

Test Report No. 616391-01

DESIGN AND *MASH* EVALUATION OF TRANSITION BETWEEN GUARDRAIL TO ANCHORED PORTABLE CONCRETE BARRIER

Sponsored by Washington State Department of Transportation (WsDOT)

TEXAS A&M TRANSPORTATION INSTITUTE PROVING GROUND

Roadside Safety & Physical Security Texas A&M University System RELLIS Campus Building 7091 1254 Avenue A Bryan, TX 77807

I echnical Report Documentation P					
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.			
616391-01					
4. Title and Subtitle	5. Report Date				
Design and MASH Evaluation of Tr	ansition between Guardrail to	October 2022			
Anchored Portable Concrete Barrier	ſ	6. Performing Organization Code			
7. Author(s)		8. Performing Organization Report No.			
Nauman M. Sheikh, Roger P. Bligh	, Sofokli Cakalli, William J. L.	Report 616391-01			
Schroeder, and Darrell L. Kuhn					
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)			
Texas A&M Transportation Institut					
3135 TAMU	11. Contract or Grant No.				
College Station, Texas 77843-3135	Project T4541				
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered			
Washington State Department of Tr	ansportation	Technical Report:			
Research Office MS 47372		May 2022-October 2022			
Transportation Building		14. Sponsoring Agency Code			
Olympia, WA 98504-7372					
15. Supplementary Notes					
Project Title: Transition between Guardrail and Tangent Anchored Portable Concrete Barriers					
Name of Contacting Representative	: Shawn Debenham				
16 Abstract					

b. Abstract

This report presents the development and full-scale crash testing of the Transition between Guardrail to Anchored Portable Concrete Barrier ("Transition"). The design of the Transition was developed using finite element simulation and analysis. A standard W-beam guardrail was connected to portable concrete barriers that were anchored to underlying asphalt using steel pins. The transition section was comprised of previously crash tested W-beam to nested Thrie-beam transition. This report presents the details and results of simulation analyses. It also presents the assessment of the performance of the Transition according to the safety-performance evaluation guidelines included in the American Association of State Highway and Transportation Officials (AASHTO) Manual for Assessing Safety Hardware (MASH), Second Edition (1). The crash tests were performed in accordance with MASH Test Level 3 (TL-3), which requires two crash tests:

- 1. MASH Test 3-20: An 1100C vehicle weighing 2420 lb impacting the longitudinal barrier at 25 degrees, while travelling at 62 mi/h.
- 2. MASH Test 3-21: A 2270P vehicle weighing 5000 lb impacting the longitudinal barrier at 25 degrees, while traveling at 62 mi/h.

This report provides details of the Transition, the crash tests and results, and the performance assessment of the Transition for MASH TL-3 evaluation criteria for longitudinal barriers.

The Transition between Guardrail to Anchored Portable Concrete Barrier met the performance criteria for MASH TL-3 for longitudinal barriers.

17. Key Words	18. Distribution Statement				
Guardrail, Portable Concrete Barrier	No restrictions. This document is available to the				
Transition, Crash Test, MASH, Lon	public through NTIS:				
Anchored, Finite Element Analysis, Simulation,		National Technical Information Service			
FEA		Alexandria, Virginia 22312			
	http://www.ntis.gov				
19. Security Classif. (of this report) 20. Security Classif. (of the		nis page)	21. No. of Pages	22. Price	
Unclassified Unclassified			116		

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.

DESIGN AND MASH EVALUATION OF TRANSITION BETWEEN GUARDRAIL TO ANCHORED PORTABLE CONCRETE BARRIER

by Nauman M. Sheikh, P.E. Research Engineer Texas A&M Transportation Institute

Roger P. Bligh, Ph.D., P.E. Senior Research Engineer Texas A&M Transportation Institute

Sofokli Cakalli Assistant Research Scientist Texas A&M Transportation Institute

William J. L. Schroeder Research Engineering Associate Texas A&M Transportation Institute

and

Darrell L. Kuhn, P.E. Research Specialist Texas A&M Transportation Institute

Report 616391-01 Contract No.: T4541 Project Title: Transition between Guardrail and Tangent Anchored Portable Concrete Barriers

> Sponsored by the Washington State Department of Transportation and the Federal Highway Administration

> > December 2022

TEXAS A&M TRANSPORTATION INSTITUTE College Station, Texas 77843-3135

TR No. 616391-01 1-2

2022-12-09

DISCLAIMER

The contents of this report reflect the views of the authors, who are solely responsible for the facts and accuracy of the data and the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Washington State Department of Transportation (WsDOT), The Texas A&M University System, or the Texas A&M Transportation Institute (TTI). This report does not constitute a standard, specification, or regulation. In addition, the above listed agencies/companies assume no liability for its contents or use thereof. The names of specific products or manufacturers listed herein do not imply endorsement of those products or manufacturers.

The results reported herein apply only to the article tested. The full-scale crash tests were performed according to TTI Proving Ground quality procedures and American Association of State Highway and Transportation Officials (AASHTO) Manual for Assessing Safety Hardware, Second Edition (*MASH*) guidelines and standards.

The Proving Ground Laboratory within TTI's Roadside Safety and Physical Security Division ("TTI Lab") strives for accuracy and completeness in its crash test reports. On rare occasions, unintentional or inadvertent clerical errors, technical errors, omissions, oversights, or misunderstandings (collectively referred to as "errors") may occur and may not be identified for corrective action prior to the final report being published and issued. If, and when, the TTI Lab discovers an error in a published and issued final report, the TTI Lab will promptly disclose such error to the Washington State Department of Transportation (WsDOT), and both parties shall endeavor in good faith to resolve this situation. The TTI Lab will be responsible for correcting the error that occurred in the report, which may be in the form of errata, amendment, replacement sections, or up to and including full reissuance of the report. The cost of correcting an error in the report shall be borne by the TTI Lab. Any such errors or inadvertent delays that occur in connection with the performance of the related testing contract will not constitute a breach of the testing contract.

THE TTI LAB WILL NOT BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, PUNITIVE, OR OTHER DAMAGES SUFFERED BY THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION (WSDOT) OR ANY OTHER PERSON OR ENTITY, WHETHER SUCH LIABILITY IS BASED, OR CLAIMED TO BE BASED, UPON ANY NEGLIGENT ACT, OMISSION, ERROR, CORRECTION OF ERROR, DELAY, OR BREACH OF AN OBLIGATION BY THE TTI LAB.

REPORT AUTHORIZATION

REPORT REVIEWED BY:

DocuSigned by:

Glenn Schroeder E692F9CB5047487...

Glenn Schroeder, Research Specialist Drafting & Reporting

DocuSigned by:

Adam Mayer -F7A06F754E02430..

Adam Mayer, Research Specialist Construction

— DocuSigned by: Scott Dobrovolny — 1C613885787C44C...

Scott Dobrovolny, Research Specialist Mechanical Instrumentation DocuSigned by:

Ken Reeves —60D556935596468.

Ken Reeves, Research Specialist Electronics Instrumentation

DocuSigned by:

Pichard Badillo — 0F51DA60AB144F9...

Richard Badillo, Research Specialist Photographic Instrumentation

DocuSigned by: WHE 25F29F1BAD624F8

William Schroeder Research Engineering Associate Research Evaluation and Reporting

DocuSigned by: Bill Griffith 44A122CB271845B.

Bill L. Griffith, Research Specialist Deputy Quality Manager

DocuSigned by:

Matt Robinson —EAA22BFA5BFD417...

Matthew N. Robinson, Research Specialist Test Facility Manager & Technical Manager

DocuSigned by: Danell Luch D4CC23E85D5B4E7.

Darrell L. Kuhn, P.E., Research Specialist Quality Manager

DocuSigned by: Hauman Hineikh 662F8286A604403...

Nauman M. Sheikh, P.E. Principal Investigator, Research Engineer

TABLE OF CONTENTS

	Pa	age
List of F	igures	. ix
List of T	ables	. xi
Chapter	1. Introduction	1
1.1.	Objective	1
Chapter	2. Design Development and Impact Simulation	3
2.1.	Conceptual Design	3
2.2.	Finite Element Model	6
2.3.	Impact Simulations of MASH Tests	8
Chapter	3. System Details	11
3.1.	Test Article and Installation Details	11
3.2.	Design Modifications during Tests	15
3.3.	Soil Conditions	16
Chapter	4. Test Requirements and Evaluation Criteria	17
4.1.	Crash Test Performed/Matrix	17
4.2.	Evaluation Criteria	17
Chapter	5. Test Conditions	19
5.1.	Test Facility	19
5.2.	Vehicle Tow and Guidance System	19
5.3.	Data Acquisition Systems	19
5.3.	1. Vehicle Instrumentation and Data Processing	19
5.3.2	2. Anthropomorphic Dummy Instrumentation	20
5.3.3	3. Photographic Instrumentation Data Processing	21
Chapter	6. <i>MASH</i> Test 3-20 (Crash Test No. 616391-01-1)	23
6.1.	Test Designation and Actual Impact Conditions	23
6.2.	Weather Conditions	25
6.3.	Test Vehicle	25
6.4.	Test Description	26
6.5.	Damage to Test Installation	27
6.6.	Damage to Test Vehicle	32
6.7.	Occupant Risk Factors	35
Chapter	7. <i>MASH</i> Test 3-21 (Crash Test No. 616391-01-2)	38
7.1.	Test Designation and Actual Impact Conditions	38
7.2.	Weather Conditions	40
7.3.	Test Vehicle	40
7.4.	Test Description	41
7.5.	Damage to Test Installation	42
7.6.	Damage to Test Vehicle	47
7.7.	Occupant Risk Factors	50
Chapter	8. Summary and Conclusions	53
8.1.	Assessment of Test Results	53
8.2.	Conclusions	53
8.3.	Implementation	53
Reference		57

APPEN	DIX A. Details of Transition between Guardrail to Anchored Portable	
Conc	rete Barrier	59
APPEN	DIX B. Supporting Certification Documents	
APPEN	DIX C. MASH Test 3-20 (Crash Test No. 616391-01-1)	
C.1.	Vehicle Properties and Information	
C.2.	Sequential Photographs	
C.3.	Vehicle Angular Displacements	102
C.4.	Vehicle Accelerations	103
APPEN	DIX D. MASH Test 3-21 (Crash Test No. 616391-01-2)	105
D.1.	Vehicle Properties and Information	105
D.2.	Sequential Photographs	108
D.3.	Vehicle Angular Displacements	111
D.4.	Vehicle Accelerations	112
2		

LIST OF FIGURES

	Page
Figure 2.1. Transition Design Concept 1	4
Figure 2.2. Transition Design Concept 2.	5
Figure 2.3. Transition Design Concept 3.	6
Figure 2.4. Finite Element Model of the Transition System	7
Figure 2.5. Simulation Results of MASH Test 3-21 with Pickup Truck	9
Figure 2.6. Simulation Results of MASH Test 3-20 with Small Passenger Car	10
Figure 3.1. Details of Transition System.	12
Figure 3.2. Transition prior to Testing	13
Figure 3.3. Transition prior to Testing	13
Figure 3.4. Transition prior to Testing	14
Figure 3.5. Transition prior to Testing	14
Figure 3.6. Transition prior to Testing	15
Figure 3.7. Transition prior to Testing	
Figure 4.1. Target CIP for MASH TL-3 Tests on Transition.	17
Figure 6.1. Transition/Test Vehicle Geometrics for Test 616391-01-1	
Figure 6.2. Transition/Test Vehicle Impact Location 616391-01-1.	
Figure 6.3. Impact Side of Test Vehicle before Test 616391-01-1.	
Figure 6.4. Opposite Impact Side of Test Vehicle before Test 616391-01-1.	
Figure 6.5. Transition after Test at Impact Location 616391-01-1	
Figure 6.6. Transition after Test at Grade Near the Impact Point 616391-01-1	
Figure 6.7. Transition after Test In-line with Portable Concrete Barrier 616391-01-1	
Figure 6.8. Asphalt Damage at the Upstream Anchor Location 616391-01-1.	
Figure 6.9. Damage to the Upstream Anchor Pin 616391-01-1.	
Figure 6.10. Asphalt Damage at the Middle Anchor Location 616391-01-1.	
Figure 6.11. Damage to the Middle Anchor Pin 616391-01-1.	
Figure 6.12. Asphalt Damage at the Downstream Anchor Location 616391-01-1.	
Figure 6.13. Damage to the Downstream Anchor Pin 616391-01-1.	
Figure 6.14. Impact Side of Test Vehicle after Test 616391-01-1.	
Figure 6.15. Windshield Deformation of the Test Vehicle after Test 616391-01-1	
Figure 6.16. Overall Interior of Test Vehicle after Test 616391-01-1	
Figure 6.17. Interior of Test Vehicle on Impact Side after Test 616391-01-1.	
Figure 6.18. Summary of Results for MASH Test 3-20 on Transition	37
Figure 7.1. Transition/Test Vehicle Geometrics for Test 616391-01-2	
Figure 7.2. Transition/Test Vehicle Impact Location 616391-01-2	39
Figure 7.3. Impact Side of Test Vehicle before Test 616391-01-2	40
Figure 7.4. Opposite Impact Side of Test Vehicle before Test 616391-01-2	41
Figure 7.5. Transition after Test at Impact Location 616391-01-2	43
Figure 7.6 Transition after Test Unstream of Impact In-Line with the Installation	
616391-01-2	43
Figure 7.7 Transition after Test From the Field Side 616391-01-2	44
Figure 7.8. Asphalt Damage at the Unstream Anchor Location 616391-01-2	
Figure 7.9 Damage to the Unstream Anchor Pin 616391-01-2	45
Figure 7.10 Asphalt Damage at the Middle Anchor Location 616301_01_2	
rigure 7.10. Asphan Damage at the Wildere Allenoi Location 010391-01-2.	····· +3

Figure 7.11. Damage to the Middle Anchor Pin 616391-01-2.	
Figure 7.12. Asphalt Damage at the Downstream Anchor Location 616391-01-2.	
Figure 7.13. Damage to the Downstream Anchor Pins 616391-01-2	
Figure 7.14. Impact Side of Test Vehicle after Test 616391-01-2.	
Figure 7.15. Rear Impact Side of Test Vehicle after Test 616391-01-2	
Figure 7.16. Overall Interior of Test Vehicle after Test 616391-01-2	
Figure 7.17. Interior of Test Vehicle on Impact Side after Test 616391-01-2.	
Figure 7.18. Summary of Results for MASH Test 3-21 on Transition	51
Figure B.1. Test Day Static Soil Strength Documentation for Test No. 616391-01-1	
Figure B.2. Test Day Static Soil Strength Documentation for Test No. 616391-01-2	
Figure C.1. Vehicle Properties for Test No. 616391-01-1	
Figure C.2. Exterior Crush Measurements for Test No. 616391-01-1.	
Figure C.3. Occupant Compartment Measurements for Test No. 616391-01-1	
Figure C.4. Sequential Photographs for Test No. 616391-01-1 (Overhead Views)	
Figure C.5. Sequential Photographs for Test No. 616391-01-1 (Frontal Views)	100
Figure C.6. Sequential Photographs for Test No. 616391-01-1 (Rear Views).	101
Figure C.7. Vehicle Angular Displacements for Test No. 616391-01-1.	102
Figure C.8. Vehicle Longitudinal Accelerometer Trace for Test No. 616391-01-1	
(Accelerometer Located at Center of Gravity).	103
Figure C.9. Vehicle Lateral Accelerometer Trace for Test No. 616391-01-1	
(Accelerometer Located at Center of Gravity).	103
Figure C.10. Vehicle Vertical Accelerometer Trace for Test No. 616391-01-1	
(Accelerometer Located at Center of Gravity)	104
Figure D.1. Vehicle Properties for Test No. 616391-01-2.	105
Figure D.2. Exterior Crush Measurements for Test No. 616391-01-2.	106
Figure D.3. Occupant Compartment Measurements for Test No. 616391-01-2	107
Figure D.4. Sequential Photographs for Test No. 616391-01-2 (Overhead Views)	108
Figure D.5. Sequential Photographs for Test No. 616391-01-2 (Frontal Views)	109
Figure D.6. Sequential Photographs for Test No. 616391-01-2 (Rear Views)	110
Figure D.7. Vehicle Angular Displacements for Test No. 616391-01-2.	111
Figure C.8. Vehicle Longitudinal Accelerometer Trace for Test No. 616391-01-2	
(Accelerometer Located at Center of Gravity).	112
Figure D.9. Vehicle Lateral Accelerometer Trace for Test No. 616391-01-2	
(Accelerometer Located at Center of Gravity)	112
Figure D.10. Vehicle Vertical Accelerometer Trace for Test No. 616391-01-2	
(Accelerometer Located at Center of Gravity).	113

LIST OF TABLES

	Page
Table 3.1. Soil Strength for 616391-01-1.	16
Table 3.2. Soil Strength for 616391-01-2.	16
Table 4.1. Test Conditions and Evaluation Criteria Specified for MASH TL-3 Longitudinal	
Barriers	17
Table 4.2. Evaluation Criteria Required for MASH Testing	18
Table 6.1. Impact Conditions for MASH Test 3-20 (616391-01-1).	23
Table 6.2. Exit Parameters for MASH Test 3-20 (616391-01-1).	23
Table 6.3. Weather Conditions 616391-01-1	25
Table 6.4. Vehicle Measurements 616391-01-1.	26
Table 6.5. Events during Test 616391-01-1	27
Table 6.6. Post Movement in Test 616391-01-1	27
Table 6.7. Damage to Transition in Test 616391-01-1.	27
Table 6.8. Occupant Compartment Deformation in Test 616391-01-1.	35
Table 6.9. Exterior Vehicle Damage in Test 616391-01-1.	35
Table 6.10. Occupant Risk Factors for Test 616391-01-1	36
Table 7.1. Impact Conditions for MASH Test 3-21 616391-01-2	38
Table 7.2. Exit Parameters for MASH Test 3-21 616391-01-2	38
Table 7.3. Weather Conditions 616391-01-2	40
Table 7.4. Vehicle Measurements 616391-01-2.	41
Table 7.5. Events during Test 616391-01-2	42
Table 7.6. Post Movement on the Transition 616391-01-2.	42
Table 7.7. Damage to Transition 616391-01-2.	42
Table 7.8. Occupant Compartment Deformation 616391-01-2.	49
Table 7.9. Exterior Vehicle Damage 616391-01-2.	49
Table 7.10. Occupant Risk Factors for Test 616391-01-2	50
Table 8.1. Performance Evaluation Summary for MASH Test 3-20 on Transition between	
Guardrail to Anchored Portable Concrete Barrier, 616391-01-1, 2022-09-19	54
Table 8.2. Performance Evaluation Summary for MASH Test 3-21 on Transition between	
Guardrail to Anchored Portable Concrete Barrier, 616391-01-2, 2022-10-04	55
Table 8.3. Assessment Summary for MASH TL-3 Tests on Transition between Guardrail to	
Anchored Portable Concrete Barrier	56
Table B.1. Test Day Static Soil Strength Documentation for Test No. 616391-01-1	94
Table B.2. Test Day Static Soil Strength Documentation for Test No. 616391-01-2	95

SI* (MODERN METRIC) CONVERSION FACTORS							
APPROXIMATE CONVERSIONS TO SI UNITS							
Symbol	When You Know	Multiply By	To Find	Symbol			
-	•	LENGTH	•				
in	inches	25.4	millimeters	mm			
ft	feet	0.305	meters	m			
yd	yards	0.914	meters	m			
mi	miles	1.61	kilometers	km			
		AREA		0			
In ²	square inches	645.2	square millimeters	mm²			
Π^2	square feet	0.093	square meters	m²			
yd-	square yards	0.830	square meters	m-			
ac mi ²	square miles	2 50	square kilometers	km ²			
	square miles		square kilometers	NIII			
floz	fluid ounces	29.57	milliliters	ml			
gal	gallons	3,785	liters	1			
ft ³	cubic feet	0.028	cubic meters	m ³			
yd ³	cubic yards	0.765	cubic meters	m ³			
-	NOTE: volumes g	greater than 1000L	shall be shown in m ³				
		MASS					
oz	ounces	28.35	grams	g			
lb	pounds	0.454	kilograms	kg			
Т	short tons (2000 lb)	0.907	megagrams (or metric ton")	Mg (or "t")			
~-	ТЕМРЕ	ERATURE (exac	t degrees)				
۳F	Fahrenheit	5(F-32)/9	Celsius	°C			
	FOROF	or (F-32)/1.8					
11-5	FURCE		or SIRESS	NI			
IDI Ibf/ip2	poundiorce	4.40	kilopascals	IN kPo			
				KI d			
Symbol	When You Know	Multiply By	To Find	Symbol			
- Cymie Ci		LENGTH		- Cjinzei			
mm	millimeters	0.039	inches	in			
m	meters	3.28	feet	ft			
m	meters	1.09	yards	yd			
km	kilometers	0.621	miles	mi			
		AREA					
mm ²	square millimeters	0.0016	square inches	in ²			
m ²	square meters	10.764	square feet	ft ²			
m ²	square meters	1.195	square yards	yd²			
ha	hectares	2.47	acres	ac			
KM ²	Square kilometers	0.386	square miles	mi ^			
ml	millilitore		fluid ouncos	07			
1	litere	0.034	gallons	02 dal			
m ³	cubic meters	35 314	cubic feet	ft ³			
m ³	cubic meters	1.307	cubic vards	vd ³			
		MASS	- ,	,			
g	grams	0.035	ounces	oz			
kg	kilograms	2.202	pounds	lb			
Mg (or "t")	megagrams (or "metric ton")	1.103	short tons (2000lb)	Т			
	TEMPE	ERATURE (exac	t degrees)				
°C	Celsius	1.8C+32	Fahrenheit	°F			
	FORCE	and PRESSURE	or STRESS				
N	newtons	0.225	poundforce	lbf			
l kPa	kilopascals	0.145	poundforce per square inch	lb/in ²			

*SI is the symbol for the International System of Units

Chapter 1. INTRODUCTION

In many situations, especially in mountainous areas, anchored portable concrete barriers (PCB) may be placed adjacent to steep slopes. Slopes such 2H:1V are not uncommon. Due to the limited space available behind the barrier, PCB segments are usually anchored to restrict their lateral movement on vehicle impact. There is often a need to connect a W-beam guardrail system to the anchored PCB system. Currently there are no available guardrail to anchored PCB transition designs that are *MASH* compliant.

1.1. OBJECTIVE

The goal of this project was to develop a transition between the 31-inch tall, steel-post W-beam guardrail and the 32-inch tall F-shape PCB system that is anchored using inclined steel pins on asphalt pavement. The transition design was required to meet *MASH* TL-3 requirements.

This report presents the design development using finite element (FE) simulations and the assessment of Transition between Guardrail to Portable Concrete Barrier ("Transition") according to the safety-performance evaluation guidelines included in the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH*), Second Edition (1). The crash tests were performed in accordance with *MASH* Test Level 3 (TL-3), which requires two crash tests (as discussed in Chapter 4).

Chapter 2. DESIGN DEVELOPMENT AND IMPACT SIMULATION

The PCB system selected for this project had 12.5-ft long segments that were connected to each other using the pin-and-loop connection. This anchored PCB system was previously designed and successfully crash tested under MASH. (2) It is anchored to an underlying asphalt pavement that is 4 inches thick. Three inclined steel pins are used to anchor each PCB segment. This chapter provides the details of the various concepts that were developed in the initial stages of the project, the FE model of the selected design concept, results of the impact simulations performed with the transition model, and recommendations for crash testing that were made based on the results of the simulations. Subsequent chapters present further details of the prototype test installation constructed for *MASH* testing and the results of the tests performed.

2.1. CONCEPTUAL DESIGN

The research team prepared three initial design concepts for the review and selection of the Technical Representative. These concepts are presented in Figure 2.1 through Figure 2.3. In all concepts, the W-beam guardrail was attached to the anchored PCB system using the W-beam to nested Thrie-beam guardrail transition system. The W-beam to nested Thrie-beam system has previously been crash tested and passed under MASH evaluation criteria for TL-3. The post spacing in the nested Thrie beam section is reduced to quarter-post-spacing (18.75 inches) to stiffen the guardrail in advance of the start of the concrete barrier. The Thrie beam was connected to the PCB system using a Thrie beam end connector.

In the first design concept (Figure 2.1), the F-shape barrier segment adjacent to the nested Thrie beam was rotated 6 inches toward the non-impact side. Three wood blocks of varying depths were placed between the Thrie beam guardrail and the surface of the concrete barrier. These blocks prevented the guardrail from having excessive deformation as the vehicle transitioned from the stiff nested Thrie beam to the PCB segment.

Figure 2.1. Transition Design Concept 1.

The second concept (Figure 2.2) was similar to the first concept, however, the first PCB was not rotated back. Instead, the nested Thrie beam covering the PCB was rotated back to be connected to the second PCB segment using a Thrie beam end connector. This concept also used three wood blocks between the Thrie beam and the first PCB segment.

Figure 2.2. Transition Design Concept 2.

In the third concept (Figure 2.3), the Thrie beam system was connected to the end of the first PCB segment, without covering the entire length of the segment. To reduce vehicle snagging potential with the toe of the barrier, a 4-ft long short curb section was proposed that would be installed in advance of the F-shape PCB segment. This curb section transitioned to the shape of the F-shape segment's toe and was to be anchored into the asphalt pavement to prevent it from sliding during the vehicle impact.

Figure 2.3. Transition Design Concept 3.

The research team presented the three concepts to the Technical Representative, and the second concept (Figure 2.2) was selected for further development through simulation analysis and full-scale crash testing.

2.2. FINITE ELEMENT MODEL

The research team developed a full-scale model of the anchored PCB to W-beam guardrail system proposed in Figure 2.2. The research team then performed impact simulations using *MASH* TL-3 impact conditions. All simulations were performed using the FE method. LS-DYNA, which is a commercially available general-purpose FE analysis software, was used for the analysis.

Figure 2.4 presents different views of the overall anchored PCB to W-beam guardrail system model. The metal guardrail system parts, the barrier connections, and the anchoring pins were modeled with elastic-plastic material representation. The barrier segments were modeled with mostly rigid material representation, except in the regions around the anchoring pins where deformable concrete material was used. The anchoring pins passed through the barrier segments and into the 4-inch thick asphalt pad and the underlying soil. The asphalt and the soil were also modeled with deformable materials that represented their respective properties.

Vehicle models used in the simulation analysis were publicly available models developed by the Center for Collision Safety and Analysis under Federal Highway Administration (FHWA) and National Highway Traffic Safety Administration (NHTSA) sponsorships. These models have been further improved by the TTI research team over the course of various research projects to achieve greater validation and robustness.

Isometric View

Back-side Isometric View

Figure 2.4. Finite Element Model of the Transition System.

2.3. IMPACT SIMULATIONS OF MASH TESTS

The researchers performed impact simulations for *MASH* Test 3-21. This involved impacting the transition system with a 5,000-lb pickup truck at an impact speed and angle of 62 mi/h and 25 degrees. A RAM model was used in the simulations. Three simulations were performed with the vehicle impacting 56 inches, 92 inches, 128 inches, and 164 inches upstream of the end of the PCB attached to the Thrie beam. While the vehicle was successfully contained and redirected in all of the simulations, the impact at 92 inches upstream of the end of the anchored PCB was determined to be the critical impact point (CIP) for Test 3-21 due to the greatest vehicle snag potential with the anchored PCB segment. The results of this simulation are shown in Figure 2.5. The maximum occupant impact velocity (OIV) and ride-down acceleration (RA) were 28.2 ft/s and 9.7 g, respectively. The transition system had a maximum dynamic and permanent deflection of 2.04 inches. Results of the simulation showed that the surface-mounted median guardrail design was expected to pass *MASH* Test 3-21 evaluation criteria in a full-scale crash test.

The researchers also performed impact simulations for *MASH* Test 3-21. This involved impacting the transition system with a 3,300-lb small passenger sedan at an impact speed and angle of 62 mi/h and 25 degrees. A Toyota Yaris model was used in the simulations. Three simulations were performed with the vehicle impacting 22.5 inches, 58.5 inches, and 94.5 inches upstream of the end of the anchored PCB attached to the Thrie beam. While the vehicle was successfully contained and redirected in all of the simulations, the impact at 58.5 inches upstream of the end of the anchored PCB was determined to be the CIP for Test 3-21 due to greatest snag potential with the PCB segment. The results of this simulation are shown in Figure 2.6. The maximum OIV and RA were 29.2 ft/s and 16.8 g, respectively. The transition system had a maximum dynamic and permanent deflection of 5.71 inches. Results of the simulation showed that the surface-mounted median guardrail design was expected to pass *MASH* Test 3-20 evaluation criteria in a full-scale crash test.

Figure 2.5. Simulation Results of MASH Test 3-21 with Pickup Truck.

Figure 2.6. Simulation Results of MASH Test 3-20 with Small Passenger Car.

Based on the successful performance of the guardrail in the impact simulations of *MASH* Tests 3-20 and 3-21, the researchers proceeded with the full-scale crash testing. The details of these are presented in the following chapters.

Chapter 3. SYSTEM DETAILS

3.1. TEST ARTICLE AND INSTALLATION DETAILS

The installation was 115 ft-5¼ inches long, and consisted of four 12½ foot long, steel reinforced, F-shape concrete barriers that transitioned to a standard 31-inch-high W-beam guardrail. The concrete barriers were connected to each other via end loops with 1-inch diameter connection pins. They were placed on a 4-inch thick, 8 foot wide, 52 foot long, asphalt pad, which was constructed on top of a 12-inch thick layer of crushed limestone base. Each barrier segment had three 1½-inch diameter anchor pins securing it to the underlying asphalt and base. A 1.5H:1V slope was constructed on the non-impact side of the barriers, with a 12-inch offset from the edge of the barrier segments.

The guardrail transition began approximately 30 inches downstream of the joint between Barriers 1 and 2, and measured 45 ft-1½-inches long to the W-beam lap splice between posts 6 and 7. From the downstream end, it consisted of a Thrie-beam Terminal Connector that was attached to Barrier 2, a 12½ foot long section of 4-space Thrie-beam, a 12½ foot long section of two nested Thrie-beams, a 75-inch long Asymmetric Thrie-beam to W-beam Transition section, and a 12½ foot long section of 4-space W-beam guardrail. The nested Thrie-beams, Asymmetric Transition, and W-beams were supported by W6×8.5 posts and timber blockouts. Timber blocks of varying depth were attached to the Thrie-beam section covering Barrier 1.

Upstream of the transition, a 25-ft long standard 31-inch tall W-beam guardrail was attached. It was terminated by attaching to a Steel Post Terminal on the upstream end.

Figure 3.1 presents the overall information on the Transition, and Figure 3.2 thru Figure 3.7 provide photographs of the installation. Appendix A provides further details on the Transition. Drawings were provided by the Texas A&M Transportation Institute (TTI) Proving Ground, asphalt was installed by BPI, and construction was performed by TTI Proving Ground personnel.

Figure 3.1. Details of Transition System.

Figure 3.2. Transition prior to Testing.

Figure 3.3. Transition prior to Testing.

Figure 3.4. Transition prior to Testing.

Figure 3.5. Transition prior to Testing.

Figure 3.6. Transition prior to Testing.

Figure 3.7. Transition prior to Testing.

3.2. DESIGN MODIFICATIONS DURING TESTS

No modifications were made to the installation during the testing phase.

3.3. SOIL CONDITIONS

The posts for the test installation were installed in standard soil meeting Grading D of AASHTO standard specification M 147-17 "Materials for Aggregate and Soil-Aggregate Subbase, Base, and Surface Courses."

In accordance with Appendix B of *MASH*, soil strength was measured on the day of the crash test. During installation of the Transition for full-scale crash testing, two 6-ft long W6×16 posts were installed in the immediate vicinity of the Transition using the same fill materials and installation procedures used in the test installation and the standard dynamic test. Table B.1 in Appendix B presents minimum soil strength properties established through the dynamic testing performed in accordance with *MASH* Appendix B.

The tests are summarized in Appendix B, Table B.1 and Table B.2.

On the day of Test 3-20, 2022-09-19, loads on the post at deflections are shown in Table 3.1: the backfill material in which the Transition was installed met minimum *MASH* requirements for soil strength.

Displacement (in)	Minimum Load (lb)	Actual Load (lb)		
5	4420	9100		
10	4981	10,000		
15	5282	11,000		

Table 3.1. Soil Strength for 616391-01-1.

On the day of Test 3-21, 2022-10-04, loads on the post at deflections are shown in Table 3.2: the backfill material in which the Transition was installed met minimum *MASH* requirements for soil strength.

Displacement (in)	Minimum Load (lb)	Actual Load (lb)		
5	4420	11,000		
10	4981	N/A*		
15	5282	N/A*		

Table 3.2. Soil Strength for 616391-01-2.

*Loads at 10 and 15 inches were not measured due to the high load recorded at 5 inches

Chapter 4. TEST REQUIREMENTS AND EVALUATION CRITERIA

4.1. CRASH TEST PERFORMED/MATRIX

Table 4.1 shows the test conditions and evaluation criteria for *MASH* TL-3 for longitudinal barriers. The target critical impact points (CIPs) for each test were determined using the simulation analysis presented in Chapter 2. Figure 4.1 shows the target CIP for *MASH* Tests 3-20 and 3-21on the Transition.

Table 4.1. Test Conditions and Evaluation Criteria Specified for MASH	FL-3 Longitudinal
Barriers.	

	Test Designation	Test Vehicle	Impact Speed	Impact Angle	Evaluation Criteria					
	3-20	1100C	62 mi/h	25°		А,	D, F, H	I, I		
	3-21	2270P	62 mi/h	25°		А,	D, F, H	I, I		
		7 3 12 <u>古青青青 黄</u>	10 8 <u>6 6 6</u>	ð	6 A	Ā	4 •	ð	2	B
~		5"	Path		25°					
		7 5 12 <u>AAAAA</u> 9" 3-20 Impact Pat	10 8 <u>л д л</u> h	<u>ħ</u> ,	6 <u>h</u> 25°	<u> </u>	4 	<u>, ň</u>	2	<u></u>

Figure 4.1. Target CIP for MASH TL-3 Tests on Transition.

The crash tests and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

4.2. EVALUATION CRITERIA

The appropriate safety evaluation criteria from Tables 2.2 and 5.1 of *MASH* were used to evaluate the crash tests reported herein. Table 4.1 lists the test conditions and evaluation criteria required for *MASH* TL-3, and Table 4.2 provides detailed information on the evaluation criteria.

Evaluation Factors	Evaluation Criteria	MASH Test
А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	20, 21
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of <i>MASH</i> .	20, 21
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	20, 21
H.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s. Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 10 ft/s, or maximum allowable value of 16 ft/s.	20, 21
I.	The occupant ridedown accelerations should satisfy the following: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	20, 21

 Table 4.2. Evaluation Criteria Required for MASH Testing.

Chapter 5. TEST CONDITIONS

5.1. TEST FACILITY

The full-scale crash tests reported herein were performed at the TTI Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, as well as *MASH* guidelines and standards.

The test facilities of the TTI Proving Ground are located on The Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 mi northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, highway pavement durability and efficacy, and roadside safety hardware and perimeter protective device evaluation. The sites selected for construction and testing are along the edge of an out-of-service apron/runway. The apron/runway consists of an unreinforced jointed-concrete pavement in 12.5-ft × 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement but are otherwise flat and level.

5.2. VEHICLE TOW AND GUIDANCE SYSTEM

For the tests utilizing the 1100C and 2270P vehicles, each was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point and through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site.

5.3. DATA ACQUISITION SYSTEMS

5.3.1. Vehicle Instrumentation and Data Processing

The test vehicle was instrumented with a self-contained onboard data acquisition system. The signal conditioning and acquisition system is a multi-channel data acquisition system (DAS) produced by Diversified Technical Systems Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid-state units designed for crash test service. The data acquisition hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 samples per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit in case the primary battery cable is severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the DAS unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each DAS is returned to the factory annually for complete recalibration and to ensure that all instrumentation used in the vehicle conforms to the specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCO[®] 2901 precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive calibration via a Genisco Rate-of-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel per SAE J211. Calibrations and evaluations are also made anytime data are suspect. Acceleration data are measured with an expanded uncertainty of ± 1.7 percent at a confidence factor of 95 percent (k = 2).

TRAP uses the DAS-captured data to compute the occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with an SAE Class 180-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k = 2).

5.3.2. Anthropomorphic Dummy Instrumentation

An Alderson Research Laboratories Hybrid II, 50th percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the front seat on the impact side of the 1100C vehicle. The dummy was not instrumented.

According to *MASH*, use of a dummy in the 2270P vehicle is optional, and no dummy was used in the test.

5.3.3. Photographic Instrumentation Data Processing

Photographic coverage of each test included three digital high-speed cameras:

- One located overhead with a field of view perpendicular to the ground and directly over the impact point.
- One placed upstream from the installation at an angle to have a field of view of the interaction of the rear of the vehicle with the installation.
- A third placed with a field of view parallel to and aligned with the installation at the downstream end.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the Guardrail to Portable Concrete Barrier. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.
Chapter 6. MASH TEST 3-20 (CRASH TEST NO. 616391-01-1)

6.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 6.1 for details on *MASH* impact conditions for this test and Table 6.2 for the exit parameters. Figure 6.1 and Figure 6.2 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5 mi/h	62.2
Impact Angle (deg)	25	±1.5°	25.2
Impact Severity (kip-ft)	51	≥51 kip-ft	57.6
Impact Location	9 inches upstream from centerline of post 15.	± 12 inches	9.5 inches upstream from centerline of post 15.

Table 6.1. Impact Conditions for MASH Test 3-20 (616391-01-1).

Table 6.2.	Exit Parameters	s for <i>MASH</i> Tes	st 3-20 (616391-01-1).	
1 abic 0.2.				

Exit Parameter	Measured	
Speed (mi/h)	47.3	
Trajectory (deg)	4	
Heading (deg)	4	
Brakes applied post impact (s)	3.6	
	238 ft downstream of impact point	
Vehicle at rest position	112 ft to the traffic side	
	80° left	
Comments:	Vehicle remained upright and stable.	
	Vehicle crossed exit box ^a 59 ft downstream from loss of contact.	

^a Not less than 32.8 ft downstream from loss of contact for cars and pickups is optimal.

Figure 6.1. Transition/Test Vehicle Geometrics for Test 616391-01-1.

Figure 6.2. Transition/Test Vehicle Impact Location 616391-01-1.

6.2. WEATHER CONDITIONS

Table 6.3 provides the weather conditions for 616391-01-1.

Date of Test	2022-09-19 AM
Wind Speed (mi/h)	4
Wind Direction (deg)	191
Temperature (°F)	86
Relative Humidity (%)	75
Vehicle Traveling (deg)	195

 Table 6.3. Weather Conditions 616391-01-1.

6.3. TEST VEHICLE

Figure 6.3 and Figure 6.4 show the 2016 Nissan Versa used for the crash test. Table 6.4 shows the vehicle measurements. Table C.1 in Appendix C.1 gives additional dimensions and information on the vehicle.

Figure 6.3. Impact Side of Test Vehicle before Test 616391-01-1.

Figure 6.4. Opposite Impact Side of Test Vehicle before Test 616391-01-1.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	165
Inertial Weight (lb)	2420	±55	2458
Gross Static ^a (lb)	2585	±55	2623
Wheelbase (inches)	98	± 5	102.4
Front Overhang (inches)	35	±4	32.5
Overall Length (inches)	169	± 8	175.4
Overall Width (inches)	65	± 3	66.7
Hood Height (inches)	28	±4	30.5
Track Width ^b (inches)	59	±2	58.4
CG aft of Front Axle ^c (inches)	39	±4	42.0
CG above Ground ^{c,d} (inches)	N/A	N/A	N/A

Table 6.4. Vehicle Measurements 616391-01-1.

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy.

^b Average of front and rear axles.

^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

6.4. TEST DESCRIPTION

Table 6.5 lists events that occurred during Test No. 616391-01-1. Figures C.1 and C.2 in Appendix C.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0140	Posts 13, 14, 15, 16 and 17 began to lean toward field side
0.0350	Vehicle began to redirect
0.0500	Upstream edge of first PCB began to move toward field side
0.0540	Windshield began to crack due to vehicle body flexing from impact
0.1190	Upstream edge of first PCB stopped moving toward field side
0.1760	Vehicle was parallel with the installation
0.3030	Vehicle exited the installation at 47.4 mi/h with a heading of 4 degrees and a trajectory
	of 4 degrees

Table 6.5. Events during Test 616391-01-1.

6.5. DAMAGE TO TEST INSTALLATION

The rail was scuffed at the impact location and along the length of the contact. The upstream end of the barrier was pushed back 4 inches. Table 6.7 and Table 6.6 describe the damage to the Transition. Figure 6.5 through Figure 6.13 show the damage to the Transition.

Post Number	Soil Gap (inches)	Post Lean from Vertical (degrees)
12	1⁄8 t/s	0
13	1⁄4 t/s	0
14	³ ⁄ ₈ t/s	1
15	³ ⁄ ₈ t/s	1
16	¹ ⁄ ₄ f/s	1
17	¹ / ₄ f/s	1.5

Table 6.6. Post Movement in Test 616391-01-1.

t/s: traffic side; f/s: field side

Test Parameter	Measured
Permanent Deflection/Location	4 inches toward field side, at the upstream end of the first concrete barrier
Maximum Dynamic Deflection	6 inches toward field side, at the top of the upstream end of the first concrete barrier.
Working Width ^a and Height	30.2 inches, at a height of 0 inches at the base of the first concrete barrier

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 6.5. Transition after Test at Impact Location 616391-01-1.

Figure 6.6. Transition after Test at Grade Near the Impact Point 616391-01-1.

Figure 6.7. Transition after Test In-line with Portable Concrete Barrier 616391-01-1.

Figure 6.8. Asphalt Damage at the Upstream Anchor Pin Location 616391-01-1.

Figure 6.9. Damage to the Upstream Anchor Pin 616391-01-1.

Figure 6.10. Asphalt Damage at the Middle Anchor Pin Location 616391-01-1.

Figure 6.11. Damage to the Middle Anchor Pin 616391-01-1.

Figure 6.12. Asphalt Damage at the Downstream Anchor Pin Location 616391-01-1.

Figure 6.13. Damage to the Downstream Anchor Pin 616391-01-1.

6.6. DAMAGE TO TEST VEHICLE

Figure 6.14 and Figure 6.15 show the damage sustained by the vehicle. Figure 6.16 and Figure 6.17 show the interior of the test vehicle. Table 6.8 and Table 6.9 provide details on the occupant compartment deformation and exterior vehicle damage. The windshield sustained two tears in the laminate: one measuring 13 inches long \times 1.25 inches wide and the other 8 inches long \times 1.25 inches wide. The windshield's permanent deformation measured 2.75 inches deep. The tears and deformation damage to the windshield was caused by the flexing of the frame members during the impact, and not by any element(s) of the test article. Tables C.2 and C.3 in Appendix C.1 provide exterior crush and occupant compartment measurements.

Figure 6.14. Impact Side of Test Vehicle after Test 616391-01-1.

Figure 6.15. Windshield Deformation of the Test Vehicle after Test 616391-01-1.

Figure 6.16. Overall Interior of Test Vehicle after Test 616391-01-1.

Figure 6.17. Interior of Test Vehicle on Impact Side after Test 616391-01-1.

Test Parameter	Specification	Measured
Roof	\leq 4.0 inches	0 inches
Windshield	\leq 3.0 inches	2.75 inches
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤ 9.0 inches	3 inches
Floor Pan/Transmission Tunnel	≤ 12.0 inches	0 inches
Side Front Panel	≤ 12.0 inches	5.5 inches
Front Door (above Seat)	≤9.0 inches	5 inches
Front Door (below Seat)	≤ 12.0 inches	0 inches

 Table 6.8. Occupant Compartment Deformation in Test 616391-01-1.

Table 6.9. Exterior Vehicle Damage in Test 616391-01-1.

Side Windows	The side windows remained intact.
Maximum Exterior Deformation	10 inches in the front plane at the right front corner at bumper height
VDS	01RFQ5
CDC	01FREW4
Fuel Tank Damage	None
Description of Damage to Vehicle:	The front bumper, hood, grill, right front head light, right front tire and rim, right front a-pillar, windshield, right front door, right front floor pan, roof, right rear door and rear bumper were damaged. The windshield was cracked and deformed in an area 45 inches by 29 inches and 2.75 inches deep. The windshield sustained two tears in the laminate: one measuring 13 inches long \times 1.25 inches wide and the other 8 inches long \times 1.25 inches wide. The windshield's permanent deformation measured 2.75 inches deep. The tears and deformation damage was caused by the flexing of the frame members during the impact and not caused by any element(s) of the test article. The right front door had a 6-inch gap at the top. The roof had 3 small dents, with maximum deformation of 5 inches wide and 0.5 inches deep.

6.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 6.10. Figure C.3 in Appendix C.3 shows the vehicle angular displacements, and Figures C.4 through C.6 in Appendix C.4 show acceleration versus time traces.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	21.0	0.0845 seconds on right side of interior
OIV, Lateral (ft/s)	≤40.0	25.2	0.0845 seconds on right side of interior
Ridedown, Longitudinal (g)	≤20.49	5.4	0.1091 - 0.1191 seconds
Ridedown, Lateral (g)	≤20.49	10.4	0.0949 - 0.1049 seconds
THIV (m/s)	N/A	10.1	0.0823 seconds on right side of interior
ASI	N/A	2.1	0.0496 - 0.0996 seconds
50-ms MA Longitudinal (g)	N/A	-11.6	0.0373 - 0.0873 seconds
50-ms MA Lateral (g)	N/A	-16.0	0.0188 - 0.0688 seconds
50-ms MA Vertical (g)	N/A	3.3	0.0158 - 0.0658 seconds
Roll (deg)	≤75	9	0.4277 seconds
Pitch (deg)	≤75	6	1.9995 seconds
Yaw (deg)	N/A	44	2.0000 seconds

Table 6.10. Occupant Risk Factors for Test 616391-01-1.

					Test Sta	Test Agency indard/Test No.	Texas MASH	A&M Trans	portation Institute (TTI)		
					Test Sta	indard/Test No.	MASH	2016 Test ?	3-20		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Test Standard/Test No.			MASH 2016, Test 3-20				
						TTI Project No.			616391-01-1		
TEST ARTICLE Test information Image: constraint of the section of th	THE STATE				Test Date			2022-09-19			
					TEST ARTICLE						
						Туре	Longitudinal Barrier Transition				
Length 115 feet 5¼ inches 0.000 s 32-inch tall P-shage concrete barriers pinned on asphalt, Thrie-beam and W-beam Guardrail, 31-inch tall guardrait, 72-inch long wide-flange guardrait posts AASITO Construction AASITO Construction 0.000 s Soil Type and Condition AASITO Construction AASITO Construction 0.200 s Interial Weight (b) 0.200 s Impact Speed (m/h) 10 to the traits side 15 110 to the traits side 15 111 to the traits side 15 12 to the traits side 12 to the traits side 12 to the traits side 12 12 to the traits side traitsiside 10				Name			Transit	Transition between Guardrail to Anchored Portable Concrete Barrier			
Sign: http://isign: http://is	A CONTRACT OF A					Length	115 feet 5¼ inches				
Angle data, 17-46(100) ng wee-maps_pandan) pass Angle data, 17-46(100) Nu17-46(100) Nu17-	0.000		10.20	Key Materials		32-incl asphalt	32-inch tall F-shape concrete barriers pinned on asphalt, Thrie-beam and W-beam Guardrail, 31-inch				
TEST VEHICLETest Vehicle Type/Designation100 cType/Designation100 cVehicle Type/Designation100 cVehicle Type/Designation100 cVehicle Type/Designation100 cVehicle Type/Designation0.200 sMPACT CONDITIONSImpact Angle (deg)26.2Impact Angle (deg)25.2Impact SectionDimpact ControlDimpact SectionDimpact SectionDimpact SectionDimpact SectionDimpact SectionDimpact SectionDimpact SectionDimpact ControlDimpact SectionDimpact Section <td>0.000</td> <td>, ,</td> <td></td> <td colspan="2">Soil Type and Condition A</td> <td>AASH</td> <td colspan="2">AASHTO M147-65(2004), Grading D Crushed</td>	0.000	, ,		Soil Type and Condition A		AASH	AASHTO M147-65(2004), Grading D Crushed				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		_	and the second second	TEST VE	EHICLE		Concre				
$\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ Vear, Make and Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Distance In Model }}{106 \text{ Nissan Versa}}$ $\frac{1 \text{ light Dissance In Model }}{106 \text{ Nissan Versa}}$ $1 \text{ light Diss$					Tv	me/Designation	1100 0	1			
$ \begin{array}{ c c c } \hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$		All	State State State	I ype/Designation			2016 N	Jissan Versa			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			}		I cal, In	tial Weight (lb)	20101	vissaii v cisa			
$\frac{ c }{ c } c c }{ c } c c $					liter	Dummy (lb)	165				
0.200 s $WPACT CONDITIONS$ $WPACT CONDITIONS$ $Impact Speed (mi/h) 62.2$ $Impact Angle (deg) 25.2$ $Impact Location 9.5 inches upstream from centerline of post 15.$ $Impact Severity (kg-rh) 57.6$ $EXIT CONDITIONS$ $EXIT CONDI$	and the second second		A DECEMBER		(Proce Static (lb)	2622				
0.200 s Impact Speed (mi/h) 62.2 Impact Angle (deg) 25.2 Impact Speed (mi/h) 9.5 inches upstream from centerline of post 15. Impact Severity (kip-ft) 57.6 EXIT CONDITIONS EXIT CONDITIONS CONDITIONS O.400 s TEST ARTICLE DEFLECTIONS Dynamic (inches) O.400 s Dynamic (inches) O.400 s Dynamic (inches) O.400 s Dynamic (inches) O.400 s Dynamic (inches) O.20 VEHICLE DEFLECTIONS Dynamic (inches) O.20 VEHICLE DAMAGE VDS OIRFQ5 CDC 0IRFEW4 Max Occupant Compartment Deformation D.5.1 inches in the side kick panel OCCUPANT RISK VALUES Long. OIV (ft/s) 21.0 COCUPANT RISK VALUES </td <td>0.200</td> <td></td> <td>1.1.1.1.1.1.1</td> <td>IMPACT</td> <td></td> <td></td> <td>2023</td> <td></td> <td></td> <td></td>	0.200		1.1.1.1.1.1.1	IMPACT			2023				
Inpact Speed (Inff) = 0.2.2 $Inpact Angle (deg) = 25.2$ $Inpact Angle (deg) = 0.5 inches upstream from centerline of post 15.$ $Inpact Severity (kip-ft) = 57.6$ EXIT CONDITIONS $Exit Speed (mi/h) = 47.3$ $Trajectory/Heading Angle (deg) = 4/.4$ $Exit Box Criteria = Vehicle crossed the exit box$ $238 ft downstream 112 ft to the traffic side = 128 ft downstream 112 ft downstream 112 ft downstream 1$	0.200				Impa	ct Speed (mi/h)	62.2				
$\begin{tabular}{ c c c c c } \hline $1.2.2 \\ \hline $1.10pact Location 9.5 inches upstream from centerline of post 15. \\ \hline $1.10pact Severity (kir)h $5.7.6$ \\ \hline $1.10pact Severtth $1.10pact Severth $1.10pact Seveth $1.10pact Severth $1.10pac$					Impa	act Angle (deg)	25.2				
$ \begin{array}{c c c c c c } \hline \\ \hline $	In the site			Impact Angle (deg)			25.2 0.5 inches unstream from contarling of post 15				
Inder Order With (reprint to the state length of the state lengt	and the second			Impact Location			9.5 menes upstream from centerrine of post 15.				
$ \begin{array}{c c c c c c } \hline \\ \hline $	and the state	R		EXIT CONDITIONS			57.0				
$\begin{tabular}{ c c c c c c } \hline Trajectory/Heading Angle (deg) & 4/4 \\ \hline Trajectory/Heading Angle (deg) & 4/4 \\ \hline Exit Box Criteria & Vehicle crossed the exit box \\ \hline 238 ft downstream \\ 112 ft to the traffic side \\ \hline 238 ft downstream \\ 112 ft to the traffic side \\ \hline \\ $				Exit Speed (mi/h)		473	47.3				
				Trajectory/Heading Angle (deg)		4/4					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			and the second second	Exit Box Criteria		Vehicl	e crossed the	e evit hov			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A STATE OF A STATE						238 ft	downstream			
$\begin{array}{c c c c c c c } \hline \textbf{IEST ARTICLE DEFLECTIONS} & & & & & & & & & & & & & & & & & & &$			· · · · · · · · · · · · · · · · · · ·	Stopping Distance		112 ft	to the traffic	side			
Dynamic (inches) 6 Permanent (inches) 4 Working Width / Height (inches) 30.2 / 0 VEHICLE DAMAGE VDS 01RFQ5 VEHICLE DAMAGE CDC 01FREW4 Max. Ext. Deformation 10 Max Occupant Compartment Deformation 5.5 inches in the side kick panel Long. OIV (ft/s) 21.0 Long. Ridedown (g) 5.4 Max 50-ms Long. (g) -11.6 Max Roll (deg) 9 Lat. OIV (ft/s) 25.2 Lat. Ridedown (g) 10.4 Max 50-ms Long. (g) -16.0 Max Yaw (deg) 44 Cert trange Extt Ange Tak of the ading Angle -14.4" Anchor Pin - x3 such Barner Ber 10 3.3 Max Yaw (deg) 44	0.400) s		TEST ARTICLE DEFLECTIONS		3					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			ACCESSION OF TAXABLE	Dynamic (inches)		6					
$\begin{tabular}{ c c c c c c c } \hline Working Width / Height (inches) & 30.2 / 0 \\ \hline VEHICLE DAMAGE \\ \hline VDS & 01RFQ5 \\ \hline CDC & 01FREW4 \\ \hline Max. Ext. Deformation & 10 \\ \hline Max. Ext. Deformation & 10 \\ \hline Max Occupant Compartment Deformation & 5.5 inches in the side kick panel \\ \hline CDC & 01FREW4 \\ \hline Max. Ext. Deformation & 5.5 inches in the side kick panel \\ \hline CUCUPANT CISK VALUES \\ \hline CUCUPANT CISK VALUES \\ \hline Long. OIV (ft/s) & 21.0 & Long. Ridedown (g) & 5.4 & Max 50-ms Long. (g) & -11.6 & Max Roll (deg) & 9 \\ \hline Lat. OIV (ft/s) & 25.2 & Lat. Ridedown (g) & 10.4 & Max 50-ms Long. (g) & -16.0 & Max Pitch (deg) & 6 \\ \hline THIV (m/s) & 10.1 & ASI \\ \hline \ \hline$	m the site			Permanent (inches)		4					
VEHICLE DAMAGEVDS01RFQ5CDC01FREW4Max. Ext. Deformation10Max. Ext. Deformation10Max Occupant Compartment Deformation5.5 inches in the side kick panelOCCUPANT RISK VALUESLong. OIV (ft/s)21.0Long. Ridedown (g)5.4Max 50-ms Long. (g)-11.6Max Roll (deg)9Lat. OIV (ft/s)25.2Lat. Ridedown (g)10.4Max 50-ms Long. (g)-11.6Max Pitch (deg)6THIV (m/s)10.1ASI2.1Max 50-ms Vert. (g)3.3Max Yaw (deg)44Case of d BerldCase of d BerldCase of d BerldCase of d Berld		10	• •	Working Width / Height (inches)		30.2 / 0)				
$\begin{tabular}{ c c c c c c } \hline & VDS & 01RFQ5 \\ \hline & CDC & 01FREW4 \\ \hline & Max. Ext. Deformation & 10 \\ \hline & Max Occupant Compartment Deformation & 5.5 inches in the side kick panel \\ \hline & Max Occupant Compartment Deformation & 5.5 inches in the side kick panel \\ \hline & UDE VERVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEVEV$		T	P	VEHICLE DAMAGE							
$\begin{tabular}{ c c c c c c } \hline & & & & & & & & & & & & & & & & & & $		NO S	20 44	VDS		01RFC)5				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	the second second	14.3 CO		CDC		01FREW4					
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			The second s	Max. Ext. Deformation		10					
OCCUPANT RISK VALUES Long. OIV (ft/s) 21.0 Long. Ridedown (g) 5.4 Max 50-ms Long. (g) -11.6 Max Roll (deg) 9 Lat. OIV (ft/s) 25.2 Lat. Ridedown (g) 10.4 Max 50-ms Lat. (g) -16.0 Max Pitch (deg) 6 THIV (m/s) 10.1 ASI 2.1 Max 50-ms Vert. (g) 3.3 Max Yaw (deg) 44 OF Exit Angle	0.600 s			Max Occupant Compartment Deformation		5.5 inches in the side kick panel					
Long. OIV (ft/s) 21.0 Long. Ridedown (g) 5.4 Max 50-ms Long. (g) -11.6 Max Roll (deg) 9 Lat. OIV (ft/s) 25.2 Lat. Ridedown (g) 10.4 Max 50-ms Lat. (g) -16.0 Max Pitch (deg) 6 THIV (m/s) 10.1 ASI 2.1 Max 50-ms Vert. (g) 3.3 Max Yaw (deg) 44	OCCUPANT RISK VALUES										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Long OIV (ft/s)	21.0	Long Pider	lown (g)	5.4	Max 50 ms Lo	ng (g)	11.6	Max Poll (deg)	0	
THIV (m/s) 10.1 ASI 2.1 Max 50-IIIs Lat. (g) -10.0 Max Filter (deg) 0 THIV (m/s) 10.1 ASI 2.1 Max 50-IIIs Lat. (g) 3.3 Max Yaw (deg) 44	Long. Of V (ft/s)	21.0	Long. Kided	iowii (g)	10.4	Max 50 mg La	$rac{rac}{rac}$	-11.0	Max Ditah (dag)	9	
Anchor Pin - x 3 each Barrier See 1d C Heading Angle	THIV (m/s)	10.1	ASI	wii (g)	2 1	Max 50-ms Ve	ert (g)	3.3	Max Yaw (deg)	44	
Anchor Pin - x 3 each Barrier See 1d Applied 14.4' Achor Pin - x 3 each Barrier See 1d Asphalt - See 1e											
112' Exit Angle Box	238' Exit Angle 14.4' Heading Angle 0.8' Impact Angle Exit Angle Box				,	Anchor Pin - x 3 See Asphalt Ba	each Barrier Id - See 1e Se - See 11	↓ 32" ↓ 0" ↓ 4" ↓ 18" ↓ 18"			
	-										

Figure 6.18. Summary of Results for *MASH* Test 3-20 on Transition.

Chapter 7. MASH TEST 3-21 (CRASH TEST NO. 616391-01-2)

7.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 7.1 for details on *MASH* impact conditions for this test and Table 7.2 for the exit parameters. Figure 7.1 and Figure 7.2 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62 mi/h	± 2.5 mi/h	62.9
Impact Angle (deg)	25°	± 1.5°	25.9
Impact Severity (kip-ft)	106 kip-ft	≥106 kip-ft	127.1
Impact Location	5 inches upstream from the centerline of post 13.	\pm 12 inches	13 inches upstream from centerline of post 13.

Exit Parameter	Measured
Speed (mi/h)	50.8
Trajectory (deg)	5

208 ft downstream of impact point

Vehicle remained upright and stable.

Vehicle crossed exit box ^a 60 ft downstream from loss of contact.

Table 7.2. Exit Parameters	's for MASH	Test 3-21	616391-01-2.
----------------------------	-------------	-----------	--------------

^a Not less than 32.8 ft downstream from loss of contact for cars and pickups is optimal.

45° left

10

Not Applied

56 ft to the traffic side

Heading (deg)

Comments:

Brakes applied post impact (s)

Vehicle at rest position

Figure 7.1. Transition/Test Vehicle Geometrics for Test 616391-01-2.

Figure 7.2. Transition/Test Vehicle Impact Location 616391-01-2.

7.2. WEATHER CONDITIONS

Table 7.3 provides the weather conditions for 616391-01-2.

Date of Test	2022-10-04 AM		
Wind Speed (mi/h)	2		
Wind Direction (deg)	89		
Temperature (°F)	80		
Relative Humidity (%)	51		
Vehicle Traveling (deg)	195		

 Table 7.3. Weather Conditions 616391-01-2.

7.3. TEST VEHICLE

Figure 7.3 and Figure 7.4 show the 2016 RAM 1500 used for the crash test. Table 7.4 shows the vehicle measurements. Figure D.1 in Appendix D.1 gives additional dimensions and information on the vehicle.

Figure 7.3. Impact Side of Test Vehicle before Test 616391-01-2.

Figure 7.4. Opposite Impact Side of Test Vehicle before Test 616391-01-2.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	N/A
Inertial Weight (lb)	5000	± 110	5035
Gross Static ^a (lb)	5000	± 110	5035
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	± 3	40
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46
Track Width ^b (inches)	67	±1.5	68.25
CG aft of Front Axle ^c (inches)	63	±4	60.9
CG above Ground ^{c,d} (inches)	28	≥28	28.5

Table 7.4. Vehicle Measurements 616391-01-2.

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy. ^b Average of front and rear axles.

^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

7.4. TEST DESCRIPTION

Table 7.5 lists events that occurred during Test No. 616391-01-2. Figures D.4 through D.6 in Appendix D.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0160	Posts 12, 13, 14, and15 began to lean toward field side
0.0200	Posts 16 and 17 began to lean toward field side
0.0350	Vehicle began to redirect
0.0700	Upstream edge of first PCB began to move toward field side
0.0830	Windshield began to crack due to vehicle body flexing from impact
0.1530	Upstream edge of first PCB stopped moving toward the field side
0.2030	Vehicle was parallel with the installation
0.4140	Vehicle exited the installation at 50.9 mi/h with a heading of 10 degrees and a trajectory of 5 degrees

Table 7.5. Events during Test 616391-01-2.

7.5. DAMAGE TO TEST INSTALLATION

The upstream pin on the first barrier pulled out $2\frac{1}{4}$ inches, the middle pin $1\frac{1}{4}$ inches, and the downstream pin $1\frac{1}{4}$ inches. The upstream pin on the second barrier pulled out $\frac{3}{4}$ -inch. The rail was scuffed and deformed at impact, with the maximum deformation of the rail being $2\frac{1}{2}$ inches at the centerline of post 14. The upstream and middle blockout on the concrete barrier had a $\frac{3}{4}$ -inch gap between them and the barrier, and the downstream blockout had a $\frac{1}{2}$ -inch gap.

Table 7.6 and Table 7.7 describe the damage to the Transition. Figure 7.5 through Figure 7.13 show the damage to the Transition.

Post Number	Soil Gap (inches)	Post Lean from Vertical (degrees)
11	³ / ₈ t/s	1.0
12	1 t/s	1.6
13	1 t/s; ¼ f/s	3.2
14	¹ / ₂ f/s	3.4
15	½ f/s	3.4
16	¹ / ₂ f/s	3.4
17	³ / ₈ f/s	3.0

 Table 7.6. Post Movement on the Transition 616391-01-2.

t/s: traffic side; f/s: field side

Table 7.7. Damage to Transition 616391-01-2.

Test Parameter	Measured
Permanent Deflection/Location	$2\frac{3}{4}$ inches toward field side, at the upstream toe of the first concrete barrier.
Maximum Dynamic Deflection	7.3 inches toward field side, at the top of the upstream end of the first concrete barrier.
Working Width ^a and Height	30 inches, at a height of 0 inches at the base of the first concrete barrier

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words,

working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 7.5. Transition after Test at Impact Location 616391-01-2.

Figure 7.6. Transition after Test Upstream of Impact In-Line with the Installation 616391-01-2.

Figure 7.7. Transition after Test From the Field Side 616391-01-2.

Figure 7.8. Asphalt Damage at the Upstream Anchor Pin Location 616391-01-2.

Figure 7.9. Damage to the Upstream Anchor Pin 616391-01-2.

Figure 7.10. Asphalt Damage at the Middle Anchor Pin Location 616391-01-2.

Figure 7.11. Damage to the Middle Anchor Pin 616391-01-2.

Figure 7.12. Asphalt Damage at the Downstream Anchor Pin Location 616391-01-2.

Figure 7.13. Damage to the Downstream Anchor Pins 616391-01-2.

7.6. DAMAGE TO TEST VEHICLE

Figure 7.14 and Figure 7.15 show the damage sustained by the vehicle. Figure 7.16 and Figure 7.17 show the interior of the test vehicle. Table 7.9 and Table 7.10 provide details on the occupant compartment deformation and exterior vehicle damage. Figures D.2 and D.3 in Appendix D.1 provide exterior crush and occupant compartment measurements.

Figure 7.14. Impact Side of Test Vehicle after Test 616391-01-2.

Figure 7.15. Rear Impact Side of Test Vehicle after Test 616391-01-2.

Figure 7.16. Overall Interior of Test Vehicle after Test 616391-01-2.

Figure 7.17. Interior of Test Vehicle on Impact Side after Test 616391-01-2.

Test Parameter	Specification	Measured
Roof	\leq 4.0 inches	0 inches
Windshield	\leq 3.0 inches	0 inches
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤ 9.0 inches	3 inches
Floor Pan/Transmission Tunnel	≤ 12.0 inches	0 inches
Side Front Panel	≤ 12.0 inches	3 inches
Front Door (above Seat)	≤ 9.0 inches	3 inches
Front Door (below Seat)	≤12.0 inches	0 inches

Table 7.8. Occupant Compartment Deformation 616391-01-2.

Side Windows	The side windows remained intact.		
Maximum Exterior Deformation	14 inches in the front plane at the right front corner at bumper height		
VDS	01RFQ3		
CDC	01FREW3		
Fuel Tank Damage	None		
Description of Damage to Vehicle:	The right front bumper, hood, grill, radiator and support, right headlight, right front tire and rim, right frame rail, right front upper and lower control arms, windshield, right front floor pan, right front door, right rear door, right front wheel assembly, right tie rod, sway bar, right cab corner, right rear quarter fender, and rear bumper were damaged. The right front door had a 7-inch gap at the top. The windshield had some cracking, but no tears or holes in the laminate.		

7.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in **Error! Reference source not found.**. Figure D.7 in Appendix D.3 shows the vehicle angular displacements, and Figures D.8 through C.10 in Appendix D.4 show acceleration versus time traces.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	20.0	0.1063 seconds on right side of interior
OIV, Lateral (ft/s)	≤40.0	25.6	0.1063 seconds on right side of interior
Ridedown, Longitudinal (g)	≤20.49	5.0	0.1063 - 0.1163 s
Ridedown, Lateral (g)	≤20.49	11.5	0.1063 - 0.1163 s
THIV (m/s)	N/A	9.5	0.1037 seconds on right side of interior
ASI	N/A	1.5	0.0592 - 0.1092 s
50-ms MA Longitudinal (g)	N/A	-8.5	0.0384 - 0.0884 s
50-ms MA Lateral (g)	N/A	-10.9	0.0431 - 0.0931 s
50-ms MA Vertical (g)	N/A	-4.6	0.0273 - 0.0773 s
Roll (deg)	≤75	40	0.8260 s
Pitch (deg)	≤75	13	0.5328 s
Yaw (deg)	N/A	74	2.0000 s

Table 7.10. Occupant Risk Factors for Test 616391-01-2.

					T	T	1 0) (T		
Test Agency				Texas A&M Transportation Institute (TTI)					
			Test Standard/Test No.			MASH 2016, Test 3-21			
			TTI Project No.			616391-01-2			
					Test Date	2022-1	/22-10-04		
			TEST ARTICLE						
			Туре			Longit	udinal Barri	er	
			Name			Transition between Guardrail to Anchored Portable Concrete Barrier			
	Consecutive and		Length			115 fe	115 feet 5¼ inches		
0.00)0 s	and the state	Key Materials			32-inch tall F-shape concrete barriers anchored on asphalt, Thrie-beam and W-beam Guardrail, 31-inch tall guardrail, 72-inch long wide-flange guardrail posts			
-			Soil Type and Condition			AASHTO M 147-17 Grading D (crushed concrete)			
Marine VE			TEST VEHICLE						
Sales A Lat	100	Red war	Type/Designation 22			2270 H	2270 P		
		Total and Party of		Year, N	lake and Model	2016 F	RAM 1500		
m in the		the state of the s		Iner	tial Weight (lb)	5035			
		· Certain			Dummy (lb)	N/A	N/A		
		and the		(Gross Static (lb)	5035			
0.20)0 s		IMPACT	CONDI	TIONS				
			Impact Speed (mi/h)			62.9			
			Impact Angle (deg)			25.9			
an Koley	1	2	Impact Location			13 inches upstream from centerline of post 13.			
			Impact Severity (kip-ft)			127.1			
		- Jan-	EXIT CONDITIONS						
- FR			Exit Speed (mi/h)			50.8			
			Trajectory/Heading Angle (deg)			5/10			
			Exit Box Criteria			Crosse	Crossed		
and the second second	a construction of the	and the second	Stopping Distance			208 ft	downstream	• 1	
0.40)0 c		TEST ARTICLE DEELECTIONS			36 11 10	o the trainc s	ade	
0.40	JU S		Dynamic (inches)			73			
			Dynamic (inches)			7.5 2 ³ / ₄			
			Working Width / Height (inches)			$\frac{274}{30/0}$			
	Sel farm	E.B	Working Width / Height (inches)			5010			
	State.	1 M	VEHICLE DAMAGE			01RFO3			
						01FREW3			
			Max. Ext. Deformation			14			
0.600 s		and a state	Max Occupant Compartment Deformation			3 inch	es in the toe	pan, door, and sidewall	
			OC	CUPAN	T RISK VALUE	S			
Long. OIV (ft/s)	20.0	Long. Rided	lown (g)	5.0	Max 50-ms Lo	ng. (g)	-8.5	Max Roll (deg)	40
Lat. OIV (ft/s)	25.6	Lat. Ridedo	wn (g)	11.5	Max 50-ms Lat	t. (g)	-10.9	Max Pitch (deg)	13
THIV (m/s)	9.5	ASI		1.5	Max 50-ms Ve	rt. (g)	-4.6	Max Yaw (deg)	74
	•			•	•				•
- Evit Anala - 13.3'							<i>ν</i> 2λ	32"	
				Anchor Pin - x 3 See	1d				
			_	Asphalt	- See 1e				
						0" 4"			
56' Heading Angle Exit Angle Box						<u> </u>			
			Angle Box				► 5		
						w 0	10:		

Figure 7.18. Summary of Results for MASH Test 3-21 on Transition.

Chapter 8. SUMMARY AND CONCLUSIONS

8.1. ASSESSMENT OF TEST RESULTS

The crash tests reported herein were performed in accordance with *MASH* TL-3, which involves two tests, on the Transition. Tables at the end of this section provide an assessment of each test based on the applicable safety evaluation criteria for *MASH* TL-3 for longitudinal barriers.

8.2. CONCLUSIONS

Table 8.1 and Table 8.2 shows that the Transition between Guardrail to Anchored Portable Concrete Barrier met the performance criteria for *MASH* TL-3 longitudinal barriers.

8.3. IMPLEMENTATION*

Having passed *MASH* TL-3 testing, the Transition design is ready for implementation. Implementation can be achieved by incorporating the Transition design into the hardware standards of the user state DOT. In the design crash tested under this project, four 12.5-ft long anchored PCB barrier segments were used. Results of the testing showed very minimal deflection of the two anchored PCB segments attached to the Thrie-beam section of the Transition. The remaining segments did not have any noticeable movement. Some states would like to transition from anchored to free-standing PCB. The Transition design developed under this project may be used for this purpose, if at least two PCB segments adjacent to the W-beam to Thrie-beam transition are fully anchored with three anchoring pins per segment.

Some states use PCB barrier segments longer than 12.5 ft. The Transition design developed under this project may be used with longer PCB segments if the Thrie-beam segment covering the anchored PCB segments is extended accordingly to attach to the second anchored PCB segment. In this case, the spacing between the Transition Blockouts should also be adjusted to provide a uniform transition along the length of the barrier segment. For segment lengths greater than 15-ft, it is recommended that at least four anchoring pins be used per PCB segment. For this case, it is also recommended that an additional Transition Blockout be used to support the increased length of the segment.

^{*} The opinions/interpretations identified/expressed in this section of the report are outside the scope of TTI Proving Ground's A2LA Accreditation.

Table 8.1. Performance Evaluation Summary for MASH Test 3-20 on Transition betweenGuardrail to Anchored Portable Concrete Barrier, 616391-01-1, 2022-09-19.

Evaluation Criteria	MASH Description	Assessment
А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	Pass
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	Pass
H.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s (10 ft/s for supports), or maximum allowable value of 40 ft/s (16 ft/s for supports).	Pass
I.	The occupant ridedown accelerations should satisfy the following limits: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	Pass

Table 8.2. Performance Evaluation Summary for MASH Test 3-21 on Transition betweenGuardrail to Anchored Portable Concrete Barrier, 616391-01-2, 2022-10-04.

Evaluation Criteria	MASH Description	Assessment
А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	Pass
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	Pass
H.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s (10 ft/s for supports), or maximum allowable value of 40 ft/s (16 ft/s for supports).	Pass
I.	The occupant ridedown accelerations should satisfy the following limits: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	Pass

Evaluation Criteria	Test No. 616391-01-1	Test No. 616391-01-2
А	S	S
D	S	S
F	S	S
Н	S	S
Ι	S	S
Overall	Pass	Pass

 Table 8.3. Assessment Summary for MASH TL-3 Tests on Transition between Guardrail to

 Anchored Portable Concrete Barrier.

Note: S = Satisfactory; N/A = Not Applicable.

REFERENCES

- 1. AASHTO. *Manual for Assessing Roadside Safety Hardware*, Second Edition. American Association of State Highway and Transportation Officials, Washington, DC, 2016.
- N.M. Sheikh, and W.L. Menges. <u>Development and Testing of Anchored Temporary Concrete</u> <u>Barrier for use on Asphalt</u>. Texas A&M Transportation Institute, Report 405160-25-1, College Station, Texas, 2012.
APPENDIX A. DETAILS OF TRANSITION BETWEEN GUARDRAIL TO ANCHORED PORTABLE CONCRETE BARRIER

Q:\Accreditation-17025-2017\EIR-000 Project Files\616391-01 - Guardrail to PCB - Sheikh\Drafting, 616391\616391 Drawing

Q:\Accreditation-17025-2017\EIR-000 Project Files\616391-01 - Guardrail to PCB - Sheikh\Drafting, 616391\616391 Drawing

Q:\Accreditation-17025-2017\EIR-000 Project Files\616391-01 - Guardrail to PCB - Sheikh\Drafting, 616391\616391 Drawing

Drawn by GES

Scale 1:10

Sheet 5 of 6 Barrier Parts

Q:\Accreditation-17025-2017\EIR-000 Project Files\616391-01 - Guardrail to PCB - Sheikh\Drafting, 616391\616391 Drawing

Q:\Accreditation-17025-2017\EIR-000 Project Files\616391-01 - Guardrail to PCB - Sheikh\Drafting, 616391\616391 Drawing

Terminal Details

#	Part Name	QTY.
1	Post Bottom	2
2	Post Top	2
3	9'-4" span Terminal Rail	1
4	Strut	1
5	Strut Spacer	2
6	Strut Bracket	2
7	Guardrail Anchor Bracket	1
8	Anchor Cable Assembly	1
9	Bearing Plate	1
10	Bolt, 7/16 x 2 1/2" hex	8
11	Washer, 7/16 F844	32
12	Nut, 7/16 heavy hex	8
13	Nut, 1/2 hex	4
14	Washer, 1/2 F844	4
15	Bolt, 5/8 x 1 1/2" hex	8
16	Washer, 5/8 F844	8
17	Recessed Guardrail Nut	10
18	1-1/4" Guardrail Bolt	2
19	Bolt, 7/8 x 8 1/2" hex	2
20	Washer, 7/8 F844	4
21	Nut, 7/8 hex	2

Drawn by GES

Scale 1:25

Sheet 1 of 6 Terminal Details

1c. All steel parts shall be galvanized.

21

T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Midwest Terminal

T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Midwest Terminal

T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Midwest Terminal

TR No. 616391-01 1-2

T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Midwest Terminal

T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Midwest Terminal

Thrie-Beam for Transition Slot, 29/32" x 1-1/8" Slot, 3/4" x 2-1/2" Тур х 24 Тур х 16 Α-• 0 0 ó 0 0 0 0 ~ 0 0 • 0 0 0 0 0 0 0 0 0 0 Α-- - (-12'-6" -12'-10-1/4" -13'-1/4" -6-1/4" -4-1/4" -12'-1-3/4" -0 4-1/4" 18-3/4" 37-1/2" 56-1/4" 75" 93-3/4" 9'-4-1/2" 3-1/4" 10.0° 4 2-5/16" R15/16" 3-1/4" ų R15/16" 12 gauge (0.1046 before galvanizing, 20" 0.1084 after) Roadside Safety and Physical Security Division -Proving Ground R3/8" Texas A&M Transportation Institute Section A-A Scale 1:5 Transition 12 gauge Thrie-beam 2019-07-30 Drawn by GES Scale 1:20 Sheet 1 of 1

T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Thrie-Beam for Transition

APPENDIX B. SUPPORTING CERTIFICATION DOCUMENTS

7 46957	CUSTOMER 2747 CUSTOMER 5060	R ORDER NU R ORDER NU R PART NUM 38	DF TEST JMBER IBER	EARLE M. 6201 LUMB HOUSTON	JORGENSEN ERDALE TX 77092	COMPANY	Pa. Certif. 5 Invoic T4¢	ge 01 of 03 ication Date -AUG-2022 De Number 19252
	SOLD TO:	CUSTOM	FABRICATO	RS & REPAISHIP	TO:	CUSTOM FABR	ICATORS &	REPAIRS
		1379 N BRYAN	HARVEY MI TX 77803	TCHELL PKWY		1379 N HARV BRYAN TX 7	EY MITCHEE 7803	L PKWY
	Descript 1 RD X 1 HEAT: 7	ion: 4 2' R/L 5084411	142 CF HE	AT TREATED S/I ITEM: 500	R OR STRES	SS FREE BAR Line Total	: 37.5 FT	1
d	Specifications: ASTM A434 CL BC 18 AST ASTM E112 13 AST ASTM A304 16 AST JDM AO QL2 18 AST CAT 1E0024 EN ASTM A29 16 AST ASTM A108 18 AST			ASTM A193 GR ASTM E10 18 ASTM E45 METH ASTM E8 16 EN 10204 3.1 ASTM A962 SEC	B7 20 H A 18A C 5 19	MIC 12 ASTM A ASTM E ASTM A ASME S, ASTM A	SUP1 16	
120				CHEMICAI	ANALYSIS	3		
1/05/2	C 0.41	MN 0.95	P 0.012	S 0.032	SI 0.26	NI 0.15	CR 0.88	MO 0.16
1 08	CU 0.21	SN 0.01	AL 0.026	V 0.003	B 0.0003	CA 0.001	NB 0.002	H 0.0001
427	RCPT: R2 VENDOR: M	93943 IAGELLAN	CORPORATI	ON	COUNTRY	OF ORIGIN	: USA	
-la				MECHANIC	AL PROPER	TIES		
For	DESCRIPTI	ON	YLD STR KSI 136.0	ULT TEN KSI 144.0	%ELONG IN 02 IN 23.0	%RED IN AREA 58.0	HARDNESS BHN 276	
てキ				a 2				
1.1								
- MUI	The above for comple results rem We hereby described 1 The willful may be pur	data were transe teness and specij ain on file subjec certify that the r nerein, including recording of fal: iishable as a felo	ribed from the manufication requirements to to examination. naterial covered by the any specification for se, fieltitous, or fraud ny under federal state	acturer's Certificate of Test a of the information on the cer its report will meet the applic ming a part of the description ulent statements in connectio ites.	after verification tificate. All test able requirements on with test results	Material did not cour possession.	SHANE LU Market SHANE LU Market Shane Shan	ercury while in

CERTIFICATE OF TEST Page 02 of 03 Certification Date 5-AUG-2022 CUSTOMER ORDER NUMBER EARLE M. JORGENSEN COMPANY Invoice Number 6201 LUMBERDALE 2747 T449252 HOUSTON TX 77092 CUSTOMER PART NUMBER 506038 SOLD TO: CUSTOM FABRICATORS & REPAISFIP TO: CUSTOM FABRICATORS & REPAIRS 1379 N HARVEY MITCHELL PKWY 1379 N HARVEY MITCHELL PKWY BRYAN TX 77803 BRYAN TX 77803 Description: 4142 CF HEAT TREATED S/R OR STRESS FREE BAR 1 RD X 12' R/L Line Total: 37.5 FT 75084411 HEAT : ITEM: 506038 END-QUENCH HARDENABILITY (JOMINY - RC) 1 2 3 4 5 7 6 8 9 10 11 12 13 14 15 57 57 57 57 57 57 56 55 54 52 51 50 49 48 46 16 18 20 22 24 26 28 30 32 45 45 44 44 42 42 40 38 37 IDEAL DIAMETER : 5.23 IN GRAIN SIZE :5 - 8 CLEANLINESS A В C D THICK THIN THIN THICK THIN THICK THIN THICK MAX MAX MAX MAX MAX MAX MAX MAX - - - -- - - e45 1.6 0.5 1.0 0.2 0.5 0.0 1.0 0.5 STRAND CAST REDUCTION RATIO 103.7 TO 1 VACUUM DEGASSED MATERIAL IS FREE FROM MERCURY CONTAMINATION NO WELD REPAIR PERFORMED ON MATERIAL EDDY CURRENT:YES THERMAL TREATMENT: OK AUTENIZE TEMP: 1640 DEG F / TIME: 0.30 MINS QUENCH TEMP: 88 DEG F / TIME: 0.80 MINS / MEDIA: WATER TEMPER TEMP: 1350 DEG F / TIME: 0.30 MINS MACRO: OK MICRO1: OK Material did not come in contact with mercury while in The above data were transcribed from the manufacturer's Certificate of Test after verification our possession. for completeness and specification requirements of the information on the certificate. All test results remain on file subject to examination. SHANE LU We hereby certify that the material covered by this report will meet the applicable requirements described herein, including any specification forming a part of the description. The willful recording of false, fictitious, or fraudulent statements in connection with test results may be punishable as a felony under federal statutes. Manager, Quality Assurance

ENN-J

CERTIFICATE OF TEST

Page 03 of 03

Certification Date 5-AUG-2022

CUSTOMER ORDER NUMBER

2747

CUSTOMER PART NUMBER 506038 EARLE M. JORGENSEN COMPANY 6201 LUMBERDALE HOUSTON TX 77092

Invoice Number T449252

SOLD TO: CUSTOM FABRICATORS & REPAISFIP TO: 1379 N HARVEY MITCHELL PKWY BRYAN TX 77803

CUSTOM FABRICATORS & REPAIRS 1379 N HARVEY MITCHELL PKWY BRYAN TX 77803

Description: 4142 CF HEAT TREATED S/R OR STRESS FREE BAR 1 RD X 12' R/L Line Total: 37.5 FT HEAT: 75084411 ITEM: 506038

COMMENTS material 100% melted & mfg in the usa by the electric arc furnace & cc red ratio: 103.7:1 macro: s-1 r-1 c-1 gerdau monitors all incoming scrap & all heats of steel to ensure that products shipped are free of radioactive material material is 100% recyclable cal/al treated for castability; fully killed; fg; q&t; water quench; stress free; t&p; +/-10 gauss; #1590 cold finished, turned and polished

The above data were transcribed from the manufacturer's Certificate of Test after verification for completeness and specification requirements of the information on the certificate. All test results remain on file subject to examination. Material did not come in contact with mercury while in our possession. SHANE LU

Manager, Quality Assurance

The willful recording of false, fictitious, or fraudulent statements in connection with test results may be punishable as a felony under federal statutes.

We hereby certify that the material covered by this report will meet the applicable requirements described herein, including any specification forming a part of the description.

	00 202	.2 03.	.50	Load -	41130	94	BL	- 3919	9803					blr466
u	stom F	abrio	cators					Н	eat - 22208	04				
u	st. PO ·	- 026	571				Orc	der - 2	1559520					
	AM/NS Calvert LLC 1 AM/NS Way Calvert, AL, AL 36513 USA													
Г	Order - I	ltem	Ce	tificato Nun	abor	Dolina	Delivery No. Ship Data						-	
L	240142-	-50	119	5485140	ibei	83260	986-10	06/0)7/2022	P	age of 1			
	Custom	er No	: 10213				Cust PO: HT	X-7733	165	5			1	
1	Custom	er Par	t No:										-	
Customer Sold to: Kloeckner Metals Corp Tulsa Kloeckner Metals Corp 3123 E. Apache TULSA OK 74110 USA			omer Ship ckner Met Mesa Dr. STON TX	to: als Corp. 77028	Contact - S AM/NS Cal 1 AM/NS W CALVERT USA Email: Stan	orMittal.com	Å							
S F	Steel Gra Hot Roll E Type of P	ade / C Black (Produc	Customer Sp Coil Conv to	A36 / 0.24	00 * X 6	0.0000 " 4	CCORDING 1	FO A101	8 {Hvy 0.230"	(6)-1"(25.4	I)}-Hot Ro	ll Base		
SHTH	Steel Gra Hot Roll E Type of P Hot Roll E EST MET	ade / C Black (Produc Black (THOD	Customer Sp Coil Conv to t/Surface Dry Unexpo	ecification A36 / 0.24 sed GENE	00 " X 60 RAL STO Melteo	0.0000 * ¢ DCK, CTL	SHEET	FO A101	8 (Hvy 0.230") Manufactur	(6)-1"(25.4	I)}-Hot Ro	ll Base		
S F T H Ti A	Steel Gra Hot Roll E Type of P Hot Roll E EST MET STM	ade / C Black (Produc Black I THOD	Customer Sp Coil Conv to t/Surface Dry Unexpo	ecification A36 / 0.24 sed GENE	00 * X 60 RAL STO Meltec	0.0000 * 4 DCK, CTL	SHEET	FO A101	8 (Hvy 0.230") Manufactur	(6)-1"(25.4 red in US/	I)}-Hot Ro	II Base		*
S F T H T A: M	Steel Gra Hot Roll E Type of P Hot Roll E EST MET STM	ade / C Black (Produc Black (THOD	Customer Sp Coil Conv to t/Surface Dry Unexpo	ecification A36 / 0.24 sed GENE	RAL STO	0.0000 * 4 DCK, CTL	SHEET	FO A101	8 {Hvy 0.230"(Manufactur	(6)-1"(25.4	4)}-Hot Ro	ll Base		
S F T H T A	Steel Gra Hot Roll E Hot Roll E EST MET STM	ade / C Black (Produc Black I THOD L DESC	Customer Sp Coil Conv to t/Surface Dry Unexpo	sed GENE	Q0 " X 60 RAL STO Meltec	0.0000 " A	CCORDING T SHEET	FO A101	Manufactur Weight	(6)-1"(25.4 red in US/	I)}-Hot Ro	ll Base		*
S F T H T A: M	Steel Gra Hot Roll E Ype of P Hot Roll E EST MET STM	ade / C Black (Produc Black I THOD	Customer Sp Coil Conv to t/Surface Dry Unexpo CRIPTION ORDERED	ecification A36 / 0.24 sed GENE He	RAL STO Meltec	D.0000 * A	CCORDING T SHEET	FO A101	Manufactur Weight Gross	(6)-1*(25.4	4)}-Hot Ro	II Base		*
S H T H T A	Steel Gra Hot Roll E Type of P Hot Roll E EST MET STM IATERIAL	ade / C Black (Produc Black (THOD	Customer Sp Coil Conv to t/Surface Dry Unexpo CRIPTION ORDERED 6.096	sed GENE	00 * X 6/ RAL ST(Meltec	0.0000 * A DCK, CTL I in Mexica I in Mexica I in Mexica 485140	SHEET SHEET Weigt Net Li 46,186.000	FO A101	Manufactur Weight Gross LB 46,186.000	(6)-1*(25.4	4)}-Hot Ro	II Base		*
S F TH TA	Steel Gra Hot Roll E Type of P Hot Roll E EST MET STM (in) (in)	ade / C Black (Produc Black I THOD	Customer Sp Coil Conv to t/Surface Dry Unexpo CRIPTION ORDERED 6.096 0.2400	ecification A36 / 0.24 sed GENE He N 222080	00 * X 60 RAL STO Meltec	O.0000 * A OCK, CTL I in Mexica I in Mexica Ko. 485140	CCORDING T SHEET	FO A101	Manufactur Weight Gross LB 46,186.000	(6)-1*(25.4	I)}-Hot Ro	II Base		*
E H T A	Steel Gra Hot Roll E Type of P Hot Roll E EST MET STM (mm) (in) HEMICAL	ade / C Black (Produc Black I THOD L DESC	Customer Sp Coil Conv to t/Surface Dry Unexpo Cruption ORDERED 6.096 0.2400 POSITION O	ecification A36 / 0.24 sed GENE He N 222060 F THE LADI	00 * X 60 RAL STO Meltec	0.0000 * A DCK, CTL I in Mexica I in Mexica I in Mexica I in Mexica I in Mexica	SHEET SHEET SHEET SHEET Sheet	FO A101	Manufactur Weight Gross LB 46,186.000	(6)-1*(25.4	A	II Base		*
S F T H T A: M	Steel Gra Hot Roll E Yppe of P Hot Roll E EST MET STM IATERIAL (mm) (in) HEMICAL Hea No	ade / C Black (Product Black I THOD L DESC L DESC	Customer Sf Coil Conv to t/Surface Dry Unexpo CRIPTION ORDERED 6.096 0.2400 POSITION C	ecification A36 / 0.24 sed GENE He N 222060 F THE LADL Si	00 * X 60 RAL STO Meltec	0.0000 * A DCK, CTL I in Mexica No. 485140	CCORDING T SHEET D Weigt Ne Li 46,186.000	FO A101	Manufactur Weight Gross LB 46,186.000	(6)-1*(25.4	A	II Base		*
CH TH TH AND CH	Steel Gra Hot Roll E For Roll E EST MET STM IATERIAL (mm) (in) HEMICAL Hea No 222080-	ade / C Black I Product Black I THOD L DESC L COMI at o.	Customer Sf Coil Conv to t/Surface Dry Unexpo CRIPTION ORDERED 6.096 0.2400 POSITION O c 0 1970	Hee N Seed GENE Hee N 222060 F THE LADL Si 0.02	at 0.83	0.0000 * A DCK, CTL I in Mexica No. 485140 P 0.008	SHEET D Weigt Ne Li 46,186.000 S 0.003	FO A101	Manufactur Weight Gross LB 46,186.000	(6)-1*(25.4 red in US/ cu 0.010	4)}-Hot Ro	II Base		*
S F F T H T T A:	Steel Gra Hot Roll E Type of P Hot Roll E EST MET STM IATERIAL (mm) (in) HEMICAL Hea No 222080	ade / C Black (Produce Black I THOD L DESC L DESC	Customer Sf Coil Conv to t/Surface Dry Unexpo CRIPTION ORDERED 6.096 0.2400 POSITION O C 0 1970 Ni	He N Sed GENE N 222080 F THE LADL Si 0.02 Nb	at 0.83 Ti	0.0000 * 4 DCK, CTL I in Mexica No. 485140 P 0.008 B	CCORDING T SHEET D Weigh Ne Li 46,186.000 S 0.003 V	FO A101	Manufactur Weight Gross LB 46,186.000 Cr 0.01	(6)-1*(25.4 red in US/ Cu 0.010	H)}-Hot Ro A 0.001	II Base		*
E F TH TA	Steel Gra Hot Roll E EST MET STM (mm) (in) HEMICAL Hea No 2220804	ade / C Black (Produc k Black I THOD L DESC L DESC L COM(at at	Customer Sf Coil Conv to V/Surface Dry Unexpo CRIPTION ORDERED 6.096 0.2400 POSITION O C C 0 1970 Ni 0.002	He sed GENE N 222080 F THE LADL Si 0.02 Nb 0.001	at 0.83 Ti 0.002	0.0000 " A DCK, CTL I in Mexica No. 485140 P 0.008 B 0.0001	CCORDING T SHEET D Weigh Ne L 46,186.000 S 0.003 V 0.001	FO A101	Manufactur Weight Gross LB 46,186.000 Cr 0.01	(6)-1*(25.4 red in US/ Cu 0.010	Hot Ro A 0.001	II Base		*
	Steel Gra Hot Roll E EST MET STM (mm) (in) HEMICAL Hea No 222080- NSILE TE	ade / C Black (Producck (Black (THOD L DESC L DESC L COM at a.	Customer Sf Coil Conv to t/Surface Dry Unexpo CRIPTION ORDERED 6.096 0.2400 POSITION O C 0.1970 Ni 0.002	He sed GENE F THE LADL Si 0.02 Nb 0.001	at 0.83 Ti 0.002	0.0000 " 4 DCK, CTL I in Mexico I in Mexico No. 485140 P 0.008 B 0.0001	CCORDING T SHEET 5 Weig 46.186.000 5 0.003 V 0.001	FO A101	Manufactur Weight Gross LB 46,186.000	(6)-1*(25.4 red in US/ cu 0.010	Hot Ro A 0.001	II Base		*
S F H T H T H A:	Steel Gra Hot Roll E EST MET STM (mm) (in) HEMICAL Hea 2220800 NSILE TE Test	ade / C Black I Product I Black I THOD L DESC L DES	Customer Sf Coil Conv to t/Surface Dry Unexpo CRIPTION ORDERED 6.096 0.2400 POSITION C C 0 1970 Ni 0.002 d Tensile	He sed GENE F THE LADL Si 0.02 Nb 0.001 % Total	All STO RAL STO Meltec at 0. 4 1195 E * Mn 0.83 Ti 0.002	0.0000 " / DCK, CTL I in Mexica No. 485140 P 0.008 B 0.0001	Weigh SHEET D Weigh Net Li 46,186.000 S 0.003 V 0.001	FO A101	Manufactur Weight Gross LB 46,186.000	(6)-1*(25.4 red in US/ cu 0.010	Mo 0.001	N 0.0021		*

Y This test is not covered by our current A2LA accreditation

Jammi Gurase-

Yasunori Iwasa Quality Management Director AM/NS Calvert

Rev.

FIELD DENSITY TEST REPORT

 Report Number:
 A1171057.0237

 Service Date:
 07/21/22

 Report Date:
 07/26/22

 Task:
 PO# 616391-01

979-846-3767 Reg No: F-3272 Client Project Texas Transportation Institute Riverside Campus Attn: Bill Griffith Riverside Campus TTI Business Office Bryan, TX 3135 TAMU College Station, TX 77843-3135 Project Number: A1171057 Material Information Lab Test Data Project Requirements Optimum Water Max. Lab Water Content Compaction Mat. Proctor Laboratory Content Density Ref. No. **Classification and Description** Test Method (%) (pcf) (%) (%) No. A1171057.0099A Tan crushed limestone 1 ASTM D698 6.3 138.0 Field Test Data Dry Probe Wet Water Water Percent Test Lift / Mat. Depth Density Content Content Density Compaction (%) No. **Test Location** Elev. No. (in) (pcf) (pcf) (%) (pcf) **Paving Base** 2 1 See Attachment 1 8 152.3 6.1 4.2 146.2 100 +Datum: Top of existing grade Std. Cnt. M:560 Std. Cnt. D: 1556 S/N: 20016 Make: Model: 3430 Last Cal. Date: 02/10/2022 Troxler

Comments:

Services: Perform in-place density and moisture content tests with a Troxler type gauge to determine degree of compaction and material moisture condition.

Start/Stop: 0900-1030

Reviewed By:

Alexander Dunigan

Project Manager

Test Methods: ASTM D6938-07 Method A

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

CR0007, 11-16-12, Rev.7

Page 1 of 1

Date	2022-09-19		
	TTI Proving Ground		
Test Facility and Site Location	3100 SH 47		
	Bryan, TX 77807		
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines		
Fill Material Description (ASTM D2487) and give analysis	AASHTO M 147 17 Grading D		
The Material Description (ASTIM D2487) and sieve analysis	(Crushed Concrete)		
Description of Fill Discement Procedure	12-inch lifts tamped with a		
Description of I'm Placement Plocedule	pneumatic compactor for 20 s		

Figure B.1. Test Day Static Soil Strength Documentation for Test No. 616391-01-1.
Date	2022-10-04		
	TTI Proving Ground		
Test Facility and Site Location	3100 SH 47		
	Bryan, TX 77807		
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines		
Fill Motorial Description (ASTM D2487) and giava analysis	AASHTO M 147 17 Grading D		
Fill Material Description (ASTM D2487) and sieve analysis	(Crushed Concrete)		
Description of Fill Discement Procedure	12-inch lifts tamped with a		
Description of Fill Flacement Flocedure	pneumatic compactor for 20 s		

Table B.2. Test Day Static Soil Strength Documentation for Test No. 616391-01-2.

Figure B.2. Test Day Static Soil Strength Documentation for Test No. 616391-01-2.

APPENDIX C. MASH TEST 3-20 (CRASH TEST NO. 616391-01-1)

C.1. VEHICLE PROPERTIES AND INFORMATION

Date: 2022-09-19 Te	est No.: <u>616391-01-1</u>	VIN No.: <u>3N1CN7A</u>	P9GL867027
Year: <u>2016</u> M	ake: <u>Nissan</u>	Model: <u></u> Versa	
Tire Inflation Pressure: <u>36 PSI</u>	Odometer: <u>91886</u>	Tire Size:	P185/65R15
Describe any damage to the ve	ehicle prior to test: <u>None</u>		
Denotes accelerometer location	tion.		
NOTES: <u>None</u>	A M	• ● • • • • • • • • • • • • • • •	• N T
Engine Type: <u>4 CYL</u> Engine CID: <u>1.6 L</u>			
Transmission Type:	Manual	Q R	
Optional Equipment: <u>None</u>			
Dummy Data:Type:50th PercentileMass:165 lbSeat Position:IMPACT SIDE			
Geometry: inches		0	
A 66.70 F 32.50			
	K <u>12.50</u>	P _4.50	U <u>15.50</u>
B 59.60 G	K <u>12.50</u> L 26.00	_ P <u>4.50</u> Q 24.00	U <u>15.50</u> V 21.25
B <u>59.60</u> G C <u>175.40</u> H <u>41.95</u>	L <u>26.00</u> M 58.30	_ P <u>4.50</u> _ Q <u>24.00</u> _ R <u>16.25</u>	V <u>15.50</u> V <u>21.25</u> W <u>42.00</u>
B 59.60 G C 175.40 H 41.95 D 40.50 I 7.00	K 12.50 L 26.00 M 58.30 N 58.50	_ P <u>4.50</u> _ Q <u>24.00</u> _ R <u>16.25</u> _ S 7.50	V <u>15.50</u> V <u>21.25</u> W <u>42.00</u> X 79.75
B 59.60 G C 175.40 H 41.95 D 40.50 I 7.00 E 102.40 J 22.50	K 12.50 L 26.00 M 58.30 N 58.50 O 30.50	_ P <u>4.50</u> _ Q <u>24.00</u> _ R <u>16.25</u> _ S <u>7.50</u> _ T 64.50	V <u>15.50</u> V <u>21.25</u> W <u>42.00</u> X <u>79.75</u>
B 59.60 G C 175.40 H 41.95 D 40.50 I 7.00 E 102.40 J 22.50 Wheel Center Ht Front 11.5	K 12.50 L 26.00 M 58.30 N 58.50 O 30.50 0 Wheel Center	_ P <u>4.50</u> _ Q <u>24.00</u> _ R <u>16.25</u> _ S <u>7.50</u> _ T <u>64.50</u> Ht Rear 11.50	V <u>15.50</u> V <u>21.25</u> W <u>42.00</u> X <u>79.75</u> W-H 0.05
B 59.60 G C 175.40 H 41.95 D 40.50 I 7.00 E 102.40 J 22.50 Wheel Center Ht Front 11.5 RANGE LIMIT: A = 65 ±3 inches; C = 166	K 12.50 L 26.00 M 58.30 N 58.50 O 30.50 0 Wheel Center 3 ± 8 inches; E = 98 ± 5 inches; F = 35 ± 4 inches 4± Ny2 = 59 ± 2 inches; W-H < 2 inches or use M	P 4.50 Q 24.00 R 16.25 S 7.50 T 64.50 Ht Rear 11.50 ; H = 39 ±4 inches; 0 (Top of Radiator S ASH Paragraph A4.3.2	U 15.50 V 21.25 W 42.00 X 79.75 W-H 0.05 Support) = 28 ±4 inches
B <u>59.60</u> G C <u>175.40</u> H <u>41.95</u> D <u>40.50</u> I <u>7.00</u> E <u>102.40</u> J <u>22.50</u> Wheel Center Ht Front <u>11.5</u> RANGE LIMIT: A = 65 ±3 inches; C = 160 (N GVWR Ratings: M	K 12.50 L 26.00 M 58.30 N 58.50 O 30.50 0 Wheel Center 3±8 inches; E = 98 ±5 inches; F = 35 ±4 inches 4+N y2 = 59 ±2 inches; W+H < 2 inches or use M	P 4.50 Q 24.00 R 16.25 S 7.50 T 64.50 Ht Rear 11.50 ; H = 39 ±4 inches; 0 (Top of Radiator S ASH Paragraph A4.3.2 <u>Test Inertial</u>	U <u>15.50</u> V <u>21.25</u> W <u>42.00</u> X <u>79.75</u> W-H <u>0.05</u> Support) = 28 ±4 inches Gross Static
B 59.60 G C 175.40 H 41.95 D 40.50 I 7.00 E 102.40 J 22.50 Wheel Center Ht Front 11.5 RANGE LIMIT: A = 65 ±3 inches; C = 166 (N GVWR Ratings: M	K 12.50 L 26.00 M 58.30 N 58.50 O 30.50 0 Wheel Center 3 ±8 inches; E = 98 ±5 inches; F = 35 ±4 inches 4±Ny2 = 59 ±2 inches; W-H < 2 inches or use M	P 4.50 Q 24.00 R 16.25 S 7.50 T 64.50 Ht Rear 11.50 : H = 39 ±4 inches; O (Top of Radiator S ASH Paragraph A4.3.2 <u>Test Inertial</u> 1451	U <u>15.50</u> V <u>21.25</u> W <u>42.00</u> X <u>79.75</u> W-H <u>0.05</u> Support) = 28 ±4 inches Gross Static <u>1536</u>
B <u>59.60</u> G C <u>175.40</u> H <u>41.95</u> D <u>40.50</u> I <u>7.00</u> E <u>102.40</u> J <u>22.50</u> Wheel Center Ht Front <u>11.5</u> RANGE LIMIT: A = 65 ±3 inches; C = 160 (N GVWR Ratings: M Front <u>1750</u> Back <u>1687</u>	K 12.50 L 26.00 M 58.30 N 58.50 O 30.50 0 Wheel Center 9 ±8 inches; E = 98 ±5 inches; F = 35 ±4 inches 4+N y2 = 59 ±2 inches; W-H < 2 inches or use M	P 4.50 Q 24.00 R 16.25 S 7.50 T 64.50 Ht Rear 11.50 ; H = 39 ±4 inches; O (Top of Radiator S ASH Paragraph A4.3.2 <u>Test Inertial</u> 1451 1007	U <u>15.50</u> V <u>21.25</u> W <u>42.00</u> X <u>79.75</u> W-H <u>0.05</u> Support) = 28 ±4 inches Gross Static <u>1536</u> <u>1087</u>
B <u>59.60</u> G C <u>175.40</u> H <u>41.95</u> D <u>40.50</u> I <u>7.00</u> E <u>102.40</u> J <u>22.50</u> Wheel Center Ht Front <u>11.5</u> RANGE LIMIT: A = 65 ±3 inches; C = 163 (M GVWR Ratings: M Front <u>1750</u> Back <u>1687</u> Total <u>3389</u>	K 12.50 L 26.00 M 58.30 N 58.50 O 30.50 0 Wheel Center 9 ±8 inches; E = 98 ±5 inches; F = 35 ±4 inches 4+N/2 = 59 ±2 inches; W-H < 2 inches or use M	P 4.50 Q 24.00 R 16.25 S 7.50 T 64.50 Ht Rear 11.50 ; H = 39 ±4 inches; 0 (Top of Radiator S ASH Paragraph A4.3.2 Test Inertial 1451 1007 2458	U <u>15.50</u> V <u>21.25</u> W <u>42.00</u> X <u>79.75</u> W-H <u>0.05</u> Support) = 28 ±4 inches Gross Static <u>1536</u> <u>1087</u> <u>2623</u>
B <u>59.60</u> G C 175.40 H 41.95 D 40.50 I 7.00 E 102.40 J <u>22.50</u> Wheel Center Ht Front 11.5 RANGE LIMIT: A = 65 ±3 inches; C = 160 (N GVWR Ratings: M Front 1750 Back 1687 Total <u>3389</u>	K 12.50 L 26.00 M 58.30 N 58.50 O 30.50 O 30.50 O Wheel Center B ±8 inches; E = 98 ±5 inches; F = 35 ±4 inches A+N y2 = 59 ±2 inches; W-H < 2 inches or use M	P 4.50 Q 24.00 R 16.25 S 7.50 T 64.50 Ht Rear 11.50 ; H = 39 ±4 inches; O (Top of Radiator S ASH Paragraph A4.3.2 Test Inertial 1451 1007 2458 = 2420 lb ±55 lb Allowable GSM = 2585	U <u>15.50</u> V <u>21.25</u> VV <u>42.00</u> X <u>79.75</u> W-H <u>0.05</u> W-H <u>0.05</u> Support) = 28 ±4 inches Gross Static <u>1536</u> <u>1087</u> <u>2623</u> Ib ± 55 lb

Figure C.1. Vehicle Properties for Test No. 616391-01-1.

Date:	2022-09-19	Test No.:	616391-01-1	VIN No.:	3N1CN7AP9GL867027
Year:	2016	Make:	Nissan	Model:	Versa

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable							
End Damage	Side Damage						
Undeformed end width	Bowing: B1 X1						
Corner shift: A1	B2 X2						
A2							
End shift at frame (CDC)	Bowing constant						
(check one)	X1+X2 _						
< 4 inches	2						
\geq 4 inches							

Note: Measure C_1 to C_6 from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

			Direct Damage								
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C_1	C ₂	C ₃	C_4	C5	C_6	±D
1	AT FT BUMPER	15	8	28							-14
2	ABOVE FT BUMPER	15	10	40							60
	Measurements recorded										
	🖌 inches or 🗌 mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure C.2. Exterior Crush Measurements for Test No. 616391-01-1.

Date:	2022-09-19	Test No.:	616391-01-1		VIN No.:	3N1CN7AP9	GL867027
Year:	2016	Make:	Nissan		Model:	Versa	
	H			O DEF	CCUPAN FORMAT	IT COMPART	
	F				Before	e After (inches)	Differ.
	G			A1	67.50	67.50	0.00
			S J JJ €	A2	67.25	67.25	0.00
9				A3	67.75	67.75	0.00
				B1	40.50	40.50	0.00
				B2	39.00) 39.00	0.00
	B1, B2, E	33, B4, B5, B6		В3	40.50	40.50	0.00
				B4	36.25	5 36.25	0.00
		&A β		B5	36.00	36.00	0.00
$\ominus \square$	D1, D2, & D3 C1, C2	8 CB _ F		B6	36.25	36.25	0.00
\Box				C1	26.00) 26.00	0.00
~		~		C2	0.00	0.00	0.00
				C3	26.00	23.00	-3.00
				D1	9.50	9.50	0.00
	/			D2	0.00	0.00	0.00
				D3	9.50	9.50	0.00
		2 02		E1	50.00	45.00	-5.00
		$F2 \rightarrow F2$		E2	50.00	53.00	3.00
				F	51.00	51.00	0.00
]	G	51.00) 51.00	0.00
				Н	37.50) 37.50	0.00
				I	37.50	37.50	0.00
Lateral	area across the cab	from		J	50.00) 44.50	-5.50

driver's side kick panel to passenger's side kick panel.

Figure C.3. Occupant Compartment Measurements for Test No. 616391-01-1.

C.2. SEQUENTIAL PHOTOGRAPHS

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure C.4. Sequential Photographs for Test No. 616391-01-1 (Overhead Views).

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure C.5. Sequential Photographs for Test No. 616391-01-1 (Frontal Views).

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s

Figure C.6. Sequential Photographs for Test No. 616391-01-1 (Rear Views).

C.3. VEHICLE ANGULAR DISPLACEMENTS

Roll, Pitch and Yaw Angles

Figure C.7. Vehicle Angular Displacements for Test No. 616391-01-1.

C.4. VEHICLE ACCELERATIONS

Figure C.8. Vehicle Longitudinal Accelerometer Trace for Test No. 616391-01-1 (Accelerometer Located at Center of Gravity).

Figure C.9. Vehicle Lateral Accelerometer Trace for Test No. 616391-01-1 (Accelerometer Located at Center of Gravity).

Figure C.10. Vehicle Vertical Accelerometer Trace for Test No. 616391-01-1 (Accelerometer Located at Center of Gravity).

APPENDIX D. MASH TEST 3-21 (CRASH TEST NO. 616391-01-2)

D.1. VEHICLE PROPERTIES AND INFORMATION

Date: 20	022-10-04	Test No.:	616391	1-01-2	VIN No.	1C6RR60	GT5GS	393984
Year:	2016	Make:	RA	М	Model	:	1500	
Tire Size:	265/70 R 1	7		Tire	Inflation Pre	essure:	35	psi
Tread Type:	Highway				Odd	ometer: <u>13842</u>	4	
Note any dam	nage to the v	ehicle prior to	test: <u>Non</u>	e				
 Denotes ac 	celerometer	·location.			◄X - ◀₩►	-		
NOTES: No	ne		1 +		71) —	
Engine Type: Engine CID:	V-8 5.7 liter			i C				WHEEL TRACK
Transmission	Type:	- Manual				-TEST IN	ERTIAL C. M.	
FWD								•
Optional Equi	pment:		P -					-, l
None							N	
Dummy Data: Type:	NONE		▼ J − I−				2	
Mass:			_		н_н		-D-	•
Seat FUSILIUI			_	v	' M FRONT	7	7 M REAR	
Geometry:	inches	40.00	K	20.00		-c	11	26.75
R 74(00 F	28 50	- <u>`</u>	30.00		30.50	v	30.25
C 227.	<u>50</u> н	60.86	—	68.50	- 🤄 - R	18.00	• . W	60.80
D 44.0	00 1	11.75	– <u>–</u> N	68.00	- ·· - S	13.00	х. Х	79.00
E 140.8	50 J	27.00	- 0	46.00	 T	77.00	-	
Wheel Cen Height Fro	ter	14.75 ci	Wheel Well earance (Front)	I	6.00	Bottom Frame Height - Front	- -	12.50
Wheel Cen Height Re	ter ear	14.75 c	Wheel Well learance (Rear)	1	9.25	Bottom Frame Height - Rear	-	22.50
RANGE LIMIT: A=7	8 ±2 inches; C=237	±13 inches; E=148 ±1:	2 inches; F=39 ±3 in	iches; G = > 28 ii	nches; H = 63 ±4 i	inches; O=43 ±4 inches;	(M+N)/2=6	7 ±1.5 inches
GVWR Rating	gs:	Mass: Ib	<u>Cur</u>	<u>b</u>	<u>Test</u>	<u>Inertial</u>	<u>Gro</u> s	<u>ss Static</u>
Front 3	00	M _{front}		2958		2854		2854
Back 3	900	M _{rear}		2090		2181		2181
Total 6	700	M _{Total}		5048 (Allowable	Range for TIM and	5035 3 GSM = 5000 lb ±110 lb		5035
Mass Distrib	ution: LF	-:	RF:	1387	LR:	1085 F	R:	1096

Figure D.1. Vehicle Properties for Test No. 616391-01-2.

Date:	2022-10-04	Test No.:	616391-01-2	VIN No.:	1C6RR6GT5GS393984		
Year:	2016	Make:	RAM	Model:	1500		

VEHICLE CROSH MEASOREMENT SHEET								
Complete Wh	en Applicable							
End Damage	Side Damage							
Undeformed end width	Bowing: B1 X1							
Corner shift: A1	B2 X2							
A2								
End shift at frame (CDC)	Bowing constant							
(check one)	X1+X2							
< 4 inches	2 =							
\geq 4 inches								

VEHICLE CRUSH MEASUREMENT SHEET¹

Note: Measure C_1 to C_6 from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

G		Direct Damage									
Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C1	C ₂	C_3	C_4	C_5	C_6	±D
1	AT FT BUMPER	14	14	36							18
2	SAME	14	14	60							76
	Measurements recorded										
	√ inches or 🗌 mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure D.2. Exterior Crush Measurements for Test No. 616391-01-2.

Date:	2022-10-04	_ Test No.: _	616391-01-	2	VIN No.:	1C6RR6GT5GS393984		
Year:	2016	_ Make: _	RAM		Model:	1500	0	
			क्ताह्य	O DE	CCUPANT (COMPARTIN N MEASURI	MENT EMENT	
	F				Before	After (inches)	Differ.	
	J E1	E2 E3	E4	A1	65.00	65.00	0.00	
	G			A2	63.00	63.00	0.00	
		н		A3	65.50	65.50	0.00	
				B1	45.00	45.00	0.00	
				B2	38.00	38.00	0.00	
				B3	45.00	45.00	0.00	
				B4	39.50	39.50	0.00	
		B1-3 B4	-6	B5	43.00	43.00	0.00	
6		3		B6	39.50	39.50	0.00	
	C1-3			C1	26.00	26.00	0.00	
))			C2	0.00	0.00	0.00	
				С3	26.00	23.00	-3.00	
				D1	11.00	11.00	0.00	
				D2	0.00	0.00	0.00	
				D3	11.50	11.50	0.00	
		25		E1	58.50	55.50	-3.00	
	B1,4	<u>-,,, </u>		E2	63.50	65.50	2.00	
	E	1-4		E3	63.50	63.50	0.00	
				E4	63.50	63.50	0.00	
				F	59.00	59.00	0.00	
				G	59.00	59.00	0.00	
				Н	37.50	37.50	0.00	
*Lateral ar	ea across the cab	from driver's s	ide	I	37.50	37.50	0.00	

Figure D.3. Occupant Compartment Measurements for Test No. 616391-01-2.

J*

24.00

21.00

kickpanel to passenger's side kickpanel.

-3.00

D.2. SEQUENTIAL PHOTOGRAPHS

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(e) 0.400 s

(g) 0.600 s (h) 0.700 s Figure D.4. Sequential Photographs for Test No. 616391-01-2 (Overhead Views).

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure D.5. Sequential Photographs for Test No. 616391-01-2 (Frontal Views).

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s

Figure D.6. Sequential Photographs for Test No. 616391-01-2 (Rear Views).

D.3. VEHICLE ANGULAR DISPLACEMENTS

Roll, Pitch and Yaw Angles

Figure D.7. Vehicle Angular Displacements for Test No. 616391-01-2.

D.4. VEHICLE ACCELERATIONS

Figure C.8. Vehicle Longitudinal Accelerometer Trace for Test No. 616391-01-2 (Accelerometer Located at Center of Gravity).

Figure D.9. Vehicle Lateral Accelerometer Trace for Test No. 616391-01-2 (Accelerometer Located at Center of Gravity).

Figure D.10. Vehicle Vertical Accelerometer Trace for Test No. 616391-01-2 (Accelerometer Located at Center of Gravity).

TR No. 616391-01 1-2