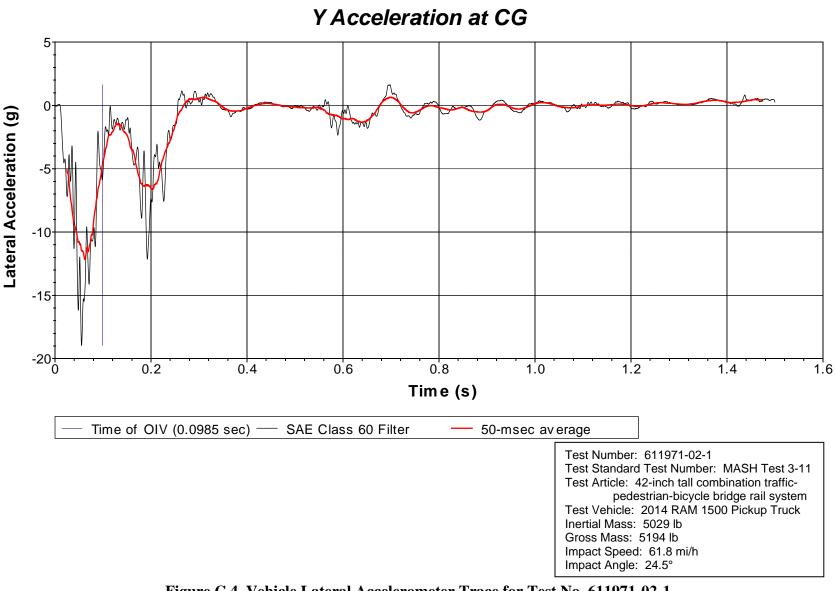


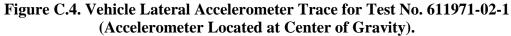

Figure C.2. Vehicle Angular Displacements for Test No. 611971-02-1.

TR No. 611971-02-1

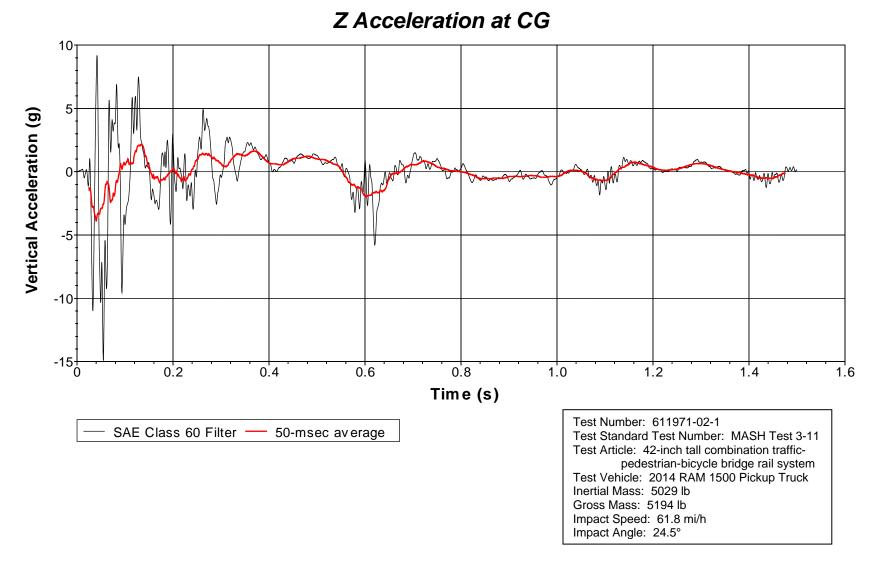
67

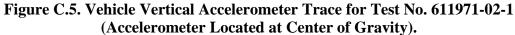
2020-06-24




22

VEHICLE ACCELERATIONS


(Accelerometer Located at Center of Gravity).


89

69

