

Test Report No. 609971-01

TESTING AND EVALUATION OF FLARED MGS SYSTEM AT MASHTEST LEVEL 3 CONDITIONS

Sponsored by Washington State Department of Transportation (WsDOT)

TEXAS A&M TRANSPORTATION INSTITUTE PROVING GROUND

Roadside Safety & Physical Security Texas A&M University System RELLIS Campus Building 7091 1254 Avenue A Bryan, TX 77807

		rechnical Report Documentation rage
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
609971-01		
4. Title and Subtitle		5. Report Date
TESTING AND EVALUATION O	F FLARED MGS SYSTEM AT	March 2023
MASH TEST LEVEL 3 CONDITIONS		6. Performing Organization Code
7. Author(s)	8. Performing Organization Report No.	
Chiara Silvestri Dobrovolny, Sun H	ee Park, Bill Griffith, and	Report 609971-01
Darrell L. Kuhn		
9. Performing Organization Name and Address	10. Work Unit No. (TRAIS)	
Texas A&M Transportation Institut		
3135 TAMU		11. Contract or Grant No.
College Station, Texas 77843-3135		Project T4541
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
Washington State Department of Transportation		Technical Report:
Research Office MS 47372		November 2022–January 2023
Transportation Building		14. Sponsoring Agency Code
Olympia, WA 98504-7372		
15. Supplementary Notes		
Project Title: Testing and Evaluatio	n of Flared MGS System at MASH	Test Level 3 Conditions
Name of Contacting Representative	: Mary McRae	
16. Abstract		

The purpose of the tests reported herein was to assess the performance of the Midwest Guardrail System (MGS) with critical flare according to the safety-performance evaluation guidelines included in the American Association of State Highway and Transportation Officials Manual for Assessing Safety Hardware (MASH), Second Edition (1). The crash tests were performed in accordance with MASH Test Level 3 (TL-3), which requires two crash tests:

- 1. MASH Test 3-10: An 1100C vehicle weighing 2,420 lb impacting the guardrail while traveling at 62 mi/h and 25 degrees.
- 2. MASH Test 3-11: A 2270P vehicle weighing 5,000 lb impacting the guardrail while traveling at 62 mi/h and 25 degrees.

This report provides details on the MGS guardrail with critical flare, the crash tests and results, and the performance assessment of the MGS guardrail with flare for MASH TL-3 guardrail evaluation criteria.

The MGS guardrail with critical flare tested at the considered flare conditions did not meet the performance criteria for MASH TL-3 guardrails.

After the full-scale crash tests were complete, an effort was initiated through finite element modeling and simulations to investigate the crashworthiness of the MGS at smaller flare rates and to consider prioritized MGS retrofit options, still for high-speed impact conditions.

17. Key Words		18. Distribution Statement	
Guardrail, MGS, Flare, Impact Severity,		No restrictions. This document is available to the	
Longitudinal Barrier, MASH, Crash Testing, Finite		public through NTIS:	
Element Simulations, Test Level 3, High Speed		National Technical Information Service	
		Alexandria, Virginia 22312	
		http://www.ntis.gov	
19. Security Classif. (of this report)	20. Security Classif. (of the	is page) 21. No. of Pages 22. P	Price
Unclassified	Unclassified	170	

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.

TESTING AND EVALUATION OF FLARED MGS SYSTEM AT MASH TEST LEVEL 3 CONDITIONS

by

Chiara Silvestri Dobrovolny, Ph.D. Research Scientist Texas A&M Transportation Institute

Sun Hee Park, Ph.D. Associate Transportation Researcher Texas A&M Transportation Institute

Bill Griffith Research Specialist Texas A&M Transportation Institute

and

Darrell L. Kuhn, P.E. Research Specialist Texas A&M Transportation Institute

Report 609971-01 Contract No.: T4541 Project Title: Testing and Evaluation of theMGS System with Critical Flare at MASH Test Level 3 Conditions

Sponsored by the Washington State Department of Transportation

March 2023

TEXAS A&M TRANSPORTATION INSTITUTE College Station, Texas 77843-3135

DISCLAIMER

The contents of this report reflect the views of the authors, who are solely responsible for the facts and accuracy of the data and the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Washington State Department of Transportation (WsDOT), the Roadside Safety Pooled Fund, The Texas A&M University System, or the Texas A&M Transportation Institute (TTI). This report does not constitute a standard, specification, or regulation. In addition, the above-listed agencies/companies assume no liability for its contents or use thereof. The names of specific products or manufacturers listed herein do not imply endorsement of those products or manufacturers.

The results reported herein apply only to the article tested. The full-scale crash tests were performed according to TTI Proving Ground quality procedures and American Association of State Highway and Transportation Officials *Manual for Assessing Safety Hardware*, Second Edition, guidelines and standards.

The Proving Ground Laboratory within TTI's Roadside Safety and Physical Security Division ("TTI Lab") strives for accuracy and completeness in its crash test reports. On rare occasions, unintentional or inadvertent clerical errors, technical errors, omissions, oversights, or misunderstandings (collectively referred to as "errors") may occur and may not be identified for corrective action prior to the final report being published and issued. If, and when, the TTI Lab discovers an error in a published and issued final report, the TTI Lab will promptly disclose such error to WsDOT and the Roadside Safety Pooled Fund, and all parties shall endeavor in good faith to resolve this situation. The TTI Lab will be responsible for correcting the error that occurred in the report, which may be in the form of errata, amendment, replacement sections, or up to and including full reissuance of the report. The cost of correcting an error in the report shall be borne by the TTI Lab. Any such errors or inadvertent delays that occur in connection with the performance of the related testing contract will not constitute a breach of the testing contract.

THE TTI LAB WILL NOT BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, PUNITIVE, OR OTHER DAMAGES SUFFERED BY WSDOT, THE ROADSIDE SAFETY POOLED FUND, OR ANY OTHER PERSON OR ENTITY, WHETHER SUCH LIABILITY IS BASED, OR CLAIMED TO BE BASED, UPON ANY NEGLIGENT ACT, OMISSION, ERROR, CORRECTION OF ERROR, DELAY, OR BREACH OF AN OBLIGATION BY THE TTI LAB.

ACKNOWLEDGMENTS

This research project was performed under a pooled fund program between the following states and agencies. The authors acknowledge and appreciate their guidance and assistance.

Roadside Safety Research Pooled Fund Committee

Revised January 2023

ALABAMA

Stanley (Stan) C. Biddick, P.E.

Assistant State Design Engineer Design Bureau, Final Design Division Alabama Dept. of Transportation 1409 Coliseum Boulevard, T-205 Montgomery, AL 36110 (334) 242-6833 biddicks@dot.state.al.us

<u>ALASKA</u>

Mary McRae, P.E.

Statewide Standard Specifications Alaska Department of Transportation & Public Facilities 3132 Channel Drive P.O. Box 112500 Juneau, AK 99811-2500 (907) 465-1222 mary.mcrae@alaska.gov

CALIFORNIA

Bob Meline, P.E. Caltrans Office of Materials and Infrastructure Division of Research and Innovation 5900 Folsom Blvd Sacramento, CA 95819 (916) 227-7031 Bob.Meline@dot.ca.gov

John Jewell, P.E. Senior Crash Testing Engineer Office of Safety Innovation & Cooperative Research (916) 227-5824 John Jewell@dot.ca.gov

COLORADO

Joshua Keith, P.E. Standards & Specifications Engineer Project Development Branch Colorado Dept. of Transportation 4201 E Arkansas Ave, 4th Floor Denver, CO 80222 (303) 757-9021 Josh.Keith@state.co.us

CONNECTICUT

David Kilpatrick State of Connecticut Depart. of Transportation 2800 Berlin Turnpike Newington, CT 06131-7546 (806) 594-3288 David.Kilpatrick@ct.gov

DELAWARE

Jeffery Van Horn, P.E. Civil Engineering Program Manager Transportation Solutions – Traffic Operations Office: (302) 659-4606; Cell:(302) 922-7279 Jeffery.VanHorn@delaware.gov

Craig Blowers

Craig.Blowers@delaware.gov

FLORIDA Derwood C. Sheppard, Jr., P.E. Standard Plans Publication Engineer Florida Depart. of Transportation Roadway Design Office 605 Suwannee Street, MS-32 Tallahassee, FL 32399-0450 (850) 414-4334 Derwood.Sheppard@dot.state.fl.us

IDAHO

Marc Danley, P.E. Technical Engineer (208) 334-8558 Marc.danley@itd.idaho.gov

ILLINOIS

Martha A. Brown, P.E.

Safety Design Bureau Chief Bureau of Safety Programs and Engineering Illinois Depart. of Transportation 2300 Dirksen Parkway, Room 005 Springfield, IL 62764 (217) 785-3034 Martha.A.Brown@illinois.gov

Edgar Galofre Safety Design Engineer

(217) 558-9089 edgar.glofre@illinois.gov

IOWA

Daniel Harness

Office of Design – Methods lowa Department of Transportation Daniel.Harness@iowadot.us

Zac Abrams

Traffic and Safety Project Engineer lowa Department of Transportation (515) 239-1567 Zachary.Abrams@iowadot.us

LOUISIANA

Chris Guidry Bridge Manager Louisiana Transportation Center Bridge & Structural Design Section P.O. Box 94245 Baton Rouge, LA 79084-9245 (225) 379-1933 Chris.Guidry@la.gov

Kurt Brauner, P.E.

Bridge Engineer Manager Louisiana Transportation Center 1201 Capital Road, Suite 605G Baton Rouge, LA 70802 (225) 379-1933 Kurt.Brauner@la.gov

MARYLAND

Matamba Kabengele

Traffic Engineer Office of Traffic and Safety Maryland State Highway Administration MKabengele@mdot.maryland.gov

MASSACHUSETTS

Alex Bardow

Director of Bridges and Structure Massachusetts Depart. of Transportation 10 Park Plaza, Room 6430 Boston, MA 02116 (517) 335-9430 <u>Alexander.Bardow@state.ma.us</u>

James Danila

State Traffic Engineer (857) 368-9640 James.<u>Danila@state.ma.us</u>

MICHIGAN

Carlos Torres, P.E. Crash Barrier Engineer Geometric Design Unit, Design Division Michigan Depart. of Transportation P. O. Box 30050 Lansing, MI 48909 (517) 335-2852 <u>TorresC@michigan.gov</u>

MINNESOTA

Khamsai Yang Design Standards Engineer Office of Project Management and Technical Support (651) 366-4622 Khamsai.Yang@state.mn.us

MISSOURI

Sarah Kleinschmit, P.E. Policy and Innovations Engineer, Missouri Department of Transportation P.O. Box 270 Jefferson City, MO 65102 (573) 751-7412 sarah.kleinschmit@modot.mo.gov

Kaitlyn Bower

kaitlyn.bower@modot.mo.gov

NEW MEXICO

Brad Julian Traffic Technical Support Engineer (505) 827-3263 Brad.Julian@state.nm.us

<u>OHIO</u>

Don P. Fisher, P.E. Ohio Depart. of Transportation 1980 West Broad Street Mail Stop 1230 Columbus, OH 43223 (614) 387-6214 Don.fisher@dot.ohio.gov

OREGON

Christopher Henson Senior Roadside Design Engineer Oregon Depart. of Transportation Technical Service Branch 4040 Fairview Industrial Drive, SE Salem, OR 97302-1142 (503) 986-3561 Christopher.S.Henson@odot.state.or.us

PENNSYLVANIA

Evan Pursel Senior Civil Engineer epursel@pa.gov

Nina Ertel nertel@pa.gov

TEXAS

Chris Lindsey Transportation Engineer Design Division Texas Department of Transportation 125 East 11th Street Austin, TX 78701-2483 (512) 416-2750 Christopher.Lindsey@txdot.gov

Taya Retterer P.E. TXDOT Bridge Standards Engineer (512) 416-2719 Taya.Retterer@txdot.gov

<u>UTAH</u>

Shawn Debenham

Traffic and Safety Division Utah Depart. of Transportation 4501 South 2700 West PO Box 143200 Salt Lake City UT 84114-3200 (801) 965-4590 <u>sdebenham@utah.gov</u>

<u>WASHINGTON</u>

John Donahue

Design Policy and Analysis Manager Washington State Dept. of Transportation Development Division P.O. Box 47329 Olympia, WA 98504-7246 (360) 704-6381 donahjo@wsdot.wa.gov

Mustafa Mohamedali

Assistant Research Project Manager P.O. Box 47372 Olympia, WA 98504-7372 (360) 704-6307 <u>mohamem@wsdot.wa.gov</u>

Tim Moeckel

Policy Support Engineer Washington State Department of Transportation <u>moecket@wsdot.wa.gov</u>

WEST VIRGINIA

Donna J. Hardy, P.E. Safety Programs Engineer West Virginia Depart. of Transportation – Traffic Engineering Building 5, Room A-550 1900 Kanawha Blvd E. Charleston, WV 25305-0430 (304) 558-9576 Donna.J.Hardy@wv.gov

Ted Whitmore

Traffic Services Engineer (304) 558-9468 Ted.J.Whitmore@wv.gov

WISCONSIN

Erik Emerson, P.E.

Standards Development Engineer -Roadside Design Wisconsin Department of Transportation Bureau of Project Development 4802 Sheboygan Avenue, Room 651 P. O. Box 7916 Madison, WI 53707-7916 (608) 266-2842 Erik.Emerson@wi.gov

CANADA – ONTARIO

Kenneth Shannon, P. Eng. Senior Engineer, Highway Design (A) Ontario Ministry of Transportation 301 St. Paul Street St. Catharines, ON L2R 7R4 CANADA (904) 704-3106 Kenneth.Shannon@ontario.ca

FEDERAL HIGHWAY **ADMINISTRATION (FHWA)** safety.fhwa.dot.gov

Website:

Richard B. (Dick) Albin, P.E.

Safety Engineer FHWA Resource Center Safety & Design **Technical Services Team** 711 S. Capital Olympia, WA 98501 (303) 550-8804 Dick.Albin@dot.gov

Eduardo Arispe

Research Highway Safety Specialist U.S. Department of Transportation Federal Highway Administration Turner-Fairbank Highway Research Center Mail Code: HRDS-10 6300 Georgetown Pike McLean, VA 22101 (202) 493-3291 Eduardo.arispe@dot.gov

Christine Black Highway Safety Engineer

Central Federal Lands Highway Division 12300 West Dakota Ave. Lakewood, CO 80228 (720) 963-3662 Christine.black@dot.gov

Isbel Ramos-Reyes

Lead Safety and Transportation Operations Engineer (703) 948-1442 isbel.ramos-reyes@dot.gov

Matt Hinshaw, M.S., P.E.

Highway Safety Engineer Central Federal Lands Highway Division (360)619-7677 matthew.hinshaw@dot.gov

TEXAS A&M TRANSPORTATION

INSTITUTE (TTI)

Website: tti.tamu.edu www.roadsidepooledfund.org

D. Lance Bullard, Jr., P.E.

Senior Research Engineer Roadside Safety & Physical Security Div. Texas A&M Transportation Institute 3135 TAMU College Station, TX 77843-3135 (979) 317-2855 L-Bullard@tti.tamu.edu

Roger P. Bligh, Ph.D., P.E.

Senior Research Engineer (979) 317-2703 R-Bligh@tti.tamu.edu

REPORT REVIEWED BY:

— DocuSigned by: Glenn Schroeder — E692F9CB5047487...

Glenn Schroeder, Research Specialist Drafting & Reporting

— DocuSigned by: Adam Mayer — F7A06F754E02430...

Adam Mayer, Research Specialist Construction

DocuSigned by: Scott Dobrovolny _1C613885787C44C...

DocuSigned by:

Bill Griffith _44A122CB271845B.

DocuSigned by:

Matt Robinson

EAA22BFA5BFD417.

Deputy Quality Manager

Scott Dobrovolny, Research Specialist Mechanical Instrumentation

Bill L. Griffith, Research Specialist

Matthew N. Robinson, Research Specialist

Test Facility Manager & Technical Manager

—DocuSigned by: Ken Reeves

-60D556935596468.

Ken Reeves, Research Specialist Electronics Instrumentation

Pichard Badillo 0F51DA60AB144F9...

Richard Badillo, Research Specialist Photographic Instrumentation

DocuSigned by:

William J. L. Schroeder, Research Engineering Associate Research Evaluation and Reporting

DocuSigned by: anel D4CC23E85D5B4E7.

Darrell L. Kuhn, P.E., Research Specialist Quality Manager

DocuSigned by: M lh. 36EDAD98EFE94EC..

Chiara Silvestri Dobrovolny, Ph.D Research Scientist

TABLE OF CONTENTS

.	Pa	age
List of F	igures	XV
List of T	ablesx	viii
Chapter	1. Background and Objective	1
1.1.	Background	l
1.2.	Objective	2
Chapter	2. System Details	3
2.1.	Test Article and Installation Details	3
2.2.	Design Modifications during Tests	3
2.3.	Material Specifications	13
2.4.	Soil Conditions	13
Chapter	3. Test Requirements and Evaluation Criteria	15
3.1.	Crash Test Performed/Matrix	15
3.2.	Evaluation Criteria	16
Chapter	4. Test Conditions	17
4.1.	Test Facility	17
4.2.	Vehicle Tow and Guidance System	17
4.3.	Data Acquisition Systems	17
4.3.	Vehicle Instrumentation and Data Processing	17
4.3.2	2. Anthropomorphic Dummy Instrumentation	18
4.3.3	B. Photographic Instrumentation Data Processing	19
Chapter	5. <i>MASH</i> Test 3-10 (Crash Test No. 609971-01-1)	21
5.1.	Test Designation and Actual Impact Conditions	21
5.2.	Weather Conditions	23
5.3.	Test Vehicle	23
5.4.	Test Description	25
5.5.	Damage to Test Installation	25
5.6.	Damage to Test Vehicle	26
5.7.	Occupant Risk Factors	30
Chapter	6. MASH Test 3-11 (Crash Test No. 609971-03-1)	33
6.1.	Test Designation and Actual Impact Conditions	33
6.2.	Weather Conditions	35
6.3.	Test Vehicle	35
6.4.	Test Description	37
6.5.	Damage to Test Installation	37
6.6.	Damage to Test Vehicle	39
6.7.	Occupant Risk Factors	42
Chapter	7. MASH Test 3-11 (Crash Test No. 609971-03-2)	45
7.1.	Test Designation and Actual Impact Conditions	45
7.2.	Weather Conditions	47
7.3.	Test Vehicle	47
7.4.	Test Description	49
7.5.	Damage to Test Installation	49
7.6.	Damage to Test Vehicle	51

7.7.	Occupant Risk Factors	54
Chapter	8. Finite Element Analysis	57
8.1.	Finite Element Modeling and Analysis	57
8.1.	1. Finite Element Model Validation	57
8.1.2	2. Design Options	61
8.2.	Summary of Finite Element Analysis	80
Chapter	9. Summary and Conclusions	85
9.1.	Assessment of Test Results	85
9.2.	Summary of Finite Element Analysis Research	86
9.3.	Conclusions	87
Reference	ces	89
Appendi	ix A. Details of MGS Guardrail with Flare	91
A.1.	6099971-01-1 Drawings	91
A.2.	6099971-03-1 Drawings 1	02
A.3.	6099971-03-2 Drawings 1	09
Appendi	x B. Supporting Certification Documents1	17
Appendi	ix C. MASH Test 3-10 (Crash Test No. 609971-01-1)1	29
C.1.	Vehicle Properties and Information	29
C.2.	Sequential Photographs1	31
C.3.	Vehicle Angular Displacements 1	34
C.4.	Vehicle Accelerations 1	35
Appendi	ix D. MASH Test 3-11 (Crash Test No. 609971-03-1)1	37
D.1.	Vehicle Properties and Information 1	37
D.2.	Sequential Photographs1	40
D.3.	Vehicle Angular Displacements 1	43
D.4.	Vehicle Accelerations	44
Appendi	ix E. MASH Test 3-11 (Crash Test No. 609971-03-2)1	46
E.1.	Vehicle Properties and Information	46
E.2.	Sequential Photographs1	49
E.3.	Vehicle Angular Displacements 1	51
E.4.	Vehicle Accelerations	52

LIST OF FIGURES

	Page
Figure 2.1. Details of MGS Guardrail with 7:1 Flare.	4
Figure 2.2. MGS Guardrail with 7:1 Flare prior to Testing	5
Figure 2.3. Upstream Terminal of the MGS Guardrail with 7:1 Flare prior to Testing	5
Figure 2.4. MGS Guardrail with 7:1 Flare at Impact prior to Testing.	6
Figure 2.5. In-line View of the MGS Guardrail with 7:1 Flare prior to Testing.	6
Figure 2.6. Details of MGS Guardrail with 11:1 Flare.	7
Figure 2.7. MGS Guardrail with 11:1 Flare prior to Testing	8
Figure 2.8. Upstream Terminal of the MGS Guardrail with 11:1 Flare prior to Testing	8
Figure 2.9. MGS Guardrail with 11:1 Flare at Impact prior to Testing	9
Figure 2.10 In-line View of the MGS Guardrail with 11:1 Flare prior to Testing	9
Figure 2.11 Details of MGS Guardrail with Reduced-Length 11:1 Flare	10
Figure 2.12 MGS Guardrail with Shortened 11:1 Flare prior to Testing	11
Figure 2.12. Unstream Terminal of the MGS Guardrail with Shortened 11:1 Flare prior to	
Testing	11
Figure 2.14 MGS Guardrail with Shortened 11:1 Flare at Impact prior to Testing	12
Figure 2.15 Downstream View of MGS Guardrail with Shortened 11:1 Flare prior to	12
Testing	12
Figure 3.1. Target CIP for Test 600071 01.1 on MCS Guardrail with 7:1 Flare	12
Figure 2.2. Target CIP for Test 600071 02.1 on MCS Guardrail with 11:1 Flare	15
Figure 3.2. Target CID for Test 600071 02.2 on MCS Guardrail with T1.1 Flate	15
Figure 5.5. Target CIP for Test 0099/1-05-2 on MOS Guardian with Shortened 11.1 Flate	15
Figure 5.1. MOS Guardrail with Flare/Test Vehicle Geometrics for Test 609971-01-1	22
Figure 5.2. MOS Guardran with Flare/Test vehicle impact Location for Test 6099/1-01-1	22
Figure 5.3. Impact Side of Test vehicle before Test 6099/1-01-1.	23
Figure 5.4. Opposite impact Side of Test venicle before Test $6099/1-01-1$.	24
Figure 5.5. MGS Guardrail with Flare after Test at Impact Location for Test 6099/1-01-1	26
Figure 5.6. MGS Guardrail with Flare after Impact for Test 6099/1-01-1.	26
Figure 5.7. Impact Side of Test Vehicle after Test 609971-01-1.	27
Figure 5.8. Front View of the Test Vehicle after Test 6099/1-01-1.	27
Figure 5.9. Overall Interior of Test Vehicle after Test 609971-01-1	28
Figure 5.10. Interior of Test Vehicle on Impact Side after Test 609971-01-1.	28
Figure 5.11. Summary of Results for MASH Test 3-10 on MGS Guardrail with Flare	31
Figure 6.1. MGS Guardrail with Flare/Test Vehicle Geometrics for Test 609971-03-1	34
Figure 6.2. MGS Guardrail with Flare/Test Vehicle Impact Location for Test 609971-03-1	34
Figure 6.3. Impact Side of Test Vehicle before Test 609971-03-1.	35
Figure 6.4. Opposite Impact Side of Test Vehicle before Test 609971-03-1.	36
Figure 6.5. MGS Guardrail with Flare after Test at Impact Location for Test 609971-03-1	38
Figure 6.6. MGS Guardrail with Flare after Test 609971-03-1	38
Figure 6.7. Impact Side of Test Vehicle after Test 609971-03-1.	39
Figure 6.8. Rear Impact Side of Test Vehicle after Test 609971-03-1	39
Figure 6.9. Overall Interior of Test Vehicle after Test 609971-03-1	40
Figure 6.10. Interior of Test Vehicle on Impact Side after Test 609971-03-1.	40
Figure 6.11. Summary of Results for MASH Test 3-11 on MGS Guardrail with Flare	43
Figure 7.1. MGS Guardrail with Flare/Test Vehicle Geometrics for Test 609971-03-2	46

Figure 7.2. MGS Guardrail with Flare/Test Vehicle Impact Location for Test 609971-03-2	46
Figure 7.3. Impact Side of Test Vehicle before Test 609971-03-2.	. 47
Figure 7.4. Opposite Impact Side of Test Vehicle before Test 609971-03-2.	48
Figure 7.5. MGS Guardrail with Flare after Test at Impact Location for Test 609971-03-2	50
Figure 7.6. MGS Guardrail with Flare after Test 609971-03-2	50
Figure 7.7. Impact Side of Test Vehicle after Test 609971-03-2.	51
Figure 7.8. Rear Impact Side of Test Vehicle after Test 609971-03-2	51
Figure 7.9. Overall Interior of Test Vehicle after Test 609971-03-2	52
Figure 7.10. Interior of Test Vehicle on Impact Side after Test 609971-03-2.	52
Figure 7.11. Summary of Results for MASH Test 3-11 on MGS Guardrail with Flare	55
Figure 8.1. RAM Model Used for FE Simulation.	58
Figure 8.2. Simulation Setup under TL-3 Conditions	58
Figure 8.3. Sequential Overhead Frames of Pickup Truck under TL-3 Conditions	59
Figure 8.4. Sequential Frames to Compare FE Simulation (Top) to Crash Testing (Bottom)	
Immediately Leading to Rail Rupture Event.	59
Figure 8.5. Rail Rupture Experienced in Full-Scale Testing (Top) and Rail Strains Recorded	
in FE Simulation (Bottom)	60
Figure 8.6. Sequential Frames Comparing FE Simulation on Flared MGS (Top) to	
NCHRP 350 Test No. 2214MG-2 (Bottom) (5)	61
Figure 8.7. Impact Conditions for Different MGS Flare Rates (Effective Angles)	62
Figure 8.8. Details of Half-Post Spacing and Short Blockout.	65
Figure 8.9. Short Blockout Flared MGS Retrofitted with Channel Rubrail.	66
Figure 8.10. CIPs for Pickup Truck Impacting Flared MGS Retrofitted with	
Channel Rubrail	67
Figure 8.11. Sequential Frames for Pickup Truck Impact at CIP on 15:1 Flared MGS	
Retrofitted with Channel Rubrail	68
Figure 8.12. Sequential Frames for Pickup Truck Impact at CIP on 18:1 Flared MGS	
Retrofitted with Channel Rubrail	69
Figure 8.13. CIPs for Small Car Impacting Flared MGS with Channel Rubrail	70
Figure 8.14. Sequential Frames for Small Passenger Car Impact at CIP on 15:1 Flared MGS	
Retrofitted with Channel Rubrail	71
Figure 8.15. Sequential Frames for Small Passenger Car Impact at CIP on 18:1 Flared MGS	
Retrofitted with Channel Rubrail	72
Figure 8.16. FE Pickup Truck Tire Model Behavior.	73
Figure 8.17. Modified Channel Rubrail Location	.74
Figure 8.18. Modified FE Simulation with 18:1 Flared MGS Retrofitted with Channel	
Rubrail	.74
Figure 8.19. Sequential Frames for Pickup Truck Impact at CIP on Modified 18:1 Flared MGS Retrofitted with Channel Rubrail	75
Figure 8.20. Sequential Frames for Small Car Impact at CIP on Modified 18:1 Flared MGS	10
Retrofitted with Channel Rubrail.	. 76
Figure 8.21. Sequential Frames for Pickup Truck Impact at CIP on Modified 15:1 Flared	
MGS Retrofitted with Channel Rubrail.	. 78
Figure 8.20. Sequential Frames for Small Car Impact at CIP on Modified 15:1 Flared MGS	
Retrofitted with Channel Rubrail.	.79
Figure B.1. Test Day Static Soil Strength Documentation for Test No. 609971-01-1 1	125

Figure B.2. Test Day Static Soil Strength Documentation for Test No. 609971-03-1 126
Figure B.3. Test Day Static Soil Strength Documentation for Test No. 609971-03-2 127
Figure C.1. Vehicle Properties for Test No. 609971-01-1
Figure C.2. Exterior Crush Measurements for Test No. 609971-01-1
Figure C.3. Sequential Photographs for Test No. 609971-01-1 (Overhead Views)
Figure C.4. Sequential Photographs for Test No. 609971-01-1 (Frontal Views)
Figure C.5. Sequential Photographs for Test No. 609971-01-1 (Rear Views)
Figure C.6. Vehicle Angular Displacements for Test No. 609971-01-1
Figure C.7. Vehicle Longitudinal Accelerometer Trace for Test No. 609971-01-1
(Accelerometer Located at Center of Gravity)
Figure C.8. Vehicle Lateral Accelerometer Trace for Test No. 609971-01-1
(Accelerometer Located at Center of Gravity)
Figure C.9. Vehicle Vertical Accelerometer Trace for Test No. 609971-01-1
(Accelerometer Located at Center of Gravity)
Figure D.1. Vehicle Properties for Test No. 609971-03-1
Figure D.2. Exterior Crush Measurements for Test No. 609971-03-1
Figure D.3. Occupant Compartment Measurements for Test No. 609971-03-1
Figure D.4. Sequential Photographs for Test No. 609971-03-1 (Overhead Views) 140
Figure D.5. Sequential Photographs for Test No. 609971-03-1 (Frontal Views)
Figure D.6. Sequential Photographs for Test No. 609971-03-1 (Rear Views)142
Figure D.7. Vehicle Angular Displacements for Test No. 609971-03-1 143
Figure D.8. Vehicle Longitudinal Accelerometer Trace for Test No. 609971-03-1
(Accelerometer Located at Center of Gravity)
Figure D.9. Vehicle Lateral Accelerometer Trace for Test No. 609971-03-1
(Accelerometer Located at Center of Gravity)
Figure D.10. Vehicle Vertical Accelerometer Trace for Test No. 609971-03-1
(Accelerometer Located at Center of Gravity)
Figure E.1. Vehicle Properties for Test No. 609971-03-2 146
Figure E.2. Exterior Crush Measurements for Test No. 609971-03-2 147
Figure E.3. Occupant Compartment Measurements for Test No. 609971-03-2 148
Figure E.4. Sequential Photographs for Test No. 609971-03-2 (Overhead Views) 149
Figure E.5. Sequential Photographs for Test No. 609971-03-2 (Rear Views) 150
Figure E.6. Vehicle Angular Displacements for Test No. 609971-03-2
Figure E.7. Vehicle Longitudinal Accelerometer Trace for Test No. 609971-03-2
(Accelerometer Located at Center of Gravity)
Figure E.8. Vehicle Lateral Accelerometer Trace for Test No. 609971-03-2
(Accelerometer Located at Center of Gravity)
Figure E.9. Vehicle Vertical Accelerometer Trace for Test No. 609971-03-2
(Accelerometer Located at Center of Gravity)

LIST OF TABLES

	Page
Table 2.1. Soil Strength for Test 609971-01-1.	13
Table 2.2. Soil Strength for Test 609971-03-1.	13
Table 2.3. Soil Strength for Test 609971-03-2.	14
Table 3.1. Test Conditions and Evaluation Criteria Specified for MASH TL-3 Guardrails	15
Table 3.2. Evaluation Criteria Required for MASH Testing	16
Table 5.1. Impact Conditions for MASH Test 3-10, Crash Test No. 609971-01-1	21
Table 5.2. Exit Parameters for MASH Test 3-10, Crash Test No. 609971-01-1	21
Table 5.3. Weather Conditions for Test 609971-01-1.	23
Table 5.4. Vehicle Measurements for Test 609971-01-1.	24
Table 5.5. Events during Test 609971-01-1	25
Table 5.6. Damage to MGS Guardrail with Flare for Test 609971-01-1.	25
Table 5.7. Occupant Compartment Deformation for Test 609971-01-1.	29
Table 5.8. Exterior Vehicle Damage for Test 609971-01-1.	29
Table 5.9. Occupant Risk Factors for Test 609971-01-1	30
Table 6.1. Impact Conditions for MASH Test 3-11, Crash Test No. 609971-03-1.	33
Table 6.2. Exit Parameters for MASH Test 3-11, Crash Test No. 609971-03-1	33
Table 6.3. Weather Conditions for Test 609971-03-1.	35
Table 6.4. Vehicle Measurements for Test 609971-03-1.	36
Table 6.5. Events during Test 609971-03-1	37
Table 6.6. Damage to MGS Guardrail with Flare for Test 609971-03-1.	37
Table 6.7. Occupant Compartment Deformation for Test 609971-03-1.	41
Table 6.8. Exterior Vehicle Damage for Test 609971-03-1.	41
Table 6.9. Occupant Risk Factors for Test 609971-03-1	42
Table 7.1. Impact Conditions for MASH Test 3-11, Crash Test No. 609971-03-2.	45
Table 7.2. Exit Parameters for MASH Test 3-11, Crash Test No. 609971-03-2	45
Table 7.3. Weather Conditions for Test 609971-03-2.	47
Table 7.4. Vehicle Measurements for Test 609971-03-2.	48
Table 7.5. Events during Test 609971-03-2	49
Table 7.6. Damage to MGS Guardrail with Flare for Test 609971-03-2.	49
Table 7.7. Occupant Compartment Deformation for Test 609971-03-2.	53
Table 7.8. Exterior Vehicle Damage for Test 609971-03-2.	53
Table 7.9. Occupant Risk Factors for Test 609971-03-2	54
Table 8.1. Descriptive Comparison for Timestep.	60
Table 8.2. Comparison of the Occupant Risk Factors (Test 609971-03-2 vs. FE Simulation).	61
Table 8.3. Simulation Results from FE Models of MGS with Different Flare Rates	63
Table 8.4. Simulation Results for Flared Half-Post Spacing MGS with Short Blockout	66
Table 8.5. Simulation Results for Short Blockout Flared MGS with Channel Rubrail	67
Table 8.6. CIP Investigation for the Pickup Truck (2270P).	67
Table 8.7. CIP Investigation for Small Car (1100C).	70
Table 8.8. Comparison of Simulation Results for 18:1 Flared MGS Retrofitted with	
Channel Rubrail with 12-inch Center-to-Ground Distance.	77
Table 8.9. Comparison of Simulation Results for 15:1 Flared MGS Retrofitted with	
Channel Rubrail with 12-inch Center-to-Ground Distance.	80

Table 8.10. Summary of FE Analysis for Pickup Truck	82
Table 8.11. Summary of FE Analysis for Small Car.	83
Table 9.1. Summary of MASH Tests on MGS Guardrail with Flare.	86
Table B.1. Test Day Static Soil Strength Documentation for Test No. 609971-01-1	125
Table B.2. Test Day Static Soil Strength Documentation for Test No. 609971-03-1	126
Table B.3. Test Day Static Soil Strength Documentation for Test No. 609971-03-2	127

SI* (MODERN METRIC) CONVERSION FACTORS				
APPROXIMATE CONVERSIONS TO SI UNITS				
Symbol	When You Know	Multiply By	To Find	Symbol
-	·	LENGTH		
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
		AREA		0
in ²	square inches	645.2	square millimeters	mm ²
ft ²	square feet	0.093	square meters	m²
yd²	square yards	0.836	square meters	m²
ac mi ²	acres	0.405		na km²
1111-	square miles	Z.59	square kilometers	KIIIT
floz	fluid ounces	29 57	milliliters	ml
nal	allons	3 785	liters	1
ft ³	cubic feet	0.028	cubic meters	m ³
vd ³	cubic vards	0.765	cubic meters	m ³
J	NOTE: volumes of	reater than 1000L	shall be shown in m ³	
		MASS		
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
Т	short tons (2000 lb)	0.907	megagrams (or metric ton")	Mg (or "t")
	TEMPE	RATURE (exac	t degrees)	
°F	Fahrenheit	5(F-32)/9	Celsius	°C
		or (F-32)/1.8		
	FORCE a	and PRESSURE	or STRESS	
lbf	poundforce	4.45	newtons	Ν
lbf/in ²	poundforce per square inch	6.89	kilopascals	kPa
	APPROXIMATI	E CONVERSION	S FROM SI UNITS	
Symbol	When You Know	Multiply By	To Find	Symbol
	····· /	LENGTH		
mm	millimeters	0.039	Inches	in fr
m	meters	3.28	reet	Π
m km	kilomotors	1.09	yaros	ya mi
NIII	KIIOITIEIEIS		Times	1111
mm ²	square millimeters	0.0016	square inches	in ²
m^2	square meters	10 764	square feet	ft ²
m ²	square meters	1 195	square vards	vd ²
ha	hectares	2.47	acres	ac
km ²	Square kilometers	0.386	square miles	mi ²
	· · ·	VOLUME	·	
mL	milliliters	0.034	fluid ounces	oz
L	liters	0.264	gallons	gal
m ³	cubic meters	35.314	cubic feet	ft ³
m ³	cubic meters	1.307	cubic yards	yd ³
		MASS		
g	grams	0.035	ounces	oz
kg	kilograms	2.202	pounds	lb
Mg (or "t")	megagrams (or "metric ton")	1.103	short tons (2000lb)	Т
	ТЕМРЕ	RATURE (exac	t degrees)	
°C	Celsius	1.8C+32	Fahrenheit	۳F
	FORCE	and PRESSURE	or STRESS	
Ν	newtons	0.225	poundforce	lbf
L L/Do	kilopascals	0.145	poundforce per square inch	lb/in ²

*SI is the symbol for the International System of Units

Chapter 1. BACKGROUND AND OBJECTIVE

1.1. BACKGROUND

The American Associate of State Highway and Transportation Officials (AASHTO) Manual for Assessing Safety Hardware (MASH) 2016 edition is the latest in a series of documents that provide guidance on testing and evaluation of roadside safety features (1). The original MASH document was published in 2009 and represents a comprehensive update to crash test and evaluation procedures to reflect changes in the vehicle fleet, operating conditions, and roadside safety knowledge and technology. The MASH documents supersede the National Cooperative Highway Research Program (NCHRP) Report 350, Recommended Procedures for the Safety Performance Evaluation of Highway Features, standards (2).

The Federal Highway Administration (FHWA) issued a January 7, 2016, memo mandating the AASHTO/FHWA Joint Implementation Agreement for *MASH* with compliance dates for installing *MASH* hardware that differ by hardware category. After December 31, 2019, all roadside safety devices must be successfully tested and evaluated according to the *MASH* 2016 standard edition. FHWA will no longer issue eligibility letters for highway safety hardware that has not been successfully crash tested according to the *MASH* 2016 edition evaluation criteria. At a minimum, all barriers on high-speed roadways on the National Highway System are required to meet Test Level 3 (TL-3) requirements.

A flared strong-post W-beam guardrail system allows for the potential to reduce guardrail installation lengths, which in turn would result in decreased guardrail construction and maintenance costs, as well as reduced impact frequency. Stolle et al. (3) conducted a research and test study to investigate the potential to increase flare rates for the Midwest Guardrail System (MGS) according to NCHRP Report 350 criteria. The researchers conducted computer simulations and full-scale crash testing that showed that the MGS could meet NCHRP Report 350 impact criteria when installed at a 5:1 flare rate. Impact severities during testing were found to be greater than intended, yet the MGS passed all NCHRP 350 requirements. The researchers recommended that whenever a guardrail is outside of the shy line for adjacent traffic, and the roadside terrain is sufficiently flat, flare rates should be increased to as high as 5:1 when using the MGS guardrail.

The structural adequacy *MASH* 2016 test for TL-3 conditions consists of a 5,000-lb pickup truck (denoted 2270P) impacting a barrier at 62 mi/h and 25 degrees with respect to the roadway. The severity *MASH* 2016 test consists of a 2,420-lb passenger car (denoted 1100C) impacting the barrier at 62 mi/h and 25 degrees with respect to the roadway.

MASH was developed to incorporate significant changes and additions to procedures for safety-performance evaluation, as well as updates reflecting the changing character of the highway network and the vehicles using it. For example, *MASH* increased the weight of the pickup truck design test vehicle from 4,409 lb to 5,000 lb, changed the body style from a ³/₄-ton standard cab to a ¹/₂-ton four-door, and imposed a minimum height for the vertical center of gravity (CG) of 28 inches. The increase in vehicle mass represents an increase in impact severity of approximately 13 percent for Test 3-11 with the pickup truck design test vehicle with respect to the impact conditions of NCHRP Report 350. The increased impact severity may, therefore,

result in increased impact forces and larger lateral barrier deflections compared to NCHRP Report 350.

The impact conditions for the small car test have also changed. The weight of the small passenger design test vehicle increased from 1,800 lb to 2,420 lb, and impact angle increased from 20 degrees to 25 degrees with respect to the roadway. These changes represent an increase in impact severity of 105 percent for Test 3-10 with the small car design test vehicle compared to the impact conditions of NCHRP Report 350. This increase in impact severity might result in increased vehicle deformation and could possibly aggravate vehicle stability. Specifically, when a flare rate is included in the guardrail design, there is an increment of the effective impact angle between the vehicle and the guardrail, which results in a considerably higher impact severity and requires an increasing level of demand on the structural capacity of a barrier system. For example, under *MASH* conditions, a 5:1 flare rate would increase the impact severity 196 percent for Test 3-10.

MASH also adopted more quantitative and stringent evaluation criteria for occupant compartment deformation than NCHRP Report 350. An increase in impact severity might result in increased vehicle deformation and could possibly result in failure to meet the latest *MASH* evaluation criteria. For example, NCHRP Report 350 established a 6-inch threshold for occupant compartment deformation or intrusion. *MASH*, by comparison, limited the extent of roof crush to no more than 3.9 inches. In addition, *MASH* requires that the vehicle windshield not sustain a deformation greater than 3 inches and have no holes or tears in the safety lining as a result of the test impact. Although these evaluation criteria are applicable to all roadside safety device testing, they are most relevant for sign support design and testing. In addition, little evaluation of sign supports has been performed with larger vehicles such as the pickup. Systems that have been demonstrated to be crashworthy for passenger cars may not be geometrically compatible with pickup trucks.

1.2. OBJECTIVE

The purpose of the tests reported herein was to assess the performance of the MGS when implemented with flare conditions according to the safety-performance evaluation guidelines included in MASH(1). The crash tests were performed in accordance with MASH TL-3, which requires two crash tests (as discussed in Chapter 3 of this report).

After the full-scale crash tests were complete, an effort was initiated through finite element modeling and simulations to investigate the crashworthiness of the MGS at smaller flare rates and when considering prioritized MGS retrofit options, still for high-speed impact conditions. In all, three full-scale crash tests were performed, and five finite element analysis scenarios were evaluated.

Chapter 2. SYSTEM DETAILS

2.1. TEST ARTICLE AND INSTALLATION DETAILS

For the first test (609971-01-1), the test installation measured 181 ft 3 inches long, and the distance from the ground surface to the top of the W-beam was 31 inches for the entire length of the rail. There was a Texas Department of Transportation (TxDOT) downstream anchor terminal (DAT) on each end, and the remainder of the installation was a 12-gauge 4-space W-beam guardrail supported by 72-inch-long wide-flange guardrail posts. These posts were spaced at 75 inches and embedded 40 inches deep in drilled holes. Timber blockouts were used as spacers between the guardrail and the posts. The post holes were backfilled with crushed limestone base, which was compacted to *MASH* standards. Rail splices were midway between the posts. A 131-ft 3-inch long section was flared back from the other 50-ft section at a 7:1 flare, such that the end post was 18 ft 4 inches toward the field side relative to the 50-ft section. Figure 2.1 through Figure 2.5 show the general assembly drawing and photographs of the installation.

Appendix A provides further details on the MGS guardrail with flare. Drawings were provided by the Texas A&M Transportation Institute (TTI) Proving Ground, and construction was performed by DMA Construction Inc. and supervised by TTI Proving Ground personnel.

2.2. DESIGN MODIFICATIONS DURING TESTS

For the second test (609971-03-1), a 131-ft 3-inch long section was flared back from the other 50-ft section at an 11:1 flare, such that the end post of the DAT was 11 ft $10\frac{1}{2}$ inches toward the field side relative to the 50-ft section. Figure 2.6 through Figure 2.10 display the general assembly drawing and photographs of the installation.

For the third test (609971-03-2), a 100-ft long 11:1 flare was located between two 50-ft 9¹/₂-inch long SoftStop[®] terminals. The total length of the installation was 201 ft 7 inches. Figure 2.11 through Figure 2.15 contain the general assembly drawing and photographs of the installation.

Figure 2.1. Details of MGS Guardrail with 7:1 Flare.

Figure 2.2. MGS Guardrail with 7:1 Flare prior to Testing.

Figure 2.3. Upstream Terminal of the MGS Guardrail with 7:1 Flare prior to Testing.

Figure 2.4. MGS Guardrail with 7:1 Flare at Impact prior to Testing.

Figure 2.5. In-line View of the MGS Guardrail with 7:1 Flare prior to Testing.

Figure 2.6. Details of MGS Guardrail with 11:1 Flare.

Figure 2.7. MGS Guardrail with 11:1 Flare prior to Testing.

Figure 2.8. Upstream Terminal of the MGS Guardrail with 11:1 Flare prior to Testing.

Figure 2.9. MGS Guardrail with 11:1 Flare at Impact prior to Testing.

Figure 2.10. In-line View of the MGS Guardrail with 11:1 Flare prior to Testing.

Figure 2.11. Details of MGS Guardrail with Reduced-Length 11:1 Flare.

Figure 2.12. MGS Guardrail with Shortened 11:1 Flare prior to Testing.

Figure 2.13. Upstream Terminal of the MGS Guardrail with Shortened 11:1 Flare prior to Testing.

Figure 2.14. MGS Guardrail with Shortened 11:1 Flare at Impact prior to Testing.

Figure 2.15. Downstream View of MGS Guardrail with Shortened 11:1 Flare prior to Testing.

2.3. MATERIAL SPECIFICATIONS

Appendix B provides material certification documents for the materials used to install/construct the MGS guardrail with flare.

2.4. SOIL CONDITIONS

The test installation was installed in standard soil meeting Grade B crushed limestone of AASHTO standard specification M147-17 "Materials for Aggregate and Soil-Aggregate Subbase, Base, and Surface Courses" for Crash Test 609971-01-1. For Crash Tests 609971-03-1 and 609971-03-2, AASHTO M147-17 Type A Grade 2 Crushed Limestone was used.

In accordance with Appendix B of *MASH*, soil strength was measured the day of each crash test. During installation of the MGS guardrail with flare for full-scale crash testing, two 6-ft-long W6×16 posts were installed in the immediate vicinity of the MGS guardrail with flare using the same fill materials and installation procedures used in the test installation and the standard dynamic test. Table B.1 in Appendix B presents minimum soil strength properties established through the dynamic testing performed in accordance with *MASH* Appendix B.

As determined by the tests summarized in Appendix B, Table B.1, the minimum post loads are shown in Table 2.1 for Test 609971-01-1, Table 2.2 for Test 609971-03-1, and Table 2.3 for Test 609971-03-2.

On the day of Test 609971-01-1, loads on the post at deflections were as follows: the backfill material in which the MGS guardrail with flare was installed met the minimum *MASH* requirements for soil strength.

Displacement (in.)	Minimum Load (lb)	Actual Load (lb)
5	3,940	10,300
10	5,500	11,300
15	6,540	11,600

Table 2.1. Soil Strength for Test 609971-01-1.

On the day of Test 609971-03-1, loads on the post at deflections were as follows: the backfill material in which the MGS guardrail with flare was installed met the minimum *MASH* requirements for soil strength.

Fable 2.2. Soil S	strength for	Test 609	971-03-1.
--------------------------	--------------	-----------------	-----------

Displacement (in.)	Minimum Load (lb)	Actual Load (lb)
5	3,940	9,122
10	5,500	9,913
15	6,540	10,154

On the day of Test 609971-03-2, loads on the post at deflections were as follows: the backfill material in which the MGS guardrail with flare was installed met the minimum *MASH* requirements for soil strength.

Displacement (in.)	Minimum Load (lb)	Actual Load (lb)
5	3,940	10,000
10	5,500	10,757
15	6,540	10,656

 Table 2.3. Soil Strength for Test 609971-03-2.

Chapter 3. TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1. CRASH TEST PERFORMED/MATRIX

Table 3.1 shows the test conditions and evaluation criteria for the *MASH* tests performed on the guardrails. The target critical impact points (CIPs) for each test were determined using the information provided in *MASH* Section 2.2.1 and Section 2.3.2. Figure 3.1, Figure 3.2, and Figure 3.3 show the target CIPs for each *MASH* test on the MGS guardrail with flare.

Table 3.1. Test Conditions and Evaluation Criteria Specified for MASH TL-3 Guardrails.

Figure 3.2. Target CIP for Test 609971-03-1 on MGS Guardrail with 11:1 Flare.

Figure 3.3. Target CIP for Test 609971-03-2 on MGS Guardrail with Shortened 11:1 Flare.

The crash tests and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

3.2. EVALUATION CRITERIA

The appropriate safety evaluation criteria from Tables 2.2 and 5.1 of *MASH* were used to evaluate the crash tests reported herein. Table 3.2 provides detailed information on the evaluation criteria.

Evaluation Factors	Evaluation Criteria	MASH Level 3 Test
А.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.	10, 11
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of <i>MASH</i> .	10, 11
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.	10, 11
H.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s. Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 10 ft/s, or maximum allowable value of 16 ft/s.	10, 11
I.	The occupant ridedown accelerations should satisfy the following: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.	10, 11

 Table 3.2. Evaluation Criteria Required for MASH Testing.
Chapter 4. TEST CONDITIONS

4.1. TEST FACILITY

The full-scale crash tests reported herein were performed at the TTI Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, as well as *MASH* guidelines and standards.

The test facilities of the TTI Proving Ground are located on The Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 miles northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, highway pavement durability and efficacy, and roadside safety hardware and perimeter protective device evaluation. The sites selected for construction and testing are along the edge of an out-of-service apron/runway. The apron/runway consists of an unreinforced jointed-concrete pavement in 12.5-ft \times 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement but are otherwise flat and level.

4.2. VEHICLE TOW AND GUIDANCE SYSTEM

For the testing utilizing the 1100C and 2270P vehicles, each was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point and through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site.

4.3. DATA ACQUISITION SYSTEMS

4.3.1. Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained onboard data acquisition system. The signal conditioning and acquisition system is a multi-channel data acquisition system (DAS) produced by Diversified Technical Systems Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid-state units designed for crash test service. The data acquisition hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 samples per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit in case the primary battery cable is severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the DAS unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each DAS is returned to the factory annually for complete recalibration and to ensure that all instrumentation used in the vehicle conforms to the specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCO[®] 2901 precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive calibration via a Genisco Rate-of-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel per SAE J211. Calibrations and evaluations are also made anytime data are suspect. Acceleration data are measured with an expanded uncertainty of ± 1.7 percent at a confidence factor of 95 percent (k = 2).

TRAP uses the DAS-captured data to compute the occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with an SAE Class 180-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k = 2).

4.3.2. Anthropomorphic Dummy Instrumentation

An Alderson Research Laboratories Hybrid II, 50th percentile male anthropomorphic dummy, restrained with lap and shoulder belts, was placed in the front seat on the impact side of impact of the 1100C vehicle. The dummy was not instrumented.

According to *MASH*, use of a dummy in the 2270P vehicle is optional, and no dummy was used in the related tests.

4.3.3. Photographic Instrumentation Data Processing

Photographic coverage of each test included three digital high-speed cameras:

- One located overhead with a field of view perpendicular to the ground and directly over the impact point.
- One placed upstream from the installation at an angle to have a field of view of the interaction of the rear of the vehicle with the installation.
- A third placed with a field of view parallel to and aligned with the installation at the downstream end.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the MGS guardrail with critical flare. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

Chapter 5. MASH TEST 3-10 (CRASH TEST NO. 609971-01-1)

5.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 5.1 for details on *MASH* impact conditions and Table 5.2 for the exit parameters for Test 609971-01-1. Figure 5.1 and Figure 5.2 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5	61.8
Impact Angle (deg)	25	±1.5	24.8 (32.8 to the flare)
Vehicle Inertial Weight (lb)	2,420	±55	2,440
Impact Severity (kip-ft)	51	≥51	54.8 (91.4 to the flare)
Impact Location	65 inches upstream of centerline of post 12	± 1 ft (12 inches)	63.7 inches upstream of centerline of post 12

Table 5.1. Impact Conditions for MASH Test 3-10, Crash Test No. 609971-01-1.

$1 a \cup 1 \cup 3.2$. $1 \cup 1 $	Table 5.2. Exit Parameters	for MASH	Test 3-10.	Crash [Test No.	609971-01-1.
---	----------------------------	----------	------------	---------	----------	--------------

Exit Parameter	Measured
Speed (mi/h)	N/A
Trajectory (deg)	N/A
Heading (deg)	N/A
Brakes applied post impact (s)	Brakes not applied
Vehicle at rest position	93 ft downstream of impact point25 ft to the field side95 degrees left
Comments:	Vehicle rolled once and came to rest on its tires Vehicle did not cross exit box ^a Vehicle penetrated through the guardrail

Note: N/A = not applicable.

^a Not less than 32.8 ft downstream from loss of contact for cars and pickups is optimal.

Figure 5.1. MGS Guardrail with Flare/Test Vehicle Geometrics for Test 609971-01-1.

Figure 5.2. MGS Guardrail with Flare/Test Vehicle Impact Location for Test 609971-01-1.

5.2. WEATHER CONDITIONS

Table 5.3 provides the weather conditions for Test 609971-01-1.

Date of Test	04-22-2019 AM
Wind Speed (mi/h)	8
Wind Direction (deg)	120
Temperature (°F)	72
Relative Humidity (%)	82
Vehicle Traveling (deg)	195

 Table 5.3. Weather Conditions for Test 609971-01-1.

5.3. TEST VEHICLE

Figure 5.3 and Figure 5.4 show the 2008 Kia Rio used for the crash test. Table 5.4 shows the vehicle measurements. Figure C.1 in Appendix C.1 gives additional dimensions and information on the vehicle.

Figure 5.3. Impact Side of Test Vehicle before Test 609971-01-1.

Figure 5.4. Opposite Impact Side of Test Vehicle before Test 609971-01-1.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	165
Gross Static ^a (lb)	2,585	±25	2,605
Wheelbase (inches)	98	±5	98.8
Front Overhang (inches)	35	±4	33
Overall Length (inches)	169	± 8	165.8
Overall Width (inches)	65	±3	66.4
Hood Height (inches)	28	±4	27
Track Width ^b (inches)	59	±2	57.7
CG aft of Front Axle ^c (inches)	39	±4	35.6
CG above Ground ^{c,d} (inches)	N/A	N/A	N/A

Table 5.4. Vehicle Measurements for Test 609971-01-1.

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy. ^b Average of front and rear axles.

° For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

5.4. TEST DESCRIPTION

Table 5.5 lists events that occurred during Test 609971-01-1. Figures C.3 through C.5 in Appendix C.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle contacted the barrier
0.0130	Posts 11 and 12 began to deflect toward field side
0.0360	Vehicle began to redirect
0.0450	Posts 10 and 13 began to rotate toward the impact point
0.0600	Rail disconnected from blockout on post 12
0.0860	Guardrail at Post 12 bolt hole began to rupture
0.1000	Guardrail completely ruptured
0.2860	Entire vehicle was on the field side of the test article

Table 5.5. Events during Test 609971-01-1.

5.5. DAMAGE TO TEST INSTALLATION

The W-beam guardrail ruptured at post 12 and released from post 11 through post 17. The soil was disturbed at posts 1 and 2, post 11 was leaning toward the field side at 2 degrees from vertical, and posts 12 and 13 were leaning toward the field side at 75 degrees from vertical and downstream at 5 degrees from vertical. Post 14 was leaning downstream at 17 degrees from vertical and toward the field side at 2 degrees from vertical. Table 5.6 describes the damage to the MGS guardrail with flare. Figure 5.5 and Figure 5.6 show the damage to the MGS guardrail with flare.

Table 5.6. Damage to MGS Guardrail with Flare for Test 609971-01-1.

Test Parameter	Measured
Permanent Deflection/Location	N/A (vehicle broke through guardrail)
Dynamic Deflection	N/A (vehicle broke through guardrail)
Working Width ^a and Height	N/A (vehicle broke through guardrail)

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 5.5. MGS Guardrail with Flare after Test at Impact Location for Test 609971-01-1.

Figure 5.6. MGS Guardrail with Flare after Impact for Test 609971-01-1.

5.6. DAMAGE TO TEST VEHICLE

Figure 5.7 and Figure 5.8 show the damage sustained by the vehicle. Figure 5.9 and Figure 5.10 show the interior of the test vehicle. Table 5.7 and Table 5.8 provide details on the occupant compartment deformation and exterior vehicle damage. Figure C.2 in Appendix C.1 provides exterior crush measurements.

Figure 5.7. Impact Side of Test Vehicle after Test 609971-01-1.

Figure 5.8. Front View of the Test Vehicle after Test 609971-01-1.

Figure 5.9. Overall Interior of Test Vehicle after Test 609971-01-1.

Figure 5.10. Interior of Test Vehicle on Impact Side after Test 609971-01-1.

Test Parameter	Specification	Measured ^a
Roof	\leq 4.0 inches	N/A
Windshield	\leq 3.0 inches	N/A
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	N/A
Foot Well/Toe Pan	≤9.0 inches	N/A
Floor Pan/Transmission Tunnel	\leq 12.0 inches	N/A
Side Front Panel	\leq 12.0 inches	N/A
Front Door (above Seat)	≤9.0 inches	N/A
Front Door (below Seat)	\leq 12.0 inches	N/A

 Table 5.7. Occupant Compartment Deformation for Test 609971-01-1.

^a Due to the test failure from the vehicle rollover, no measurements were taken of the occupant compartment.

Table 5.8. Exterior Vehicle Damage for Test 609971-01-1.

Side Windows	Shattered due to vehicle roll
Maximum Exterior Deformation	9 inches at front bumper
VDS	1RFQ5
CDC	01FRES3
Fuel Tank Damage	None
Description of Damage to Vehicle:	The front bumper, hood, grill, radiator and support, right fender, right tire and rim, right front door and glass, right A pillar, right rear door, right rear tire and rim, and left front fender were damaged. Damage to the windshield was caused by the flexing of the vehicle body during impact, not from contact with the test article.

5.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 5.9. Figure C.6 in Appendix C.3 shows the vehicle angular displacements, and Figures C.7 through C.9 in Appendix C.4 show acceleration versus time traces.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0 30.0ª	21.8	at 0.1296 s on right side of interior
OIV, Lateral (ft/s)	$\frac{\leq}{30.0}$	12.8	at 0.1296 s on right side of interior
Ridedown, Longitudinal (g)	≤20.49 15.0	8.3	2.1006–2.1106 s
Ridedown, Lateral (g)	≤20.49 15.0	9.4	2.0955–2.1055 s
Theoretical Head Impact Velocity (THIV) (m/s)	N/A	7.0	at 0.1234 s on right side of interior
Acceleration Severity Index (ASI)	N/A	1.0	0.0570–0.1070 s
50-ms Moving Avg. Accelerations (MA) Longitudinal (g)	N/A	8.5	0.0422–0.0922 s
50-ms MA Lateral (g)	N/A	5.6	0.0426–0.0926 s
50-ms MA Vertical (g)	N/A	4.7	0.0770–0.1270 s
Roll (deg)	≤75	393	2.9564 s
Pitch (deg)	≤75	26	2.2072 s
Yaw (deg)	N/A	91	2.9733 s

Table 5.9. Occupant Risk Factors for Test 609971-01-1.

^a Values in italics are the preferred *MASH* values.

			r								
	ALL BOOK		Test Agency			Texas A&M Transportation Institute (TTI)					
		025555		Test Sta	andard/Test No.	MASH	2016, Test	3-10			
	Chine Par	1200			TTI Project No.	60997	1-01-1				
	Cont				Test Date	2019-0)4-22				
		- U	TEST A	RTICLE							
					Туре	Longit	udinal Guardrail Guardrail with Flare 3 inches wood, crushed concrete TO M147-17 Grade B Crushed Limestone Lia Rio 2.8 to the flare) ches upstream of centerline of post 12 01.4 to the flare)				
and the second second					Name	MGS	Guardrail wi	th Flare			
-					Length	181 ft	3 inches				
0.00)0 s				Key Materials	Steel,	wood, crush	ed concrete			
		Carlos Carlos		Soil Typ	e and Condition	AASH	TO M147-1	7 Grade B Crushed Lime	stone		
a to be all the sta	10 30		TEST VE	EHICLE		I					
		a the said		Ту	pe/Designation	1100C					
		The second se		Year, N	lake and Model	2008 k	Kia Rio				
		Section and the section of the		Iner	tial Weight (lb)	2,440	2,440				
					Dummy (lb)	165	165				
				(Gross Static (lb)	2,605					
0.20)0 s		IMPACT	CONDI	TIONS	•					
				Impa	ct Speed (mi/h)	61.8					
	AL MORES	Sec. No.		Imp	act Angle (deg)	24.8 (3	24.8 (32.8 to the flare) 63.7 inches upstream of centerline of post 12				
	State 1	Contraction of the		Ι	mpact Location	63.7 ir	as A&M Transportation Institute (T11) SW 2016, Test 3-10 771-01-1 -0-04-22 gitudinal Guardrail S Guardrail with Flare ft 3 inches 4, wood, crushed concrete SHTO M147-17 Grade B Crushed Limestone OC 8 Kia Rio 0 5 4 (32.8 to the flare) 5 (32.8 to the flare) 6 (32.8 to the flare) 6 (32.8 to the flare) 6 (32.8 to the flare) 7 inches upstream of centerline of post 12 6 (91.4 to the flare) 7 inches upstream of centerline of post 12 6 (91.4 to the flare) 7 inches upstream to the field side 7 inches upstream 1 to the field side 7 inches at front bumper 1 to the field side 7 inches upstream 1 to the field side 7 inches 7 inches				
	DA W	and the second		Impact S	Severity (kip-ft)	54.8 (91.4 to the f	lare)			
	+		EXIT CO	ONDITIO	NS						
		Exit Speed (mi/h)			N/A						
			Trajecto	ory/Head	ing Angle (deg)	N/A					
		and the second second		E	xit Box Criteria	Vehicl	e did not cro	oss the line			
	and the second			Sto	opping Distance	93 ft d	ownstream	n			
0.40) 0 a		TEOT A			25 ft to	o the field su	de			
0.40	JUS		TESTA		UEFLECTIONS	N/A					
				D	manner (inches)	N/A					
and start stores	N. 78		Workir	ng Width	Height (inches)	N/A					
		All al	VEHICL		GE	11/71					
State Proversition	Ander	The second second	VENICE		VDS	1REO	5				
					CDC	01FRES3					
				Max F	xt Deformation	9 inch	es at front hi	imper			
		and the second s	Max	Occupar	nt Compartment	y menes at none bumper					
0.60)0 s			1	Deformation	0 inches					
			OC	CUPAN	T RISK VALUE	S					
Long. OIV (ft/s)	21.8	Long. Rideo	down (g)	8.3	Max 50-ms Lo	ng. (g)	8.5	Max Roll (deg)	393		
Lat. OIV (ft/s)	12.8	Lat. Ridedo	wn (g)	9.4	Max 50-ms La	t. (g)	5.6	Max Pitch (deg)	26		
THIV (m/s)	7.0	ASI		1.0	Max 50-ms Ve	ert. (g)	4.7	Max Yaw (deg)	91		
					Impact Àr	ngle		¥ [_]			

Figure 5.11. Summary of Results for *MASH* Test 3-10 on MGS Guardrail with Flare.

Chapter 6. MASHTEST 3-11 (CRASH TEST NO. 609971-03-1)

6.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 6.1 for details on *MASH* impact conditions and Table 6.2 for the exit parameters for Test 609971-03-1. Figure 6.1 and Figure 6.2 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5	62.6
Impact Angle (deg)	25	±1.5	25.7 (30.9 to the flare)
Vehicle Inertial Weight (lb)	5,000	±110	5,047
Impact Severity (kip-ft)	106	≥106	124.3 (174.4 to the flare)
Impact Location	45.5 inches upstream of the centerline of post 12	± 1 ft (12 inches)	44.8 inches upstream of the centerline of post 12

Table 6.1. Impact Conditions for MASH Test 3-11, Crash Test No. 609971-03-1.

|--|

Exit Parameter	Measured
Speed (mi/h)	N/A
Trajectory (deg)	N/A
Heading (deg)	N/A
Brakes applied post impact (s)	Brakes not applied
Vehicle at rest position	39 ft downstream of impact point 17 ft to the field side
~	15 degrees left
Comments:	Vehicle rolled onto the passenger side and then back onto the tires
	Vehicle did not cross exit box ^a
	Vehicle penetrated through the guardrail

^a Not less than 32.8 ft downstream from loss of contact for cars and pickups is optimal.

Figure 6.1. MGS Guardrail with Flare/Test Vehicle Geometrics for Test 609971-03-1.

Figure 6.2. MGS Guardrail with Flare/Test Vehicle Impact Location for Test 609971-03-1.

6.2. WEATHER CONDITIONS

Table 6.3 provides the weather conditions for Test 609971-03-1.

Date of Test	7-22-2019 AM
Wind Speed (mi/h)	2
Wind Direction (deg)	252
Temperature (°F)	87
Relative Humidity (%)	80
Vehicle Traveling (deg)	195

 Table 6.3. Weather Conditions for Test 609971-03-1.

6.3. TEST VEHICLE

Figure 6.3 and Figure 6.4 show the 2013 RAM 1500 used for the crash test. Table 6.4 shows the vehicle measurements. Figure D.1 in Appendix D.1 gives additional dimensions and information on the vehicle.

Figure 6.3. Impact Side of Test Vehicle before Test 609971-03-1.

Figure 6.4. Opposite Impact Side of Test Vehicle before Test 609971-03-1.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	N/A
Gross Static ^a (lb)	5,000	±110	5,047
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	±3	40
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46
Track Width ^b (inches)	67	±1.5	68.3
CG aft of Front Axle ^c (inches)	63	±4	59.6
CG above Ground ^{c,d} (inches)	28	≥28	28.3

Table 6.4. Vehicle Measurements for Test 609971-03-1.

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy. ^b Average of front and rear axles.

^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

6.4. TEST DESCRIPTION

Table 6.5 lists events that occurred during Test 609971-03-1. Figures D.4 through D.6 in Appendix D.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle contacted barrier
0.0170	Post 12 began to lean toward field side
0.0220	Post 11 began to lean toward field side
0.0290	Post 13 began to lean toward field side
0.0340	Vehicle began to redirect
0.0550	Post 14 began to lean toward field side
0.0620	Post 11 began to twist clockwise
0.0860	Rail released from upstream posts
0.2450	Front left tire lifted off ground
0.3180	Rail released from downstream posts
0.3860	Vehicle was parallel with barrier

Table 6.5. Events during Test 609971-03-1.

6.5. DAMAGE TO TEST INSTALLATION

The W-beam guardrail released from all posts. The sleeve at post 1 was deformed and pulled downstream 1.25 inches at ground level. Posts 1 and 2 fractured at the top of the sleeves. Post 11 was pushed back 1.5 inches at grade and rotated 45 degrees clockwise. Posts 12 to 14 were bent to the field side approximately 70 degrees and downstream 45 degrees, and the blockouts were detached. Posts 15 to 17 were leaning downstream from 17 degrees to 72 degrees. The downstream DAT post 30 failed at the top of the sleeve.

Table 6.6 describes the damage to the MGS guardrail with flare. Figure 6.5 and Figure 6.6 show the damage to the MGS guardrail with flare.

Test Parameter	Measured
Permanent Deflection/Location	N/A (vehicle broke through guardrail)
Dynamic Deflection	N/A (vehicle broke through guardrail)
Working Width ^a and Height	N/A (vehicle broke through guardrail)

Table 6.6. Damage to MGS Guardrail with Flare for Test 609971-03-1.

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 6.5. MGS Guardrail with Flare after Test at Impact Location for Test 609971-03-1.

Figure 6.6. MGS Guardrail with Flare after Test 609971-03-1.

6.6. DAMAGE TO TEST VEHICLE

Figure 6.7 and Figure 6.8 show the damage sustained by the vehicle. Figure 6.9 and Figure 6.10 show the interior of the test vehicle. Table 6.7 and Table 6.8 provide details on the occupant compartment deformation and exterior vehicle damage. Figures D.2 and D.3 in Appendix D.1 provide exterior crush and occupant compartment measurements.

Figure 6.7. Impact Side of Test Vehicle after Test 609971-03-1.

Figure 6.8. Rear Impact Side of Test Vehicle after Test 609971-03-1.

Figure 6.9. Overall Interior of Test Vehicle after Test 609971-03-1.

Figure 6.10. Interior of Test Vehicle on Impact Side after Test 609971-03-1.

Test Parameter	Specification	Measured
Roof	\leq 4.0 inches	0 inches
Windshield	\leq 3.0 inches	0 inches
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤9.0 inches	0 inches
Floor Pan/Transmission Tunnel	≤ 12.0 inches	0 inches
Side Front Panel	≤ 12.0 inches	0 inches
Front Door (above Seat)	≤ 9.0 inches	0 inches
Front Door (below Seat)	≤12.0 inches	0 inches

 Table 6.7. Occupant Compartment Deformation for Test 609971-03-1.

Table 6.8.	Exterior	Vehicle	Damage for	· Test	609971	-03-1.
------------	----------	---------	-------------------	--------	--------	--------

Side Windows	No damage
Maximum Exterior Deformation	11 inches in the horizontal plane at the right front corner at bumper height
VDS	1RFQ4
CDC	01FRES3
Fuel Tank Damage	None
Description of Damage to Vehicle:	The front bumper, hood, grill, right front fender, right front tire and rim, right upper and lower A arms and ball joints, right front door, right A post, right C post, right rear cab corner, right rear exterior bed, and rear bumper were damaged.

6.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 6.9. Figure D.7 in Appendix D.3 shows the vehicle angular displacements, and Figures D.8 through D.10 in Appendix D.4 show acceleration versus time traces.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	18.5	0.1458 s on left side of interior
	30.0^{a}		
OIV, Lateral (ft/s)	≤40.0	13.8	0.1458 s on left side of interior
	30.0		
Ridedown, Longitudinal (g)	≤20.49	11.7	0.2761–0.2861 s
	15.0		
Ridedown, Lateral (g)	≤20.49	5.4	0.1544–0.1644 s
	15.0		
THIV (m/s)	N/A	6.6	0.1385 s on left right of interior
ASI	N/A	0.8	0.0772–0.1272 s
50-ms MA Longitudinal (g)	N/A	-7.9	0.2758–0.3258 s
50-ms MA Lateral (g)	N/A	-5.4	0.0482–0.0982 s
50-ms MA Vertical (g)	N/A	2.3	1.6721–1.7221 s
Roll (deg)	≤75	103	2.0000 s
Pitch (deg)	≤75	12	1.4035 s
Yaw (deg)	N/A	145	2.0000 s

Table 6.9. Occupant Risk Factors for Test 609971-03-1.

^a Values in italics are the preferred *MASH* values.

					Test Agency	Texas	A&M Trans	nortation Institute (TTI)		
as the second	1	Hide .		Test St	andard/Test No	MASH 2016. Test 3-11				
			TTI Project No.			609971-03-1				
					Test Date	7-22-2019				
TEST ARTICLE					1 22 2	019				
Туре				Longit	udinal Guar	drail				
the second		And and a second se			Name	MGS	Guardrail wi	th Flare		
and the second s	1		-		Length	181 ft	3 inches			
					Kay Matariala	Is Steel wood crushed concrete				
0.00)0 s				Key Materials					
A CONTRACTOR		Soil Typ	e and Condition	AASH Limest	TO M147-1	7 Type A Grade 2 Crushe	ed			
			TEST VI	EHICLE		Lines	tone			
				Ty	pe/Designation	2270P				
		5 .		Year. N	Take and Model	2013 RAM 1500				
	inda.	All and the second		Iner	tial Weight (lb)	5,047				
The second		Conception of the local division of the loca			Dummy (lb)	N/A	N/A			
Marrison and a second	-		-	(Gross Static (lb)	5,047				
0.20)0 s		IMPACT	CONDI	TIONS					
				Impa	ct Speed (mi/h)	62.6				
	A West	the state		Imp	act Angle (deg)	25.7 (3	30.9 to the fla	are)		
ALC: COMPANY	- tonici	Sec. 1		Ι	mpact Location	44.8 in	iches upstrea	m of the centerline of po	st 12	
				Impact	Severity (kip-ft)	124.3	(174.4 to the	flare)		
	- MARY		EXIT CC	ONDITIO	NS					
	J.		Exit Speed (mi/h)			N/A				
Contraction of the local division of the loc	Service Contraction		Trajectory/Heading Angle (deg)			N/A				
				E	xit Box Criteria	Did no	ot cross			
and the second se	Supplication of the	e contra		Sto	opping Distance	39 ft d	ownstream	1.		
0.4()0 s		TEST A		DEELECTIONS	1/11.00) the neta sid			
0.10	10 S	Maria abes.	TEOTA	D'	vnamic (inches)	N/A				
	No.	The way it		Per	manent (inches)	N/A				
			Workin	ng Width	Height (inches)	N/A				
	The second se		VEHICL	E DAMA	GE					
		× 10			VDS	1RFQ4	4			
A CONTRACT		Section of the sectio			CDC	01FRE	ES2			
State of the state				Max. E	xt. Deformation	11 incl	hes at the fro	nt bumper		
and the second second	age from the	+	Max	Cocupar	nt Compartment	0 inch	20			
0.60	JO s				Deformation	-				
			OC	CUPAN	T RISK VALUE	S			L	
Long. OIV (ft/s)	18.5	Long. Ride	down (g)	11.7	Max 50-ms Lo	ng. (g)	-7.9	Max Roll (deg)	103	
Lat. OIV (ft/s)	13.8	Lat. Ridedo	wn (g) 5.4 Max 50-ms Lat			t. (g) rt. (a)	-5.4	Max Pitch (deg)	12	
	0.0	ASI		0.8	Wax 50-ms ve	rt. (g)	2.5	Max Yaw (deg)	145	
3.7'										
Impact Angle					le		40"			

Figure 6.11. Summary of Results for *MASH* Test 3-11 on MGS Guardrail with Flare.

Chapter 7. MASHTEST 3-11 (CRASH TEST NO. 609971-03-2)

7.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 7.1 for details on *MASH* impact conditions and Table 7.2 for the exit parameters for Test 609971-03-2. Figure 7.1 and Figure 7.2 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5	60.3
Impact Angle (deg)	25	±1.5	24.5 (29.7 to the flare)
Vehicle Inertial Weight (lb)	5,000	±110	5,019
Impact Severity (kip-ft)	106	≥106	104.9 (149.8 to the flare)
Impact Location	45.5 inches upstream of the centerline of post 14	± 1 ft (12 inches)	41.5 inches upstream of the centerline of post 14

Table 7.1. Impact Conditions for MASH Test 3-11, Crash Test No. 609971-03-2.

Table 7.2. Exit Parameters for MASH Test 3-11, Crash Test No. 609971-03-2.

Exit Parameter	Measured
Speed (mi/h)	N/A
Trajectory (deg)	N/A
Heading (deg)	N/A
Brakes applied post impact (s)	4.1 s
Vehicle at rest position	86 ft downstream of impact point 15 ft to the field side
	45 degrees right
Comments:	Vehicle remained upright
	Vehicle penetrated through the guardrail

Figure 7.1. MGS Guardrail with Flare/Test Vehicle Geometrics for Test 609971-03-2.

Figure 7.2. MGS Guardrail with Flare/Test Vehicle Impact Location for Test 609971-03-2.

7.2. WEATHER CONDITIONS

Table 7.3 provides the weather conditions for Test 609971-03-2.

Date of Test	03-18-2020 PM
Wind Speed (mi/h)	10
Wind Direction (deg)	142
Temperature (°F)	80
Relative Humidity (%)	78
Vehicle Traveling (deg)	195

 Table 7.3. Weather Conditions for Test 609971-03-2.

7.3. TEST VEHICLE

Figure 7.3 and Figure 7.4 show the 2014 RAM 1500 used for the crash test. Table 7.4 shows the vehicle measurements. Figure E.1 in Appendix E.1 gives additional dimensions and information on the vehicle.

Figure 7.3. Impact Side of Test Vehicle before Test 609971-03-2.

Figure 7.4. Opposite Impact Side of Test Vehicle before Test 609971-03-2.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	N/A
Gross Static ^a (lb)	5,000	±110	5,019
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	±3	40
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46
Track Width ^b (inches)	67	±1.5	68.3
CG aft of Front Axle ^c (inches)	63	±4	59.5
CG above Ground ^{c,d} (inches)	28	≥28	29

Table 7.4. Vehicle Measurements for Test 609971-03-2.

^a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy. ^b Average of front and rear axles.

^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

7.4. TEST DESCRIPTION

Table 7.5 lists events that occurred during Test 609971-03-2. Figures E.4 and E.5 in Appendix E.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle contacted barrier
0.0030	Post 13 and 14 began to lean toward field side
0.0310	Post 15 began to lean toward field side
0.0320	Vehicle began to redirect
0.0350	Post 12 began to rotate clockwise
0.2440	Rail next to front right quarter panel of truck began to rupture
0.2630	Rail next to front right quarter panel of truck completely ruptured
0.2680	Vehicle was parallel with barrier

Table 7.5. Events during Test 609971-03-2.

7.5. DAMAGE TO TEST INSTALLATION

The right anchor post pulled downstream 1 inch, and the soil was disturbed at post 1. The rail element released at post 8 until the end of the installation. Post 13 was pushed back 1½ inches at grade. Posts 14–18 were leaning downstream at approximately 60 degrees from vertical, with the blockouts missing. Posts 19–23 were also leaning downstream at approximately 60 degrees from vertical, but the blockouts remained intact. Posts 18–21 showed impact damage on the field-side flange, and post 19 had a tear on the field-side flange as well. The rail and head released from and pushed the anchor posts downstream 7 ft. Post 31 was leaning 10 degrees downstream from vertical. The rail ruptured 20 inches upstream of the joint between posts 16 and 17.

Table 7.6 describes the damage to the MGS guardrail with flare. Figure 7.5 and Figure 7.6 show the damage to the MGS guardrail with flare.

Test Parameter	Measured
Permanent Deflection/Location	N/A (vehicle broke through guardrail)
Dynamic Deflection	N/A (vehicle broke through guardrail)
Working Width ^a and Height	N/A (vehicle broke through guardrail)

Table 7.6. Damage to MGS Guardrail with Flare for Test 609971-03-2.

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 7.5. MGS Guardrail with Flare after Test at Impact Location for Test 609971-03-2.

Figure 7.6. MGS Guardrail with Flare after Test 609971-03-2.

7.6. DAMAGE TO TEST VEHICLE

Figure 7.7 and Figure 7.8 show the damage sustained by the vehicle. Figure 7.9 and Figure 7.10 show the interior of the test vehicle. Table 7.7 and Table 7.8 provide details on the occupant compartment deformation and exterior vehicle damage. Figures E.2 and E.3 in Appendix E.1 provide exterior crush and occupant compartment measurements.

Figure 7.7. Impact Side of Test Vehicle after Test 609971-03-2.

Figure 7.8. Rear Impact Side of Test Vehicle after Test 609971-03-2.

Figure 7.9. Overall Interior of Test Vehicle after Test 609971-03-2.

Figure 7.10. Interior of Test Vehicle on Impact Side after Test 609971-03-2.
Test Parameter	Specification	Measured
Roof	\leq 4.0 inches	0 inches
Windshield	\leq 3.0 inches	0 inches
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤9.0 inches	0 inches
Floor Pan/Transmission Tunnel	≤ 12.0 inches	0 inches
Side Front Panel	≤ 12.0 inches	0 inches
Front Door (above Seat)	≤9.0 inches	0 inches
Front Door (below Seat)	≤12.0 inches	0 inches

 Table 7.7. Occupant Compartment Deformation for Test 609971-03-2.

Side Windows	No damage
Maximum Exterior Deformation	10 inches in the horizontal plane at the right front corner at bumper height
VDS	1RFQ4
CDC	01FRES3
Fuel Tank Damage	None
Description of Damage to Vehicle:	The front bumper, hood, grill, radiator and support, right front fender, right front tire and rim, and right front and rear doors were damaged.

7.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 7.9. Figure E.6 in Appendix E.3 shows the vehicle angular displacements, and Figures E.7 through E.9 in Appendix E.4 show acceleration versus time traces.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0	18.7	0.1555 s on right side of interior
	30.0^{a}		
OIV, Lateral (ft/s)	≤40.0	13.9	0.1555 s on right side of interior
	30.0		
Ridedown, Longitudinal (g)	≤20.49	4.8	0.1901–0.2001 s
	15.0		
Ridedown, Lateral (g)	≤20.49	5.0	0.2219–0.2319 s
	15.0		
THIV (m/s)	N/A	6.7	0.1474 s on right side of interior
ASI	N/A	0.6	0.0805–0.1305 s
50-ms MA Longitudinal (g)	N/A	-5.3	0.0640–0.1140 s
50-ms MA Lateral (g)	N/A	-4.1	0.1823–0.2323 s
50-ms MA Vertical (g)	N/A	-1.9	0.4240–0.4740 s
Roll (deg)	≤75	9	1.2582 s
Pitch (deg)	≤75	6	1.9605 s
Yaw (deg)	N/A	194	2.0000 s

Table 7.9. Occupant Risk Factors for Test 609971-03-2.

^a Values in italics are the preferred *MASH* values.

Sec. Sec.	the states				Test Agency	Texa	exas A&M Transportation Institute (TTI)			
				Tes	t Standard/Test No.	MAS	<i>IASH</i> 2016, Test 3-11			
1 11 12	AL DO				TTI Project No.	6099	609971-03-2			
					Test Date	3-18-2020				
A Standards	. Ja		TEST ART	ICLE						
					Туре	Lon	Longitudinal Guardrail			
					Name	MG	MGS Guardrail with Flare			
					Length	201	01 ft 7 inches			
0.	.000 s		Key Materials Stee				l, wood, c	rushed concrete		
				Soil	Гуре and Condition	AAS Crus	SHTO M1 shed Lime	47-17 Type A Grade	2	
		1	TEST VEH	IICLE						
					Type/Designation	2270)P			
al stand	2.407			Yea	r, Make and Model	2014	4 RAM 15	500		
					Inertial Weight (lb)	5019	9			
		Topological States			Gross Weight (lb)	5019	Ð			
0.	.200 s		IMPACT C	ONDITION	IS					
				I	mpact Speed (mi/h)	60.3				
					Impact Angle (deg)	24.5	(29.7 to t	he flare)		
					Impact Location	41.5 post	inches up 14	ostream of the centerli	ne of	
		-		Impa	act Severity (kip-ft)	104.	9 (149.8 t	o the flare)		
		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	EXIT CONDITIONS				T/A			
	1	and the second	Exit Speed (mi/n) N/A							
	a de la che		Exit Pay Critaria Did							
			Exit Box Chiena Did				not cross			
			Stopping Distance 15 f				5 ft to the field side			
0.	.400 s		TEST ARTICLE DEFLECTIONS							
	100 5		Dynamic (inches) N/A							
	N		Permanent (inches)			N/A	N/A			
		-	Working Width/Height (inches) N/A				V/A			
Sec. Martines		100 M	VEHICLE	DAMAGE						
	Sector Sector				VDS	1RF	1RFQ4			
and the second					CDC	01F	01FRES3			
		D. Sala	Max. Ext. Deformation				10 inches at the front bumper			
0.	.600 s		Max Occupant Compartment Deformation 0 i				0 inches			
			OCCU	PANT RIS	K VALUES					
Long. OIV (ft/s)	18.7	Long. Rid	ledown (g)	4.8	Max 50-ms Long.	(g)	-5.3	Max Roll (deg)	9	
Lat. OIV (ft/s)	13.9	Lat. Rideo	down (g)	5.0	Max 50-ms Lat. (g	g)	-4.1	Max Pitch (deg)	6	
THIV (m/s)	6.7	ASI		0.6	Max 50-ms Vert. ((g)	-1.9	Max Yaw (deg)	194	
	۵	86' 3. _ 	8'	- mpact An	gle	-				
Inipact Angle —								¥		

Figure 7.11. Summary of Results for MASH Test 3-11 on MGS Guardrail with Flare.

Chapter 8. FINITE ELEMENT ANALYSIS

After the completion of the testing program, and considering the testing results, the research team decided to utilize finite element (FE) computer modeling and simulations to investigate the predictability of the MGS's crashworthiness when implemented at different flare rates and impacted at TL-3 impact conditions.

Researchers investigated two general situations in parallel: (a) the MGS implemented at shallower flare rates than those already failed under the testing program, and (b) the MGS modified/retrofitted and implemented at different flare rates. For both general cases, a predictive analysis was conducted for impacts at *MASH* TL-3 conditions.

In the full-scale testing, MGS rail rupture under the higher impact severity and vehicle interaction during impact was the leading cause for system crashworthiness failure. The biggest challenge when evaluating the FE computer simulation impact results was to develop an alternate method for predicting MGS W-beam rail rupture. While utilization of element erosion was an option, this method was not prioritized due to lack of robustness under multiple predictive modeling and impact condition changes. Conclusions were ultimately made with consideration of the recorded vehicle interaction with the system, lateral deflection of the system during impact, predicted rail stresses/strains, and recorded occupant risk values and vehicle stability. Specifically, the lateral deflection of the system was considered an indication of potential pocketing of the vehicle, which in turn could cause excessive loading on the W-beam railing and ultimate failure.

8.1. FINITE ELEMENT MODELING AND ANALYSIS

This section presents the finite element analysis results. FE models for a vehicle and system were developed and/or modified for a detailed crashworthiness analysis using LS-DYNA to the considered TL-3 impact conditions.

8.1.1. Finite Element Model Validation

To validate the FE model, an FE dynamic impact simulation was conducted and compared to a full-scale crash test (Test No. 609971-03-2). Based on the details of the tests as described in Chapter 7, the FE model was developed and set up with the same conditions as the test. As described previously, the W-beam ruptured during the crash test, but the FE model did not include failure of the W-beam to maintain numerical stability. Therefore, in order to properly compare and validate the FE model, the simulation results were compared with the test only before the rail rupture.

An FE model of a 2018 RAM pickup truck was used to represent a *MASH* 2270P vehicle. Figure 8.1 shows the FE RAM model developed by the Center for Collision Safety and Analysis (CCSA) at George Mason University (4). The model was designed to have suspension failure and tire deflation to represent actual damage on the vehicle.

Figure 8.1. RAM Model Used for FE Simulation.

The actual test parameters were used for the FE analysis. The actual impact speed and angle were 60.3 mi/h and 24.5 degrees (to the roadway), resulting in a 29.7-degree orientation angle to the MGS flare, and these values were used to set up the impact simulation. Figure 8.2 shows the impact simulation setup with the 11:1 flared MGS.

Figure 8.2. Simulation Setup under TL-3 Conditions.

Figure 8.3 shows the sequential photos taken from the full-scale test and simulation to compare vehicular behavior. In the test, the W-beam rail ruptured at 0.2440 s after the vehicle impacted the flared MGS. Figure 8.4 shows the detailed view right before and after the rail rupture. Table 8.1 compares the vehicular behavior by showing the main event and the time of event. Compared to the full-scale test, the FE model shows good agreement before the rail ruptured.

(a) Test

(b) Simulation

Figure 8.3. Sequential Overhead Frames of Pickup Truck under TL-3 Conditions.

(b) Rear View

Figure 8.4. Sequential Frames to Compare FE Simulation (Top) to Crash Testing (Bottom) Immediately Leading to Rail Rupture Event.

Since the FE model was developed without W-beam rail failure, potential rail rupture was investigated based on the rail strain. Figure 8.5 shows the ruptured rail after the test and the rail strain after the impact simulation. Strain larger than 25 percent is shown in red, so the red regions indicate potential rupture locations. In the impact simulation, the maximum strain was

observed at the location similar to where the rail ruptured in the test. This result indicates that although the FE model was not developed with a rail failure mode, the simulation result is promising and may be assumed to be reliable to use for further investigation.

Event	Time of Event (s)			
Event	Test	Simulation		
Impacted the rail	0.0000	0.0000		
First post deflection started	0.0030	0.0200		
Vehicle redirected	0.0320	0.0550		
Rail started to separate	0.2440	N/A		
Rail separated completely	0.2630	N/A		
Vehicle traveled parallel with barrier	0.2680	0.3050		

Table 8.1. Descriptive Comparison for Timestep.

Figure 8.5. Rail Rupture Experienced in Full-Scale Testing (Top) and Rail Strains Recorded in FE Simulation (Bottom).

Table 8.2 lists the occupant risk factors for both the test and the simulation. The table shows that the maximum occupant impact velocity was observed before rail rupture, while the maximum ridedown acceleration was observed right after the rail started rupturing in the test and the rail deflected most for both the test and the simulation.

		Test 609971-03-2	Simulation
	Χ	18.7 (0.1555 s)	7.4 (0.1630 s)
Occupant impact velocity (11/8)	Y	13.9 (0.1555 s)	4.7 (0.1630 s)
Ridedown Acceleration (g)	Χ	4.8 (0.19–0.2 s)	8.5 (0.18–0.19 s)
	Y	5.0 (0.22–0.23 s)	9.0 (0.27–0.28 s)
	Roll	8.9	4.76
Max. Angle (degrees)	Pitch	5.6	1.06
	Yaw	194.4	18.13
Maximum Dynamic Lateral Rail Def	52.9 (before rupture)	52.4	

Table 8.2. Comparison of the Occupant Risk Factors (Test 609971-03-2 vs. FE Simulation).

To investigate the behavior after 0.2440 s, the simulation result was also compared to NCHRP 350 Test No. 2214MG-2 (5) conducted on the MGS (not flared) (see Figure 8.6). Overall vehicle and system behavior followed the trend shown in the test. The maximum dynamic deflection was 1,114 mm (43.9 inches) and 1,330 mm (52.4 inches), respectively, in the test and the impact simulation. The maximum permanent deflection was 803 mm (31.6 inches) and 955 mm (37.6 inches) in the test and the simulation, respectively. These results were interpreted to indicate that the maximum dynamic rail deflection parameter to consider appropriate for vehicle containment and redirection during the impact event were 52 inches and close to 44 inches.

Figure 8.6. Sequential Frames Comparing FE Simulation on Flared MGS (Top) to NCHRP 350 Test No. 2214MG-2 (Bottom) (5).

Based on the comparison, the FE model was considered and calibrated to a level that can provide reliability for further flare rate investigation.

8.1.2. Design Options

This section provides the results recorded from FE simulations predicting impacts against the MGS at various flare rates (shallower than 11:1, as implemented in the crash testing), as well as against proposed retrofit MGS designs.

8.2.1.1. Different Flare Rate Conditions

The following MGS flares shallower than the 11:1 rate were investigated without retrofitting the existing MGS: 15:1, 18:1, and 21:1. Figure 8.7 shows the impact condition setup for a pickup truck (2270P) model at each considered flare rate. The impact angle and speed were set as 25 degrees and 62 mi/h, respectively. With different flare rates, the effective angles were different.

(c) 21:1 flare rates (27.7 degrees)

Figure 8.7. Impact Conditions for Different MGS Flare Rates (Effective Angles).

Table 8.3 lists the occupant risk factors and the maximum lateral rail deflection results from the simulated cases compared to the full-scale test results from the 11:1 flare rate case. Specifically, the simulation impact against the MGS at a 15:1 flare rate shows a similar lateral deflection behavior as the one recorded in the 11:1 full-scale test, when the rail rupture occurred (52.8 inches for the 15:1 FE case vs. 52.9 inches in the 11:1 test case). When considering shallower MGS flare rates, the maximum lateral rail deflections observed from FE simulations were reduced to 49.2 inches and 48.4 inches for the 18:1 and 21:1 flare rates, respectively.

Flare Ra	te (Effective Ar	ngle)	11:1 (30.2°)	15:1 (28.8°)	18:1 (28.4°)	21:1 (27.7°)
V	ehicle Model		Test	Pickup Truck	Pickup Truck	Pickup Truck	Pickup Truck	Small Car
	Occupant	X	18.7	23.4	23.6	24.0	20.7	42.0
	Impact Velocity (ft/s)	Y	13.9	15.4	14.8	13.1	14.8	14.4
Occupant	Ridedown	X	4.8	8.5	13.8	14.3	10.7	21.1
Risk (g)	Acceleration (g)	Y	5.0	9.0	13.8	7.0	9.1	18.0
Factors		Roll	8.9	4.76	8.8	3.1	10.2	19.5
Max. Angle (degrees)	Max. Angle (degrees)	Pitch	5.6	1.06	9.2	5.9	3.1	5.9
		Yaw	194.4	18.13	56.2	54.1	57.9	85.7
Maximu Rail	m Dynamic Lat Deflection (in.)	teral	52.9 (before rail rupture)	52.4	52.8	49.3	48.4	34.6

Table 8.3. Simulation Results from FE Models of MGS with Different Flare Rates.

The system with a 21:1 flare rate was also investigated with the small passenger car (1100C) FE model. The maximum ridedown acceleration recorded from the simulated case of the small passenger car impacting the MGS at a 21:1 flare rate exceeded the *MASH* limit of 20.49 g. While there have been indications that the available small passenger car FE model might overpredict occupant risk during an impact in other conducted research studies, it is concerning to have such a high value. It is also important to note that suspension failure was not applied for the investigation through this simulation. Application of suspension failure is recommended for further investigation, although a validated suspension failure model is not yet available and such investigation was beyond the scope of this research.

Based on overall simulation results, the MGS behavior did not seem to show much difference in terms of dynamic lateral deflection and vehicle interaction when impacted at different flare rates (between the 11:1 and 21:1 flare rates). It is especially concerning that the lateral deflection was not further contained significantly when shallower flares were considered, at least based on the FE results. This finding could indicate the potential for vehicle pocketing and eventually rail rupture, as happened in the failed crash test.

While validating these results through full-scale testing is suggested to allow researchers to have more data points to work with, particularly given the very limited flared MGS testing conducted under *MASH* conditions, the researchers decided to investigate MGS retrofit options to pair with the flare condition implementation.

8.2.1.2. Retrofitting Options

Figure 8.5 in the previous section illustrated a photo of the W-beam rail rupture experienced during the full-scale testing of the 11:1 flared MGS. In the same figure, a frame from the FE simulation shows the W-beam rail strains recorded during the simulated impact event with the same impact conditions. The FE simulation indicated the presence of localized higher strains, which seemed to be located at the bottom edge of the rail. This result could be an indication of increased stress/strain due to blockout contact, although it is not clear whether that could have created the rail rupture during the full-scale test.

Therefore, the first considered retrofit flared MGS option was to include "short" blockouts to prevent rail high concentration stresses and potential tearing due to direct contact/interaction between the blockout and the rail. Use of short blockouts that were 10 inches high and 8 inches deep was successful in previous MGS design/testing, such as in the MGS with half-post spacing (6). Therefore, it was decided to utilize the short blockout and pair it with half-post spacing (37½-inch post spacing) to investigate the crashworthiness of the flared MGS. This combination of system design changes was chosen to limit the lateral deflection of the system during impact and limit rail stress concentrations due to blockout interaction, with the ultimate goal of reducing the probability of vehicle pocketing and rail rupture during the event.

Figure 8.8 presents the details of the short blockout system. The figure shows the post spacing, blockout geometry, and rail connections used for Test No. 610211-6 (6), and the same geometrical characteristics were adopted for the MGS flared system.

(a) Details of half-post spacing and short blockout used for *MASH* Test No. 610211-6 (6)

Figure 8.8. Details of Half-Post Spacing and Short Blockout.

Simulations were conducted to predict the retrofit flared MGS behavior under impacts at *MASH* TL-3 conditions. Table 8.4 summarizes the results from the simulations, reporting occupant risk factors and maximum rail deflection for each simulated case. For the half-post spacing system, a flare rate of 11:1 was adopted. As expected, the rail lateral deflection was significantly reduced when compared to the one recorded with the system with regular post spacing. Also as expected, however, occupant risks, maximum occupant impact velocity, and ridedown acceleration were higher than those recorded with the regular post spacing due to the increased system stiffness from the added posts.

The same system design was also investigated with a 15:1 flare rate, showing anticipated improvement in terms of both rail deflection and occupant risks given the shallower flare rate. In the 15:1 flare rate retrofit system with the small passenger car, however, the recorded ridedown acceleration result was higher than the allowable *MASH* limit. Therefore, additional investigation was conducted with a flare rate of 18:1 for the same system. Under passenger car impact, while the occupant risk improved, the ridedown acceleration peaked to 20.3 g, which was still too close to the *MASH* allowed limit of 20.49 g.

Flare Rate			11:1 (30.2°)	15:1 (18:1 (28.4°)	
Vehicle Model		Pickup Truck	Pickup Truck	Small Car	Small Car	
	Occupant Impact	Χ	29.9	22.3	47.2	39.4
	Velocity (ft/s)	Y	17.7	16.4	18.0	14.1
Occupant	Ridedown	Χ	17.1	11.0	23.8	20.3
Risk	Acceleration (g)	Y	12.4	10.3	11.3	16.1
Factors	Max. Angle (degrees)	Roll	15.8	6.8	14.0	10.9
		Pitch	7.4	2.3	6.2	6.1
		Yaw	58.0	40.7	33.6	41.3
Maximu	m Rail Deflection	(in.)	33.5	33.1	23.8	24.2

Table 8.4. Simulation Results for Flared Half-Post Spacing MGS with Short Blockout.

As a next step to reduce the ridedown acceleration, a rubrail was added to a short blockout (10-inch height) MGS with regular post spacing of 75 inches. A typical C6×8 steel channel was used as a rubrail and installed to have a 12-inch distance from the top of the channel to the ground. Figure 8.9 illustrates the elevation view of the short blockout MGS with a channel rubrail.

Figure 8.9. Short Blockout Flared MGS Retrofitted with Channel Rubrail.

Based on the previous simulations, the flared MGS at 15:1 and 18:1 flares improved vehicular behavior and structural behavior, as well as reduced the maximum rail deflection compared to the 11:1 flared MGS. Therefore, the flare rates of 15:1 and 18:1 were adopted for the retrofitted MGS. Once the simulation results indicated that a flared MGS retrofitted with a rubrail was able to stably redirect the pickup truck model, small car simulations were performed.

Table 8.5 lists the occupant risk factors and the maximum dynamic W-beam rail deflection. Overall, the flared MGS retrofitted with a channel rubrail was able to improve the structural behavior. The maximum rail deflection was reduced, and occupant risk factors met *MASH* evaluation criteria. However, a clear trend was not found when comparing the systems with 15:1 and 18:1 flares. Therefore, performing parametric simulations to find the most critical flare rates and impact point was needed.

	Flare Rate			28.8°)	18:1 (28.4°)	
Vehicle Model		Pickup Truck	Small Car	Pickup Truck	Small Car	
	Occupant Impact	Х	18.4	38.7	20.3	36.7
Occupant	Velocity (ft/s)	Y	16.1	22.3	16.1	23.0
	Ridedown Acceleration (g)	Χ	10.4	13.1	12.8	12.2
Risk		Y	11.2	9.8	9.7	11.7
Factors	Max. Angle (degrees)	Roll	15.8	9.5	4.4	6.2
		Pitch	11.5	8.5	8.4	4.9
		Yaw	37.7	48.2	34.7	50.9
Maximun	n Dynamic Lateral I	Rail Deflection (in.)	45.3	24.6	48.0	25.5

Table 8.5. Simulation Results for Short Blockout Flared MGS with Channel Rubrail.

To investigate the CIP, the vehicular and structural behaviors of the system were evaluated after impacting three different points: (a) 2 ft upstream from a post; (b) at the middle of the W-beam (mid-span); and (c) at a post. Table 8.6 lists the occupant risk factors and maximum dynamic rail deflection for the pickup truck impacting at each CIP. For the flared MGS at a 15:1 rate, impacting 2 ft upstream from a post was most critical based on the overall behavior of the system. For the system flared at an 18:1 rate, impacting a post was most critical based on the overall behavior of the system. Figure 8.10 shows the CIP for the flared MGS retrofitted with a channel rubrail. Figure 8.11 and Figure 8.12 show the sequential frames for the most critical impact simulation for the pickup truck on the system at 15:1 and 18:1 flare rates, respectively.

Table 8.6. CIP	⁹ Investigation	for the Picku	p Truck	(2270P)
				· · /

	Flare Rate			15:1 (28.8°)			18:1 (28.4°)		
CIP			2 ft upstream from post	Mid- span	At post	2 ft upstream from post	At post	Mid-span	
	Occupant Impact	Χ	22.3	18.4	21.3	24.9	20.3	19.4	
Velocity (f Occupant Ridedow	Velocity (ft/s)	Y	14.4	16.1	15.4	14.8	16.1	14.8	
	Ridedown Acceleration (g)	X	11.7	10.4	10.0	11.9	12.8	11.6	
Risk		Y	10.4	11.2	8.9	7.9	9.7	8.8	
Factors	Max. Angle (degrees)	Roll	17.4	15.8	10.0	6.7	4.4	18.6	
		Pitch	4.5	11.5	10.4	9.6	8.4	11.3	
		Yaw	37.1	37.7	51.8	33.4	34.7	30.6	
Maximun	Maximum Lateral Rail Deflection (in.)		49.1	45.3	49.6	44.1	48.0	47.4	

(a) CIP for 15:1 flared MGS

(b) CIP for 18:1 flared MGS

Figure 8.10. CIPs for Pickup Truck Impacting Flared MGS Retrofitted with Channel Rubrail.

0.10 s

0.30 s

Figure 8.11. Sequential Frames for Pickup Truck Impact at CIP on 15:1 Flared MGS Retrofitted with Channel Rubrail.

Figure 8.12. Sequential Frames for Pickup Truck Impact at CIP on 18:1 Flared MGS Retrofitted with Channel Rubrail.

Table 8.7 shows the occupant risk factors and maximum dynamic rail deflection for the small passenger car impacting at each CIP. For the MGS flared at both 15:1 and 18:1 rates, impacting at the middle of the W-beam (mid-span) was found to be the most critical case based on the overall behavior of the system. For the system flared at the 18:1 rate, impacting a post also resulted in high ridedown acceleration but produced less maximum W-beam rail deflection compared to the case impacting at mid-span. Figure 8.13 shows the CIP for the flared MGS retrofitted with a channel rubrail. Figure 8.14 and Figure 8.15 show the sequential frames for the most critical impact simulation for the small passenger car on the flared MGS at the 15:1 and 18:1 rates, respectively.

Flare Rate				15:1 (28.8°)		18:1 (28.4°)		
CIP			At post	2 ft downstream from post	Mid-span	2 ft upstream from post	At post	Mid-span
	Occupant Impact Velocity (ft/s)	Χ	38.7	26.9	32.8	36.7	24.6	31.5
Occupant Risk		Y	22.3	27.6	25.9	23.0	24.0	25.6
	Ridedown Acceleration (g)	Χ	13.1	12.4	19.6	12.2	19.5	19.6
		Y	9.8	12.2	7.2	11.7	12.3	7.3
Factors	Max. Angle (degrees)	Roll	9.5	11.5	8.3	6.2	8.9	8.1
		Pitch	8.5	5.1	5.6	4.9	7.6	5.5
		Yaw	48.2	53.4	50.1	50.9	49.3	50.1
Maximum Rail Deflection (in.)			24.6	25.6	25.6	25.5	21.6	26.8

Table 8.7. CIP Investigation for Small Car (1100C).

(a) CIP for 15:1 flared MGS (b) CIP for 18:1 flared MGS Figure 8.13. CIPs for Small Car Impacting Flared MGS with Channel Rubrail.

Figure 8.14. Sequential Frames for Small Passenger Car Impact at CIP on 15:1 Flared MGS Retrofitted with Channel Rubrail.

Figure 8.15. Sequential Frames for Small Passenger Car Impact at CIP on 18:1 Flared MGS Retrofitted with Channel Rubrail.

For the pickup truck FE simulations on the flared MGS retrofitted with a channel rubrail, the passenger-side front tire rode on the rubrail, and when the vehicle was exiting, the tire went beyond the rubrail, as shown in Figure 8.16. During this event, a numerical issue was also found, showing a part of the tire element tangled with an edge of the channel rubrail element. However, since the issue was detected after maximum occupant risk factors (e.g., occupant impact velocity and ridedown acceleration) and rail deflection were observed, the numerical issue may not affect the simulation results.

(a) Tire Overriding Channel Rubrail

(b) Tire Tangling Figure 8.16. FE Pickup Truck Tire Model Behavior.

Since resolving the numerical issue became a concern due to project resource (time and budget) constraints, another simulation for each vehicle type impacting at CIP was performed on the 18:1 flared MGS retrofitted with a channel rubrail. In addition to modifying a contact command between the rubrail and the tire to resolve the numerical issue, the channel rubrail was raised by 3 inches to have a 12-inch distance from the center of the channel to the ground. By raising the rubrail, the gap between the W-beam and channel was decreased, which should reduce the possibility of tire tangling.

Figure 8.17 describes the difference between the initial retrofitted MGS model and the modified retrofitted model. As aforementioned, the vertical location of the channel increased by 3 inches. Figure 8.18 and Figure 8.19 show the close-up view and sequential frames, respectively, for the modified FE pickup truck simulation results to illustrate the improvements. As seen in the figures, the tire overrode the channel less, and it did not tangle with any MGS FE model element. Without tire FE element tangling, the vehicle exited and redirected more smoothly.

Figure 8.17. Modified Channel Rubrail Location.

(b) Vehicle Exiting

Figure 8.18. Modified FE Simulation with 18:1 Flared MGS Retrofitted with Channel Rubrail.

Figure 8.19. Sequential Frames for Pickup Truck Impact at CIP on Modified 18:1 Flared MGS Retrofitted with Channel Rubrail.

To evaluate the modified retrofitted MGS model, a small car impact simulation was also performed under the same TL-3 conditions. Figure 8.20 shows the sequential frames with the small car behavior after impacting the CIP of the modified retrofitted MGS.

0.10 s

0.20 s

0.30 s

0.35 s

Figure 8.20. Sequential Frames for Small Car Impact at CIP on Modified 18:1 Flared MGS Retrofitted with Channel Rubrail.

Table 8.8 lists the occupant risk factors and maximum lateral dynamic W-beam rail deflection to compare the simulation results of the different channel rubrail heights. For both the pickup truck and small car, the retrofitted MGS with the channel rubrail located higher improved the overall system behavior.

	Vehicle Model	Pickup	Truck	Small Car		
Rubrail Heig	ht (Channel Top to G	12 in.	15 in.	12 in.	15 in.	
	Occupant Impact	Х	20.3	19.7	32.8	21.7
	Velocity (ft/s)	Y	16.1	16.7	25.9	24.9
	Ridedown Acceleration (g) Max. Angle (degrees)	Х	12.8	9.6	19.6	13.1
Occupant Risk Factors		Y	9.7	8.4	7.2	12.0
1 400015		Roll	4.4	8.4	8.3	8.0
		Pitch	8.4	9.8	5.6	2.4
	(ucgrees)	Yaw	34.7	34.4	50.1	49.2
Maximum Dyna	mic Lateral Rail Defl	48.0	42.7	26.8	26.2	

 Table 8.8. Comparison of Simulation Results for 18:1 Flared MGS Retrofitted

 with Channel Rubrail with 12-inch Center-to-Ground Distance.

To investigate performance of the system in steeper flare rate, another simulation for each vehicle type impacting at CIP was performed on the 15:1 flared MGS retrofitted with a channel rubrail. Figure 8.21 shows sequential frames, for the modified FE pickup truck. As seen in the figures, without tire FE element issue, the vehicle exited and redirected more smoothly.

With better performance with a pickup truck, a small car impact simulation was also performed under the same TL-3 conditions. Figure 8.22 shows the sequential frames with the small car behavior after impacting the CIP of the modified retrofitted MGS.

Figure 8.21. Sequential Frames for Pickup Truck Impact at CIP on Modified 15:1 Flared MGS Retrofitted with Channel Rubrail.

Figure 8.22. Sequential Frames for Small Car Impact at CIP on Modified 15:1 Flared MGS Retrofitted with Channel Rubrail.

Table 8.10 lists the occupant risk factors and maximum lateral dynamic W-beam rail deflection to compare the simulation results of the different channel rubrail heights. For both the pickup truck and small car, the retrofitted MGS with the channel rubrail located higher improved the overall system behavior.

	Vehicle Model	Pickup	Truck	Small Car		
Rubrail Heig	ht (Channel Top to G	12 in.	15 in.	12 in.	15 in.	
	Occupant Impact	X	22.3	19.0	32.8	32.5
	Velocity (ft/s)	Y	14.4	15.7	25.9	17.4
	Ridedown Acceleration (g) Max. Angle (degrees)	Χ	11.7	8.1	19.6	11.4
Occupant Risk Factors		Y	10.4	9.7	7.2	13.5
1 400015		Roll	17.4	12.5	8.3	5.7
		Pitch	4.5	11.1	5.6	5.9
	(degrees)	Yaw	37.1	46.7	50.1	55.0
Maximum Dyna	mic Lateral Rail Defl	49.1	45.5	25.6	24.1	

Table 8.9. Comparison of Simulation Results for 15:1 Flared MGS Retrofittedwith Channel Rubrail with 12-inch Center-to-Ground Distance.

8.2. SUMMARY OF FINITE ELEMENT ANALYSIS

In this chapter, finite element computer modeling and simulations were conducted to investigate predictability of the MGS system crashworthiness when implemented at different flare rates and impacted at TL-3 impact conditions. Two general situations were investigated in parallel: (a) the MGS implemented at shallower flare rates than those already failed under the testing program, and (b) the MGS modified/retrofitted and implemented at different flare rates. For both general cases, a predictive analysis was conducted for impacts at *MASH* TL-3 conditions. Summaries of the performed FE simulation results are included in Table 8.10 and Table 8.11.

The impact behavior of MGS flares with shallower rates than 11:1, including 15:1, 18:1, and 21:1, were investigated and found to not significantly reduce lateral deflection or vehicle interaction compared to an 11:1 flare rate. This could indicate a potential for vehicle pocketing and rail rupture, as seen in a failed crash test.

To address the potential for vehicle pocketing and rail rupture, retrofit options for the MGS system were considered. The first option was to use short blockouts with half-post spacing (37½ inches) to prevent rail high concentration stresses and tearing due to direct contact between the blockout and rail. This retrofit design aimed to reduce lateral deflection and rail stress concentrations during impact to lower the likelihood of vehicle pocketing and rail rupture.

The half-post spacing system with short blockouts was evaluated with flare rates of 11:1 and 15:1 using a pickup truck, but the 11:1 system had increased occupant risks and ridedown acceleration. The 15:1 system showed improvement in both rail deflection and occupant risks.

The system was also evaluated with a small passenger car, but the recorded ridedown acceleration was too high, so a flare rate of 18:1 was evaluated, which showed improved occupant risks but still had a peak ridedown acceleration close to the MASH limit.

The study added a rubrail to a short blockout MGS with regular post spacing of 75 inches to reduce the ridedown acceleration. The rubrail was a typical $C6 \times 8$ steel channel installed 12 inches from the ground. Flare rates of 15:1 and 18:1 were investigated, and results showed that the retrofitted MGS with a rubrail was able to stably redirect the impacting pickup truck model, but there were numerical issues with the passenger car. Simulations were performed on the 18:1 flare rate retrofitted MGS with raising the rubrail height by 3 inches to reduce the gap between the W-beam and the rubrail. The increased rubrail height prevented the vehicle's tire from overriding the rubrail, which helped to contain and redirect the vehicle. This indicates that the retrofit was successful in reducing ridedown acceleration and improving crashworthiness.

The simulation was conducted on the retrofitted flared MGS system with 15:1 flare rate using a rubrail centered at 12 inches from the ground. The overall system behavior was improved, with maximum rail deflection for the pickup truck simulation being reduced to 45.5 inches, close to the recorded value in the pickup truck full-scale test of the non-flared MGS. Additionally, the ridedown acceleration for the small car simulation was reduced to 11.4 g.

Recommendations for future research include validating the obtained FE analysis results through full-scale testing to verify the crashworthiness of the 15:1 flared, regular post-spacing MGS with inclusion of shorter blockouts and a C6×8 steel channel centered at 12 inches from the ground.

Flare Rate (Effective Angle)			11:1 (30.2°)			15:1 (28.8°)				18:1 (28.4°)			21:1 (27.7°)
Design Option			Test MC	MCS	S Half-Post Spacing	MGS	Half-Post Spacing	Channel Rubrail		MGG	Channel Rubrail		MCG
				MOS				12 in.	15 in.	MOS	12 in.	15 in.	MOS
Oc Ir Veloo Rid	Occupant	Х	18.7	23.4	29.9	23.6	22.3	22.3	19.0	24.0	20.3	19.7	20.7
	Impact Velocity (ft/s)	Y	13.9	15.4	17.7	14.8	16.4	14.4	15.7	13.1	16.1	16.7	14.8
	Ridedown Acceleration (g)	Х	4.8	8.5	17.1	13.8	11.0	11.7	8.1	14.3	12.8	9.6	10.7
Risk		Y	5.0	9.0	12.4	13.8	10.3	10.4	9.7	7.0	9.7	8.4	9.1
Factors	Max. Angle (degrees)	Roll	8.9	4.76	15.8	8.8	6.8	17.4	12.5	3.1	4.4	8.4	10.2
		Pitch	5.6	1.06	7.4	9.2	2.3	4.5	11.1	5.9	8.4	9.8	3.1
		Yaw	194.4	18.13	58.0	56.2	40.7	37.1	46.7	54.1	34.7	34.4	57.9
Maximum Dynamic Lateral Rail Deflection (in.)		52.9ª	52.4	33.5	52.8	33.1	49.1	45.5	49.3	45.5	42.7	48.4	

 Table 8.10. Summary of FE Analysis for Pickup Truck.

^a Before rail rupture.

Flare Ra	te (Effective A	ngle)		15:1 (28.8°	")	18:1 (28.4°)			21:1 (27.7°)
Design Option			Half-Post	Channel	Rubrail	Half-Post	Channel Rubrail		MGS
			Spacing	12 in.	15 in.	Spacing	12 in.	15 in.	MOS
	Occupant	Х	47.2	32.8	32.5	39.4	31.5	21.7	42.0
Occupant Risk Factors	Impact Velocity (ft/s)	Y	18.0	25.9	17.4	14.1	25.6	24.9	14.4
	Ridedown Acceleration (g)	X	23.8	19.6	11.4	20.3	19.6	13.1	21.1
		Y	11.3	7.2	13.5	16.1	7.3	12.0	18.0
	Max. Angle (degrees)	Roll	14.0	8.3	5.7	10.9	8.1	8.0	19.5
		Pitch	6.2	5.6	5.9	6.1	5.5	2.4	5.9
		Yaw	33.6	50.1	55.0	41.3	50.1	49.2	85.7
Maximum Dynamic Lateral Rail Deflection (in.)			23.8	25.6	24.1	24.2	24.1	26.2	34.6

Table 8.11. Summary of FE Analysis for Small Car.

Chapter 9. SUMMARY AND CONCLUSIONS

9.1. ASSESSMENT OF TEST RESULTS

A flared strong-post W-beam guardrail system allows for the potential to reduce guardrail installation lengths, which, in turn, would result in decreased guardrail construction and maintenance costs, as well as reduced impact frequency. Stolle et al. (3) conducted a research and test study to investigate the potential to increase flare rates for an MGS according to NCHRP Report 350 criteria. The researchers conducted computer simulations and full-scale crash testing that showed that the MGS could meet NCHRP Report 350 impact criteria when installed at a 5:1 flare rate. Impact severities during testing were found to be greater than intended, yet the MGS passed all NCHRP 350 requirements. The researchers recommended that whenever a guardrail is outside of the shy line for adjacent traffic, and the roadside terrain is sufficiently flat, flare rates should be increased to as high as 5:1 when using the MGS guardrail.

NCHRP Report 350 testing and evaluation criteria were superseded by *MASH*, which was developed to incorporate significant changes and additions to procedures for safety-performance evaluation as well as updates reflecting the changing character of the highway network and the vehicles using it. For example, *MASH* increased the weight of the pickup truck design test vehicle from 4,409 lb to 5,000 lb, changed the body style from a ³/₄-ton standard cab to a ¹/₂-ton four-door, and imposed a minimum height for the vertical CG of 28 inches. The increase in vehicle mass represents an increase in impact severity of approximately 13 percent for Test 3-11 with the pickup truck design test vehicle compared to the impact conditions of NCHRP Report 350. The increased impact severity may therefore result in increased impact forces and larger lateral barrier deflections compared to NCHRP Report 350.

The impact conditions for the small car test have also changed. The weight of the small passenger design test vehicle increased from 1,800 lb to 2,420 lb, and impact angle increased from 20 degrees to 25 degrees with respect to the roadway. These changes represent an increase in impact severity of 105 percent for Test 3-10 with the small car design test vehicle compared to the impact conditions of NCHRP Report 350. This increase in impact severity might result in increased vehicle deformation and could possibly aggravate vehicle stability. Specifically, when a flare rate is included in the guardrail design, there is an increment of the effective impact angle between the vehicle and the guardrail, which results in a considerably higher impact severity and requires an increasing level of demand on the structural capacity of a barrier system. For example, under *MASH* conditions, a 5:1 flare rate would increase the impact severity 196 percent for Test 3-10.

MASH also adopted more quantitative and stringent evaluation criteria for occupant compartment deformation than NCHRP Report 350. An increase in impact severity might result in increased vehicle deformation and could possibly result in failure to meet the latest *MASH* evaluation criteria. For example, NCHRP Report 350 established a 6-inch threshold for occupant compartment deformation or intrusion. *MASH* limited the extent of roof crush to no more than 3.9 inches. In addition, *MASH* requires that the vehicle windshield not sustain a deformation greater than 3 inches and have no holes or tears in the safety lining as a result of the test impact. Although these evaluation criteria are applicable to all roadside safety device testing, they are most relevant for sign support design and testing. In addition, little evaluation of sign supports has been performed with larger vehicles such as the pickup. Systems that have been demonstrated to be crashworthy for passenger cars may not be geometrically compatible with pickup trucks.

The purpose of this project was to conduct a testing program to assess the performance of the MGS system when implemented with flare conditions according to the safety-performance evaluation guidelines included in *MASH*, Second Edition. The crash tests were performed in accordance with *MASH* TL-3. Two flare conditions were investigated: 7:1 with use of a passenger car, and 11:1 with use of a pickup truck.

The MGS tested at the considered flare conditions did not meet the performance criteria for *MASH* TL-3 guardrails. In the full-scale testing, MGS rail rupture under the higher impact severity and vehicle interaction during impact was the leading reason for system crashworthiness failure. Also, the first test that was conducted with the pickup truck on the 11:1 MGS flare resulted in failure to contain the vehicle due to fracture of the wood-post DAT system used in the test installation. The MGS 11:1 flare was then reinstalled and tested at the same conditions but with the inclusion of a steel-post end terminal system (SoftStop[®]) to avoid rupture of the wood posts. Although the end terminal did not result in post fracture, the test failed due to MGS rail rupture during the vehicle impact event.

See Table 9.1 for a summary of each test based on the applicable safety evaluation criteria.

Evaluation Criteria ^a	Brief Description	Test No. 609971-01-1	Test No. 609971-03-1	Test No. 609971-03-2
А	Contain, Redirect, or Controlled Stop	Fail	Fail	Fail
D	No Penetration into Occupant Compartment	S	S	S
F	Roll and Pitch Limit	Fail	Fail	S
Н	OIV Threshold	S	S	S
Ι	Ridedown Threshold	S	S	S
Ov	verall	Fail	Fail	Fail

Table 9.1. Summary of MASH Tests on MGS Guardrail with Flare.

Note: S = Satisfactory.

^a See Table 3.2 for details.

9.2. SUMMARY OF FINITE ELEMENT ANALYSIS RESEARCH

After the full-scale crash tests were completed and determined to be failed, an effort was initiated through finite element modeling and simulations to investigate the crashworthiness of the MGS system at shallower flare rates, and when considering prioritized MGS retrofit options, still under high-speed impact conditions.

The main challenge in evaluating the impact results of a computer simulation for a MGS W-beam rail system was to find a way to predict rail rupture. Element erosion was not considered due to its lack of robustness, so other factors were used, such as the vehicle's interaction with the system, the lateral deflection of the system during impact, predicted rail stresses/strains, and recorded occupant risk values and vehicle stability. The lateral deflection was especially important because it could indicate potential pocketing of the vehicle, which could cause excessive loading on the W-beam railing and ultimate failure.

The impact behavior of MGS flares with shallower rates was investigated and found to not significantly reduce the lateral deflection during impact. Therefore, retrofit options were considered, including the use of short blockouts and half-post spacing and adding a rubrail to short blockout MGS with regular post spacing. The use of short blockouts and half-post spacing improved occupant risk but still had a peak ridedown acceleration that was too close to the MASH allowed limit. Adding a rubrail to a short blockout MGS with regular post spacing and a 15:1 flare rate was found to improve the overall system behavior, reducing the maximum rail deflection and ridedown acceleration.

9.3. CONCLUSIONS

This research has conducted full scale tests and FE analysis on the flared MGS guardrail in accordance with *MASH* Test Level 3. Based on the research presented herein, the following conclusions are drawn:

- 1. To prevent failure to contain the vehicle due to fracture of the wood-post DAT system, a steel-post end terminal system (SoftStop[®]) is recommended for future tests to avoid rupture of the wood posts.
- 2. None of the three tests conducted on the MGS guardrail with a flare rate of 11:1 met the *MASH* requirements for semi-rigid longitudinal barriers.
- 3. Standard MGS guardrail with a flare rate of between 11:1 and 21:1 is not expected to meet *MASH* TL 3 requirements.
- 4. The 15:1 flared regular post-spacing MGS with inclusion of shorter blockouts and a C6×8 steel channel centered at 12 inches from the ground is recommended for future research include validating the obtained FE analysis results through full-scale testing to verify the crashworthiness.
REFERENCES

- 1. AASHTO. *Manual for Assessing Roadside Safety Hardware*, Second Edition. American Association of State Highway and Transportation Officials, 2016.
- 2. National Cooperative Highway Research Program (NCHRP). Recommended Procedures for the Safety Performance Evaluation of Highway Features. Report 350. Transportation Research Board, National Research Council, Washington, D.C., 1993.
- Stolle, C.S., Polivka, K.A., Reid, J.D., Faller, R.K., Sicking, D.L., Bielenberg, R.W., and Rohde, J.R., Evaluation of Critical Flare Rates for the Midwest Guardrail System (MGS), TRP-03-191-08, Midwest States' Regional Pooled Fund Program, Lincoln, Nebraska, 2008.
- 4. Center for Collision Safety & Analysis. 2018 Dodge Ram 1500 FE Detailed Mesh Model v3 Validation. George Mason University, 2022. <u>https://www.ccsa.gmu.edu/wp-</u>content/uploads/2022/05/2018-dodge-ram-detailed-validation-v3.pdf
- 5. Polivka, K.A., Faller, R.K., Sicking, D.L., Rohde, J.R., Bielenberg, R.W., and Reid, J.D. Performance Evaluation of the Midwest Guardrail System—Update to NCHRP 350 Test No. 3-11 with 28" CG Height (2214MG-2). Mid-America Transportation Center, 2006.
- 6. Kovar, J.C., Bligh, R.P., Menges, W.L., Schroeder, G.E., Schroeder, W., Wegenast, S., Griffith, B.L., and Kuhn, D.L. *MASH Crash Testing and Evaluation of the MGS with Reduced Post Spacing*. Report No. 610211-01, Texas A&M Transportation Institute, 2021.

APPENDIX A. DETAILS OF MGS GUARDRAIL WITH FLARE

A.1. 6099971-01-1 DRAWINGS

SPECIFICATIONS

The geometry and material specifications for this oval shoulder button-headed bolt and hex nut are found in AASHTO M 180. The bolt shall have 5/8-11 [M16x2] threads as defined in ANSI B1.1 [ANSI B1.13M] for Class 2A [6g] tolerances. Bolt material shall conform to ASTM A307 Grade A [ASTM F 568M Class 4.6], with a tensile strength of 60 ksi [400 MPa] and yield strength of 36 ksi [240 MPa]. Material for corrosion-resistant bolts shall conform to ASTM A325 Type 3 [ASTM F 568M Class 8.8.3], with tensile strength of 120 ksi [830 MPa] and yield strength of 92 ksi [660 MPa]. This bolt material has corrosion resistance comparable to ASTM A588 steels. Metric zinc-coated bolt heads shall be marked as specified in ASTM F 568 Section 9 with the symbol "4.6."

Nuts shall have ANSI B1.1 Class 2B [ANSI B1.13M Class 6h] 5/8-11 [M16x2] threads. The geometry of the nuts, with the exception of the recess shown in the drawing, shall conform to ANSI B18.2.2 [ANSI B18.2.4.1M Style 1] for zinc-coated hex nuts (shown in drawing) and ANSI B18.2.2 [ANSI B18.2.4.6M] for heavy hex corrosion-resistant nuts (not shown in drawing). Material for zinc-coated nuts shall conform to the requirements of AASHTO M 291 (ASTM A 563) Grade A [AASHTO M 291M (ASTM A 563M) Class 5], and material for corrosion-resistant nuts shall conform to the requirements of AASHTO M 291 (ASTM A 563M) Class 5].

When zinc-coated bolts and nuts are required, the coating shall conform to either AASHTO M 232 (ASTM A 153/A 153M) for Class C or AASHTO M 298 (ASTM B 695) for Class 50. Zinc-coated nuts shall be tapped over-size as specified in AASHTO M 291 (ASTM A 563) [AASHTO M 291M (ASTM A 563M)], except that a diametrical allowance of 0.020 inch [0.510 mm] shall be used instead of 0.016 inches [0.420 mm].

	Stress Area of	Min. Bolt
Designator	Threaded Bolt Shank	Tensile Strength
	(in ² [mm ²])	(kips [kN])
FBB01-05	0.226 [157.0]	13.6 [62.8]

Dimensional tolerances not shown or implied are intended to be those consistent with the proper functioning of the part, including its appearance and accepted manufacturing practices.

INTENDED USE

These bolts and nuts are used in numerous guardrail and median barrier designs.

GUARDRAIL BOLT AND RECESSED NUT

FBB0	1-05
SHEET NO.	DATE
2 of 2	5/2/2018

SPECIFICATIONS

Blockouts shall be made of timber with a stress grade of at least 1160 psi [8 MPa]. Grading shall be in accordance with the rules of the West Coast Lumber Inspection Bureau, Southern Pine Inspection Bureau, or other appropriate timber association. Timber for blockouts shall be either rough-sawn (unplaned) or S4S (surfaced four sides) with nominal dimensions indicated. The variation in size of blockouts in the direction parallel to the axis of the bolt holes shall not be more than $\pm \frac{1}{4}$ inch [6 mm]. Only one type of surface finish shall be used for posts and blockouts in any one continuous length of guardrail.

All timber shall receive a preservation treatment in accordance with AASHTO M 133 after all end cuts are made and holes are drilled.

Dimensional tolerances not shown or implied are intended to be those consistent with the proper functioning of the part, including its appearance and accepted manufacturing practices.

INTENDED USE

Blockout PDB01a is used with wood post PDE01 or PDE02 in the SGR04b strong-post W-beam guardrail and the SGM04b median barrier. Blockout PDB01b is routed to be used with steel post PWE01 or PWE02 in the SGR04c guardrail and the SGM04a median barrier.

W-BEAM TIMBER BLOCKOUT

PDB0	1a-b
SHEET NO.	DATE
2 of 2	7/06/2005

SPECIFICATIONS

W-beam and thrie-beam guardrail posts shall be manufactured using AASHTO M 270 / M 270M (ASTM A 709 / A 709M) Grade 36 [250] steel unless corrosion-resistant steel is required, in which case the post shall be manufactured from AASHTO M 270 / M 270M (ASTM A 709 / A 709M) Grade 50W [345W] steel. The dimensions of the cross-section shall conform to a W6x9 [W150x13.5] section as defined in AASHTO M 160 / M 160M (ASTM A 6 / A 6M). [W150x12.6] wide flange posts are an acceptable alternative that is considered equivalent to the [W150x13.5].

After the section is cut and all holes are drilled or punched, the component should be zinc-coated according to AASHTO M 111 (ASTM A 123) unless corrosion-resistant steel is used. When corrosion-resistant steel is used, the portion of the post to be embedded in soil shall be zinc-coated according to AASHTO M 111 (ASTM A 123) and the portion above the soil shall not be zinc-coated, painted or otherwise treated.

Designator	Area	I _x	I_{v}	S _x	S _y
	in² [10 ³ mm²]	in ⁴ [10 ⁶ mm ⁴]	in ⁴ [10 ⁶ mm ⁴]	in ³ [10 ³ mm ³]	in ³ [10 ³ mm ³]
PWE01-04	2.63 [1.7]	16.43 [6.84]	2.19 [0.91]	5.57 [91.2]	1.11 [18.2]

Dimensional tolerances not shown or implied are intended to be those consistent with the proper functioning of the part, including its appearance and accepted manufacturing practices.

INTENDED USE

Posts PWE01 and PWE02 are used with the SGR04a and SGR04c guardrails and the SGM04a median barrier. Blockouts like PWB01 (steel) or PDB01 (wood) are attached to each post.

Post PWE03 is used with the SGR09a guardrail and the SGM09a median barrier. Wood or plastic blockouts like the PWB02 are attached to each post with FBB03 bolts and FWC16a washers under the nuts.

Post PWE04 is used with the SGR09b guardrail and the SGM09b median barrier. A modified steel blockout PWB03 is attached to each post with at least two 1.5-inch [40 mm] long FBX16a bolts and nuts.

WIDE-FLANGE GUARDRAIL POST

PWE	1-04
SHEET NO.	DATE
2 of 2	7/06/2005

A.2. 6099971-03-1 DRAWINGS

TR No. 619971-01

APPENDIX B. SUPPORTING CERTIFICATION DOCUMENTS

					Certified	Analys	S		timit Hadmary Products
Trinity Highway Products	LLC								
2548 N.E. 28th St.					Order Numb	er: 1309704	Prod I	.n Grp: 3-Guardrail (Dom)	
Ft Worth (THP), TX 7611	1 Phn:(817) 665-1499				Customer I	O: 609971 - A	LASKA		As of: 5/8/19
Customer: SAMPLES,	TESTING MATERIAL	S			BOL Num	er: 76112		Ship Date:	
2525 STEM	MONS FRWY				Documen	t#: 1			
					Shipped	To: TX			
DALLAS, T	X 75207				Use Sta	ite: TX			
Project: ALASKA	DOT PROJECT #6099	71							
Qty Part # De	scription	pec	E		TICUT COURT TEAM			a	
40 11G 12	12'6/3'1.5/S	M-180	A	2	1191763	8 00,900	2,100	26.0 0.210 0.750 0.008 0.003	2 0.030 0.090 0.004 0.040 0.002 4
		M-180	>	2	1191764	53,000 8	0,800	20.0 0.220 0.810 0.009 0.00	2 0.030 0.100 0.004 0.050 0.003 4
		M-180	A	2	. 1191766	53,800 7	8,100	30.0 0.210 0.770 0.009 0.00	
		M-180	A	2	1292230	62,600 ×	4,100	22.0 0.220 0.700 0.007 0.000	ϵ A ATA A 11A A ANA
85 533G 6'0	POST/8.5/DDR	M-180 A-36	в	2	235485 55060347	58,920 / 60,200 7	8,610 6,500	27.5 0.130 0.860 0.014 0.017	0.190 0.310 0.009 0.140 0.001 4
12 724G 6'0	TUBE SL/.125X8X6	A-500			A92132	55,160 7	4,134	27.0 0.200 0.470 0.010 0.003	0.040 0.080 0.000 0.050 0.001 4
6 850G 12	/BUFFER/ROLLED	M-180	A	2	31847970	48,400 6	2,300	35.0 0.060 0.450 0.015 0.001	0.030 0.090 0.001 0.070 0.002 4
6 3000G CI	3L 3/4X6'6/DBL	HW			132915				
405 3340G 5/	3" GR HEX NUT	HW			19-42-014				
320 3360G 5/	8"X1.25" GR BOLT	HW			20190107811				
85 3500G 5/	8"X10" GR BOLT A307	HW			31732-B				
85 4076B W	D BLK RTD 6X8X14	HW			174				
12 4140B W	D 4'0.25 POST 5.5X7.5	HW			197				
12 19481G C	3X5#X6'-8" RUBRAIL	A-36			3086788	56,100 7	16,200	31.0 0.170 0.650 0.014 0.03:	3 0.210 0.360 0.015 0.090 0.000 4
6 20207G 1	2/9'4.5/8-HOLE ANCH/S	RHC M-180	A	2 2	L14818 232196	61,710	79,460	28.7 0.180 0.720 0.012 0.00	4 15 0.020 0.120 0.000 0.070 0.002 4
									1 of 3

C 10 Z								
5				31433		HW	120A	36
				31654		HW	120A	36
				P38562 R70589-01		HW	120A	36
				P38729 R71181-01	3	HW	120A	36
				31732-В		· HW	120A	36
				848773-8		HW	120A	36
				20190107811		HW	120A	36
				19-42-014		HW	120A	36
				P38498 R70030-02		HW	120A	36
0.020 0.090 0.003 0.050 0.001 4	31.0 0.060 0.330 0.011 0.003 0	67,000	61,500	A809937		A-500	20A	
1010 0.040 0.001 0.000 0.001 4	34.0 0.200 0.400 0.011 0.010 0	68,700	48,700	4174233		A-36	20A DAT-31-TX-HDW-CAN	6 361
	23.6 0.200 0.710 0.011 0.001 (82,200	63,500	C88582	A 2	M-180		
0.030 0.110 0.000 0.060 0.001 4	16.3 0.210 0.690 0.009 0.002 (79,100	59,000	C88581	A 2	M-180		
0.020 0.120 0.000 0.070 0.001 4	20.6 0.190 0.660 0.010 0.002 (78,200	55,100	A90779	A 2	M-180		
0.030 0.120 0.000 0.060 0.001 4	20.7 0.210 0.680 0.012 0.003 (86,800	65,800	A90778	A 2	M-180		
0.020 0.110 0.000 0.090 0.001 4	21.4 0.200 0.730 0.018 0.004 (83,490	63,900	233125	A 2	M-180		
0.010 0.130 0.001 0.060 0.000 4	24.5 0.190 0.720 0.011 0.003 0	82,150	62,720	233124	A 2	M-180		
0.020 0.110 0.000 0.070 0.000 4	22.7 0.190 0.720 0.013 0.004 0	82,430	63,570	233123	A 2	M-180		
Si Cu Ch Cr Vn ACW	Elg C Mn P S	TS	Yield	Heat Code/ Heat	CL TY	Spec	rt# Description	Oty Pa
						09971	ALASKA DOT PROJECT #6	Project:
		X	Use State: T				ALLAS, TX 75207	D,
		X	Shipped To: T					
		-	ocument #: 1	Γ			25 STEMMONS FRWY	25
	Ship Date:	76112)L Number: 7	BC		JALS	MPLES, TESTING MATER	Customer: S/
As of: 5/8/19	Α	09971 - ALASK	stomer PO: 60	C			, TX 76111 Phn:(817) 665-1499	Ft Worth (THP)
;	od Ln Grp: 3-Guardrail (Dom)	1309704 Pro	er Number: 1	Ord			h St.	2548 N.E. 28t
							y Products LLC	Trinity Highwa
Trinty Her		alysis	ied An	Certif				
whey Prod.								

3 of 3					
Jun Chill	A Certified By Quality Assurance	Jonary Jurne	LAND of Texas 18-2023 4666	JOMARY LUGINS	Notary Public: Commission Expires: /
Think Holday Produced The USS		fay, 2019.	me this 8th day of I	farrant. Sworn and subscribed before	STRENGTH – 46000 LB State of Texas, County of T
S S	ICE WITH ASTM A-153, UNLESS OTH CORDANCE WITH ASTMF-2329, UNLES FM 449 AASHTO M30, TYPE II BREAKING	VANIZED IN ACCORDANC D ARE GALVANIZED IN ACC INEALED STUD 1" DIA ASTI	IC-1035 STEEL AN	ASTM A-563 SPECIFICATION ITH ASTM F-436 SPECIFICATION NC COATED SWAGED END AIS	NUTS COMPLY WITH WASHERS COMPLY WT OTHERWISE STATED. 3/4" DIA CABLE 6X19 ZI
HERWISE STATED.	NCE WITH ASTM A-153, UNLESS OT	E UNCOATED LVANIZED IN ACCORDAY	TX B,P, OR S, AF	T NUMBERS ENDING IN SUFI H ASTM A-307 SPECIFICATIO	FINISHED GOOD PAR BOLTS COMPLY WITI
, 20 CTIN 000-710.	ALES WITH THE "BUT AMERICA ACT MTS)	AED IN USA AND COMPLI STIC SHIPMENTS) (INTERNATIONAL SHIPME)	NARE PERFORI A-123 (US DOME) A-123 & ISO 146	ESSES OF THE STEEL OR IRC TERIAL CONFORMS WITH ASTM TERIAL CONFORMS WITH ASTM	ALL COATINGS PROC ALL GALVANIZED MAT ALL GALVANIZED MAT
22 CED 635 110	2. BRICA ACT, 23 CFR 635.410. ESS OTHERWISE STATED.	ge Stain Policy QMS-LG-002 IPLIES WITH THE BUY AMEI MEETS ASTM A36 UNLE	ducts , LLC Stora IN USA AND COM UCTURAL STEE	als subject to Trinity Highway Pro MEL TED AND MANUFACTURED ETS AASHTO M-180, ALL STR	Upon delivery, all materia ALL STEEL USED WASN ALL GUARDRAIL MEI
	73,000 31.0 0.200 1.000 0.014 0.00	51,500	83187C	A-36	36120A
					36120A
0.190 0.370 0.015 0.180 0.003 4	76,100 25.0 0.140 0.710 0.012 0.019	56,400	1058859	9E-V	
Si Cu Cb Cr Vn ACW	TS Elg C Mn P S	e/ Heat Yield	L TY Heat Co	ription Spec C	Oty Part # Desci
				OT PROJECT #609971	Project: ALASKA D
		Use State: TX		75207	DALLAS, TX
		Shipped To: TX			
		Document #: 1		4ONS FRWY	2525 STEMM
	Ship Date:	BOL Number: 76112		'ESTING MATERIALS	Customer: SAMPLES, T
As of: 5/8/19	- ALASKA	Customer PO: 609971 -		Phn:(817) 665-1499	Ft Worth (THP), TX 76111
	04 Prod Ln Grp: 3-Guardrail (Dom)	Order Number: 130970-			2548 N.E. 28th St.
				LC	Trinity Highway Products L
Trinks High Party	ysis	rtified Analy	Ce		
Way Prod.					

Lighnesy Produce	S. LLC		Asof: 12/31/19					Cb Cr Vn ACW	4	4 700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0.000 0.060 0.000 4	0.000 0.070 0.002 4	0.000 0.060 0.001 4		0.000 0.050 0.003 4 0.000 0.050 0.000 4 0.014 0.050 0.000 4	4 400.0 000.0 410.0	0.000 0.210 0.003 4		•	4 🖌	t -	Ŧ		1 of 4
		In Grove 0 End Transition I.	Lui Urp. 7-Erid Terminais (Dom)	Ship Date:				Elg C Mn P S Si Cu	24.5 0.190 0.730 0.008 0.002 0.190	24.6 0.190 0.740 0.011 0.002 0.030 0.110	27.8 0.190 0.720 0.010 0.005 0.020 0 100	26.0 0.200 0.720 0.010 0.004 0.010 0.100	25.4 0.190 0.740 0.010 0.004 0.010 0.11(29.1 0.190 0.730 0.012 0.003 0.020 0.100		25.0 0.220 0.000 0.005 0.003 0.030 0.080 0.082 25.0 2.030 0.170 25.0 25.0 0.070 0.060 0.007 0.030 0.170 0.560 0.050 0.070 0.05	25.6 0.070 0.830 0.007 0.028 0.250 0.090	26.3 0.090 0.930 0.018 0.031 0.230 0.440							
vici c	cichi	212 Brod	LED FUND	×				18	81,850	82,890	79,830	82,830	91,910	76,620	84.900	82,200 71,100	68,200	74,311							
d Ang		Jumber: 1319	ner PO: POOI	umber: 7843 ment #: 1	ped To: TX	VI Jales	reav	TIEIO	63,390	63,510	61,270	61,940	61,610	56,310	62,400	56,100 59,800	55,000	61,274							
Certifie		Order N	Custor	Docu	Ship	Co.	TV Heat Codis/ Haat	2 L14619	2 244186	2 245247	2 245248	2 245249	2 245250	2 241647 2 F15219	2 1297897	2 1197276 2817878	1801947	59089368	P39066 R72634-01	19-35-008	879381-2	881353-1	736	192571	
			ALS			1266	Spec CI,	RHC	M-180 A	M-180 A	M-180 A	M-180 A	M-180 A	M-180 B	M-180 A	M-180 A A-36	A-36	A-36	F844-3300	FAST	A307-3360	A307-3500	WOOD	LABELS	
	roducts LLC		X 76111 Phn:(817) 665-1499 PLES, TESTING MATER1	STEMMONS FRWY	AS, TX 75207	MED FUND PROJECT 60	Description	12/12'6/3'1.5/S								6'0 POST/8.5/DDR			WASHER,FLAT,5/8 R,TY	5/8" GR HEX NUT	5/8"X1.25" GR BOLT	5/8"X10" GR BOLT A307	WD BLK RTD 6X8X14	REFL SHT 5X24 Y/B LT	
	iity Highway P	8 N.E. 28th St	orth (THP), Ty omer: SAMI	2525	DALL	cet: POO	Qty Part#	16 11G						116		32 533G	533G	533G	32 3300G	128 3340G	128 3360G	32 3500G	32 4076B	2 5851B	
	Trin	254	Ft W Cust			Proje																			

Trinity Highway I	Products 1.1.C				Certifie	d Ana	lysis							Millin Annin	ay Produ	dis LLC
2548 N.E. 28th S	Št.				Order Ni	umher 1310	010 Dr.c	d I n Cons	F-0 0	F	6					
Ft Worth (THP), T	CX 76111 Phn:(817) 665-1499				Custom	ter PO: POOI	LED FUND	din un n	9-End	Iermin	als (Dor	(u				
Customer: SAM 2525	1PLES, TESTING MATER STEMMONS FRWY	IALS			BOL Ni Docun	umber: 7843 nent #: 1	8	Ship Date	ă				As of:	12/31/1	6	
DALI	LAS, TX 75207				Shipp	ed To: TX State: TX										
Project: PO(OLED FUND PROJECT 6(179971														
Qty Part#	Description	Spec CI		H YI	eat Code/ Heat	Yield	IS	Elg	C W		s.	2	Ĵ,	6		
2 5852B	REFL SHT 5X24 Y/B RT	LABELS		15	12571							5		5	V II A	
4 500646B	3 SOFTSTOP MASH TL3	RHC	14	2 LI	4619											
		M-180	V	5	244186	63,390	81,850	24.5 0.1	90 07	30 0.008	0 000 0	1 0 000	000 01	0000		
		M-180	A	2	245247	63,510	82,890	24.6 0.1	90 0.7	40 0.011	0 000 0	1.0 050	10 0.00	000000	0.002	
		M-180	٨	2	245248	61,270	79,830	27.8 0.1	90 0.7	20 0.010	0.005 0.	020 0.1	00 0.00	0/0.0 000	100.0	
		M-180	A	5	245249	61,940	82,830	26.0 0.2	00 0.7	20 0.010	0.004 0	010 010	00 0 00	000.000	200.0	
		M-180	A	2	245250	61,610	916,16	25.4 0.1	0.0	40 0.010	0.004 0.	010 0.1	00.00	0 0.070	0.002	
500646B		M-180 A-36	в	2 18	241647 01947	56,310 55,000	76,620 68,200	29.1 0.1 25.6 0.07	90 0.7. 0 0.830	30 0.012 0.007 6	0.003 0.	020 0.1(50 0.09	0 0.014	0 0.060	0.001	
500646B		A-36		28	17878	59,800	71,100	25.0 0.07	0 0.860	0.007 6	.030 0.1	60 0.26	0 0.014	0.050 0	7000	
500646B		F436 -3240		P3	8754 R71028-01											
500646B		A563 -3354		P3	8401 R70911-01											
500646B		FAST		19.	35-008											
500646B		A307-3360		879	381-2											
500646B		F3125 -3391		86()4648-1											
500646B		A307-3500		881	353-1											
500646B		F436-3701		P38	1468 R69526											
														2 of	4	

and Dece	Certified Analysis		Order Number 1310212 Bred In Case 6 Fad Trans.	Customer PO: POOI ED FI ND	BOL Number: 78438 Shin Date: As of: 12/31/19	Document #: 1	Shipped To: TX	Use State: TX		t Code/ Heat Vield TS Elg C Mn P S Si Cu Cb Cr Vn ACW 36 R71968	1-60	41	74 R71569-01	;-B	4 R72012			-12	53,000 78,000 22.0 0.180 0.890 0.014 0.027 0.240 0.320 0.002 0.150 0.005	orage Stain Policy QMS-LG-002. OMPLIES WITH THE BUY AMERICA ACT, 23 CFR 635.410. 3EL MEETS ASTM A36 UNLESS OTHERWISE STATED.	3 of 4
		Trinity Highway Products LLC	2548 N.E. 28th St.	Ft Worth (THP), TX 76111 Phn:(817) 665-1499	Customer: SAMPLES, TESTING MATERIALS	2525 STEMMONS FRWY		DALLAS, TX 75207	Project: POOLED FUND PROJECT 609971	Qiy Part # Description Spec CL TY He. 500646B A563 -3704 P38	500646B F3125-3717 884	500646B A563 -3908 P38	500646B F436-4372 P38	500646B F3125-4489 318	500646B B18.21.1-49 [389	500646B PLAST 3651	500646B MISC 5492	500646B MISC 3393	500646B A-36 1387	^J pon delivery, all materials subject to Trinity Highway Products, LLC S ALL STEEL USED WAS MELTED AND MANUFACTURED IN USA AND ALL GUARDRAIL MEETS AASHTO M-180, ALL STRUCTURAL ST	

nalysis Asof: 12/31/19 1319212 Prod Ln Grp: 9-End Terminals (Dom) POOLED FUND Asof: 12/31/19 78438 Ship Date: 1 1	TX TX	SHIPMENTS) SHIPMENTS) SCRDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. SRDANCE WITH ASTM A-153, UNLESS OTHERWISE STATED. IN ACCORDANCE WITH ASTM F-2329, UNLESS A ASTM 449 AASHTO M30, TYPE II BREAKING	Certified By: Certified By: Quality Assurance	4 of 4
Trinity Highway Products LLC Trinity Highway Products LLC 2548 N.E. 28th St. Ft Worth (THP), TX 76111 Phm:(817) 665-1499 Customer PO: BOL Number: 2525 STTEMMONS FRWY Document #:	DALLAS, TX 75207 Shipped To: DALLAS, TX 75207 Use State: Project: POOLED FUND PROJECT 609971 ALL COATINGS PROCESSES OF THE STEEL OR IRON ARE PERFORMED IN 11SA AND CO	ALL GAL VANIZED MATERIAL CONFORMS WITH ASTM A-123 (USDOMESTIC SHIPMENTS) ALL GAL VANIZED MATERIAL CONFORMS WITH ASTM A-123 (USDOMESTIC SHIPMENTS) ALL GAL VANIZED MATERIAL CONFORMS WITH ASTM A-123 (ISDOMESTIC SHIPMENTS) FINISHED GOOD PART NUMBERS ENDING IN SUFFIX B,P, OR S, ARE UNCOATED BOLTS COMPLY WITH ASTM A-307 SPECIFICATIONS AND ARE GALVANIZED IN ACC NUTS COMPLY WITH ASTM A-436 SPECIFICATIONS AND ARE GALVANIZED IN ACCO WASHERS COMPLY WITH ASTM F-436 SPECIFICATIONS AND AND ARE GALVANIZED IN ACCO OTHERWISE STATED. 34" DIA CABLE 6X19 ZINC COATED SWAGED END AISI C-1035 STEEL ANNEALED STUD 1" DIA STRENGTH - 46000 LB	State of Texas, County of Tarrant. Swom and subscribed before me this 31st day of December, 2019. Notary Public: Commission Expires Commission Expires Notary 10 130076852 Notary 10 130076852	
Date	4-22-2019			
---	-------------------------------	--	--	
	TTI Proving Ground			
Test Facility and Site Location	3100 SH 47			
	Bryan, TX 77807			
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines			
Fill Motorial Description (ASTM D2487) and giave analysis	AASHTO M147 Grade B Crushed			
Fill Material Description (ASTM D2487) and sieve analysis	Limestone Road Base			
Description of Fill Pleasment Procedure	6-inch lifts tamped with a			
Description of this racement riocedure	pneumatic compactor for 40 s			

Table B.1. Test Day Static Soil Strength Documentation for Test No. 609971-01-1.

Comparison of Static Load Test Results and Required Minimum: Load Versus Displacement at 25-inch Height

Figure B.1. Test Day Static Soil Strength Documentation for Test No. 609971-01-1.

Date	7-22-2019		
	TTI Proving Ground		
Test Facility and Site Location	3100 SH 47		
	Bryan, TX 77807		
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines		
Fill Material Description (ASTM D2487) and sieve analysis	AASHTO M147 Type A Grade 2		
Thi Waterial Description (ASTW D2487) and sieve analysis	Crushed Limestone Road Base		
Description of Fill Placement Procedure	6-inch lifts tamped with a		
Description of Fin Flacement Flocedure	pneumatic compactor for 40 s		

Table B.2. Test Day Static Soil Strength Documentation for Test No. 609971-03-1.

Comparison of Static Load Test Results and Required Minimum: Load Versus Displacement at 25-inch Height

Figure B.2. Test Day Static Soil Strength Documentation for Test No. 609971-03-1.

Date	3-18-2020		
	TTI Proving Ground		
Test Facility and Site Location	3100 SH 47		
	Bryan, TX 77807		
In Situ Soil Description (ASTM D2487)	Sandy gravel with silty fines		
Fill Material Description (ASTM D2487) and sieve analysis	AASHTO M147 Type A Grade 2		
Thi Waterial Description (ASTW D2487) and sieve analysis	Crushed Limestone Road Base		
Description of Fill Placement Procedure	6-inch lifts tamped with a		
Description of Fin Flacement Flocedure	pneumatic compactor for 40 s		

Comparison of Static Load Test Results and Required Minimum:

Table B.3. Test Day Static Soil Strength Documentation for Test No. 609971-03-2.

Figure B.3. Test Day Static Soil Strength Documentation for Test No. 609971-03-2.

APPENDIX C. MASHTEST 3-10 (CRASH TEST NO. 609971-01-1)

C.1. VEHICLE PROPERTIES AND INFORMATION

Date: 2019-04-18 Test No.:	609971-01-1	VIN No.: KNADE	123886404640
Year: 2008 Make:	Kia	Model: Rio	
Tire Inflation Pressure: 32 PSI	Odometer: 150972	Tire Size	e: 185/65R14
Describe any damage to the vehicle prio	r to test: <u>None</u>		
Denotes accelerometer location.			F1 I
NOTES: None	- A M		• N T
Engine Type: 4 CVI	-		
Engine CID: <u>1.6 L</u>	-		
Transmission Type: Auto or Manual FWD RWD 4WD Optional Equipment	P-10-10-10-10-10-10-10-10-10-10-10-10-10-	R	A.J.
None	. i_Ľ	• • • • • • •	d i i i i i i i i i i i i i i i i i i i
	(_)	<u>Ň└╺╈╼╤</u> ╡╡ _┲ ╝	
Dummy Data: Type: 50th Percentile Male Mass: 165 lb Seat Position: Impact Side			
Geometry: inches	4		•
A 66.38 F 33.00	K 12.25	P 4.12	U 14.75
B <u>51.50</u> G	L 25.25	Q 22.50	V 20.50
C 165.75 H 35.61	M 57.75	R <u>15.50</u>	W 35.60
D 34.00 I 7.75	N 57.70	S 8.25	X <u>102.00</u>
E 98.75 J 21.50	O 27.00	T 66.20	
Wheel Center Ht Front 11.00	Wheel Center Ht	Rear 11.00	W-H 0.00
RANGE LIMIT: A = 65 ±3 inches; C = 169 ±8 inches; I TOP OF RADIATOR SUPPORT =	E = 98 ±5 inches; F = 35 ±4 inches; H _ inches; (M+N)/2 = 56 ±2 inches; W-	H = 39 ±4 Inches; O (Bottom of H H < 2 Inches or use MASH Para	lood Lip) = 24 ±4 inches graph A4.3.2
GVWR Ratings: Mass: Ib	Curb	Test Inertial	Gross Static
Front 1718 Mfront	1589	1560	1645
Back 1874 Mrear	854	880	960
Total 2620 Mitatel			
10tal <u>3036</u> Milda	2443	2440	2605
Mase Distribution	2443 Alowable TIM = 242	2440 10 lb ±55 lb Allowable GSM = 29	2605 585 lb ± 55 lb

Figure C.1. Vehicle Properties for Test No. 609971-01-1.

Date:	2019-04-18	Test No.:	609971-01-1	VIN No.:	KNADE123886404640
Year:	2008	Make:	Kia	Model:	Rio

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete Wh	en Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	X1+X2 _
< 4 inches	2 =
≥ 4 inches	

Note: Measure C1 to C6 from Driver to Passenger Side in Front or Rear Impacts - Rear to Front in Side Impacts.

		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	Cı	C ₂	C ₃	C4	C₅	C ₆	±D
1	AT FT BUMPER		6								
2	SAME		9								
	Measurements recorded										
	√ inches or □ mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure C.2. Exterior Crush Measurements for Test No. 609971-01-1.

C.2. SEQUENTIAL PHOTOGRAPHS

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure C.3. Sequential Photographs for Test No. 609971-01-1 (Overhead Views).

(a) 0.000 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure C.4. Sequential Photographs for Test No. 609971-01-1 (Frontal Views).

(a) 0.000 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s

Figure C.5. Sequential Photographs for Test No. 609971-01-1 (Rear Views).

C.3. VEHICLE ANGULAR DISPLACEMENTS

Figure C.6. Vehicle Angular Displacements for Test No. 609971-01-1.

C.4. VEHICLE ACCELERATIONS

Figure C.7. Vehicle Longitudinal Accelerometer Trace for Test No. 609971-01-1 (Accelerometer Located at Center of Gravity).

Figure C.8. Vehicle Lateral Accelerometer Trace for Test No. 609971-01-1 (Accelerometer Located at Center of Gravity).

TR No. 619971-01

Figure C.9. Vehicle Vertical Accelerometer Trace for Test No. 609971-01-1 (Accelerometer Located at Center of Gravity).

APPENDIX D. MASHTEST 3-11 (CRASH TEST NO. 609971-03-1)

D.1. VEHICLE PROPERTIES AND INFORMATION

Date: 20	019-07-22	Test No.:	609971-	03-01	VIN No.:	1C6R	R6GT2DS	693414
Year:	2013	Make:	RAM	И	Model	:	1500	
Tire Size:	265/70 R 1	17		Tire	Inflation Pre	essure:	35	psi
Tread Type:	Highway				Odd	meter: 12	6643	
Note any dam	age to the	vehicle prior to	test: None		-			
 Denotes ac 	celeromete	r location.		ļ		-		
NOTES: NO	ne			10	717			
Engine Type: Engine CID:	V-8 4.7 liter		A M WHEEL TRACK	6				N T WHEEL
Transmission	Type: or RWI	Manual		R			TEST INERTIAL C. M.	+
Optional Equi	pment:						2	
Dummy Data: Type: Mass: Seat Position	No dum	imy O Ib		• P •		G G B		
Geometry:	inches			-	FRONT	_c	REAR.	-
A78.	50 <u></u> F	40.00	К	20.00	_ P _	3.00	U	26.75
в74.0	0 <u></u> G	28.25	_ L	30.00	Q	30.50	V	30.25
c 227.	<u>50</u> н	59.60	M	68.50	_ R _	18.00	W	59.60
D 44.	00 1	11.75	N	68.00	S	13.00	X	79.00
E 140.3 Wheel Cen	50 J	27.00 14.75 ci	O Wheel Well	46.00	_ Т_ 600	77.00 Bottom F	rame	12.50
Wheel Cen	ter	14.75	Wheel Well		0.25	Bottom F	rame	22.50
Height Re RANGE LIMIT: A=7	8ar 8 ±2 inches; C=23	7±13 inches: E=148±1	learance (Rear) 2 inches: F=39±3 ind	hes; G = > 28	0.2.0 Inches; H = 63 ±41	Height - inches: O=43 ±4 in	Rear ches: (M+N)/2=6	7 ±1.5 inches
GVWR Ratin	18:	Mass: Ib	Curk		Test	Inertial	Gro	ss Static
Front 3	700	Mtront	2	2968		2906		2906
Back 3	900	Mrear	2	2084		2141		2141
Total 6	700	MTotal	5	052		5047		5047
Mass Distrib	ution:			(Allowable	Range for TIM and	d GSM = 5000 lb ±	110 lb)	
lb	L	F: 1465	RF:	1441	LR:	1097	RR:	1044

Figure D.1. Vehicle Properties for Test No. 609971-03-1.

Date:	2019-07-22	Test No.:	609971-03-01	VIN No.:	1C6RR6GT2DS693414	
Year:	2013	Make:	RAM	Model:	1500	

Complete When Applicable End Damage Side Damage Undeformed end width Bowing: B1 X1 Corner shift: A1 B2 X2 A2 Bowing constant Bowing constant (check one) $\frac{X1 + X2}{2} =$ = ≤ 4 inches = =

VEHICLE CRUSH MEASUREMENT SHEET¹

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

~		Direct I	Damage								
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C1	C ₂	C3	C_4	C5	C_6	±D
1	AT FT BUMPER	16	11								
2	SAME	16	10								
	Measurements recorded										
	inches or mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure D.2. Exterior Crush Measurements for Test No. 609971-03-1.

Date:	2019-07-22	_ Test No.:	609971-03-01	VIN	No.:	1C6RR6GT2	DS693414
Year:	2013	2013 Make: RAM		Mod	el:	150	0
	The	-+	₩)	OCCI DEFOR		COMPARTI N MEASUR	MENT EMENT
	F			В	efore	After (inches)	Differ.
	J E1	E2 E3 E	Δ	.1	65.00	65.00	0.00
			A	.2	63.00	63.00	0.00
			A L	.3	65.50	65.50	0.00
			B	51	45.00	45.00	0.00
			В	2	38.00	38.00	0.00
			B	3	45.00	45.00	0.00
			B	4	39.50	39.50	0.00
		B1-3 B4-		5	43.00	43.00	0.00
6	D1-	-3	B	6	39.50	39.50	0.00
			C	:1	26.00	26.00	0.00
	\mathcal{I}		C	2	0.00	0.00	0.00
			C	:3	26.00	26.00	0.00
			C)1	11.00	11.00	0.00
			C)2	0.00	0.00	0.00
			C	3	11.50	11.50	0.00
		25	E	.1	58.50	58.50	0.00
	B1,4	<u></u>	E	2	63.50	63.50	0.00
	E	1-4	E	.3	63.50	63.50	0.00
			E	.4	63.50	63.50	0.00
			F		59.00	59.00	0.00
			G	3	59.00	59.00	0.00
			F	I –	37.50	37.50	0.00
*Lateral a	rea across the cab	from driver's s	ide l	_	37.50	37.50	0.00
kickpanel	to passenger's sic	ie kickpanei.	J	*	25.00	25.00	0.00

Figure D.3. Occupant Compartment Measurements for Test No. 609971-03-1.

D.2. SEQUENTIAL PHOTOGRAPHS

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure D.4. Sequential Photographs for Test No. 609971-03-1 (Overhead Views).

(a) 0.000 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure D.5. Sequential Photographs for Test No. 609971-03-1 (Frontal Views).

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure D.6. Sequential Photographs for Test No. 609971-03-1 (Rear Views).

D.3. VEHICLE ANGULAR DISPLACEMENTS

Roll, Pitch and Yaw Angles

Figure D.7. Vehicle Angular Displacements for Test No. 609971-03-1.

D.4. VEHICLE ACCELERATIONS

Figure D.8. Vehicle Longitudinal Accelerometer Trace for Test No. 609971-03-1 (Accelerometer Located at Center of Gravity).

Figure D.9. Vehicle Lateral Accelerometer Trace for Test No. 609971-03-1 (Accelerometer Located at Center of Gravity).

Figure D.10. Vehicle Vertical Accelerometer Trace for Test No. 609971-03-1 (Accelerometer Located at Center of Gravity).

APPENDIX E. MASHTEST 3-11 (CRASH TEST NO. 609971-03-2)

E.1. VEHICLE PROPERTIES AND INFORMATION

Date: 2	2020-3-18	Test No.:	609971-	-03-2	VIN No.:	1C6RR6	GT2ES2	286071
Year:	2014	Make:	RAN	Λ	Model:			
Tire Size:	265/70 R 1	7		Tire I	nflation Pre	ssure:	35 p	osi
Tread Type:	Highway				Odo	meter: 15658	3	
Note any dan	nage to the v	ehicle prior to te	est: None					
 Denotes ad 	celerometer	location.		P	-wx	-		
NOTES: NO	ne		1 +	10	717] —	
Engine Type: Engine CID:	V-8 5.7 L		A M	6			 }	N T
Transmission	Type: or _[_☑ RWD	Manual		R	1		ERTIAL C. M.	t
Optional Equi	ipment:			E			2	
Dummy Data Type: Mass: Seat Positio	n:	0 lb	1- 1-	- F - F			- D-	
Geometry:	inches	40.00			-	-c	1 Maries	-
A <u>78.</u> B 74	<u>50</u> F	40.00	к	20.00	- ^P -	30.50	U -	20.75
c 227.	<u>50</u> н	59.54	м —	68.50	- <u> </u>	18.00	w-	59.5
D 44.	00 1	11.75	N	68.00	s	13.00	x	79
E 140.	50 J	27.00	0	46.00	т	77.00		
Wheel Cer Height Fr	ont	14.75 Clea	Wheel Well rance (Front)		6.00	Bottom Frame Height - Fron		12.50
Wheel Cer Height R	ear	14.75 Clea	Wheel Well arance (Rear)		9.25	Bottom Frame Height - Rear	e r	22.50
GVWR Ratin	s ±2 inches; C=237 gs: 3700	±13 inches; E=148 ±12 in Mass: Ib M _{front}	Curk	hes; G = > 28 ln <u>)</u> 2985	<u>Test</u>	nches; 0=43 ±4 Inches; <u>nertial</u> 2892 24.27	(M+N)/2=67 Gros	±1.5 Inches
Back 3	3900	Mrear		2161		2127		
iotal t	000	MTotal		(Allowable I	Range for TIM and	GSM = 5000 lb ±110 lb		U
Mass Distrib	ution: LF	: 1450	RF:	1442	LR:	1073 F	RR:	1054

Figure E.1. Vehicle Properties for Test No. 609971-03-2.

Date:	2020-3-18	Test No.:	609971-03-2	VIN No.:	1C6RR6GT2ES286071
Year:	2014	Make:	RAM	Model:	

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable							
End Damage	Side Damage						
Undeformed end width	Bowing: B1 X1						
Corner shift: A1	B2 X2						
A2							
End shift at frame (CDC)	Bowing constant						
(check one)	X1+X2						
< 4 inches	2						
≥ 4 inches							

Note: Measure C1 to C6 from Driver to Passenger Side in Front or Rear Impacts - Rear to Front in Side Impacts.

		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	Cı	C2	C3	C4	C ₅	C ₆	±D
1	AT FT BUMPER	18	10								
2	SAME	18	10								
	Measurements recorded										
	√inches or ☐mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure E.2. Exterior Crush Measurements for Test No. 609971-03-2.

Date:	2020-3-18	Test No.:	609971-03-2	<u>ا</u> ر	/IN No.:	1C6RR6GT2ES286071			
Year:	2014	_ Make: _	RAM	N	lodel:				
				OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT					
	F	/			Belore	(inches)	Diller.		
	J E1	E2 E3	E4	A1	65.00	65.00	0.00		
l l				A2	63.00	63	0.00		
		н		A3	65.50	65.50	0.00		
				B1	45.00	45.00	0.00		
				B2	38.00	38.00	0.00		
	DI-	B1-3 -3 -3	[B3	45.00	45.00	0.00		
				B4	39.50	39.50	0.00		
				B5	43.00	43.00	0.00		
6				B6	39.50	39.50	0.00		
\square				C1	26.00	26.00	0.00		
				C2	0.00	0.00	0.00		
				C3	26.00	26.00	0.00		
				D1	11.00	11.00	0.00		
				D2	0.00	0.00	0.00		
				D3	11.50	11.50	0.00		
	E F	1 12.5		E1	58.50	58.50	0.00		
	B1,4	B3,6		E2	63.50	63.50	0.00		
	 E	1-4		E3	63.50	63.50	0.00		
				E4	63.50	63.50	0.00		
				F	59.00	59.00	0.00		
				G	59.00	59.00	0.00		
				Н	37.50	37.50	0.00		

Figure E.3. Occupant Compartment Measurements for Test No. 609971-03-2.

L

J*

37.50

25.00

37.50

25.00

*Lateral area across the cab from driver's side

kickpanel to passenger's side kickpanel.

0.00

0.00

E.2. SEQUENTIAL PHOTOGRAPHS

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure E.4. Sequential Photographs for Test No. 609971-03-2 (Overhead Views).

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure E.5. Sequential Photographs for Test No. 609971-03-2 (Rear Views).

E.3. VEHICLE ANGULAR DISPLACEMENTS

Roll, Pitch and Yaw Angles

Figure E.6. Vehicle Angular Displacements for Test No. 609971-03-2.

E.4. VEHICLE ACCELERATIONS

Figure E.7. Vehicle Longitudinal Accelerometer Trace for Test No. 609971-03-2 (Accelerometer Located at Center of Gravity).

Figure E.8. Vehicle Lateral Accelerometer Trace for Test No. 609971-03-2 (Accelerometer Located at Center of Gravity).

Figure E.9. Vehicle Vertical Accelerometer Trace for Test No. 609971-03-2 (Accelerometer Located at Center of Gravity).