

Test Report No. 614341-01 Test Report Date: October 2021 DESIGN AND TESTING OF *MASH* TL-3 THRIE-BEAM GUARDRAIL SYSTEM (TGS) FOR ROADSIDE AND MEDIAN APPLICATIONS by

Maysam Kiani, Ph.D., P.E., PMP Assistant Research Engineer

James Kovar Assistant Research Scientist

Wanda L. Menges Research Specialist

William Schroeder Engineering Research Associate

Bill L. Griffith Research Specialist

Sarah Wegenast Research Associate

and

Darrell L. Kuhn, P.E. Research Specialist Contract No.: T-4541-DX Test No.: 614341-01-1 / 614341-01-3 / 614341-01-2 Test Date: 2021-08-16 / 2021-08-20 / 2021-09-16 Sponsored by Roadside Safety Research for *MASH* Implementation Pooled Fund Group – Study No. TPF-5(343)

TEXAS A&M TRANSPORTATION INSTITUTE PROVING GROUND

Mailing Address: Roadside Safety & Physical Security Texas A&M University System 3135 TAMU College Station, TX 77843-3135 Located at: Texas A&M University System RELLIS Campus Building 7091 1254 Avenue A Bryan, TX 77807

DISCLAIMER

The contents of this report reflect the views of the authors, who are solely responsible for the facts and accuracy of the data and the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Roadside Safety Research for *MASH* Implementation Pooled Fund Group (POOLED FUND), Washington State Department of Transportation (WSDOT), The Texas A&M University System, or the Texas A&M Transportation Institute (TTI). This report does not constitute a standard, specification, or regulation. In addition, the above listed agencies/companies assume no liability for its contents or use thereof. The names of specific products or manufacturers listed herein do not imply endorsement of those products or manufacturers.

The results reported herein apply only to the article tested. The full-scale crash tests were performed according to TTI Proving Ground quality procedures and *Manual for Assessing Safety Hardware* guidelines and standards.

The Proving Ground Laboratory within TTI's Roadside Safety and Physical Security Division ("TTI Lab") strives for accuracy and completeness in its crash test reports. On rare occasions, unintentional or inadvertent clerical errors, technical errors, omissions, oversights, or misunderstandings (collectively referred to as "errors") may occur and may not be identified for corrective action prior to the final report being published and issued. If, and when, the TTI Lab discovers an error in a published and issued final report, the TTI Lab will promptly disclose such error to POOLED FUND and WSDOT, and all parties shall endeavor in good faith to resolve this situation. The TTI Lab will be responsible for correcting the error that occurred in the report, which may be in the form of errata, amendment, replacement sections, or up to and including full reissuance of the report. The cost of correcting an error in the report shall be borne by the TTI Lab. Any such errors or inadvertent delays that occur in connection with the performance of the related testing contract will not constitute a breach of the testing contract.

THE TTI LAB WILL NOT BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, PUNITIVE, OR OTHER DAMAGES SUFFERED BY POOLED FUND, WSDOT, OR ANY OTHER PERSON OR ENTITY, WHETHER SUCH LIABILITY IS BASED, OR CLAIMED TO BE BASED, UPON ANY NEGLIGENT ACT, OMISSION, ERROR, CORRECTION OF ERROR, DELAY, OR BREACH OF AN OBLIGATION BY THE TTI LAB.

		Technical Report Documentation P	
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle	5. Report Date		
	OF MASH TL-3 THRIE-BEAM	October 2021	
GUARDRAIL SYSTEM APPLICATIONS	6. Performing Organization Code		
7. Author(s)		8. Performing Organization Report No.	
Maysam Kiani, James Ko Bill L. Griffith, Sarah We	Test Report No. 614341-01		
9. Performing Organization Name and Texas A&M Transportati	Address	10. Work Unit No. (TRAIS)	
3135 TAMU		11. Contract or Grant No.	
College Station, Texas 77	843-3135	T-4541-DX	
12. Sponsoring Agency Name and Ad		13. Type of Report and Period Covered	
•	for MASH Implementation Pooled Fund	Technical Report:	
Washington State Department		March 2020—January 2022	
Research Office MS 4737	2, Transportation Building	14. Sponsoring Agency Code	
Olympia, WA 98504-737	2		
15. Supplementary Notes Project Title: Design and	Testing of a MASH TL-3 Thrie-beam System	for Roadside and Median	
Applications			
11	esentative: James Danila, State Traffic Engin	eer, Massachusetts Department of	
Transportation	<i>,</i> 8	· · · · · ·	
16. Abstract			

Thrie-beam guardrail systems are used when enhanced Test Level 3 (TL-3) protection above what is typically provided with W-beam guardrail is desired. Currently, an AASHTO Manual for Assessing Safety Hardware (MASH) compliant Thrie-beam guardrail system for roadside applications exists, but a median version has yet to be developed. (1) Furthermore, the currently available roadside system incorporates components that are more costly to fabricate and install and create a wider footprint than conventional Wbeam barrier alternatives. Therefore, the Roadside Safety Pooled Fund prioritized a project to develop MASH compliant cost-effective Thrie-beam guardrail systems for both roadside and median applications. These systems were crash tested to MASH specifications. Lastly, transition designs from these newly developed systems to standard W-beam systems were developed through computer simulation.

The developed Thrie-beam Guardrail system (TGS) utilizes all MGS standard components with the exception of the Thrie-beam itself. TGS has a thrie-beam rail mounted at 34-inches to top as opposed to MGS with a W-beam rail mounted at 31-inches. The two systems are attached together using symmetric Wbeam-to-thrie-beam transition segments.

*Based on the results of the three successful full-scale crash tests and the computer simulation effort, both roadside and median TGS configurations met all safety requirements for MASH TL-3.

*The opinions/interpretations identified/expressed in this section of the report are outside the scope of the TTI Proving Ground A2LA Accreditation.

17. Key Words		18. Distribution Statement		
Longitudinal barrier, transition, guardrail, W-beam,		Copyrighted. Not to be copied or reprinted without		
thrie beam, crash testing, roadside safety, MASH		consent from the <u>Roadside Safety Pooled Fund</u> .		
19. Security Classif. (of this report)20. Security Classif. (of the UnclassifiedUnclassifiedUnclassified		nis page)	21. No. of Pages 126	22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.

SI* (MODERN METRIC) CONVERSION FACTORS					
<u> </u>		IMATE CONVERSIO			
Symbol	When You Know	Multiply By	To Find	Symbol	
:	inches	LENGTH	willing a famo		
in #	inches feet	25.4	millimeters	mm	
ft		0.305	meters	m	
yd	yards miles	0.914 1.61	meters	m	
mi	miles	AREA	kilometers	km	
in ²	aquara inches	645.2	aguara millimatara	mm ²	
ft ²	square inches		square millimeters	mm - m ²	
	square feet	0.093	square meters		
yd ²	square yards	0.836	square meters	m²	
ac	acres	0.405	hectares	ha	
mi ²	square miles	2.59	square kilometers	km ²	
flor	fluid oursee	VOLUME 29.57	milliliters	ml	
floz	fluid ounces			mL	
gal #3	gallons	3.785	liters	L	
ft ³	cubic feet	0.028	cubic meters	m ³	
yd ³	cubic yards	0.765	cubic meters	m ³	
	NOTE: Volun	nes greater than 1000	snall be shown in m°		
		MASS			
oz	ounces	28.35	grams	g	
lb	pounds	0.454	kilograms	kg	
Т	short tons (2000 lb)	0.907	megagrams (or metric ton")	Mg (or "t")	
~ -		MPERATURE (exac			
°F	Fahrenheit	5(F-32)/9	Celsius	°C	
		or (F-32)/1.8			
		CE and PRESSURE			
lbf	poundforce	4.45	newtons	N	
lbf/in ²	poundforce per square inch		kilopascals	kPa	
		ATE CONVERSION			
Symbol		Multiply Dy	To Find		
Symbol	When You Know	Multiply By	TOTING	Symbol	
Cymbol		LENGTH	TOTING	Symbol	
mm	when You Know	LENGTH 0.039	inches	in	
-		LENGTH 0.039 3.28			
mm	millimeters	LENGTH 0.039 3.28 1.09	inches feet yards	in	
mm m m	millimeters meters	LENGTH 0.039 3.28	inches feet	in ft	
mm m m	millimeters meters meters	LENGTH 0.039 3.28 1.09	inches feet yards	in ft yd	
mm m m km	millimeters meters meters	LENGTH 0.039 3.28 1.09 0.621	inches feet yards	in ft yd mi in ²	
mm m m km mm ²	millimeters meters meters kilometers	LENGTH 0.039 3.28 1.09 0.621 AREA	inches feet yards miles	in ft yd mi	
mm m m km mm ² m ²	millimeters meters meters kilometers square millimeters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016	inches feet yards miles square inches	in ft yd mi in ²	
mm m m km mm ² m ²	millimeters meters meters kilometers square millimeters square meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764	inches feet yards miles square inches square feet	in ft yd mi in ² ft ²	
mm m km mm ² m ² m ² ha	millimeters meters meters kilometers square millimeters square meters square meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	inches feet yards miles square inches square feet square yards	in ft yd mi in ² ft ² yd ²	
mm m km mm ² m ²	millimeters meters meters kilometers square millimeters square meters square meters hectares	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47	inches feet yards miles square inches square feet square yards acres	in ft yd mi in ² ft ² yd ² ac	
mm m km mm ² m ² m ² ha	millimeters meters meters kilometers square millimeters square meters square meters hectares	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	inches feet yards miles square inches square feet square yards acres	in ft yd mi in ² ft ² yd ² ac	
mm m km mm ² m ² ha km ² mL L	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264	inches feet yards miles square inches square feet square feet square yards acres square miles	in ft yd mi in ² ft ² yd ² ac mi ²	
mm m km m ² m ² ha km ² mL	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034	inches feet yards miles square inches square feet square feet square yards acres square miles fluid ounces	in ft yd mi in ² ft ² yd ² ac mi ² oz	
mm m km mm ² m ² ha km ² ha km ²	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons	in ft yd mi in ² ft ² yd ² ac mi ² oz gal	
mm m km m ² m ² ha km ² mL L m ³	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³	
mm m km m ² m ² ha km ² mL L m ³ m ³	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³	
mm m km mm ² m ² ha km ² mL L m ³ m ³ g	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³	
mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz	
mm m km mm ² m ² ha km ² mL L m ³ m ³ g kg	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton"	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202) 1.103	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb)	in ft yd mi in^2 ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb	
mm m km m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton"	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb)	in ft yd mi in^2 ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb	
mm m km m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton" TE Celsius	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact 1.8C+32	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) :t degrees) Fahrenheit	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T	
mm m km m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton" TE Celsius	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202) 1.103 MPERATURE (exact 1.8C+32 CE and PRESSURE	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) et degrees) Fahrenheit E or STRESS	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T	
mm m km m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t")	millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton" TE Celsius	LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact 1.8C+32	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) :t degrees) Fahrenheit	in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T	

*SI is the symbol for the International System of Units

ACKNOWLEDGMENTS

This research project was performed under a pooled fund program between the following States and Agencies. The authors acknowledge and appreciate their guidance and assistance.

Roadside Safety Research Pooled Fund Committee

Revised January 2021

ALABAMA

Stanley (Stan) C. Biddick, P.E. Assistant State Design Engineer Design Bureau, Final Design Division Alabama Dept. of Transportation 1409 Coliseum Boulevard, T-205 Montgomery, AL 36110 (334) 242-6833 biddicks@dot.state.al.us

Steven E. Walker Alabama Dept. of Transportation (334) 242-6488 walkers@dot.state.al.us

ALASKA

Jeff C. Jeffers, P.E. Statewide Standard Specifications Alaska Depart. of Transportation & Public Facilities 3132 Channel Drive P.O. Box 112500 Juneau, AK 99811-2500 (907) 465-8962 Jeff.Jeffers@alaska.gov

CALIFORNIA

Bob Meline, P.E. Caltrans Office of Materials and Infrastructure Division of Research and Innovation 5900 Folsom Blvd Sacramento, CA 95819 (916) 227-7031 Bob.Meline@dot.ca.gov

John Jewell, P.E. Senior Crash Testing Engineer Office of Safety Innovation & Cooperative Research (916) 227-5824 John_Jewell@dot.ca.gov

COLORADO

Joshua Keith, P.E. Standards & Specifications Engineer Project Development Branch Colorado Dept. of Transportation 4201 E Arkansas Ave, 4th Floor Denver, CO 80222 (303) 757-9021 Josh.Keith@state.co.us

Joshua Palmer, P.E.

Guardrail Engineer Colorado Dept. of Transportation 2829 W. Howard Pl Denver, CO 80204 (303) 757-9229 Joshua.j.palmer@state.co.us

Chih Shawn Yu (303) 757-9474 Shawn.yu@state.co.us

Andrew Pott, P.E. II Staff Bridge (303) 512-4020 Andrew.pott@state.co.us

CONNECTICUT

David Kilpatrick State of Connecticut Depart. of Transportation 2800 Berlin Turnpike Newington, CT 06131-7546 (806) 594-3288 David.Kilpatrick@ct.gov

DELAWARE

Mark Buckalew, P.E. Safety Program Manager Delaware Depart. of Transportation 169 Brick Store Landing Road Smyrna, DE 19977 (302) 659-4073 Mark.Buckalew@state.de.us

FLORIDA

Derwood C. Sheppard, Jr., P.E. Standard Plans Publication Engineer Florida Depart. of Transportation Roadway Design Office 605 Suwannee Street, MS-32 Tallahassee, FL 32399-0450 (850) 414-4334 Derwood.Sheppard@dot.state.fl.us

IDAHO

Kevin Sablan Design and Traffic Engineer Idaho Transportation Department P. O. Box 7129 Boise, ID 83707-1129 (208) 334-8558 Kevin.Sablan@ITD.idaho.gov

Rick Jensen, P.E. ITD Bridge Design (208) 334-8589 Rick.jensen@itd.idaho.gov

Shanon M. Murgoitio, P.E. Engineer Manager 1 ITD Bridge Division (208) 334-8589 Shanon.murgoitio@ird.idaho.gov

Marc Danley, P.E. Technical Engineer (208) 334-8558 Marc.danley@itd.idaho.gov

ILLINOIS

Martha A. Brown, P.E. Safety Design Bureau Chief Bureau of Safety Programs and Engineering Illinois Depart. of Transportation 2300 Dirksen Parkway, Room 005 Springfield, IL 62764 (217) 785-3034 Martha.A.Brown@illinois.gov

Tim Craven Tim.craven@illinois.gov

Filberto (Fil) Sotelo Safety Evaluation Engineer (217) 785-5678 Filiberto.Sotelo@illinois.gov Jon M. McCormick Safety Policy & Initiatives Engineer

(217) 785-5678 Jon.M.McCormick@illinois.gov

LOUISIANA

Chris Guidry Bridge Manager Louisiana Transportation Center Bridge & Structural Design Section P.O. Box 94245 Baton Rouge, LA 79084-9245 (225) 379-1933 Chris.Guidry@la.gov

Kurt Brauner, P.E. Bridge Engineer Manager Louisiana Transportation Center 1201 Capital Road, Suite 605G Baton Rouge, LA 70802 (225) 379-1933 Kurt.Brauner@la.gov

Brian Allen, P.E. Bridge Design Engineer (225) 379-1840 Brian.allen@la.gov

Steve Mazur

Bridge Design (225) 379-1094 Steven.Mazur@la.gov

MARYLAND

Jeff Robert Division Chief Bridge Design Division Office of Structures 707 N. Calvert Street, Mailstop C-203 Baltimore, MD 21202 (410) 545-8327 jrobert@sha.state.md.us

Sharon D. Hawkins **Project Manager Office of Policy and Research, Research Division 707 N. Calvert Street, Mailstop C-412 Baltimore, MD 21202** (410) 545-2920 **Shawkins2@sha.state.md.us**

MASSACHUSETTS

Alex Bardow

Director of Bridges and Structure Massachusetts Depart. of Transportation 10 Park Plaza, Room 6430 Boston, MA 02116 (517) 335-9430 Alexander.Bardow@state.ma.us

James Danila Assistant State Traffic Engineer (857) 368-9640

James.Danila@state.ma.us

MICHIGAN

Carlos Torres, P.E. Crash Barrier Engineer Geometric Design Unit, Design Division Michigan Depart. of Transportation P. O. Box 30050 Lansing, MI 48909 (517) 335-2852 TorresC@michigan.gov

MINNESOTA

Michael Elle, P.E. Design Standards Engineer Minnesota Depart. Of Transportation 395 John Ireland Blvd, MS 696 St. Paul, MN 55155-1899 (651) 366-4622 Michael.Elle@state.mn.us

Michelle Moser Assistant Design Standards Engineer (651) 366-4708 Michelle.Moser@state.mn.us

MISSOURI

Sarah Kleinschmit, P.E.

Policy and Innovations Engineer, Missouri Department of Transportation P.O. Box 270 Jefferson City, MO 65102 (573) 751-7412 sarah.kleinschmit@modot.mo.gov

MISSISSIPPI

Heath T. Patterson, P.E. MDOT-State Maintenance Engineer Emergency Coordinating Officer 401 N. West Street Jackson, MS 39201 (601) 359-7113 hpatterson@mdot.ms.gov

NEW MEXICO

David Quintana, P.E. Project Development Engineer P.O. Box 1149, Room 203 Santa Fe, NM 87504-1149 (505) 827-1635 David quintana@state.nm.us

<u>OHIO</u>

Don P. Fisher, P.E. Ohio Depart. of Transportation 1980 West Broad Street Mail Stop 1230 Columbus, OH 43223 (614) 387-6214 Don.fisher@dot.ohio.gov

OREGON

Christopher Henson Senior Roadside Design Engineer Oregon Depart. of Transportation Technical Service Branch 4040 Fairview Industrial Drive, SE Salem, OR 97302-1142 (503) 986-3561 Christopher.S.Henson@odot.state.or.us

PENNSYLVANIA

Guozhou Li Pennsylvania DOT GuLi@pa.gov

Hassan Raza

Standards & Criteria Engineer Pennsylvania Depart. of Transportation Bureau of Project Delivery 400 North Street, 7th Floor Harrisburg, PA 17120 (717) 783-5110 HRaza@pa.gov

TENNESSEE

Ali Hangul, P.E., CPESC

Assistant Director Tennessee Depart. of Transportation Roadway Design & Office of Aerial Surveys James K. Polk State Office Bldg. 505 Deaderick Street Nashville, TN 37243 (615) 741-0840 Ali.Hangul@tn.gov

TEXAS

Chris Lindsey

Transportation Engineer Design Division Texas Department of Transportation 125 East 11th Street Austin, TX 78701-2483 (512) 416-2750 Christopher.Lindsey@txdot.gov

Taya Retterer P.E. TXDOT Bridge Standards Engineer (512) 416-2719 Taya.Retterer@txdot.gov

Wade Odell

Transportation Engineer Research & Technology Implementation 200 E. Riverside Drive Austin, TX 78704 Wade.Odell@txdot.gov

<u>UTAH</u>

Shawn Debenham

Traffic and Safety Division Utah Depart. of Transportation 4501 South 2700 West PO Box 143200 Salt Lake City UT 84114-3200 (801) 965-4590 sdebenham@utah.gov

WASHINGTON

John Donahue

Design Policy and Analysis Manager Washington State Dept. of Transportation Development Division P.O. Box 47329 Olympia, WA 98504-7246 (360) 704-6381 donahjo@wsdot.wa.gov

Mustafa Mohamedali

Assistant Research Project Manager P.O. Box 47372 Olympia, WA 98504-7372 (360) 704-6307 mohamem@wsdot.wa.gov

Anne Freeman

Program Administrator Research & Library Services (306) 705-7945 Freeann@wsdot.gov

WEST VIRGINIA

Donna J. Hardy, P.E. Safety Programs Engineer West Virginia Depart. of Transportation – Traffic Engineering Building 5, Room A-550 1900 Kanawha Blvd E. Charleston, WV 25305-0430 (304) 558-9576 Donna.J.Hardy@wv.gov

WEST VIRGINIA (continued)

Ted Whitmore Traffic Services Engineer (304) 558-9468 Ted.J.Whitmore@wv.gov

WISCONSIN

Erik Emerson, P.E.

Standards Development Engineer – Roadside Design Wisconsin Department of Transportation Bureau of Project Development 4802 Sheboygan Avenue, Room 651 P. O. Box 7916 Madison, WI 53707-7916 (608) 266-2842 Erik.Emerson@wi.gov

<u>CANADA – ONTARIO</u>

Kenneth Shannon, P. Eng. Senior Engineer, Highway Design (A) Ontario Ministry of Transportation 301 St. Paul Street St. Catharines, ON L2R 7R4 CANADA (904) 704-3106 Kenneth.Shannon@ontario.ca

FEDERAL HIGHWAY

ADMINISTRATION (FHWA) WebSite: safety.fhwa.dot.gov

Richard B. (Dick) Albin, P.E. Safety Engineer FHWA Resource Center Safety & Design

Technical Services Team 711 S. Capital Olympia, WA 98501 (303) 550-8804 Dick.Albin@dot.gov

Eduardo Arispe

Research Highway Safety Specialist U.S. Department of Transportation Federal Highway Administration Turner-Fairbank Highway Research Center Mail Code: HRDS-10 6300 Georgetown Pike McLean, VA 22101 (202) 493-3291 Eduardo.arispe@dot.gov

Greg Schertz, P.E.

FHWA – Federal Lands Highway Division Safety Discipline Champion 12300 West Dakota Ave. Ste. 210 Lakewood, CO 80228 (720)-963-3764 Greg.Schertz@dot.gov

Christine Black

Highway Safety Engineer Central Federal Lands Highway Division 12300 West Dakota Ave. Lakewood, CO 80228 (720) 963-3662 Christine.black@dot.gov

TEXAS A&M TRANSPORTATION INSTITUTE (TTI)

WebSite: tti.tamu.edu www.roadsidepooledfund.org

D. Lance Bullard, Jr., P.E.

Senior Research Engineer Roadside Safety & Physical Security Div. Texas A&M Transportation Institute 3135 TAMU College Station, TX 77843-3135 (979) 317-2855 L-Bullard@tti.tamu.edu

Roger P. Bligh, Ph.D., P.E. Senior Research Engineer (979) 317-2703 R-Bligh@tti.tamu.edu

Chiara Silvestri Dobrovolny, Ph.D. Research Scientist (979) 317-2687 C-Silvestri@tti.tamu.edu

REPORT AUTHORIZATION

REPORT REVIEWED BY:

DocuSigned by:

Glenn Schroeder

Glenn Schröeder, Research Specialist Drafting & Reporting

DocuSigned by:

Adam Mayer

Adam Mayer, Research Specialist Construction

DocuSigned by: Scott Dobrowolny

Scott Dobrovolny, Research Specialist Mechanical Instrumentation –DocuSigned by: Ken Reeves

Ken Reeves, Research Specialist Electronics Instrumentation

> —DocuSigned by: Píchard Badíllo

Richard Badillo, Research Specialist Photographic Instrumentation

DocuSigned by: Wanda L. Menges

Wanda L. Menges, Research Specialist Research Evaluation and Reporting

DocuSigned by: Bill Griffith

Bill L. Uriffith, Research Specialist Deputy Quality Manager

DocuSigned by:

Matt Robinson

Matthew N. Robinson, Research Specialist Test Facility Manager & Technical Manager

DocuSigned by: Damell Luba

Darrell L. Kuhn, P.E., Research Specialist Quality Manager

DocuSigned by: Maysam kiani

Maysam Kiani Assistant Research Engineer

TABLE OF CONTENTS

Pa	
Disclaimer	
Report Authorization	
Table of Contents	
List of Figuresx	iii
List of Tables	
Chapter 1. Introduction	
1.1 Problem Statement	
1.2 Work Plan	
1.2.1 Task 1: Literature and Engineering Review	
1.2.2 Task 2: Computer Modeling and Simulation	3
1.2.3 Task 3: MASH Crash Testing	
1.2.4 Task 4: Evaluation and Reporting	4
Chapter 2 Literature Review	
2.1 BACKGROUND	5
2.1.1 Length of Need	5
2.1.2 Transition	8
2.2 SUMMARY AND CONCLUSIONS FROM LITERATURE SEARCH	9
Chapter 3 Finite ELEMENT MODEL SIMULATIONS 1	11
3.1 Introduction	11
3.2 System Design	11
3.3 Detailed Modeling	12
3.4 Simulation	15
3.4.1 Length-of-Need	16
3.4.2 Transition	19
3.5 Summary and Conclusions from Computer Simulation	21
Chapter 4 Test Requirements and Evaluation Criteria	
4.1 Crash Test Performed/Matrix	
4.2 Evaluation Criteria	24
Chapter 5 Test Conditions	27
5.1 Test Facility	27
5.1 Vehicle Tow and Guidance System	27
5.2 Data Acquisition Systems	27
5.2.1 Vehicle Instrumentation and Data Processing	
5.2.2 Anthropomorphic Dummy Instrumentation	
5.2.3 Photographic Instrumentation Data Processing	
Chapter 6 MASH Testing of Roadside Thrie-beam System	
6.1 MASH Test 3-11 (Crash Test No. 614341-01-1)	
6.1.1 Test Designation and Actual Impact Conditions	
6.1.2 Weather Conditions	
6.1.3 Test Vehicle	
6.1.4 Test Description	
6.1.5 Damage to Test Installation	
6.1.6 Damage to Test Vehicle	

	6.1.7 Occupant Risk Factors	38
	1ASH Test 3-21 (Crash Test No. 614341-01-3)	
	6.2.1 Test Designation and Actual Impact Conditions	
	6.2.2 Weather Conditions	
	6.2.3 Test Vehicle	40
	6.2.4 Test Description	41
	6.2.5 Damage to Test Installation	
	6.2.6 Damage to Test Vehicle	
(6.2.7 Occupant Risk Factors	44
	7 Crash Testing of Median Thrie-beam System	
	lystem Details	
,	7.1.1 Test Article and Installation Details	47
,	7.1.2 Design Modifications during Tests	47
,	7.1.3 Material Specifications	47
,	7.1.4 Soil Conditions	47
7.2 N	<i>AASH</i> Test 3-10 (Crash Test No. 614341-01-2)	50
,	7.2.1 Test Designation and Actual Impact Conditions	50
,	7.2.2 Weather Conditions	50
,	7.2.3 Test Vehicle	50
,	7.2.4 Test Description	51
,	7.2.5 Damage to Test Installation	51
,	7.2.6 Damage to Test Vehicle	53
,	7.2.7 Occupant Risk Factors	54
	[•] 8 Summary and Conclusions	
	Assessment of Test Results	
8.2 C	Conclusions	57
	ces	
	ix A. Details of Roadside Thrie Beam System	
	ix B. Supporting Certification Documents	
	ix C. Soil Properties	
	ix D. <i>MASH</i> Test 3-11 (Crash Test No. 614341-01-1)	
	Vehicle Properties and Information	
	Sequential Photographs	
	Vehicle Angular Displacements	
	Vehicle Accelerations	
	ix E. MASH Test 3-21 (Crash Test No. 614341-01-3)	
E.1.	Vehicle Properties and Information	
E.2.	Sequential Photographs	
E.3.		
E.4.		
	ix F. Details of Median Thrie Beam System	
	ix G. MASH Test 3-10 (Crash Test No. 614341-01-2)	
	Vehicle Properties and Information	
G.2.	Sequential Photographs	
	Vehicle Angular Displacements	
G.4.	Vehicle Accelerations	124

LIST OF FIGURES

		Page
Figure 3.1	Plan View and Elevation of Roadside TGS Installation.	11
Figure 3.2	Plan View and Elevation of Median TGS Installation.	12
Figure 3.3	Roadside TGS LON model.	
Figure 3.4	Roadside TGS Transition model.	13
Figure 3.5	Median TGS LON model.	
Figure 3.6	Median TGS Transition model.	
Figure 3.7	MASH Test Vehicle Models; (a) 1100C; (b) 2270P.	15
Figure 3.8	G9 System Simulation Vs. Crash Test.	16
Figure 3.9	Vehicle Tire Position during impact to the G9 system (left) vs. the TGS	
	(right)	17
Figure 3.10	Pickup truck stability comparison between the G9 system (left) vs. the TGS (right).	17
Figure 3.11	Vehicle stability after impact on LON: (a) Small car on Roadside TGS; (b)	
-	Pickup truck on Roadside TGS; (c) Small car on Median TGS; (d) Pickup	
	truck on Median TGS	18
Figure 3.12	(a) Alaska Transition Design, (b) Proposed TGS to MGS transition concept	19
Figure 3.13	Vehicle Stability after Impact on Transition: (a) Small Car on Roadside TGS;	
	(b) Pickup Truck on Roadside TGS; (c) Small Car on Median TGS; (d)	
	Pickup Truck on Median TGS	20
	Target CIP for MASH Test 3-11 on Roadside Thrie-beam System.	
	Target CIP for MASH Test 3-21 on Roadside Thrie-beam System.	
	Target CIP for MASH Test 3-10 on Median Thrie-beam System.	
•	Details of Roadside Thrie-beam System.	
	Roadside Thrie-beam System prior to Testing	33
Figure 6.3.	Roadside Thrie-beam System/Test Vehicle Geometrics for Test No.	
	614341-01-1.	
	Test Vehicle before Test No. 614341-01-1.	
	Roadside Thrie-beam System after Test No. 614341-01-1.	
	Test Vehicle after Test No. 614341-01-1.	
	Interior of Test Vehicle after Test No. 614341-01-1	
	Summary of Results for MASH Test 3-11 on Roadside Thrie-beam System	39
Figure 6.9.	Roadside Thrie-beam System/Test Vehicle Geometrics for Test No.	
	614341-01-3.	
	. Test Vehicle before Test No. 614341-01-3.	
Figure 6.11	. Roadside Thrie-beam after Test No. 614341-01-3	42
Figure 6.12	. Test Vehicle after Test No. 614341-01-3.	43
Figure 6.13	. Interior of Test Vehicle after Test No. 614341-01-3.	44
	. Summary of Results for MASH Test 3-21 on Roadside Thrie-beam System	
	Details of Median System.	
	Median Thrie-beam System prior to Test No. 614314-01-2	49
Figure 7.3.	Median Thrie-beam System/Test Vehicle Geometrics for Test No. 614341-	
	01-2	50

Figure 7.4.	Test Vehicle before Test No. 614341-01-2.	51
Figure 7.5.	Median Thrie-beam System after Test No. 614341-01-2	52
•	Test Vehicle after Test No. 614341-01-2.	
Figure 7.7.	Interior of Test Vehicle after Test No. 614341-01-2	54
	Summary of Results for MASH Test 3-10 on Median Thrie-beam System	
Figure C.1.	Summary of Strong Soil Test Results for Establishing Installation Procedure	81
	Soil Strength for Test No. 614341-01-1.	
Figure C.3.	Soil Strength for Test No. 614341-01-3.	83
Figure C.4.	Soil Strength for Test No. 614341-01-2.	84
Figure D.1.	Sequential Photographs for Test No. 614341-01-1 (Frontal and Rear Views)	89
	Vehicle Angular Displacements for Test No. 614341-01-1	
Figure D.3.	Vehicle Longitudinal Accelerometer Trace for Test No. 614341-01-1	
-	(Accelerometer Located at Center of Gravity)	92
Figure D.4.	Vehicle Lateral Accelerometer Trace for Test No. 614341-01-1	
-	(Accelerometer Located at Center of Gravity)	93
Figure D.5.	Vehicle Vertical Accelerometer Trace for Test No. 614341-01-1	
-	(Accelerometer Located at Center of Gravity)	94
Figure E.1.	Sequential Photographs for Test No. 614341-01-3 (Overhead and Frontal	
	Views).	99
Figure E.2.	Sequential Photographs for Test No. 614341-01-3 (Rear View) 1	01
Figure E.3.	Vehicle Angular Displacements for Test No. 614341-01-3 1	02
Figure E.4.	Vehicle Longitudinal Accelerometer Trace for Test No. 614341-01-3	
	(Accelerometer Located at Center of Gravity)1	03
Figure E.5.	Vehicle Lateral Accelerometer Trace for Test No. 614341-01-3	
	(Accelerometer Located at Center of Gravity)1	04
Figure E.6.	Vehicle Vertical Accelerometer Trace for Test No. 614341-01-3	
	(Accelerometer Located at Center of Gravity)1	05
Figure G.1.	Sequential Photographs for Test No. 614341-01-2 (Overhead and Frontal	
	Views)	20
Figure G.2.	Sequential Photographs for Test No. 614341-01-2 (Rear View) 1	22
Figure G.3.	Vehicle Angular Displacements for Test No. 614341-01-2 1	23
Figure G.4.	Vehicle Longitudinal Accelerometer Trace for Test No. 614341-01-2	
	(Accelerometer Located at Center of Gravity)1	24
Figure G.5.	Vehicle Lateral Accelerometer Trace for Test No. 614341-01-2	
	(Accelerometer Located at Center of Gravity)1	25
Figure G.6.	Vehicle Vertical Accelerometer Trace for Test No. 614341-01-2	
	(Accelerometer Located at Center of Gravity)1	26

LIST OF TABLES

		Page
Table 3.1	Test Conditions and Required Evaluation Criteria for MASH TL-3	15
Table 3.2	Evaluation Criteria for Transitions According to MASH TL-3.	16
Table 3.3	Critical Impact Points According to MASH and Computer Simulations	21
Table 4.1.	Test Conditions and Evaluation Criteria Specified for MASH TL-3	
	Longitudinal Barriers and Transitions.	23
Table 4.2.	Evaluation Criteria Required for MASH TL-3 Longitudinal Barriers and	
	Transitions	
	Events during Test No. 614341-01-1	
	Post Movements after Test No. 614341-01-1.	
Table 6.3.	Occupant Risk Factors for Test No. 614341-01-1.	38
	Events during Test No. 614341-01-3	
Table 6.5.	Post Movements after Test No. 614341-01-3.	43
Table 6.6.	Occupant Risk Factors for Test No. 614341-01-3.	44
	Events during Test No. 614341-01-2.	
	Post Movements after Test No. 614341-01-2.	
	Occupant Risk Factors for Test No. 614341-01-2.	54
Table 8.1.	Performance Evaluation Summary for MASH Test 3-11 on Roadside Thrie-	
	beam System.	58
Table 8.2.	Performance Evaluation Summary for MASH Test 3-21 on Roadside Thrie-	
	beam System.	59
Table 8.3.	Performance Evaluation Summary for MASH Test 3-10 on Median Thrie-	
	beam System.	60
Table 8.4.	Assessment Summary for MASH TL-3 LON Tests on Thrie-beam Median	
	System	61
Table 8.5.	Assessment Summary for MASH TL-3 Transition Test on Thrie-beam	
	Roadside System.	
	Vehicle Properties for Test No. 614341-01-1	85
Table D.2.	Measurements of Vehicle Vertical Center of Gravity for Test No.	
	614341-01-1	
	Exterior Crush Measurements for Test No. 614341-01-1.	
	Occupant Compartment Measurements for Test No. 614341-01-1	
	Vehicle Properties for Test No. 614341-01-3.	95
Table E.2.	Measurements of Vehicle Vertical Center of Gravity for Test No.	
	614341-01-3	96
	Exterior Crush Measurements for Test No. 614341-01-3.	
	Occupant Compartment Measurements for Test No. 614341-01-3.	
Table G.I.	Vehicle Properties for Test No. 614341-01-2.	117/
	Exterior Crush Measurements for Test No. 614341-01-2.	
Table G.3.	Occupant Compartment Measurements for Test No. 614341-01-2	119

This page intentionally left blank.

Chapter 1. INTRODUCTION

1.1 PROBLEM STATEMENT

Thrie-beam guardrail systems are used when enhanced Test Level 3 (TL-3) protection above what is typically provided with W-beam guardrail is desired. Currently, an AASHTO *Manual for Assessing Safety Hardware (MASH)* compliant Thrie-beam guardrail system for roadside applications exist, but a median version has yet to be developed (1). Furthermore, the currently available roadside system incorporates components that are more costly to fabricate and install, and create a wider footprint that standard W-beam guardrail. Therefore, the Roadside Safety Pooled Fund prioritized a project to develop *MASH* compliant cost-effective Thrie-beam guardrail systems for both roadside and median applications. These systems were crash tested to *MASH* specifications. Lastly, transition designs from these newly developed systems to standard W-beam systems were developed through computer simulation.

1.2 WORK PLAN

1.2.1 Task 1: Literature and Engineering Review

The research team reviewed the current literature and previous research related to Thriebeam guardrail systems and transitions between W-beam and Thrie-beam sections. This included reviewing the National Cooperative Highway Research Program (NCHRP) *Report 350* compliant systems and the current *MASH* compliant systems (2). The research team also completed a preliminary analysis of the roadside, median, and transition systems in preparation for the computer simulation

1.2.2 Task 2: Computer Modeling and Simulation

The primary objective of Task 2 was to use computer simulation to develop designs for the following systems:

- 1) Roadside Thrie-beam guardrail.
- 2) Median Thrie-beam guardrail.
- 3) Transition from roadside Thrie-beam guardrail to W-beam guardrail.
- 4) Transition from median Thrie-beam guardrail to W-beam guardrail.

The design objectives included being *MASH* compliant, cost-efficient, and easy to install. The TTI research team used the results of these simulations to assess the probability of each design concept meeting *MASH* impact performance requirements and other desirable functional characteristics.

The TTI research team used the explicit finite element code to perform impact simulations using the developed barrier model and available vehicle models, as shown in Chapter 3.

The TTI research team used a combination of previous research, *MASH* guidelines, and computer simulations to determine the critical impact points for the *MASH* crash tests. Once the critical impact points had been determined, the TTI research team reviewed the findings with the technical representative before constructing the test installations and conducting crash testing.

TR No. 614341-01

1.2.3 Task 3: MASH Crash Testing

The TTI research team completed full-scale *MASH* crash tests on the roadside and median systems. The budget allowed for three full-scale crash tests. Therefore, the results from the computer simulations were used to identify the critical *MASH* TL-3 tests to be performed.

The computer simulation results were used to identify the most critical tests to perform on the Thrie-beam systems and transitions. In this case the three tests were *MASH* 3-10, 3-11, and 3-21. Test 3-11 was performed on the thrie beam roadside barrier, Test 3-10 was performed on the thrie beam median barrier, and Test 3-21 was performed on the (roadside, median) transition. These tests include the *MASH* 2270P (5000 lb) pickup truck and the *MASH* 1100C (2420 lb) small car.

1.2.4 Task 4: Evaluation and Reporting

The TTI research team prepared this research report to fully document all the work completed in this project. The report includes detailed engineering drawings of the Thrie-beam systems.

CHAPTER 2 LITERATURE REVIEW

2.1 BACKGROUND

A literature review was performed and completed for this project. The engineering review of the available systems for length-of-need (LON) and transition satisfies the requirement of Task 1: Literature and Engineering Review.

2.1.1 Length of Need

The original evaluation and testing of the modified thrie beam guardrail was performed by the Texas A&M Transportation Institute (TTI) in 1982 (3). The modified thrie beam guardrail was utilized 14-in. deep M14x17.2 blockouts with an angled cutout and an increased mounting height to 34 in. To reduce the possibility of stress concentrations that could occur as the thrie beam wrapped around the edge of the blockout during the impact, backup plates were included between the thrie beams and the blockouts. The modified thrie beam was evaluated by impacting the barrier with a 20,040-lb International school bus impacting at 55.8 mph and an angle of 15.0 degrees. The system safely redirected the bus with a dynamic deflection of 34 in. A subsequent test was conducted to evaluate the possibility of vehicle snagging using a small car. A 2,276-lb Honda Civic was used to impact the barrier at 62.5 mph and an angle of 15.0 degrees. The small car was safely redirected with a dynamic deflection of 9.6 in. No snagging of the vehicle on the system posts was noted.

There have been several previous research projects evaluating the G9 Thrie-beam system and modified Thrie-beam system under NCHRP Report No. 350 (Figure 2.1) (4). In 1995, TTI researchers conducted test designation 3-11 on the G9 system. The G9 system utilized W6x9 wide flange sections as blockouts. The G9 guardrail system successfully contained and redirected the vehicle with a maximum dynamic deflection of 3.5 ft. However, the vehicle exited the test installation at a high roll angle and subsequently rolled two and a quarter revolution after exiting the test installation. In summary, the impact performance of the thrie-beam (G9) guardrail system was judged to be unsatisfactory according to evaluation criteria outlined in NCHRP Report 350 because of post-impact rollover.

In 1998, TTI conducted Test No. 3-11 on a strong wood post Thrie beam guardrail system that utilized wood posts and wood blockouts. The system met all required criteria for NCHRP Report 350 test designation 3-11 (5).

Unlike the G9 system with steel post, the modified Thrie-beam guardrail system successfully contained and redirected the vehicle and met all evaluation criteria outlined in NCHRP Report 350 for TL-3 and TL-4 conditions (*6*, *7*).

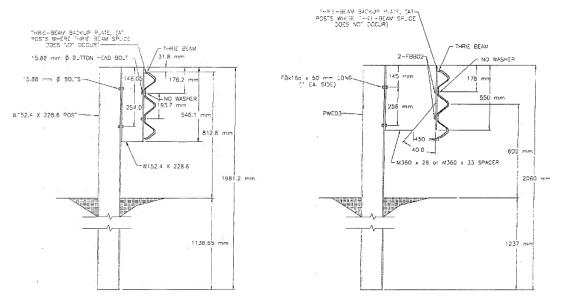


Figure 2.1. G9 guardrail system and modified thrie beam system.

TTI researchers evaluated the G9 thrie beam system presented in Figure 2.2 by using the proposed update of National Cooperative Highway Research Program (NCHRP) Report 350, referred to as the Manual for Assessing Safety Hardware (MASH08) *(8)*. The G9 thrie beam guardrail system consisted of a 12-gauge thrie beam rail mounted on 6 ft-6-inch long W6x8.5 steel posts spaced 6 ft-3 inches apart with 6-inch x 8-inch x 22-inch-long routed wood blockouts. The blockout was attached to the post with 5/8-inch diameter bolts without washers. The mounting height of the thrie beam rail element was 31.625 inches to the top of the thrie beam element. The thrie beam guardrail length-of-need was 100 ft long and transitioned to 37 ft-6-inch ET W-beam terminals attached to each end. The total installation length was 187 ft–6 inch. The G9 thrie beam guardrail contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection of the thrie beam during the test was 33.2 inches. However, the 2270P vehicle rolled after losing contact with the guardrail hence the did not perform acceptably under MASH criteria when impacted by the 2270P vehicle.

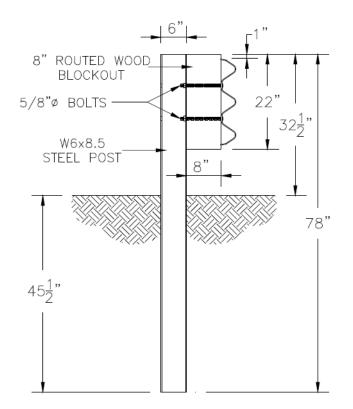


Figure 2.2. Cross-section of the G9 thrie beam guardrail.

Marzougui et al investigated the performance of standard G9 Thrie beam barrier using computer simulation. They constructed finite element models for the G9 Thrie-beam and the G4(1S) median barriers. For the G9 Thrie Beam barrier, various options were considered in an attempt to mitigate the rollover observed in the crash test. The variations included notched steel blockouts which is similar to what has been successfully crash tested as the Modified Thrie beam system by MwRSF (9) as well as using shorter blockouts behind the Thrie beam. For the G4(1S) median barrier, raising the mounting height of the barrier was recommended (10, 11).

In 2020, the Midwest Roadside Safety Facility (MwRSF) researchers evaluated the New Jersey Department of Transportation (NJDOT) modified thrie beam guardrail system in both a single-sided roadside configuration and a dual-sided median configuration under Manual for Assessing Safety Hardware 2016 (MASH 2016) Test-Level 3 (TL-3) criteria (Figure 2.3). Both single-sided roadside configuration and the dual-sided median configuration was constructed utilized 81-in. long W6x8.5 steel posts at 75-in. post spacing, W14x22 steel blockouts, and 12-gauge guardrail sections. Both crash tests were deemed successful according to MASH 2016 TL-3 safety performance criteria (9).

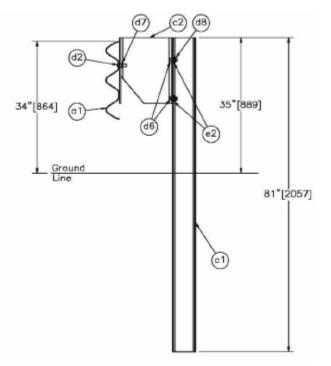
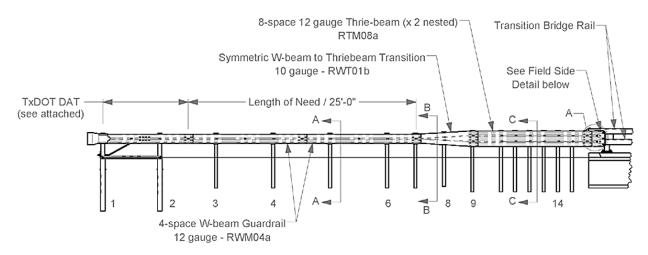



Figure 2.1. Typical single-sided cross-section of the modified thrie beam guardrail system tested by MwRSF.

2.1.2 Transition

TTI researchers assessed the performance of the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition according to the safety-performance evaluation guidelines included in AASHTO MASH (12). The 2019 MASH 2-Tube Bridge Rail test installation was comprised of a 154-ft long section of reinforced concrete bridge deck that incorporated two steel rails, a 12¹/₂-ft long section of two nested thrie beams attached to the bridge rails with a thrie beam terminal connector and unique guardrail connector, a standard symmetrical 75-inch long thrie-to-W-beam transition rail section, 25 ft of W-beam guardrail LON, and a standard 9 ft-41/2 inch long TxDOT DAT terminal at the end. Figure 2.4 presents overall information on the 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition. The target critical impact point (CIP) for each test was determined in accordance with the guidance provided in MASH. For MASH Test 3-20, the target CIP was 5.1 ft upstream of the end of the concrete parapet. The target CIP for MASH Test 3-21 on the three beam to bridge rail transition was 7.0 ft upstream of the concrete parapet. The target CIP for MASH Test 3-21 on the W-beam to three beam transition was 7.3 ft upstream of the centerline of post 7. TTI researchers determined that MASH Test 3-20 on the W-beam to thrie beam transition was not necessary and was therefore not performed. The 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition performed acceptably for a MASH TL-3 transition.

2.2 SUMMARY AND CONCLUSIONS FROM LITERATURE SEARCH

Based on the engineering review of previous studies, the following conclusions can be drawn:

- 1. The mounting height of the rail shouldn't be less than 34 inches.
- 2. Using W-beam standard blockouts (6x8x14 inch) instead of Thrie-beam blockouts (6x8x22 inch) may improve the stability of the vehicle during the impact.
- 3. Utilizing a symmetric W-to-thrie transition segment provides a proper height transition from TGS to standard MGS.

CHAPTER 3 FINITE ELEMENT MODEL SIMULATIONS

3.1 INTRODUCTION

Finite element modeling simulations were conducted on the designs as part of Task 2: Computer Modeling and Simulation. The computer simulations were performed using LS-DYNA ().

3.2 SYSTEM DESIGN

The 218 ft 9 inch installation consisted of 81 ft 3 inch TGS that is attached to standard W-beam rail using symmetric W-beam-to-thrie-beam transition segments. The post spacing was 75 inches, except for in the transition section where it was 37½ inches. Figure 3.1 and Figure 3.2 show the details of the roadside and median TGS design concepts.

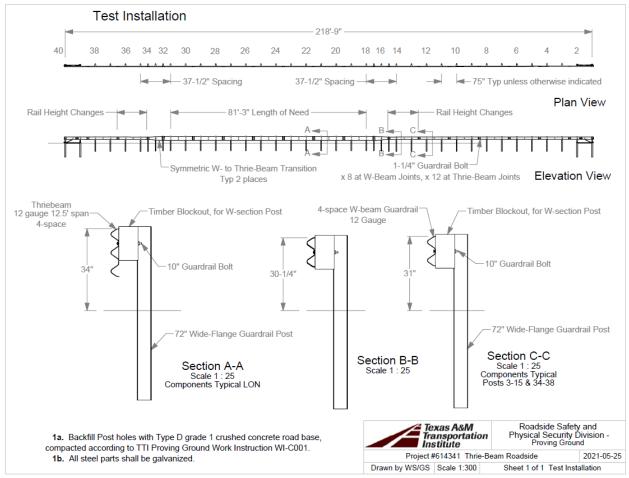


Figure 3.1. Plan View and Elevation View of Roadside TGS Installation.

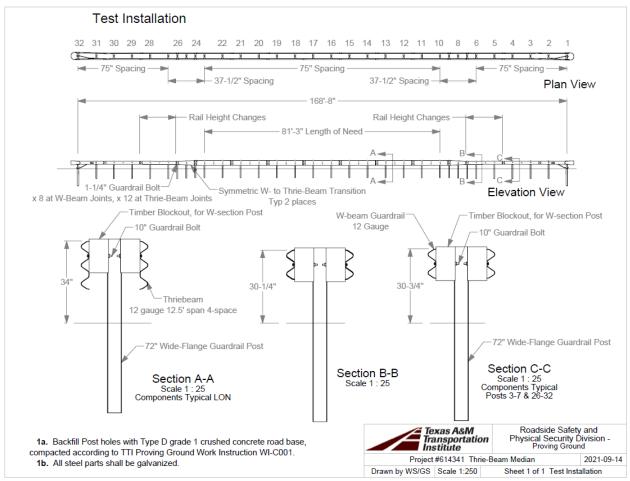


Figure 3.2. Plan View and Elevation View of Median TGS Installation.

3.3 DETAILED MODELING

Explicit finite element models of the systems were created using detailed geometrical and material properties. Figure 3.3 to Figure 3.6 show various views and specifications of the modeled systems. The figures show the utilization of 14-inch tall blockouts throughout the systems. Figure 3.7 shows views of the *MASH* 1100C and 2270P vehicle models used in the computer simulations (*14*).

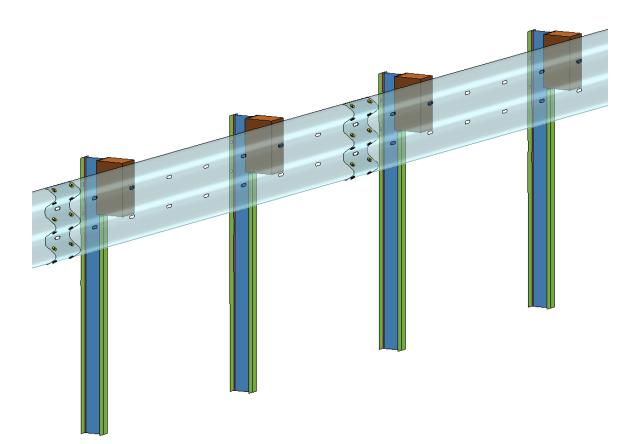


Figure 3.3. Roadside TGS Length-of-Need (LON) model.

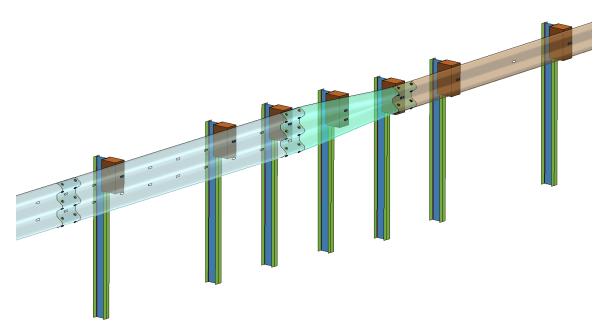


Figure 3.4. Roadside TGS Transition model.

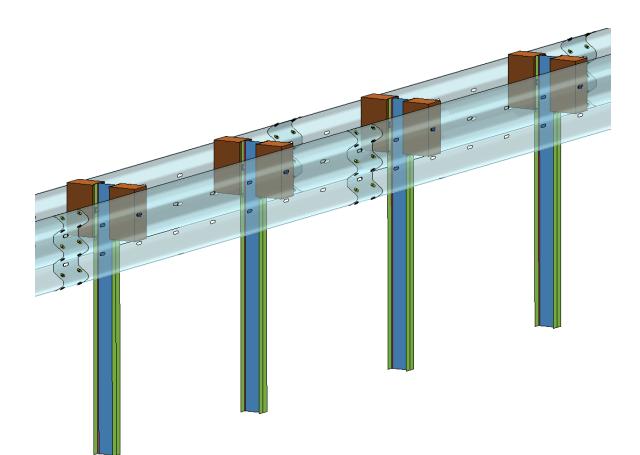


Figure 3.5. Median TGS LON model.

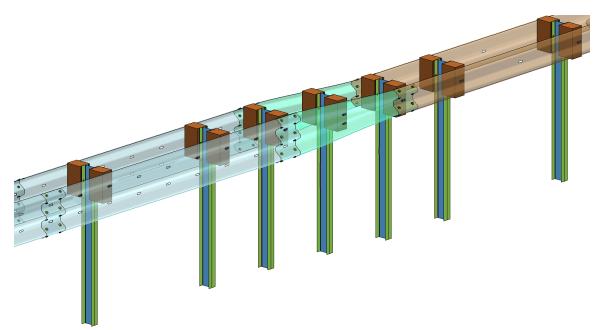


Figure 3.6. Median TGS Transition model.

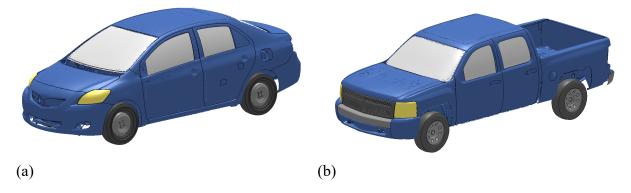


Figure 3.7. MASH Test Vehicle Models; (a) 1100C; (b) 2270P.

3.4 SIMULATION

All impact simulations on each roadside and median TGS were performed under *MASH* TL-3 impact conditions presented in Table 3.1. The research team performed an extensive parametric analysis to investigate the systems and impacting vehicles performance at various impact points. Table 3.2 lists the evaluation criteria. The simulation procedure and the results are presented below.

Test Article	Test	Test	Impact Conditions		Evaluation Criteria	
	Designation	Vehicle	Speed	Angle	Crneria	
Longitudinal	3-10	1100C	62 mi/h	25°	A, D, F, H, I	
Barriers	3-11	2270P	62 mi/h	25°	A, D, F, H, I	
T	3-20	1100C	62 mi/h	25°	A, D, F, H, I	
Transitions	3-21	2270P	62 mi/h	25°	A, D, F, H, I	

Table 3.1. Test Conditions and Required Evaluation Criteria for MASH TL-3.

Evaluation Factors	Evaluation Criteria				
A.Test article should contain and redirect the vehicle or vehicle to a controlled stop; the vehicle should not per underride, or override the installation although control lateral deflection of the test article is acceptable.					
	D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating occupant compartment, or present undue hazard to other traf- pedestrians, or personnel in a work zone.				
	Deformations of, or intrusions into, the occupant compartmen should not exceed limits set forth in Section 5.2.2 and Appena E of MASH.				
Occupant Risk	<i>The vehicle should remain upright during and after collision.</i> <i>The maximum roll and pitch angles are not to exceed 75 degr</i>	ees.			
	I. Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable valu 40 ft/s.				
	The occupant ridedown accelerations should satisfy the following: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.				

Table 3.2. Evaluation Criteria for Transitions According to MASH TL-3.

3.4.1 Length-of-Need

The reason for the failure of the modified G9 Thrie-beam guardrail system under MASH was vehicle rollover. Thus, the modified G9 system was modeled to provide a baseline model for validation (Figure 3.8) and was redesigned to develop a crashworthy system through computer simulation.

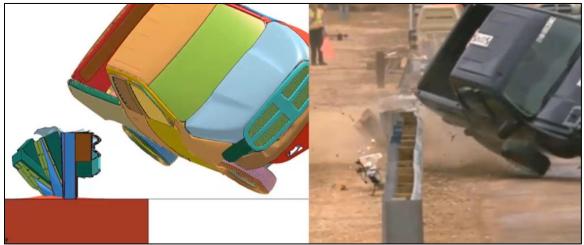


Figure 3.8. G9 System Simulation Vs. Crash Test.

Various design concepts were simulated, including different blockout heights and rail mounting heights. It was concluded that the primary cause of the vehicle rollover was the interaction of the front impact side tire with the bottom of the 22" tall Thrie-beam blockout. Figure 3.9 illustrates the tire position upon impact for the G9 system and TGS. Shorter blockouts (14-inch-tall W-beam blockouts) behind the Thrie-beam allows the bottom of the Thrie-beam to bend inward upon impact, which reduces the possibility of climb and excessive roll angle that may cause vehicle rollover (*15*).

Figure 3.10 shows how the redesigned system improves vehicle stability during and after impact. The roadside and median versions of the redesigned system were evaluated for structural adequacy, vehicle stability, and occupant risk factors. Extensive computer simulation indicated that the system performs acceptably for all *MASH* criteria for TL-3 impact conditions. Figure 3.11 shows the vehicle's stability after impact for both roadside and median versions.

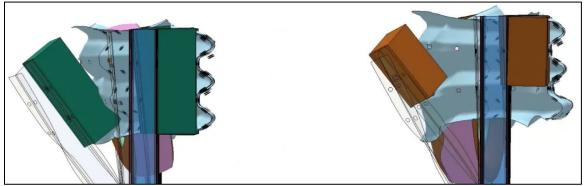


Figure 3.9. Vehicle Tire Position during impact to the G9 system (left) vs. the TGS (right).

Figure 3.10. Pickup truck stability comparison between the G9 system (left) vs. the TGS (right).

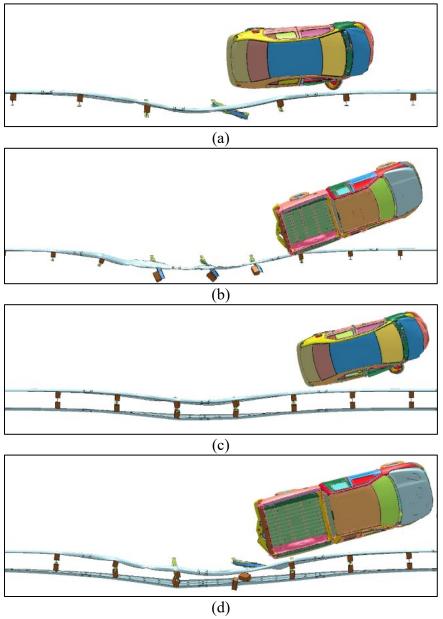
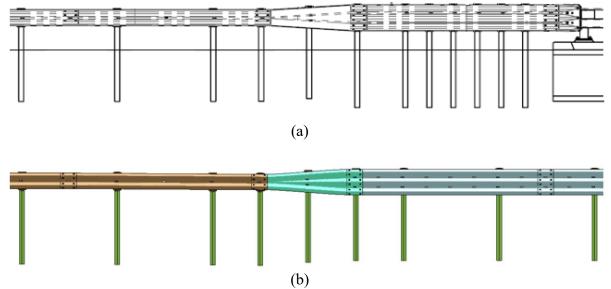
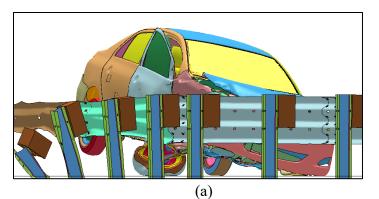


Figure 3.11. Vehicle stability after impact on LON: (a) Small car on Roadside TGS; (b) Pickup truck on Roadside TGS; (c) Small car on Median TGS; (d) Pickup truck on Median TGS

3.4.2 Transition

The transition design concept was developed based on the Alaska transition design that was successfully crash tested by TTI researchers in 2019 (12). Figure 3.12 shows the *MASH* TL-3 compliant Alaska transition and the proposed TGS to MGS transition concept. The proposed transition concept has a different downstream stiffness and utilizes wood (W-beam) blockouts instead of steel tube blockouts. Computer simulation showed that the small car tire snagging did not cause any vehicle instability or excessive occupant risk. Thus, it is decided that test designation number 3-21 would be conducted to evaluate the structural adequacy of the roadside version of the transition. Figure 3.13 illustrates the vehicles' stability and tire-post interactions.

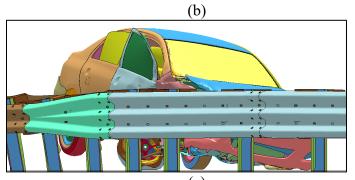


Figure 3.12. (a) Alaska Transition Design, (b) Proposed TGS to MGS transition concept.

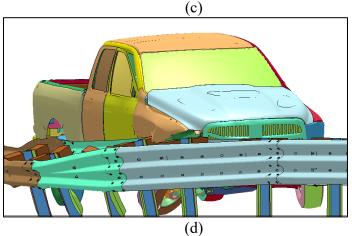


Figure 3.13. Vehicle Stability after Impact on Transition: (a) Small Car on Roadside TGS; (b) Pickup Truck on Roadside TGS; (c) Small Car on Median TGS; (d) Pickup Truck on Median TGS

3.5 SUMMARY AND CONCLUSIONS FROM COMPUTER SIMULATION

Considering that both roadside and median TGS and their transitions needed to be evaluated, TTI researchers proposed to run test designation numbers 3-10, 3-11, and 3-21 on the critical configuration of the barriers. Test 3-10 was proposed to be conducted on the median version since higher stiffness of the median version would increase impact load and occupant risk values. Conversely, test 3-11 was proposed to be conducted on the roadside version to evaluate the structural integrity of the system as well as maximum dynamic deflection and working width values. Previous evaluations of the T-39 Thrie-beam barrier and the Modified Thrie-beam system for both roadside and median versions followed a similar methodology which agrees with the simulation results presented herein (9, 16). Computer simulation indicated that test designation number 3-21 on the roadside version was the most critical transition test to evaluate the system's structural adequacy. The tire snagging for the small car was not causing any issues concerning vehicle stability and occupant risks. Therefore, TTI researchers determined that *MASH* Test 3-20 on the transition was not necessary and was not performed.

Table 3.3 shows the critical impact points for the three crash tests. The LON distances are from a post downstream of a rail splice location and the transition CIP is from the upstream end of the W-beam-to-thrie-beam transition segment.

Crash Test Matrix						
SystemVehicleTest No.CIP (ft)						
LON	Roadside TGS	Pickup Truck	3-11	13.25		
	Median TGS	Small Car	3-10	9.33		
Transition	Roadside TGS	Pickup Truck	3-21	7.33		

Table 3.3 Critical Impact Points According to Computer Simulations.

CHAPTER 4 TEST REQUIREMENTS AND EVALUATION CRITERIA

4.1 CRASH TEST PERFORMED/MATRIX

Table 4.1 shows the test conditions and evaluation criteria for *MASH* TL-3 for longitudinal barriers and transitions. The target critical impact points (CIPs) for each test were determined using the information provided in *MASH* Section 2.2.1 and Section 2.3.2 and they were verified using computer simulation. Figure 4.1 and Figure 4.2 show the target CIP for *MASH* Tests 3-11 and 3-21 on the roadside Thrie-beam system, respectively, and Figure 4.3 shows the target CIP for *MASH* Test 3-10 on the median Thrie-beam system.

Test Article	Test		Imp Condi		Evaluation
	Designation		Speed	Angle	Criteria
Longitudinal Barriers	3-10	1100C	62 mi/h	25°	A, D, F, H, I
	3-11	2270P	62 mi/h	25°	A, D, F, H, I
Transitions	3-20	1100C	62 mi/h	25°	A, D, F, H, I
	3-21	2270P	62 mi/h	25°	A, D, F, H, I

 Table 4.1. Test Conditions and Evaluation Criteria Specified for MASH TL-3

 Longitudinal Barriers and Transitions.

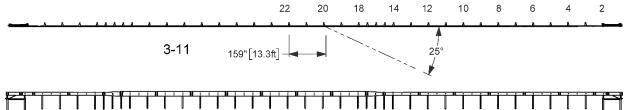
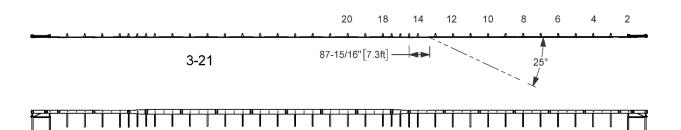
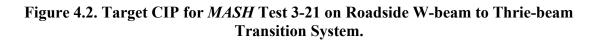
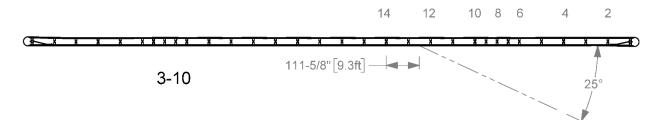





Figure 4.1. Target CIP for MASH Test 3-11 on Roadside Thrie-beam System.

Figure 4.3. Target CIP for MASH Test 3-10 on Median Thrie-beam System.

The crash tests and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 5 presents brief descriptions of these procedures.

4.2 EVALUATION CRITERIA

The appropriate safety evaluation criteria from Tables 2-2 and 5-1 of *MASH* were used to evaluate the crash tests reported herein. Table 4.1. lists the test conditions and evaluation criteria required for *MASH* TL-3, and Table 4.2 provides detailed information on the evaluation criteria. An evaluation of the crash test results is presented in Chapter 8.

MASH Test 3-11 was conducted on the roadside version to evaluate the structural adequacy of the system and to record the maximum dynamic deflection of the system. *MASH* Test 3-10 was conducted on the median configuration to evaluate the possible vehicle tire snagging as well as higher occupant risk factors due to the higher stiffness and reduced dynamic deflection. Computer simulation indicated that the small car tire snagging is not an issue for the transition system of roadside and median configurations. Thus, *MASH* Test 3-20 on the transition was not necessary and was not performed.

Evaluation Factors	Evaluation Criteria	MASH Test			
Structural Adequacy	A. Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	3-10, 3-11, 3-20, and 3-21			
	D. Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to other traffic, pedestrians, or personnel in a work zone.	3-10, 3-11, 3-20, and			
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	3-21			
Occupant Risk	<i>F.</i> The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	3-10, 3-11, 3-20, and 3-21			
	<i>H.</i> Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.	3-10, 3-11, 3-20, and 3-21			
	<i>I.</i> The occupant ridedown accelerations should satisfy the following: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	3-10, 3-11, 3-20, and 3-21			

Table 4.2. Evaluation Criteria Required for MASH TL-3 Longitudinal Barriers and Transitions.

CHAPTER 5 TEST CONDITIONS

5.1 TEST FACILITY

The full-scale crash tests reported herein were performed at the TTI Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, as well as MASH guidelines and standards. The test facilities of the TTI Proving Ground are located on The Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 mi northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, highway pavement durability and efficacy, and roadside safety hardware and perimeter protective device evaluation. The site selected for construction and testing of the Thrie-beam systems was along the edge of an out-of-service apron. The apron consists of an unreinforced jointed-concrete pavement in 12.5-ft × 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement but are otherwise flat and level.

5.1 VEHICLE TOW AND GUIDANCE SYSTEM

Each test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point and through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site.

5.2 DATA ACQUISITION SYSTEMS

5.2.1 Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained onboard data acquisition system. The signal conditioning and acquisition system is a multi-channel data acquisition system (DAS) produced by Diversified Technical Systems Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid-state units designed for crash test service. The data acquisition hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each channel is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 samples per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit in case the primary battery cable is severed. Initial contact of a pressure tape switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the DAS unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each DAS is returned to the factory annually for complete recalibration and to ensure that all instrumentation used in the vehicle conforms to the specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCO[®] 2901 precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive calibration via a Genisco Rate-of-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel per SAE J211. Calibrations and evaluations are also made anytime data are suspect. Acceleration data are measured with an expanded uncertainty of ± 1.7 percent at a confidence factor of 95 percent (k = 2).

TRAP uses the DAS-captured data to compute the occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with an SAE Class 180-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k = 2).

5.2.2 Anthropomorphic Dummy Instrumentation

An Alderson Research Laboratories Hybrid II, 50th percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the front seat on the impact side of the 1100C vehicle. The dummy was not instrumented.

However, *MASH* recommends that a dummy be used when testing "any longitudinal barrier with a height greater than or equal to 33 inches." More specifically, use of the dummy in the 2270P vehicle is recommended for tall rails to evaluate the "potential for an occupant to extend out of the vehicle and come into direct contact with the test article." Although this information is reported, it is not part of the impact performance evaluation. Since the rail height

of the roadside Thrie-beam system was 34 inches, a dummy was placed in the front seat of the 2270P vehicle on the impact side and restrained with lap and shoulder belts.

5.2.3 Photographic Instrumentation Data Processing

Photographic coverage of each test included three digital high-speed cameras:

- One overhead with a field of view perpendicular to the ground and directly over the impact point.
- One placed upstream from the installation at an angle to have a field of view of the interaction of the rear of the vehicle with the installation.
- A third placed with a field of view parallel to and aligned with the installation at the downstream end.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the installation. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

CHAPTER 6 MASH TESTING OF ROADSIDE THRIE-BEAM SYSTEM

6.1. SYSTEM DETAILS

6.1.1. Test Article and Installation Details

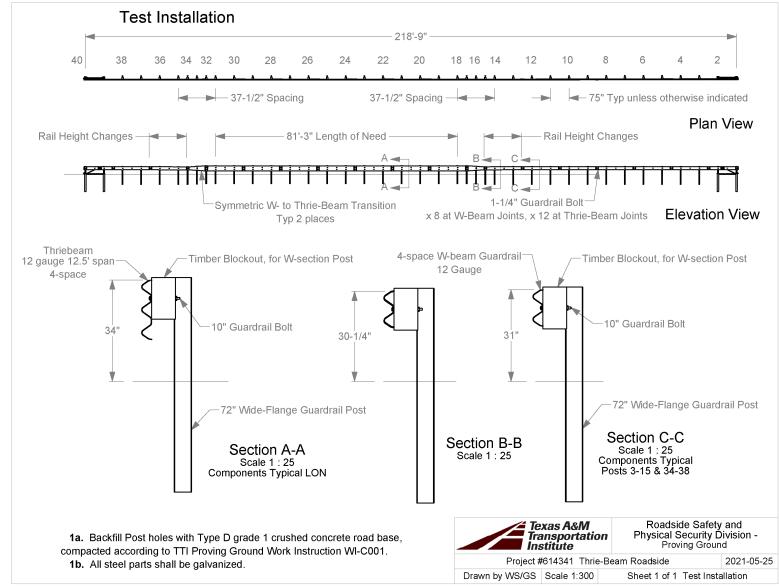
The installation consisted of an 81 ft-3-inch Thrie-beam length-of-need (LON) that transitioned on both ends to a standard W-beam rail for a total installation length of 218 ft-9 inches. Standard 72-inch long W6x8.5 guardrail posts and W-beam standard blockouts (6x8x14 in.) were used throughout the installation. The top of the Thrie-beam was located 34 inches above the roadway. The W-beam height beyond the thrie-beam-to-W-beam transitions was 31 inches. Post spacing was 75 inches, except in the transition sections where it was 37½ inches. Each end of the installation was terminated with a steel post end terminal.

Figure 6.1 presents overall information on the roadside Thrie-beam system, and Figure 6.2 provides photographs of the installation. Appendix A provides further details on the roadside Thrie-beam system. Drawings were provided by the Texas A&M Transportation Institute (TTI) Proving Ground, and construction was performed by DMA Construction Inc. and supervised TTI Proving Ground personnel.

6.1.2. Design Modifications during Tests

No modification was made to the installation during the testing phase.

6.1.3. Material Specifications


Appendix B provides material certification documents for the materials used to install/construct the roadside Thrie-beam system.

6.1.4. Soil Conditions

The test installation was installed in crushed concrete meeting grading D of AASHTO standard specification M147-17 "Materials for Aggregate and Soil-Aggregate Subbase, Base, and Surface Courses."

In accordance with Appendix B of *MASH*, soil strength was measured the day of the crash test. During installation of the roadside Thrie-beam system for full-scale crash testing, two 6-ft long W6×16 posts were installed in the immediate vicinity of the roadside Thrie-beam system using the same fill materials and installation procedures used in the test installation and the standard dynamic test. Table C.1 in Appendix C presents minimum soil strength properties established through the dynamic testing performed in accordance with *MASH* Appendix B. As determined by the tests summarized in Appendix C, Table C.1, the minimum post loads required for deflections at 5 inches, 10 inches, and 15 inches, measured at a height of 25 inches, are 4420 lbf, 4981 lbf, and 5282 lbf (90 percent of static load for the initial standard installation).

On the day of Test No. 614341-01-1, August 16, 2021, loads on the post at deflections of 5 inches, 10 inches, and 15 inches were 8454 lbf, 8878 lbf, and 9090 lbf. Table C.2 in Appendix C shows the strength of the backfill material in which the roadside Thrie-beam system was installed met minimum *MASH* requirements for soil strength.

Q: Accreditation-17025-2017 EIR-000 Project Files \614341 - Thrie-Beam Roadside-Median - Kiani \Drafting, 614341 \614341 Roadside Drawing

Figure 6.1. Details of Roadside Thrie-beam System.

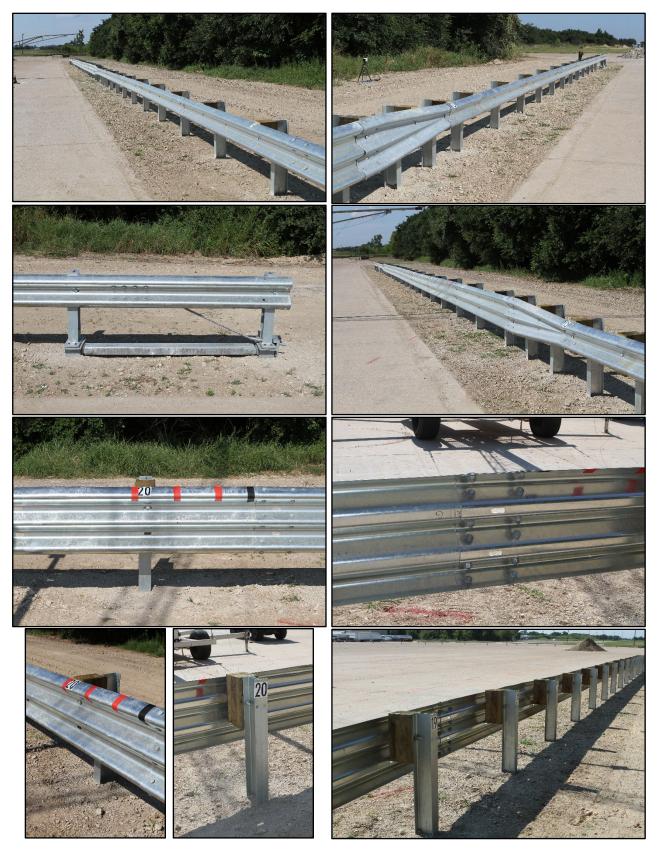


Figure 6.2. Roadside Thrie-beam System prior to Testing.

On the day of Test No. 614341-01-3, August 20, 2021, loads on the post at deflections of 5 inches, 10 inches, and 15 inches were 7727 lbf, 8665 lbf, and 8575 lbf. Table C.3 in Appendix C shows the strength of the backfill material in which the roadside Thrie-beam system was installed met minimum *MASH* requirements for soil strength.

6.1 MASH TEST 3-11 (CRASH TEST NO. 614341-01-1)

6.1.1 Test Designation and Actual Impact Conditions

MASH Test 3-11 involves a 2270P vehicle weighing 5000 lb \pm 110 lb impacting the CIP of the longitudinal barrier at an impact speed of 62 mi/h \pm 2.5 mi/h and an angle of 25 degrees \pm 1.5 degrees. The CIP for *MASH* Test 3-11 on the roadside Thrie-beam system was 13.3 ft \pm 1 ft upstream of the centerline of post 22. Figure 4.1 and Figure 6.3 depict the target impact setup.

Figure 6.3. Roadside Thrie-beam System/Test Vehicle Geometrics for Test No. 614341-01-1.

The 2270P vehicle weighed 5057 lb, and the actual impact speed and angle were 60.4 mi/h and 25.9 degrees. The actual impact point was 13.6 ft upstream of the centerline of post 22. Minimum target IS was 106 kip-ft, and actual IS was 118 kip-ft.

6.1.2 Weather Conditions

The test was performed on the morning of August 16, 2021. Weather conditions at the time of testing were as follows: wind speed: 2 mi/h; wind direction: 187 degrees (vehicle was traveling at a heading of 195 degrees); temperature: 86°F; relative humidity: 73 percent.

6.1.3 Test Vehicle

Figure 6.4 shows the 2015 RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 5057 lb, and its gross static weight was 5222 lb. The height to the lower edge of the vehicle bumper was 11.75 inches, and the height to the upper edge of the bumper was 27.0 inches. The height to the vehicle's center of gravity was 28.75 inches. Tables D.1 and D.2 in Appendix D.1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system and was released to be freewheeling and unrestrained just prior to impact.

Figure 6.4. Test Vehicle before Test No. 614341-01-1.

6.1.4 Test Description

Table 6.1 lists events that occurred during Test No. 614341-01-1. Figures D.1 and D.2 in Appendix D.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0175	Post 20 began to deflect toward field side
0.2060	Right rear corner of vehicle contacted installation
0.2810	Vehicle traveling parallel with installation

Table 6.1. Events during Test No. 614341-01-1.

For longitudinal barriers, it is desirable for the vehicle to redirect and exit the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The test vehicle exited within the exit box criteria defined in *MASH*. Brakes on the vehicle were applied at 4.1 s after impact, and the vehicle subsequently came to rest 225 ft downstream of the point of impact and 33 ft toward traffic lanes.

6.1.5 Damage to Test Installation

Figure 6.5 shows the damage to the roadside Thrie-beam system. The rail released from posts 13, 21, 22 and 23. Posts 13 and 24 through 30 were rotated counterclockwise, while posts 3 through 12 and 14 through 20 were rotated clockwise. The blockouts were missing from posts 21 through 23. The blockout for post 21 came to rest 19 ft towards the field side and was in-line with the midspan between posts 22 and 23. The blockout for post 22 came to rest 36 ft towards the field side and was in-line with the midspan between posts 23 and 24. The blockout for post 23 came to rest 2 ft towards the field side and was in-line with the centerline of post 26. Table 6.2 shows post movements after the test.

Working width* was 55.2 inches, and height of working width was 60.4 inches. Maximum dynamic deflection during the test was 42.1 inches, and maximum permanent deformation was 26.9 inches.

Figure 6.5. Roadside Thrie-beam System after Test No. 614341-01-1.

^{*} Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Post No.	Lean Vert		Soil Gap (inches)			
	F/S	D/S	U/S	D/S	T/S	F/S
1	-	-	1/2	3⁄4	-	-
2	-	-	-	1/2	-	-
21	5°	70°	-	-	-	-
22	5°	70°	-	-	-	-
23	5°	70°	-	-	-	-
19	4°	-	-	-		3⁄4
20	11°	-	-	-	31/2	2
24	4°	-	-	-	-	1
25	1°	_	-	-	1/8	
40	-	-	-	1⁄4	-	-

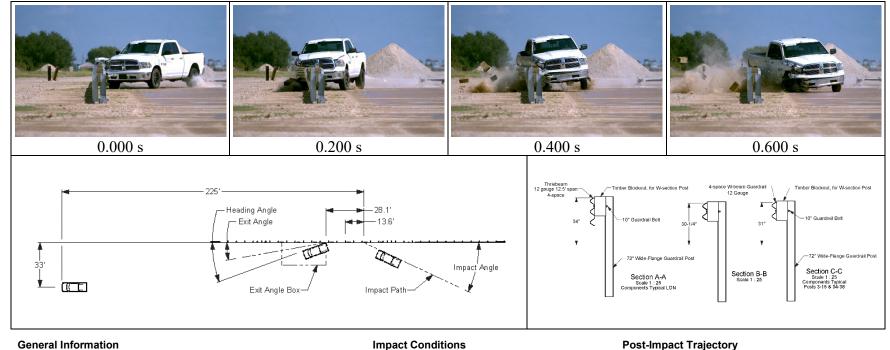
Table 6.2. Post Movements after Test No. 614341-01-1.

6.1.6 Damage to Test Vehicle

Figure 6.6 shows the damage sustained by the vehicle. The front bumper, grill, right front tire and rim, fight front fender, right front and rear doors, right rear lower cab corner, right rear exterior bed, and rear bumper were damaged. No fuel tank damage was observed. Maximum exterior crush to the vehicle was 8.0 inches in the front plane at the right front corner at bumper height. No occupant compartment deformation or intrusion was observed. Figure 6.7 shows the interior of the vehicle. Tables D.3 and D.4 in Appendix D.1 provide exterior crush and occupant compartment measurements.

Figure 6.6. Test Vehicle after Test No. 614341-01-1.

F/S=Field Side; D/S=Downstream; U/S=Upstream; T/S=Traffic Side


Figure 6.7. Interior of Test Vehicle after Test No. 614341-01-1.

6.1.7 Occupant Risk Factors

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 6.3. Figure D.3 in Appendix D.3 shows the vehicle angular displacements, and Figures D.4 through D.6 in Appendix D.4 show acceleration versus time traces. Figure 6.8 summarizes pertinent information from the test.

Occupant Risk Factor	Value	Time			
OIV					
Longitudinal	16.8 ft/s	at 0.1549 s on right side of interior			
Lateral	15.5 ft/s	at 0.1349 s off fight side of filterior			
Occupant Ridedown Accelerations					
Longitudinal	5.9 g	0.17–1 - 0.1861 s			
Lateral	8.6 g	0.17–7 - 0.1887 s			
THIV	6.4 m/s	at 0.1476 s on right side of interior			
ASI	0.8	0.2686 - 0.3186 s			
Maximum 50-ms Moving Average					
Longitudinal	-4.9 g	0.0874 - 0.1374s			
Lateral	-6.9 g	0.2411 - 0.2911s			
Vertical	-2.6 g	0.6744 - 0.7244s			
Maximum Yaw, Pitch, and Roll Angles					
Roll	5.8°	0.3251 s			
Pitch	4.1°	1.1686 s			
Yaw	47.5°	0.7698 s			

Table 6.3. Occupant Risk Factors for Test No. 614341-01-1.

MASH Test 3-11
614341-01-1
2021-08-16
Longitudinal Barrier—Guardrail
Roadside Thrie-beam System
218 ft-9 inches
Thrie-beam LON transitioned to W-beam
rail
Grading D of AASHTO M147-17 (Crushed
Concrete), Dry
<i>i</i> - <u>-</u>
2270P
2015 RAM 1500 Pickup
5100 lb
5057 lb
165 lb
5222 lb

Test Agency..... Texas A&M Transportation Institute (TTI)

Impact Conditions

Speed	. 60.4 mi/h
Angle	. 25.9°
Location/Orientation	
	post 22
Impact Severity	
Exit Conditions	·
Speed	Overhead Camera
 Trajectory/Heading Angle	
Occupant Risk Values	
Longitudinal OIV	. 16.8 ft/s
Lateral OIV	
Longitudinal Ridedown	. 5.9 g
Lateral Ridedown	. 8.6 g
THIV	. 6.4 m/s
ASI	. 0.8
Max. 0.050-s Average	
Longitudinal	-4.9 g
Lateral	6.9 g
Vertical	. –2.6 g

Stopping Distance.....

Ctopping Distance	ELO IL GOMINOLIO
	33 ft twd traffic
Vehicle Stability	
Maximum Roll Angle	6°
Maximum Pitch Angle	4°
Maximum Yaw Angle	
Vehicle Snagging	
Vehicle Pocketing	No
Test Article Deflections	
Dynamic	42.1 inches
Permanent	26.9 inches
Working Width	55.2 inches
Height of Working Width	60.4 inches
Vehicle Damage	
VDS	01RFQ2
CDC	01FREW2
Max. Exterior Deformation	8.0 inches
OCDI	RF0000000
Max. Occupant Compartment	
Deformation	None

225 ft downstream

Figure 6.8. Summary of Results for MASH Test 3-11 on Roadside TGS.

6.2 *MASH* TEST 3-21 (CRASH TEST NO. 614341-01-3)

6.2.1 Test Designation and Actual Impact Conditions

MASH Test 321 involves a 2270P vehicle weighing 5000 lb \pm 110 lb impacting the CIP of the transition at an impact speed of 62 mi/h \pm 2.5 mi/h and an angle of 25 degrees \pm 1.5 degrees. The CIP for *MASH* Test 3-21 on the roadside Thrie-beam transition system was 7.3 ft \pm 1 ft upstream of the centerline of post 15 where the symmetric transition piece connects to the W-beam system. Figure 4.2 and Figure 6.9 depict the target impact setup.

Figure 6.9. Roadside Thrie-beam System/Test Vehicle Geometrics for Test No. 614341-01-3.

The 2270P vehicle weighed 5019 lb, and the actual impact speed and angle were 61.5 mi/h and 25.3 degrees. The actual impact point was 7.5 ft upstream of the centerline of post 15. Minimum target IS was 106 kip-ft, and actual IS was 116 kip-ft.

6.2.2 Weather Conditions

The test was performed on the morning of August 20, 2021. Weather conditions at the time of testing were as follows: wind speed: 12 mi/h; wind direction: 202 degrees (vehicle was traveling at a heading of 195 degrees); temperature: 87°F; relative humidity: 77 percent.

6.2.3 Test Vehicle

Figure 6.10 shows the 2015 RAM 1500 pickup truck used for the crash test. The vehicle's test inertia weight was 5019 lb, and its gross static weight was 5184 lb. The height to the lower edge of the vehicle bumper was 11.75 inches, and the height to the upper edge of the bumper was 27.0 inches. The height to the vehicle's center of gravity was 28.5 inches. Tables D.1 and D.2 in Appendix D.1 give additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system and was released to be freewheeling and unrestrained just prior to impact.

Figure 6.10. Test Vehicle before Test No. 614341-01-3.

6.2.4 Test Description

Table 6.4 lists events that occurred during Test No. 614341-01-3. Figures D.1 and D.2 in Appendix D.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted installation
0.0050	Post 13 began to deflect towards the field side
0.0075	Post 14 began to deflect towards field side
0.0150	Post 15 began to deflect towards field side
0.0370	Vehicle began to redirect
0.0488	Post 16 began to deflect towards field side
0.2200	Back bumper contacted bottom rail
0.2900	Vehicle traveling parallel with installation
	Vehicle lost contact with the installation while traveling at an exit speed
0.6070	of 30.6 mi/h, exit trajectory angle of 18.1°, and exit heading angle of
	11.3°

Table 6.4. Events during Test No. 614341-01-3.

For longitudinal barriers, it is desirable for the vehicle to redirect and exit the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The test vehicle exited within the exit box criteria defined in *MASH*. Brakes on the vehicle were applied at 2.5 s after impact, and the vehicle subsequently came to rest 156 ft downstream of the point of impact and 12 ft toward field side.

6.2.5 Damage to Test Installation

Figure 6.11 shows the damage to the roadside Thrie-beam system. The rail released from posts 14 through 18, and the blockouts were missing from posts 14 through 17. Posts 3 through 12 were rotated clockwise, and post 18 was rotated counterclockwise. Posts 16 and 17 were pulled out of the soil completely. There was no movement noted for posts 21 through 40. Table 6.5 shows post movements after the test.

Working width* was 66.2 inches, and height of working width was 18.5 inches. Maximum dynamic deflection during the test was 38.9 inches, and maximum permanent deformation was 27.3 inches.

Figure 6.11. Roadside Thrie-beam after Test No. 614341-01-3.

^{*} Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

	Lean from Vertical	Soil Gap (inches)			
Posts	F/S	U/S	D/S	T/S	F/S
1	-	⁵ /8	-	-	-
2	-	-	1⁄4	-	-
12	<1°	-	-	1⁄8	1⁄8
13	4°	-	-	11/2	11/2
14	53°	-	-	-	-
15	74°	-	-	-	-
18	31°	-	-	-	-
19	12°	-	-	4	2
20	2°	-	-	3/4	1⁄8

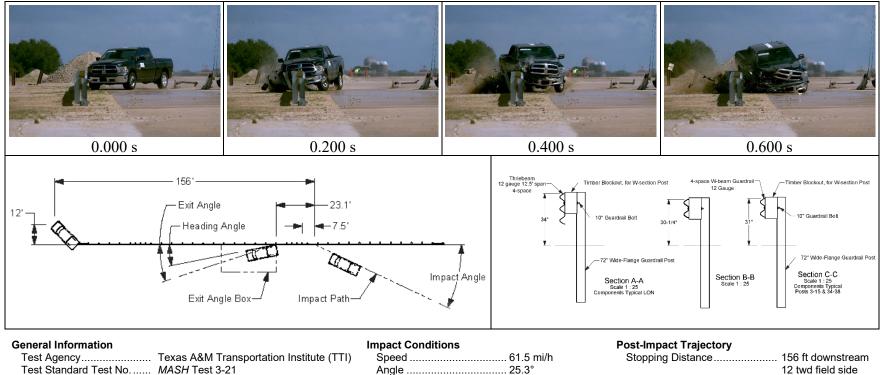
Table 6.5. Post Movements after Test No. 614341-01-3.

6.2.6 Damage to Test Vehicle

Figure 6.12 shows the damage sustained by the vehicle. The right front bumper, grill, right front tire and rim, right front fender, and right door were damaged. No fuel tank damage was observed. Maximum exterior crush to the vehicle was 17.0 inches in the side plane at the right front corner at bumper height. No occupant compartment deformation or intrusion was observed. Figure 6.13 shows the interior of the vehicle. Tables D.3 and D.4 in Appendix D.1 provide exterior crush and occupant compartment measurements.

Figure 6.12. Test Vehicle after Test No. 614341-01-3.

F/S=Field Side; D/S=Downstream; U/S=Upstream; T/S=Traffic Side


Figure 6.13. Interior of Test Vehicle after Test No. 614341-01-3.

6.2.7 Occupant Risk Factors

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 6.6. Figure D.3 in Appendix D.3 shows the vehicle angular displacements, and Figures D.4 through D.6 in Appendix D.4 show acceleration versus time traces. Figure 6.14 summarizes pertinent information from the test.

Occupant Risk Factor	Value	Time
OIV		
Longitudinal	18.9 ft/s	at 0,1540 a an right aids of interior
Lateral	14.3 ft/s	at 0.1549 s on right side of interior
Occupant Ridedown Accelerations		
Longitudinal	13.6 g	0.17–1 - 0.1861 s
Lateral	10.0 g	0.17–7 - 0.1887 s
THIV	6.8 m/s	at 0.1476 s on right side of interior
ASI	0.8	0.18–0 - 0.2310 s
Maximum 50-ms Moving Average		
Longitudinal	-7.4 g	0.17–6 - 0.2206 s
Lateral	-5.7 g	0.15–7 - 0.2077 s
Vertical	-2.6 g	1.64–9 - 1.6939 s
Maximum Yaw, Pitch, and Roll Angles		
Roll	15°	0.8129 s
Pitch	11°	0.5966 s
Yaw	37°	0.5158 s

Table 6.6. Occupant Risk Factors for Test No. 614341-01-3.

Test Agency	Texas A&M Transportation Institute (TTI)	Śpeed	61.5 mi/h
Test Standard Test No	MASH Test 3-21	Angle	25.3°
TTI Test No	614341-01-3	Location/Orientation	
Test Date	2021-08-20		post 15
Test Article		Impact Severity	116 kip-ft
Туре	Longitudinal Barrier—Guardrail	Exit Conditions	
Name	Roadside Thrie-beam System	Speed	
Installation Length	218 ft-9 inches	Trajectory/Heading Angle	18.1°/11.3°
Material or Key Elements	Thrie-beam LON transitioned to W-beam	Occupant Risk Values	
	rail	Longitudinal OIV	18.9 ft/s
Soil Type and Condition	Grading D of AASHTO M147-17 (Crushed	Lateral OIV	14.3 ft/s
	Concrete), Dry	Longitudinal Ridedown	
Test Vehicle		Lateral Ridedown	10.0 g
Type/Designation		THIV	6.8 m/s
Make and Model	2015 RAM 1500 Pickup	ASI	0.8
Curb	5014 lb	Max. 0.050-s Average	
Test Inertial	5019 lb	Longitudinal	–7.4 g
Dummy	165 lb	Lateral	–5.7 g
Gross Static	5184 lb	Vertical	−2.6 g

	12 twd field side
Vehicle Stability	
Maximum Roll Angle	15°
Maximum Pitch Angle	11°
Maximum Yaw Angle	37°
Vehicle Snagging	No
Vehicle Pocketing	
Test Article Deflections	
Dynamic	38.9 inches
Permanent	27.3 inches
Working Width	66.2 inches
Height of Working Width	18.5 inches
Vehicle Damage	
VDS	01RFQ4
CDC	01FREW3
Max. Exterior Deformation	17.0 inches
OCDI	RF0000000
Max. Occupant Compartment	
Deformation	None

Figure 6.14. Summary of Results for MASH Test 3-21 on Roadside TGS to W-Beam System Transition.

CHAPTER 7 CRASH TESTING OF MEDIAN THRIE-BEAM SYSTEM

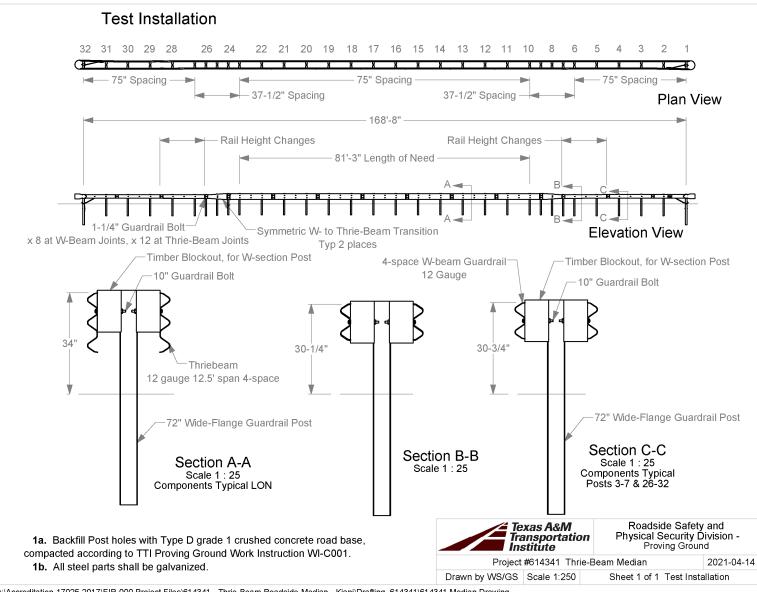
7.1 SYSTEM DETAILS

7.1.1 Test Article and Installation Details

The installation consisted of an 81 ft-3-inch thrie-beam median barrier length-of-need (LON) that transitioned on both ends to a standard W-beam rail for a total installation length of 168 ft-8 inches. Standard 72-inch long W6x8.5guardrail posts and W-beam standard blockouts (6x8x14 in.) were used throughout the installation. The top of the Thrie-beam was located 34 inches above the roadway. Beyond the thrie-beam-to-W-beam transitions, the height of the W-beam median barrier rail was 30^{3} /4 inches. Post spacing was 75 inches, except in the transition sections where it was $37\frac{1}{2}$ inches. The rail configuration was mirrored on the field side of the guard rail posts, and each end of the installation was terminated with a median terminal.

Figure 7.1 presents the overall information on the roadside Thrie-beam system, and Figure 7.2 provides photographs of the installation. Appendix F provides further details on the median Thrie-beam system. Drawings were provided by the Texas A&M Transportation Institute (TTI) Proving Ground, and construction was performed by TTI Proving Ground personnel.

7.1.2 Design Modifications during Tests


No modification was made to the installation during the testing phase.

7.1.3 Material Specifications

Appendix B provides material certification documents for the materials used to install/construct the median Thrie-beam system.

7.1.4 Soil Conditions

The test installation was installed in crushed concrete meeting grading D of AASHTO standard specification M147-17 "Materials for Aggregate and Soil-Aggregate Subbase, Base, and Surface Courses." In accordance with Appendix B of *MASH*, soil strength was measured the day of the crash test. During installation of the median Thrie-beam system for full-scale crash testing, two 6-ft long W6×16 posts were installed in the immediate vicinity of the median Thriebeam system using the same fill materials and installation procedures used in the test installation and the standard dynamic test. Table C.1 in Appendix C presents minimum soil strength properties established through the dynamic testing performed in accordance with *MASH* Appendix B. As determined by the tests summarized in Appendix C, Table C.1, the minimum post loads required for deflections at 5 inches, 10 inches, and 15 inches, measured at a height of 25 inches, are 4420 lbf, 4981 lbf, and 5282 lbf (90 percent of static load for the initial standard installation).

Q:\Accreditation-17025-2017\EIR-000 Project Files\614341 - Thrie-Beam Roadside-Median - Kiani\Drafting, 614341\614341 Median Drawing

Figure 7.1. Details of Median Thrie-beam System.

Figure 7.2. Median Thrie-beam System prior to Test No. 614314-01-2.

On the day of Test No. 614341-01-2, September 16, 2021, loads on the post at deflections of 5 inches, 10 inches, and 15 inches were 8121 lbf, 8878 lbf, and 9363 lbf. Table C.4 in Appendix C shows the strength of the backfill material in which the median Thrie-beam system was installed met minimum *MASH* requirements for soil strength.

7.2 MASH TEST 3-10 (CRASH TEST NO. 614341-01-2)

7.2.1 Test Designation and Actual Impact Conditions

MASH Test 3-10 involves a 1100C vehicle weighing 2420 lb \pm 55 lb impacting the CIP of the longitudinal barrier at an impact speed of 62 mi/h \pm 2.5 mi/h and an angle of 25 degrees \pm 1.5 degrees. The CIP for *MASH* Test 3-10 on the median Thrie-beam system was 9.3 ft \pm 1 ft upstream of the center of post 14. Figure 4.3 and Figure 7.3 depict the target impact setup.

Figure 7.3. Median Thrie-beam System/Test Vehicle Geometrics for Test No. 614341-01-2.

The 1100C vehicle weighed 2455 lb, and the actual impact speed and angle were 62.6 mi/h and 25.0 degrees. The actual impact point was 9.0 ft upstream of post 14. Minimum target impact severity (IS) was 51 kip-ft, and actual IS was 57 kip-ft.

7.2.2 Weather Conditions

The test was performed on the morning of September 16, 2021. Weather conditions at the time of testing were as follows: wind speed: 6 mi/h; wind direction: 50 degrees (vehicle was traveling at a heading of 195 degrees); temperature: 79°F; relative humidity: 78 percent.

7.2.3 Test Vehicle

Figure 7.4 shows the 2015 Nissan Versa used for the crash test. The vehicle's test inertia weight was 2455 lb, and its gross static weight was 2620 lb. The height to the lower edge of the vehicle bumper was 7.0 inches, and the height to the upper edge of the bumper was 22.25 inches. Table C.1 in Appendix C.1 gives additional dimensions and information on the vehicle. The vehicle was directed into the installation using a cable reverse tow and guidance system and was released to be freewheeling and unrestrained just prior to impact.

Figure 7.4. Test Vehicle before Test No. 614341-01-2.

7.2.4 Test Description

Table 7.1 lists events that occurred during Test No. 614341-01-2. Figures C.1 and C.2 in Appendix C.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted transition
0.0200	Post 13 began to deflect towards the field side
0.0270	Vehicle began to redirect
0.0338	Post 14 began to deflect towards the field side
0.1800	Vehicle traveling parallel with transition
0.3370	Vehicle lost contact with transition while traveling at 42.4 mi/h,
0.3370	trajectory angle of 15.2°, and heading angle of 7.4°

Table 7.1. Events during Test No. 614341-01-2.

For longitudinal barriers, it is desirable for the vehicle to redirect and exit the barrier within the exit box criteria (not less than 32.8 ft downstream from loss of contact for cars and pickups). The test vehicle exited within the exit box criteria defined in *MASH*. Brakes on the vehicle were applied at 4.2 s after impact, and the vehicle subsequently came to rest 275 ft downstream of the point of impact and 42 ft toward traffic lanes.

7.2.5 Damage to Test Installation

Figure 6.5 shows the damage to the median Thrie-beam system. There was no soil disturbance noted from posts 1 through 9 and 16 through 32. The soil was disturbed at post 10, and significantly disturbed, with no measurable gaps at posts 13 and 14 due to the soil caving back into the post hole. Post 14 rotated clockwise and deformed, and the traffic side blockout released from post 14 and rail due to the bolt shearing at the post. The post 14 field side blockout was damaged. The field side rail released from posts 14 through 17, and the traffic side rail

released from post 14. Table 7.2 shows post movements after the test. Working width* was 38.9 inches, and height of working width was 32.5 inches. Maximum dynamic deflection during the test was 15.4 inches, and maximum permanent deformation was 8.4 inches.

Figure 7.5. Median Thrie-beam System after Test No. 614341-01-2.

^{*} Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

	Lean from Vertical		Soil Gap (inches)	
Posts	F/S	D/S	T/S	F/S
11	-	-	1/8	$^{1}/_{16}$
12	1°	-	5/8	1⁄4
13	6°	-	-	-
14	_	22°	-	-
15	1°	-	1⁄8	3⁄4

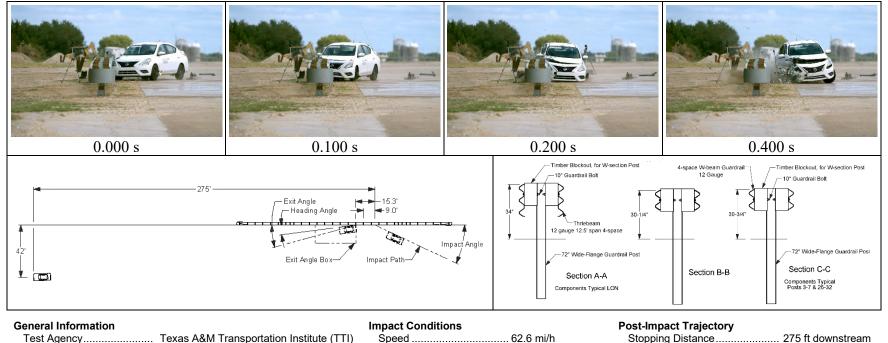
 Table 7.2. Post Movements after Test No. 614341-01-2.

F/S=Field Side; D/S=Downstream; U/S=Upstream; T/S=Traffic Side

7.2.6 Damage to Test Vehicle

Figure 7.6 shows the damage sustained by the vehicle. The front bumper, grill, hood, right front fender, right front strut and tower, right front tire and rim, right front floor pan, right front and rear doors, right rear quarter panel, and rear bumper were damaged. The windshield had cracks radiating upward and inward from the right lower corner. No fuel tank damage was observed. Maximum exterior crush to the vehicle was 8.0 inches in the side plane at the right front corner at bumper height. Maximum occupant compartment deformation was 3.0 inches in the right front firewall/toe pan area. Figure 7.7 shows the interior of the vehicle. Tables C.2 and C.3 in Appendix C.1 provide exterior crush and occupant compartment measurements.

Figure 7.6. Test Vehicle after Test No. 614341-01-2.


Figure 7.7. Interior of Test Vehicle after Test No. 614341-01-2.

7.2.7 Occupant Risk Factors

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 7.3. Figure C.3 in Appendix C.3 shows the vehicle angular displacements, and Figures C.4 through C.6 in Appendix C.4 show acceleration versus time traces. Figure 7.8 summarizes pertinent information from the test.

Occupant Risk Factor	Value	Time	
OIV			
Longitudinal	15.9 ft/s	at 0.1060 s on right side of interior	
Lateral	23.1 ft/s	at 0.1000 s on right side of interior	
Occupant Ridedown Accelerations			
Longitudinal	16.0 g	0.12–4 - 0.1364 s	
Lateral	12.5 g	0.16–5 - 0.1795 s	
THIV	8.3 m/s	at 0.1031 s on right side of interior	
ASI	1.3	0.05–2 - 0.1062 s	
Maximum 50-ms Moving Average			
Longitudinal	-7.4 g	0.08–4 - 0.1364 s	
Lateral	-9.9 g	0.04–0 - 0.0900 s	
Vertical	2.1 g	0.06–4 - 0.1124 s	
Maximum Yaw, Pitch, and Roll Angles			
Roll	6°	0.1666 s	
Pitch	4°	0.2639 s	
Yaw	37°	1.0034 s	

Table 7.3. Occupant Risk Factors for Test No. 614341-01-2.

C	
C	Л

TR No. 614341-01

		impact conditions	
Test Agency	Texas A&M Transportation Institute (TTI)	Speed	. 62.6 mi/h
Test Standard Test No	MASH Test 3-10	Angle	. 25.0°
TTI Test No	614341-01-2	Location/Orientation	. 9.0 ft upstream
Test Date	2021-09-16		post 14
Test Article		Impact Severity	. 57 kip-ft
	Longitudinal Barrier—Guardrail	Exit Conditions	
Name	Median Thrie-beam System	Speed	. 42.4 mi/h
Installation Length	168 ft-8 inches	Trajectory/Heading Angle	. 15.2°/7.4°
Material or Key Elements	Thrie-beam LON transitioned to W-beam	Occupant Risk Values	
	rail	Longitudinal OIV	
Soil Type and Condition	Grading D of AASHTO M147-17 (Crushed		
	Concrete), Dry	Longitudinal Ridedown	. 16.0 g
Test Vehicle		Lateral Ridedown	0
Type/Designation		THIV	
Make and Model		ASI	. 1.3
Curb		Max. 0.050-s Average	
Test Inertial		Longitudinal	
Dummy		Lateral	
Gross Static	2620 lb	Vertical	. 2.1 g

	Post-Impact Trajectory	
	Stopping Distance	275 ft downstream
		42 ft twd traffic lanes
am of	Vehicle Stability	
	Maximum Roll Angle	. 6°
	Maximum Pitch Angle	. 4°
	Maximum Yaw Angle	. 37°
	Vehicle Snagging	No
	Vehicle Pocketing	No
	Test Article Deflections	
	Dynamic	15.4 inches
	Permanent	8.4 inches
	Working Width	38.9 inches
	Height of Working Width	32.5 inches
	Vehicle Damage	
	VDS	01RFQ5
	CDC	01FREW4
	Max. Exterior Deformation	8.0 inches
	OCDI	RF0020000
	Max. Occupant Compartment	
	Deformation	3.0 inches

Figure 7.8. Summary of Results for MASH Test 3-10 on Median TGS.

CHAPTER 8 SUMMARY AND CONCLUSIONS

8.1 ASSESSMENT OF TEST RESULTS

The crash tests reported herein were performed in accordance with *MASH* TL-3 for longitudinal barriers and transitions. Table 8.1 through Table 8.3 provide an assessment of each test based on the applicable safety evaluation criteria for *MASH* TL-3 longitudinal barriers and transitions.

8.2 CONCLUSIONS

The research presented in this report describes the full-scale crash testing and evaluation of cost-effective Thrie-beam guardrail systems for both roadside and median applications. According to *MASH*, two full-scale crash tests are required to evaluate a longitudinal barrier. Additionally, *MASH* recommends conducting two crash tests to evaluate a transition system. An extensive computer simulation was conducted to evaluate all the configurations and identify the critical ones for full-scale crash testing. TTI researchers conducted *MASH* Test numbers 3-10, 3-11, and 3-21 on the critical configuration of the barriers.

Test 3-10 was conducted on the median version because higher stiffness of the median version increases impact load and occupant risk values hence being more critical compared to Test 3-11 on the same system. Conversely, Test 3-11 was conducted on the roadside version to evaluate the structural adequacy of the system which is more critical than test 3-10 on roadside configuration. Test 3-21 was only conducted on the roadside transition TGS for the roadside systems which is more critical than the median version with regards to structural adequacy. *MASH* Test 3-20 for transition section is optional and using computer simulation, it was concluded that there is not a reasonable uncertainty regarding the impact performance of both roadside and median transition systems with small passenger vehicles. Thus, the 3-20 tests were not conducted.

*Based on the results of the three successful full-scale crash tests and the computer simulation effort, both roadside and median TGS configurations met all safety requirements for *MASH* TL-3. Table 8.4 shows that the median Thrie-beam system met the performance criteria for *MASH* Test 3-10, and the roadside Thrie-beam system met the performance criteria for *MASH* Test 3-11. Table 8.5 shows the roadside Thrie-beam system met the performance criteria for *MASH* Test 3-11. Table 8.5 shows the roadside Thrie-beam system met the performance criteria for *MASH* Test 3-11. Table 8.5 shows the roadside Thrie-beam system met the performance criteria for *MASH* Test 3-21.

*The opinions/interpretations identified/expressed in this section of the report are outside the scope of the TTI Proving Ground A2LA Accreditation.

Tes	t Agency: Texas A&M Transportation Institute	Test No.: 614341-01-1	Test Date: 2021-08-16
	MASH Test 3-11 Evaluation Criteria	Test Results	Assessment
<u>Stri</u> A.	uctural Adequacy Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	The roadside Thrie-beam system contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 42.1 inches.	Pass
<u>Осс</u> D.	<u>cupant Risk</u> Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	A few blockouts detached from the post and rail element, however, these did not penetrate or show potential for penetrating the occupant compartment or to present undue hazard to others in the area.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	No occupant compartment deformation or intrusion was observed.	
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 6° and 4° .	Pass
Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.	Longitudinal OIV was 16.8 ft/s, and lateral OIV was 15.5 ft/s.	Pass
Ι.	The occupant ridedown accelerations should satisfy the following limits: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	Longitudinal occupant ridedown acceleration was 5.9 g, and lateral occupant ridedown acceleration was 8.6 g.	Pass

Table 8.1. Performance Evaluation Summary for MASH Test 3-11 on Roadside Thrie-beam System.

Tes	st Agency: Texas A&M Transportation Institute	Test No.: 614341-01-3	Test Date: 2021-08-20
	MASH Test 3-21 Evaluation Criteria	Test Results	Assessment
Str	ructural Adequacy		
А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	The roadside Thrie-beam system contained and redirected the 2270P vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 38.9 inches.	Pass
Oc	<u>cupant Risk</u>		
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone.	A few blockouts detached from the post and rail element, however, these did not penetrate or show potential for penetrating the occupant compartment or to present undue hazard to others in the area.	Pass
	Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	No occupant compartment deformation or intrusion was observed.	~
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 2270P vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 15° and 11°.	Pass
Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.	Longitudinal OIV was 18.9 ft/s, and lateral OIV was 14.3 ft/s.	Pass
Ι.	The occupant ridedown accelerations should satisfy the following limits: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	Longitudinal occupant ridedown acceleration was 13.6 g, and lateral occupant ridedown acceleration was 10.0 g.	Pass

Table 8.2. Performance Evaluation Summary for MASH Test 3-21 on Roadside w-beam to Thrie Beam TransitionSystem.

Tes	st Agency: Texas A&M Transportation Institute	Test No.: 614341-01-2 T	est Date: 2021-09-16
	MASH Test 3-10 Evaluation Criteria	Test Results	Assessment
<u>Str</u> A.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	The median Thrie-beam system contained and redirected the 1100C vehicle. The vehicle did not penetrate, underride, or override the installation. Maximum dynamic deflection during the test was 15.4 inches.	Pass
<u>Oc</u> D.	cupant RiskDetached elements, fragments, or other debris fromthe test article should not penetrate or show potentialfor penetrating the occupant compartment, or presentan undue hazard to other traffic, pedestrians, orpersonnel in a work zone.Deformations of, or intrusions into, the occupantcompartment should not exceed limits set forth inSection 5.2.2 and Appendix E of MASH.	A blockout detached from the post and rail element, however, this did not penetrate or show potential for penetrating the occupant compartment or to present undue hazard to others in the area. Maximum occupant compartment deformation was 3.0 inches in the right front firewall/toe pan area.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	The 1100C vehicle remained upright during and after the collision event. Maximum roll and pitch angles were 6° and 4° .	Pass
Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.	Longitudinal OIV was 15.9 ft/s, and lateral OIV was 23.1 ft/s.	Pass
Ι.	The occupant ridedown accelerations should satisfy the following limits: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	Longitudinal occupant ridedown acceleration was 16.0 g, and lateral occupant ridedown acceleration was 12.5 g.	Pass

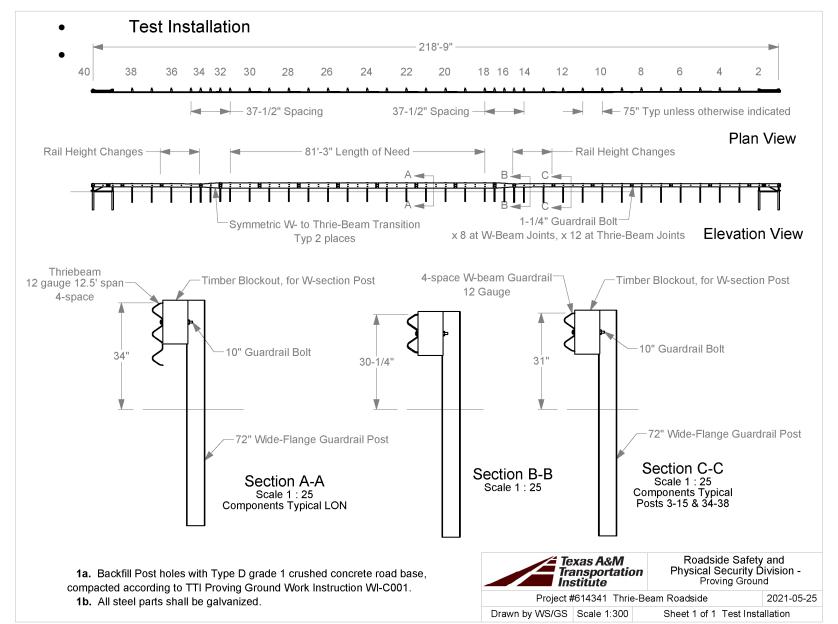
Table 8.3. Performance Evaluation Summary for MASH Test 3-10 on Median Thrie-beam System.

Evaluation Factors	Evaluation Criteria	Test No. 614341-01-2 on Median System	Test No. 614341-01-1 on Roadside System
Structural Adequacy	А	S	S
	D	S	S
Occupant	F	S	S
Risk	Н	S	S
	Ι	S	S
Test No.		MASH Test 3-10	MASH Test 3-11
	Pass/Fail	Pass	Pass

Table 8.4. Assessment Summary for MASH TL-3 LON Testson Thrie-beam Median System.

Note: S = Satisfactory.

Table 8.5. Assessment Summary for MASH TL-3 Transition Test					
on Thrie-beam Roadside System.					


Evaluation Factors	Evaluation Criteria	Not Performed	Test No. 614341-01-3 on Roadside System
Structural Adequacy	А		S
	D		S
Occupant	F		S
Risk	Н		S
	Ι		S
	Test No.	MASH Test 3-20	MASH Test 3-21
	Pass/Fail		Pass

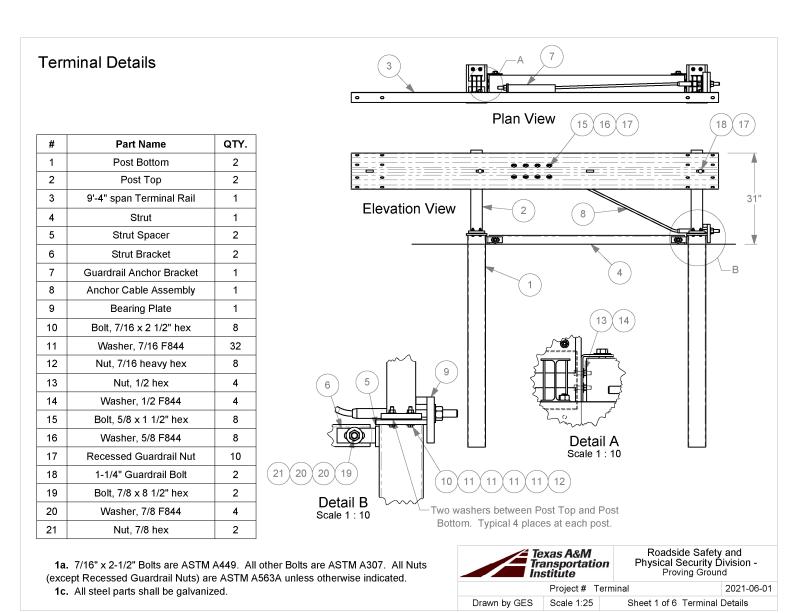
Note: S = Satisfactory.

REFERENCES

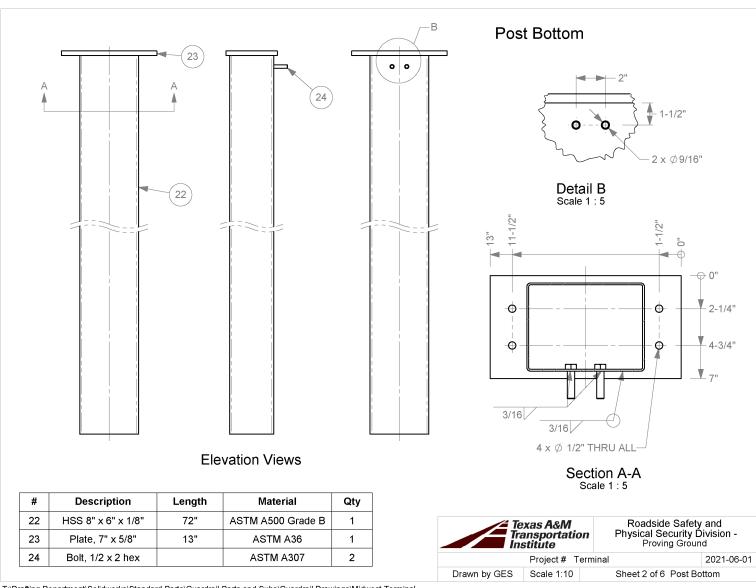
- 1. AASHTO. *Manual for Assessing Roadside Safety Hardware (MASH)*, Second Edition. American Association of State Highway and Transportation Officials: Washington, DC, 2016.
- H. E. Ross, Jr., D. L. Sicking, R. A. Zimmer and J. D. Michie, "Recommended Procedures for the Safety Performance Evaluation of Highway Features," National Cooperative Highway Research Program Report 350, Transportation Research Board, National Research Council, Washington, D.C., 1993.
- Ivey, D.L., Robertson, R., Buth, C.E., and McDevitt, C.F., Test and Evaluation of Wbeam and Thrie-Beam Guardrails, FHWA Contract DOT-FH-11-9485, Texas Transportation Institute, Texas A&M University System, College Station, Texas, January 1982.
- Mak, K.K., Bligh, R.P., and Menges, W.L., Testing of State Roadside Safety Systems: Volume I: Technical Report, Report No. FHWA-RD-98-036, Texas Transportation Institute, Texas A&M University System, College Station, Texas, April 1999.
- Buth, C. E., Menges, W. L., NCHRP Report 350 Test 3-11 of the Strong Wood Post Thrie Beam Guardrail, Report No. FHWA-RD-99-061, Texas Transportation Institute, College Station, TX, July 1998.
- Buth, C. E., Menges, W. L., NCHRP Report 350 Test 4-12 of the Modified Thrie Beam Guardrail, Report No. FHWA-RD-99-065, Texas Transportation Institute, College Station, TX, July 1998.
- Mak, K.K., and Menges, W.L., Crash Testing and Evaluation of Modified Thrie Beam Guardrail System, Research Study No. RF 471470, Texas Transportation Institute, College Station, TX, February 1995.
- Bullard, D.L.; Bligh, R.P.; Menges, W.L.; & Huag, R.; Volume I: Evaluation of Existing Roadside Safety Hardware Using Updated Criteria – Technical Report, Texas Transportation Institute, TTI Project 476460-0001, College Station, TX, March 2010.
- Bielenberg, R.W., Faller, R.K., Jiang, H., Holloway, J.C., MASH 2016 Evaluation of The Modified Thrie Beam System, MwRSF Research Report No. TRP-03-417-20, Midwest Roadside Safety Facility, University of Nebraska, Lincoln, NE, July 2020.
- 10. National Crash Analysis Center (NCAC), Simulation of MASH Test 3-11 of a Chevy Silverado into a G9 Thrie Beam Guardrail, Working Paper prepared for the FHWA, NCAC 2010-W-015, June 2011.
- 11. National Crash Analysis Center (NCAC), Simulation of MASH Test 3-11 of a Chevy Silverado into a G4(1S) W-Beam Median Barrier, Working Paper prepared for the FHWA, NCAC 2010-W-003, June 2011.
- W. F. Williams, W. L. Menges, G. E. Schroeder, D. L. Kuhn. Mash TL-3 Evaluation of 2019 MASH 2-Tube Bridge Rail Thrie Beam Transition, Test Report No. 608331-01-4-6, Texas A&M Transportation Institute, College Station, TX, 2020.
- 13. Hallquist J. O., "LS-DYNA Keyword User's Manual, Version 971," Livermore Software Technology Corporation, Livermore, California, 2016.
- 14. National Crash Analysis Center (NCAC), "Finite Element Model Archive," Last retrieved January 2019, https://www.nhtsa.gov/crash-simulation-vehicle-models.

- 15. M. Kiani, W. L. Menges, W. Schroeder, B. L. Griffith, D. L. Kuhn. MASH Test 3-21 Evaluation of Short W-Beam Transition, Test Report No. 613121-01-1, Texas A&M Transportation Institute, College Station, TX, 2021.
- 16. Griffith, M.S., Federal Highway Administration (FHWA), Eligibility Letter HSA-10/B-148 for: T-39 Thrie-Beam Guardrail, June 2, 2006.

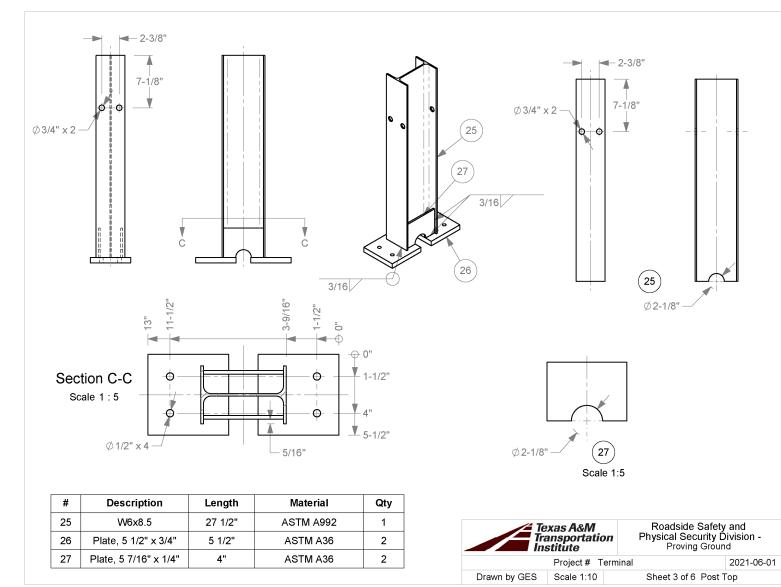
APPENDIX A. DETAILS OF ROADSIDE THRIE

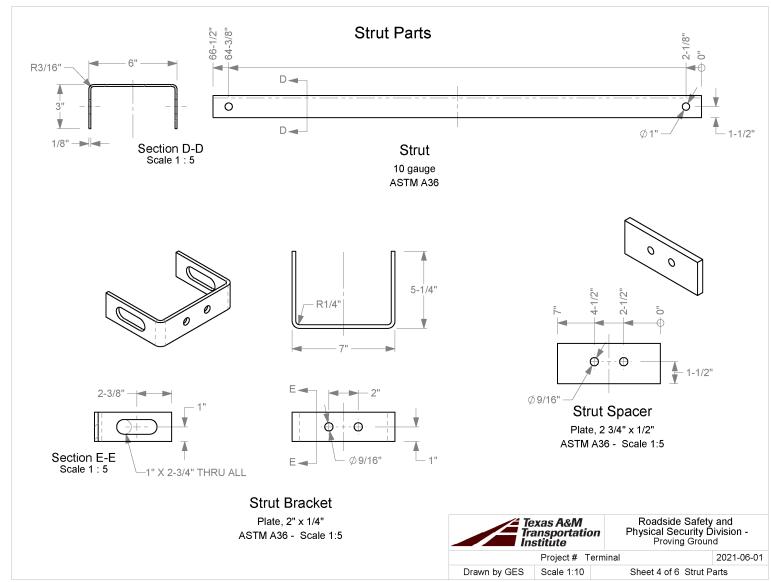

BEAM SYSTEM

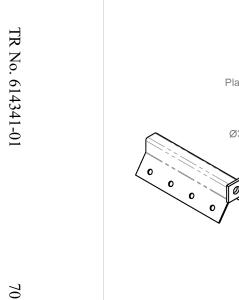
Q:\Accreditation-17025-2017\EIR-000 Project Files\614341 - Thrie-Beam Roadside-Median - Kiani\Drafting, 614341\614341 Roadside Drawing

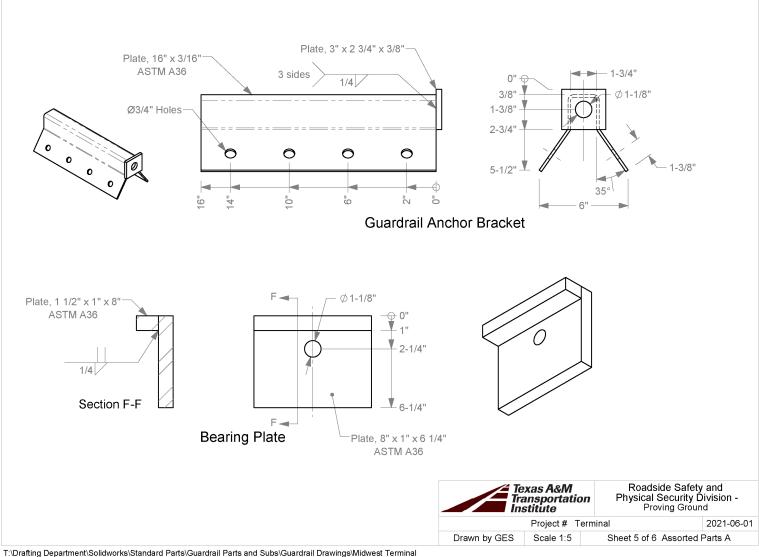

TR No. 614341-01

65

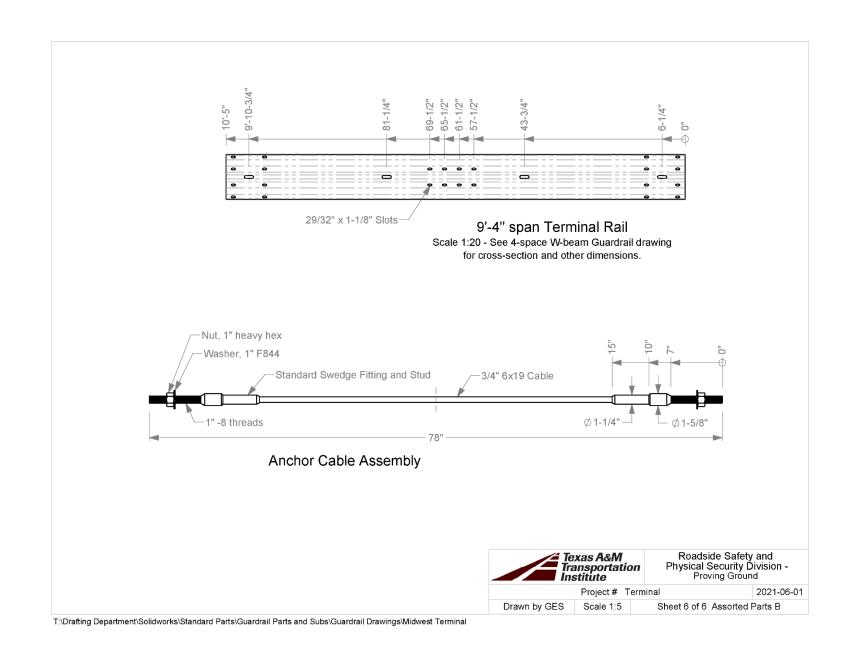

2022-07-22

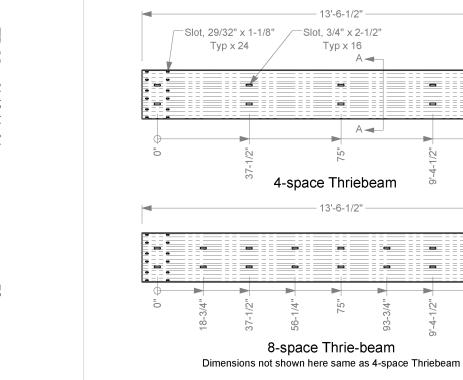

T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Midwest Terminal

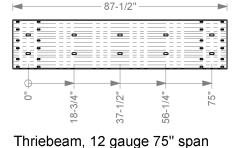

T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Midwest Terminal



T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Midwest Terminal




T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Midwest Terminal



2022-07-22

A 🖛

A 🚽

93-3/4"

-

-

9'-4-1/2

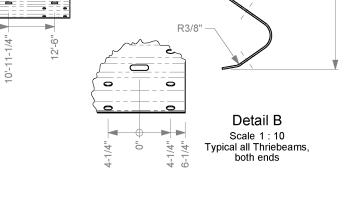
0

0

9'-4-1/2"

12'-6"

•


-

75"

0 •

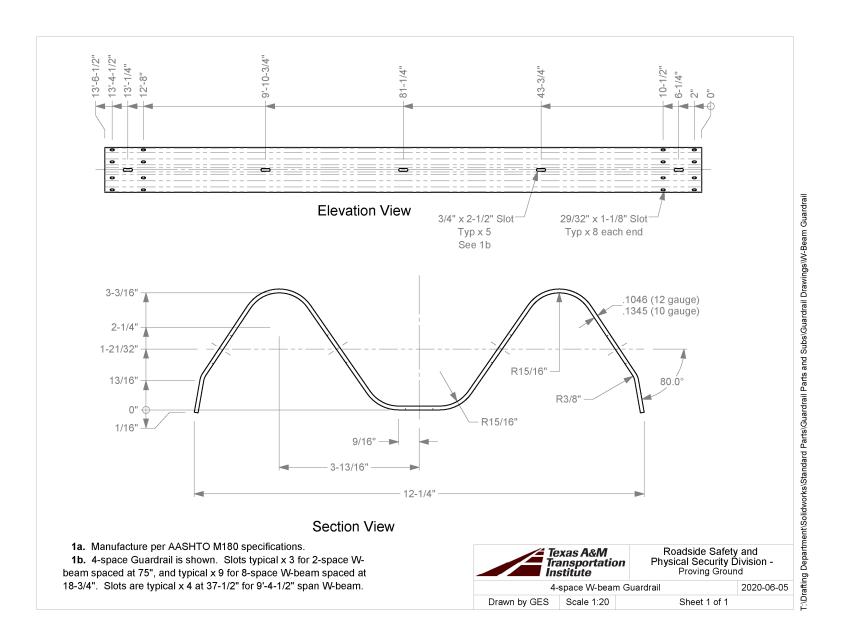
75"

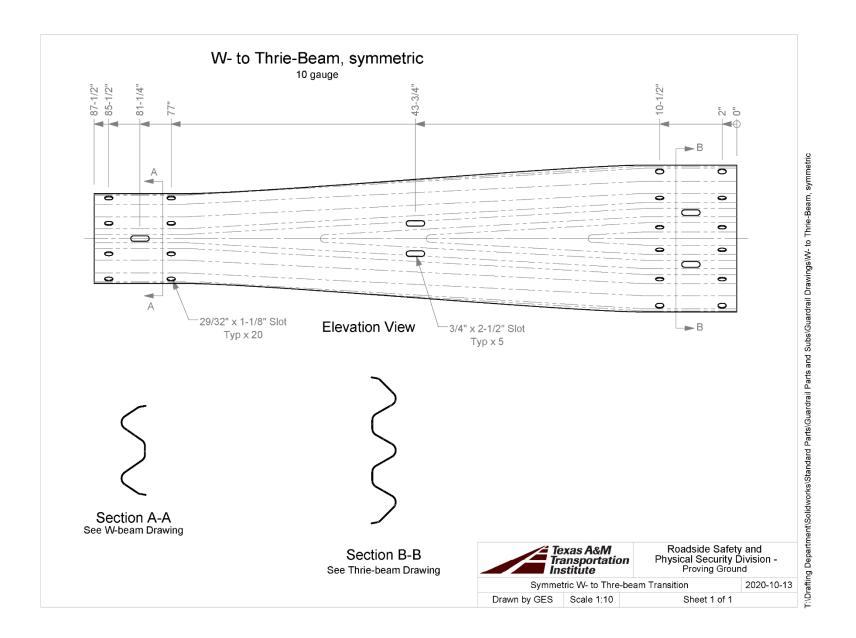
Dimensions not shown here same as 4-space Thriebeam

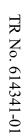
3-1/4"

2-5/16'

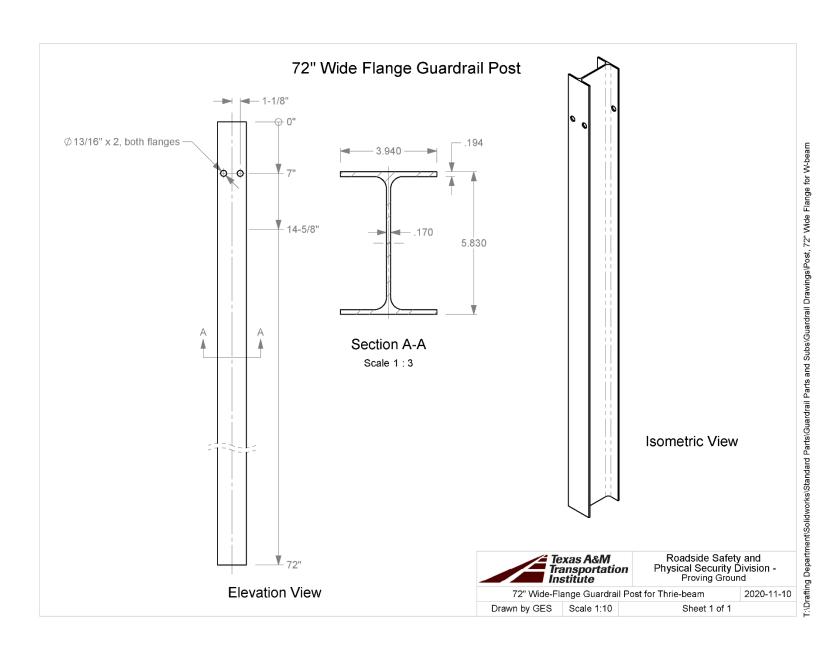
3-1/4"

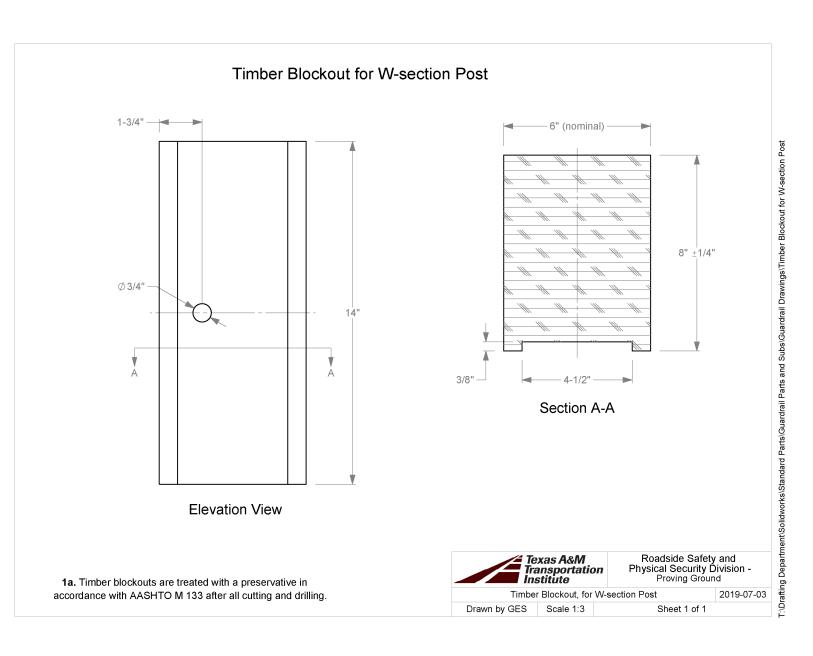

V

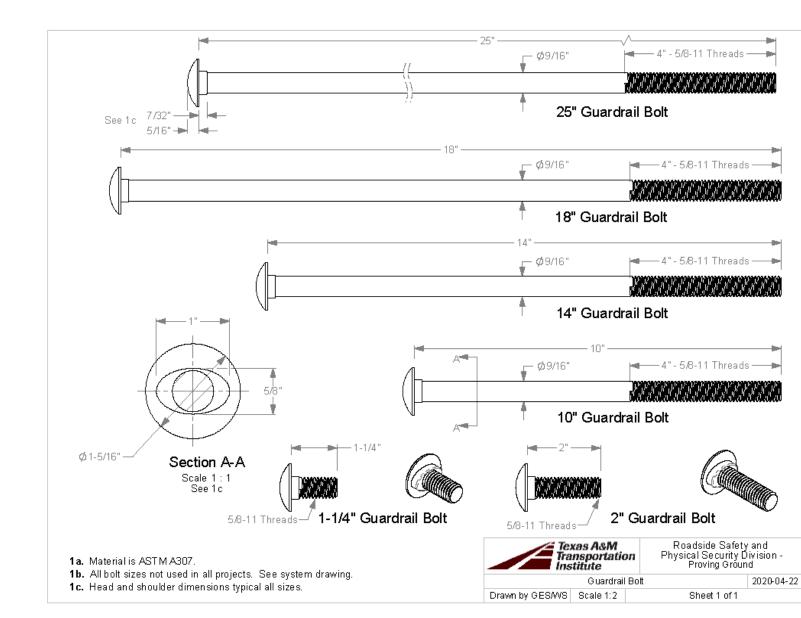

10.0°


R15/16"

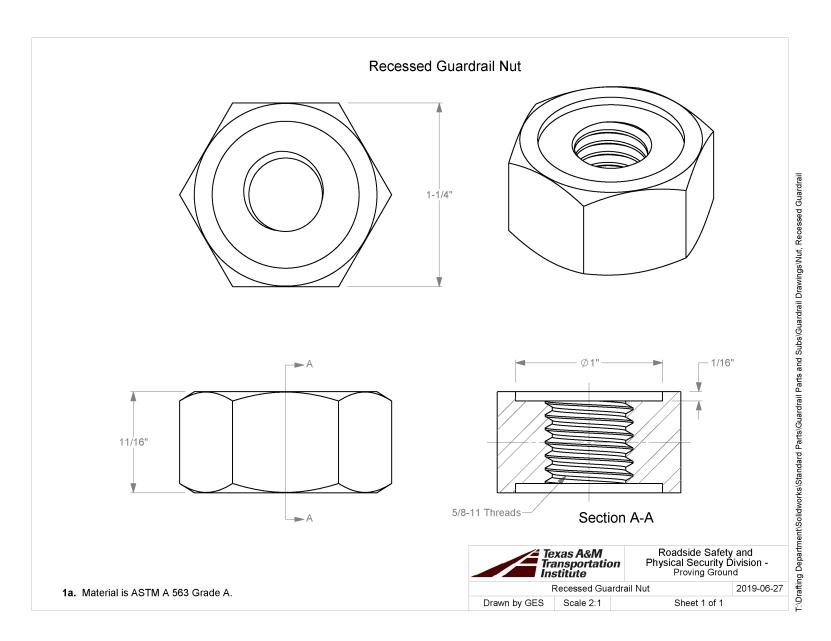
R15/16"


		R3/8"	ms /	20"	T:\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Thrie-Beam
	4-1/4"	0" 0 4-1/4" 6 6-1/4"	Detail B Scale 1 : 10 Typical all Thriebeams, both ends		s\Standard Parts\Guar
and	10 gauge is 0.13	45" before galva	nizing and 0.1084" after nizing and 0.1382" after l in all installations.		nent\Solidwork
		exas A&M ansportation stitute	Roadside Safety Physical Security D Proving Groun	ivision -	ig Departm
		Thrie-beam		2020-03-31	Iraftir
	Drawn by GES	Scale 1:30	Sheet 1 of 1		Ĩ

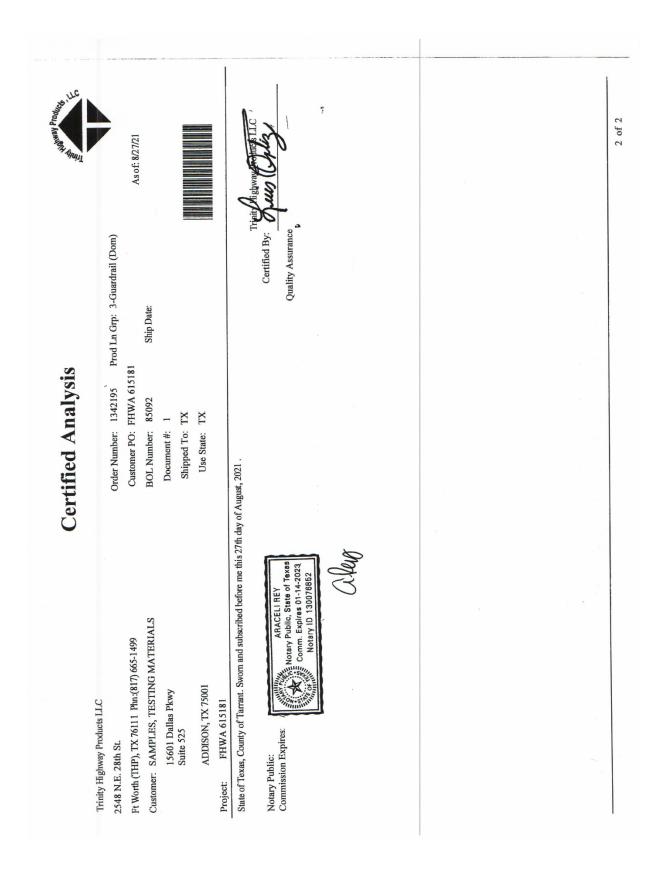




74



76

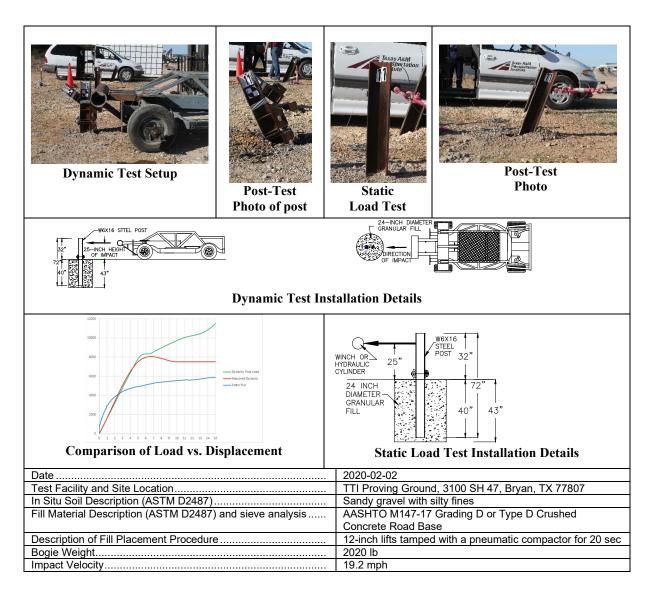
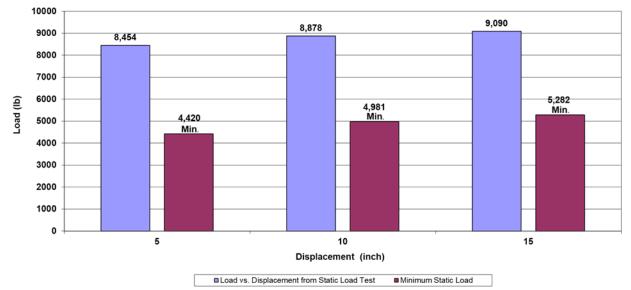


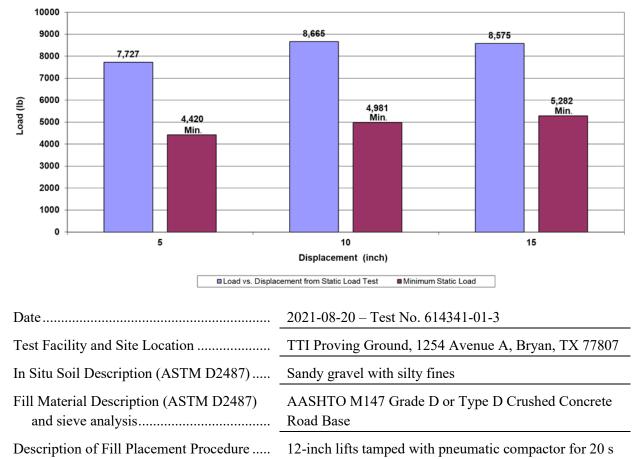
1. Orating Department/Solidwork stStandard Parts/Guardrail Parts and Subs/Guardrail Drawings/Guardrail Bott

Lice Annual Ventories	As of: 8/27/21	Si Cu Cb Cr Vn ACW (010 0.130 0.000 0.060 0.001 4 4 0.020 0.100 0.000 0.060 0.001 4 0.020 0.000 0.000 0.000 4 0.020 0.100 0.000 0.070 0.002 4	3 CFR 635.410. BRWISE STATED. (WISE STATED.	1 of 2
Certified Analysis	Trinity Highway Products LLC Order Number: 1342195 Prod Ln Grp: 3-Guardrail (Dom) 2548 N.E. 28th St. Customer: 1342195 Prod Ln Grp: 3-Guardrail (Dom) Pr Worth (THP), TX 76111 Phn:(817) 665-1499 Dustomer PO: FHWA 615181 Pr Worth (THP), TX 76111 Phn:(817) 665-1499 BOL Number: 85092 Ship Date: Customer: SAMPLES, TESTING MATERIALS BOL Number: 85092 Ship Date: Usetomer: Same Pois Sing Care: 1 1 ADDISON, TX 75001 Use State: TX Use State: TX	Project: FHWA 615181 Qty Part # Description Spec CL TY Heat Code/ Heat Vield TS Eig C Ma P S Si Cu Cb Cr Vn 4 977G Ti0/TRANS RAIL/63 ⁴ 731.5 M-180 A 2 211727 62,980 82,080 24.0 0.190 0.730 0.010 0.000	ALL STEEL USED WAS MEL TED AND MANUFACTORED IN USA AND COMPLIES WITH THE BOT AMENICA ACT, 50 CHERWISE STATED. ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL STEEL MEETS ASTM A36 UNLESS OTHERWISE STATED. ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN USA AND COMPLIES WITH THE "BUY AMERICA ACT", 23 CFR 635.410. ALL CALVANIZED MATERIAL CONFORMS WITH ASTM A-123 (USDOMESTIC SHIPMENTS) ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 (USDOMESTIC SHIPMENTS) ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 & ISO 1461 (INTERNATIONAL SHIPMENTS) ALL GALVANIZED MATERIAL CONFORMS WITH ASTM A-123 & USD 1461 (INTERNATIONAL SHIPMENTS) FINISHED GOOD PART NUMBERS ENDING IN SUFFIX B,P, OR S, ARE UNCOATED BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. NUTS COMPLY WITH ASTM A-363 SPECIFICATIONS AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. NUTS COMPLY WITH ASTM F-365 SPECIFICATION AND/OR F-844 AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. WASHERS COMPLY WITH ASTM F-365 SPECIFICATION AND/OR F-844 AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. MASHERS COMPLY WITH ASTM F-365 SPECIFICATION AND/OR F-844 AND ARE GALVANIZED IN ACCORDANCE WITH ASTM A-5229, UNLESS OTHERWISE STATED. 744 "DIA CABLE STATED.	STRENGTH - 46000 LB

APPENDIX B. SUPPORTING CERTIFICATION DOCUMENTS

APPENDIX C. SOIL PROPERTIES


Figure C.1. Summary of Strong Soil Test Results for Establishing Installation Procedure.

Comparison of Static Load Test Results and Required Minimum: Load versus Displacement at 25 inch Height

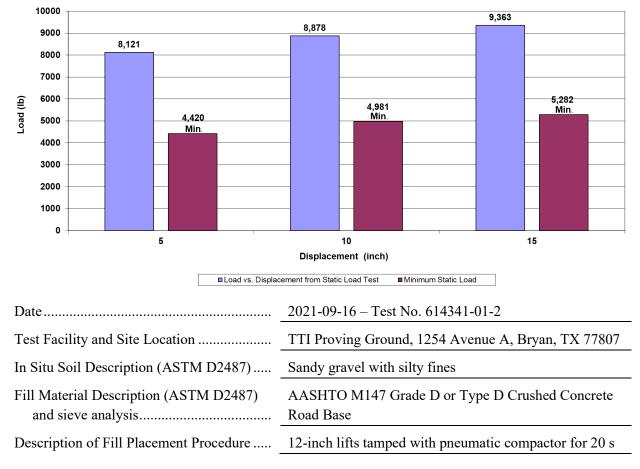

Date	2021-08-16 – Test No. 614341-01-1
Test Facility and Site Location	TTI Proving Ground, 1254 Avenue A, Bryan, TX 77807
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines
Fill Material Description (ASTM D2487) and sieve analysis	AASHTO M147 Grade D or Type D Crushed Concrete Road Base
Description of Fill Placement Procedure	12-inch lifts tamped with pneumatic compactor for 20 s

Figure C.2. Soil Strength for Test No. 614341-01-1.

Comparison of Static Load Test Results and Required Minimum: Load versus Displacement at 25 inch Height

Figure C.3. Soil Strength for Test No. 614341-01-3.

Comparison of Static Load Test Results and Required Minimum: Load versus Displacement at 25 inch Height

Figure C.4. Soil Strength for Test No. 614341-01-2.

APPENDIX D. MASH TEST 3-11 (CRASH TEST NO. 614341-01-1)

D.1. VEHICLE PROPERTIES AND INFORMATION

	Table I	D.I. Vehicle	e Propertie	es for 1		14341-01-1.		
Date:	2021-8-16	Test No.:	614341-0)1-1	VIN No.:	1C6RR6	GTOFS5	89409
Year:	2015	Make:	RAM		_ Model:		1500	
Tire Size:	265/70 R 17			Tire I	Inflation Pre	essure:	35 p	si
Tread Type:	Highway				Odo	meter: 24295	8	
Note any dar	nage to the ve	hicle prior to te	est: None					
	-			1	▲ X	-		
	ccelerometer lo	ocation.					-	
NOTES: No	one		1		$1 \uparrow$			
Engine Type	: V-8		A M — WHEEL TRACK		+			
Engine CID:	5.7L						-j	WHEEL TRACK
Transmission	or 📘	Manual		, † Q			IERTIAL C. M.	
Optional Equ			P					-, Ī
None	iipment.			6			2	ДВ
Dummy Data Type: Mass: Seat Positio	a: 50th Perce 16 Dn: IMPACT SID		↓ ı - t - Ţ	- F - F			-D-	
Geometry:	inches			T T	M FRONT	6	▼ M rear	_
-	.50 F	40.00	К	20.00	P	3.00	U	26.75
В 74	.00 G	28.75	L	30.00	_ Q _	30.50	V _	30.25
C227	<u>.50</u> H_	61.40	Μ	68.50	_ R _	18.00	W _	61.40
D44	.00 I	11.75	N	68.00	_ s _	13.00	× _	79.00
E <u>140</u>	-	27.00	0	46.00	_ T_	77.00	_	
Wheel Ce Height F		14.75 Clea	Wheel Well arance (Front)		6.00	Bottom Frame Height - Fron		12.50
Wheel Ce Height F		14.75 Cle	Wheel Well arance (Rear)		9.25	Bottom Frame Height - Rea		22.50
	78 ±2 inches; C=237 ±1		nches; F=39 ±3 inche	es; G = > 28 in				
GVWR Ratin	-	Mass: Ib	Curb	240	<u>Test</u>	Inertial	<u>Gros</u>	<u>s Static</u>
	3700	M _{front}		940 160		2847 2210		2932 2290
	3900 6700	M _{rear} M _{⊤otal}		100		5057		5222
Mass Distrib	oution:	1370			-	GSM = 5000 lb ±110 lb		1080
lb	LF:	1370	RF: <u>1</u>	+//	LR:	1130	R:	1000

				614	341-01-1.	,				
Date:	2021-	·8-16 T	est No.: _	614341-	01-1	VIN:	1C	6RR6G	T0FS58940)9
Year:	201	15	Make:	RAM	1	Model:		1	500	
Body Sty	le: <u> </u>	ad Cab				Mileage:	242	958		
Engine:	5.7L	N	√-8		Tran	smission: _.	Automa	tic		
Fuel Leve	el: <u>E</u>	mpty	Ball	ast: 125					(44(0 lb max)
Tire Pres	Tire Pressure: Front: 35 psi Rear: 35 psi Size: 265/70 R 17									
Measure	d Vel	nicle Wei	ghts: (I	b)						
	LF:	1370		RF:	1477		Fror	nt Axle:	2847	
	LR:	1130		RR:	1080		Rea	ar Axle:	2210	
	Left:	2500		Right:	2557			Total:	5057	
								5000 ±1	10 lb allowed	
	Wh	ieel Base:	140.50	inches	Track: F:	68.50	inches	R:	68.00	inches
		148 ±12 inch	es allowed			Track = (F+R			allowed	
Center o	f Gra	vity, SAE	J874 Sus	pension M	ethod					
	X :	61.40	inches	Rear of F	ront Axle	(63 ±4 inches	allowed)			
	Y:	0.38	inches	Left -	Right +	of Vehicle	Cente	rline		
	Z :	28.75	inches	Above Gr	ound	(minumum 28	3.0 inches	allowed)		
Ноос	l Heig	ıht:	46.00	inches	Front	Bumper H	eight:		27.00 i	inches
			nches allowed	-		·	• -			
Front O	/erhai	ng:	40.00	inches	Rear	Bumper H	eight: _		<u>30.00</u> i	inches
		39 ±3 i	nches allowed							
Overall	Leng	th:	227.50	inches						
		237 ±1	3 inches allow	ed						

Table D.2. Measurements of Vehicle Vertical Center of Gravity for Test No.614341-01-1.

Date:	2021-8-16	Test No.:	614341-01-1	VIN No.:	1C6RR6GT0FS589409
Year:	2015	Make:	RAM	Model:	1500

Table D.3. Exterior Crush Measurements for Test No. 614341-01-1.

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable						
End Damage	Side Damage					
Undeformed end width	Bowing: B1 X1					
Corner shift: A1	B2 X2					
A2						
End shift at frame (CDC)	Bowing constant					
(check one)	X1+X2					
< 4 inches	2					
\geq 4 inches						

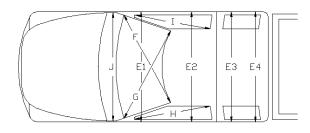
Note: Measure C1 to C6 from Driver to Passenger Side in Front or Rear Impacts - Rear to Front in Side Impacts.

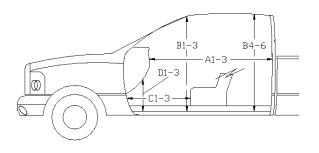
		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**	C_1	C_2	C ₃	C_4	C_5	C_6	±D
1	Front plane at bmp ht	14	8	24	-	-	-	-	-	-	-24
2	Side plane above bmp	14	6	55	-	-	-	-	-	-	76
	Measurements recorded										
	√inches or ☐mm										

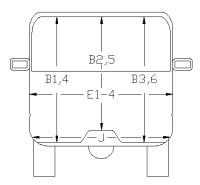
¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.


**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).


***Measure and document on the vehicle diagram the location of the maximum crush.


Note: Use as many lines/columns as necessary to describe each damage profile.

Date:	2021-8-16	Test No.:	614341-01-1	VIN No.:	1C6RR6GT0FS589409
Year:	2015	Make:	RAM	Model:	1500

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

DEFORMATION MEASUREMENT							
	Before	After (inches)	Differ.				
A1	65.00	65.00	0.00				
A2	63.00	63.00	0.00				
A3	65.50	65.50	0.00				
B1	45.00	45.00	0.00				
B2	38.00	38.00	0.00				
B3	45.00	45.00	0.00				
B4	39.50	39.50	0.00				
B5	43.00	43.00	0.00				
B6	39.50	39.50	0.00				
C1	26.00	26.00	0.00				
C2	0.00	0.00	0.00				
C3	26.00	26.00	0.00				
D1	11.00	11.00	0.00				
D2	0.00	0.00	0.00				
D3	11.50	11.50	0.00				
E1	58.50	58.50	0.00				
E2	63.50	63.50	0.00				
E3	63.50	63.50	0.00				
E4	63.50	63.50	0.00				
F	59.00	59.00	0.00				
G	59.00	59.00	0.00				
Н	37.50	37.50	0.00				
I	37.50	37.50	0.00				
J*	25.00	25.00	0.00				

OCCUPANT COMPARTMENT

D.2. **SEQUENTIAL PHOTOGRAPHS**

0.100 s

Figure D.1. Sequential Photographs for Test No. 614341-01-1 (Frontal and Rear Views).

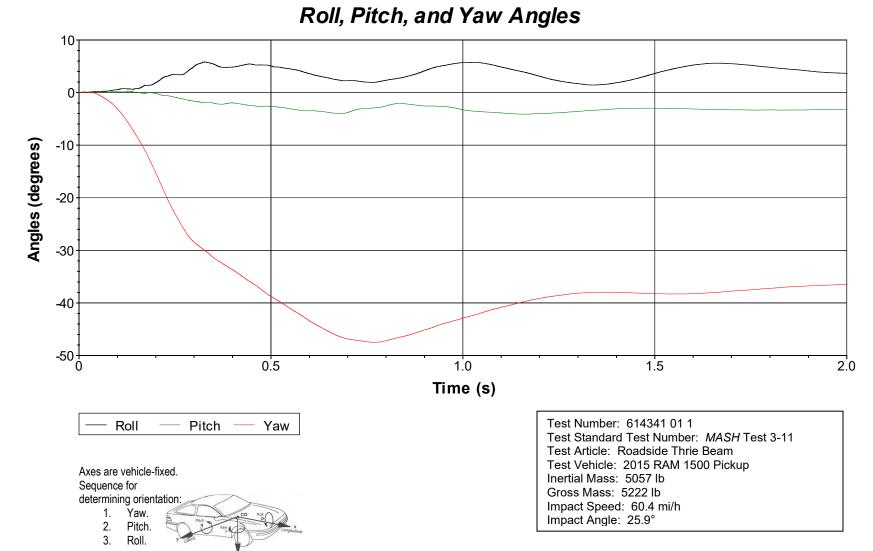


Figure D.1. Sequential Photographs for Test No. 614341 01 1 (Frontal and Rear Views) (Continued).

D.3.

VEHICLE ANGULAR DISPLACEMENTS

Figure D.2. Vehicle Angular Displacements for Test No. 614341-01-1.

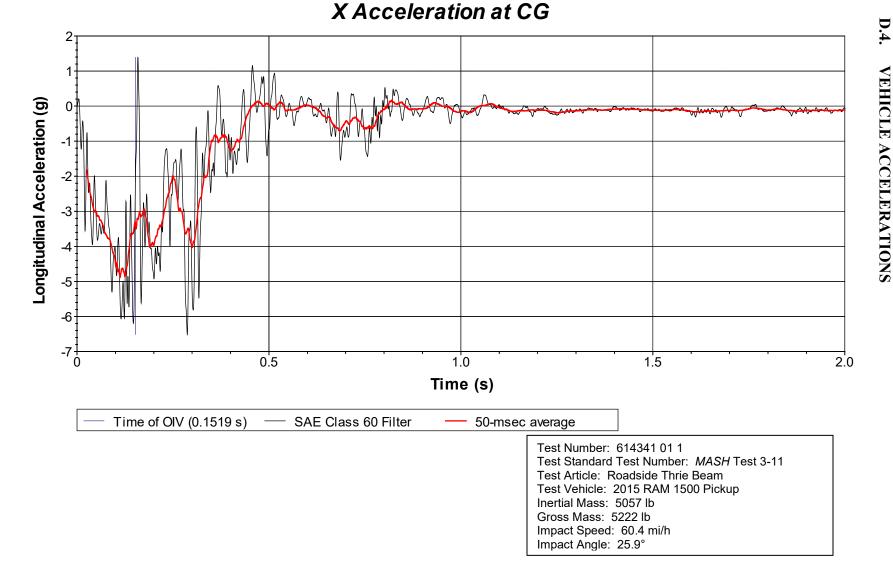
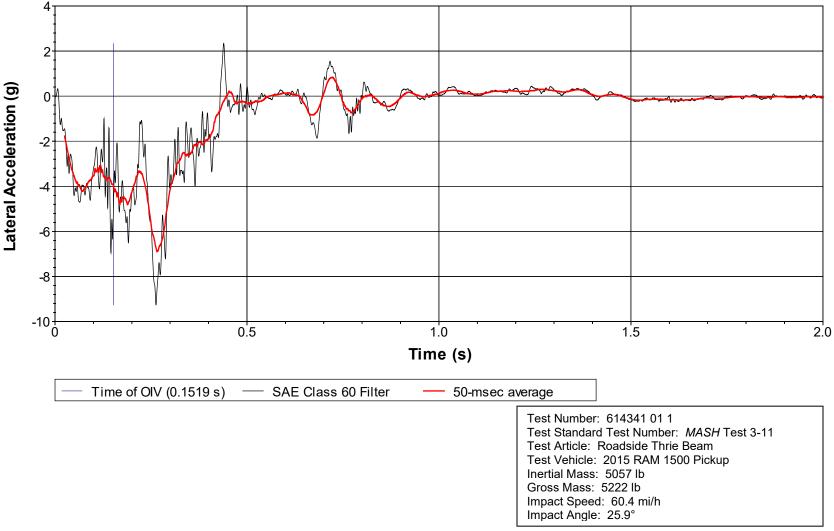



Figure D.3. Vehicle Longitudinal Accelerometer Trace for Test No. 614341-01-1 (Accelerometer Located at Center of Gravity).

Y Acceleration at CG

Figure D.4. Vehicle Lateral Accelerometer Trace for Test No. 614341-01-1 (Accelerometer Located at Center of Gravity).

93

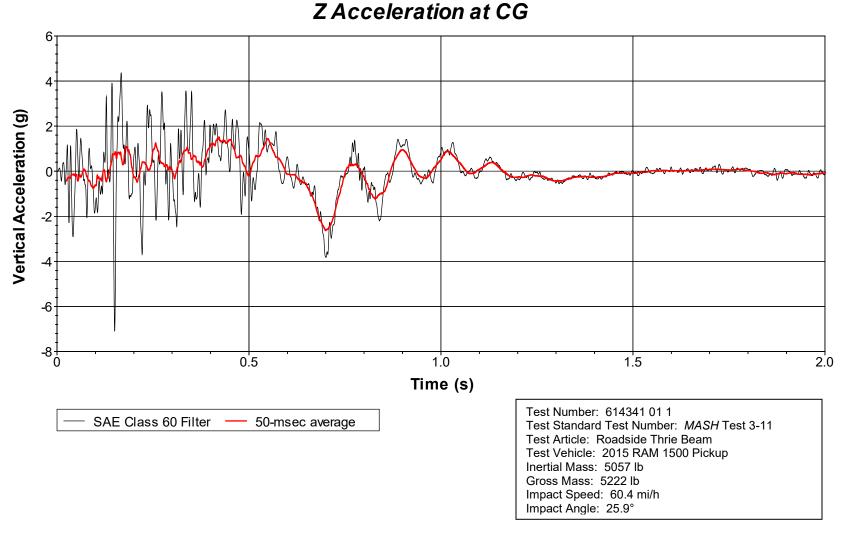


Figure D.5. Vehicle Vertical Accelerometer Trace for Test No. 614341-01-1 (Accelerometer Located at Center of Gravity).

APPENDIX E. MASH TEST 3-21 (CRASH TEST NO. 614341-01-3)

E.1. VEHICLE PROPERTIES AND INFORMATION

	Table	E.1. Vehicl	e Properti	ies for T	est No. 6	14341-01-3.		
Date:	2021-8-20	Test No.:	614341	-01-3	VIN No.:	1C6RR6F	T9FS6	13465
Year:	2015	Make:	RAI	M	Model:		1500	
Tire Size:	265/70 R 17	7		Tire I	Inflation Pre	ssure:	35 p	si
Tread Type:	Highway				Odo	meter: <u>115616</u>	3	
Note any dar	mage to the ve	ehicle prior to t	est: <u>None</u>	9				
 Denotes a 	ccelerometer	location.		-	◀X ◀₩►	•		
NOTES: N	one		1		717			
			. A M		.			
Engine Type Engine CID:	: <u>V-8</u> 5.7L		WHEEL TRACK				1	WHEEL TRACK
Transmissio	· · · ·	-	1			-TEST INE	RTIAL C. M.	
Auto	or _L RWD	Manual						
Optional Equ None	uipment:		P					В
Dummy Data Type: Mass:	50TH Pe	rcentile Male 65 lb	J J I I					
Seat Position	on: IMPACT SI	DE			я ′ М	E	⁷ M	
Geometry:	inches			-	FRONT	– C –––––	REAR	
· ·	. <u>50</u> F	40.00	К	20.00	- P_	3.00	υ_	26.75
	.00 G	28.50	_ L	30.00	_ Q _	30.50	V _	30.25
C 227		62.22	. M	68.50	_ R	18.00	W _	62.20
	.00	11.75	N	68.00	- <u>s</u> -	13.00	Х_	79.00
E 140 Wheel Ce		27.00	O Wheel Well	46.00	- ^T -	77.00 Bottom Frame	_	
Height F	ront	14.75 Cle	arance (Front)		6.00	Height - Front		12.50
Wheel Ce Height F	Rear		Wheel Well earance (Rear)		9.25	Bottom Frame Height - Rear Iches; 0=43 ±4 inches; (22.50
GVWR Ratir		Mass: Ib	<u>Curl</u>			<u>nertial</u>		<u>s Static</u>
	3700	Mfront		<u>9</u> 2927	10311	2796	<u>GIUS</u>	2881
	3900	Miron	-	2087		2223		2303
	6700	M _{Total}		5014		5019		5184
Mass Distril	oution:	: 1374	RF:	(Allowable 1422		GSM = 5000 lb ±110 lb) 1101 R	R:	1122

Date:2021	-8-20 T	est No.: _	614341-	01-3	VIN:	1C6RR6FT9FS613465				
Year:20	15	Make:	RAN		Model:	1	500			
Body Style:	Quad Cab				Mileage:	115616				
Engine: <u>5.7L</u>		Trans	smission:	Automatic						
Fuel Level:	Empty	Ball	ast : <u>160</u>				(44() lb max)		
Tire Pressure: Front: 35 psi Rear: 35 psi Size: 265/70 R 17										
Measured Ve	hicle Wei	ghts: (I	b)							
LF:	1374		RF:	1422		Front Axle:	2796			
LR:	1101		RR:	1122		Rear Axle:	2223			
Left:	2475		Right:	2544		Total:	5019			
2011.							110 lb allowed	- 		
VVr	neel Base:	140.50	inches	Track: F:	68.50	inches R:	68.00	inches		
	148 ±12 inch	es allowed			Track = (F+F	?)/2 = 67 ±1.5 inche	s allowed			
Center of Gra	vity, SAE	J874 Sus	pension M	ethod						
X:	62.23	inches	Rear of F	ront Axle	(63 ±4 inches	s allowed)				
Y:	0.47	inches	Left -	Right +	of Vehicle	e Centerline				
Z :	28.50	inches	Above Gr	ound	(minumum 2	8.0 inches allowed)				
Hood Heig	ght:	46.00	inches	Front	Bumper H	eight:	27.00 i	inches		
		nches allowed	-		·	J				
Front Overha	ng:	40.00	inches	Rear	Bumper H	eight:	30.00 i	inches		
	39 ±3 i	nches allowed								
Overall Leng	gth:	227.50	inches							
	237 ±1	3 inches allow	ed							

Table E.2. Measurements of Vehicle Vertical Center of Gravity for Test No.614341-01-3.

Date:	2021-8-20	Test No.:	614341-01-3	VIN No.:	1C6RR6FT9FS613465
Year:	2015	_ Make:	RAM	_ Model:	1500

Table E.3. Exterior Crush Measurements for Test No. 614341-01-3.

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete Wh	en Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2
< 4 inches	2
\geq 4 inches	

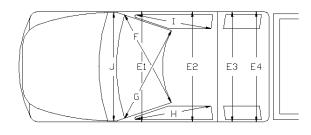
Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

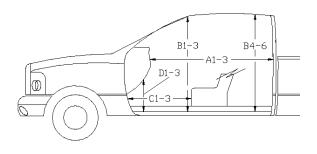
G		Direct I	Damage								
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max**** Crush	Field L**	C ₁	C ₂	C_3	C_4	C ₅	C_6	±D
1	Front plane at bmp ht	14	14	37	-	-	-	-	-	-	24
2	Side plane at bmp ht	14	17	46	-	-	-	-	-	-	63
	Measurements recorded										
	√ inches or ☐ mm										

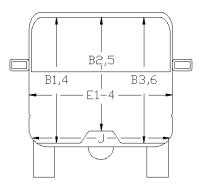
¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.


**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).


***Measure and document on the vehicle diagram the location of the maximum crush.


Note: Use as many lines/columns as necessary to describe each damage profile.

Date:	2021-8-20	Test No.:	614341-01-3	VIN No.:	1C6RR6FT9FS613465
Year:	2015	Make:	RAM	Model:	1500

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

DEF	DEFORMATION MEASUREMENT									
	Before	After	Differ.							
		(inches)								
A1	65.00	65.00	0.00							
A2	63.00	63.00	0.00							
A3	65.50	65.50	0.00							
B1	45.00	45.00	0.00							
B2	38.00	38.00	0.00							
B3	45.00	45.00	0.00							
B4	39.50	39.50	0.00							
B5	43.00	43.00	0.00							
B6	39.50	39.50	0.00							
C1	26.00	26.00	0.00							
C2	0.00	0.00	0.00							
C3	26.00	26.00	0.00							
D1	11.00	11.00	0.00							
D2	0.00	0.00	0.00							
D3	11.50	11.50	0.00							
E1	58.50	58.50	0.00							
E2	63.50	63.50	0.00							
E3	63.50	63.50	0.00							
E4	63.50	63.50	0.00							
F	59.00	59.00	0.00							
G	59.00	59.00	0.00							
Н	37.50	37.50	0.00							
I	37.50	37.50	0.00							
J*	25.00	25.00	0.00							

OCCUPANT COMPARTMENT

E.2. SEQUENTIAL PHOTOGRAPHS

0.100 s

Figure E.1. Sequential Photographs for Test No. 614341-01-3 (Overhead and Frontal Views).

0.500 s

Figure E.1. Sequential Photographs for Test No. 614341-01-3 (Overhead and Frontal Views) (Continued).

0.100 s

0.300 s

Figure E.2. Sequential Photographs for Test No. 614341-01-3 (Rear View).

0.600 s

0.700 s

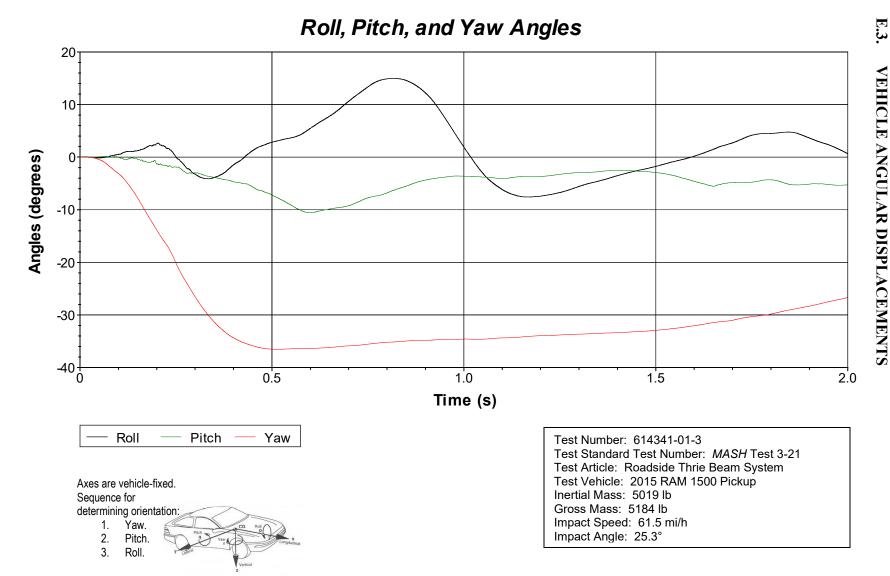
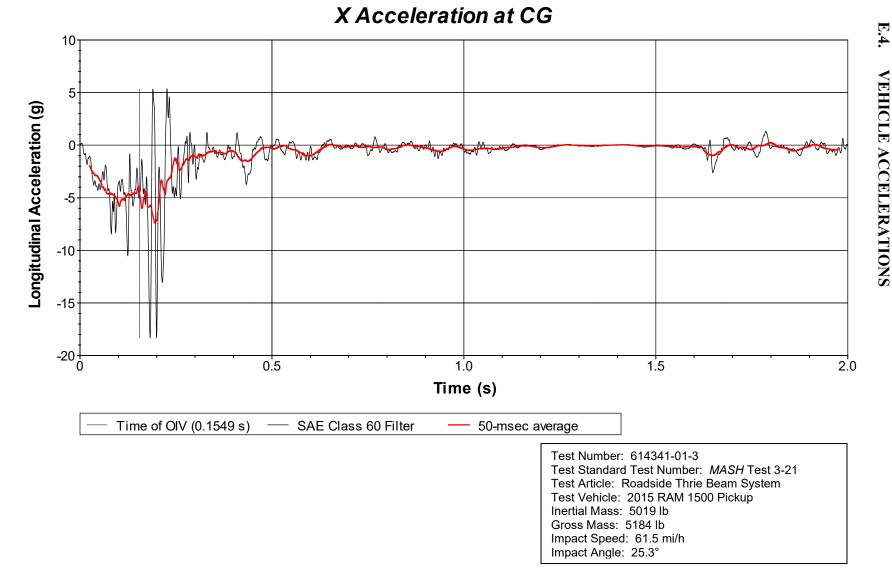
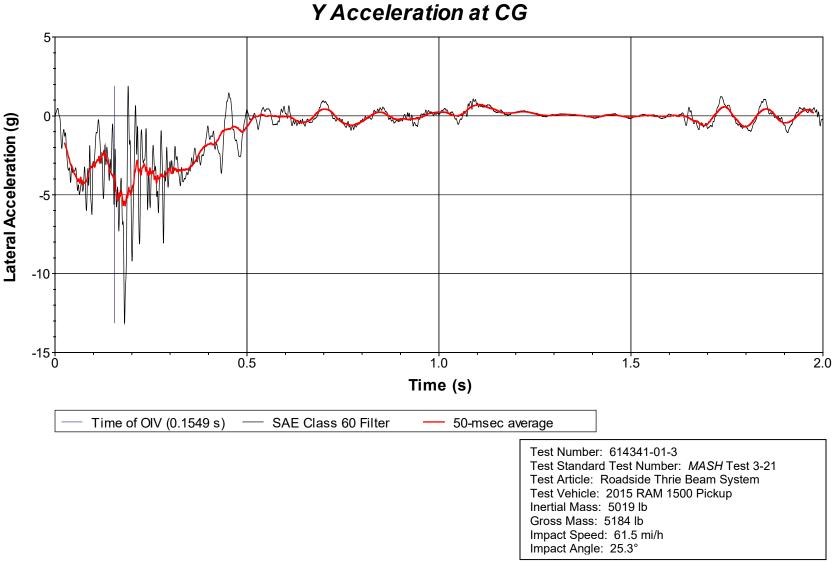
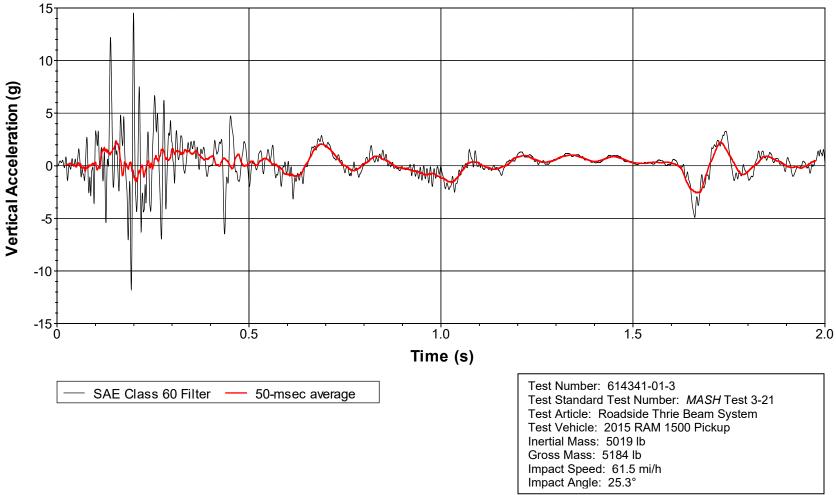
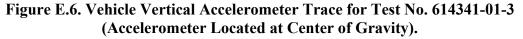


Figure E.3. Vehicle Angular Displacements for Test No. 614341-01-3.


Figure E.4. Vehicle Longitudinal Accelerometer Trace for Test No. 614341-01-3 (Accelerometer Located at Center of Gravity).

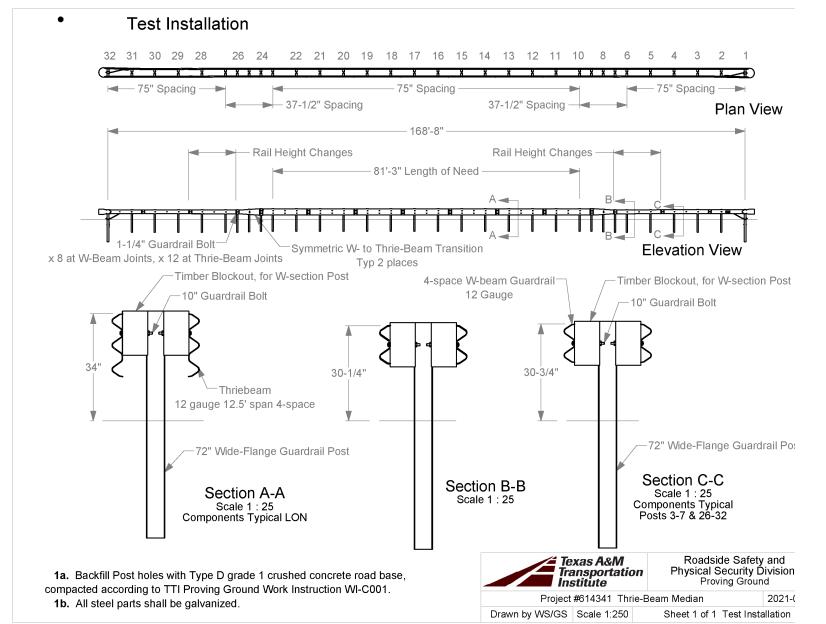
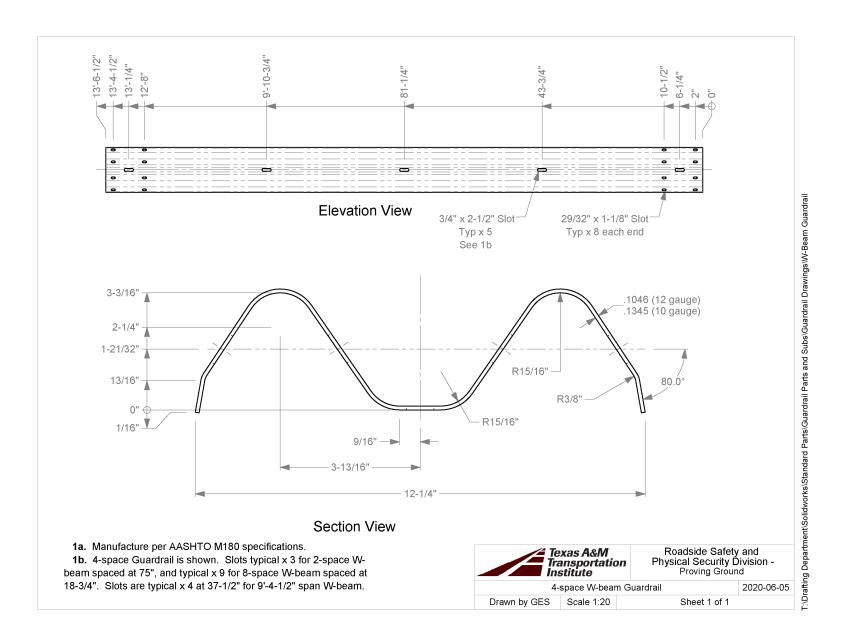
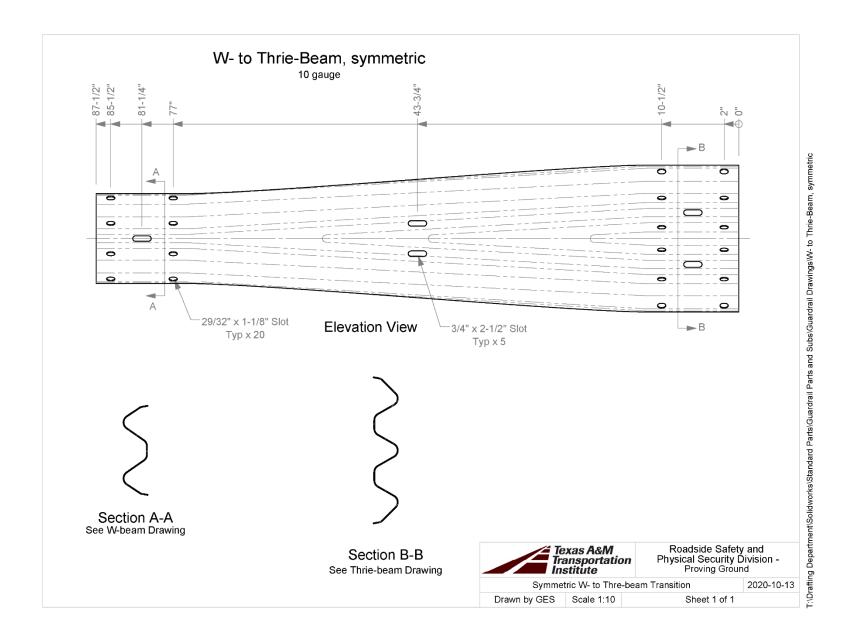
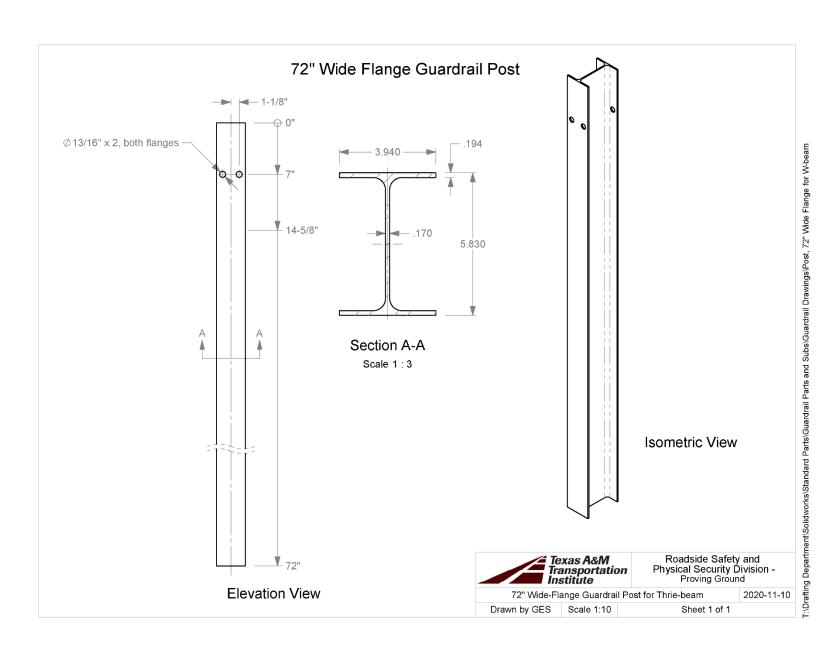


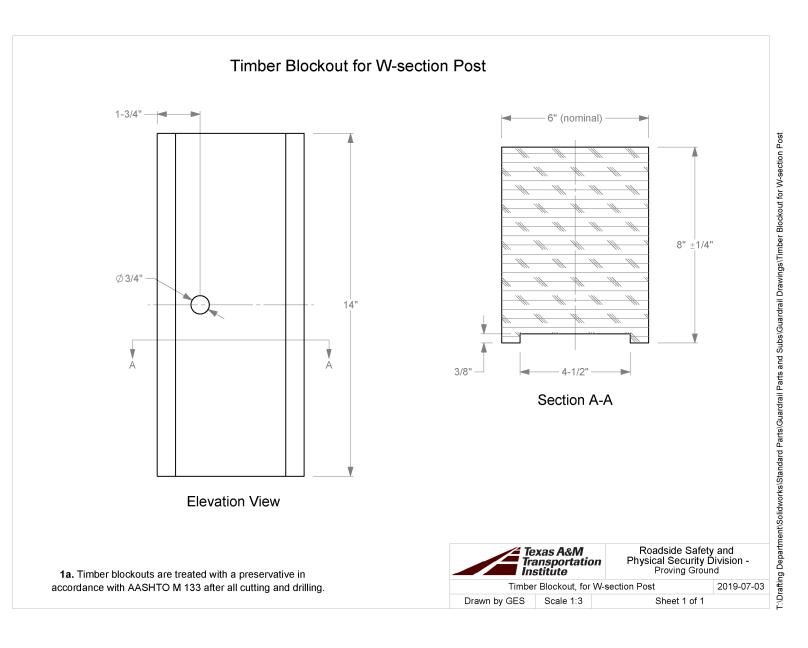
Figure E.5. Vehicle Lateral Accelerometer Trace for Test No. 614341-01-3 (Accelerometer Located at Center of Gravity).

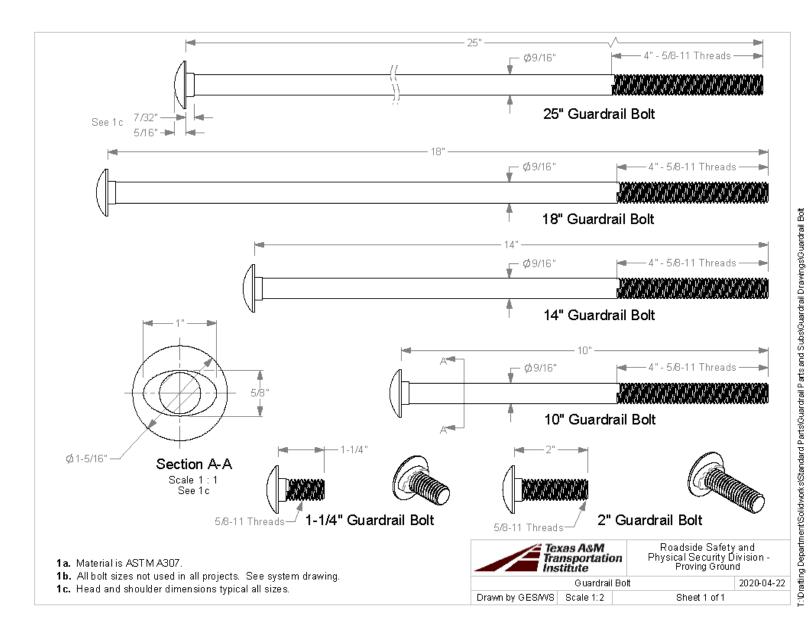
Z Acceleration at CG

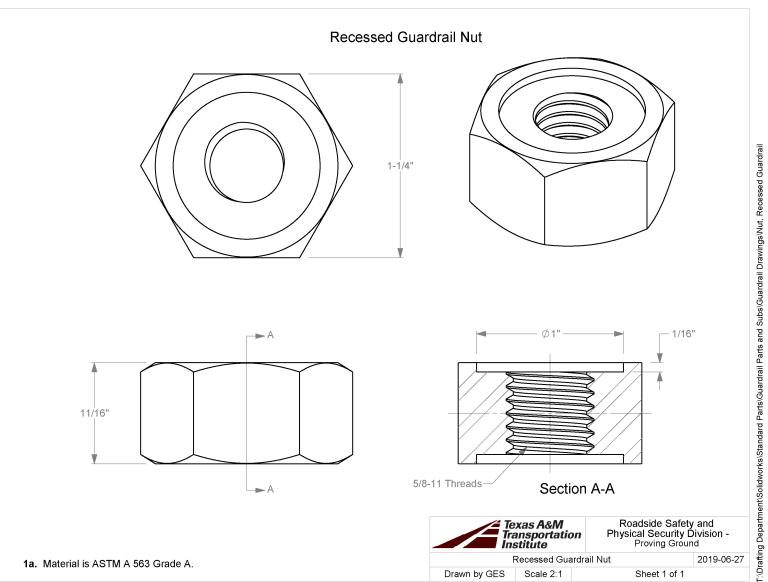


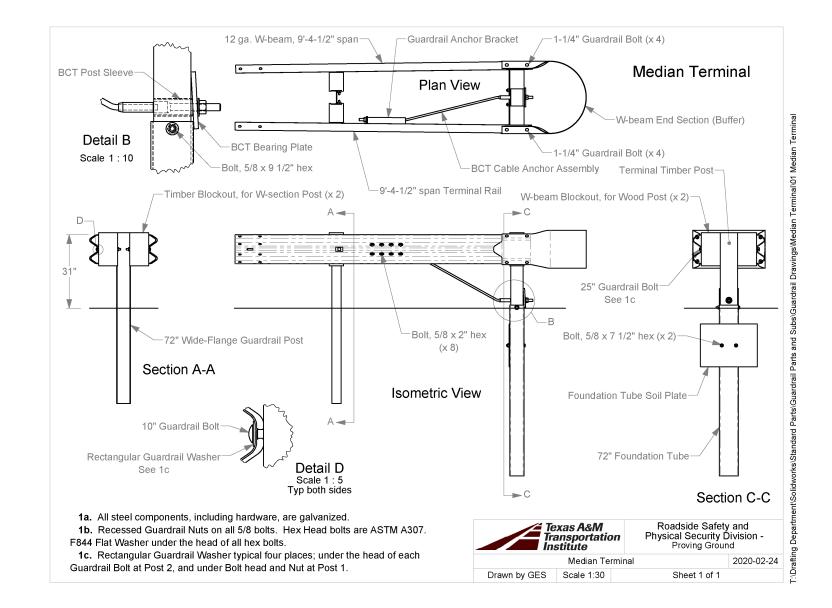



Q:\Accreditation-17025-2017\EIR-000 Project Files\614341 - Thrie-Beam Roadside-Median - Kiani\Drafting, 614341\614341 Median Drawing


APPENDIX F. DETAILS OF MEDIAN THRIE BEAM SYSTEM







APPENDIX G. MASH TEST 3-10 (CRASH TEST NO. 614341-01-2)

G.1. VEHICLE PROPERTIES AND INFORMATION

	Table	G.1. Vehic	le Properties for T	est No. 6	14341-01-2.
Date:	2021-09-16	Test No.:	614341-01-2	VIN No.:	3N1CN7APOFL90411
Year:	2015	Make:	NISSAN	Model:	VERSA
Tire Infl	lation Pressure: <u>36</u>	PSI	_ Odometer: <u>288489</u>		Tire Size: P185/65R15
Describ	e any damage to th	e vehicle pric	or to test: <u>None</u>		
• Deno	otes accelerometer l	ocation.			
NOTES	: <u>None</u>		— A M		••
 Engine	Type: 4 CYL				
Engine			-		
\checkmark	Auto or FWD RWD	Manual	P	R	
	al Equipment:				
Dummy Type: Mass: Seat F	50th Perce			H WE	
Geome	try: inches		-	(
A <u>66.7</u>	0 F <u>32</u>	.50	K <u>12.50</u>	P <u>4.50</u>	U <u>15.50</u>
В <u>59.6</u>	<u>o </u>		L <u>26.00</u>	Q <u>24.0</u>	0 V <u>21.25</u>
C <u>175.</u>	<u>40 H 40</u>	.87	M <u>58.30</u>	R <u>16.2</u>	5 W <u>40.80</u>
D <u>40.5</u>	<u>0 </u>	00	N <u>58.50</u>	S <u>7.50</u>	X <u>79.75</u>
E <u>102.</u>	<u>40 J 22</u>	.25	O <u>30.50</u>	T <u>64.5</u>	
	el Center Ht Front	= 169 ±8 inches; E	Wheel Center Ht = 98 ±5 inches; F = 35 ±4 inches; H = inches; W-H < 2 inches or use MASH F	39 ±4 inches; O ((Top of Radiator Support) = 28 ±4 inches
GVWR	Ratings:	Mass: Ib	Curb		nertial <u>Gross Static</u>
Front	1750	Mfront	1475	1475	
Back	1687	M _{rear}	994	980	
Total	3389	M _{Total}	2469	2455	2620
			Allowable TIM = 2420	0 lb ±55 lb Allow	able GSM = 2585 lb ± 55 lb
Mass E Ib	Distribution: LF:	780	RF: <u>695</u>	LR: <u>480</u>) RR: <u>500</u>

Date:	2021-9-16	Test No.:	614341-01-2	VIN No.:	3N1CN7APOFL90411
Year:	2015	Make:	NISSAN	Model:	VERSA

Table G.2. Exterior Crush Measurements for Test No. 614341-01-2.

VEHICLE CRUSH MEASUREMENT SHEET¹

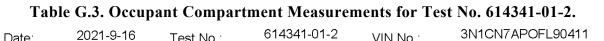
Complete Wh	en Applicable					
End Damage	Side Damage					
Undeformed end width	Bowing: B1 X1					
Corner shift: A1	B2 X2					
A2						
End shift at frame (CDC)	Bowing constant					
(check one)	X1+X2					
< 4 inches	2					
\geq 4 inches						

Note: Measure C_1 to C_6 from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

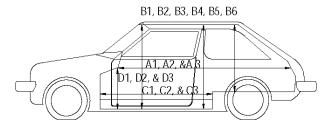
G		Direct I	Damage								
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C_1	C_2	C_3	C4	C_5	C ₆	±D
1	Front plane at bumper ht	14	6	28	-	-	-	-	-	-	14
2	Side plane above bmp ht	14	8	40	-	-	-	-	-	-	60
	Measurements recorded										
	🖌 inches or 🗌 mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

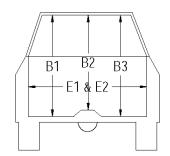

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).


***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Year:	2015	Make:	NISSAN	NISSAN Model:		VERSA		
					CCUPANT (
	F				Before	After (inches)	Differ.	
	Ğ			A1	75.00	75.00	0.00	
¶↓	I			A2	74.00	74.00	0.00	
<u> </u>			E	A3	74.00	74.00	0.00	
				B1	43.00	43.00	0.00	


VIN No.:

2021-9-16

Test No.:

Date:

*Lateral area across the cab from driver's side kick panel to passenger's side kick panel.

DEFORMATION MEASUREMENT			
	Before	After (inches)	Differ.
A1	75.00	75.00	0.00
A2	74.00	74.00	0.00
A3	74.00	74.00	0.00
B1	43.00	43.00	0.00
B2	37.00	37.00	0.00
B3	43.00	43.00	0.00
B4	46.50	46.50	0.00
B5	42.50	42.50	0.00
B6	46.50	46.50	0.00
C1	26.00	26.00	0.00
C2	0.00	0.00	0.00
C3	26.00	23.00	-3.00
D1	12.50	12.50	0.00
D2	0.00	0.00	0.00
D3	10.00	10.00	0.00
E1	45.00	43.00	-2.00
E2	48.75	50.75	2.00
F	47.50	47.50	0.00
G	47.50	47.50	0.00
н	39.00	39.00	0.00
I	39.00	39.00	0.00
J*	48.50	46.00	-2.50

3N1CN7APOFL90411

G.2. SEQUENTIAL PHOTOGRAPHS

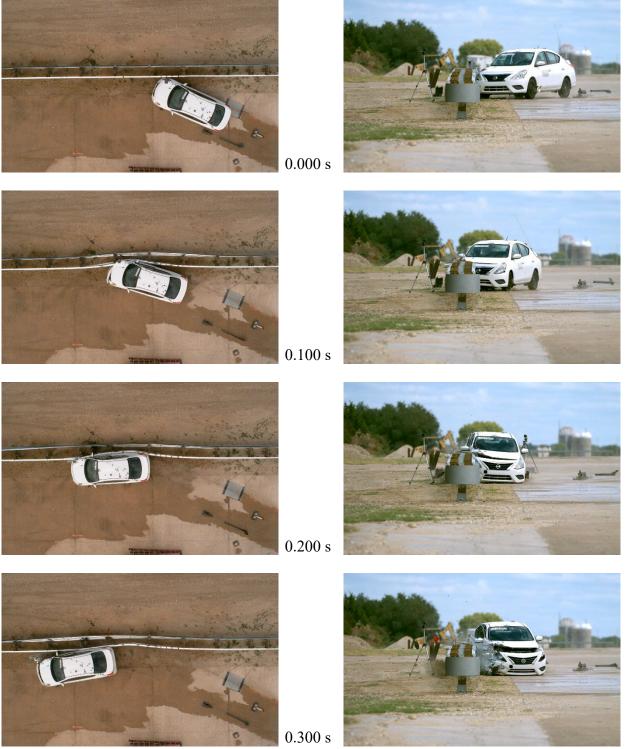


Figure G.1. Sequential Photographs for Test No. 614341-01-2 (Overhead and Frontal Views).

0.600 s

Figure G.1. Sequential Photographs for Test No. 614341 01 2 (Overhead and Frontal Views) (Continued).

0.000 s

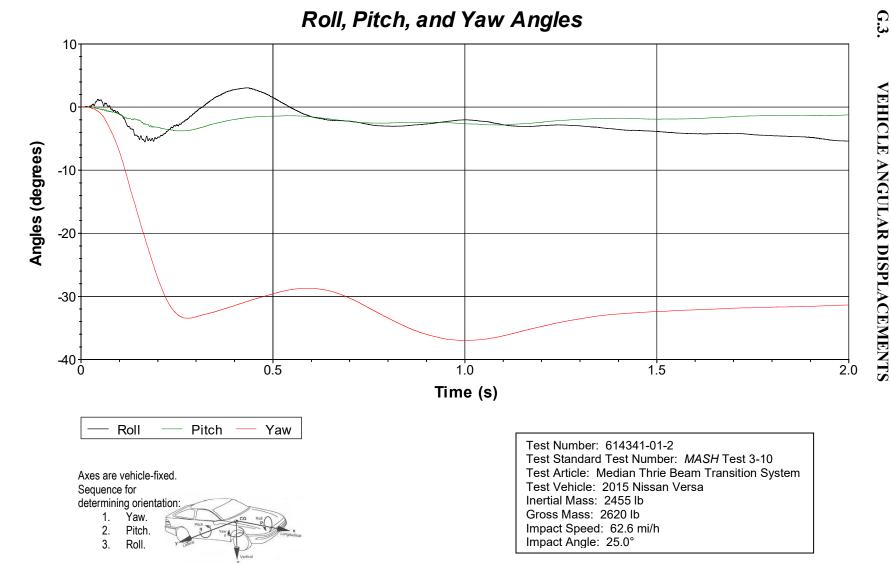
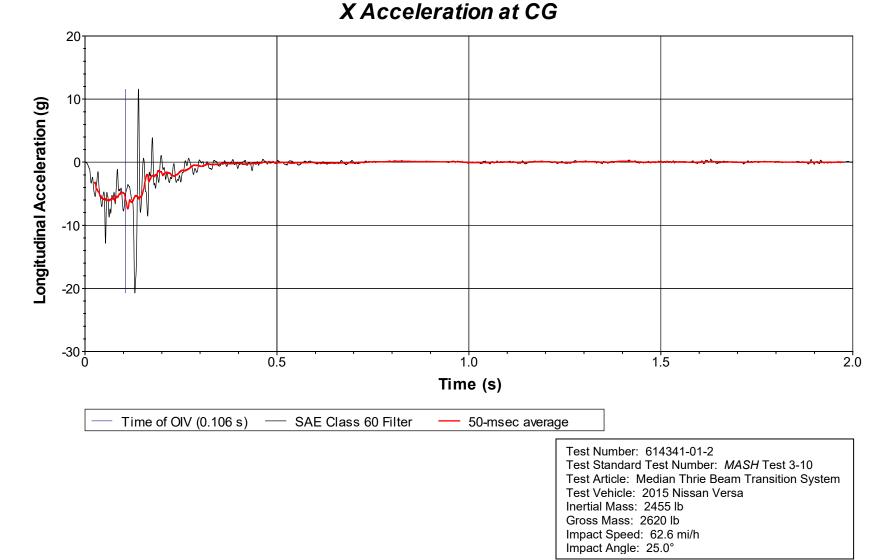
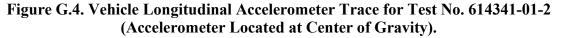
0.100 s

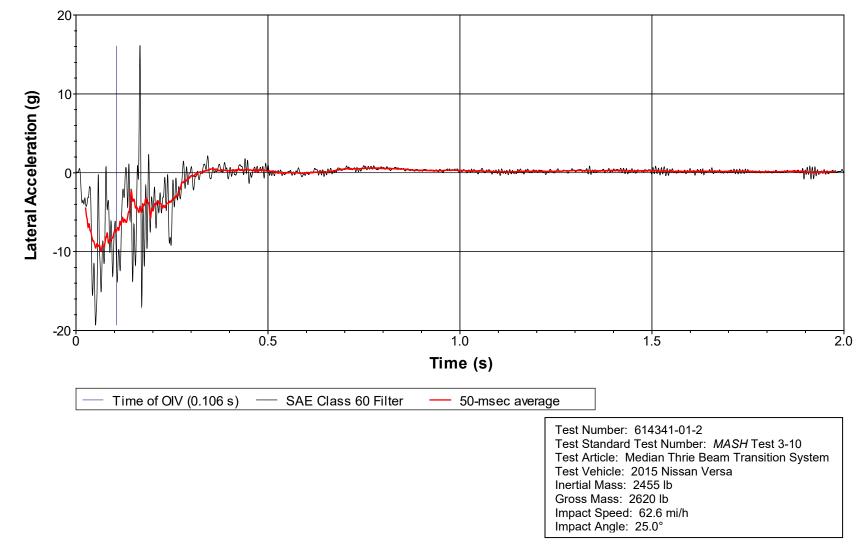
0.400 s

0.500 s

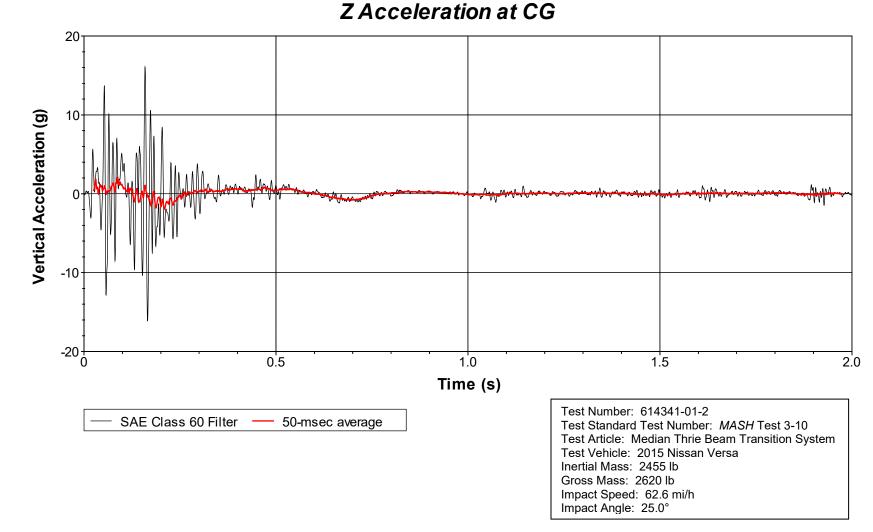
0.600 s

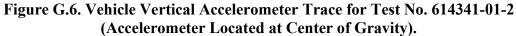
0.300 s 0.700 s Figure G.2. Sequential Photographs for Test No. 614341-01-2 (Rear View).


Figure G.3. Vehicle Angular Displacements for Test No. 614341-01-2.

G.4.


VEHICLE ACCELERATIONS



Y Acceleration at CG

Figure G.5. Vehicle Lateral Accelerometer Trace for Test No. 614341-01-2 (Accelerometer Located at Center of Gravity).

