

Proving Ground

Test Report No. 616411-01

EVALUATION OF TYPE III BARRICADES WITH MOUNTED SIGNS Sponsored by

TEXAS A&M TRANSPORTATION INSTITUTE PROVING GROUND Roadside Safety & Physical Security Division Texas A&M University System RELLIS Campus

1254 Avenue A Building 7091 Bryan, TX 77807

1 . 10 4 D . .. п

			Technical Rep	ort Documentation rage
1. Report No.	2. Government Accessio	n No.	3. Recipient's Catalog No	0.
4. Title and Subtitle			5. Report Date	
Evaluation of Type III Barricades w	vith Mounted Signs		November 2022	
Evaluation of Type III Darrieddes w	Thi Wounted Signs		6 Performing Organizati	on Code
			0. I erionning Organizati	
7. Author(s)		_	8. Performing Organizati	on Report No.
James C. Kovar, Daniel Curran, Wi	Iliam J. L. Schroed	er, and	Report 616411-0	1
Darrell L. Kuhn				
9. Performing Organization Name and Address			10. Work Unit No. (TRA	IS)
Texas A&M Transportation Institut	e Proving Ground			
3135 TAMU			11. Contract or Grant No.	
College Station, Texas 77843-3135			Project T4541	
12. Sponsoring Agency Name and Address			13. Type of Report and Pe	eriod Covered
Washington State Department of Tr	ansportation		Technical Report	
Research Office MS 47372	-		September 2022-	November 2022
Transportation Building			14. Sponsoring Agency C	code
Olympia, WA 98504-7372				
15. Supplementary Notes				
Project Title: EVALUATION OF T	YPE III BARRICA	ADES WITH MOU	NTED SIGNS	
Name of Contacting Representative	: Brian Crossley, Per	nnDOT		
16. Abstract				
The objective of this project wa	as to develop a Type	III barricade system	with a mounted sign	n which
successfully met American Association	n of State Highway a	nd Transportation Of	ficials (AASHTO)	Manual for
Assessing Safety Hardware (MASH), S	Second Edition (1) ci	iteria. The research t	eam first reviewed r	elevant research
and state standards to lay a foundation	for the design effort.	The research team s	ubsequently develop	ed a design for
testing and evaluation according to MA	ASH guidelines.		1 2 1	C
The purpose of the tests report	ed herein was to asse	ess the performance o	f the Type III barrie	ade with mounted
sign according to the safety-performan	ce evaluation guideli	nes for MASH Test]	evel 3 (TL-3) The	Type III barricade
with mounted sign successfully met the	e performance criteri	a This report provide	es details on the Tyn	e III barricade
with mounted sign, results of the MAS	H crash tests, perform	nance assessments, a	and recommendation	s for
implementation				
17. Key Words		18. Distribution Statement	t	
Type III Barricade, Mounted Signs, We	ork-Zone Traffic	No restrictions. This document is available to the public		
Control Device, Crash Test, MASH		through NTIS:		
		National Technical	Information Service	e
		Alexandria, Virginia 22312		
		http://www.ntis.go	V	
19. Security Classif. (of this report)	20. Security Classif. (of t	nis page)	21. No. of Pages	22. Price
Unclassified	Unclassified		86	

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.

EVALUATION OF TYPE III BARRICADES WITH MOUNTED SIGNS

by

James C. Kovar Assistant Research Scientist Texas A&M Transportation Institute

Daniel Curran Student Technician Texas A&M Transportation Institute

William J. L. Schroeder Research Engineering Associate Texas A&M Transportation Institute

and

Darrell L. Kuhn, P.E. Research Specialist Texas A&M Transportation Institute

Report 616411-01 Contract No.: T4541-EL Project Title: Evaluation of Type III Barricades with Mounted Signs

Sponsored by the Roadside Safety Pooled Fund and the Federal Highway Administration

April 2023

TEXAS A&M TRANSPORTATION INSTITUTE College Station, Texas 77843-3135

DISCLAIMER

The contents of this report reflect the views of the authors, who are solely responsible for the facts and accuracy of the data and the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Washington State Department of Transportation (WSDOT), the Roadside Safety Pooled Fund, The Texas A&M University System, or the Texas A&M Transportation Institute (TTI). This report does not constitute a standard, specification, or regulation. In addition, the above listed agencies/companies assume no liability for its contents or use thereof. The names of specific products or manufacturers listed herein do not imply endorsement of those products or manufacturers.

The results reported herein apply only to the article tested. The full-scale crash tests were performed according to TTI Proving Ground quality procedures and American Association of State Highway and Transportation Officials (AASHTO) Manual for Assessing Safety Hardware, Second Edition (*MASH*) guidelines and standards.

The Proving Ground Laboratory within TTI's Roadside Safety and Physical Security Division ("TTI Lab") strives for accuracy and completeness in its crash test reports. On rare occasions, unintentional or inadvertent clerical errors, technical errors, omissions, oversights, or misunderstandings (collectively referred to as "errors") may occur and may not be identified for corrective action prior to the final report being published and issued. If, and when, the TTI Lab discovers an error in a published and issued final report, the TTI Lab will promptly disclose such error to the Washington State Department of Transportation (WSDOT) and the Roadside Safety Pooled Fund, and all parties shall endeavor in good faith to resolve this situation. The TTI Lab will be responsible for correcting the error that occurred in the report, which may be in the form of errata, amendment, replacement sections, or up to and including full reissuance of the report. The cost of correcting an error in the report shall be borne by the TTI Lab. Any such errors or inadvertent delays that occur in connection with the performance of the related testing contract will not constitute a breach of the testing contract.

THE TTI LAB WILL NOT BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, PUNITIVE, OR OTHER DAMAGES SUFFERED BY THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION (WSDOT), THE ROADSIDE SAFETY POOLED FUND, OR ANY OTHER PERSON OR ENTITY, WHETHER SUCH LIABILITY IS BASED, OR CLAIMED TO BE BASED, UPON ANY NEGLIGENT ACT, OMISSION, ERROR, CORRECTION OF ERROR, DELAY, OR BREACH OF AN OBLIGATION BY THE TTI LAB.

ACKNOWLEDGMENTS

This research project was performed under a pooled fund program between the following States and Agencies. The authors acknowledge and appreciate their guidance and assistance.

Roadside Safety Research Pooled Fund Committee

Revised January 2021

ALABAMA

Stanley (Stan) C. Biddick, P.E.

Assistant State Design Engineer Design Bureau, Final Design Division Alabama Dept. of Transportation 1409 Coliseum Boulevard, T-205 Montgomery, AL 36110 (334) 242-6833 biddicks@dot.state.al.us

<u>ALASKA</u>

Jeff C. Jeffers, P.E.

Statewide Standard Specifications Alaska Depart. of Transportation & Public Facilities 3132 Channel Drive P.O. Box 112500 Juneau, AK 99811-2500 (907) 465-8962 Jeff.Jeffers@alaska.gov

CALIFORNIA

Bob Meline, P.E. Caltrans Office of Materials and Infrastructure Division of Research and Innovation 5900 Folsom Blvd Sacramento, CA 95819 (916) 227-7031 Bob.Meline@dot.ca.gov

John Jewell, P.E.

Senior Crash Testing Engineer Office of Safety Innovation & Cooperative Research (916) 227-5824 John Jewell@dot.ca.gov

COLORADO

Joshua Keith, P.E.

Standards & Specifications Engineer Project Development Branch Colorado Dept. of Transportation 4201 E Arkansas Ave, 4th Floor Denver, CO 80222 (303) 757-9021 Josh.Keith@state.co.us

CONNECTICUT

David Kilpatrick State of Connecticut Depart. of Transportation 2800 Berlin Turnpike Newington, CT 06131-7546 (806) 594-3288 David.Kilpatrick@ct.gov

DELAWARE

Jeffery Van Horn, P.E. Civil Engineering Program Manager Transportation Solutions – Traffic Operations Office: (302) 659-4606; Cell:(302) 922-7279 Jeffery.VanHorn@delaware.gov

Craig Blowers

Craig.Blowers@delaware.gov

FLORIDA

Derwood C. Sheppard, Jr., P.E. State Roadway Design Engineer Florida Depart. of Transportation Roadway Design Office 605 Suwannee Street, MS-32 Tallahassee, FL 32399-0450 (850) 414-4334 Derwood.Sheppard@dot.state.fl.us

IDAHO

Marc Danley, P.E.

Technical Engineer (208) 334-8558 Marc.danley@itd.idaho.gov

ILLINOIS

Martha A. Brown, P.E. Safety Design Bureau Chief Bureau of Safety Programs and Engineering Illinois Depart. of Transportation 2300 Dirksen Parkway, Room 005 Springfield, IL 62764 (217) 785-3034 Martha.A.Brown@illinois.gov

Edgar Galofre

Safety Design Engineer (217) 558-9089 edgar.glofre@illinois.gov

<u>IOWA</u>

Daniel Harness Office of Design – Methods Iowa Department of Transportation Daniel.Harness@iowadot.us

Zac Abrams

Traffic and Safety Project Engineer lowa Department of Transportation (515) 239-1567 Zachary.Abrams@iowadot.us

LOUISIANA

Chris Guidry Bridge Manager Louisiana Transportation Center Bridge & Structural Design Section P.O. Box 94245 Baton Rouge, LA 79084-9245 (225) 379-1933 Chris.Guidry@la.gov

Kurt Brauner, P.E.

Bridge Engineer Manager Louisiana Transportation Center 1201 Capital Road, Suite 605G Baton Rouge, LA 70802 (225) 379-1933 Kurt.Brauner@la.gov

MARYLAND

Matamba Kabengele Traffic Engineer Office of Traffic and Safety Maryland State Highway Administration MKabengele@mdot.maryland.gov

MASSACHUSETTS

Alex Bardow Director of Bridges and Structure Massachusetts Depart. of Transportation 10 Park Plaza, Room 6430 Boston, MA 02116 (517) 335-9430 Alexander.Bardow@state.ma.us

James Danila State Traffic Engineer (857) 368-9640 James.<u>Danila@state.ma.us</u>

<u>MICHIGAN</u>

Carlos Torres, P.E. Crash Barrier Engineer Geometric Design Unit, Design Division Michigan Depart. of Transportation P. O. Box 30050 Lansing, MI 48909 (517) 335-2852 <u>TorresC@michigan.gov</u>

MINNESOTA

Khamsai Yang Design Standards Engineer Office of Project Management and Technical Support (651) 366-4622 Khamsai.Yang@state.mn.us

<u>MISSOURI</u>

Sarah Kleinschmit, P.E.

Policy and Innovations Engineer, Missouri Department of Transportation P.O. Box 270 Jefferson City, MO 65102 (573) 751-7412 sarah.kleinschmit@modot.mo.gov

Kaitlyn Bower

kaitlyn.bower@modot.mo.gov

NEW MEXICO

Brad Julian Traffic Technical Support Engineer (505) 827-3263 Brad.Julian@state.nm.us

<u>OHIO</u>

Don P. Fisher, P.E. Ohio Depart. of Transportation 1980 West Broad Street Mail Stop 1230 Columbus, OH 43223 (614) 387-6214 Don.fisher@dot.ohio.gov

OREGON

Christopher Henson Senior Roadside Design Engineer Oregon Depart. of Transportation Technical Service Branch 4040 Fairview Industrial Drive, SE Salem, OR 97302-1142 (503) 986-3561 Christopher.S.Henson@odot.state.or.us

PENNSYLVANIA

Evan Pursel Senior Civil Engineer epursel@pa.gov

Nina Ertel nertel@pa.gov

<u>TEXAS</u>

Chris Lindsey Transportation Engineer Design Division Texas Department of Transportation 125 East 11th Street Austin, TX 78701-2483 (512) 416-2750 Christopher.Lindsey@txdot.gov

Taya Retterer P.E. TXDOT Bridge Standards Engineer (512) 416-2719 Taya.Retterer@txdot.gov

<u>UTAH</u>

Shawn Debenham Traffic and Safety Division Utah Depart. of Transportation 4501 South 2700 West PO Box 143200 Salt Lake City UT 84114-3200 (801) 965-4590 sdebenham@utah.gov

WASHINGTON

John Donahue Design Policy and Analysis Manager Washington State Dept. of Transportation Development Division P.O. Box 47329 Olympia, WA 98504-7246 (360) 704-6381 donahio@wsdot.wa.gov

Mustafa Mohamedali

Assistant Research Project Manager P.O. Box 47372 Olympia, WA 98504-7372 (360) 704-6307 <u>mohamem@wsdot.wa.gov</u>

Tim Moeckel

Policy Support Engineer Washington State Department of Transportation moecket@wsdot.wa.gov

WEST VIRGINIA

Donna J. Hardy, P.E. Safety Programs Engineer West Virginia Depart. of Transportation – Traffic Engineering Building 5, Room A-550 1900 Kanawha Blvd E. Charleston, WV 25305-0430 (304) 558-9576 Donna.J.Hardy@wv.gov

Ted Whitmore

Traffic Services Engineer (304) 558-9468 Ted.J.Whitmore@wv.gov

WISCONSIN

Erik Emerson, P.E. Standards Development Engineer – Roadside Design Wisconsin Department of Transportation Bureau of Project Development 4802 Sheboygan Avenue, Room 651 P. O. Box 7916 Madison, WI 53707-7916 (608) 266-2842 Erik.Emerson@wi.gov

<u>CANADA – ONTARIO</u>

Kenneth Shannon, P. Eng. Senior Engineer, Highway Design (A) Ontario Ministry of Transportation 301 St. Paul Street St. Catharines, ON L2R 7R4 CANADA (904) 704-3106 Kenneth.Shannon@ontario.ca

FEDERAL HIGHWAY

ADMINISTRATION (FHWA)

WebSite: <u>safety.fhwa.dot.gov</u>

Richard B. (Dick) Albin, P.E.

Safety Engineer FHWA Resource Center Safety & Design Technical Services Team 711 S. Capital Olympia, WA 98501 (303) 550-8804 Dick.Albin@dot.gov

Eduardo Arispe

Research Highway Safety Specialist U.S. Department of Transportation Federal Highway Administration Turner-Fairbank Highway Research Center Mail Code: HRDS-10 6300 Georgetown Pike McLean, VA 22101 (202) 493-3291 Eduardo.arispe@dot.gov

Christine Black

Highway Safety Engineer Central Federal Lands Highway Division 12300 West Dakota Ave. Lakewood, CO 80228 (720) 963-3662 Christine.black@dot.gov

Isbel Ramos-Reyes

Lead Safety and Transportation Operations Engineer (703) 948-1442 isbel.ramos-reyes@dot.gov

Matt Hinshaw, M.S., P.E.

Highway Safety Engineer Central Federal Lands Highway Division (360)619-7677 matthew.hinshaw@dot.gov

TEXAS A&M TRANSPORTATION

INSTITUTE (TTI) WebSite: tti.tamu.edu

www.roadsidepooledfund.org

D. Lance Bullard, Jr., P.E.

Senior Research Engineer Roadside Safety & Physical Security Div. Texas A&M Transportation Institute 3135 TAMU College Station, TX 77843-3135 (979) 317-2855 L-Bullard@tti.tamu.edu

Roger P. Bligh, Ph.D., P.E. Senior Research Engineer (979) 317-2703 <u>R-Bligh@tti.tamu.edu</u>

REPORT AUTHORIZATION

REPORT REVIEWED BY:

DocuSigned by:

Glenn Schroeder -E692F9CB5047487...

Glenn Schroeder, Research Specialist Drafting & Reporting

DocuSigned by:

Adam Mayer F7A06F754E02430..

Adam Mayer, Research Specialist Construction

DocuSigned by Robert Korman

Robert Kocman, Research Specialist Mechanical Instrumentation DocuSigned by:

Ken Reeves —60D556935596468.

Ken Reeves, Research Specialist Electronics Instrumentation

DocuSigned by:

Pichard Badillo

Richard Badillo, Research Specialist Photographic Instrumentation

DocuSigned by: Whe 29E1BAD624E8

William J. L. Schroeder, Research Engineering Associate Research Evaluation and Reporting

DocuSigned by: Bill Griffith

Bill L. Griffith, Research Specialist Quality Manager

---- DocuSigned by:

Matt Robinson — EAA22BFA5BFD417...

Matthew N. Robinson, Research Specialist Test Facility Manager & Technical Manager

DocuSigned by: James hovar 4204176432C64A8.

James C. Kovar Assistant Research Scientist

TABLE OF CONTENTS

	Page
ACKNOWLED	GMENTS viii
Report Authoriz	zation xiii
List of Figures	X
List of Tables	xiii
Chapter 1.	Introduction
Chapter 2.	Literature Review
2.1. Overvie	ew5
2.2. NCHR	P Report 350 Testing of TxDOT Work Zone Traffic Control Devices5
2.2.1. NO	CHRP Report 350 Test 1 of the Perforated Steel Type III Barricade with
Diamond Si	gn Attachment5
2.2.2. NO	CHRP Report 350 Test 2 of the Perforated Steel Type III Barricade with
Rectangular	Sign Attachment7
2.2.3. NO	CHRP Report 350 Test 3 of the Perforated Steel Type III Barricade with
Rectangular	Sign Attachment
2.2.4. NO	CHRP Report 350 Test 4 of the HPPL Type III Barricade with
Rectangular	Sign Attachment
2.3. NCHRI	P Report 350 Test 3-71 of the Type III Perforated Steel Tubing Barricade14
2.4. NCHR	P Report 350 Test 3-71 of the New Jersey DOT PVC Barricade
with Sign Pane	el
2.5. Midwe	st Roadside Safety Facility MASH 2016 Evaluation of
Non-Proprieta	ry Type III Barricade16
2.6. MASH	Evaluation of TxDOT Roadside Safety Features
Chapter 3.	Type III Barricade State Surveys
3.1. Overvie	ew
3.2. Survey	Questions and Responses
Q5 – Does y	your state attach signs to Type III barricades?
Q6 - Does y	our state attach lights and or other hardware to these
Type III Bar	ricades in addition to the sign?
Q7 - What i	s the mounting height of the sign? Mounting height is considered
as the vertic	al distance above grade to the lowest point on the sign
O8 - Please	attach a link or upload a standard, detail sheet, or drawing
Chapter 4.	System Details
4.1. Test An	ticle and Installation Details
4.2. Design	Modifications during Tests
Chapter 5.	Test Requirements and Evaluation Criteria
5.1. Crash 7	Fest Performed/Matrix
5.2. Evaluat	tion Criteria10
Chapter 6.	Test Conditions
6.1. Test Fa	cility
6.2. Vehicle	e Tow and Guidance System
6.3. Data A	cquisition Systems
6.3.1. Ve	chicle Instrumentation and Data Processing
6.3.2. 4.3	3.2. Anthropomorphic Dummy Instrumentation14

6.3.	3. Photographic Instrumentation Data Processing	14
Chapter	7. MASH Test 3-71 (Crash Test No. 616411-01-1)	.15
7.1.	Test Designation and Actual Impact Conditions	15
7.2.	Weather Conditions	17
7.3.	Test Vehicle	17
/.4.	l est Description.	18
7.5.	Damage to Test Installation	19
/.6.	Damage to Test venicle	20
/./. Chantar	Occupant Risk Factors	22
	Test Designation and A stual Impact Conditions	.25
0.1. 0.2	Weather Conditions	23
0.2. 9 2	Test Vahiala	27
0. <i>3</i> . 8 1	Test Vehicle	27
0. 4 . 8 5	Demage to Test Installation	29
8.5.	Damage to Test Vehicle	29
8.0. 8.7	Occupant Risk Factors	33
Chanter	$9 \qquad MASH Test 3-72 (Crash Test No. 616411-01-3)$	35
9 1	Test Designation and Actual Impact Conditions	35
9.1.	Weather Conditions	37
93	Test Vehicle	37
9.4	Test Description	38
9.5	Damage to Test Installation	39
9.6	Damage to Test Vehicle	40
9.7	Occupant Risk Factors	43
Chapter	10. MASH Test 3-72 (Crash Test No. 616411-01-4)	.45
10.1.	Test Designation and Actual Impact Conditions	.45
10.2.	Weather Conditions	.47
10.3.	Test Vehicle	.47
10.4.	Test Description	48
10.5.	Damage to Test Installation	.49
10.6.	Damage to Test Vehicle	50
10.7.	Occupant Risk Factors	53
Chapter	11. Summary, Conclusions, and Implementation	.55
11.1.	Assessment of Test Results	55
11.2.	Conclusions	55
11.3.	Implementation	59
Referen	ces	61
APPEN	DIX A. Details of Type III Barricade with Mounted Sign	.63
APPEN	DIX B. MASH Test 3-71 (Crash Test No. 616411-01-1)	.67
B.1.	Vehicle Properties and Information	67
B.2.	Sequential Photographs	70
APPEN	DIX C. MASH Test 3-71 (Crash Test No. 616411-01-2)	.72
C.1.	Vehicle Properties and Information	72
C.2.	Sequential Photographs	75
APPEN	DIX D. MASH Test 3-72 (Crash Test No. 616411-01-3)	.77

D.1.	Vehicle Properties and Information	77
D.2.	Sequential Photographs	80
APPEN	DIX E. MASH Test 3-72 (Crash Test No. 616411-01-4)	82
E.1.	Vehicle Properties and Information	82
E.2.	Sequential Photographs	85

LIST OF FIGURES

P	age
Figure 2.1: Details of Type III Barricade Evaluated in Test 1 (3)	6
Figure 3.4: Illinois Response to State Survey Q8	24
Figure 3.15: Pennsylvania Response to State Survey Q8.	34
Figure 3.16: Tennessee Response to State Survey Q8	35
Figure 4.1. Details of Type III Barricade with Mounted Sign	4
Figure 4.2. Type III Barricade with Mounted Sign prior to Testing	5
Figure 4.3. Flashing Light on Type III Barricade with Mounted Sign prior to Testing	5
Figure 4.4. Base of Type III Barricade with Mounted Sign prior to Testing.	6
Figure 4.5. Rear View of the Base of the Type III Barricade with Mounted Sign prior to	
Testing	6
Figure 4.6. Rear View of the Flashing Light on the Type III Barricade with Mounted Sign	
prior to Testing	7
Figure 4.7. Pine Board and Hardware on the Type III Barricade with Mounted Sign prior to	
Testing.	7
Figure 5.1. Target CIP for MASH TL-3 Tests on Type III Barricade with Mounted Sign	10
Figure 7.1. Type III Barricade with Mounted Sign/Test Vehicle Geometrics for Test	
616411-01-1	16
Figure 7.2 Type III Barricade with Mounted Sign/Test Vehicle Impact Location 616411-01-	
1	16
Figure 7.3 Impact Side of Test Vehicle before Test 616411-01-1	17
Figure 7.4 Interior of the Test Vehicle before Test 616411-01-1	18
Figure 7.5 Type III Barricade with Mounted Sign after Test at Impact Location 616411-01-	
1	19
Figure 7.6 Type III Barricade with Mounted Sign after Test at its Final Location 616411-	
01-1	20
Figure 7.7 Impact Side of Test Vehicle after Test 616411-01-1	20
Figure 7.8 Front Rumper of Test Vehicle after Test 616411-01-1	21
Figure 7.9 Overall Interior of Test Vehicle after Test 616411-01-1	21
Figure 7.10 Interior of Test Vehicle on Impact Side after Test 616411-01-1	
Figure 7.11. Summary of Results for MASH Test 3-71 on Type III Barricade with Mounted	
Sign	24
Figure 8.1 Type III Barricade with Mounted Sign/Test Vehicle Geometrics for Test	
616411_01_2	26
Figure 8.2 Type III Barricode with Mounted Sign/Test Vehicle Impact Location 616/11 01	
rigure 8.2. Type in Darneade with Mounted Sign/Test Venicle Impact Location 010411-01-	26
Figure 8.2 Impact Side of Test Vahiele before Test 616/11 01 2	20
Figure 8.4. Interior of the Impact Side of Test Vehicle before Test 616411-01-2.	21 20
Figure 8.4. Interior of the impact side of rest vehicle before rest 616411.01.2.	20
Figure 8.6. Type III Darried a with Mounted Sign after Test 010411-01-2	
Tigure 6.0. Type III Darricade with Mounted Sign after Test After Denig Kenioved from the Vabiala 616411.01.2	20
Figure 9.7 Impact Side of Test Vahiale after Test 616411.01.2	
Figure 6.7. Impact Side of Test Vehicle after Test 010411-01-2.	
Figure 8.8. Kear Impact Side of Test Vehicle after Test 616411-01-2.	
rigure 8.9. Overall Interior of Test Venicle after Test 616411-01-2	

Figure 8.10. Detail View of the Interior of Test Vehicle after Test 616411-01-2	.32
Figure 8.11. Summary of Results for MASH Test 3-71 on Type III Barricade with Mounted	
Sign	.34
Figure 9.1. Type III Barricade with Mounted Sign/Test Vehicle Geometrics for Test	
616411-01-3.	.36
Figure 9.2. Type III Barricade with Mounted Sign/Test Vehicle Impact Location	.36
616411-01-3	.36
Figure 9.3. Impact Side of Test Vehicle before Test 616411-01-3.	.37
Figure 9.4. Overall Interior of the Test Vehicle before Test 616411-01-3.	.38
Figure 9.5. Type III Barricade with Mounted Sign after Test at Impact Location	.39
616411-01-3.	.39
Figure 9.6. Type III Barricade with Mounted Sign after Test at its Final Resting Location	
616411-01-3.	.40
Figure 9.7. Impact Side of Test Vehicle after Test 616411-01-3.	.40
Figure 9.8. Windshield of Test Vehicle after Test 616411-01-3.	.41
Figure 9.9. Overall Interior of Test Vehicle after Test 616411-01-3	.41
Figure 9.10. Interior of Test Vehicle on Impact Side after Test 616411-01-3.	.42
Figure 9.11. Summary of Results for <i>MASH</i> Test 3-72 on Type III Barricade with Mounted	
Sign.	.44
Figure 10.1. Type III Barricade with Mounted Sign/Test Vehicle Geometrics for Test	
616411-01-4.	.46
Figure 10.2. Type III Barricade with Mounted Sign/Test Vehicle Impact Location.	.46
616411-01-4	.46
Figure 10.3. Impact Side of Test Vehicle before Test 616411-01-4.	.47
Figure 10.4. Overall Interior of Test Vehicle before Test 616411-01-4.	.48
Figure 10.5. Type III Barricade with Mounted Sign after Test at Impact Location	.49
616411-01-4	.49
Figure 10.6. Type III Barricade with Mounted Sign after Test at its Final Resting Location	
616411-01-4.	.50
Figure 10.7. Impact Side of Test Vehicle after Test 616411-01-4.	.50
Figure 10.8. Test Vehicle Hood Damage after Test 616411-01-4	.51
Figure 10.9. Overall Interior of Test Vehicle after Test 616411-01-4	.51
Figure 10.10. Interior of Test Vehicle on Impact Side after Test 616411-01-4	.52
Figure 10.11. Summary of Results for <i>MASH</i> Test 3-72 on Type III Barricade with	
Mounted Sign	.54
Figure B.1. Vehicle Properties for Test No. 616411-01-1.	.67
Figure B.2. Exterior Crush Measurements for Test No. 616411-01-1	.68
Figure B.3. Occupant Compartment Measurements for Test No. 616411-01-1	.69
Figure B.4. Sequential Photographs for Test No. 616411-01-1 (Oblique Views)	70
Figure B.5. Sequential Photographs for Test No. 616411-01-1 (Right Angle Views)	71
Figure C.1. Vehicle Properties for Test No. 616411-01-2	72
Figure C.2 Exterior Crush Measurements for Test No. 616411-01-2	73
Figure C.3. Occupant Compartment Measurements for Test No. 616411-01-2	74
Figure C.4. Sequential Photographs for Test No. 616411-01-2 (Oblique Views)	75
Figure C.5. Sequential Photographs for Test No. 616411-01-2 (Right Angle Views)	76
Figure D 1 Vehicle Properties for Test No. 616411-01-3	77
i gue Diri, i emere i repetites for reserve, oronti for 5.	• / /

Figure D.2. Exterior Crush Measurements for Test No. 616411-01-3.	78
Figure D.3. Occupant Compartment Measurements for Test No. 616411-01-3.	79
Figure D.4. Sequential Photographs for Test No. 616411-01-3 (Oblique Views)	80
Figure D.5. Sequential Photographs for Test No. 616411-01-3 (Right Angle Views)	81
Figure E.1. Vehicle Properties for Test No. 616411-01-4.	82
Figure E.2. Exterior Crush Measurements for Test No. 616411-01-4	83
Figure E.3. Occupant Compartment Measurements for Test No. 616411-01-4	84
Figure E.4. Sequential Photographs for Test No. 616411-01-4 (Oblique Views)	85
Figure E.5. Sequential Photographs for Test No. 616411-01-4 (Right Angle Views)	86

LIST OF TABLES

Table 3.1: Survey Participants' Responses to "Other" option in Q7
Table 3.2 Survey Participants' Responses to State Survey Q9.
Table 5.1. Test Conditions and Evaluation Criteria Specified for MASH TL-3 Work-Zone
Traffic Control Devices
Table 5.2. Evaluation Criteria Required for MASH Testing
Table 7.1. Impact Conditions for MASH 3-71 616411-01-1. 15
Table 7.2. Exit Parameters for MASH 3-71 616411-01-1. 15
Table 7.3. Weather Conditions 616411-01-1. 17
Table 7.4. Vehicle Measurements 616411-01-1.18
Table 7.5. Events during Test 616411-01-1. 19
Table 7.6. Occupant Compartment Deformation 616411-01-1. 22
Table 7.7. Exterior Vehicle Damage 616411-01-1. 22
Table 8.1. Impact Conditions for <i>MASH</i> 3-71 616411-01-2
Table 8.2. Exit Parameters for <i>MASH</i> 3-71 616411-01-225
Table 8.3. Weather Conditions 616411-01-2.27
Table 8.4. Vehicle Measurements 616411-01-2.28
Table 8.5. Events during Test 616411-01-2. 29
Table 8.6. Occupant Compartment Deformation 616411-01-2. 32
Table 8.7. Exterior Vehicle Damage 616411-01-2. 32
Table 9.1. Impact Conditions for <i>MASH</i> 3-72 616411-01-3
Table 9.2. Exit Parameters for <i>MASH</i> 3-72 616411-01-3
Table 9.3. Weather Conditions 616411-01-3.37
Table 9.4. Vehicle Measurements 616411-01-3. 38
Table 9.5. Events during Test 616411-01-3. 39
Table 9.6. Occupant Compartment Deformation 616411-01-3. 42
Table 9.7. Exterior Vehicle Damage 616411-01-3. 42
Table 10.1. Impact Conditions for <i>MASH</i> 3-72 616411-01-445
Table 10.2. Exit Parameters for <i>MASH</i> 3-72 616411-01-445
Table 10.3. Weather Conditions 616411-01-4. 47
Table 10.4. Vehicle Measurements 616411-01-4. 48
Table 10.5. Events during Test 616411-01-4. 49
Table 10.6. Occupant Compartment Deformation 616411-01-4. 52
Table 10.7. Exterior Vehicle Damage 616411-01-4. 52
Table 11.1. Performance Evaluation Summary for MASH Test 3-71 on Type III Barricade
with Mounted Sign, 616411-01-1, 2022-09-30
Table 11.2. Performance Evaluation Summary for MASH Test 3-71 on Type III Barricade
with Mounted Sign, 616411-01-2, 2022-09-30
Table 11.3. Performance Evaluation Summary for MASH Test 3-72 on Type III Barricade
with Mounted Sign, 616411-01-3, 2022-09-30
Table 11.4. Performance Evaluation Summary for MASH Test 3-72 on Type III Barricade
with Mounted Sign, 616411-01-4, 2022-10-07

Table 11.5. Assessment Summary for MASH TL-3 Tests on Type III Barricade with	
Mounted Sign.	.59

	SI* (MODERI	N METRIC) CONV	ERSION FACTORS	
	APPROX	(IMATE CONVERSIO	NS TO SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
		AREA		2
In ²	square inches	645.2	square millimeters	mm²
IL ²	square leel	0.093	square meters	m²
yu-		0.030	square meters	///- ba
mi ²	square miles	2 59	square kilometers	km ²
	equal e milee	VOLUME		NIT!
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft ³	cubic feet	0.028	cubic meters	m ³
yd ³	cubic yards	0.765	cubic meters	m ³
5	NOTE: volu	mes greater than 1000L	shall be shown in m ³	
		MASS		
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
Т	short tons (2000 lb)	0.907	megagrams (or metric ton")	Mg (or "t")
	TE	EMPERATURE (exact	t degrees)	
°F	Fahrenheit	5(F-32)/9	Celsius	°C
		or (F-32)/1.8		
	FOF	RCE and PRESSURE	or STRESS	
lbf	poundforce	4.45	newtons	N
lbf/in²	poundforce per square inc	n 6.89	kilopascals	кРа
0 matrix				O sector d
Symbol	When You Know		TOFING	Symbol
		LENGIH	in the second	
mm	millimeters	0.039	Inches	in ft
m	meters	3.ZO 1.00	verde	IL Vd
lii km	kilometers	0.621	yarus miles	yu mi
NIII	Riometers		Thics	
mm ²	square millimeters	0 0016	square inches	in ²
m ²	square meters	10 764	square feet	ft ²
m ²	square meters	1.195	square vards	vd ²
ha	hectares	2.47	acres	ac
km ²	Square kilometers	0.386	square miles	mi ²
		VOLUME		
mL	milliliters	0.034	fluid ounces	oz
L	liters	0.264	gallons	gal
m ³	cubic meters	35.314	cubic feet	ft ³
m ³	cubic meters	1.307	cubic yards	yd ³
		MASS		
g	grams	0.035	ounces	oz
kg	kilograms	2.202	pounds	lb T
Mg (or "t")	megagrams (or "metric ton) 1.103	short tons (2000b)	I
°C	Coloius	EMPERATURE (exact	t degrees)	°۲
°C	Celsius	EMPERATURE (exact 1.8C+32	Fahrenheit	°F
°C	Celsius FOF	EMPERATURE (exact 1.8C+32 RCE and PRESSURE	r degrees) Fahrenheit or STRESS	°F
°C N	TE Celsius FOF newtons	EMPERATURE (exact 1.8C+32 RCE and PRESSURE 0.225	Fahrenheit or STRESS poundforce	°F Ibf

*SI is the symbol for the International System of Units

Chapter 1. INTRODUCTION

The objective of this project was to develop a Type III barricade system with a mounted sign which successfully met American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH*), Second Edition (1) criteria. The research team first reviewed relevant previous research and state standards to lay a foundation for the design effort. The research team subsequently developed a design for testing and evaluation according to *MASH* guidelines.

The purpose of the tests reported herein was to assess the performance of the Type III barricade with mounted sign according to the safety-performance evaluation guidelines included in *MASH*. The crash tests were performed in accordance with *MASH* Test Level 3 (TL-3), which requires four crash tests (as discussed in Chapter 3).

Chapter 2. LITERATURE REVIEW

2.1. OVERVIEW

This chapter documents the literature review performed in Phase 1 of this project. Relevant research regarding Type III barricades with mounted signs was evaluated. This includes Type III barricades of varying materials and sign shapes attached at ranging mounting heights. Tests included in the review were conducted according to *National Cooperative Highway Research Program (NCHRP) Report 350 (2)* and *MASH* testing standards.

2.2. NCHRP REPORT 350 TESTING OF TXDOT WORK ZONE TRAFFIC CONTROL DEVICES

The objective of this project was to develop nonproprietary crashworthy work-zone traffic control devices, constructed of readily available materials. Four Type III barricades with attached signs were tested under *NCHRP Report 350* test 3-71 evaluation criteria. The first three barricades tested were made of perforated steel tubing while the fourth test was made of hollow-profile plastic lumber (HPPL). Both diamond and rectangular shaped signs were tested.

2.2.1. NCHRP Report 350 Test 1 of the Perforated Steel Type III Barricade with Diamond Sign Attachment

Test 1 evaluated a perforated square steel tubing (PSST) barricade with a diamond sign attachment shown in Figure 2.1. The 1100C small car impacted the barricade at an impact speed of 61.2 mi/h and angle of 90 degrees with the centerline of the vehicle aligned with the centerline of the barricade. The vehicle then traveled and hit the second barricade traveling 51.9 mi/h and angle of 0 degrees. The first barricade stayed in contact with the windshield during its impact with the second barricade but had no intrusion of the windshield area. Test 1 successfully met NCHRP Report 350 criteria, and the barricade with mounted sign was considered suitable for implementation. The research team considered the diamond shape sign as a critical testing condition, and therefore determined the use of a rectangular sign panel also as suitable for implementation (*3*).

Figure 2.1: Details of Type III Barricade Evaluated in Test 1 (3)

2.2.2. NCHRP Report 350 Test 2 of the Perforated Steel Type III Barricade with Rectangular Sign Attachment

Test 2 was conducted using the design shown in Figure 2.2. The impact conditions replicated likely impact scenarios for wide barricades including an offset, head-on impact condition that aligned one of the barricade uprights with the center of the vehicle. An 1808 lb vehicle impacted the first barricade oriented 90 degrees with the centerline of the vehicle aligned with the centerline of the barricade at a speed of 63.6 mi/h, then shortly after impacted the second barricade oriented at 0 degrees with a speed of 51.8 mi/h. However, this test failed due to excessive windshield deformation of 2.0 inches in addition to a small hole in the windshield (*3*).

Figure 2.2: Details of Type III Barricade Evaluated in Test 2 (3)

2.2.3. NCHRP Report 350 Test 3 of the Perforated Steel Type III Barricade with Rectangular Sign Attachment

Test 3 was conducted using the design shown in Figure 2.3. To address the excessive windshield deformation experienced in Test 2, a horizontal cross brace was added to connect the uprights of barricade together. This would ideally provide increased torsional rigidity and therefore improve the crashworthiness of the system. The details for these modifications can be viewed in Figure 2.3. A 2019 lb vehicle was used to impact the barricades. The first barricade was impacted at an orientation of 90 degrees and a speed of 62.3 mi/h. This first barricade was also shifted 24.0 inches to the right to align the left barricade upright with the centerline of the vehicle with the intent of evaluating the torsional failure mode of the barricade mounted to the left support. The second barricade was then impacted at an orientation of 0 degrees and a speed of 50.5 mi/h. The glass for the right-side door was completely shattered because of contact with one of the barricade rails. However, high-speed film showed no intrusion of the barricade rail into the passenger compartment. Therefore, this adjustment proved successful, and the updated design met NCHRP Report 350 criteria (3).

Figure 2.3: Details of Type III Barricade Evaluated in Test 3 (3)

To mitigate the problem with the barricade rails, a horizontal cross brace was added to the barricade to tie the two uprights together and was positioned at a height of 18.0 in to engage the vehicle bumper. This brace will theoretically keep the barricade moving in one piece, and should not affect end-on or centered, head-on impacts. The details for these perforated steel barricade modifications of the 1.2 m x 1.2 m (4 ft x 4 ft) can be viewed in Figure 2.4, and the corresponding design with a 1.5 m x 0.8 m (5 ft x 2 ft-6 in) sign panel can be viewed in Figure 2.4 (3).

Figure 2.4: Modification Details of Perforated Steel Type III Barricade with 1.2 m x 1.2 m (4 ft x 4 ft) sign panel

Figure 2.5: Modification Details of Perforated Steel Type III Barricade with 1.5 m x 0.8 m (5 ft x 2 ft-6 in) sign panel

2.2.4. NCHRP Report 350 Test 4 of the HPPL Type III Barricade with Rectangular Sign Attachment

Test 4 was conducted using the design shown in Figure 2.5. This final test of the project evaluated the performance of a Type III barricade constructed with wood horizontal boards and skids andhollow High-Density Polyethylene (HDPE) vertical supports. A 2019 lb vehicle was used to impact the barricades. The first barricade was impacted at an orientation of 0 degrees with the left support aligned with the centerline of the vehicle and a speed of 62.3 mi/h. Soon after, the vehicle aligned with the barricade at an orientation of 90 degrees with the centerline of the vehicle aligned with the barricade and a speed of 51.4 mi/h and an orientation of 0 degrees. The front passenger side window was cracked by the end of the upper barricade board, but remained intact and was not deformed inward. Although the windshield shattered on the right side, and high-speed film also showed no intrusion of the barricade rail into the passenger compartment. The system was considered to meet NCHRP Report 350 criteria (*3*).

Figure 2.6: Details of Type III Barricade Evaluated in Test 4 (3)

To mitigate the behavior of the upper end of the barricade from intruding the right-side window, it was recommended to reduce the overhang distance of the barricade rails past the uprights. This spacing of the uprights was limited by the width of the sign panel. By increasing the spacing of the uprights from 1.4 m to 1.6 m (4 ft-6 in to 5 ft-4 in), the overhand distance was reduced from 0.5 m to 0.4 m (1 ft-7 in. To 2 ft-2 in). The recommended details for the Type III HPPL barricade with 1.2 m x 1.2 m (4 ft x 4 ft) are shown below in Figure 2.7, and the details of a similar design incorporating a 1.5 m x 0.8 m (5 ft x 2 ft-6 in) are shown below in Figure 2.4.

Figure 2.7: Modification Details of HPPL Type III Barricade with 1.2 m x 1.2 m (4 ft x 4 ft) sign panel

Figure 2.8: Modification Details of HPPL Type III Barricade with 1.5 m x 0.8 m (5 ft x 2 ft-6 in) sign panel

2.3. NCHRP REPORT 350 TEST 3-71 OF THE TYPE III PERFORATED STEEL TUBING BARRICADE

The objective of this project was to "design, test, and develop work zone appurtenances for use by the States." A full-scale crash test was conducted on a Type III barricade constructed with PSST frame members and wooden horizontal rails. This barricade supported a 1220 mm x 1220 mm plywood sign mounted at a height of 2.1 meters (Figure 2.6). An 820-kg passenger car was used to evaluate both 0 and 90 degree orientations of the barricade and mounted sign at the same time. The vehicle impacted the first barricade at a speed of 98.7 km/h with 0 degree orientation, and shortly after, impacted the second barricade at a speed of 87.2 km/h with an orientation of 90 degrees (4).

Figure 2.9: Type III Perforated Steel Tubing Barricade (4)

The barricade separated into multiple pieces and were scattered along the path of the vehicle. There were major dents to the grill, hood and roof of the vehicle. The bumper deformed 200mm. The roof deformed an area of 840 mm by 500 mm, with a depth of 30 mm over the rear passenger compartment, and the occupant compartment was deformed inward as well for a

maximum 41 mm depth. The windshield was shattered near the roofline, but no penetration and no separation from the roof. This test article met the criteria set forth in *NCHRP Report 350 (4)*.

2.4. NCHRP REPORT 350 TEST 3-71 OF THE NEW JERSEY DOT PVC BARRICADE WITH SIGN PANEL

A full-scale crash test was conducted on the New Jersey DOT PVC Type III barricade with 1220 mm x 1220 mm aluminum sign panel mounted at a height of 1041 mm (Figure 2.7) at 0 and 90 degree orientations. NCHRP Report 350 crash testing criteria was used to evaluate the barricade and involved an 820-kg passenger car impacting both barricades at a speed of 100 km/h (5).

Figure 2.10: New Jersey Type III PVC Barricade (5)

The PVC barricade separated into multiple pieces, and the end of the second barricade's middle cross member punctured a hole in the windshield. This puncture was measured to be 178
mm long and approximately 19-25 mm wide. Additionally, the maximum deformation to the occupant compartment was measured to be 44 mm. The roof deformed over an area of 800 mm x 400mm to a depth of 55 mm. This system failed to meet NCHRP Report 350 criteria because of the windshield damage caused by a cross member of the barricade. (5).

Figure 2.11: Windshield Damage to Vehicle from New Jersey Type III PVC Barricade Testing (5)

2.5. MIDWEST ROADSIDE SAFETY FACILITY MASH 2016 EVALUATION OF NON-PROPRIETARY TYPE III BARRICADE

The objective of this project was to evaluate the performance of a non-proprietary workzone safety device. The highest need was determined to be a non-proprietary Type III barricade, which had not been evaluated to MASH crash testing criteria. Each barricade consisted of three horizontal HPDE panels measured at 96 inches in length, with a 48 inch x 30 inch x 0.08 inch aluminum sign attached to the top of the barricade panels. This barricade is shown below in Figure 2.9. One test was conducted with the barricades at 0 and 90 degree angles according to *MASH* test designation 3-71. The barricades experienced moderate damage. Both systems experienced bends and buckles in the uprights and panels, tears in the weighted sandbags, and bolt pullouts. Damage to the vehicle was minimal. A larger dent caused by the impact was located on the left-rear door directly behind the door handle, measuring 8 inches. Additionally, the left mirror was disengaged from the vehicle, and the windshield was cracked across its entirety. Because of this, the barricade with mounted sign successfully met *MASH* criteria and was considered acceptable for implementation (6).

Figure 2.12: Non-proprietary Type III Barricade (6)

Researchers also provided recommendations regarding variations of the as-tested design which would still be considered *MASH*-compliant. These variations included different materials, sizes and cross-sectional shapes, and it is anticipated that a Type III barricade without an aluminum sign panel would perform the same or better than the Type III barricade with the sign. Warning lights were also permitted to be mounted to the backside of the barrier. The researchers recommended completing the MASH 3-72 test with the 2270P pickup truck to complete the full testing matrix (*6*).

2.6. MASH EVALUATION OF TXDOT ROADSIDE SAFETY FEATURES

The purpose of this project was to evaluate TxDOT roadside safety devices, which included a Type III barricade. TxDOT allows for Type III barricades to vary in lengths of 4 feet to 8 feet. The 4 feet long barricade was considered to be most critical because it allows for both uprights to be impacted at the same time, increasing the chance of the uprights releasing from their skids. The Type III barricade was constructed of three 1 inch x 8 inch yellow pine boards mounted to two vertical sections of 1.5 inch PSST (Figure 2.10). This barricade was tested to MASH 3-71 and 3-72 conditions, with both 0 and 90 deg impact angles (7).

Figure 2.13: Details of Type III Barricade with Pine boards (7).

The first test was a MASH 3-71 test at a 90 degree orientation. A 2416 lb vehicle was used to impact the centerline of the barricade 14 inches off the centerline of the vehicle towards the driver's side at an approximate speed of 62.2 mi/h. The barricade broke into multiple pieces and scattered downstream of impact. Damage to the vehicle included a 4 inch x 8 inch, 1.75 inch deep dent in the front bumper, as well as a 24 inch x 24 inch, 2.5 inch deep dent in top left side of the hood. There was no measurable deformation to occupant compartment. This test passed all MASH performance criteria. The second test conducted was MASH test 3-72 at a 90 degree orientation. A 5044 lb vehicle was used to impact the centerline of the barricade 12 inches off the centerline of the vehicle towards the driver's side at an approximate speed of 63.5 mi/h. The barricade separated into two pieces. Damage to the vehicle included an 8 inch x 8 inch dent in the hood, and a 1 inch hole located 1 foot to the left of the centerline of the hood, but there was no measurable occupant compartment deformation. This test passed all MASH performance criteria. The third test conducted was MASH test 3-72 at a 0 degree orientation. A 5044 lb vehicle as speed of 61.3 mi/h. The barricade aligned with the centerline of the vehicle at a speed of 61.3 mi/h. The barricade remained mostly intact, except for welds that

cracked at the base and the supports bending 18 inches up from the base. Vehicle damage was minimal with only some light scuffing on the bumper and grill, and no measurable exterior crush on the vehicle or occupant compartment. This test passed all MASH performance criteria. The final test conducted was MASH test 3-71 at a 0 degree orientation. A 2450 lb vehicle was used to impact the centerline of the barricade aligned with the centerline of the vehicle at a speed of 64.5 mi/h. The barricade separated into multiple pieces. Damage to the vehicle included a 42 inch x 8 inch, 1.25 inch. deep dent along the front hood, as well as some damage to the passenger-side headlight. There was no measurable occupant compartment deformation. This test passed all MASH performance criteria. The researchers concluded the Type III barricade suitable for implementation (7).

DocuSign Envelope ID: F7E77393-8192-47D6-9B89-384520F1ECE3

Chapter 3. TYPE III BARRICADE STATE SURVEYS

3.1. OVERVIEW

This survey was designed to gather information regarding panel materials, sign sizes, mounting heights, and similar details which may vary from state to state. The survey was administered online and was sent to members of the Roadside Safety Pooled Fund The survey received 14 total responses.

3.2. SURVEY QUESTIONS AND RESPONSES

Questions 5 through 8 from the state survey are shown in the following pages. Questions 1 through 4 listed introductory information, and Question 5 began the technical aspects of the survey.

Q5 – Does your state attach signs to Type III barricades?

Figure 3.1: State Survey Question 5 Responses.

Q6 – Does your state attach lights and or other hardware to these Type III Barricades in addition to the sign?

Figure 3.2: State Survey Question 6 Responses.

Figure 3.3: State Survey Question 7 Responses

Table 3.1: Survey	v Participants'	Responses to	"Other"	option in C)7.
	/			v	

Louisiana	"We mount the sign on the top 4" of the middle panel and it covers the top panel with the width of the sign. Lightweight signs that pass NCHRP 350 only."
Minnesota	"Varies dependent on the sign, approximately 54"."

Q8 - Please attach a link or upload a standard, detail sheet, or drawing.

Figure 3.4: Illinois Response to State Survey Q8.

Figure 3.5: Iowa DOT Response to State Survey Q8 (1/3).

Figure 3.6: Iowa DOT Response to State Survey Q8 (2/3).

Figure 3.7: Iowa Response to State Survey Q8 (3/3).

Figure 3.8: Michigan Response to State Survey Q8.

Figure 3.9: Minnesota Response to State Survey Q8 (1/3).

Figure 3.10: Minnesota Response to State Survey Q8 (2/3).

Figure 3.11: Minnesota Response to State Survey Q8 (3/3).

Figure 3.12: Mississippi Response to State Survey Q8.

Figure 3.13 Pennsylvania Compilation of Type III Barricade Images from Response to State Survey Q8.

Figure 3.14: Pennsylvania Response to State Survey Q8.

Figure 3.15: Tennessee Response to State Survey Q8.

.

Figure 3.16: Utah Response to State Survey Q8.

Figure 3.17: Washington Response to State Survey Q8 (1/2).

Figure 3.18: Washington Response to State Survey Q8 (2/2).

Q9 – Do you have any other information to share with the research team?

Illingia	"The signs are normally 19 inches shows grade, and always helow the ter roll
minois	The signs are normany 18 incres above grade, and always below the top ran,
	as it is shown on the attached standard 701901, sheet 3 of 3."
Louisiana	"Lights shall be mounted on the top uprights. Not through the top lightweight
	barricade panel. If struck, they will pull through the panel and become a
	projectile."
Massachusetts	"Note that the only signs we attach to Type III Barricades are directional
	signs for pedestrians (detour info, etc.) that are typically outside of the
	workzone clear zone or protected by barrier."
Minnesota	"We follow our details that were tested under NCHRP 350. If plastic panels
	are used into the future, it would be good to take into account cold weather
	effects."
Utah	"We do not attach signs above the Type III. We do not attach lights to
	devices. We use .08 inch aluminum for sign subsrate."

Table 3.2 Survey Participants' Responses to State Survey Q9.

DocuSign Envelope ID: F7E77393-8192-47D6-9B89-384520F1ECE3

Chapter 4. SYSTEM DETAILS

4.1. TEST ARTICLE AND INSTALLATION DETAILS

The test installation consisted of a Type III barricade with a sign mounted above the horizontal boards. The barricade included PSST frame, nominal $1 \times 8 \times 48$ -inch dimensional lumber boards, a 48-inch x 0.10-inch thick square aluminum sign panel, and a beacon light assembly. Total weight of assembly was 115 lbs. Additionally, one 40-pound sandbag was placed on each end of all horizontal legs for a total of four bags. The top horizontal board was located with a maximum height of 60 inches, and the sign panel was placed in a diamond pattern, with the top corner at 10 ft-8 inches above grade.

Figure 2.1 presents the overall information on the Type III barricade with mounted sign, and Figure 2.2 thru Figure 2.7 provide photographs of the installation. Appendix A provides further details on the Type III barricade with mounted sign. Drawings were provided by the Texas A&M Transportation Institute (TTI) Proving Ground, and construction was performed by TTI Proving Ground personnel.

Figure 4.1. Details of Type III Barricade with Mounted Sign.

4

Figure 4.2. Type III Barricade with Mounted Sign prior to Testing.

Figure 4.3. Flashing Light on Type III Barricade with Mounted Sign prior to Testing.

Figure 4.4. Base of Type III Barricade with Mounted Sign prior to Testing.

Figure 4.5. Rear View of the Base of the Type III Barricade with Mounted Sign prior to Testing.

Figure 4.6. Rear View of the Flashing Light on the Type III Barricade with Mounted Sign prior to Testing.

Figure 4.7. Pine Board and Hardware on theType III Barricade with Mounted Sign prior to Testing.

4.2. DESIGN MODIFICATIONS DURING TESTS

No modifications were made to the installation during the testing phase.

Chapter 5. TEST REQUIREMENTS AND EVALUATION CRITERIA

5.1. CRASH TEST PERFORMED/MATRIX

Table 3.1 shows the test conditions and evaluation criteria for *MASH* TL-3 Work-Zone Traffic Control Devices. The target critical impact points (CIPs) for each test were selected to maximize interaction of the barricade and sign with the vehicle and to promote the change of occupant compartment deformation and/or penetration. The target critical impact angles of 0 and 90 degree orientation were selected to represent most common in-field conditions. The 0 degree angle represents the visible condition which is utilized when the barricade is exposed to motorists' view. The 90 degree orientation represents the typical practice of rotating the sign 90 degrees to place it out-of-service. Figure 3.1 shows the target CIP for *MASH* Tests 3-71 and 3-72 on the Type III barricade with mounted sign.

MASH states that Test 3-70 is considered optional for work-zone traffic control devices weighing less than 220 lb because velocity changes during low-speed impacts with freestanding, lightweight features will be within acceptable limits (see MASH Paragraph 2.2.4.2 "Description of Tests"). Therefore, MASH Test 3-70 was not performed on the Type III barricade with mounted sign since each barricade weighed 115 lb (exclusive of the four ballast sand bags).

 Table 5.1. Test Conditions and Evaluation Criteria Specified for MASH TL-3 Work-Zone

 Traffic Control Devices.

Test Designation	Test Vehicle	Impact Speed	Impact Angle	Evaluation Criteria
3-71	1100C	62 mi/h	0°	B, D, E, F, H, I, N
3-71	1100C	62 mi/h	90°	B, D, E, F, H, I, N
3-72	2270P	62 mi/h	0°	B, D, E, F, H, I, N
3-72	2270P	62 mi/h	90°	B, D, E, F, H, I, N

Figure 5.1. Target CIP for MASH TL-3 Tests on Type III Barricade with Mounted Sign.

The crash test procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

5.2. EVALUATION CRITERIA

The appropriate safety evaluation criteria from Tables 2.5 and 5.1 of *MASH* were used to evaluate the crash tests reported herein. Table 5.1 lists the test conditions and evaluation criteria required for *MASH* TL-3, and Table 5.2 provides detailed information on the evaluation criteria.

Evaluation Factors	Evaluation Criteria	MASH Test
В.	The test article should readily activate in a predictable manner by breaking away, fracturing, or yielding.	71, 72
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of <i>MASH</i> .	71, 72

 Table 5.2. Evaluation Criteria Required for MASH Testing.

Evaluation Factors	Evaluation Criteria	MASH Test
Е.	Detached elements, fragments, or other debris from the test article, or vehicle damage, should not block the driver's vision or otherwise cause the driver to lose control of the vehicle.	71, 72
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	71, 72
H.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 10 ft/s, or maximum allowable value of 16 ft/s.	71, 72
I.	The occupant ridedown accelerations should satisfy the following: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	71, 72
N.	Vehicle trajectory behind the test article is acceptable.	71, 72

DocuSign Envelope ID: F7E77393-8192-47D6-9B89-384520F1ECE3

Chapter 6. TEST CONDITIONS

6.1. TEST FACILITY

The full-scale crash tests reported herein were performed at the TTI Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, as well as *MASH* guidelines and standards.

The test facilities of the TTI Proving Ground are located on The Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 mi northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, highway pavement durability and efficacy, and roadside safety hardware and perimeter protective device evaluation. The sites selected for construction and testing are along the edge of an out-of-service apron/runway. The apron/runway consists of an unreinforced jointed-concrete pavement in 12.5-ft \times 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement but are otherwise flat and level.

6.2. VEHICLE TOW AND GUIDANCE SYSTEM

Each test vehicle was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point and through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site.

6.3. DATA ACQUISITION SYSTEMS

6.3.1. Vehicle Instrumentation and Data Processing

MASH does not require instrumentation of the vehicle when impacting lightweight, freestanding work-zone traffic control devices weighing less than 220 lb. Each test article weighed 115 lb (excluding the sand bags). Consequently, the vehicle was not instrumented and occupant risk factors were not calculated for this test per *MASH* Section 2.2.4.2 "Description of Tests." Roll and pitch were checked via video analysis to visually verify that the vehicle did not exceed 75 degrees on either axis.
6.3.2. 4.3.2. Anthropomorphic Dummy Instrumentation

An Alderson Research Laboratories Hybrid II, 50th percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the front seat on the opposite side of impact of the 1100C vehicle. The dummy was not instrumented.

According to *MASH*, use of a dummy in the 2270P vehicle is optional, and no dummy was used in the test.

6.3.3. Photographic Instrumentation Data Processing

Photographic coverage of each test included two digital high-speed cameras:

- One located at a right angle to the installation to have a field of view of the vehicle and installation at impact.
- One placed downstream from the installation at an angle to have an oblique view of the vehicle and installation at impact.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the Type III barricade with mounted sign. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

Chapter 7. MASHTEST 3-71 (CRASH TEST NO. 616411-01-1)

7.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 5.1 for details on *MASH* impact conditions for this test and Table 5.2 for the exit parameters. Figure 5.1 and Figure 5.2 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5 mi/h	61.7
Impact Angle (deg)	90	±1.5°	90
Kinetic Energy (kip-ft)	288	≥288 kip-ft	309
Impact Location	Centerline of the vehicle aligned with the centerline of the barricade.	± 6 inches	Centerline of the vehicle aligned with the centerline of the barricade.

Table 7.1. Impact Conditions for *MASH* 3-71 616411-01-1.

Exit Parameter	Measured
Speed (mi/h)	57
Time of Brake Application post impact (s)	5
Vehicle at rest position	390 ft downstream of impact point.In-line with the installation.Oriented 45° to the left side.
Comments:	Vehicle remained upright and stable. Neither Pitch nor Roll exceeded 75 degrees.

Table 7.2. Exit Parameters for *MASH* 3-71 616411-01-1.

Figure 7.1. Type III Barricade with Mounted Sign/Test Vehicle Geometrics for Test 616411-01-1.

Figure 7.2. Type III Barricade with Mounted Sign/Test Vehicle Impact Location 616411-01-1.

7.2. WEATHER CONDITIONS

Table 5.3 provides the weather conditions for 616411-01-1.

Date of Test	September 30 th , 2022
Wind Speed (mi/h)	4
Wind Direction (deg)	94
Temperature (°F)	68
Relative Humidity (%)	59
Vehicle Traveling (deg)	350

 Table 7.3. Weather Conditions 616411-01-1.

7.3. TEST VEHICLE

Figure 5.3 and Figure 5.4 show the 2017 Nissan Versa used for the crash test. Table 5.4 shows the vehicle measurements. Table B.1 in Appendix B.1 gives additional dimensions and information on the vehicle.

Figure 7.3. Impact Side of Test Vehicle before Test 616411-01-1.

Figure 7.4. Interior of the Test Vehicle before Test 616411-01-1.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	165
Vehicle Inertial Weight (lb)	2420	±55 lb	2428
Gross Static ^a (lb)	2585	±55	2593
Wheelbase (inches)	98	± 5	102.4
Front Overhang (inches)	35	±4	32.5
Overall Length (inches)	169	± 8	175.4
Overall Width (inches)	65	±3	66.7
Hood Height (inches)	28	±4	30.5
Track Width ^b (inches)	59	±2	58.4
CG aft of Front Axle ^c (inches)	39	± 4	42.0

Table 7.4. Vehicle Measurements 616411-01-1.

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy. ^b Average of front and rear axles.

[°] For test inertial mass.

7.4. **TEST DESCRIPTION**

Table 5.5 lists events that occurred during Test No. 616411-01-1. Figures B.1 and B.2 in Appendix B.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0040	Lower wood plank and supports began to move downstream
0.0180	Lower wood plank began to split
0.0830	Top wood plank impacted hood
0.2390	Corner of Aluminum sign impacted roof near windshield

Table 7.5. Events during Test 616411-01-1.

7.5. DAMAGE TO TEST INSTALLATION

The wood debris started at 75 feet downstream and extended 42 feet to the right and 18 feet to the left of impact. The remainder of the sign was 300 feet downstream and 4 feet to the right of the installation. Figure 5.5 and Figure 5.6 show the damage to the Type III barricade with mounted sign.

Figure 7.5. Type III Barricade with Mounted Sign after Test at Impact Location 616411-01-1.

Figure 7.6. Type III Barricade with Mounted Sign after Test at its Final Location 616411-01-1.

7.6. DAMAGE TO TEST VEHICLE

Figure 5.7 and Figure 5.8 show the damage sustained by the vehicle. Figure 5.9 and Figure 5.10 show the interior of the test vehicle. Table 5.6 and Table 5.7 provide details on the occupant compartment deformation and exterior vehicle damage. Tables B.2 and B.3 in Appendix B.1 provide exterior crush and occupant compartment measurements.

Figure 7.7. Impact Side of Test Vehicle after Test 616411-01-1.

Figure 7.8. Front Bumper of Test Vehicle after Test 616411-01-1.

Figure 7.9. Overall Interior of Test Vehicle after Test 616411-01-1.

Figure 7.10. Interior of Test Vehicle on Impact Side after Test 616411-01-1.

Test Parameter	Specification	Measured
Roof	≤4.0 inches	0.0 inches
Windshield	\leq 3.0 inches	0.0 inches
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	0.0 inches
Foot Well/Toe Pan	≤9.0 inches	0.0 inches
Floor Pan/Transmission Tunnel	≤ 12.0 inches	0.0 inches
Side Front Panel	≤ 12.0 inches	0.0 inches
Front Door (above Seat)	≤9.0 inches	0.0 inches
Front Door (below Seat)	≤12.0 inches	0.0 inches

Table 7.6. Occu	pant Compartment	Deformation	616411-01-1.
-----------------	------------------	-------------	--------------

Side Windows	The side windows remained intact
Maximum Exterior Deformation	12 inches in the front plane at bumper height
VDS	12FC6
CDC	12FCAN5
Fuel Tank Damage	None
Description of Damage to Vehicle:	The front bumper, hood, grill, radiator and support were damaged. The hood had a 36-inch \times 20-inch \times 6-inch deep dent. There were also some scuff marks on the left front center of the roof.

7.7. OCCUPANT RISK FACTORS

MASH does not require instrumentation of the vehicle when impacting lightweight, freestanding work-zone traffic control devices weighing less than 220 lb. Each test article

weighed 115 lb (excluding the sand bags). Consequently, the vehicle was not instrumented and occupant risk factors were not calculated for this test per *MASH* Section 2.2.4.2 "Description of Tests."

	Test Agency	Texas A&M Transportation Institute (TTI)
	Test Standard/Test No.	MASH 2016, Test 3-71
	TTI Project No.	616411-01-1
	Test Date	2022-09-30
and the second s	TEST ARTICLE	
HEL AND	Туре	Work-Zone Traffic Control Device
	Name	Type III barricade with mounted sign
	Height	10 ft 8 inches
0.000 s	Key Materials	12 GA Perforated Steel Tubing, 48-inch square Aluminum Sign Panel, 1×8×48-inch pine boards
	Soil Type and Condition	Concrete, Dry
	TEST VEHICLE	
	Type/Designation	1100 C
	Year, Make and Model	2017 Nissan Versa
	Inertial Weight (lb)	2428
and the second second	Dummy (lb)	165
	Gross Static (lb)	2593
0.100 s	IMPACT CONDITIONS	
	Impact Speed (mi/h)	61.7
	Impact Angle (deg)	90
-	Impact Location	Centerline of the vehicle aligned with the centerline of the barricade.
1	Impact Severity (kip-ft)	309
	EXIT CONDITIONS	
0.200 s	Exit Speed (mi/h)	57
		390 ft downstream
	Stopping Distance	In-line with impact
	VEHICLE DAMAGE	
	VDS	12FC6
	CDC	12FCAN5
	Max. Ext. Deformation	12
0.300 s	Max Occupant Compartment Deformation	No occupant compartment deformation
	390' ^	

Figure 7.11. Summary of Results for *MASH* Test 3-71 on Type III Barricade with Mounted Sign.

Chapter 8. MASHTEST 3-71 (CRASH TEST NO. 616411-01-2)

8.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 6.1 for details on *MASH* impact conditions for this test and Table 6.2 for the exit parameters. Figure 6.1 and Figure 6.2 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5 mi/h	61.7
Impact Angle (deg)	0	±1.5°	0
Kinetic Energy (kip-ft)	288	≥288 kip-ft	308.9
Impact Location	Centerline of the vehicle aligned with the centerline of the barricade.	± 6 inches	Centerline of the vehicle aligned with the centerline of the barricade.

Table 8.1. Impact Conditions for MASH 3-71 616411-01-2.

Exit Parameter	Measured
Speed (mi/h)	57.9
Time of Brake Application post impact (s)	4
Vehicle at rest position	375 ft downstream of impact point.4 ft to the left side.Oriented 30° to the right side.
Comments:	Vehicle remained upright and stable. Neither Pitch nor Roll exceeded 75 degrees

Table 8.2. Exit Parameters for *MASH* 3-71 616411-01-2.

Figure 8.1. Type III Barricade with Mounted Sign/Test Vehicle Geometrics for Test 616411-01-2.

Figure 8.2. Type III Barricade with Mounted Sign/Test Vehicle Impact Location 616411-01-2.

8.2. WEATHER CONDITIONS

Table 6.3 provides the weather conditions for 616411-01-2.

Date of Test	September 30 th , 2022
Wind Speed (mi/h)	4
Wind Direction (deg)	140
Temperature (°F)	74
Relative Humidity (%)	45
Vehicle Traveling (deg)	350

 Table 8.3. Weather Conditions 616411-01-2.

8.3. TEST VEHICLE

Figure 6.3 and Figure 6.4 show the 2017 Nissan Versa used for the crash test. Table 6.4 shows the vehicle measurements. Table C.1 in Appendix C.1 gives additional dimensions and information on the vehicle.

Figure 8.3. Impact Side of Test Vehicle before Test 616411-01-2.

Figure 8.4. Interior of the Impact Side of Test Vehicle before Test 616411-01-2.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	165
Vehicle Inertial Weight (lb)	2420	±55 lb	2427
Gross Static ^a (lb)	2585	±25	2592
Wheelbase (inches)	98	±5	102.4
Front Overhang (inches)	35	±4	32.5
Overall Length (inches)	169	± 8	175.4
Overall Width (inches)	65	±3	66.7
Hood Height (inches)	28	±4	30.5
Track Width ^b (inches)	59	±2	58.4
CG aft of Front Axle ^c (inches)	39	±4	42.6

Table 8.4. Vehicle Measurements 616411-01-2.

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy.
 ^b Average of front and rear axles.
 ^c For test inertial mass.

8.4. TEST DESCRIPTION

Table 6.5 lists events that occurred during Test No. 616411-01-2. Figures C.1 and C.2 in Appendix C.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0060	Base began to slide downstream
0.0090	Support posts began to bend, and bottom board began to fracture
0.0130	Support posts fractured just above lower wood board
0.0810	Sign contacted the roof near the windshield

Table 8.5. Events during Test 616411-01-2.

8.5. DAMAGE TO TEST INSTALLATION

The sign remained mostly intact and stayed in front of the car. Figure 6.5 and Figure 6.6 show the damage to the Type III barricade with mounted sign.

Figure 8.5. Type III Barricade with Mounted Sign after Test 616411-01-2.

Figure 8.6. Type III Barricade with Mounted Sign after Test After Being Removed from the Vehicle 616411-01-2.

8.6. DAMAGE TO TEST VEHICLE

Figure 6.7 and Figure 6.8 show the damage sustained by the vehicle. Figure 6.9 and Figure 6.10 show the interior of the test vehicle. Table 6.6 and Table 6.7 provide details on the occupant compartment deformation and exterior vehicle damage. Tables C.2 and C.3 in Appendix C.1 provide exterior crush and occupant compartment measurements.

Figure 8.7. Impact Side of Test Vehicle after Test 616411-01-2.

Figure 8.8. Rear Impact Side of Test Vehicle after Test 616411-01-2.

Figure 8.9. Overall Interior of Test Vehicle after Test 616411-01-2.

Figure 8.10. Detail View of the Interior of Test Vehicle after Test 616411-01-2.

Test Parameter	Specification	Measured
Roof	≤ 4.0 inches	2.75 inches
Windshield	≤ 3.0 inches	2.6 inches
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤9.0 inches	0 inches
Floor Pan/Transmission Tunnel	≤ 12.0 inches	0 inches
Side Front Panel	≤ 12.0 inches	0 inches
Front Door (above Seat)	≤9.0 inches	0 inches
Front Door (below Seat)	≤ 12.0 inches	0 inches

Table 8.6. Occupant Compartment Deformation 616411-01-2.

Side Windows	The side windows remained intact	
Maximum Exterior Deformation	2 inches in the front plane at bumper height	
VDS	12FC3	
CDC	12FCAW6	
Fuel Tank Damage	None	
Description of Damage to Vehicle:	The front bumper, hood, grill, right and left head lights, left front fender, windshield and roof were damaged. The windshield had a 38-inch \times 16-inch \times 25%-inch deep deformation, and there was a 1- inch hole where the rearview mirror mounts to the windshield. The hole was caused by the windshield flexing, which caused the rearview mirror to pop out. The hole was not caused by penetration or potential penetration of the test article. The roof had a 38-inch \times 30-inch \times 2 ³ / ₄ -inch deep dent.	

8.7. OCCUPANT RISK FACTORS

MASH does not require instrumentation of the vehicle when impacting lightweight, freestanding work-zone traffic control devices weighing less than 220 lb. Each test article weighed 115 lb (excluding the sand bags). Consequently, the vehicle was not instrumented and occupant risk factors were not calculated for this test per *MASH* Paragraph 2.2.4.2 "Description of Tests."

	Test Agency	Texas A&M Transportation Institute (TTI)	
	Test Standard/Test No.	MASH 2016, Test 3-71	
	TTI Project No.	616411-01-2	
	Test Date	2022-09-30	
and the second	TEST ARTICLE		
	Туре	Work-Zone Traffic Control Device	
for the second s	Name	Type III barricade with mounted sign	
the second se	Height	10 ft 8 inches	
0.000 s	Key Materials	12 GA Perforated Steel Tubing, 48-inch square Aluminum Sign Panel, 1×8×48-inch pine boards	
	Soil Type and Condition	Concrete, Dry	
	TEST VEHICLE		
and the second s	Type/Designation	1100 C	
	Year, Make and Model	2017 Nissan Versa	
	Inertial Weight (lb)	2427	
the second second second	Dummy (lb)	165	
the second second second	Gross Static (lb)	2592	
0.100 s	IMPACT CONDITIONS		
	Impact Speed (mi/h)	61.7	
	Impact Angle (deg)	0	
	Impact Location	Centerline of the vehicle aligned with the centerline of the barricade.	
the second second	Impact Severity (kip-ft)	308.9	
-	EXIT CONDITIONS		
0.200 s	Exit Speed (mi/h)	57.9	
	Stopping Distance	375 ft downstream4 ft to the left side	
	VEHICLE DAMAGE		
	VDS	12FC3	
	CDC	12FCAW6	
	Max. Ext. Deformation	2	
0.300 s	Max Occupant Compartment Deformation	2.75 inches in the roof	
Impact Path	375'		

Figure 8.11. Summary of Results for *MASH* Test 3-71 on Type III Barricade with Mounted Sign.

Chapter 9. MASHTEST 3-72 (CRASH TEST NO. 616411-01-3)

9.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 7.1 for details on *MASH* impact conditions for this test and Table 7.2 for the exit parameters. Figure 7.1 and Figure 7.2 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62 mi/h	± 2.5 mi/h	61.9
Impact Angle (deg)	0°	± 1.5°	0
Kinetic Energy (kip-ft)	594 kip-ft	≥594 kip-ft	645.2
Impact Location	Centerline of the vehicle aligned with the centerline of the barricade.	± 6 inches	Centerline of the vehicle aligned with the centerline of the barricade.

Table 9.1. Impact Conditions for MASH 3-72 616411-01-3.

Table 9.2. Exit Parameters for MASH 3-72 616411-01-3.

Exit Parameter	Measured
Speed (mi/h)	59.2
Time of Brake Application (s)	3
	375 ft downstream of impact point
Vehicle at rest position	In-line
	Oriented 10° to the driver's side
Comments:	Vehicle remained upright and stable. Neither Pitch nor Roll
	exceeded 75 degrees.

Figure 9.1. Type III Barricade with Mounted Sign/Test Vehicle Geometrics for Test 616411-01-3.

Figure 9.2. Type III Barricade with Mounted Sign/Test Vehicle Impact Location 616411-01-3.

9.2. WEATHER CONDITIONS

Table 7.3 provides the weather conditions for 616411-01-3.

Date of Test	September 30 th , 2022
Wind Speed (mi/h)	3
Wind Direction (deg)	48
Temperature (°F)	79
Relative Humidity (%)	34
Vehicle Traveling (deg)	350

 Table 9.3. Weather Conditions 616411-01-3.

9.3. TEST VEHICLE

Figure 7.3 and Figure 7.4 show the 2016 RAM 1500 used for the crash test. Table 7.4 shows the vehicle measurements. Table D.1 in Appendix D.1 gives additional dimensions and information on the vehicle.

Figure 9.3. Impact Side of Test Vehicle before Test 616411-01-3.

Figure 9.4. Overall Interior of the Test Vehicle before Test 616411-01-3.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	N/A
Inertial Weight (lb)	5000	± 110	5037
Gross Static ^a (lb)	5000	± 110	5037
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	±3	40
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46.0
Track Width ^b (inches)	67	±1.5	68.25
CG aft of Front Axle ^c (inches)	63	±4	61.1
CG above Ground ^{c,d} (inches)	28	≥28	28.6

 Table 9.4. Vehicle Measurements 616411-01-3.

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy.

^b Average of front and rear axles.

^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

9.4. TEST DESCRIPTION

Table 7.5 lists events that occurred during Test No. 616411-01-3. Figures D.1 and D.2 in Appendix D.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0020	Sign Supports posts began to bend at impact
0.0050	Supports began to move downstream
0.1000	Right sign support began to break just above lower wooden board
0.0700	Top corner of sign contacted roof near windshield
0.2070	Vehicle lost contact with sign

Table 9.5. Events during Test 616411-01-3.

9.5. DAMAGE TO TEST INSTALLATION

The sign came to rest 335 feet downstream and 54 feet to the left of impact and was intact with the exception of the bottom board, which had splintered and broke away. Figure 7.5 and Figure 7.6 show the damage to the Type III barricade with mounted sign.

Figure 9.5. Type III Barricade with Mounted Sign after Test at Impact Location 616411-01-3.

Figure 9.6. Type III Barricade with Mounted Sign after Test at its Final Resting Location 616411-01-3.

9.6. DAMAGE TO TEST VEHICLE

Figure 7.7 and Figure 7.8 show the damage sustained by the vehicle. Figure 7.9 and Figure 7.10 show the interior of the test vehicle. Table 7.6 and Table 7.7 provide details on the occupant compartment deformation and exterior vehicle damage. Tables D.2 and D.3 in Appendix D.1 provide exterior crush and occupant compartment measurements.

Figure 9.7. Impact Side of Test Vehicle after Test 616411-01-3.

Figure 9.8. Windshield of Test Vehicle after Test 616411-01-3.

Figure 9.9. Overall Interior of Test Vehicle after Test 616411-01-3.

Figure 9.10. Interior of Test Vehicle on Impact Side after Test 616411-01-3.

Test Parameter	Specification	Measured
Roof	≤ 4.0 inches	0 inches
Windshield	≤ 3.0 inches	0 inches
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤9.0 inches	0 inches
Floor Pan/Transmission Tunnel	≤ 12.0 inches	0 inches
Side Front Panel	≤ 12.0 inches	0 inches
Front Door (above Seat)	≤9.0 inches	0 inches
Front Door (below Seat)	≤ 12.0 inches	0 inches

Table 9.6. Occupant Compartment Deformation 616411-01-3.

Side Windows	Side windows remained intact
Maximum Exterior Deformation	0.5 inches in the front plane at bumper height
VDS	12FC1
CDC	12FCAN1
Fuel Tank Damage	None
Description of Damage to Vehicle:	The front bumper, grill, hood, and windshield were damaged. There were two small dents on the front bumper, 30 inches apart and measuring 0.5 inch deep. The hood had two dents, 0.5 inches deep and 2 inches wide. One was 6 inches long and the other was 3 inches long. The windshield had some cracks but no holes or tears in the laminate.

9.7. OCCUPANT RISK FACTORS

MASH does not require instrumentation of the vehicle when impacting lightweight, freestanding work-zone traffic control devices weighing less than 220 lb. Each test article weighed 115 lb (excluding the sand bags). Consequently, the vehicle was not instrumented, and occupant risk factors were not calculated for this test per *MASH* Paragraph 2.2.4.2 "Description of Tests."

	Test Agency	Texas A&M Transportation Institute (TTI)	
	Test Standard/Test No.	MASH 2016, Test 3-72	
	TTI Project No.	616411-01-3	
	Test Date	2022-09-30	
and the second like and a contract the	TEST ARTICLE		
	Туре	Work-Zone Traffic Control Device	
	Name	Type III barricade with mounted sign	
	Height	10 ft 8 inches	
0.000 s	Key Materials	12 GA Perforated Steel Tubing, 48-inch square Aluminum Sign Panel, 1×8×48-inch pine boards	
	Soil Type and Condition	Concrete, Dry	
	TEST VEHICLE		
A A A A A A A A A A A A A A A A A A A	Type/Designation	2270P	
	Year, Make and Model	2016 RAM 1500	
	Inertial Weight (lb)	5037	
the second se	Dummy (lb)	N/A	
the second second	Gross Static (lb)	5037	
0.100 s	IMPACT CONDITIONS		
	Impact Speed (mi/h)	61.9	
	Impact Angle (deg)	0	
	Impact Location	Centerline of the vehicle aligned with the centerline of the barricade.	
in the second second	Impact Severity (kip-ft)	645.2	
	EXIT CONDITIONS		
0.200 s	Exit Speed (mi/h)	59.2	
	Stopping Distance	375 ft downstream	
	Stopping Distance	In-line	
and the strength and a strength and	VEHICLE DAMAGE		
	VDS	12FC1	
the second secon	CDC	12FCAN1	
	Max. Ext. Deformation	0.5	
0.300 s	Max Occupant Compartment Deformation	No occupant compartment deformation	
	375' \		

Figure 9.11. Summary of Results for *MASH* Test 3-72 on Type III Barricade with Mounted Sign.

Chapter 10. MASH TEST 3-72 (CRASH TEST NO. 616411-01-4)

10.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 8.1 for details on *MASH* impact conditions for this test and Table 8.2 for the exit parameters. Figure 8.1 and Figure 8.2 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62 mi/h	± 2.5 mi/h	60.4
Impact Angle (deg)	90°	± 1.5°	90
Kinetic Energy (kip-ft)	594 kip-ft	≥594 kip-ft	614.3
Impact Location	Centerline of the vehicle aligned with the centerline of the barricade.	± 6 inches	Centerline of the vehicle aligned with the centerline of the barricade.

Table 10.1. Impact Conditions for *MASH* 3-72 616411-01-4.

Table 10.2. Exit Parameters for *MASH* 3-72 616411-01-4.

Exit Parameter	Measured
Speed (mi/h)	59.4
Brakes applied post impact (s)	3
Vehicle at rest position	345 ft downstream of impact point In-line with the installation
Comments:	Vehicle remained upright and stable. Neither Pitch nor Roll exceeded 75 degrees

Figure 10.1. Type III Barricade with Mounted Sign/Test Vehicle Geometrics for Test 616411-01-4.

Figure 10.2. Type III Barricade with Mounted Sign/Test Vehicle Impact Location 616411-01-4.

10.2. WEATHER CONDITIONS

Table 8.3 provides the weather conditions for 616411-01-4.

Date of Test	October 7 th , 2022
Wind Speed (mi/h)	2
Wind Direction (deg)	184
Temperature (°F)	75
Relative Humidity (%)	73
Vehicle Traveling (deg)	350

 Table 10.3. Weather Conditions 616411-01-4.

10.3. TEST VEHICLE

Figure 8.3 and Figure 8.4 show the 2016 RAM 1500 used for the crash test. Table 8.4 shows the vehicle measurements. Table E.1 in Appendix E.1 gives additional dimensions and information on the vehicle.

Figure 10.3. Impact Side of Test Vehicle before Test 616411-01-4.

Figure 10.4. Overall Interior of Test Vehicle before Test 616411-01-4.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	N/A
Vehicle Inertial Weight (lb)	5000 lbs	$\pm 110 \ lbs$	5037
Gross Static ^a (lb)	5000	± 110	5037
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	±3	40.0
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46.0
Track Width ^b (inches)	67	±1.5	68.25
CG aft of Front Axle ^c (inches)	63	±4	61.1
CG above Ground ^{c,d} (inches)	28	≥28	28.6

Table 10.4. Vehicle Measurements 616411-01-4.

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy.

^b Average of front and rear axles.

^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

10.4. TEST DESCRIPTION

Table 8.5 lists events that occurred during Test No. 616411-01-4. Figures E.1 and E.2 in Appendix E.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0100	Low board began to fracture
0.0140	Base of sign began to move
0.2190	The sign begins rotating towards the right side of the vehicle

Table 10.5. Events during Test 616411-01-4.

10.5. DAMAGE TO TEST INSTALLATION

The sign assembly landed 270 feet downstream and 37.5 feet to the right of impact. One lower board and one skid was missing from the assembly. The skid was trapped underneath the vehicle. Figure 8.5 and Figure 8.6 show the damage to the Type III barricade with mounted sign.

Figure 10.5. Type III Barricade with Mounted Sign after Test at Impact Location 616411-01-4.

Figure 10.6. Type III Barricade with Mounted Sign after Test at its Final Resting Location 616411-01-4.

10.6. DAMAGE TO TEST VEHICLE

Figure 8.7 and Figure 8.8 show the damage sustained by the vehicle. Figure 8.9 and Figure 8.10 show the interior of the test vehicle. Table 8.6 and Table 8.7 provide details on the occupant compartment deformation and exterior vehicle damage. Tables E.2 and E.3 in Appendix E.1 provide exterior crush and occupant compartment measurements.

Figure 10.7. Impact Side of Test Vehicle after Test 616411-01-4.

Figure 10.8. Test Vehicle Hood Damage after Test 616411-01-4.

Figure 10.9. Overall Interior of Test Vehicle after Test 616411-01-4.

Figure 10.10. Interior of Test Vehicle on Impact Side after Test 616411-01-4.

Test Parameter	Specification	Measured
Roof	≤ 4.0 inches	0 inches
Windshield	≤ 3.0 inches	0 inches
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤9.0 inches	0 inches
Floor Pan/Transmission Tunnel	≤ 12.0 inches	0 inches
Side Front Panel	≤ 12.0 inches	0 inches
Front Door (above Seat)	≤9.0 inches	0 inches
Front Door (below Seat)	≤12.0 inches	0 inches

Table 10.6. Occupant Compartment Deformation 616411-01-4.

Table 10.7.	Exterior	Vehicle	Damage	616411-	01-4.
1 abic 10.7.	LAUTION	, chicie	Damage	010111	UI I

Side Windows	Side windows remained intact
Maximum Exterior Deformation	14 inches in the front plane at bumper height
VDS	12FC2
CDC	12FCAN2
Fuel Tank Damage	None
Description of Damage to Vehicle:	The front bumper, hood, grill, radiator and support, and windshield were damaged. The windshield sustained a few small cracks but no holes or tears in the laminate. The hood had a 14-inch \times 15-inch \times 3-inch deep dent, and a 1 ¹ / ₄ -inch \times 1 ¹ / ₂ -inch hole in the front center.

10.7. OCCUPANT RISK FACTORS

MASH does not require instrumentation of the vehicle when impacting lightweight, freestanding work-zone traffic control devices weighing less than 220 lb. Each test article weighed 115 lb (excluding the sand bags). Consequently, the vehicle was not instrumented and occupant risk factors were not calculated for this test per *MASH* Paragraph 2.2.4.2 "Description of Tests."

	Test Agency	Texas A&M Transportation Institute (TTI)
	Test Standard/Test No.	MASH, Test 3-72
	TTI Project No.	616411-01-4
All all and a state of the	Test Date	2022-10-07
	TEST ARTICLE	
	Туре	Work-Zone Traffic Control Device
the second second	Name	Type III barricade with mounted sign
	Height	10 ft 8 inches
0.000 s	Key Materials	12 GA Perforated Steel Tubing, 48-inch square Aluminum Sign Panel, 1×8×48-inch pine boards
	Soil Type and Condition	Concrete, Dry
	TEST VEHICLE	
the same the set	Type/Designation	2270P
	Year, Make and Model	2016 RAM 1500
	Inertial Weight (lb)	5037
	Dummy (lb)	N/A
	Gross Static (lb)	5037
0.100 s	IMPACT CONDITIONS	
	Impact Speed (mi/h)	60.4
	Impact Angle (deg)	90
	Impact Location	Centerline of the vehicle aligned with the centerline of the barricade.
	Impact Severity (kip-ft)	614.3
1	EXIT CONDITIONS	
	Exit Speed (mi/k)	50.4
0.200 s	Exit Speed (III/II)	J7. 4
	Stopping Distance	345 ft downstream
	Stopping Distance	In-line with the installation
the second states as the	VEHICLE DAMAGE	
	VDS	12FC2
	CDC	12FCAN2
The second se	Max. Ext. Deformation	14
0.300 s	Max Occupant Compartment Deformation	No occupant compartment deformation
	345'	

Figure 10.11. Summary of Results for *MASH* Test 3-72 on Type III Barricade with Mounted Sign.

Chapter 11. SUMMARY, CONCLUSIONS, AND IMPLEMENTATION

11.1. ASSESSMENT OF TEST RESULTS

The crash tests reported herein were performed in accordance with *MASH* TL-3, which involves four tests, on the Type III barricade with mounted sign. Tables at the end of this section provide an assessment of each test based on the applicable safety evaluation criteria for *MASH* TL-3 Work-Zone Traffic Control Devices.

11.2. CONCLUSIONS

Table 9.1, Table 9.2, Table 9.3, and Table 9.4 show that the Type III barricade with mounted sign met the performance criteria for *MASH* TL-3 Work-Zone Traffic Control Devices.

Evaluation Criteria	MASH Description	Assessment
В.	The test article should readily activate in a predictable manner by breaking away, fracturing, or yielding.	Pass
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	Pass
E.	Detached elements, fragments, or other debris from the test article, of vehicular damage should not block the driver's vision or otherwise cause the driver to lose control of the vehicle.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	Pass
Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s (10 ft/s for supports), or maximum allowable value of 40 ft/s (16 ft/s for supports).	N/A
I.	The occupant ridedown accelerations should satisfy the following limits: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	N/A
N.	Vehicle trajectory behind the test article is acceptable.	Pass

Table 11.1. Performance Evaluation Summary for MASH Test 3-71 on Type III Barricadewith Mounted Sign, 616411-01-1, 2022-09-30.

Evaluation Criteria	MASH Description	Assessment
В.	The test article should readily activate in a predictable manner by breaking away, fracturing, or yielding.	Pass
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	Pass
E.	Detached elements, fragments, or other debris from the test article, of vehicular damage should not block the driver's vision or otherwise cause the driver to lose control of the vehicle.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	Pass
Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s (10 ft/s for supports), or maximum allowable value of 40 ft/s (16 ft/s for supports).	N/A
I.	The occupant ridedown accelerations should satisfy the following limits: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	N/A
N.	Vehicle trajectory behind the test article is acceptable.	Pass

Table 11.2. Performance Evaluation Summary for MASH Test 3-71 on Type III Barricadewith Mounted Sign, 616411-01-2, 2022-09-30.

Evaluation Criteria	MASH Description	Assessment
В.	The test article should readily activate in a predictable manner by breaking away, fracturing, or yielding.	Pass
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	Pass
E.	Detached elements, fragments, or other debris from the test article, of vehicular damage should not block the driver's vision or otherwise cause the driver to lose control of the vehicle.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	Pass
Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s (10 ft/s for supports), or maximum allowable value of 40 ft/s (16 ft/s for supports).	N/A
I.	The occupant ridedown accelerations should satisfy the following limits: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	N/A
N.	Vehicle trajectory behind the test article is acceptable.	Pass

Table 11.3. Performance Evaluation Summary for MASH Test 3-72 on Type III Barricadewith Mounted Sign, 616411-01-3, 2022-09-30.

Evaluation Criteria	MASH Description	Assessment
В.	The test article should readily activate in a predictable manner by breaking away, fracturing, or yielding.	Pass
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present an undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of MASH.	Pass
E.	Detached elements, fragments, or other debris from the test article, of vehicular damage should not block the driver's vision or otherwise cause the driver to lose control of the vehicle.	Pass
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	Pass
Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s (10 ft/s for supports), or maximum allowable value of 40 ft/s (16 ft/s for supports).	N/A
I.	The occupant ridedown accelerations should satisfy the following limits: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	N/A
N.	Vehicle trajectory behind the test article is acceptable.	Pass

Table 11.4. Performance Evaluation Summary for MASH Test 3-72 on Type III Barricadewith Mounted Sign, 616411-01-4, 2022-10-07.

Evaluation Criteria	Test No. 616411-01-1 Test-71 @ 90°	Test No. 616411-01-2 Test -71 at 0°	Test No. 616411-01-3 Test-72 @ 0°	Test No. 616411-01-4 Test-72 @ 90°
В	S	S	S	S
D	S	S	S	S
Е	S	S	S	S
F	S	S	S	S
Н	N/A	N/A	N/A	N/A
Ι	N/A	N/A	N/A	N/A
N	S	S	S	S
Overall	Pass	Pass	Pass	Pass

 Table 11.5. Assessment Summary for MASH TL-3 Tests on Type III Barricade with Mounted Sign.

Note: S = Satisfactory; N/A = Not Applicable.

11.3. IMPLEMENTATION*

The Type III barricade design with a mounted sign evaluated within this project successfully met MASH evaluation criteria for tests 3-71 and 3-72. MASH test 3-70 is considered optional for work-zone traffic control devices weighing less than 220 lb. Therefore, this test was not performed on the 115 lb barricade. Consequently, the as-tested Type III barricade with mounted sign is considered MASH compliant and suitable for implementation.

End users commonly utilize hollow-profile plastic lumber (HPPL) and plastic I-beam horizontal rails for Type III barricades. Two methods for attaching the alternative plastic rails are commonly used, direct bolting and plastic clips. Because of the likelihood for the plastic I-beam rails with plastic clips to separate from the PSST, further evaluation and testing of this configuration is needed. When comparing the HPPL with direct bolting to the PSST to the astested configuration, wood horizontal rails are viewed as more critical for crash testing. The larger weight and likelihood for fracturing of the wood rails pose an increased risk for windshield penetration by debris. Therefore, the successful testing of the wood rails allow the HPPL rails with direct bolting to the PSST to be considered as MASH compliant.

^{*} The opinions/interpretations identified/expressed in this section of the report are outside the scope of TTI Proving Ground's A2LA Accreditation.

The as-tested Type III barricade configuration incorporated a light mounted towards the top of the sign. The light was incorporated to evaluate the likelihood of the light impacting the windshield or roof and causing penetration or excessive deformation. An alternative configuration which excludes the light is also considered MASH compliant.

REFERENCES

- 1. AASHTO. *Manual for Assessing Roadside Safety Hardware*, Second Edition. American Association of State Highway and Transportation Officials, Washington, DC, 2016.
- Ross, H. E., Jr., Sicking, D. L., Zimmer, R. A., and Michie, J. D. *Recommended Procedures for the Safety Performance Evaluation of Highway Features*. National Cooperative Highway Research Program Report 350, Transportation Research Board, National Research Council, Washington, D.C., 1993.
- 3. Bligh, R. P., Menges, W. L., & Haug, R. R. (2005). *Crashworthy Work Zone Traffic Control Devices Volume I: Technical Report*. College Station, Texas: Texas Transportation Institute.
- 4. Mak, K. K., Menges, W. L., & Schoeneman, S. K. (1999). *NCHRP Report 350 Test 3-71 of the Type III Perforated Steel Tubing Barricade*. College Station, Texas: Texas Transportation Institute.
- Mak, K. K., Menges, W. L., & Schoeneman, S. K. (1999). NCHRP Report 350 Test 3-71 of the New Jersey DOT PVC Barricade with Sign Panel. College Station, Texas: Texas Transportation Institute.
- 6. Schmidt, J. D., Langel, T. J., Asselin, N., Pajouh, M. A., & Faller, R. K. (2018). *MASH 2016 Evaluation of a Non-Proprietary Type III Barricade*. Lincoln, Nebraska: Midwest Roadside Safety Facility.
- Bligh, R. P., Menges, W. L., Griffith, B. L., Schroeder, G. E., & Kuhn, D. L. (2020). MASH Evaluation of TxDOT Roadside Safety Features - Phase III. College Station, Texas: Texas A&M Transportation Institute.

DocuSign Envelope ID: F7E77393-8192-47D6-9B89-384520F1ECE3

DocuSign Envelope ID: F7E77393-8192-47D6-9B89-384520F1ECE3

APPENDIX A. DETAILS OF TYPE III BARRICADE WITH MOUNTED SIGN

Q:\Accreditation-17025-2017\EIR-000 Project Files\616411-01 - Type III Sign - Kovar\616411-01 Drafting\616411-01 Drawing

Q:\Accreditation-17025-2017\EIR-000 Project Files\616411-01 - Type III Sign - Kovar\616411-01 Drafting\616411-01 Drawing

Q:\Accreditation-17025-2017\EIR-000 Project Files\616411-01 - Type III Sign - Kovar\616411-01 Drafting\616411-01 Drawing

APPENDIX B. MASH TEST 3-71 (CRASH TEST NO. 616411-01-1)

B.1. VEHICLE PROPERTIES AND INFORMATION

Date: <u>2022-09-30</u>	Test No.:	616411-01-1	VIN No.: <u>3N1CN7A</u>	P6HL815842			
Year: 2017	Make:	Nissan	Model: <u>Versa</u>				
Tire Inflation Pressure:	36 PSI	Odometer: <u>160939</u>	Tire Size:	P185/65R15			
Describe any damage	to the vehicle prio	r to test: <u>None</u>					
 Denotes accelerome 	eter location.						
NOTES: <u>None</u>		- A M		• N T			
Engine Type: <u>4 CYL</u> Engine CID: 1.6 L							
Transmission Type:	Transmission Type: ∇ Auto or \Box Manual						
Image: FWD Image							
None							
Dummy Data:							
Type: <u>50th F</u>	Percentile Male	- F - P -	——H — —► └─∪	K			
Seat Position: OPPO	SITE IMPACT	• •	——————————————————————————————————————				
<u></u>		-	X				
Geometry: inches							
A <u>66.70</u> F	32.50	K <u>12.50</u>	P <u>4.50</u>	U			
B <u>59.60</u>	<u> </u>	L <u>26.00</u>	Q <u>24.00</u>	V			
C <u>175.40</u> H	42.04	M <u>58.30</u>	R <u>16.25</u>	W			
D <u>40.50</u>	7.00	N <u>58.50</u>	S <u>7.50</u>	Х			
E <u>102.40</u>	J <u>22.50</u>	O <u>30.50</u>	T <u>64.50</u>				
Wheel Center Ht Fre	ont <u>11.50</u>	Wheel Center Ht	Rear <u>11.50</u>	W-H <u>-42.04</u>			
RANGE LIMIT: A = 65 ±3 inc	ches; C = 169 ±8 inches; E = (M+N)/2 = 59 ±2 i	: 98 ±5 inches; F = 35 ±4 inches; H = nches; W-H < 2 inches or use MASH	= 39 ±4 inches; O (Top of Radiator Si <mark>Paragraph A4.3.2</mark>	upport) = 28 ±4 inches			
GVWR Ratings:	Mass: Ib	<u>Curb</u>	<u>Test Inertial</u>	Gross Static			
Front <u>1750</u>	Mfront	1436	1431	1516			
Back <u>1687</u>	M _{rear}	943	997	1077			
Total <u>3389</u>	MTotal	2379	2428	2593			
54 Di-4 'I 4'		Allowable TIM = 242	20 lb ±55 lb Allowable GSM = 2585	lb ± 55 lb			
INIASS DISTRIBUTION:	LE: 757	RE: 674	I R: 193	RR 504			
				1 (1 () <u>004</u>			

Figure B.1. Vehicle Properties for Test No. 616411-01-1.

Date:	2022-09-30	Test No.:	616411-01-	1	3N1CN7AP6HL815842			
Year:	2017	Make:	Nissan		Model:	Versa		
	V	EHICLE C	RUSH ME.	ASUREM	ENT SHEI	ET ¹		
	Complete When Applicable							
	End Dam	lage		Side Damage				
Undeformed end width]	Bowing: B1	X1		
Corner shift: A1					B2	X2		
		A2						
	End shift at frame	(CDC)		Bow	ving constant	;		
(check one)			X1+X2					
	<	< 4 inches		-	2			
	2	≥ 4 inches						

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

		Direct I	Damage								
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C1	C_2	C_3	C4	C5	C_6	±D
1	AT FT BUMPER	2	12								0
	Measurements recorded										
	🖌 inches or 🗌 mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure B.2. Exterior Crush Measurements for Test No. 616411-01-1.

*Lateral area across the cab from

driver's side kick panel to passenger's side kick panel.

Figure B.3. Occupant Compartment Measurements for Test No. 616411-01-1.

.|*

51.00

51.00

0.00

B.2. SEQUENTIAL PHOTOGRAPHS

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(g) 0.600 s (h) 0.700 s Figure B.4. Sequential Photographs for Test No. 616411-01-1 (Oblique Views).

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure B.5. Sequential Photographs for Test No. 616411-01-1 (Right Angle Views).

APPENDIX C. MASH TEST 3-71 (CRASH TEST NO. 616411-01-2)

C.1. VEHICLE PROPERTIES AND INFORMATION

Date: <u>202</u>	2-09-30	Test No.:	616411-01-2		VIN No.:	3N1CN7AP	6HL906514
Year:	2017	Make:	Nissan		Model:	Versa	
Tire Inflatio	n Pressure: <u>36 F</u>	PSI	Odometer:	147278		Tire Size:	P185/65R15
Describe ar	ny damage to the	vehicle pric	or to test: <u>No</u>	one			
 Denotes 	accelerometer lo	cation.					
NOTES: <u>N</u>	lone		– A M ——			• • - · · · · · ·	N T
			_				
Engine Typ Engine CID	e: <u>4 CYL</u>): 1.6 L		<u> </u>				
Transmissio	on Type: o or <u></u> D D RWD	_ Manual 4WD	P		R		
Optional Ec None	quipment:					e	
				E(Q)			
Dummy Da Type:	ta: <u>50th Percer</u>	itile Male		<f►< td=""><td>— н <mark>— s</mark></td><td>G</td><td>К</td></f►<>	— н <mark>— s</mark>	G	К
Mass: Seat Posit	ion: <u>OPPOSITE</u>	IMPACT	-		E		D
Geometry:	inches		ł	•		С	
A <u>66.70</u>	F <u>32.8</u>	50	K <u>12.50</u>		P <u>4.50</u>		U
B <u>59.60</u>	G		L <u>26.00</u>		Q <u>24.0</u>	0	V
C <u>175.40</u>	H <u>42.6</u>	61	M <u>58.30</u>		R <u>16.2</u>	5	W
D <u>40.50</u>	l <u>7.00</u>)	N <u>58.50</u>		S <u>7.50</u>		Х
E <u>102.40</u>	J <u>22.5</u>	50	O <u>30.50</u>		T <u>64.5</u>	0	
Wheel C	enter Ht Front <u>1</u>	1.50	Wheel (Center Ht F	Rear <u>11.50</u>	00	W-H <u>-42.61</u>
RANGE L	IMIT: A = 65 ±3 inches; C :	= 169 ±8 inches; E (M+N)/2 = 59 ±2	= 98 ±5 inches; F = 3 inches; W-H < 2 inche	5 ±4 inches; H = 3 es or use MASH P	39 ±4 inches; O aragraph A4.3.2	(Top of Radiator Sup	oport) = 28 ±4 inches
GVWR Rat	ings:	Mass: Ib	<u>Curb</u>		<u>Test I</u>	<u>nertial</u>	<u>Gross Static</u>
Front <u>17</u>	50	M _{front}	1439		1417		1502
Back <u>16</u>	87	M _{rear}	935		1010		1090
Total <u>33</u>	89	М _{Тоtal}	2374		2427		2592
	· · · · 4 · · · · ·		Allo	wable TIM = 2420	lb ±55 lb Allow	rable GSM = 2585 lb	± 55 lb
INIASS DIST	וסטזטמ: קובי	711	RE: 706		I R' 500	1	RR [.] 490
		<u> </u>	<u> </u>		LIN. <u>020</u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·

Date:	2022-09-30	Test No.:	616411-01-2	VIN No.:	3N1CN7AP6HL906514
Year:	2017	Make:	Nissan	Model:	Versa

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete	When	Applicable
Compiew	**11011	rippilouoio

End Damage	Side Damage					
Undeformed end width	Bowing: B1 X1					
Corner shift: A1	B2 X2					
A2						
End shift at frame (CDC)	Bowing constant					
(check one)	X1+X2					
< 4 inches	2 =					
\geq 4 inches						

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

a .c		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**	C_1	C ₂	C_3	C4	C ₅	C_6	±D
1	at ft bumper	48	2	48							0
	Measurements recorded										
	🖌 inches or 🗌 mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure C.2. Exterior Crush Measurements for Test No. 616411-01-2.

Date:	2022-09-30	_ Test No.:	616411-01-2	VIN No.:	3N1CN7AP6	HL906514				
Year:	2017	_ Make:	Nissan	_ Model:	Vers	a				
	H-			OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT						
	F			Before	After (inches)	Differ.				
	G		A1	67.50	67.50	0.00				
11		2022-09-30 Test No.: 616411 2017 Make: Niss Image: Market Nisto Image:	∬ A2	67.25	67.25	0.00				
~			 A3	67.75	67.75	0.00				
			B1	40.50	40.50	0.00				
			B2	39.00	36.25	-2.75				
	B1, B2,	B3, B4, B5, B6	B3	40.50	40.50	0.00				
			B4	36.25	36.25	0.00				
	(A1 A2 &A 3	B5	36.00	36.00	0.00					
$\exists \square$	D1, D2, & D3	803 - E	B6	36.25	36.25	0.00				
) C1	26.00	26.00	0.00				
			C2	2 0.00	0.00	0.00				
			Ca	3 26.00	26.00	0.00				
			D1	9.50	9.50	0.00				
			D2	0.00	0.00	0.00				
	// 1	↑ ↑ \\	D3	9 .50	9.50	0.00				
			E1	51.50	51.50	0.00				
			E2	51.00	51.00	0.00				
			F	51.00	51.00	0.00				
			G	51.00	51.00	0.00				
			н	37.50	37.50	0.00				
			I	37.50	37.50	0.00				
Lateral a	rea across the cat	o from	J	51.00	51.00	0.00				
driver's si	de kick panel to pa	assenger's side	kick panel.							

Figure C.3. Occupant Compartment Measurements for Test No. 616411-01-2.

C.2. **SEQUENTIAL PHOTOGRAPHS**

(a) 0.000 s

(c) 0.200 s

(d) 0.300 s

(g) 0.600 s (h) 0.700 s Figure C.4. Sequential Photographs for Test No. 616411-01-2 (Oblique Views).

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure C.5. Sequential Photographs for Test No. 616411-01-2 (Right Angle Views).

APPENDIX D. MASH TEST 3-72 (CRASH TEST NO. 616411-01-3)

D.1. VEHICLE PROPERTIES AND INFORMATION

Date: 20)22-09-30	Test No.:	616411-0	01-3	VIN No.:	100	SRR6GT00	GS201046
Year:	2016	Make	RAM		Model	:	1500)
Tire Size:	265/70 R 17			Tire I	nflation Pre	essure: _	3:	5 psi
Tread Type:	Highway				Odo	meter: 1	92574	
Note any dam	age to the vel	hicle prior to te	est: <u>None</u>					
 Denotes ac 	celerometer la	ocation.			⊷X	-		
NOTES: No	ne		1		711			
Engine Type: Engine CID:	V-8 5.7 liter		A M —					WHEEL TRACK
Transmission	Туре:						-Test inertial c	. М.
FWD		_ Manual 4WD		R - P				
Optional Equi	pment:		P					
None	-		Ī 🚛			॑ <u></u> <u></u>	-	
Dummy Data:	NONE			-4			$-\Psi$	FK L
Mass:				← F →	—н—►	L _G L _V I	-s	D
Seat Positio	n:				м	– E ––––	▼ M	
Geometry:	inches			F	RONT	— C ———	REAR	-
A	5 <u>0</u> F_	40.00	К	20.00	. P_	3.0	<u>00</u> ι	
B 74.0	<u> </u>	28.60	L	30.00	. Q_	30.5	$\frac{50}{20}$ \	/
C <u>227.</u>	<u> </u>	11.75	M	68.00	. к ₋	13.0	v <u>or</u>	v
E 140 f	50 I -	27.00	N	46.00	. з т	77 (<u>, 10</u> 10	
Wheel Cen	ter .	14.75	Wheel Well	40.00	- ' _ 600	Botton	Frame	12.50
Height Fro Wheel Cen	ter	Clea	Wheel Well		0.00	Bottom	i - Front n Frame	12.00
Height Re	ear	14.75 Clea	arance (Rear) _		9.25	Heigh	t - Rear	22.50
G\/W/R Ratin	nc.	Mass: Ib	Curb		Test	Inertial	G	ross Static
Front 3	700	Mfront	29	927	<u>- 1001</u>	2840	<u> </u>	2840
Back 3	900	M _{rear}	20	089		2197		2197
Total 6	700	M _{Total}	50	016		5037		5037
Mass Distrib	ution:			(Allowable F	Range for TIM and	d GSM = 5000 I	b ±110 lb)	
lb	LF:	1455	RF: <u>1</u>	385	LR:	1090		1107

Figure D.1. Vehicle Properties for Test No. 616411-01-3.

Date:	2022-09-30	Test No.: 616411-01-3		VIN No.:	1C6RR6GT0GS201046	
Year:	2016	Make:	RAM	Model:	1500	

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable							
End Damage	Side Damage						
Undeformed end width	Bowing: B1 X1						
Corner shift: A1	B2 X2						
A2							
End shift at frame (CDC)	Bowing constant						
(check one)	X1+X2						
< 4 inches	2 =						
\geq 4 inches							

Note: Measure C_1 to C_6 from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

Specific		Direct Damage			C						
Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**		C ₂	C3	C4	C_5	C_6	±D
1	AT FT BUMPER	30	.5	30							0
	Measurements recorded										
	√inches or ☐mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure D.2. Exterior Crush Measurements for Test No. 616411-01-3.

Date:	2022-09-30	Test No.:	616411-01	-3	VIN No.:	1C6RR6GT0	GS201046				
Year:	2016	_ Make:	RAM		Model:	150	0				
	71	-	ا ر ا	OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT							
	F				Before	After (inches)	Differ.				
		E2 E3 E	4	A1	65.00	65.00	0.00				
				A2	63.00	63.00	0.00				
		Н		A3	65.50	65.50	0.00				
				B1	45.00	45.00	0.00				
				B2	38.00	38.00	0.00				
				B3	45.00	45.00	0.00				
				B4	39.50	39.50	0.00				
		B1-3 B4- A1-3		B5	43.00	43.00	0.00				
6	DI	-3		B6	39.50	39.50	0.00				
			C1	26.00	26.00	0.00					
			C2	0.00	0.00	0.00					
				C3	26.00	26.00	0.00				
				D1	11.00	11.00	0.00				
				D2	0.00	0.00	0.00				
				D3	11.50	11.50	0.00				
		25		E1	58.50	58.50	0.00				
	B1,4	B3,6		E2	63.50	63.50	0.00				
	- E	1-4		E3	63.50	63.50	0.00				
				E4	63.50	63.50	0.00				
				F	59.00	59.00	0.00				
				G	59.00	59.00	0.00				
				Н	37.50	37.50	0.00				
*Lateral are	ea across the cat	o from driver's si	de	I	37.50	37.50	0.00				
kickpanel to	o passenger's sid	de kickpanel.		J*	25.00	25.00	0.00				

Figure D.3. Occupant Compartment Measurements for Test No. 616411-01-3.

D.2. SEQUENTIAL PHOTOGRAPHS

(a) 0.000 s

(b) 0.100 s

⁽c) 0.200 s

(d) 0.300 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure D.4. Sequential Photographs for Test No. 616411-01-3 (Oblique Views).

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure D.5. Sequential Photographs for Test No. 616411-01-3 (Right Angle Views).

APPENDIX E. MASH TEST 3-72 (CRASH TEST NO. 616411-01-4)

E.1. VEHICLE PROPERTIES AND INFORMATION

Date: 20	022-10-07	Test No.:	616411-	-01-4	VIN No.	: <u>1C6R</u>	R6GT0GS2	201046
Year:	2016	Make	RAN	Л	Model	:	1500	
Tire Size:	265/70 R 17			Tire I	nflation Pr	essure:	35 р	si
Tread Type:	Highway				Ode	ometer: <u>19</u> 2	2574	
Note any dam	nage to the ve	hicle prior to t	est: <u>None</u>					
 Denotes ad 	celerometer l	ocation.			◀───X- ◀──₩─►	-		
NOTES NO	ne		A		77			
				(
Engine Type: V-8 Engine CID: 5.7 liter								WHEEL WHEEL
Transmission	Туре:	•					'EST INERTIAL C. M.	·
↓ Auto FWD	or L	Manual			+			
Optional Equi	pment:		P —					3
None			1				2	ββ
Dummy Data:			Ŭ J- T I- T))* 		AQ)L	
Type: Mass:	NONE			← F →	⊔_∪ ■H►	L _G L _v L _s	- D	
Seat Position	n:				•	— E ———		
Geometry:	inches			ľ,	M FRONT	C	Y M REAR	
A 78.	50 F	40.00	К	20.00	Р	3.00	U	
B74.	<u>00</u> G	28.60	L	30.00	Q	30.50	_ V _	
C227.5	<u>50</u> Н_	61.11	Μ	68.50	R	18.00	W	
D 44.0	<u>00</u> I	11.75	N	68.00	s	13.00	_ X _	
E140.	<u>50</u> J_	27.00	o	46.00	_ T _	77.00		
Wheel Cen Height Fro	ter ont	14.75 Clea	Wheel Well arance (Front)		6.00	Bottom Fi Height - I	rame Front	12.50
Wheel Cen Height Re	ter ear	14.75 Cle	Wheel Well arance (Rear)		9.25	Bottom Fi Height -	rame Rear	22.50
RANGE LIMIT: A=7	8 ±2 inches; C=237 ±1	3 inches; E=148 ±12 i	inches; F=39±3 inch	hes; G = > 28 ir	nches; H = 63 ±4	inches; O=43 ±4 in	ches; (M+N)/2=67	±1.5 inches
GVWR Rating	gs:	Mass: Ib	<u>Curb</u>	2	Test	Inertial	<u>Gros</u>	<u>s Static</u>
Front 3	700	M _{front}	2	2927_		2840		2840
Back 3	900	M _{rear}	2	2089		2197		2197
Total 6	700	M _{Total}	5	5016		5037		5037
Mass Distrib	ution:			(Allowable	Range for TIM an	d GSM = 5000 lb ±	110 lb)	
lb	LF:	1455	RF:	1385	LR:	1090	RR:	1107

Figure E.1. Vehicle Properties for Test No. 616411-01-4.

Date:	2022-10-07	Test No.:	616411-01-4	VIN No.:	1C6RR6GT0GS201046
Year:	2016	Make:	RAM	Model:	1500

VEHICLE CRUSH MEASUREMENT SHEET¹

Compl	lete When	Applicable	

End Damage	Side Damage				
Undeformed end width	Bowing: B1 X1				
Corner shift: A1	B2 X2				
A2					
End shift at frame (CDC)	Bowing constant				
(check one)	X1+X2				
< 4 inches	2 =				
\geq 4 inches					

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**	C1	C ₂	C3	C_4	C5	C_6	±D
1	AT FT BUMPER	2	14	72							0
	Measurements recorded										
	√ inches or ☐ mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure E.2. Exterior Crush Measurements for Test No. 616411-01-4.

Date:	2022-10-07	Test No.:	616411-01-4	VIN No.:	1C6RR6GT0GS201046					
Year:	2016	Make:	RAM	Model:	150)				
	71		n D	OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT						
	F			Before	After (inches)	Differ.				
		E2 E3 E	4 A1	65.00	65.00	0.00				
		G	A2	<u>e</u> 63.00	63.00	0.00				
			DL A3	6 5.50	65.50	0.00				
			B1	45.00	45.00	0.00				
			B2	38.00	38.00	0.00				
	D1-3		ВЗ	45.00	45.00	0.00				
		B1-3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -	B4	39.50	39.50	0.00				
			- B5	43.00	43.00	0.00				
6			В	39.50	39.50	0.00				
				26.00	26.00	0.00				
))		C2	2 0.00	0.00	0.00				
<u> </u>			C	3 26.00	26.00	0.00				
			D1	11.00	11.00	0.00				
			D2	<u>2</u> 0.00	0.00	0.00				
			D	3 11.50	11.50	0.00				
B1,4 B3,6		B2 5	E1	58.50	58.50	0.00				
	B3,6	E2	63.50	63.50	0.00					
E1-4		E3	63.50	63.50	0.00					
		E4	63.50	63.50	0.00					
			F	59.00	59.00	0.00				
			G	59.00	59.00	0.00				
			н	37.50	37.50	0.00				
*Lateral area across the cab from driver's side				37.50	37.50	0.00				

Figure E.3. Occupant Compartment Measurements for Test No. 616411-01-4.

J*

25.00

25.00

kickpanel to passenger's side kickpanel.

0.00

E.2. SEQUENTIAL PHOTOGRAPHS

(a) 0.000 s

(b) 0.100 s

(d) 0.300 s

(c) 0.200 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure E.4. Sequential Photographs for Test No. 616411-01-4 (Oblique Views).

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(g) 0.600 s (h) 0.700 s Figure E.5. Sequential Photographs for Test No. 616411-01-4 (Right Angle Views).

DocuSign Envelope ID: F7E77393-8192-47D6-9B89-384520F1ECE3

DocuSign Envelope ID: F7E77393-8192-47D6-9B89-384520F1ECE3