

Test Report No. 612261-04-1, -05-1, & -05-2

TESTING AND EVALUATION OF LARGE SIGNS SLIP BASE SUPPORT ON SLOPE AT MASH TEST LEVEL 3 IMPACT CONDITIONS

Sponsored by

TEXAS A&M TRANSPORTATION INSTITUTE PROVING GROUND Roadside Safety & Physical Security Texas A&M University System RELLIS Campus Building 7091 1254 Avenue A Bryan, TX 77807

College Station, Texas 77843-3135

Washington State Department of Transportation

Name of Contacting Representative: Mustafa Mohamedali

12. Sponsoring Agency Name and Address

Research Office MS 47372

Transportation Building Olympia, WA 98504-7372

		Technical Report Documentation Page
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle		5. Report Date
TESTING AND EVALUATION O	F LARGE SIGNS SLIP BASE	January 2023
SUPPORT ON SLOPE AT MASH	TEST LEVEL 3 IMPACT	6. Performing Organization Code
CONDITIONS		
7. Author(s)		8. Performing Organization Report No.
Chiara Silvestri-Dobrovolny, Roger	P. Bligh, William J. L. Schroeder,	Report 612261-04-1, -05-1, & -
and Darrell L. Kuhn		05-2
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)
Texas A&M Transportation Institute	e Proving Ground	

11. Contract or Grant No. Project T4541

Technical Report:

14. Sponsoring Agency Code

13. Type of Report and Period Covered

March 2022-November 2022

16. Abstract

15. Supplementary Notes

3135 TAMU

The purpose of the tests reported herein was to assess the performance of the large sign slip base support according to the safety-performance evaluation guidelines included in the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH)*, Second Edition (1). The crash tests were performed in accordance with *MASH* Test 3-62, which for this project included three crash tests with the following criteria:

For Tests 612261-04-1 & -05-1

• *MASH* Test 3-62: A 2270P vehicle weighing 5000 lb impacting the support structure while traveling at 62 mi/h and 0 degrees.

For Test 612261-05-2

• *MASH* Test 3-62: A 2270P vehicle weighing 5000 lb impacting the support structure while traveling at 62 mi/h and 25 degrees.

This report provides details on the large sign slip base support, the crash tests and results, and the performance assessment of the large sign slip base support for *MASH* 3-62 support structure evaluation criteria.

The large sign slip base support met the performance criteria for MASH 3-62 support structures.

	1 1			
17. Key Words		18. Distribution Statemen	t	
Support Structure, Large Sign, Sign Support, Slip		No restrictions. This document is available to the		
Base, MASH, Crash Test		public through N	TIS:	
		National Technic	al Information Se	ervice
		Alexandria, Virg	inia 22312	
		http://www.ntis.g	gov	
19. Security Classif. (of this report)	20. Security Classif. (of t	his page)	21. No. of Pages	22. Price
Unclassified	Unclassified		140	
			1	1

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.

TR No. 612261-04-1, -05-1, & -05-2

TESTING AND EVALUATION OF LARGE SIGNS SLIP BASE SUPPORT ON SLOPE AT MASH TEST LEVEL 3 IMPACT CONDITIONS

by Chiara Silvestri-Dobrovolny, Ph.D. Research Scientist Texas A&M Transportation Institute

Roger P. Bligh, Ph.D., P.E. Senior Research Engineer Texas A&M Transportation Institute

William J. L. Schroeder Research Engineering Associate Texas A&M Transportation Institute

and

Darrell L. Kuhn Research Specialist Texas A&M Transportation Institute

Report: 612261-04-1, -05-1, & -05-2 Contract No.: T4541

Sponsored by the Washington State Department of Transportation and the Roadside Safety Pooled Fund

May 2023

TEXAS A&M TRANSPORTATION INSTITUTE College Station, Texas 77843-3135

v

TR No. 612261-04-1, -05-1, & -05-2

2023-05-30

DISCLAIMER

The contents of this report reflect the views of the authors, who are solely responsible for the facts and accuracy of the data and the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Washington State Department of Transportation, the Roadside Safety Pooled Fund, The Texas A&M University System, or the Texas A&M Transportation Institute (TTI). This report does not constitute a standard, specification, or regulation. In addition, the above listed agencies/companies assume no liability for its contents or use thereof. The names of specific products or manufacturers listed herein do not imply endorsement of those products or manufacturers.

The results reported herein apply only to the article tested. The full-scale crash tests were performed according to TTI Proving Ground quality procedures and American Association of State Highway and Transportation Officials (AASHTO) Manual for Assessing Safety Hardware, Second Edition (*MASH*) guidelines and standards.

The Proving Ground Laboratory within TTI's Roadside Safety and Physical Security Division ("TTI Lab") strives for accuracy and completeness in its crash test reports. On rare occasions, unintentional or inadvertent clerical errors, technical errors, omissions, oversights, or misunderstandings (collectively referred to as "errors") may occur and may not be identified for corrective action prior to the final report being published and issued. If, and when, the TTI Lab discovers an error in a published and issued final report, the TTI Lab will promptly disclose such error to Washington State Department of Transportation and the Roadside Safety Pooled Fund, and all parties shall endeavor in good faith to resolve this situation. The TTI Lab will be responsible for correcting the error that occurred in the report, which may be in the form of errata, amendment, replacement sections, or up to and including full reissuance of the report. The cost of correcting an error in the report shall be borne by the TTI Lab. Any such errors or inadvertent delays that occur in connection with the performance of the related testing contract will not constitute a breach of the testing contract.

THE TTI LAB WILL NOT BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, PUNITIVE, OR OTHER DAMAGES SUFFERED BY THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION, THE ROADSIDE SAFETY POOLED FUND, OR ANY OTHER PERSON OR ENTITY, WHETHER SUCH LIABILITY IS BASED, OR CLAIMED TO BE BASED, UPON ANY NEGLIGENT ACT, OMISSION, ERROR, CORRECTION OF ERROR, DELAY, OR BREACH OF AN OBLIGATION BY THE TTI LAB.

ACKNOWLEDGMENTS

This research project was performed under a pooled fund program between the following States and Agencies. The authors acknowledge and appreciate their guidance and assistance.

Roadside Safety Research Pooled Fund Committee

Revised January 2021

ALABAMA

Stanley (Stan) C. Biddick, P.E.

Assistant State Design Engineer Design Bureau, Final Design Division Alabama Dept. of Transportation 1409 Coliseum Boulevard, T-205 Montgomery, AL 36110 (334) 242-6833 biddicks@dot.state.al.us

<u>ALASKA</u>

Mary McRae Statewide Standard Specifications

Alaska Depart. of Transportation & Public Facilities 3132 Channel Drive P.O. Box 112500 Juneau, AK 99811-2500 (907) 465-8962 Jeff.Jeffers@alaska.gov

CALIFORNIA

Bob Meline, P.E. Caltrans Office of Materials and Infrastructure Division of Research and Innovation 5900 Folsom Blvd Sacramento, CA 95819 (916) 227-7031 Bob.Meline@dot.ca.gov

John Jewell, P.E.

Senior Crash Testing Engineer Office of Safety Innovation & Cooperative Research (916) 227-5824 John_Jewell@dot.ca.gov

COLORADO

Joshua Keith, P.E. Standards & Specifications Engineer Project Development Branch Colorado Dept. of Transporation 4201 E Arkansas Ave, 4th Floor Denver, CO 80222 (303) 757-9021 Josh.Keith@state.co.us

CONNECTICUT

David Kilpatrick State of Connecticut Depart. of Transportation 2800 Berlin Turnpike Newington, CT 06131-7546 (806) 594-3288 David.Kilpatrick@ct.gov

DELAWARE

Jeffery Van Horn, P.E. Civil Engineering Program Manager Transportation Solutions – Traffic Operations Office: (302) 659-4606; Cell:(302) 922-7279

Jeffery.VanHorn@delaware.gov

Craig Blowers

Craig.Blowers@delaware.gov

FLORIDA

Derwood C. Sheppard, Jr., P.E.

Standard Plans Publication Engineer Florida Depart. of Transportation Roadway Design Office 605 Suwannee Street, MS-32 Tallahassee, FL 32399-0450 (850) 414-4334 Derwood.Sheppard@dot.state.fl.us

IDAHO

Marc Danley, P.E.

Technical Engineer (208) 334-8558 <u>Marc.danley@itd.idaho.gov</u>

ILLINOIS

Martha A. Brown, P.E. Safety Design Bureau Chief Bureau of Safety Programs and Engineering Illinois Depart. of Transportation 2300 Dirksen Parkway, Room 005 Springfield, IL 62764 (217) 785-3034 Martha.A.Brown@illinois.gov

Edgar Galofre

Safety Design Engineer (217) 558-9089 edgar.glofre@illinois.gov

<u>IOWA</u>

Daniel Harness Office of Design – Methods Iowa Department of Transportation Daniel.Harness@iowadot.us

Zac Abrams

Traffic and Safety Project Engineer lowa Department of Transportation (515) 239-1567 Zachary.Abrams@iowadot.us

LOUISIANA

Chris Guidry Bridge Manager Louisiana Transportation Center Bridge & Structural Design Section P.O. Box 94245 Baton Rouge, LA 79084-9245

(225) 379-1933 Chris.Guidry@la.gov

Kurt Brauner, P.E.

Bridge Engineer Manager Louisiana Transportation Center 1201 Capital Road, Suite 605G Baton Rouge, LA 70802 (225) 379-1933 Kurt.Brauner@la.gov

MARYLAND

Matamba Kabengele Traffic Engineer Office of Traffic and Safety Maryland State Highway Administration MKabengele@mdot.maryland.gov

MASSACHUSETTS

Alex Bardow Director of Bridges and Structure Massachusetts Depart. of Transportation 10 Park Plaza, Room 6430 Boston, MA 02116 (517) 335-9430 Alexander.Bardow@state.ma.us

James Danila State Traffic Engineer (857) 368-9640 James.Danila@state.ma.us

<u>MICHIGAN</u>

Carlos Torres, P.E. Crash Barrier Engineer Geometric Design Unit, Design Division Michigan Depart. of Transportation P. O. Box 30050 Lansing, MI 48909 (517) 335-2852 TorresC@michigan.gov

MINNESOTA

Khamsai Yang Design Standards Engineer Office of Project Management and Technical Support (651) 366-4622 Khamsai.Yang@state.mn.us

<u>MISSOURI</u>

Sarah Kleinschmit, P.E.

Policy and Innovations Engineer, Missouri Department of Transportation P.O. Box 270 Jefferson City, MO 65102 (573) 751-7412 sarah.kleinschmit@modot.mo.gov

Kaitlyn Bower

kaitlyn.bower@modot.mo.gov

NEW MEXICO

Brad Julian Traffic Technical Support Engineer (505) 827-3263 <u>Brad.Julian@state.nm.us</u>

<u>OHIO</u>

Don P. Fisher, P.E. Ohio Depart. of Transportation 1980 West Broad Street Mail Stop 1230 Columbus, OH 43223 (614) 387-6214 Don.fisher@dot.ohio.gov

OREGON

Christopher Henson Senior Roadside Design Engineer Oregon Depart. of Transportation Technical Service Branch 4040 Fairview Industrial Drive, SE Salem, OR 97302-1142 (503) 986-3561 Christopher.S.Henson@odot.state.or.us

PENNSYLVANIA

Evan Pursel Senior Civil Engineer epursel@pa.gov

Nina Ertel nertel@pa.gov

<u>TEXAS</u>

Chris Lindsey Transportation Engineer Design Division Texas Department of Transportation 125 East 11th Street Austin, TX 78701-2483 (512) 416-2750 Christopher.Lindsey@txdot.gov

Taya Retterer P.E. TXDOT Bridge Standards Engineer (512) 416-2719 Taya.Retterer@txdot.gov

<u>UTAH</u>

Shawn Debenham Traffic and Safety Division Utah Depart. of Transportation 4501 South 2700 West PO Box 143200 Salt Lake City UT 84114-3200 (801) 965-4590 sdebenham@utah.gov

WASHINGTON

John Donahue Design Policy and Analysis Manager Washington State Dept. of Transportation Development Division P.O. Box 47329 Olympia, WA 98504-7246 (360) 704-6381 donahio@wsdot.wa.gov

Mustafa Mohamedali

Assistant Research Project Manager P.O. Box 47372 Olympia, WA 98504-7372 (360) 704-6307 <u>mohamem@wsdot.wa.gov</u>

Tim Moeckel

Policy Support Engineer Washington State Department of Transportation moecket@wsdot.wa.gov

WEST VIRGINIA

Donna J. Hardy, P.E. Safety Programs Engineer West Virginia Depart. of Transportation – Traffic Engineering Building 5, Room A-550 1900 Kanawha Blvd E. Charleston, WV 25305-0430 (304) 558-9576 Donna.J.Hardy@wv.gov

Ted Whitmore

Traffic Services Engineer (304) 558-9468 Ted.J.Whitmore@wv.gov

WISCONSIN

Erik Emerson, P.E. Standards Development Engineer – Roadside Design Wisconsin Department of Transportation Bureau of Project Development 4802 Sheboygan Avenue, Room 651 P. O. Box 7916 Madison, WI 53707-7916 (608) 266-2842 Erik.Emerson@wi.gov

<u>CANADA – ONTARIO</u>

Kenneth Shannon, P. Eng. Senior Engineer, Highway Design (A) Ontario Ministry of Transportation 301 St. Paul Street St. Catharines, ON L2R 7R4 CANADA (904) 704-3106 Kenneth.Shannon@ontario.ca

FEDERAL HIGHWAY

ADMINISTRATION (FHWA)

WebSite: <u>safety.fhwa.dot.gov</u>

Richard B. (Dick) Albin, P.E.

Safety Engineer FHWA Resource Center Safety & Design Technical Services Team 711 S. Capital Olympia, WA 98501

(303) 550-8804 Dick.Albin@dot.gov

Eduardo Arispe

Research Highway Safety Specialist U.S. Department of Transportation Federal Highway Administration Turner-Fairbank Highway Research Center Mail Code: HRDS-10 6300 Georgetown Pike McLean, VA 22101 (202) 493-3291 Eduardo.arispe@dot.gov

Christine Black

Highway Safety Engineer Central Federal Lands Highway Division 12300 West Dakota Ave. Lakewood, CO 80228 (720) 963-3662 <u>Christine.black@dot.gov</u>

Isbel Ramos-Reyes

Lead Safety and Transportation Operations Engineer (703) 948-1442 isbel.ramos-reyes@dot.gov

Matt Hinshaw, M.S., P.E.

Highway Safety Engineer Central Federal Lands Highway Division (360)619-7677 matthew.hinshaw@dot.gov

TEXAS A&M TRANSPORTATION

INSTITUTE (TTI) WebSite: <u>tti.tamu.edu</u> www.roadsidepooledfund.org

Lance Bullard, P.E. Senior Research Engineer 979-317-2855

L-Bullard@tti.tamu.edu

Roger P. Bligh, Ph.D., P.E. Senior Research Engineer (979) 317-2703 R-Bligh@tti.tamu.edu

Ariel Sheil

Associate Research Scientist a-sheil@tti.tamu.edu

REPORT AUTHORIZATION

REPORT REVIEWED BY:

-DocuSigned by: Glenn Schroeder E692F9CB5047487...

Glenn Schroeder, Research Specialist Drafting & Reporting

DocuSigned by:

Adam Mayer F7A06F754E02430..

Adam Mayer, Research Specialist Construction

DocuSigned by: Robert Korman SCF2C47B60FB409

Robert Kocman, Research Specialist Mechanical Instrumentation DocuSigned by: Ken Reeves

Ken Reeves, Research Specialist Electronics Instrumentation

DocuSigned by:

Pichard Badillo

Richard Badillo, Research Specialist Photographic Instrumentation

William J. L. Schroeder, Research Engineering Associate Research Evaluation and Reporting

DocuSigned by: Bill Griffith 44A122CB271845B.

Bill L. Griffith, Research Specialist Quality Manager

DocuSigned by:

Matt Robinson EAA22BFA5BFD417.

Matthew N. Robinson, Research Specialist Test Facility Manager & Technical Manager

Roger P. Bligh Research Scientist

TABLE OF CONTENTS

			ge
		GMENTS v	
List of F	0		
List of T			
Chapter		Introduction	
Chapter		System Details	
2.1.		rticle and Installation Details	
2.2.	•	Modifications during Tests	
2.3.		al Specifications	
Chapter		Test Requirements and Evaluation Criteria	
3.1.		Fest Performed/Matrix	
3.2.	Evaluat	tion Criteria	
Chapter	4.	Test Conditions	23
4.1.	Test Fa	cility	23
4.2.	Vehicle	e Tow and Guidance System	23
4.3.		cquisition Systems	
4.3.	1. Ve	ehicle Instrumentation and Data Processing	23
4.3.	2. Aı	nthropomorphic Dummy Instrumentation	24
4.3.	3. Ph	notographic Instrumentation Data Processing	
Chapter	5.	MASH Test 3-62 (Crash Test No. 612261-05-1)	27
5.1.		esignation and Actual Impact Conditions	
5.2.	Weathe	er Conditions	29
5.3.	Test Ve	ehicle	29
5.4.	Test De	escription	31
5.5.	Damag	e to Test Installation	31
5.6.	Damag	e to Test Vehicle	32
5.7.	Occupa	nnt Risk Factors	35
5.8.	Test Su	ımmary	35
Chapter	6.	MASH Test 3-62 (Crash Test No. 612261-04-1)	37
6.1.	Test De	esignation and Actual Impact Conditions	
6.2.		er Conditions	
6.3.	Test Ve	ehicle	39
6.4.	Test De	escription	41
6.5.	Damag	e to Test Installation	41
6.6.	Damag	e to Test Vehicle	42
6.7.		ant Risk Factors	
6.8.	1	ımmary	
Chapter		MASH Test 3-62 (Crash Test No. 612261-05-2)	
7.1.		esignation and Actual Impact Conditions	
7.2.		er Conditions	
7.3.		ehicle	
7.4.		escription	
7.5.		e to Test Installation	
7.6.	U	e to Test Vehicle	
	0		

7.7.	Occupant Risk Factors	56
7.8.	Test Summary	56
Chapter	• 8. Summary and Conclusions	59
8.1.	Assessment of Test Results	
8.2.	Conclusions	59
Referen	ces	61
APPEN	DIX A. Details of Large Sign Slip Base Support	63
A.1.	Details for Test 612261-05-1	
A.2.	Details for Test 612261-04-1	75
A.3.	Details for Test 612261-05-2	83
APPEN	DIX B. Supporting Certification Documents	91
B.1.	Supporting Certification Documents for 612261-05-1	92
B.2.	Supporting Certification Documents for 612261-04-1	103
В.З.	Supporting Certification Documents for 612261-05-2	108
APPEN	DIX C. MASH Test 3-62 (Crash Test No. 6122561-05-1)	113
C.1.	Vehicle Properties and Information	113
C.2.	Sequential Photographs	116
C.3.	Vehicle Angular Displacements	119
C.4.	Vehicle Accelerations	
APPEN	DIX D. MASH Test 3-62 (Crash Test No. 612261-04-1)	123
D.1.	Vehicle Properties and Information	123
D.2.	Sequential Photographs	126
D.3.	Vehicle Angular Displacements	128
D.4.	Vehicle Accelerations	129
APPEN	DIX E. MASH Test 3-62 (Crash Test No. 612261-05-2)	131
E.1.	Vehicle Properties and Information	131
E.2.	Sequential Photographs	134
E.3.	Vehicle Angular Displacements	
E.4.	Vehicle Accelerations	138

LIST OF FIGURES

Р	age
Figure 2.1. Details of Large Sign Slip Base Support for Crash Tests 612261-04-1 & -05-1	5
Figure 2.2. Large Sign Slip Base Support from the Impact Side Prior to Testing	7
Figure 2.3. Large Sign Slip Base Support from Opposite of the Impact Side Prior to Testing	7
Figure 2.4. Front Plate of the Large Sign Slip Base Support Prior to Testing.	8
Figure 2.5. Hinge Plate of the Large Sign Slip Base Support Prior to Testing.	
Figure 2.6. Base of the Large Sign Slip Base Support Prior to Testing	
Figure 2.7. Opposite of the Impact Side of the Base of the Large Sign Slip Base Support	
Prior to Testing.	9
Figure 2.8. Details of Large Sign Slip Base Support for Crash Tests 612261-04-1 & -05-1	
Figure 2.9. Large Sign Slip Base Support from the Impact Side Prior to Testing.	
Figure 2.10. Large Sign Slip Base Support from Opposite of the Impact Side Prior to	
Testing	.11
Figure 2.11. Front Plate of the Large Sign Slip Base Support Prior to Testing.	12
Figure 2.12. Hinge Plate of the Large Sign Slip Base Support Prior to Testing.	
Figure 2.13. Impact Side of the Base of the Large Sign Slip Base Support Prior to Testing	
Figure 2.14. Opposite of the Impact Side of the Base of the Large Sign Slip Base Support	
Prior to Testing.	13
Figure 2.15. Details of Large Sign Slip Base Support for Crash Test 612261-05-1.	14
Figure 2.16. Large Sign Slip Base Support on a Slope Prior to Testing	
Figure 2.17. Large Sign Slip Base Support on a Slope In-line with the Impact PathPrior to	
Testing	.15
Figure 2.18. Front Plate of the Large Sign Slip Base Support on a Slope Prior to Testing	
Figure 2.19. Hinge Plate of the Large Sign Slip Base Support on a Slope Prior to Testing	16
Figure 2.20. Front View of the Base of the Large Sign Slip Base Support on a Slope Prior to	
Testing	17
Figure 2.21. Side View of the Base of the Large Sign Slip Base Support on a Slope Prior to	
Testing	17
Figure 3.1. Target CIP for MASH 3-62 Tests on Large Sign Slip Base Support	21
Figure 5.1. Large Sign Slip Base Support/Test Vehicle Geometrics for Test 6122561-05-1	28
Figure 5.2. Large Sign Slip Base Support/Test Vehicle Impact Location 6122561-05-1	28
Figure 5.3. Impact Side of Test Vehicle before Test 6122561-05-1	29
Figure 5.4. Opposite Impact Side of Test Vehicle before Test 6122561-05-1	30
Figure 5.5. Large Sign Slip Base Support after Test at Impact Location 6122561-05-1	.31
Figure 5.6. Large Sign Slip Base Support after Test at the Left Support Base 6122561-05-1	32
Figure 5.7. Impact Side of Test Vehicle after Test 6122561-05-1.	
Figure 5.8. Rear Impact Side of Test Vehicle after Test 6122561-05-1	33
Figure 5.9. Overall Interior of Test Vehicle after Test 6122561-05-1	33
Figure 5.10. Interior Roof of Test Vehicle after Test 6122561-05-1	34
Figure 5.11. Summary of Results for MASH Test 3-62 on Large Sign Slip Base Support	36
Figure 6.1. Large Sign Slip Base Support/Test Vehicle Geometrics for Test 612261-04-1	
Figure 6.2. Large Sign Slip Base Support/Test Vehicle Impact Location 612261-04-1	
Figure 6.3. Impact Side of Test Vehicle before Test 612261-04-1.	
Figure 6.4. Opposite Impact Side of Test Vehicle before Test 612261-04-1	40

Figure 6.5. Large Sign Slip Base Support after Test at Impact Location 612261-04-1	41
Figure 6.6. Impacted Post of the Large Sign Slip Base Support after Test 612261-04-1	42
Figure 6.7. Impact Side of Test Vehicle after Test 612261-04-1.	
Figure 6.8. Hood Damage on Test Vehicle after Test 612261-04-1	
Figure 6.9. Overall Interior of Test Vehicle after Test 612261-04-1	43
Figure 6.10. Interior of Test Vehicle on Impact Side after Test 612261-04-1.	44
Figure 6.11. Summary of Results for MASH Test 3-62 on Large Sign Slip Base Support	
Figure 7.1. Large Sign Slip Base Support/Test Vehicle Geometrics for Test 612261-05-2	48
Figure 7.2. Large Sign Slip Base Support/Test Vehicle Impact Location 612261-05-2.	48
Figure 7.3. Impact Side of Test Vehicle before Test 612261-05-2.	
Figure 7.4. Opposite Impact Side of Test Vehicle before Test 612261-05-2	50
Figure 7.5. Large Sign Slip Base Support after Test at Impact Location 612261-05-2	52
Figure 7.6. Large Sign Slip Base Support after Test at Insert Detail Location 612261-05-2	
Figure 7.7. Impact Side of Test Vehicle after Test 612261-05-2.	53
Figure 7.8. Rear Impact Side of Test Vehicle after Test 612261-05-2	53
Figure 7.9. Roof of Test Vehicle after Test 612261-05-2.	54
Figure 7.10. Interior of Test Vehicle after Test 612261-05-2.	
Figure 7.11. Summary of Results for MASH Test 3-62 on Large Sign Slip Base Support	57
Figure C.1. Vehicle Properties for Test No. 6122561-05-1.	113
Figure C.2. Exterior Crush Measurements for Test No. 6122561-05-1	114
Figure C.3. Occupant Compartment Measurements for Test No. 6122561-05-1	
Figure C.4. Sequential Photographs for Test No. 6122561-05-1 (Right Angle Views)	116
Figure C.5. Sequential Photographs for Test No. 6122561-05-1 (Left Oblique Views)	117
Figure C.6. Sequential Photographs for Test No. 6122561-05-1 (Right Oblique Views)	
Figure C.7. Vehicle Angular Displacements for Test No. 6122561-05-1	119
Figure C.8. Vehicle Longitudinal Accelerometer Trace for Test No. 6122561-05-1	
(Accelerometer Located at Center of Gravity)	120
Figure C.9. Vehicle Lateral Accelerometer Trace for Test No. 6122561-05-1 (Accelerometer	
Located at Center of Gravity)	120
Figure C.10. Vehicle Vertical Accelerometer Trace for Test No. 6122561-05-1	
(Accelerometer Located at Center of Gravity)	
Figure C.1. Vehicle Properties for Test No. 612261-04-1.	
Figure D.2. Exterior Crush Measurements for Test No. 612261-04-1.	
Figure D.3. Occupant Compartment Measurements for Test No. 612261-04-1.	
Figure D.4. Sequential Photographs for Test No. 612261-04-1 (Right Angle Views)	
Figure D.5. Sequential Photographs for Test No. 612261-04-1 (Left Oblique Views)	
Figure D.6. Vehicle Angular Displacements for Test No. 612261-04-1.	128
Figure D.7. Vehicle Longitudinal Accelerometer Trace for Test No. 612261-04-1	
(Accelerometer Located at Center of Gravity)	129
Figure D.8. Vehicle Lateral Accelerometer Trace for Test No. 612261-04-1 (Accelerometer	
Located at Center of Gravity)	129
Figure D.9. Vehicle Vertical Accelerometer Trace for Test No. 612261-04-1 (Accelerometer	
Located at Center of Gravity)	
Figure E.1. Vehicle Properties for Test No. 612261-05-2.	
Figure E.2. Exterior Crush Measurements for Test No. 612261-05-2	
Figure E.3. Occupant Compartment Measurements for Test No. 612261-05-2	133

Figure E.4. Sequential Photographs for Test No. 612261-05-2 (Overhead Views)	.134
Figure E.5. Sequential Photographs for Test No. 612261-05-2 (Frontal Views).	.135
Figure E.6. Sequential Photographs for Test No. 612261-05-2 (Rear Views)	.136
Figure E.7. Vehicle Angular Displacements for Test No. 612261-05-2	.137
Figure E.8. Vehicle Longitudinal Accelerometer Trace for Test No. 612261-05-2	
(Accelerometer Located at Center of Gravity)	.138
Figure E.9. Vehicle Lateral Accelerometer Trace for Test No. 612261-05-2 (Accelerometer	
Located at Center of Gravity)	.138
Figure E.10. Vehicle Vertical Accelerometer Trace for Test No. 612261-05-2	
(Accelerometer Located at Center of Gravity)	.139

LIST OF TABLES

	Page
Table 2.1. Concrete Strength For Crash Test 612261-05-1	
Table 2.2. Concrete Strength For Crash Test 612261-05-2	18
Table 3.1. Test Conditions and Evaluation Criteria Specified for MASH 3-62 Support	
Structures	19
Table 3.2. Evaluation Criteria Required for MASH Testing	21
Table 5.1. Impact Conditions for MASH 3-62 6122561-05-1	27
Table 5.2. Exit Parameters for MASH 3-62 6122561-05-1.	27
Table 5.3. Weather Conditions 6122561-05-1.	29
Table 5.4. Vehicle Measurements 6122561-05-1.	
Table 5.5. Events during Test 6122561-05-1.	31
Table 5.7. Occupant Compartment Deformation 6122561-05-1	
Table 5.8. Exterior Vehicle Damage 6122561-05-1.	34
Table 5.9. Occupant Risk Factors for Test 6122561-05-1.	35
Table 6.1. Impact Conditions for MASH 3-62 612261-04-1.	
Table 6.2. Exit Parameters for MASH 3-62 612261-04-1.	
Table 6.3. Weather Conditions 612261-04-1.	
Table 6.4. Vehicle Measurements 612261-04-1.	
Table 6.5. Events during Test 612261-04-1.	41
Table 6.7. Occupant Compartment Deformation 612261-04-1.	44
Table 6.8. Exterior Vehicle Damage 612261-04-1.	44
Table 6.9. Occupant Risk Factors for Test 612261-04-1.	45
Table 7.1. Impact Conditions for <i>MASH</i> 3-62 612261-05-2	47
Table 7.2. Exit Parameters for <i>MASH</i> 3-62 612261-05-2	
Table 7.3. Weather Conditions 612261-05-2.	
Table 7.4. Vehicle Measurements 612261-05-2.	
Table 7.5. Events during Test 612261-05-2.	51
Table 7.7. Occupant Compartment Deformation 612261-05-2.	55
Table 7.8. Exterior Vehicle Damage 612261-05-2.	55
Table 7.9. Occupant Risk Factors for Test 612261-05-2.	
Table 8.1. Assessment Summary for MASH 3-62 Tests on Large Sign Slip Base Support	59

	SI* (MODERN	METRIC) CON	/ERSION FACTORS	
		IMATE CONVERSIO		
Symbol	When You Know	Multiply By	To Find	Symbol
		LENGTH		
in	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
		AREA		2
in ²	square inches	645.2	square millimeters	mm ²
ft ²	square feet	0.093 0.836	square meters	m² m²
yd² ac	square yards acres	0.836	square meters hectares	ha
ac mi ²	square miles	2.59	square kilometers	km ²
1111	square miles	VOLUME	Square kilometers	NIII
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft ³	cubic feet	0.028	cubic meters	m ³
yd ³	cubic yards	0.765	cubic meters	m ³
Ju		nes greater than 1000L		
		MASS		
oz	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
Т	short tons (2000 lb)	0.907	megagrams (or metric ton")	Mg (or "t")
		MPERATURE (exac		5()
°F	Fahrenheit	5(F-32)/9	Celsius	°C
		or (F-32)/1.8		-
	FOR	CE and PRESSURE	or STRESS	
lbf	poundforce	4.45	newtons	Ν
lbf/in ²				kPa
lbf/in ²	poundforce per square inch	6.89	kilopascals	
	poundforce per square inch APPROXIN	6.89 IATE CONVERSION	kilopascals IS FROM SI UNITS	kPa
lbf/in ² Symbol	poundforce per square inch	6.89 IATE CONVERSION Multiply By	kilopascals	
Symbol	poundforce per square inch APPROXIN When You Know	6.89 IATE CONVERSION Multiply By LENGTH	kilopascals IS FROM SI UNITS To Find	kPa
	poundforce per square inch APPROXIN	6.89 IATE CONVERSION Multiply By	kilopascals IS FROM SI UNITS	kPa
Symbol mm	poundforce per square inch APPROXIN When You Know millimeters	6.89 IATE CONVERSION Multiply By LENGTH 0.039	kilopascals IS FROM SI UNITS To Find inches feet	kPa Symbol in ft
Symbol mm m	poundforce per square inch APPROXIN When You Know millimeters meters	6.89 IATE CONVERSION Multiply By LENGTH 0.039 3.28	kilopascals IS FROM SI UNITS To Find inches	kPa Symbol
Symbol mm m m km	poundforce per square inch APPROXIN When You Know millimeters meters meters kilometers	6.89 IATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09	kilopascals IS FROM SI UNITS To Find inches feet yards	kPa Symbol in ft yd mi
Symbol mm m km mm ²	poundforce per square inch APPROXIN When You Know millimeters meters meters meters	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621	kilopascals IS FROM SI UNITS To Find inches feet yards	kPa Symbol in ft yd mi in ²
Symbol mm m km km mm ² m ²	poundforce per square inch APPROXIN When You Know millimeters meters meters kilometers	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet	kPa Symbol in ft yd mi in ² ft ²
Symbol mm m km mm ²	poundforce per square inch APPROXIN When You Know millimeters meters meters kilometers square millimeters	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches	kPa Symbol in ft yd mi in ²
Symbol mm m km km mm ² m ² m ² ha	poundforce per square inch APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres	kPa Symbol in ft yd mi in ² ft ² yd ² ac
Symbol mm m km km mm ² m ² m ²	poundforce per square inch APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters square meters	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards	kPa Symbol in ft yd mi in ² ft ² yd ²
Symbol mm m km mm ² m ² m ² ha km ²	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles	kPa Symbol in ft yd mi in ² ft ² yd ² ac
Symbol mm m km mm ² m ² ha km ² mL	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz
Symbol mm m km km ² m ² ha km ² ha km ²	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal
Symbol mm m km mm ² m ² ha km ² ha km ² mL L m ³	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³
Symbol mm m km km ² m ² ha km ² ha km ²	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal
Symbol mm m km mm ² m ² ha km ² ha km ² mL L m ³ m ³	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³
Symbol mm m km mm ² m ² ha km ² ha km ² mL L m ³ m ³	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz
Symbol mm m km mm ² m ² ha km ² ha km ² mL L m ³ m ³ m ³	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb
Symbol mm m km mm ² m ² ha km ² ha km ² mL L m ³ m ³	poundforce per square inch APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton"	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202) 1.103	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb)	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz
Symbol mm m km mm ² m ² m ² ha km ² mL L m ³ m ³ m ³	poundforce per square inch APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric ton"	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202) 1.103 MPERATURE (exact	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic feet cubic yards ounces pounds short tons (2000lb) t degrees)	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T
Symbol mm m km mm ² m ² ha km ² ha km ² mL L m ³ m ³ m ³	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton" TE	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact 1.8C+32	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) tt degrees) Fahrenheit	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb
Symbol mm m km mm ² m ² ha km ² mL L m ³ m ³ m ³ g kg Mg (or "t")	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers Square kilometers cubic meters cubic meters cubic meters cubic meters cubic meters frem Kilograms megagrams (or "metric ton" TE Celsius	6.89 IATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202) 1.103 MPERATURE (exact 1.8C+32 CE and PRESSURE	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees) Fahrenheit or STRESS	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T °F
Symbol mm m km mm ² m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C	poundforce per square inch APPROXIN When You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters cubic meters grams kilograms megagrams (or "metric ton" TE Celsius FOR	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 1.103 MPERATURE (exact 1.8C+32 CE and PRESSURE 0.225	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees) Fahrenheit or STRESS poundforce	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T °F lbf
Symbol mm m km mm ² m ² m ² ha km ² mL L m ³ m ³ g kg Mg (or "t") °C N kPa	poundforce per square inch APPROXIN When You Know millimeters meters kilometers square millimeters square meters square meters hectares Square kilometers Square kilometers cubic meters cubic meters cubic meters cubic meters cubic meters frem Kilograms megagrams (or "metric ton" TE Celsius	6.89 ATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202) 1.103 MPERATURE (exact 1.8C+32 CE and PRESSURE 0.225 0.145	kilopascals IS FROM SI UNITS To Find inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) t degrees) Fahrenheit or STRESS	kPa Symbol in ft yd mi in ² ft ² yd ² ac mi ² oz gal ft ³ yd ³ oz lb T

Chapter 1. INTRODUCTION

The purpose of the tests reported herein was to assess the performance of a large sign slip base sign support system according to the safety-performance evaluation guidelines included in the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH*), Second Edition (1). The crash tests were performed in accordance with *MASH* Test 3-62, which for this project included three crash tests with criteria as discussed in Chapter 3.

A unique aspect of this investigation included assessment of the large slip base sign support system on a fill slope. Large guide signs are typically installed on sloped terrain with the mounting height referenced to the traveled way. The initial crash tests of the system were performed on flat, level ground to establish baseline MASH impact performance for the system. As described herein, the impact of the initial design did not result in activation of the fuse plate below the sign panel. The design of the sign support system was subsequently modified and retested to determine if fuse plate activation could be achieved. The final test was performed with the slip base installed on a 6H:1V fill slope to investigate the influence of the slope on impact performance. The presence of the fill slope results in an increase in the height of the sign relative to the local ground and a higher impact location on the support relative to what is typical in an impact on flat, level ground. There was interest in understanding if this elevated impact point resulted in a change in slip base or fuse plate activation. Details of these crash tests are described herein.

1

Chapter 2. SYSTEM DETAILS

2.1. TEST ARTICLE AND INSTALLATION DETAILS

Crash Test 612261-05-1

The installation was comprised of a large, aluminum sign consisting of four panels spliced together to form the completed sign panel. The two center panels each measured 78-inches tall \times 60-inches wide, and the two outer panels each measured 78-inches tall \times 51- inches wide for a total width of 18 ft-6 inches. Two longitudinal aluminum stiffeners were attached to the back of the aluminum sign panel. The sign panel assembly was mounted 84 inches from grade to the bottom of the sign on two W6×12 steel posts spaced at 10 ft-10 inches center to center. The overall height of the installation measured 13 ft-6 inches. Each support post had a slip base connection located 4 inches above grade, and a fuse plate/hinge plate connection located 32 inches into a 24-inch diameter \times 72-inch deep reinforced concrete foundation.

Figure 2.1 presents the overall information on the large sign slip base support, and Figure 2.2 thru Figure 2.7 provide photographs of the installation for crash tests 612261-05-1.

Crash Test 612261-04-1

In test 612261-05-1, the fuse plate below the sign panel did not activate. This was concluded to be a function of the stiffness of the sign panel and the design of the fuse plate. State DOT standards for large guide signs were reviewed to understand the variations in sign panel configuration and fuse plate design for the W6×12 support. An extruded aluminum sign panel was selected to replace the aluminum sheet metal panel used in test 612261-05-1. The stiffer extruded aluminum sign panel will develop more moment in the support post and be more likely to activate the fuse plate. A different fuse plate design was also incorporated into the design. The fuse plate was designed for use with a W6×12 support but had a reduced tensile capacity compared to the fuse plate design used in test 612261-05-1.

The installation for test 612261-04-1 was comprised of a large sign consisting of six 12inch wide extruded aluminum panels that were 18 ft-6 inches long. These panels were fastened together to provide a sign panel with a total height of 72 inches. A vertical steel stiffener was used at the center of the sign panel. The sign was mounted 84 inches from grade to the bottom of the sign on two W6×12 steel posts spaced at 10 ft-10 inches center to center providing an overall height of the installation of 13 ft-0 inches. Each support post had a modified fuse plate/hinge plate connection located 84 inches above grade at the bottom edge of the sign panel. The fuse plate activation holes were similar, but the fuse plate thickness was reduced from 3/8 inch to $\frac{1}{4}$ inch. All other details, including the slip base and foundation, were the same as those for test 612261-05-1.

Figure 2.8 presents the overall information on the large sign slip base support, and Figure 2.9 thru Figure 2.14 provide photographs of the installation for crash tests 612261-04-1

Crash Test 612261-05-2

3

The sign support system for test <u>612261-05-2</u> was placed on a 6H:1V slope. The post nearest the traveled way was offset 42 inches from the breakpoint of the slope, and the sign system was installed perpendicular to the edge of the roadway. The placement on slope resulted in the support post nearest the roadway being 7 ³/₄ inches longer and the farther support post being 28 ³/₄ inches longer that those used in test 612261-04-1 on flat, level ground. The top surfaces of the concrete foundations were sloped to match the 6H:1V slope. Other details of the sign support system were similar to those used in test 612261-04-1.

Figure 2.15 presents the overall information on the large sign slip base support, and Figure 2.16 thru Figure 2.19 provide photographs of the installation for crash test 612261-05-2.

Appendix A provides further details on the large sign slip base support systems that were tested. Drawings were provided by the Texas A&M Transportation Institute (TTI) Proving Ground, and construction was performed by TTI Proving Ground personnel.

2.2. DESIGN MODIFICATIONS DURING TESTS

No modifications were made to the installation during the testing phase other than those discussed in Section 2.1.

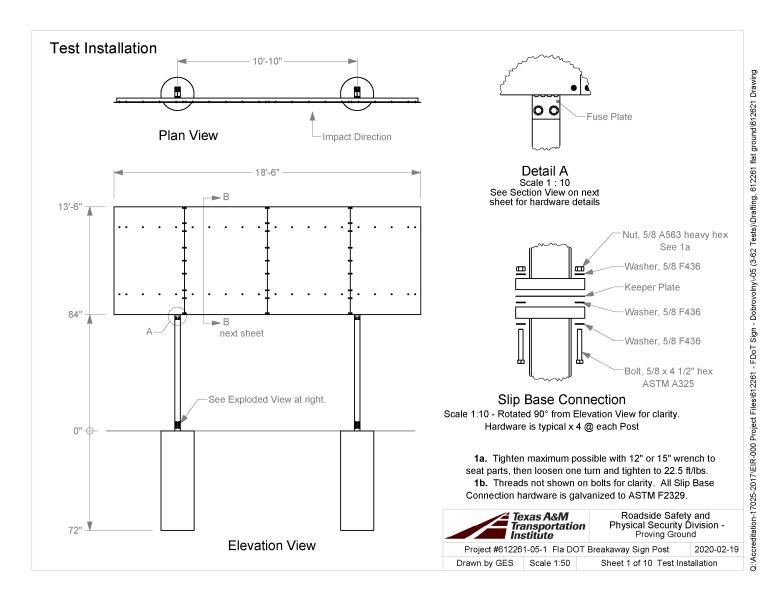


Figure 2.1. Details of Large Sign Slip Base Support for Crash Tests 612261-05-1.

Figure 2.2. Large Sign Slip Base Support from the Impact Side Prior to Testing 612261-05-1.

Figure 2.3. Large Sign Slip Base Support from Opposite of the Impact Side Prior to Testing 612261-05-1.

Figure 2.4. Front Plate of the Large Sign Slip Base Support Prior to Testing 612261-05-1.

Figure 2.5. Hinge Plate of the Large Sign Slip Base Support Prior to Testing 612261-05-1.

Figure 2.6. Base of the Large Sign Slip Base Support Prior to Testing 612261-05-1.

Figure 2.7. Opposite of the Impact Side of the Base of the Large Sign Slip Base Support Prior to Testing 612261-05-1.

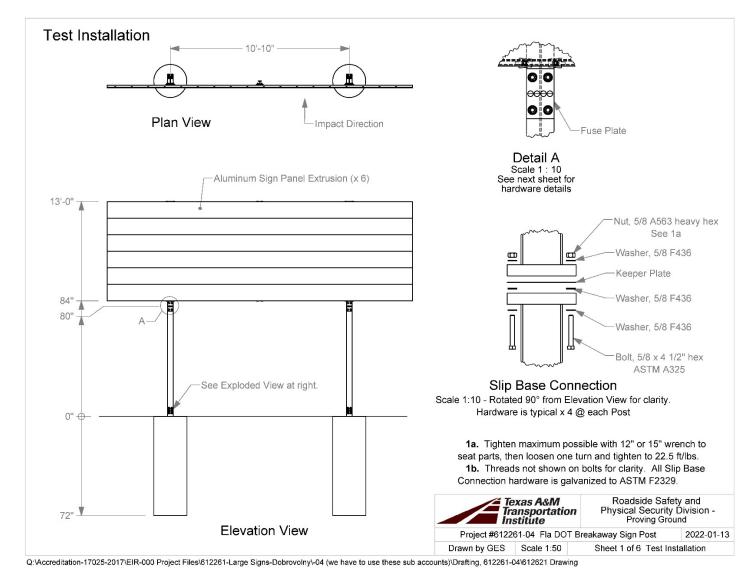


Figure 2.8. Details of Large Sign Slip Base Support for Crash Tests 612261-04-1.

Figure 2.9. Large Sign Slip Base Support from the Impact Side Prior to Testing 612261-04-1.

Figure 2.10. Large Sign Slip Base Support from Opposite of the Impact Side Prior to Testing 612261-04-1.

Figure 2.11. Front Plate of the Large Sign Slip Base Support Prior to Testing 612261-04-1.

Figure 2.12. Hinge Plate of the Large Sign Slip Base Support Prior to Testing 612261-04-1.

Figure 2.13. Impact Side of the Base of the Large Sign Slip Base Support Prior to Testing 612261-04-1.

Figure 2.14. Opposite of the Impact Side of the Base of the Large Sign Slip Base Support Prior to Testing 612261-04-1.

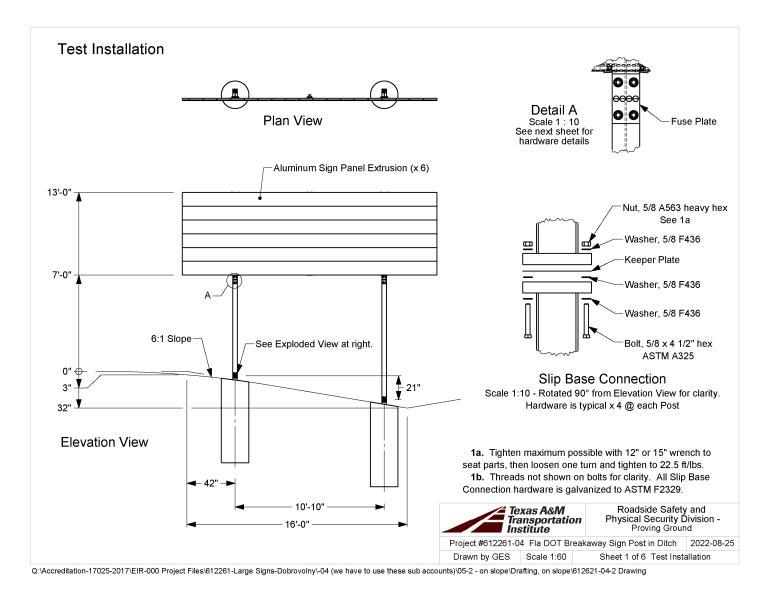


Figure 2.15. Details of Large Sign Slip Base Support for Crash Test 612261-05-2.

Figure 2.16. Large Sign Slip Base Support on a Slope Prior to Testing 612261-05-2.

Figure 2.17. Large Sign Slip Base Support on a Slope In-line with the Impact Path Prior to Testing 612261-05-2.

Figure 2.18. Front Plate of the Large Sign Slip Base Support on a Slope Prior to Testing 612261-05-2.

Figure 2.19. Hinge Plate of the Large Sign Slip Base Support on a Slope Prior to Testing 612261-05-2.

Figure 2.20. Front View of the Base of the Large Sign Slip Base Support on a Slope Prior to Testing 612261-05-2.

Figure 2.21. Side View of the Base of the Large Sign Slip Base Support on a Slope Prior to Testing 612261-05-2.

2.3. MATERIAL SPECIFICATIONS

Appendix B provides material certification documents for the materials used to install/construct the large sign slip base support systems.

Table 2.1 shows the average compressive strength of the concrete for test 612261-05-1 on the day of the test, March 3, 2020. The same footers were used for crash test 612261-04-1, which was performed on March 16, 2022, (almost 2 years later); thus, the concrete strength of the footers would have been the same if not greater at that later date.

Location	Design Strength (psi)	Avg. Strength (psi)	Age (days)	Detailed Location
Footers	4000	4107	11	100% of footers

 Table 2.1. Concrete Strength for Crash Test 612261-05-1.

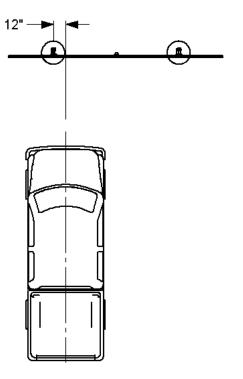
Table 2.2 shows the average compressive strength of the concrete for test 612261-05-2 on November 7, 2022, three days prior to the day of the crash test of November 10, 2022.

Location	Design Strength (psi)	Avg. Strength (psi)	Age (days)	Detailed Location
Footers	3000	3150	33	100% of footers

 Table 2.2. Concrete Strength for Crash Test 612261-05-2.

Chapter 3. TEST REQUIREMENTS AND EVALUATION CRITERIA

3.1. CRASH TEST PERFORMED/MATRIX


Table 3.1 shows the test conditions and evaluation criteria for *MASH* test 3-62 for support structures. MASH Section 2.2.4.1 recommends selecting a critical impact angle (CIA) within the range of 0 to 25 degrees. The target critical impact angles (CIAs) are intended to represent the worst-case impact condition consistent with the manner in which the sign support will be installed on the roadway and judged to have the greatest potential for test failure. The CIA is selected.

The target CIA for test 612261-05-1 and test 612261-04-1 on flat level ground was 0 degrees. This angle was selected based on historical testing experience and to maximize interaction between the vehicle and support post after activation of the slip base. The target CIA for test 612261-05-2 on the 6H:1V slope was 25 degrees. The 25-degree angle maximizes elevation of the vehicle off the slope break point and, thus, maximizes the height of impact on the support post. The increased elevation reduces the moment available to activate the fuse plate and increases the moment on the slip base. For each test the quarter-point of the vehicle was aligned with the centerline of one support per the recommendation listed in *MASH* at the time each test was conducted.

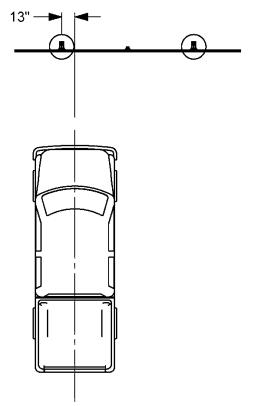
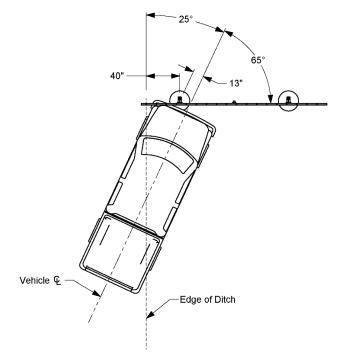

Figure 3.1 shows the target CIA and impact location for *MASH* Test 3-62 on the different large sign slip base support systems.

Table 3.1. Test Conditions and Evaluation Criteria Specified for MASH 3-62 Support Structures.


]	Test Designation	Test Vehicle	Impact Speed	Impact Angle	Evaluation Criteria
	3-62	2270P	62 mi/h	CIA	B, D, F, H, I, N

(a). Target CIA and Impact Point for Test 612261-05-1

(b). Target CIA and Impact Point for Test 612261-04-1

(c). Target CIA and Impact Point for Test 612261-05-2

Figure 3.1. Target CIP for MASH 3-62 Tests on Large Sign Slip Base Support Systems.

The crash test and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

3.2. EVALUATION CRITERIA

The appropriate safety evaluation criteria from Tables 2-5 and 5-1 of *MASH* were used to evaluate the crash tests reported herein. Table 3.1 lists the test conditions and evaluation criteria required for *MASH* 3-62, and Table 3.2 provides detailed information on the evaluation criteria.

Evaluation Factors	Evaluation Criteria
В.	The test article should readily activate in a predictable manner by breaking away, fracturing, or yielding.
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of <i>MASH</i> .
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.

Table 3.2. Evaluation Criteria Required for MASH Testing.

Evaluation Factors	Evaluation Criteria
Н.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 10 ft/s, or maximum allowable value of 16 ft/s.
I.	The occupant ridedown accelerations should satisfy the following: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.
N.	Vehicle trajectory behind the test article is acceptable.

Chapter 4. TEST CONDITIONS

4.1. TEST FACILITY

The full-scale crash tests reported herein were performed at the TTI Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash tests were performed according to TTI Proving Ground quality procedures, as well as *MASH* guidelines and standards.

The test facilities of the TTI Proving Ground are located on The Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 mi northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, highway pavement durability and efficacy, and roadside safety hardware and perimeter protective device evaluation. The sites selected for construction and testing are on and along the edge of an out-of-service apron/runway. The apron/runway consists of an unreinforced jointed-concrete pavement in 12.5ft × 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement but are otherwise flat and level.

4.2. VEHICLE TOW AND GUIDANCE SYSTEM

For the testing utilizing the 2270P vehicles, each was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point and through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site.

4.3. DATA ACQUISITION SYSTEMS

4.3.1. Vehicle Instrumentation and Data Processing

Each test vehicle was instrumented with a self-contained onboard data acquisition system. The signal conditioning and acquisition system is a multi-channel data acquisition system (DAS) produced by Diversified Technical Systems Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors, measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid-state units designed for crash test service. The data acquisition hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the channels is capable of providing precision amplification, scaling, and filtering based

23

on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 samples per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit in case the primary battery cable is severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the DAS unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each DAS is returned to the factory annually for complete recalibration and to ensure that all instrumentation used in the vehicle conforms to the specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCO[®] 2901 precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive calibration via a Genisco Rate-of-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel per SAE J211. Calibrations and evaluations are also made anytime data are suspect. Acceleration data are measured with an expanded uncertainty of ± 1.7 percent at a confidence factor of 95 percent (k = 2).

TRAP uses the DAS-captured data to compute the occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with an SAE Class 180-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k = 2).

4.3.2. Anthropomorphic Dummy Instrumentation

According to *MASH*, use of a dummy in the 2270P vehicle is optional, and no dummy was used in the test.

4.3.3. Photographic Instrumentation Data Processing

Photographic coverage of the 612261-05-1 test included three digital high-speed cameras:

- One located with a view perpendicular to the impact path and in line with the test article.
- One placed downstream from the installation at an angle to the left of the installation so that to have a field of view of the interaction of the front of the vehicle with the installation.
- One placed downstream from the installation at an angle to the right of the installation so that to have a field of view of the interaction of the front of the vehicle with the installation.

Photographic coverage of the 612261-04-1 test included two digital high-speed cameras:

- One located with a view perpendicular to the impact path and in line with the test article.
- One placed downstream from the installation at an angle to the left of the installation so that to have a field of view of the interaction of the front of the vehicle with the installation.

Photographic coverage of the 612261-05-2 test included three digital high-speed cameras:

- One located with a view perpendicular to the impact path at impact.
- One placed downstream from the installation at an angle to the left of the installation so that to have a field of view of the interaction of the front of the vehicle with the installation.
- One with an overhead view of the installation at impact.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the large sign slip base support. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

DocuSign Envelope ID: 705CE37D-7CB7-49F5-A759-FC011CA121FE

Chapter 5. MASH TEST 3-62 (CRASH TEST NO. 612261-05-1)

5.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 5.1 for details on *MASH* impact conditions for this test and Table 5.2 for the exit parameters. Figure 5.1 and Figure 5.2 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5 mi/h	62.4
Impact Angle (deg)	0	±1.5°	0
Kinetic Energy (kip-ft)	594	≥594 kip-ft	656.0
Impact Location	12 inches to the left of the centerline of the vehicle aligned with the center of the left post	± 6 inches	12 inches to the left of the centerline of the vehicle aligned with the center of the left post

Table 5.1. Impact Conditions for MASH 3-62 612261-05-1.

Table 5.2. Exit Parameters for *MASH* 3-62 6122561-05-1.

Exit Parameter	Measured
Speed (mi/h)	60.0
Brakes applied post impact (s)	1.6
Vehicle at rest position	309 ft downstream of impact point In-line with the impact path 5° left
Comments:	Vehicle remained upright and stable.

Figure 5.1. Large Sign Slip Base Support/Test Vehicle Geometrics for Test 6122561-05-1.

Figure 5.2. Large Sign Slip Base Support/Test Vehicle Impact Location 6122561-05-1.

5.2. WEATHER CONDITIONS

Table 5.3 provides the weather conditions for 6122561-05-1.

Date of Test	2020-03-03 AM	
Wind Speed (mi/h)	3	
Wind Direction (deg)	360	
Temperature (°F)	72	
Relative Humidity (%)	92	
Vehicle Traveling (deg)	170	

Table 5.3. Weather Conditions 6122561-05-1.

5.3. TEST VEHICLE

Figure 5.3 and Figure 5.4 show the 2014 RAM 1500 used for the crash test. Table 5.4 shows the vehicle measurements. Figure C.1 in Appendix C.1 gives additional dimensions and information on the vehicle.

Figure 5.3. Impact Side of Test Vehicle before Test 6122561-05-1.

Figure 5.4. Opposite Impact Side of Test Vehicle before Test 6122561-05-1.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	N/A
Inertial Weight (lb)	5000	± 110	5040
Gross Static ^a (lb)	5000	± 110	5040
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	± 3	40.0
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46.0
Track Width ^b (inches)	67	±1.5	68.25
CG aft of Front Axle ^c (inches)	63	±4	61.3
CG above Ground ^{c,d} (inches)	28	≥28	29.25

Table 5.4. Vehicle Measurements 6122561-05-1.

^a If a dummy is used, the gross static vehicle mass includes the mass of the dummy. ^b Average of front and rear axles. ^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

5.4. TEST DESCRIPTION

Table 5.5 lists events that occurred during Test No. 6122561-05-1. Figures C.4, C.5, and C.6 in Appendix C.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle contacted support post
0.0020	Base of left post began to slip
0.0060	Base of left post became free from base at grade
0.0820	Vehicle was no longer in contact with support post
0.3290	Vehicle was completely clear of sign

Table 5.5. Events during Test 6122561-05-1.

5.5. DAMAGE TO TEST INSTALLATION

The left support slip base activated at impact. The field side bolts dislodged from the fuse plate at impact. The sign panel detached from the right-side support post and landed 6 feet to the right of impact. The left support post and part of the sign panel landed 22 feet to the right and 11 feet downstream. The right support did not activate and was leaning to the left 9.75 degrees from vertical, with a slight clockwise twist. Figure 5.5 and Figure 5.6 show the damage to the large sign slip base support system.

Figure 5.5. Large Sign Slip Base Support after Test at Impact Location 6122561-05-1.

Figure 5.6. Left/Driver Large Sign Slip Base Support after Test at the Left Support Base 6122561-05-1.

5.6. DAMAGE TO TEST VEHICLE

Figure 5.7 and Figure 5.8 show the damage sustained by the vehicle. Figure 5.9 and Figure 5.10 show the interior of the test vehicle. Table 5.6 and Table 5.7 provide details on the occupant compartment deformation and exterior vehicle damage. Figures C.2 and C.3 in Appendix C.1 provide exterior crush and occupant compartment measurements.

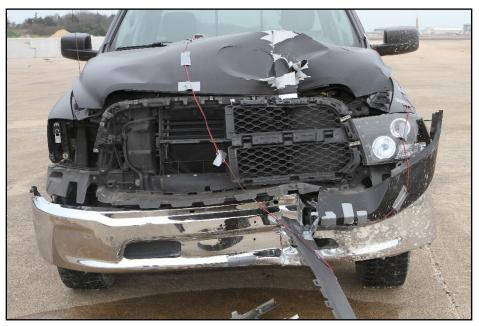


Figure 5.7. Impact Side of Test Vehicle after Test 6122561-05-1.

Figure 5.8. Rear Impact Side of Test Vehicle after Test 6122561-05-1.

Figure 5.9. Overall Interior of Test Vehicle after Test 6122561-05-1.

Figure 5.10. Interior Roof of Test Vehicle after Test 6122561-05-1.

Test Parameter	Specification	Measured
Roof	≤4.0 inches	0.0 inches
Windshield	\leq 3.0 inches	0.0 inches
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	0.0 inches
Foot Well/Toe Pan	≤9.0 inches	0.0 inches
Floor Pan/Transmission Tunnel	≤ 12.0 inches	0.0 inches
Side Front Panel	≤ 12.0 inches	0.0 inches
Front Door (above Seat)	≤9.0 inches	0.0 inches
Front Door (below Seat)	≤12.0 inches	0.0 inches

Side Windows	Side windows remained intact.	
Maximum Exterior Deformation	8 inches in the front plane at bumper height	
VDS	12FC3	
CDC	12FCEW3	
Fuel Tank Damage	None	
Description of Damage to Vehicle:	The front bumper, hood, grill, both headlights, radiator and support, and left side fender were damaged. The front bumper had a 9-inch \times 14 inch dent 12 inches left of center that was 9 inches deep. The hood had a 24-inch \times 16-inch dent 12 inches left of center that pushed the hood back 5 inches. The left side fender had a 21-inch \times 8-inch dent that was 1.5 inches deep. There was no damage to the fuel tank or oil pan.	

5.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 5.8. Figure C.7 in Appendix C.3 shows the vehicle angular displacements, and Figures C.8 through C.10 in Appendix C.4 show acceleration versus time traces.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤16.0	3.4	0.7128 seconds on front of interior
	10.0 ^{a.}		
OIV, Lateral (ft/s)	N/A	1.9	0.7128 seconds on front of interior
Ridedown Accelearation,	≤20.49	0.3	0.8482 - 0.8582 seconds
Longitudinal (g)	15.0		
Ridedown, Acceleration,	≤20.49	1.0	0.7512 - 0.7612 seconds
Lateral (g)	15.0		
THIV (m/s)	N/A	1.2	0.7095 seconds on front of interior
ASI	N/A	0.2	0.0164 - 0.0664 seconds
50-ms Moving Avg. Accelerations (MA) Longitudinal (g)	N/A	-1.8	0.0007 - 0.0507 seconds
50-ms MA Lateral (g)	N/A	0.6	0.7353 - 0.7853 seconds
50-ms MA Vertical (g)	N/A	-0.8	0.1490 - 0.1990 seconds
Roll (deg)	≤75	2	1.4227 seconds
Pitch (deg)	≤75	3	1.4632 seconds
Yaw (deg)	N/A	2	1.5000 seconds

Table 5.8. Occupant Risk Factors for Test 6122561-05-1.

^{a.} Values in italics are the preferred MASH values

5.8. TEST SUMMARY

Figure 5.11 summarizes the results of MASH Test 6122561-05-1.

Test Agency Tests Addition Temportation Institute (TTI) Test Sumdification Temportation Institute (TTI) TEST ARTICLE Support Structure Test Addition Temportation Institute (TTI) Output to the Addition Temportation Temportation Institute (TTI) Output to the Addition Temportation Temportation Temportation Temport Addition Temportation Temport Addition Temportation Temport Addition Temportation Temport Addition Temport Addition Temportation Temport Addition Temportation Temport Addition Temport Addition Temportation Temport Addition Temportation Temport Addition Temport Addition Temportation Temport Addition Tempor					
TTI Project No. 122261465-1 Test ARTICLE Type Support Structure Nume Large Sign Sign Base Support with Puse Plate Height: 13 n - 6 inches 4 section aluminum sign parel, Two W6-12 ASTM A56 steel support posts Soil Type and Condition ASHTO M47-17, Grading D Crushed Concrete TEST VEHICLE Type/Designation Vert. Male and Model Outmany (b) NA Output Rest (b) Output Rest (b) <td< th=""><th></th><th></th><th></th><th></th></td<>					
$\begin{tabular}{ c c c } \hline Test Date & 2020-03-07 \\ \hline Test Test Test Test Test Test Test Test$					
TEST ARTICLE Type Support Structure Large Sign Slip Base Support with Fuse Plate Height 13 ft - 6 inches Key Material Section 13 ft - 6 inches Soil Type and Condition AASHTO M147-17, Grading D Crushed Concrete TEST VEHICLE 2270P Yere, Make and Model 2014 RAM 1500 Inertial Weight (th) 5040 MPACT CONDITIONS 2014 RAM 1500 Inertial Weight (th) 5040 Impact Angle (deg) 0 Impact Angle (deg) 0 Impact Angle (deg) 12 inches to the left of the centerline of the vehicle aligned with the center of the left post Kinetic Energy (kip-ft) 656.0 Exit CONDITIONS 309 ft downstream In-line with the impact path VEHICLE DAMAGE VEHICLE DAMAGE 12PCEW3 Max. Ext. Deformation 8 Max Occupant Compartment Deformation 8 Occupant Compartment Deformation 0 Occupant Compartment Deformation 8 Occupant Compartment Deformation 8 Occupant Compartment Deformation 12 Max Occupant Compartment Deformation 8 Occupant Compartment Deformation 0 Occupant Compartment Deformation 12					
	2020-03-0311 1/2/26-03-1			2020-03-07	
Name Large Sign Sitp Base Support with Fuse Plate Height 13 ft - 6 inches 4 section aluminum sign panel, Two Wor12 ASTM A36 steel support posts Soil Type and Condition AASHTO M147-17, Grading D Crushed Concrete TEST VEHICLE 70p0/Designation Year, Make and Model 2014 RAM 1500 Incrtal Weight (0b) 5040 MDATE Consolidation No.000 s Incrtal Weight (0b) 0.100 s Ingest Age (deg) Impact Age (deg) 0 Impact Age (deg) 12 inches to the left of the centerline of the vehicle aligned with the center of the left post Kinetic Energy (Exp-ft) 65.0 Exit Speed (mi/h) 60.0 Stopping Distance 12FCEW3 Max Ext Deformation 8 Max Coccupant Compartment Loremation No occupant compartment deformation OCCUPANT RISK VALUES 12 Max Ext Deformation 8 Max Coccupant Compartment Loremation 10 O.300 s ASI 0.2 Max Roll (deg) 3.4 10 Max Roll (deg) 3.4 10 Max Roll (deg) 3.2 11 Max Occupant Compartment deformation OCCUPANT RISK VALUES Instruction (g) 1.0 Max Roll (deg) 3.2 O.300 s ASI 0.2			Type	Support Structure	
0.000 s Key Materials 4 section aluminum sign panel, Two Weik 12.8TM A36 steel support posts Soill Type and Condition ASHTO M147-17, Grading D Crushed Concrete TEST VEHICLE Type/Designation 2270P Year, Make and Model 2014 RAM 1500 Impact Speed (mith) 5040 MIPACT CONDITIONS 62.4 Impact Angle (dgg) 0 Impact Angle (dgg) 12 incloss to the left of the centerline of the vehicle aligned with the center of the left post Kinetic Energy (kip, ft) 656.0 EXIT CONDITIONS 309 ft downstream In-line with the impact path VEHICLE DAMAGE VDS VEHICLE DAMAGE No occupant compartment deformation OccupAnt RISK VALUES No occupant compartment deformation OCCUPANT RISK VALUES Amax 50-ms Long. (g) -1.8 Lat. Ridedown (g) 1.0 Max S0-ms Long. (g) -1.8 Lat. Ridedown (g) 1.0 Max S0-ms Long. (g) -1.8 Lat. Ridedown (g) 1.0 Max S0-ms Long. (g) -1.8 Lat. Ridedown (g) 1.0 Max S0-ms Long. (g) -1.8 Lat. Ridedown (g) 1.0 Max S0-ms Long. (g) -1.8 Lat. Ridedown (g) 1.0 Max S0-ms Long. (g) -1.8 Lat. Ridedown (g) 0.0		3			
0.000 s Key Matrials 4 section adminismen sign pancl, Two W6-12 ASTM A36 steel support posts ASHTO M147-17, Casting D Crushed Concrete TEST VEHICLE 2270P Year, Make and Model 2014 RAM 1500 Internal Weight (b) 5040 Dummy (b) NA Gross Static (b) 5040 Impact Speed (m/h) 62.4 Impact ConDITIONS 12 inches to the left of the center/line of the vehicle aligned with the center of the left post Kinetic Energy (kip.th) 65.0 EXIT CONDITIONS 12 inches to the left of the center/line of the vehicle aligned with the center of the left post Kinetic Energy (kip.th) 66.0 EXIT CONDITIONS 309 ft downstream In-line with the impact path VEHICLE DAMAGE VEN VEHICLE DAMAGE No occupant compartment deformation OCCUPANT RISK VALUES No occupant compartment deformation OCCUPANT RISK VALUES No advector of the left of the goal Late, Ridedown (g) 0.3 Max 50-ms Lat. (g) 0.6 ASS Orgin Distance 10 Max S0-ms Lat. (g) 0.6 Damage (b) 1.4 Max 60-ms Lat. (g) 0.6 UP 1.2 Max S0-ms Lat. (g) 0.6 Damage (b) 1.0 Max S0-ms Vert. (g) 0.8 Lat. Rid					
0.000 s Key Matchins Two Work12 ASTM A36 steel support posts Soil Type and Condition ASNITO MI47-17, Grading D Crushed Concrete TEST VEHICLE Type/Designation 2270P Year, Make and Modd 2014 RAM 1500 Intertial Weight (b) 5040 MPACT CONDITIONS 62.4 Impact Angle (dg) 0 Impact Angle (dg) 12 Impact Location 12 inches to the left of the centre/line of the vehicle aligned with the center of the left post Kinetic Energy (kip R) 656.0 EXIT CONDITIONS 309 ft downstream Inspect Location 309 ft downstream Inspect Location 12 inspect (mith) O.200 s CDC VEHICLE DAMAGE 12 inspect (mith) VEHICLE DAMAGE No occupant compartment beformation OCCUPANT RISK VALUES No occupant compartment deformation OCCUPANT RISK VALUES 0.30 Max Occupant Compartment beformation OCCUPANT RISK VALUES Late, Nickdown (g) 1.0 Max S0-ms Lat. (g) 0.6 Long, Ridedown (g) 1.0 Max S0-ms Lat. (g) 0.6 Long, Ridedown (g) 1.0 Max S0-ms Lat. (g) 0.6 <t< th=""><th></th><th></th><th></th><th></th></t<>					
TEST VEHICLE Type/Designation 2270P Year, Make and Model 2014 RAM 1500 Note: Type/Designation 2270P Year, Make and Model 2014 RAM 1500 Designation 2270P Year, Make and Model 2014 RAM 1500 Designation 2014 RAM 1500 Designation 2014 RAM 1500 Designation Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" 0.100 s Impact Angle (deg) 0 VEN State Constant State Energy (kip-ft) 60.0 EXIT CONDITIONS No occupant compartment	0.000 s	Key M	aterials	Two W6×12 ASTM A36 steel support posts	
Type/Designation 2270P Year, Make and Model 2014 RAM 1500 Inertial Weight (b) 5040 Dummy (b) N/A Gross Static (b) 5040 Impact CoONDITIONS 62.4 Impact Angle (dg) 0 Impact CooNDITIONS 12 inclues to the left of the centerline of the vehicle aligned with the center of the left post Kinetic Energy (kip-R) 656.0 EXIT CONDITIONS 60.0 Stopping Distance 80P flownstream In-ine with the impact path VEHICLE DAMAGE VEHICLE DAMAGE VDS OLOD s CDC OCCUPANT RISK VALUES 0.6 Long, OLV (ft/s) 3.4 Max S0-ms Lat.(g) OLOG s ASI OLO Max S0-ms Lat.(g) 0.6 Long, OLV (ft/s) 1.9 Max S0-ms Lat.(g) 0.6 Long, Ridedown (g) 0.3 Max S0-ms Lat.(g) 0.6			ondition	AASHTO M147-17, Grading D Crushed Concrete	
Year, Make and Model 2014 RAM 1500 Inertial Weight (b) 5040 Dummy (b) N/A Gross Static (b) 5040 IMPACT CONDITIONS 62.4 Impact Angle (deg) 0 Impact Angle (deg) 12 Impact Angle (deg) 12 Impact Angle (deg) 10 <th></th> <th>TEST VEHICLE</th> <th></th> <th></th>		TEST VEHICLE			
Inertial Weight (b) 5040 Dummy (b) N/A Gross Static (b) 5040 IMPACT CONDITIONS 62.4 Impact Angle (deg) 0 Impact Angle (deg) 0 Impact Speed (mi/h) 60.0 Stopping Distance 56.0 EXIT CONDITIONS 12 inches to the left of the centerline of the vehicle aligned with the center of the left post Kinetic Energy (kip-ft) 65.0 EXIT CONDITIONS 60.0 Stopping Distance 309 ft downstream In-line with the impact path VEHICLE DAMAGE VEHICLE DAMAGE VEHICLE DAMAGE OccuPANT RISK VALUES Max. Ext. Deformation 0.200 s CDC 12FC3 OCCUPANT RISK VALUES Max 50-ms Long. (g) -1.8 Lat. OIV (ft/s) 3.4 Max 50-ms Long. (g) -0.8 Lat. Ridedown (g) 0.3 Max S0-ms Vert. (g) -0.8 Lat. Ridedown (g) 1.0 Max S0I (deg) 2 Using Ridedown (g) 1.0 Max S0I (deg) 2 0.300 s ASI 0.2 Max Yaw (deg) 2 <tr< th=""><th></th><th>Type/Desi</th><th>gnation</th><th>2270P</th></tr<>		Type/Desi	gnation	2270P	
Dummy (b) N/A Gross Static (b) 5040 IMPACT CONDITIONS 1 Impact Angle (deg) 0 Impact Location 1 Impact Location 1 Kinetic Energy (kip-ft) 656.0 EXIT CONDITIONS 656.0 EXIT CONDITIONS 100 downstream In-line with the impact path 309 ft downstream In-line with the impact path 556.0 EXIT CONDITIONS 12FC3 0.200 s CDC 12FCBW3 Max. Ext. Deformation 8 Max Occupant Compartment Deformation No occupant compartment Deformation OCCUPANT RISK VALUES 0.6 Long. OIV (ft/s) 3.4 Max 50-ms Lat. (g) O.300 s ASI 0.2 Max Gours Carpet Path 1.2 Max Pich (deg) 3 ASI 0.2 Max Or ms Lat. (g) 0.6 Long. Ridedown (g) 1.0 Max Roli (deg) 2 O.300 s ASI 0.2 Max Torms Lat. (deg) 2 Max Soluti (deg) 2 </th <th></th> <th>Year, Make and</th> <th>l Model</th> <th>2014 RAM 1500</th>		Year, Make and	l Model	2014 RAM 1500	
Gross Static (lb) 5040 IMPACT CONDITIONS 0.100 s Impact Speed (mi/h) 62.4 Impact Location Igneed Angle (deg) 0 Impact Location Igneed with the center of the left post Kinetic Energy (kip-ft) 656.0 EXIT CONDITIONS EXIT Speed (mi/h) 60.0 Stopping Distance No occupant Compartment Deformation 0.200 s VEHICLE DAMAGE VEHICLE DAMAGE VEHIC		Inertial Wei	ght (lb)	5040	
0.100 s Impact Speed (m/h) 62.4 Impact Angle (deg) 0 Impact Angle (deg) 12 Impact Angle (deg) 0 Impact Angle (deg)		Dum	my (lb)	N/A	
0.100 s Impact Speed (mi/h) 62.4 Impact Angle (deg) 0 1 Impact Location Impact Speed (mi/h) 65.0 EXIT CONDITIONS 650.0 EXIT CONDITIONS 309 ft downstream In-line with the impact path VEHICLE DAMAGE 309 ft downstream In-line with the impact path VEHICLE DAMAGE VENC VEHICLE DAMAGE 309 ft downstream In-line with the impact path O.200 s CDC 12FCEW3 Max. Ext. Deformation 8 Max Ext. Deformation No occupant compartment deformation Doccupant Compartment Deformation No occupant compartment deformation OCCUPANT RISK VALUES Max 50-ms Lat. (g) 0.6 Lat. OIV (ft/s) 1.9 Max 50-ms Lat. (g) 0.6 Long. OIV (ft/s) 1.2 Max Not lodg) 2 O.300 s ASI 0.2 Max Yaw (deg) 2 0.300 s ASI 0.2 Max Yaw (deg) 2			atic (lb)	5040	
Impact Angle (deg) 0 Impact Location 12 inches to the left of the center of the left post Kinetic Energy (kip-ft) 656.0 EXIT CONDITIONS 60.0 Bit Speed (mi/h) 60.0 Stopping Distance 309 ft downstream In-line with the impact path VEHICLE DAMAGE VDS VEHICLE DAMAGE 12 PC3 O.200 s CDC Max. Ext. Deformation 8 Max Occupant Compartment Deformation No occupant compartment deformation OCCUPANT RISK VALUES No occupant compartment deformation OCCUPANT RISK VALUES No accupant compartment deformation OCCUPANT RISK VALUES No accupant compartment deformation OCCUPANT RISK VALUES No accupant compartment deformation O.300 s Ast 0.3 Max Point (dg) 1.0 Max Roll (dg) 2 THIV (m/s) 1.2 Max Roll (dg) 2 O.300 s Ast 0.2 Max Yaw (dg) 2					
Importing Coup 12 inches to the left of the centerline of the vehicle aligned with the center of the left post Kinetic Energy (kip-ft) 656.0 EXIT CONDITIONS 60.0 Stopping Distance 309 ft downstream In-line with the impact path VEHICLE DAMAGE VDS VEHICLE DAMAGE 0.200 s O.200 s CDC Max. Ext. Deformation 8 Max Occupant Compartment Deformation No occupant compartment deformation OCCUPANT RISK VALUES Lat. OIV (ft/s) 3.4 Max 50-ms Long. (g) -1.8 Lat. OIV (ft/s) 1.9 Max 50-ms Long. (g) -1.8 Lat. Ridedown (g) 0.3 Max S0-ms Lat. (g) 0.6 Long. Ridedown (g) 0.3 Max S0-ms Vert. (g) 2 0.300 s ASI 0.2 Max Yaw (deg) 2 THIV (m/s) 1.2 Max Yaw (deg) 2 1 0.300 s ASI 0.2 Max Yaw (deg) 2	0.100 s	Impact Speed	1 (mi/h)	62.4	
Impact Location aligned with the center of the left post Kinetic Energy (kip-ft) 656.0 EXIT CONDITIONS 60.0 Stopping Distance 309 ft downstream In-line with the impact path VEHICLE DAMAGE VB VEHICLE DAMAGE VB VEHICLE DAMAGE 0.200 s CCUPANT RISK VALUES No occupant compartment deformation OCCUPANT RISK VALUES No occupant compartment deformation CCUPANT RISK VALUES Lat. OIV (ft/s) 1.4 Lat. OIV (ft/s) 1.9 Max 50-ms Lat. (g) 0.6 Long. Ridedown (g) 0.3 Max 50-ms Vert. (g) -0.8 Lat. Ridedown (g) 1.0 Max S0-ms Vert. (g) -0.8 Lat. Ridedown (g) 1.0 Max Yaw (deg) 2 0.300 s ASI 0.2 Max Yaw (deg) 2		Impact Ang	le (deg)	0	
angle with the center of the Peri Post Kinetic Energy (kjr-ft) 65.0 Exit Speed (mi/h) 60.0 Stopping Distance Stopping Distance O.200 s O.200 s O.200 s VEHICLE DAMAGE VEHICLE DAMAGE VEHICLE DAMAGE VB Max. Ext. Deformation No occupant compartment beformation OCCUPANT RISK VALUES Long. OIV (h/s) 3.4 Max 50-ms Long. (g) -1.8 Lat. Ridedown (g) 0.3 Max 50-ms Long. (g) -0.8 Lat. Ridedown (g) 0.3 Max 50-ms Long. (g) -0.8 Lat. Ridedown (g) 0.4 Max Yetr. (g) 0.3 0.300 s ASI OCC contentine of Vehicle	The second second second second	Impact L	ocation		
EXIT CONDITIONS Exit Speed (mi/h) Stopping Distance Stopping Distance Stopping Distance OLD 12FCEW3 OLD 12FCEW3 OLD 12FCEW3 Max. Ext. Deformation Max Occupant Compartment Deformation Occupant compartment deformation OCCUPANT RISK VALUES Lat. OIV (ft/s) 3.4 Max 50-ms Long. (g) -1.8 Lat. OIV (ft/s) 1.9 Max 50-ms Long. (g) -0.6 Long. OIV (ft/s) 1.4 Add S0-ms Vert. (g) -0.8 Lat. OIV (ft/s) 1.4 Add S0-ms Vert. (g) -0.8 Lat. Ridedown (g) 0.3 Max 50-ms Vert. (g) -0.8 OLD Max S0-ms Vert. (g) -0.8 OLD Max S0-ms Vert. (g) -0.8 Lat. Ridedown (g) 0.2 Max Yaw (deg) 2 OLD Max Yaw (deg) 2 OLD Max Yaw (deg) 2					
Exit Speed (mi/h) 60.0 Stopping Distance 309 ft downstream In-line with the impact path VEHICLE DAMAGE VEHICLE DAMAGE VDS USS 0.200 s CCC Max. Ext. Deformation No occupant compartment Deformation No occupant compartment deformation OCCUPANT RISK VALUES Long. OIV (ft/s) 3.4 Max 50-ms Long. (g) -1.8 Lat. OIV (ft/s) 1.9 Max 50-ms Long. (g) -0.8 Lat. OIV (ft/s) 1.9 Max 50-ms Long. (g) -0.8 Lat. Ridedown (g) 0.3 Max 90-ms Vert. (g) -0.8 Lat. Ridedown (g) 1.2 Max Pitch (deg) 3 0.300 s ASI 0.2 Max Yaw (deg) 2	191		(кір-п)	656.0	
Stopping Distance 309 ft downstream In-line with the impact path VEHICLE DAMAGE VDS 12FC3 O.200 s O.200 s Max. Ext. Deformation Max Occupant Compartment Deformation No occupant compartment Deformation OCCUPANT RISK VALUES Long. OIV (ft/s) Lat. OIV (ft/s) Lat. OIV (ft/s) Lat. Cly A Max 50-ms Long. (g) -1.8 Lat. OIV (ft/s) Lat. OIV (ft/s) Lat. OIV (ft/s) Lat. Ridedown (g) 0.300 s Asti 0.2 Max Yaw (deg) O.300 s O.300 s O.300 s O.300 s O.20 O.300 s			1(mi/h)	60.0	
Stopping Distance In-line with the impact path VDB 12FC3 O.200 s Max. Ext. Deformation 8 Max. Ext. Deformation 8 OCCUPANT RISK VALUES Cong. OIV (ft/s) 3.4 Max 50-ms Long. (g) -1.8 Long. OIV (ft/s) 3.4 Max 50-ms Long. (g) -1.8 Long. OIV (ft/s) 1.9 Max 50-ms Lang. (g) -1.8 Long. OIV (ft/s) 1.9 Max 50-ms Lat. (g) 0.6 Long. OIV (ft/s) 1.9 Max S0-ms Lat. (g) 0.6 Long. OIV (ft/s) 1.9 Max S0-ms Vert. (g) -0.8 Lat. Ridedown (g) 1.0 Max Roll (deg) 2 O.300 s ASI 0.2 Max Yaw (deg) 2 Max Yaw (deg) 2 Max Yaw (deg) 2		Exit speed	1 (111/11)		
VEHICLE DAMAGE VDs 12FC3 CDC 12FCBW3 Max. Ext. Deformation 8 Max Occupant Compartment Deformation No occupant compartment deformation OCCUPANT RISK VALUES No occupant compartment deformation OCCUPANT RISK VALUES No occupant compartment deformation Deformation Nax 50-ms Lat. (g) -1.8 Lat. OIV (ft/s) 3.4 Max 50-ms Lat. (g) 0.6 Long. Ridedown (g) 0.3 Max 50-ms Vert. (g) -0.8 Lat. Ridedown (g) 1.0 Max Roll (deg) 2 O.300 s ASI 0.2 Max Yaw (deg) 2	Contraction of the second s	Stopping D	Distance		
UDS 12FC3 CDC 12FCBW3 Max. Ext. Deformation 8 Max Occupant Compartment Deformation No occupant compartment deformation OCCUPANT RISK VALUES No occupant compartment deformation CCUPANT RISK VALUES Max 50-ms Long. (g) -1.8 Lat. OIV (ft/s) 3.4 Max 50-ms Lat. (g) 0.6 Lat. OIV (ft/s) 1.9 Max 50-ms Vert. (g) -0.8 Lat. Ridedown (g) 1.0 Max Round Vert. (g) -0.8 Lat. Ridedown (g) 1.0 Max Pitch (deg) 3 0.300 s ASI 0.2 Max Yaw (deg) 2	and the second sec	VEHICLE DAMAGE			
0.200 s CDC 12FCEW3 Max. Ext. Deformation Max Occupant Compartment Deformation No occupant compartment deformation OCCUPANT RISK VALUES Long. OIV (ft/s) 3.4 Max 50-ms Long. (g) -1.8 Lat. OIV (ft/s) 1.9 Max 50-ms Lat. (g) 0.6 Long. Ridedown (g) 0.3 Max 50-ms Vert. (g) -0.8 Lat. Ridedown (g) 1.0 Max Roll (deg) 2 THIV (m/s) 1.2 Max Pitch (deg) 3 0.300 s OCUPANT RISK VALUES OCUPANT RISK VALUES			VDS	12FC3	
Max Occupant Compartment Deformation No occupant compartment deformation OCCUPANT RISK VALUES Long. OIV (ft/s) 3.4 Max 50-ms Long. (g) -1.8 Lat. OIV (ft/s) 1.9 Max 50-ms Long. (g) -1.8 Lat. OIV (ft/s) 1.9 Max 50-ms Long. (g) -0.8 Lat. OIV (ft/s) 1.9 Max 50-ms Long. (g) -0.8 Lat. OIV (ft/s) 1.9 Max S0-ms Vert. (g) -0.8 Lat. Ridedown (g) 1.0 Max Roll (deg) 2 0.300 s ASI 0.2 Max Yaw (deg) 2 O.309 (Centerline of Vehicle Impact Pain	0.200 s	CDC 1		12FCEW3	
Deformation Deformation OCCUPANT RISK VALUES Long. OIV (h/s) 3.4 Max 50-ms Long. (g) -1.8 Lat. OIV (h/s) 1.9 Max 50-ms Long. (g) -0.6 Long. Ridedown (g) 0.3 Max S0-ms Vert. (g) -0.8 Lat. Ridedown (g) 1.0 Max Roll (deg) 2 0.300 s ASI 0.2 Max Yaw (deg) 2		Max. Ext. Deformation 8		8	
Decommond Decommond Coccupant RISK VALUES Long. OIV (ft/s) 3.4 Max 50-ms Long. (g) -1.8 Lat. OIV (ft/s) 1.9 Max 50-ms Lat. (g) 0.6 Long. Ridedown (g) 0.3 Max 50-ms Vert. (g) -0.8 Lat. Ridedown (g) 1.0 Max Roll (deg) 2 O.300 s ASI 0.2 Max Yaw (deg) 2		Max Occupant Compartment		No comment comments defermation	
Long. OIV (ft/s) 3.4 Max 50-ms Long. (g) -1.8 Lat. OIV (ft/s) 1.9 Max 50-ms Lat. (g) 0.6 Long. Ridedown (g) 0.3 Max 50-ms Vert. (g) -0.8 Lat. Ridedown (g) 1.0 Max Roll (deg) 2 THIV (m/s) 1.2 Max Pitch (deg) 3 0.300 s ASI 0.2 Max Yaw (deg) 2			rmation	No occupant compartment deformation	
$\begin{array}{ c c c c c c } \hline Lat. OIV (ft/s) & 1.9 & Max 50-ms Lat. (g) & 0.6 \\ \hline Long. Ridedown (g) & 0.3 & Max 50-ms Vert. (g) & -0.8 \\ \hline Lat. Ridedown (g) & 1.0 & Max Roll (deg) & 2 \\ \hline THIV (m/s) & 1.2 & Max Pitch (deg) & 3 \\ \hline 0.300 s & ASI & 0.2 & Max Yaw (deg) & 2 \\ \hline \end{array}$					
$\frac{\text{Long. Ridedown (g)}}{\text{Lat. Ridedown (g)}} \frac{0.3}{1.0} \frac{\text{Max 50-ms Vert. (g)}}{\text{Max Roll (deg)}} \frac{2}{2}$ $\frac{\text{Lat. Ridedown (g)}}{1.0} \frac{1.0}{\text{Max Pitch (deg)}} \frac{3}{3}$ $0.300 \text{ s} \frac{\text{ASI}}{0.2} \frac{0.2}{\text{Max Yaw (deg)}} \frac{2}{2}$					
Lat. Ridedown (g) 1.0 Max Roll (deg) 2 THIV (m/s) 1.2 Max Pitch (deg) 3 0.300 s ASI 0.2 Max Yaw (deg) 2 309 Centerline of Vehicle 15% 15% 16% Impact Path Impact Path Impact Path Impact Path					
THIV (m/s) 1.2 Max Pitch (deg) 3 0.300 s ASI 0.2 Max Yaw (deg) 2			0.		
0.300 s ASI 0.2 Max Yaw (deg) 2		(8)			
$309' \qquad \qquad$	0.200 ~	· · · · · · · · · · · · · · · · · · ·			
309' Centerline of Vehicle Impact Path	0.300 \$	ASI	0	2 Max Yaw (deg) 2	
$309' \qquad \qquad$				 18°-6°►•	
309' Centerline of Vehicle				- - -B	
Centerline of Vehicle					
Impact Path	309'				
Impact Path					
		'৺ ∕─ ^{Cer}	nterline of Ve		
			T I	12"	
			==== 🛓		
		Im	pact Path	or d:	
72"					
72- 2					
72-1					
Figure 5.11. Summary of Results for <i>MASH</i> Test 3-62 on Large Sign Slip Base Support.					

Figure 5.11. Summary of Results for MASH Test 3-62 on Large Sign Slip Base Support.

Chapter 6. MASHTEST 3-62 (CRASH TEST NO. 612261-04-1)

6.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 6.1 for details on *MASH* impact conditions for this test and Table 6.2 for the exit parameters. Figure 6.1 and Figure 6.2 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5 mi/h	61.4
Impact Angle (deg)	0	±1.5°	0
Kinetic Energy (kip-ft)	594	≥594 kip-ft	638.2
Impact Location	13 inches to the left of the centerline of the vehicle aligned with the center of the left post	± 6 inches	13 inches to the left of the centerline of the vehicle aligned with the center of the left post

Table 6.1. Impact Conditions for MASH 3-62 612261-04-1.

Exit Parameter	Measured
Speed (mi/h)	61.3
Brakes applied post impact (s)	2.0
Vehicle at rest position	345 ft downstream of impact point In-line with the installation
Comments:	Vehicle remained upright and stable.

Table 6.2. Exit Parameters for *MASH* 3-62 612261-04-1.

Figure 6.1. Large Sign Slip Base Support/Test Vehicle Geometrics for Test 612261-04-1.

Figure 6.2. Large Sign Slip Base Support/Test Vehicle Impact Location 612261-04-1.

6.2. WEATHER CONDITIONS

Table 6.3 provides the weather conditions for 612261-04-1.

Date of Test	2022-03-16 PM
Wind Speed (mi/h)	7
Wind Direction (deg)	173
Temperature (°F)	71
Relative Humidity (%)	59
Vehicle Traveling (deg)	170

Table 6.3. Weather Conditions 612261-04-1.

6.3. TEST VEHICLE

Figure 6.3 and Figure 6.4 show the 2016 RAM 1500 used for the crash test. Table 6.4 shows the vehicle measurements. Figure D.1 in Appendix D.1 gives additional dimensions and information on the vehicle.



Figure 6.3. Impact Side of Test Vehicle before Test 612261-04-1.

Figure 6.4. Opposite Impact Side of Test Vehicle before Test 612261-04-1.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	N/A
Inertial Weight (lb)	5000	± 110	5064
Gross Static ^a (lb)	5000	± 110	5064
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	±3	40.0
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46.0
Track Width ^b (inches)	67	±1.5	68.25
CG aft of Front Axle ^c (inches)	63	±4	60.9
CG above Ground ^{c,d} (inches)	28	≥28	28.25

Table 6.4. Vehicle Measurements 612261-04-1.

^a If a dummy is used, the gross static vehicle mass includes the mass of the dummy. ^b Average of front and rear axles.

^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

6.4. TEST DESCRIPTION

Table 6.5 lists events that occurred during Test No. 612261-04-1. Figures D.4 and D.5 in Appendix D.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle contacted the support post
0.0020	Left sign post base began to release
0.0100	Left sign post impact-side fuse plate began to separate
0.1150	Bottom edge of upper section of activated fuse plate on left sign post contacted roof
0.1960	Vehicle exited the installation at 61.3mi/h

Table 6.5. Events during Test 612261-04-1.

6.5. DAMAGE TO TEST INSTALLATION

The sign panel released from the support posts and landed 20 feet downstream from impact. The front fuse plate on the left support post fractured, and the support post released from the slip base, landing 40 feet downstream from impact. The front fuse plate on the right support post fractured, but the support post did not release from the slip base, causing a lean of the upper section of the support post of 8 degrees to the left. Figure 6.5 and Figure 6.6 show the damage to the large sign slip base support.

Figure 6.5. Large Sign Slip Base Support after Test at Impact Location 612261-04-1.

Figure 6.6. Impacted Post of the Large Sign Slip Base Support after Test 612261-04-1.

6.6. DAMAGE TO TEST VEHICLE

Figure 6.7 and Figure 6.8 show the damage sustained by the vehicle. Figure 6.9 and Figure 6.10 show the interior of the test vehicle. Table 6.6 and Table 6.7 provide details on the occupant compartment deformation and exterior vehicle damage. Figures D.2 and D.3 in Appendix D.1 provide exterior crush and occupant compartment measurements.

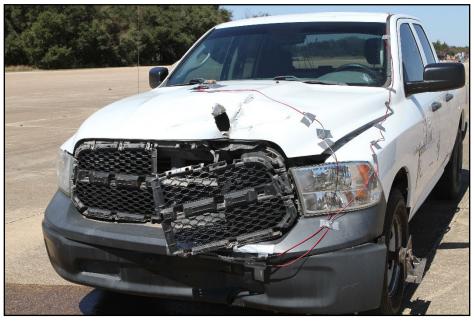


Figure 6.7. Impact Side of Test Vehicle after Test 612261-04-1.

Figure 6.8. Roof Damage on Test Vehicle after Test 612261-04-1.

Figure 6.9. Overall Interior of Test Vehicle after Test 612261-04-1.

Figure 6.10. Interior of Test Vehicle Roof on Impact Side after Test 612261-04-1.

Test Parameter	Specification	Measured
Roof	≤ 4.0 inches	1 inch
Windshield	≤ 3.0 inches	0 inches
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤9.0 inches	0 inches
Floor Pan/Transmission Tunnel	≤ 12.0 inches	0 inches
Side Front Panel	≤ 12.0 inches	0 inches
Front Door (above Seat)	≤9.0 inches	0 inches
Front Door (below Seat)	≤ 12.0 inches	0 inches

Table 6.6. Occupant Compartment Deformation 612261-04-1.

Side Windows	Side windows remained intact	
Maximum Exterior Deformation	4 inches in the front plane at bumper height	
VDS	12FC2	
CDC	12FCAW1	
Fuel Tank Damage	None	
Description of Damage to Vehicle:	The front bumper, hood, grill, and roof were damaged. The front bumper had an 18-inch \times 12-inch dent that was 4 inches deep, 13 inches to the left of the vehicle's centerline. The hood had a 22-inch \times 13-inch dent that was 1.5 inches deep, 13 inches to the left of the vehicle's centerline. The roof had an 8-inch square dent with a cut that was 0.0625 inches wide and 1-inch long, 12 inches to the left of the vehicle's centerline. Fuel tank and Oil pan were not damaged.	

6.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 6.8. Figure D.6 in Appendix D.3 shows the vehicle angular displacements, and Figures D.7 through D.9 in Appendix D.4 show acceleration versus time traces.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤16.0	2.4	0.8107 seconds on front of interior
	10.0 ^{a.}		
OIV, Lateral (ft/s)	N/A	0.6	0.8107 seconds on front of interior
Ridedown, Longitudinal (g)	≤20.49	0.3	0.8167 - 0.8267 seconds
	15.0		
Ridedown, Lateral (g)	≤20.49	0.4	0.9454 - 0.9554 seconds
	15.0		
THIV (m/s)	N/A	0.8	0.8115 seconds on front of interior
ASI	N/A	0.2	0.0107 - 0.0607 seconds
50-ms MA Longitudinal (g)	N/A	-1.4	0.0000 - 0.0500 seconds
50-ms MA Lateral (g)	N/A	-0.4	0.0870 - 0.1370 seconds
50-ms MA Vertical (g)	N/A	-1.1	0.2658 - 0.3158 seconds
Roll (deg)	≤75	4	1.9999 seconds
Pitch (deg)	≤75	4	1.9914 seconds
Yaw (deg)	N/A	3	1.9999 seconds

 Table 6.8. Occupant Risk Factors for Test 612261-04-1.

^{a.} Values in italics are the preferred MASH values

6.8. TEST SUMMARY

Figure 6.11 summarizes the results of *MASH* Test 612261-04-1. Though the roof did have a cut that went through the metal, it was determined that the due to the angle and direction of contact and the shape of the part contacting the roof there was no danger for penetration into the occupant compartment.

Γ						
		Agency		A&M Transportation Institute (TTI)	
				SH 2016, Test 3-62		
			612261	612261-04-1		
and the second		st Date	2022-0	3-16		
	TEST ARTICLE	-				
		Туре		t Structure	DI (
		Name Height	-	Sign Slip Base Support with Fu 0 inches	se Plate	
	-	0			oriz Sections	
0.000 s	Key M	aterials		Extruded aluminum sign panel w/ 6 Horiz Sections Two W6×12 ASTM A36 steel support posts		
5	Soil Type and Co	ndition		AASHTO M147-17 Grading D Crushed Concrete		
	TEST VEHICLE					
	Type/Desi	gnation	2270P			
	Year, Make and	Model	2016 R	AM 1500		
	Inertial Wei	ght (lb)	5064			
	Dum	my (lb)	N/A			
	Gross Sta	tic (lb)	5064			
	IMPACT CONDITIONS		ī			
0.100 s	Impact Speed (mi/h)		61.4			
	Impact Angl	e (deg)	0			
The second s	Impact L	ocation	-	nes to the left of the centerline of with the center of the left post		
	Kinetic Energy	(kip-ft)	638.2			
	EXIT CONDITIONS	` 1 /				
	Exit Speed	(mi/h)	61.3	61.3		
	Stopping D	istance	345 ft d	345 ft downstream		
		Istance	In-line	with the installation		
	VEHICLE DAMAGE					
		VDS	12FC2			
0.200 s		CDC	12FCA	.W1		
	Max. Ext. Defor					
	Max Occupant Compa Defor	artment mation	1-inch	in the roof		
	OCCUPANT RISK VAL					
	Long. OIV (ft/s)	2.	4	Max 50-ms Long. (g)	-1.4	
	Lat. OIV (ft/s)	0.		Max 50-ms Lat. (g)	-0.4	
	Long. Ridedown (g)	0.	-	Max 50-ms Vert. (g)	-1.1	
	Lat. Ridedown (g)	0.	.4	Max Roll (deg)	4	
	THIV (m/s)	0.	.8	Max Pitch (deg)	4	
0.300 s	ASI	0.	.2	Max Yaw (deg)	3	
				-Aluminum Sign P	nel Extrusion (x 6)	
A	<i>┌─</i> ─Centerline of Vehicle			ehicle		
◀ 345' ~ ►						
			Vehicle			
e e						
		The second secon	13"			
¢	┈╪╬═╬═┾╶╲┈╴					
I	$\langle \rangle$	I		10194-2 ⁻¹		
	Impact Pati		ath			
				72		
				arge Sign Slin Base		

Figure 6.11. Summary of Results for MASH Test 3-62 on Large Sign Slip Base Support.

Chapter 7. MASHTEST 3-62 (CRASH TEST NO. 612261-05-2)

7.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 7.1 for details on *MASH* impact conditions for this test and Table 7.2 for the exit parameters. Figure 7.1 and Figure 7.2 depict the target impact setup.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	± 2.5 mi/h	64.3
Impact Angle (deg)	25	± 1.5°	26.5
Kinetic Energy (kip-ft)	594	≥594 kip-ft	691.8
Impact Location	13 inches to the left of the centerline of the vehicle aligned with the center of the left post	± 6 inches	14 inches to the left of the centerline of the vehicle aligned with the center of the left post

Table 7.1. Impact Conditions for MASH 3-62 612261-05-2.

Exit Parameter	Measured
Speed (mi/h)	60.4
Brakes applied post impact (s)	1.3
Vehicle at rest position	266 ft downstream of impact point19 ft to the field side50° right
Comments:	Vehicle remained upright and stable.

Table 7.2. Exit Parameters for *MASH* 3-62 612261-05-2.

Figure 7.1. Large Sign Slip Base Support/Test Vehicle Geometrics for Test 612261-05-2.

Figure 7.2. Large Sign Slip Base Support/Test Vehicle Impact Location 612261-05-2.

7.2. WEATHER CONDITIONS

Table 7.3 provides the weather conditions for 612261-05-2.

Date of Test	2022-11-10 AM
Wind Speed (mi/h)	7
Wind Direction (deg)	151
Temperature (°F)	77
Relative Humidity (%)	82
Vehicle Traveling (deg)	325

 Table 7.3. Weather Conditions 612261-05-2.

7.3. TEST VEHICLE

Figure 7.3 and Figure 7.4 show the 2018 RAM 1500 used for the crash test. Table 7.4 shows the vehicle measurements. Figure E.1 in Appendix E.1 gives additional dimensions and information on the vehicle.

Figure 7.3. Impact Side of Test Vehicle before Test 612261-05-2.



Figure 7.4. Opposite Impact Side of Test Vehicle before Test 612261-05-2.

Test Parameter	MASH	Allowed Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	N/A
Inertial Weight (lb)	5000	± 110	5005
Gross Static ^a (lb)	5000	± 110	5005
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	±3	40.0
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46.0
Track Width ^b (inches)	67	±1.5	68.25
CG aft of Front Axle ^c (inches)	63	±4	61.0
CG above Ground ^{c,d} (inches)	28	≥28	28.75

Table 7.4. Vehicle Measurements 612261-05-2.

^a If a dummy is used, the gross static vehicle mass includes the mass of the dummy. ^b Average of front and rear axles. ^c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

7.4. TEST DESCRIPTION

Table 7.5 lists events that occurred during Test No. 612261-05-2. Figures E.4, E.5, and E.6 in Appendix E.2 present sequential photographs during the test.

Time (s)	Events
0.0000	Vehicle contacted the left support post
0.0030	Left support post slip base began to release
0.0080	Fuse plate connection on left support post began to fracture
0.0940	Fuse plate connection on right support post began to fracture
0.1140	Lower edge of upper section of left support post contacted roof near windshield and A- pillar
0.1510	Vehicle lost contact with the sign and its components.

Table 7.5. Events during Test 612261-05-2.

7.5. DAMAGE TO TEST INSTALLATION

The left side impacted support post slip base activated and the fuse plate fractured. The sign panel released from the non-impacted right side support post and was deformed. The fuse plate activated on the non-impacted right side support post and a bolt connecting the support post to the hinge plate sheared. Figure 7.5 and Figure 7.6 show the damage to the large sign slip base support.

Figure 7.5. Large Sign Slip Base Support after Test at Impact Location 612261-05-2.

Figure 7.6. Large Sign Slip Base Support after Test at the Impacted Support 612261-05-2.

7.6. DAMAGE TO TEST VEHICLE

Figure 7.7 and Figure 7.8 show the damage sustained by the vehicle. Figure 7.9 and Figure 7.10 show the interior of the test vehicle. Table 7.6 and Table 7.7 provide details on the occupant compartment deformation and exterior vehicle damage. Figures E.2 and E.3 in Appendix E.1 provide exterior crush and occupant compartment measurements.

Figure 7.7. Impact Side of Test Vehicle after Test 612261-05-2.

Figure 7.8. Rear Impact Side of Test Vehicle after Test 612261-05-2.

Figure 7.9. Roof of Test Vehicle after Test 612261-05-2.

Figure 7.10. Interior of Test Vehicle after Test 612261-05-2.

Test Parameter	Specification	Measured
Roof	\leq 4.0 inches	1.9 inches
Windshield	\leq 3.0 inches	0.5 inches
A and B Pillars	\leq 5.0 overall/ \leq 3.0 inches lateral	0 inches
Foot Well/Toe Pan	≤9.0 inches	0 inches
Floor Pan/Transmission Tunnel	≤ 12.0 inches	0 inches
Side Front Panel	≤ 12.0 inches	0 inches
Front Door (above Seat)	≤9.0 inches	0 inches
Front Door (below Seat)	≤ 12.0 inches	0 inches

Table 7.6. Occupant Compartment Deformation 612261-05-2.

Side Windows	The side windows remained intact	
Maximum Exterior Deformation	11 inches in the front plane at bumper height	
VDS	12FL2	
CDC	12FLAW2	
Fuel Tank Damage	None	
Description of Damage to Vehicle:	The front bumper, hood, grill, right lower control arm, right tire, windshield, roof and left upper A-pillar were damaged. The windshield had a 17.5-inch \times 3.25-inch fold that was 0.5 inches deep, but there was no cut or tear in the laminate. The roof had a 19-inch \times 16-inch dent that was 1.9 inches deep, and had two cuts, one measuring 3 inches \times 0.25 inches and the other 1.5 inches \times 0.125 inches. The left upper a-pillar had 3 small rips with a 1-inch deep dent. No damage to fuel tank or oil pan.	

7.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 7.8. Figure E.7 in Appendix E.3 shows the vehicle angular displacements, and Figures E.8 through E.10 in Appendix E.4 show acceleration versus time traces.

Test Parameter	MASH	Measured	Time
OIV, Longitudinal (ft/s)	≤16.0	9.2	0.4928 seconds on front of interior
	10.0 ^{a.}		
OIV, Lateral (ft/s)	N/A	3.3	0.4928 seconds on front of interior
Ridedown acceleration,	≤20.49	0.9	0.5197 - 0.5297 seconds
Longitudinal (g)	15.0		
Ridedown acceleration,	≤20.49	0.6	0.5084 - 0.5184 seconds
Lateral (g)	15.0		
THIV (m/s)	N/A	3.0	0.4923 seconds on front of interior
ASI	N/A	0.5	0.4011 - 0.4511 seconds
50-ms MA Longitudinal (g)	N/A	-2.1	0.4102 - 0.4602 seconds
50-ms MA Lateral (g)	N/A	-1.3	0.3965 - 0.4465 seconds
50-ms MA Vertical (g)	N/A	-4.6	0.3572 - 0.4072 seconds
Roll (deg)	≤75	25	1.0000 seconds
Pitch (deg)	≤75	7	0.6591 seconds
Yaw (deg)	N/A	3	0.5264 seconds

 Table 7.8. Occupant Risk Factors for Test 612261-05-2.

13. Values in italics are the preferred MASH values

7.8. TEST SUMMARY

MASH evaluation criteria D states that the test article should not penetrate, or show the potential to penetrate into the occupant compartment. There were two small tears in the roof, however it was determined through analysis of the high speed video and a special arbitration committee, that the direction of the force generated by the sign panel was primarily parallel with the impact path, and that the test article would not penetrate into the occupant compartment or pose any significant risk to the occupants of the vehicle. Figure 7.11 summarizes the results of *MASH* Test 612261-05-2.

Γ	I		1			
×.	Test Agency		Texas A&M Transportation Institute (TTI)			
	Test Standard/Test					
	TTI Projec		612261-05-2			
		t Date	2022-11-10			
	TEST ARTICLE	_	_	-		
		Type Support Structure		DI (
	Name Large Sign Slip Base Support with Fuse Plate Height 13 ft-0 inches		se Plate			
	Height			incnes ed aluminum sign panel w/ 6 H	ania Santiana	
0.000 s	Key Mat	terials		6×12 ASTM A36 steel suppor		
	Soil Type and Con	6H:1V clone: A ASHTO M147-17 Grading D				
	TEST VEHICLE					
	Type/Design	nation	2270P			
	Year, Make and M	Model	2018 R.	AM 1500		
	Inertial Weigh	nt (lb)	5005			
		ss (lb)	5005			
0.100 s	IMPACT CONDITIONS					
	Impact Speed (64.3			
	Impact Angle	(deg)	26.5	· · · · · · · · · · · · · · · · · · ·	64 111	
	Impact Location			es to the left of the centerline of with the center of the left post		
			691.8		·	
	EXIT CONDITIONS					
			60.4	60.4		
			266 ft downstream			
	Stopping Distance		19 ft to the field side			
	VEHICLE DAMAGE					
0.200		VDS	12FL2			
0.200 s		CDC	12FLAW2			
	Max. Ext. Deformation		11 inches			
	Max Occupant Compartment Deformation		1.9 inches in the roof			
	OCCUPANT RISK VALU	ES				
	Long. OIV (ft/s)		9.2	Max 50-ms Long. (g)	-2.1	
	Lat. OIV (ft/s)		3.3	Max 50-ms Lat. (g)	-1.3	
- 1973	Long. Ridedown (g)		0.9	Max 50-ms Vert. (g)	-4.6	
e e	Lat. Ridedown (g)		0.6	Max Roll (deg)	25	
	THIV (m/s)		3.0	Max Pitch (deg)	7	
0.300 s	ASI		0.5	Max Yaw (deg)	3	
				13'-0"	ninum Sign Panel Extrusion (x 6)	
				•		
				7'-0"]	
14"	266'^					
		•	† † ∣	6:1 Slope		
		<u></u>	19'	0° ↔ 3° ₽		
LEdge of Ditch		X	7	32"		
				- 42" ->		
					10'-10"	
		_			S-0*	
		1 2 6	7 T	arge Sign Slip Base	· (* 4	

Figure 7.11. Summary of Results for MASH Test 3-62 on Large Sign Slip Base Support.

Chapter 8. SUMMARY AND CONCLUSIONS

8.1. ASSESSMENT OF TEST RESULTS

The crash tests reported herein were performed in accordance with *MASH* 3-62, which involves three tests, on the large sign slip base support.

8.2. CONCLUSIONS

Table 8.1 shows that the different configurations of large sign slip base support systems met the performance criteria for *MASH* 3-62 support structures.

Evaluation Criteria	Description	Test No. 6122561-05-1	Test No. 612261-04-1	Test No. 612261-05-2
В	Test Article Activated as Desired	S	S	S
D	No Penetration into Occupant Compartment	S	S	S
F	Roll and Pitch Limit	S	S	S
Н	OIV Threshold	S	S	S
Ι	Ridedown Threshold	S	S	S
Ν	Trajectory Behind is Acceptable	S	S	S
O'	verall	Pass	Pass	Pass

Table 8.1. Assessment Summary for MASH 3-62 Tests on Large Sign Slip Base Support.

Note: S = Satisfactory

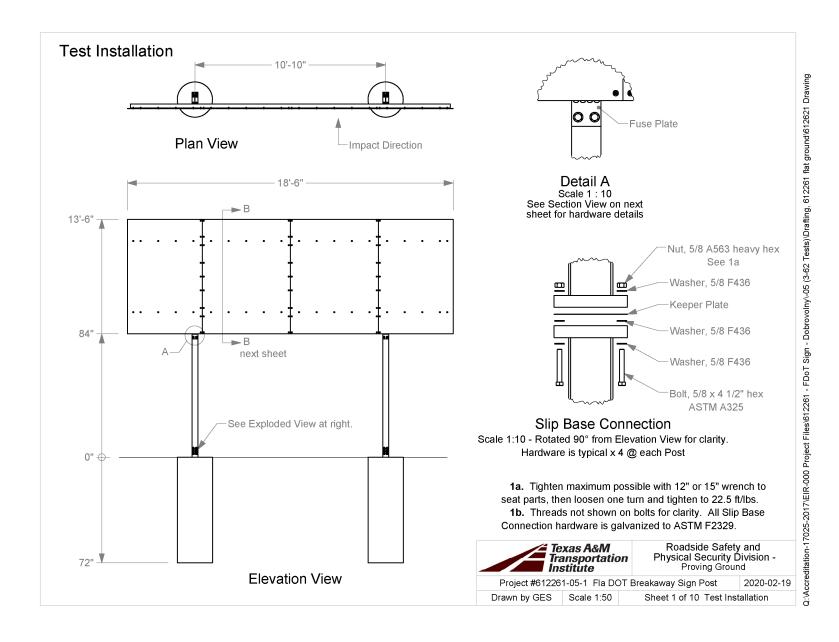
¹ See Table 3.2 for details

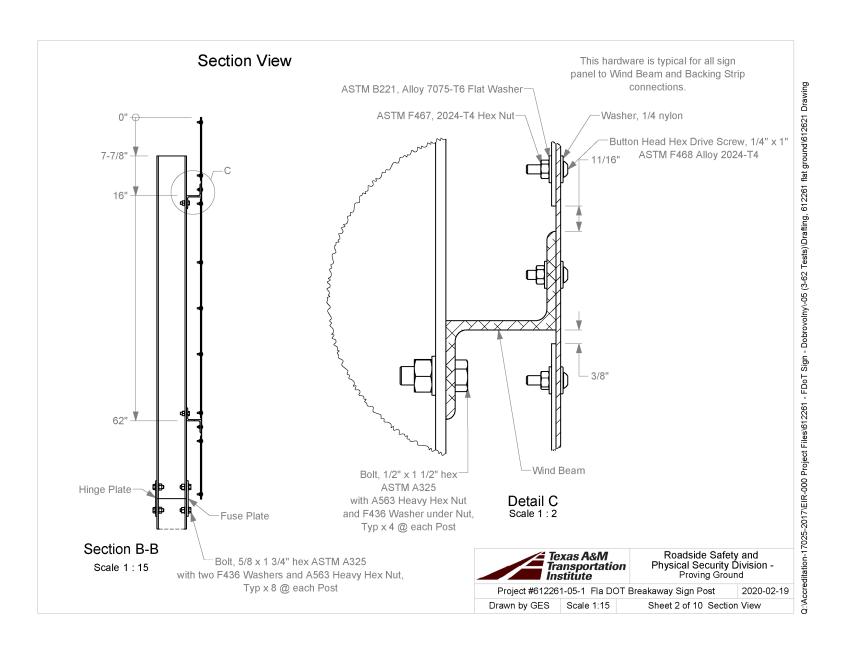
8.3. **DISCUSSION**

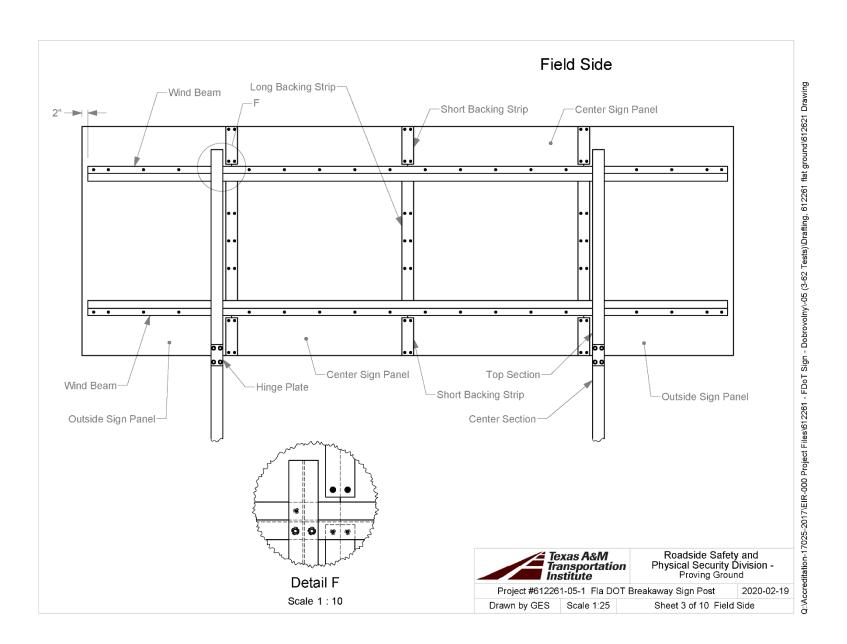
Two configuration of a large guide sign slip base support system with similar support posts and slip base designs performed differently when impacted following MASH Test 3-62 conditions. While both configurations satisfied MASH criteria, the fuse plate activation differed. In the initial system tested with an aluminum sheet metal sign panel and a 3/8-inch thick fuse plate, the fuse plate did not activate. After activation of the fuse plate, the sign panel twisted, and the entire support post rotated above the vehicle.

In a test subsequent with an extruded aluminum sign panel and a ¹/₄-inch fuse plate, the fuse plate activated as designed. The lower post section rotated up about the hinge plate and the vehicle passed under the system. It was noted that the unsupported sign panel had a tendency to drop, allowing the bottom edge of the upper section of support to contact the roof of the pickup truck as it traveled beneath the system. This behavior is likely accentuated in a dual support post system with a wide post spacing. Systems with more than two posts, narrower sign panels, and/or taller mounting height would reduce or eliminate this interaction.

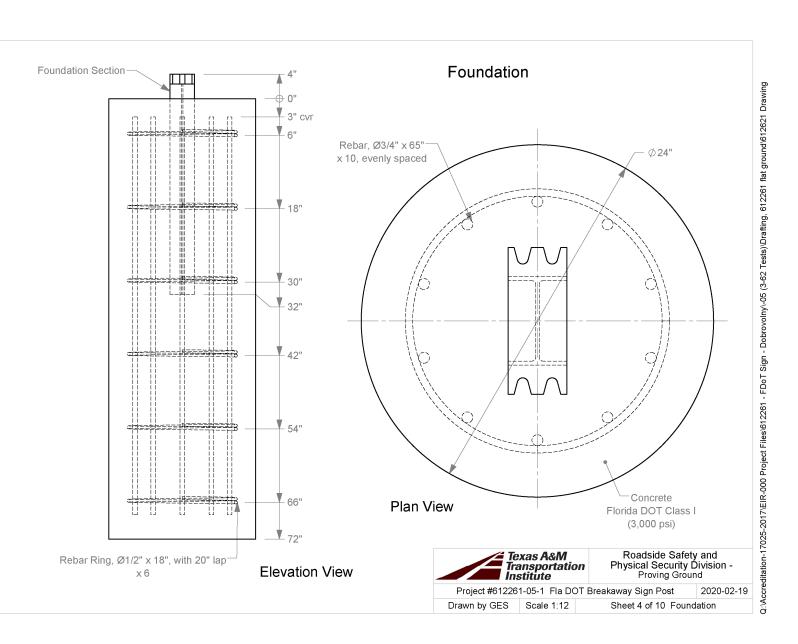
During an encroachment of a vehicle onto a slope or ditch, the elevation of the encroaching vehicle above the local terrain will depend on variables such as speed, angle, steepness of slope, and degree of rounding at the slope break point. The trajectory of the vehicle bumper may increase above its equilibrium condition established on flat, level ground. Vehicle interaction with a support post at a higher elevation relative to the local ground may potentially change the activation characteristics of the slip base and/or fuse plate.

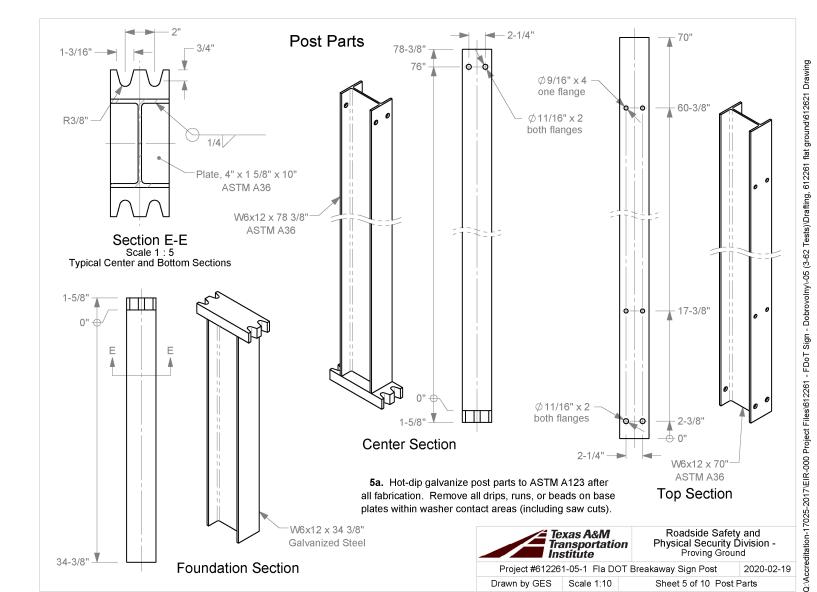

As noted herein, MASH criteria were satisfied when the system with the extruded aluminum sign panel was tested on a 6H:1V slope. The offset of the impacted post from the slope break point was 42 inches, which provided a drop in elevation at the support of 7 inches. Sign support systems installed further from the break point on a 6H:1V slope or on a steeper slope will have additional drop in elevation. As noted, the degree of slope, sign support offset from the slope, and degree of slope rounding at the slope break point can create variations in the location of vehicle impact with the support. This project is considered a first step in understanding the behavior of large guide signs on slopes. Additional research is recommended to further evaluate the influence of these variables on impact performance of large sign support systems.

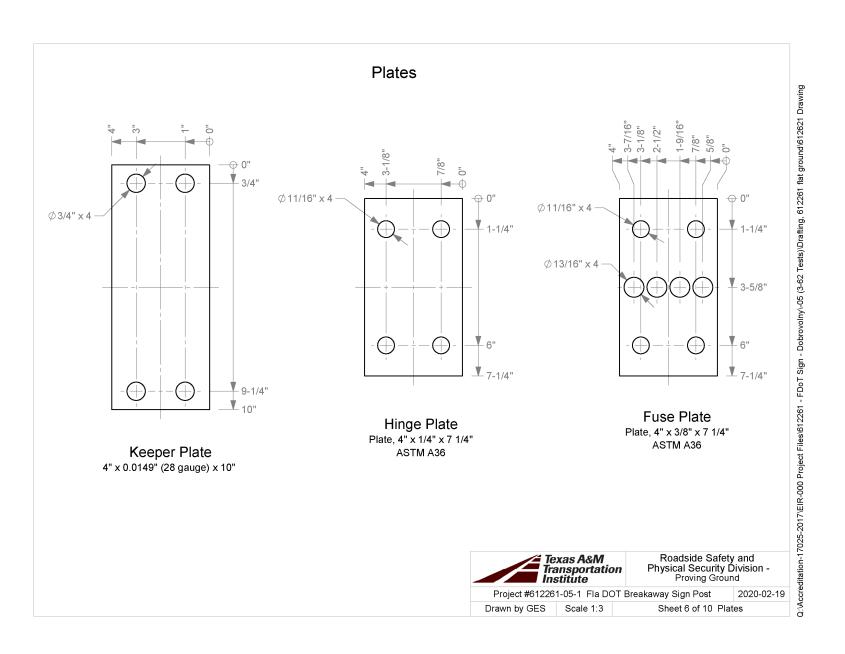

REFERENCES

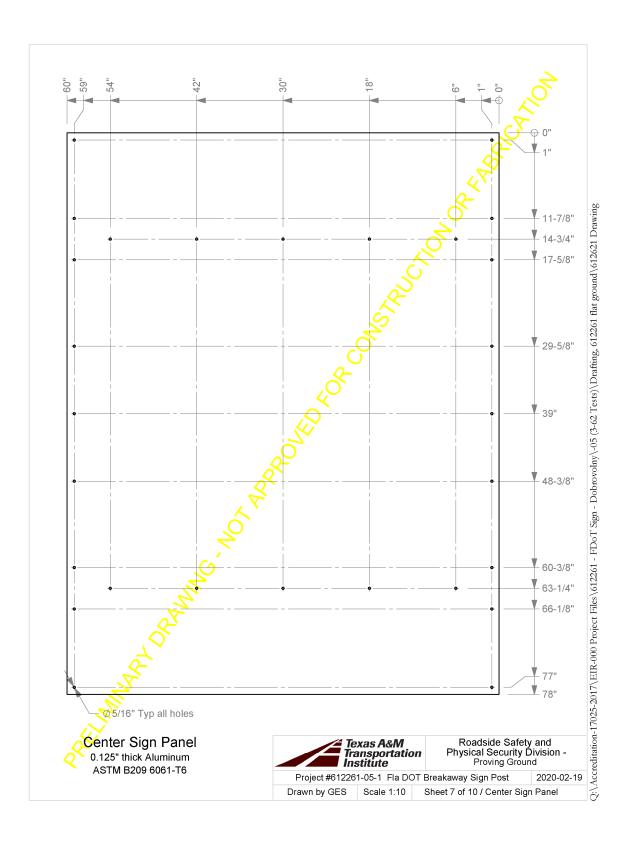

1. AASHTO. *Manual for Assessing Roadside Safety Hardware*, Second Edition. American Association of State Highway and Transportation Officials, Washington, DC, 2016.

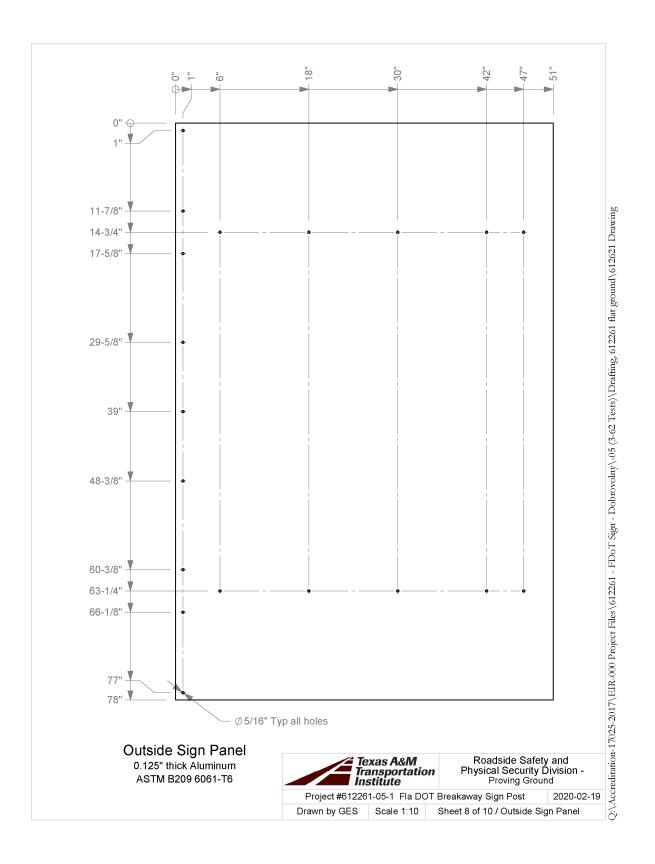
APPENDIX A. DETAILS OF LARGE SIGN SLIP BASE SUPPORT

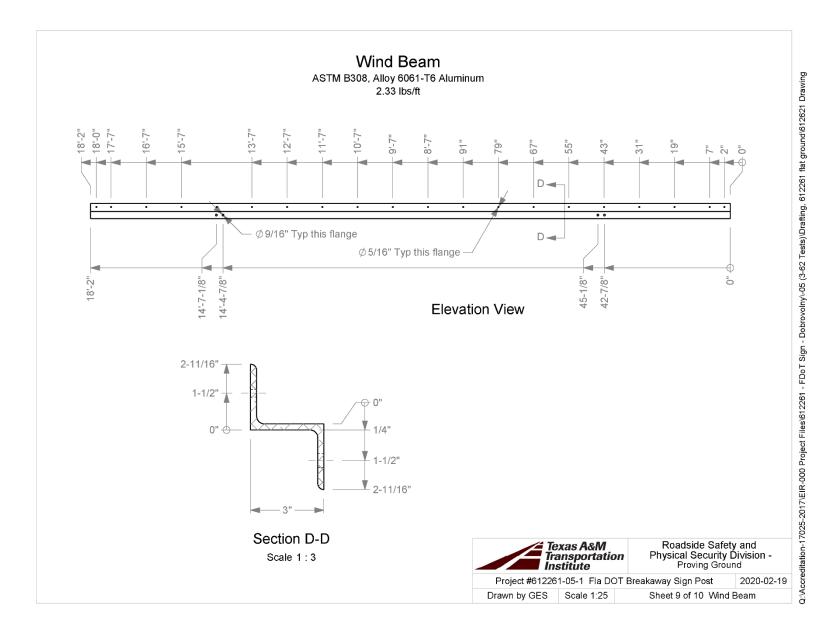

A.1. DETAILS FOR TEST 612261-05-1

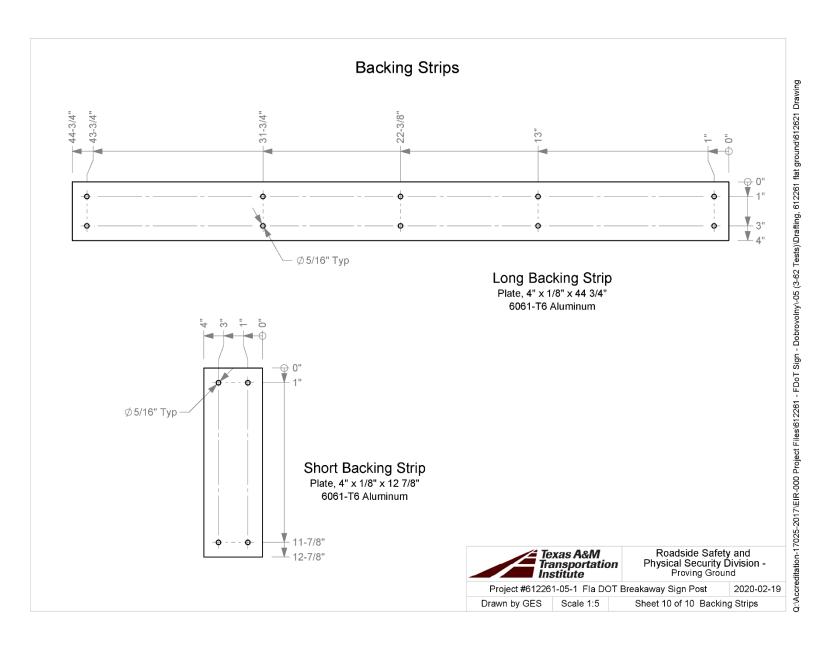


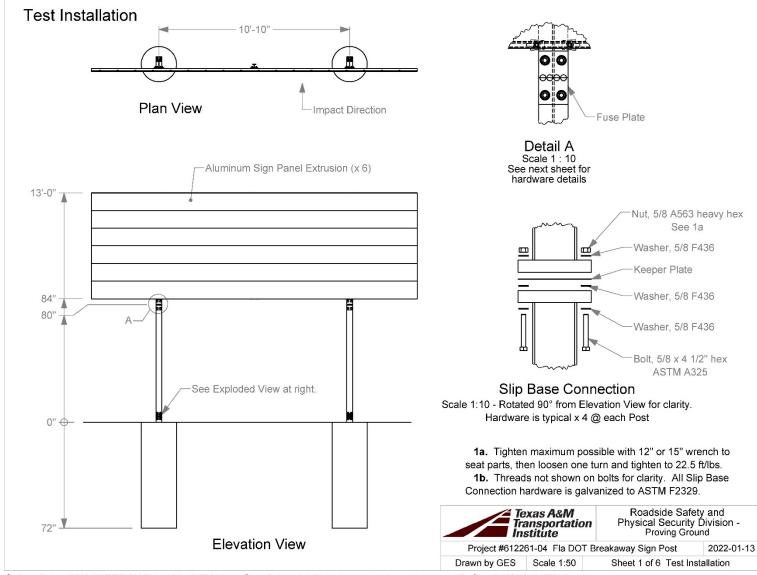


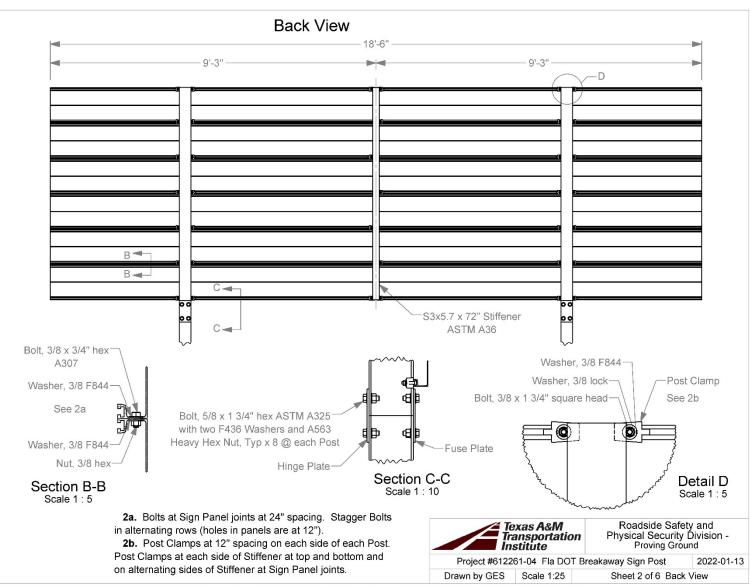


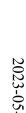


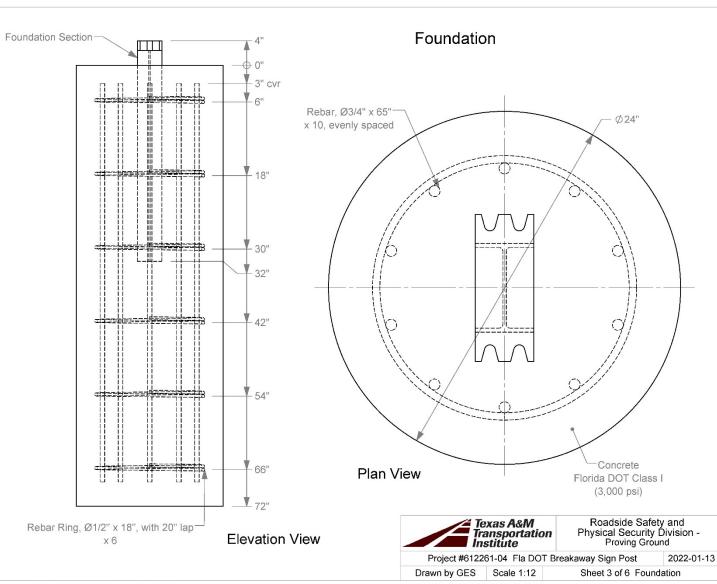




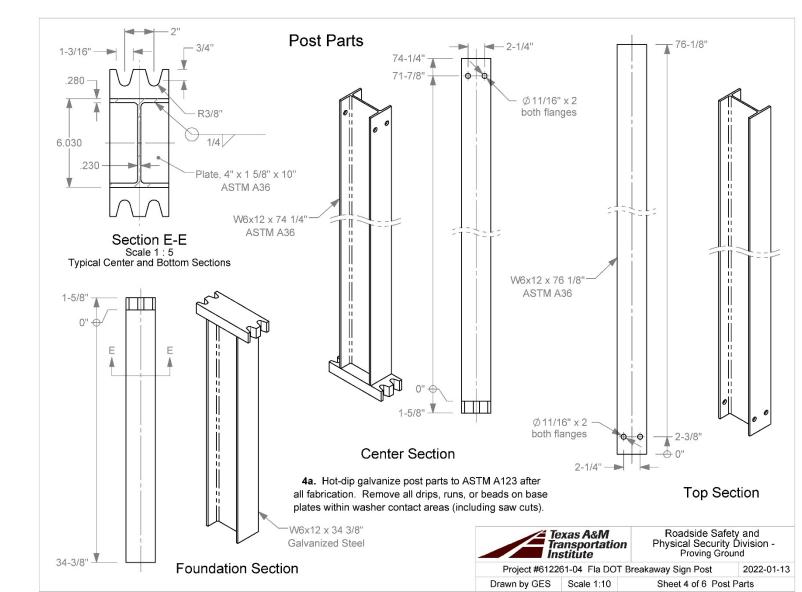


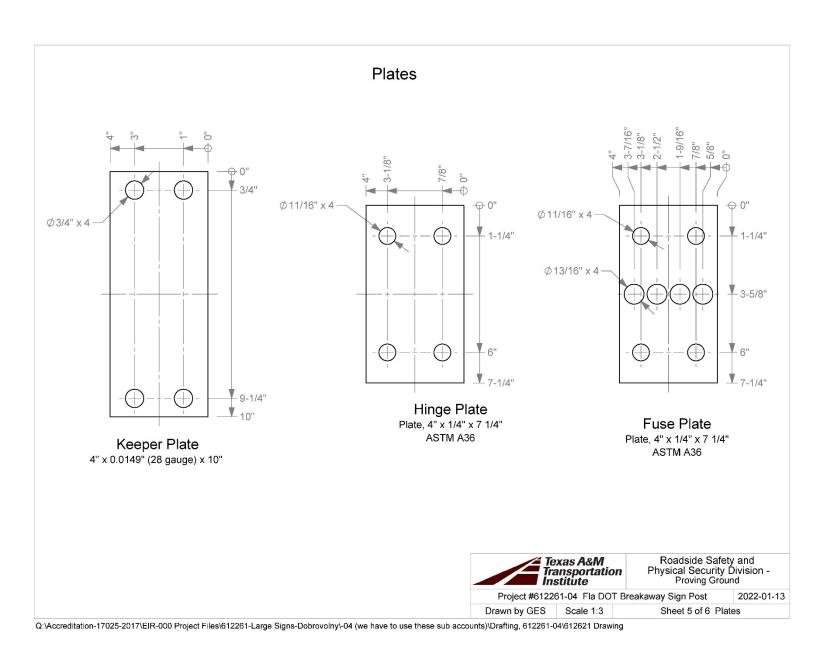




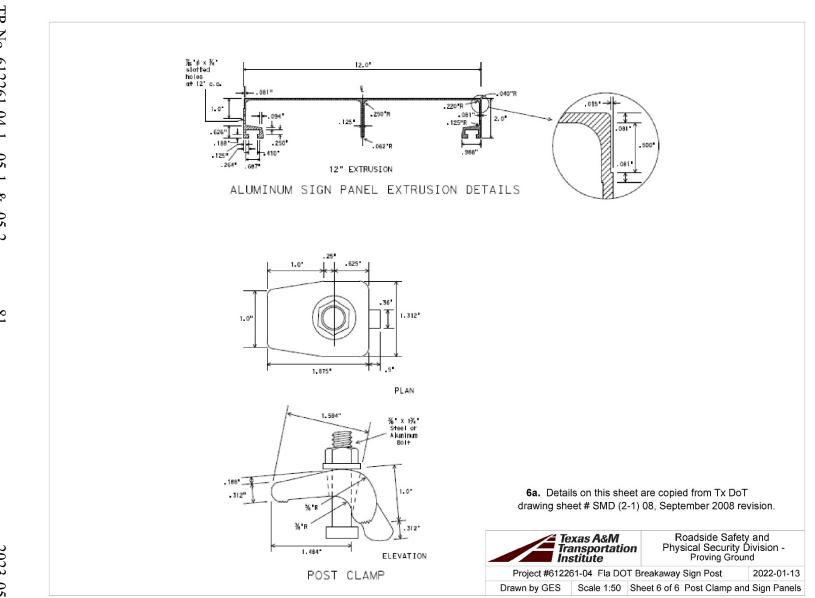

A.2. DETAILS FOR TEST 612261-04-1

Q:\Accreditation-17025-2017\EIR-000 Project Files\612261-Large Signs-Dobrovolny\-04 (we have to use these sub accounts)\Drafting, 612261-04\612621 Drawing

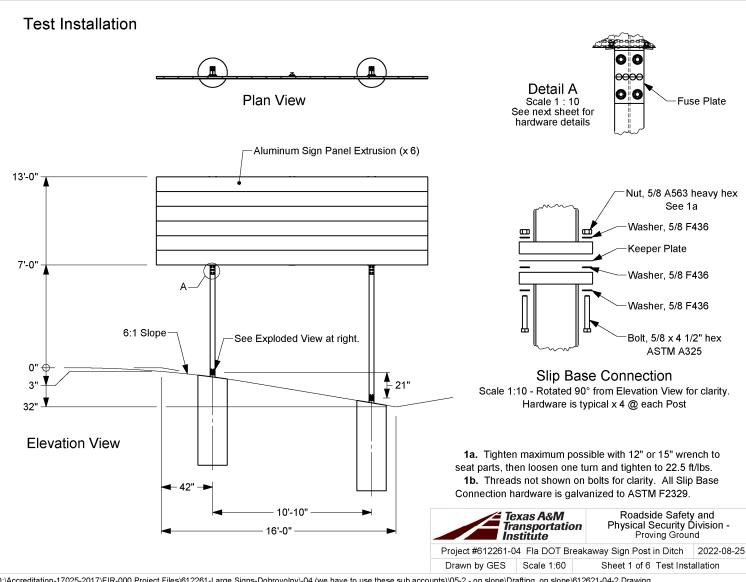




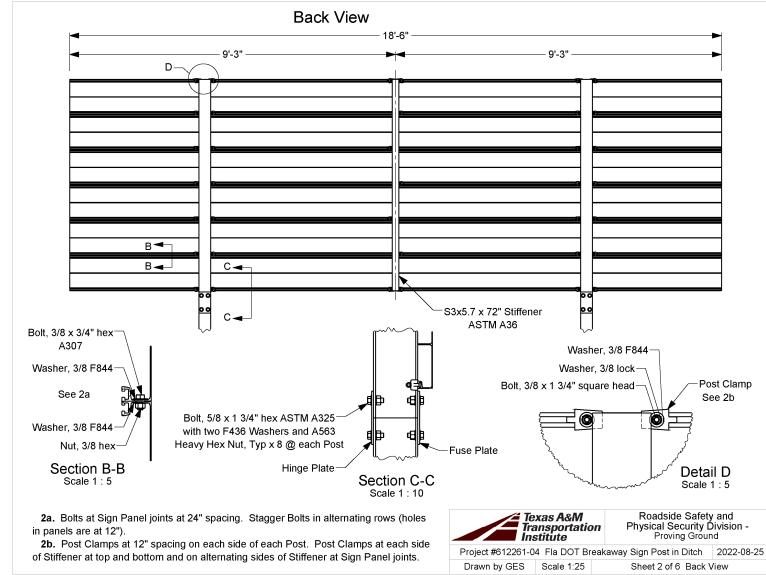
Q:\Accreditation-17025-2017\EIR-000 Project Files\612261-Large Signs-Dobrovolny\-04 (we have to use these sub accounts)\Drafting, 612261-04\612621 Drawing


8

2023-05-30

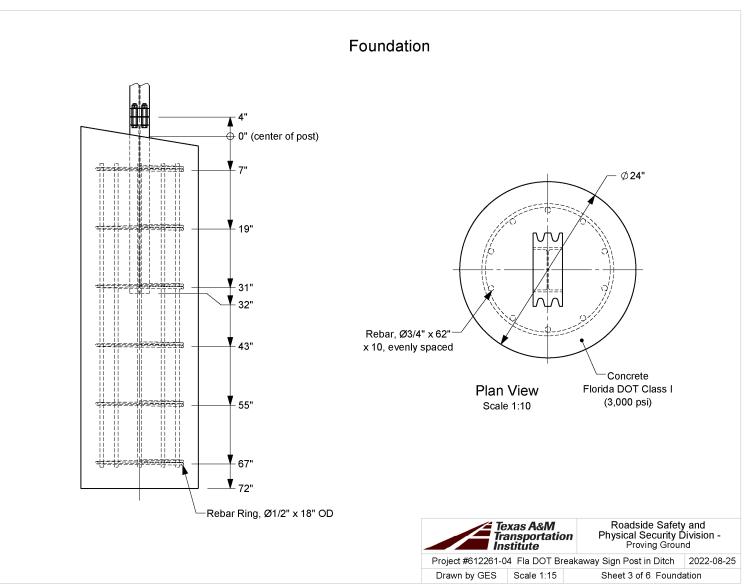


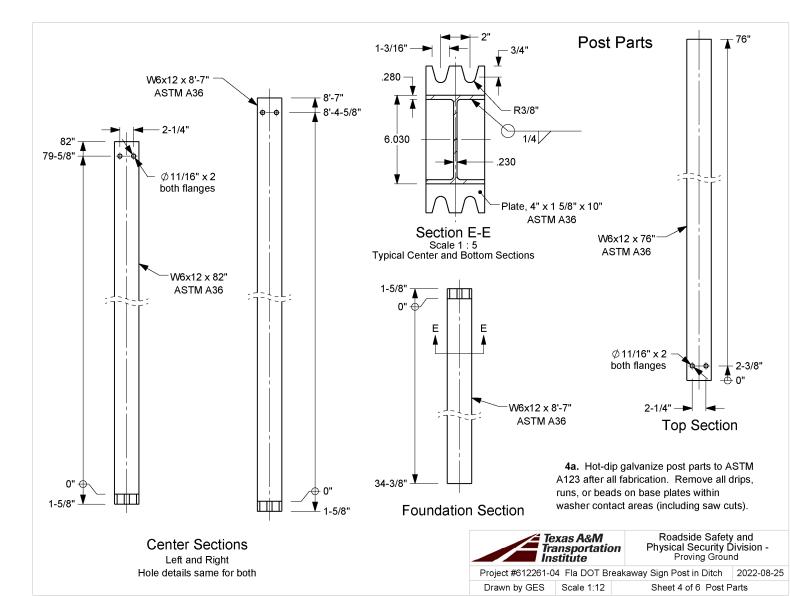
2023-05-30

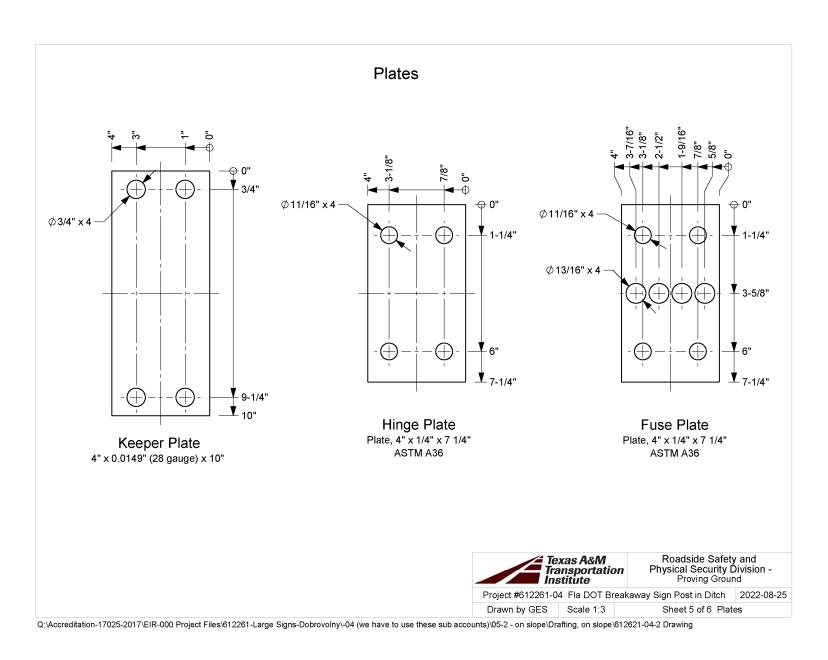


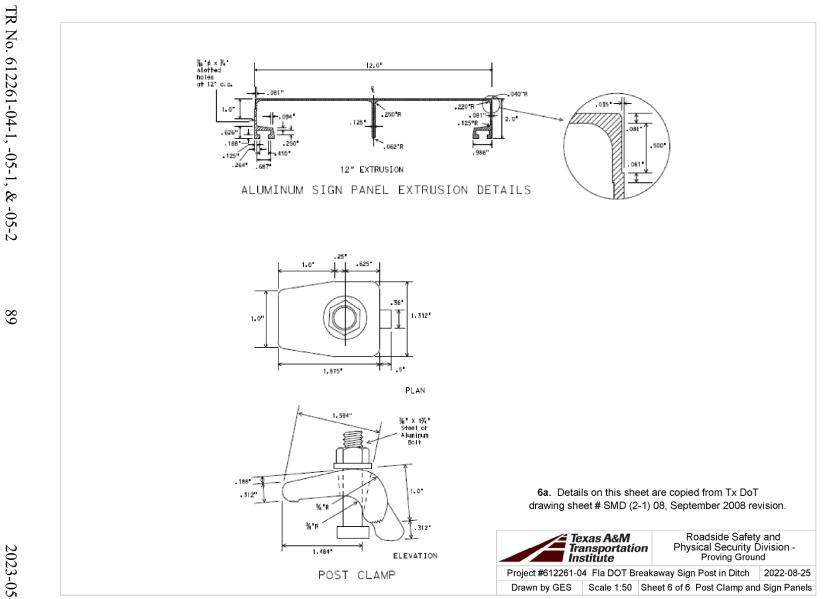
Q:\Accreditation-17025-2017\EIR-000 Project Files\612261-Large Signs-Dobrovolny\-04 (we have to use these sub accounts)\Drafting, 612261-04\612621 Drawing

A.3. DETAILS FOR TEST 612261-05-2


Q:\Accreditation-17025-2017\EIR-000 Project Files\612261-Large Signs-Dobrovolny\-04 (we have to use these sub accounts)\05-2 - on slope\Drafting, on slope\612621-04-2 Drawing


Q:\Accreditation-17025-2017\EIR-000 Project Files\612261-Large Signs-Dobrovolny\-04 (we have to use these sub accounts)\05-2 - on slope\Drafting, on slope\612621-04-2 Drawing



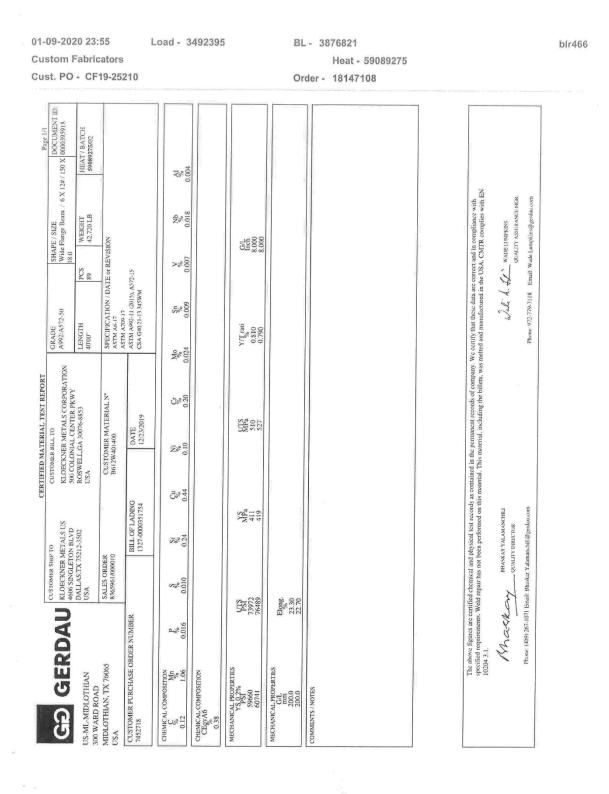

Q:\Accreditation-17025-2017\EIR-000 Project Files\612261-Large Signs-Dobrovolny\-04 (we have to use these sub accounts)\05-2 - on slope\Drafting, on slope\612621-04-2 Drawing

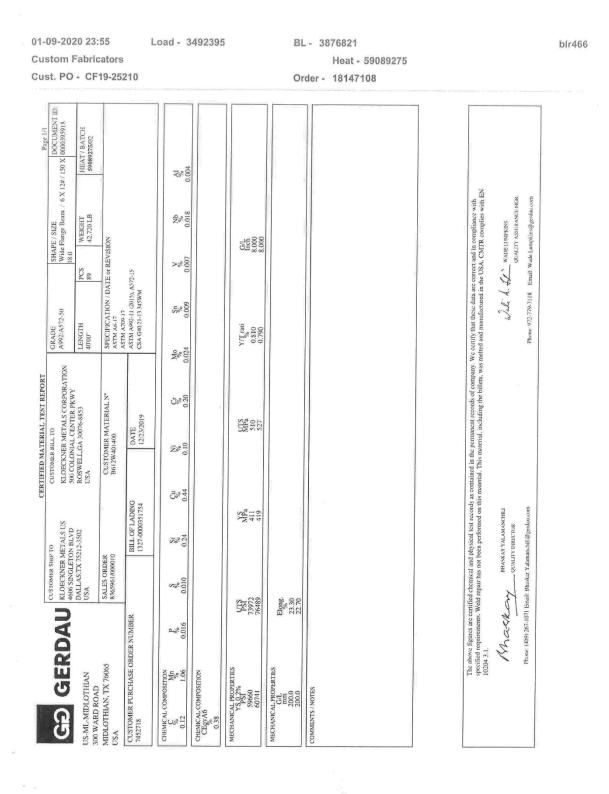
Q:\Accreditation-17025-2017\EIR-000 Project Files\612261-Large Signs-Dobrovolny\-04 (we have to use these sub accounts)\05-2 - on slope\Drafting, on slope\612621-04-2 Drawing

2023-05-30

Q.\Accreditation-17025-2017\EIR-000 Project Files\612261-Large Signs-Dobrovolny\-04 (we have to use these sub accounts)\\05-2 - on slope\Drafting, on slope\612621-04-2 Drawing

APPENDIX B. SUPPORTING CERTIFICATION DOCUMENTS


B.1. SUPPORTING CERTIFICATION DOCUMENTS FOR 612261-05-1


UT CERTIFIED TEST REPORT Date Received: 9/13/19 Specification: SA578 LVL C Rev. Date Complete: 9/13/19 Procedure: Griffin Trade Group UT-01 Rev. Date Complete: 9/13/19 Procedure: Griffin Trade Group UT-01 Rev. Material Dimensions Slab #/ID# Heat # Couplant: Water Page SAA651670 N 1-1/2 120 240 02A S27592 ROUGH Surface F SA/A51670 N 1-1/2 120 240 02A S25206 ROUGH ROUGH ROUGH Surface F SA/A51670 N 1-1/2 120 240 03A S25206 ROUGH ROUGH F SA/A51670 N 1-1/2 120 240 03A S25206 ROUGH F SA/A51670 N CALIBRATION BLOCKS Entek Technique Used Technique Used 77 80% FSH N/A 1/8" FBH B14808 Britek Page 1007 FBH B14808 Britek Page Page Page 1017 120 240 80% FSH N/A 1/8" FBH B14808	UT CERTIFIED TEST REP Date Received: 9/13/19 Specification: SA578 LVL C Date Complete: 9/13/19 Procedure: 010% Scan Material Dimensions Slab #//D# Heat # Callba #//D# Heat # Surface SA/A51670 N 1-1/12 120 240 03A S25206 ROUGH Callbration Senal # Reflector size Senal # Brand Longitudinal Callbration Senal # Bead Rough T7 80% FSH NA 1/8" FBH B14808 Brand Longitudinal Isenter Technique Used Technique Used Brand All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, up in the data section. This data applies only to samples tested by Griffin Trade Group, up in the data section. This data applies only to samples tested by Griffin Trade Group, uu in the data section. This data applies only to samples tested by Griffin Trade Group, LC. All requi	Griffin Trad	Griffin Trade Group, LLC		Phone: 281-970-6030 Fax: 281-970-6024	-970-6030)70-6024			
Specification: SA578 LVL C 100% Scan Procedure: Griffin Trade Group UT-01 Deviations: N/A UT Instrument: RFD 30 Couplant: Water Batch #: N/A A S27592 ROUGH S25206 ROUGH A S25206 ROUGH A S25206 ROUGH S25206 ROUGH A 1/8" FBH B14808 Britek Technique Used sducer Sound Sound A 1/8" FBH B14808 Britek Technique Used sducer A SSUR Coup, LLC. All requirements of Griffin Trade Griffin Trade Group, LLC. This test rep Griffin Trade Group, LLC. This test rep				JT CER	TIFIED	TEST	REPO	RT	
Date Complete: 9/13/19 Procedure: Griffin Trade Group UT-01 Deviations: NA Material Dimensions Slab #/ID# UT Instrument: RFD 30 SA/A51670 N 1-5/8 120 420 02A S27592 ROUGH SA/A51670 N 1-1/2 120 240 03A S25206 ROUGH DBS CallBRATION BLOCKS ROUGH ROUGH ROUGH Torn Scial # Reflector size Serial # Brand Longitudinal Technique Used Technique Used M Transducer Technique Used Sound Sound		Date Received:	9/13/1	9	Specification:	SA5		Repo	Report #:
Procedure: Griffin Trade Group UT-01 Deviations: N/A UT Instrument: RFD 30 UT Instrument: RFD 30 SAIA51670 N 1-5/8 120 420 02A SAIA51670 N 1-1/2 120 240 03A SEGURATION BLOCKS ROUGH DBS Calibration Serial # Reflector size Serial # Brand Longitudinal Serial # 77 80% FSH N/A 1/8" FBH B14808 Britek 77 80% FSH N/A 1/8" FBH B14808 Britek Transducer Technique Used Transducer Technique Used Tansducer Technique Used All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless In the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test rep Procedures, Dated 1/16/2014 have been fulfilled. ASNT Level II		Date Complete:	9/13/1		1			Re	Release#
Deviations: N/A UT Instrument: RFD 30 Couplant: Couplant: SA/A51670 N 1-5/8 120 420 02A SA/A51670 N 1-1/2 120 240 03A S25206 DBS Calibration Serial # Reflector size ROUGH DBS Calibration Serial # Reflector size Serial # Brand Longitudinal Technique Used 77 80% FSH N/A 1/8" FBH B14808 Britek 71 80% FSH N/A 1/8" reprovided by Griffin Trade Group, unless in the data section. This data applies only to samples provided by Griffin Trade Group, LLC. This test repreproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. This test repreproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. This test repreproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. Insistest repreproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. Insistest repreproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. Insistest represented by Griffin Trade Group, LLC. This test represented using Laboration for Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. Insistent represented using Calibration for Griffin Trade Group is a fin the data section. This data applies only to samples tested b					Procedure:	Griffin Trad	e Group UT-01		
UT Instrument: RFD 30 Couplant: Water Material Dimensions Slab #/ID# Heat # Couplant: Water SA/A51670 N 1-5/8 120 420 02A S27592 ROUGH SA/A51670 N 1-1/2 120 240 03A S25206 ROUGH SA/A51670 N 1-1/2 120 240 03A S25206 ROUGH DBS CallBRATION BLOCKS Reflector size Serial # Brand Longitudinal Serial # Reflector size Serial # Brand 77 80% FSH N/A 1/8" FBH B14808 Britek 77 80% FSH N/A Transducer Technique Used Transducer Technique Used Transducer Technique Used All tests are performed using calibrated equipment on samples tested by Griffin Trade Group, LLC. This test reprovided in its entirety without permission from Griffin Trade Group, LLC. This test reprovedures, Dated 1/16/2014 have been fulfilled. ASNT Level II					Deviations:	N/A		P	Page 1 of 1
Couplant: Water Material Dimensions Slab #/ID# Heat # Batch #: N/A SAIA51670 N 1.5/8 120 420 02A S27592 ROUGH SAIA51670 N 1.1/12 120 240 03A S25206 ROUGH SAIA51670 N 1.1/12 120 240 03A S25206 ROUGH SAIA51670 N 1.1/12 120 240 03A S25206 ROUGH SAIA51670 N 1.1/12 120 240 O3A S25206 Rough Rough SAIA51670 N 1.1/12 120 240 03A S25206 ROUGH ROUGH SAIA51670 N 1.1/12 120 240 03A S25206 ROUGH ROUGH SAIA51670 N 1.1/12 120 240 03A S25206 ROUGH ROUGH DBS Calibration Serial # Brand Brand Image: Second Image: Sound Imag					UT Ins	trument: RFI	D 30	_	Serial# :12110701
Material Dimensions Slab #/ID# Heat # Surface SA/A51670 N 1.5/8 120 420 02A S27592 ROUGH SA/A51670 N 1.1/2 120 240 03A S25206 Rough DBS Calibration Serial # Reflector size Serial # Brand Longitudinal V N/A 1/8" FBH B14808 Britek 77 80% FSH N/A 1/8" FBH B14808 Britek 77 80% FSH N/A 1/8" FBH B14808 Britek 77 80% FSH N/A Transducer Technique Used Transducer Technique Used Transducer Technique Used All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test reprocedures, Dated 1/16/2014 have been fulfilled. Procedures, Dated 1/16/2014 have been fulfilled. ASNT Level II					Cot	uplant: Wate	-		Calibration Due: 5/22/20
Material Dimensions Slab #/ID# Heat # Surface SA/A51670 N 1.5/8 120 420 02A S27592 ROUGH SA/A51670 N 1.1/2 120 240 03A S25206 ROUGH SA/A51670 N Save and the section is a section Reflector size Setal # Brand Reflector size Setal # Brand Reflector size Setal # Reflector size Setal # Reflector size Setal # Reflector size Setal # Setal # Reflector size Setal # Reflector size Setal # Setal # Reflector size Setal # Setal # Reflector size Setal # Reflector size Setal # Reflector size Setal # Setal # Seta					Batch #: N	V/A			RESULTS
SA/A51670 N 1-5/8 120 420 02A S27592 ROUGH SA/A51670 N 1-1/2 120 240 03A S25206 ROUGH SA/A51670 N 1-1/2 120 240 03A S25206 ROUGH DBS Calibration BLOCKS Reflector size Serial # Brand Longitudinal Calibration Serial # Reflector size Serial # B14808 Britek 77 80% FSH N/A 1/8" FBH B14808 Britek Britek 77 80% FSH N/A 1/8" FBH B14808 Britek Technique Used Transducer		Material	Dimensions	Slab #/ID#	Heat #		Surface	_	Reject
SA/A51670 N 1-1/2 120 240 03A S25206 ROUGH CALIBRATION BLOCKS Calibration Serial # Reflector size Serial # Brand DBS Calibration Serial # Reflector size Serial # Brand Image: Serial # Image: Serial # <td>SA/A51670 N 1-1/2 120 240 03A S25206 ROUGH CALIBRATION BLOCKS Calibration Serial # Reflector size Serial # Brand DBS Calibration Serial # Reflector size Serial # Brand Longitudinal T 80% FSH N/A 1/8" FBH B14808 Britek T7 80% FSH N/A 1/8" FBH B14808 Britek Comments: Technique Used Technique Used All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test repreproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. All requirements of Griffin Trase Group, LCC. All requirements of Griffin Trase Group, LCC. All requirements of Griffin Trase Group, LLC. All requirements of Griffin Trase Group, LCC. All requirements of Griffin Trase Group, LCCC</td> <td></td> <td>1-5/8 120 420</td> <td>02A</td> <td>S27592</td> <td></td> <td>ROUGH</td> <td>-</td> <td>0</td>	SA/A51670 N 1-1/2 120 240 03A S25206 ROUGH CALIBRATION BLOCKS Calibration Serial # Reflector size Serial # Brand DBS Calibration Serial # Reflector size Serial # Brand Longitudinal T 80% FSH N/A 1/8" FBH B14808 Britek T7 80% FSH N/A 1/8" FBH B14808 Britek Comments: Technique Used Technique Used All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test repreproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. All requirements of Griffin Trase Group, LCC. All requirements of Griffin Trase Group, LCC. All requirements of Griffin Trase Group, LLC. All requirements of Griffin Trase Group, LCC. All requirements of Griffin Trase Group, LCCC		1-5/8 120 420	02A	S27592		ROUGH	-	0
CALIBRATION BLOCKS DBS Calibration Serial # Reflector size Serial # Brand Longitudinal Calibration Serial # Reflector size Serial # Brand Image: Serial #	CALIBRATION BLOCKS DBS Calibration Serial # Reflector size Serial # Brand Longitudinal N/A N/A 1/8" FBH B14808 Britek T7 80% FSH N/A 1/8" FBH B14808 Britek T7 80% FSH N/A 1/8" FBH B14808 Britek Tochnique Used Technique Used Technique Used All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test reproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. All requirements of Griffin Trased By: Jamod Harris ASNT Level II Signature: Jamod Harris ASNT Level II	SA/A51670 N	1-1/2 120 240	03A	S25206		ROUGH		0
CALIBRATION BLOCKS Reflector size Serial # Reflector size Serial # Brand Longitudinal 77 80% FSH N/A 1/8" FBH B14808 Britek Technique Used 77 80% FSH N/A 1/8" FBH B14808 Britek Technique Used Transducer Transducer Comments: All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test reproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. All requirements of Griffin Trate By: Jarrod Haris ANT ASNT Level II	CALIBRATION BLOCKS DBS Calibration Senial # Reflector size Serial # Brand Longitudinal 77 80% FSH N/A 1/8" FBH B14808 Britek 77 80% FSH N/A 1/8" FBH B14808 Britek 77 80% FSH N/A 1/8" FBH B14808 Britek Technique Used Transducer Technique Used All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test reproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Trade Group. Signature: Jarrod Harris ASNT Level II							_	
DBS Calibration Serial # Reflector size Serial # Brand Image: Transducer	DBS Calibration Serial # Reflector size Serial # Brand Longitudinal 77 80% FSH N/A 1/8" FBH B14808 Britek 77 80% FSH N/A 1/8" FBH B14808 Britek Technique Used Technique Used Transducer Journal Comments: All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test reprocedures, Dated 1/16/2014 have been fulfilled. Procedures, Dated 1/16/2014 have been fulfilled. ASNT Level II Signature:		CALIBRATION	BLOCKS				∃ľ	TRANSDUCERS
Longitudinal N/A N/A 1/8" FBH B14808 Britek 77 80% FSH N/A 1/8" FBH B14808 Britek Technique Used Transducer Transducer Journal Comments: Comments: All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test reproduced in its entirety without pemission from Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. This test reproduced in its entirety without pemission from Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. This test reproduced in its entirety without pemission from Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. This test reproduced by Griffin Trade Group, LLC. This test reproduced by Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. This test reproduced by Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. This test reproduced by Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. This test reproduced by Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. This test reproduced by Griffin Trade Group, LLC. This test reproduced by Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. All requirements of Griffin Trade Group, LLC. This test reproduced by Griffin Trade Group, LLC. This	Longitudinal N/A N/A 1/8" FBH B14808 Britek 77 80% FSH N/A 1/8" FBH B14808 Britek Technique Used Transducer Technique Used Transducer Comments: All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test repreproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Trade Procedures, Dated 1/16/2014 have been fulfilled. Procedures, Dated 1/16/2014 have been fulfilled. Signature: Marchard Signature:	DBS	Calibration	Serial #	Reflector size	Serial #	Brand		Size
77 80% FSH N/A 1/8" FBH B14808 Britek Technique Used Transducer Technique Used Transducer All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test reproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Trace Group, LLC. All requirements of Griffin Trace By: Jarod Harris AT	77 80% FSH N/A 1/8" FBH B14808 Britek Technique Used Transducer Technique Used Technique Used Technique Used All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test reproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Trate Br: ASNT Level II Signature:	Longitudinal							
Comments: All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless reproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Tra- Procedures, Dated 1/16/2014 have been fulfilled. Tested By: Jarrod Harris	Comments:	77	80% FSH	N/A	1/8" FBH	B14808	Britek		1"
Comments: Comments: All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test rep reproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Tra- Procedures, Dated 1/16/2014 have been fulfilled. Tested By: Jarrod Harris AT ASNT Level II	Transducer Comments: All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test reproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Tra- Procedures, Dated 1/16/2014 have been fulfilled. Tested By: Jarrod Harris Signature:				Tech	nique Use	be		
Comments: All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test rep reproduced in its entirety without pemission from Griffin Trade Group, LLC. All requirements of Griffin Tra Procedures, Dated 1/16/2014 have been fulfilled. Tested By: Jarrod Harris	Comments: Sound All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test reproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Trade Procedures, Dated 1/16/2014 have been fulfilled. Tested By: Jarrod Harris Signature: ASNT Level II			Transducer	- h				
Comments: All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test rep reproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Tra- Procedures, Dated 1/16/2014 have been fulfilled. Tested By: Jarrod Harris Art ASNT Level II	Comments: All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test rep reproduced in its entirety without permission from Grffin Trade Group, LLC. All requirements of Grffin Tra- Procedures, Dated 1/16/2014 have been fulfilled. Tested By: Jarrod Harris Signature: ASNT Level II				Sound				Part
All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test rep reproduced in its entirety without permission from Griffin Trade Group, LLC. All requirements of Griffin Trade Procedures, Dated 1/16/2014 have been fulfilled. Tested By: Jarrod Harris Art ASNT Level II	All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test rep reproduced in its entirety without permission from Grifin Trade Group, LLC. All requirements of Griffin Tra- Procedures, Dated 1/16/2014 have been fulfilled. Tested By: Jarrod Harris ASNT Level II Signature:	Comments:						- 1	
reproduced in its entirety without permission from Grffin Trade Group, LLC. All requirements of Grffin Tra Procedures, Dated 1/16/2014 have been fulfilled. Tested By: Jarrod Harris AT ASNT Level II	reproduced in its entirety without permission from Grffin Trade Group, LLC. All requirements of Grffin Tra- Procedures, Dated 1/16/2014 have been fulfilled. Tested By: Jarrod Harris ASNT Level II Signature:	All tests are perfor in the data sectior	med using calibrated (. This data applies or	equipment on sa Ny to samples te	amples provided by ested by Griffin Tra	Griffin Trade	e Group, unless LC. This test re		noted port may be
ASNT Level II	ASNT Level II	Procedures, Date	entirety without permiss d 1/16/2014 have bee	sion from Grffin [·]	Trade Group, LLC.	All requirem	ents of Grffin Tr		ade Group, LL(
		Tested By:	Jarrod Harris	/	ASNT Level II				Date:

CERTIFIED INSPECTION REPORT As here instances of the control of the material coveral by this control of the material coveral by this control of the second on the second material coveral by this control of the second on the second of the coverance	Arc of with, and has been found to meet the ap and of the description and that sumples all properties shown on the face of this sheet. And of the duality Department. No alreation, fing of risket ficklings, or otherwase fraudulent followy under applicable law.	Arconic DAVENP Met 3897372 0 12230801 2019-10-25 12230801 2019-10-25 12230801 2019-10-25 12230801 2019-10-25 12230801 PO0049341	NO	Alpho	К. IA 52722 RIVERDALE, IA. DP-38561-02-1	
S New Jurt	Terrence Thom Quality Assurance Manager	č	ALERSON - NUKUKUSS 6041099726R12	G041099726R12	GBA	
Ship To: RYERSON PROCUREMENT CORP 4405 SOUTH OLD PEACHTREE ROAD GOLD BUILDING NORCROSS 30071 GA	Item Description 0.125 IN TK (+0.00000070 0.655) CAT X 44274 (N) A/T 0.655) CAT X 44274 (N) A/T FOR DISTRIBUTORS TGLERANCE 209 REV 15 ASTWB209 REV 18 LIGHTLY OILED COIL SIZES: MIN 5000 LB MAX 7500 LB MA SKID WGT: 8000 LB QUAN TGL CQR 0214659 REV 12 CUST RE 15 *** W/E 19-09-21 ***	<pre>List of the section section and secti</pre>	<pre>Liem Description 0.125 IN TK (+0.00000070) X 60.0 IN W (+.0625 - 0.025) CAT X 44274 (N) A/T 6061-T6 COIL SHEET FOR DESTRIBUTORS TOLERANCE GURANTEED 160002225. AM54027 REV N ASME-SB LLGHTLY OLLED COIL SIZES: ID 20 IN COIL WGTS: MIN 5000 LB MAX 7500 LB MAX 7605 S MIN 9000 LB MAX 7605 S SKID WGT: 8000 LB (CDM +/-25 & COR 0214659 REV 12 CUST REQ 19-09- 15 *** W/E 19-09-21 ***</pre>	N ASME-SB-		
Package Ticket Lot 	Weight Quantity 	UOM Inspe 	Inspector Clock Numbers 47441 27586			
Notes for COR: 0214659.12 PRODUCT PRODUCED TO THE REQUIREMENTS OF <i>P</i> 1997-08-01. CQR: 0214659.12 · -Specification Limits -	AMS4027 REV N ALSO MEET THE REQUIREMENTS OF AMS-QQ-A-250_11 ORIGINAL REVISIO N DATED	HE REQUIREMENTS OF AM	5-QQ-A-250_11 ORIGINAL F	EVISIO N DATED		
Dir UTS TYS KSI KSI Long Transv. Max 42.0 35.0 Min 42.0 35.0	EL4D PCT 10					
Chemical Composition SI FE CU Alloy 6061 Max 0.8 0.7 0.4 Lot: 726311 - Mechanical, Physical, Met Tmpr Dir Test KSI TG Long Transv. 2 847.4	CU MN MG CR ZN TI Each 0.40 0.15 1.2 0.35 0.25 0.15 0.05 0.15 0.8 0.04 Metallography, Quantometer Results St KSI EL4D St KSI 41.1 14	Other Other I Each Total Aluminum .15 0.05 0.15 REMAIN r Results	Lum 1			

TR No. 612261-04-1, -05-1, & -05-2

2023-05-30

Eastern Metal Supply, Inc.

9400 Telge Rd; Houston, TX 77095 1-800-996-6061 (281) 656-2297-fax

Certification of Compliance

	То:	DATE
Customer PO# CF19-25210	Customer Name CUSTOM FABRICATORS & REPAIR	EMS
	Product Identification	

	T Toddet Identificatio		
Product Code	Description of Material Furnished	Quantity	
	6061T6 MF STRUCTURAL ZEE BAR		
12-61-201	3X2.688X1/4X25'	3 PCS	

Mechanical Properties (representation)

		<u> </u>	
Specification	Ultimate Strength KSI	Yield Strength KSI	Elongation Percent

Chemical Composition Limits of Wrought Aluminum Alloys

Alloy	Silicon	Iron	Copper	Manganese	Magnesium	Chromium	Zin/	TI
1100	.95 SI +	FE	0.50+0.20	0.05			0.10	
3003	0.60	0.70	0.50+0.20	1.0-1.5			0.10	
5052	0.25	0.40	0.10	0.10	2.2-2.8	0.15-0.35	0.10	
6005	0.6-0.9	0.35	0.10	0.10	0.4-0.6	0.10	0.10	0.10
6061	0.4-0.8	0.70	0.15-0.4	0.15	0.8-1.2	0.04-0.35	0.25	0.15
6063	0.20-0.60	0.35 max.	0.10	0.10 max.	0.45-0.90	0.10 max.	0.10 max.	0.10 max.
6105	0.75-0.85	0-0.25	005	0-0.50	.5570	0-0.05	0-0.05	0.01-0.05

Composition in percent maximum, unless shown in range – Mechanical properties are LBs/SQ IN

This form indicates that the above material was processed in accordance with the specifications listed, as reported by the manufacturer.

Signature: _____&ally Dentry _____ Date: ___02/04/20____

Eastern Metal Supply, Inc.

9400 Telge Rd; Houston, TX 77095 1-800-996-6061 (281) 656-2297-fax

Certification of Compliance

Т	0:			DATE	02/04/20
Customer PO# CF19-25210	Customer Name CUSTOM FABRICATORS	S & REPAIR		EMS	
	Produc	ct Identification			
Product Code	Description of Material Fu	urnished	Quantity		
	6061T6 MF STRUCTURA	AL ZEE BAR			
12-61-201	3X2.688X1/4X25'		1 PCS		
	Mechanical Pro	operties (represent	ation)		
Specification	Ultimate Strength KSI	Yield Strength KS	I	Elongatio	n Percent

Chemical Composition Limits of Wrought Aluminum Alloys

Alloy	Silicon	Iron	Copper	Manganese	Magnesium	Chromium	Zin/	TI
1100	.95 SI +	- FE	0.50+0.20	0.05			0.10	
3003	0.60	0.70	0.50+0.20	1.0-1.5			0.10	
5052	0.25	0.40	0.10	0.10	2.2-2.8	0.15-0.35	0.10	
6005	0.6-0.9	0.35	0.10	0.10	0.4-0.6	0.10	0.10	0.10
6061	0.4-0.8	0.70	0.15-0.4	0.15	0.8-1.2	0.04-0.35	0.25	0.15
6063	0.20-0.60	0.35 max.	0.10	0.10 max.	0.45-0.90	0.10 max.	0.10 max.	0.10 max.
6105	0.75-0.85	0-0.25	005	0-0.50	.5570	0-0.05	0-0.05	0.01-0.05

Composition in percent maximum, unless shown in range – Mechanical properties are LBs/SQ IN

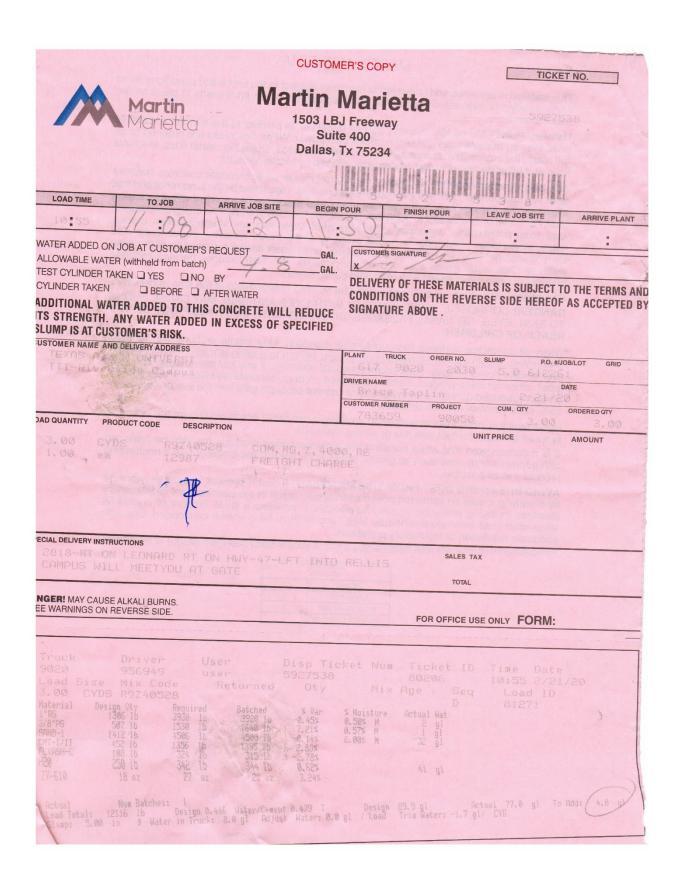
This form indicates that the above material was processed in accordance with the specifications listed, as reported by the manufacturer.

Signature: _____Sally Gentry _____ Date: ___02/19/20__

DIN: EN 10204 2004 3.1 This is to certify that the product decribed herein was manufactured, sampled, and tested in accordance with the specifications and requirements in such specifications. Fine Grain, Si-AI Fully Killed Steel. We certify that delivery of this product with the requirement of the specification and purchase order received from customer. DRC Conflict Free. Does not contain Hg . No intentional addition of Pb, Se or S Slab Plate Identity 1135470A
 Test
 C
 Mn
 P
 S
 Si
 Cu
 Ni
 Cr
 Mo
 Sn
 Ai
 N
 V
 B
 Ti
 Nb
 Ca

 LADLE
 0.20
 1.11
 0.001
 0.19
 0.006
 0.013
 0.000
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002
 0.002

 Material
 Thick(IN)
 Width (IN)
 Len(IN)


 1135470A
 1.6250
 120.000
 420.00
 Ship To: Sold To: Hot Rolled Carbon Steel Plates Plates Manufactured In the USA Plates Certified for the Following grades ASTM-A516-70, ASME-SA516-70 2017 EDITION PN LCVN T057248 JSW12607-01 S27592 Bulletin Order Item Heat PO No. SW 02A BAYTOWN, TX 77523 5200, East McKinney Road, JSW Steel (USA) INC Gauge Tested 1.6250
 Test
 Test
 Yield
 Tensile
 Elong
 YS/UTS
 Yield
 Strenght

 Cond
 Dir.
 Point
 Stgth.
 in 2"
 Ratio
 Determind At
 Wgt(LB) 23226.840 PN ч 51 Material Thick(IN) Width(IN) Len (IN) Wgt(LB) 74 Plates Certified For The Above Tests 29.0% 0.69 Þ Specifications PLATE NORMALIZED AT 1650 °F FOR 50 MINS Shipping Mode METALLURGICAL TEST REPORT 0.2% TRUCK
 Impact Test (LCVN) Full Energy in Ft/Lb °F

 Temp
 Test1
 Test2
 Test3
 Avg
 Test1
 Test3
 Avg

 -50
 49
 40
 42
 44
 Ca CE 0.0021 0.39 Material Thick(IN) Width(IN) Len(IN) Wgt(LB) Plate #: Heat & Slab: Thickness: Customer PO #: Customer Name: 9 / 20 / 2019 Marking Instructions Stencil in 2 location(s); X Loc. 18 Y Loc. 30; CUST; MADEINUSA PN PO; DIM GRADE: FREIGHT ORDERITEM PLATEID SHIPWEEK SLABID TRANSMODE Stamp in 2 location(s); X Loc. 18 Y Loc. 12; Slab ID; Slab ID; Slab ID PCM = C + Si/30 + Mn/20 + Cu/20 + Ni/60+ Cr/20 + Mo/15 + V/10 + 5B Order Dimensions Carbon Equivalent CE = C + Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/15 1.625x120x420 cheyenne lee 22813837845 cheyenne.lee@jswsteel.us 1 5/8" 58561 S27592-02A MET - 04 Rev. No.: 3 Rev. Date:02/27/2018 SFI-GRAY STEEL Meyerne Lee Slab Origin MEXICO SFI PO #: TC No. T057248-7592-1 Page 1 of 1 6/27/2019 702844

	Texas A&M Transportation Transportation Travas A&M-University College Station, TX-77845 Phone 979-845-9375 Ality · Forma Intained in this document is co	Prepared by:-	.3-01Concret Sampling¤ Wanda L. Menges¶ Darrell L. Kuhn¤ Ground.¶	$\begin{array}{c} \text{Doc. `No.} \\ \P \\ QF \cdot 7.3 - 01^{\square} \\ \\ \text{Revision: } \bullet^{-1} \\ 6^{\square} \end{array}$	Issue Date: ↔ ← 2018-06-18¤ Page:¶ 1 ·of·1¤
	612261-05-1		2/21/2002	Mix Design (psi):	4000
Name of Technician Taking Sample		ACON	Name of Technician Breaking Sample		CON
Signature of Techniciar Taking Sample	1	ACON	Signature of Technician Breaking Sample		
Load No.	Truck No.	Ticket No.	Locat	ion (from concrete r	nap)
T1	9020	5927538	100% of footers		
Load No.	Break Date	Cylinder Age SEE ATTACHED SH	Total Load (lbs)	Break (psi)	Average

Client

CONCRETE COMPRESSIVE STRENGTH TEST REPORT

Report Number: A1171057.0095 Service Date: 02/21/20 **Report Date:** 03/03/20 Revision 1 - 11-day results PO #612261 Task:

College Station, TX 77845-5765 979-846-3767 Reg No: F-3272

Texas Transportation Institu Attn: Gary Gerke TTI Business Office 3135 TAMU	ute		Riverside Campus Riverside Campus Bryan, TX			
College Station, TX 77843	-3135		Project Number: A1171057			
Material Information			Sample Information			
Specified Strength: 4,00	0 psi @ 28	days	Sample Date: Sampled By:	02/21/20 Matcek, Ja		1150
Mix ID: R9Z40528	atta		Weather Conditions:	Partly clou	•	2
Supplier: Martin Mari		617	Accumulative Yards:	3/3 Diment Dim	Batch Size (cy):	3
Batch Time: 1055 Truck No.: 9020	Plant: Ticket No.:	617	Placement Method:	Direct Dise	charge	
Field Test Data	Ticket No	3921338	Water Added Before (gal): Water Added After (gal): Sample Location:	0 O Center of p	oad	
Test	Result	Specification	Placement Location:	Concrete p	oad for road sign	
Slump (in):	5	Not Specified				
Air Content (%):	2.1	Not Specified				
Concrete Temp. (F):	68	40 - 95				
Ambient Temp. (F):	55	40 - 95				
Plastic Unit Wt. (pcf): Yield (Cu. Yds.):	148.3	Not Specified				

Project

Laboratory Test Data

Set No.	Specimen ID	Avg Diam. (in)	Area (sq in)	Date Received	Date Tested	Test (days)	Load (lbs)	Strength (psi)	Fracture Type	Tested By
1	A	6.01	28.37	02/25/20	03/03/20	11 F	110,230	3,890	1	BJA
1	В	6.01	28.37	02/25/20	03/03/20	11 F	111,470	3,930	1	BJA
1	С	6.01	28.37	02/25/20	03/03/20	11 F	127,750	4,500	1	BJA
1	D			02/25/20		Hold				
Initial	Cure: Outsi	ide Plastic Lid	s	Final C	ure: Field Cu	red				

A ne ot

Comments: F = Field Cured

(Vehicle charge shown on Report No. A1171057.0094.)

Samples Made By: Terracon

Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and Services: test compressive strength samples (ASTM C 31, C 39, C 1231). Terracon Rep.: Matcek, James

Start/Stop: 1230-1330

Maximum

Compressive

Reported To: Contractor:

Report Distribution:

(1) Texas Transportation Institute, Gary Gerke (1) Terracon Consultants, Inc., Andrea Allen (1) Texas Transportation Institute, Bill Griffith

Reviewed By: Andrea Allen

Project Manager

Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

CR0001, 11-16-12, Rev.6

Page 1 of 1

B.2. SUPPORTING CERTIFICATION DOCUMENTS FOR 612261-04-1

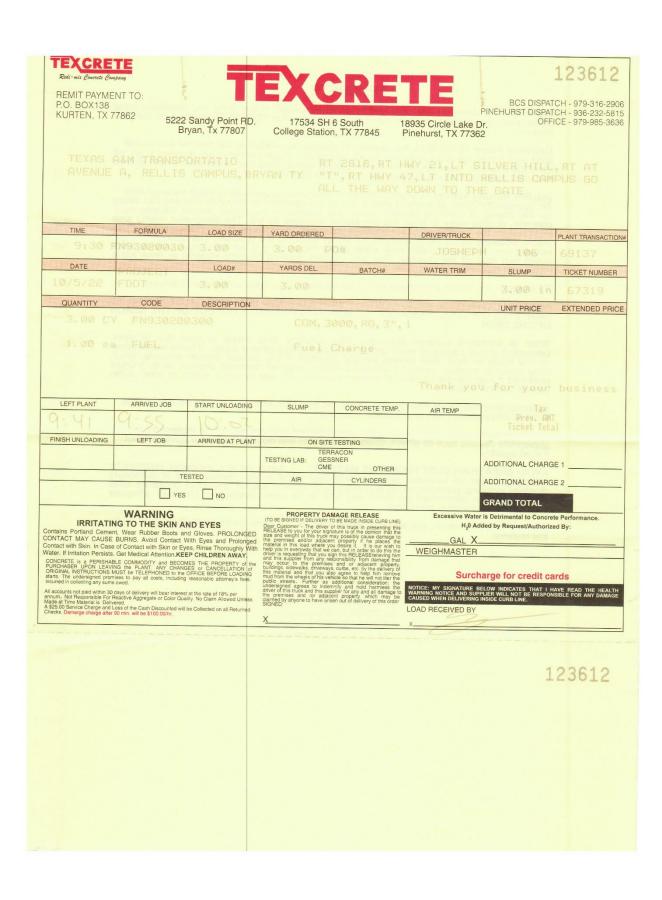
Building Trace Order Ummandom Singling Medic Order Dimensions Singling Medic Press Carling for the Following graftse Singling J Bipselfactors Trace Bipselfactors Trac	se Maallanal 200	h the specifications and the specification and purchase	herein was manufactured, sampled, and tested in accordance wit teel. We certify that delivery of this product with the requirement o	DN: EN 10204 2004 3.1 This is to certify that the product decribed herein was manufactured, sampled, and tested in accordance with the specifications and requirements in such specifications. Fine Grain, Si-AI Fully Killed Steel. We certify that delivery of this product with the requirement of the specification and purchase order received from customer DRC Condit-Eree Toose on contained to the interviewed addition of b. Se order.
Order Ummensions Shipping Mode Order Ummensions Salab Gright To No. Order Ummensions Shipping Mode Order Ummensions Salab Gright To No. Status Specifications Pack To No. Shipping Mode Order Ummensions Salab Gright To No. Status Status Specifications Pack To No. Specifications Marking Instance Marking Instance <th></th> <th></th> <th></th> <th></th>				
Order tem Shiphi Mode Order tem Shiphi Mode Order tem Order tem Shiphi Mode Order tem	02A			
Order Line, Next PO No. Shipping Mode Order Dimensions 2 Trilled for the Following grades Specifications Manking Instructions Manking Instructions 2 Stab Sing Dirig Antise Specifications FOR 50 MINS Sing Dirig Antise Sing Dirig Antise Manking Instructions 2 Min P S Si Cul Ni Cr Mo Sing Dirig Antise Sing Ming Instructions Sing Dirig Antise	SFI PO #:			
Order Line, Isadi Isavirator of Startified for the Following grades Manthing Instructions (1 523/20042) Manthing Instructions (1 523/20042) Cartified for the Following grades Grado Steep Plates Specifications (1 523/20042) Specifications (1 523/20042) Manthing Instructions (1 523/20042) Manthing Instructions (1 523/20042) Cold Inthe Grado Steep Plates Sincular Cold (1 1 001 000 019 0000 0007 0013 0000 0002 0034 00020 0002 0002 0002 00		Customer PO #:		
Order the Iswirz607-01 Meat Truck ON Shipping Mode Order (Issue) Truck Marking Instructions Structure Truck Marking Instructure Truck Marking		Customer Name:		
Order Line Heat BisW12607-01 PO No. Shipping Mode Order Linesisions Surfied for the Following grades Specifications Specifications Marking Instructions Corder Dinnesisions StepPing Mode V B T No Calon StepPing Mode Corder Conversion StepPing Mode V B T No Calon StepPing Mode Marking Instructions Corder Conversion StepPing Mode V B T No Calon StepPing Mode Marking Instructions Corder Conversion StepPing Mode V B T No Calon StepPing Mode Dimensions Corder Conversion StepPing Mode V B T No Calon StepPing Mode Dimensions Corder Conversion StepPing Mode V B T No Calon StepPing Mode Dimensions Corder Conversion StepPing Mode V B T No Calon StepPing Mode Dimensions Corder Conversion StepPing Mode Corder Conversion StepPing Mode Calon Equivalent CE Corder Mode StepPing Mode Track NV Mode Modea Test Test (LCVN) Full Energy in Futb *F Corder Mode StepPing Mode StepPing Mode		9 / 20 / 2019		
Iorder Item Heat PO No. Shipping Mode Order Dimensions Iorder Item Heat PO No. TRUCK TRUCK TRUCK 1625/120420 Iorder Item For No. TRUCK TRUCK TRUCK 1625/120420 Iorder Item Specifications Specifications Marking Instructions Marking Instructions Solf-70, ASME-SA516-70 2017 EDITION PN LCVN ELATE NORMALIZED AT 1650 °F FOR 50 MINS Marking Instructions Stendil in 2 location(I) N LOC ed Carbon Steel Plates Plate USA Plate NORMALIZED AT 1650 °F FOR 50 MINS Marking Instructions Stendil in 2 location(I) N LOC ed Carbon Steel Plates Sisi Cu Ni Cr Mo Sn Al N V B Ti Nb Ca CE Carbon Equivalent CE = c Marking Toti Toti 3 0000 0002 0002 0002 0002 0002 0002 0002 0002 000	B)		tes Certified For The Above Tests Thick(IN) Width(IN) Len (IN) Wg(LB) Material	Thick(IN) Wridth (IN) Len(IN) Wg(LB) Mater A 1.5250 120.000 420.00 23226.840 Mater
In Order Item Heat PO No. Shipping Mode Order Dimensions 16 JSW12607-01 S27592 TRUCK TRUCK 1.625x120x420 16 Certified for the Following grades Specifications Marking Instructions Marking Instructions A:516-70, ASME-SA516-70 2017 EDITION PN LCVN Specifications Specifications Marking Instructions A:516-70, ASME-SA516-70 2017 EDITION PN LCVN PLATE NORMALIZED AT 1650 °F FOR 50 MINS Marking Instructions Manufactured in the USA PLATE NORMALIZED AT 1650 °F FOR 50 MINS Dim GRADE: FREIGHT ORDE Ide Carbon Steel Plates V B Tt Nb Ca CE C Mn P S SI Cu Ni Cr Mo Sn AI N V B Tt Nb Ca CE Carbon Equivalent CE = Co: 11 1001 0.000 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 Marking Instructions Co: C Mn P S Si Cu N Carbon Equivalent CE = <th></th> <th>ull Energy in Ft/Lb °F Vrg Test1 Test2 Test3 Avg</th> <th></th> <th>Slab Identity Tested</th>		ull Energy in Ft/Lb °F Vrg Test1 Test2 Test3 Avg		Slab Identity Tested
Order Item Heat PO No. Shipping Mode Order Dimensions ISW12807-01 S27592 TRUCK 1.625x120x420 Image: Specification Steel Plates Specifications Marking Instructions Order Dimensions Specifications Stencil in 2 location(s); X Loc. Image: Carbon Steel Plates PLATE NORMALIZED AT 1650 °F FOR 50 MINS Marking Instructions Image: Carbon Steel Plates PLATE NORMALIZED AT 1650 °F FOR 50 MINS Stencil in 2 location(s); X Loc. Image: Carbon Steel Plates Inte USA US Stencil in 2 location(s); X Loc.	alent CE = C + Mn/6 + (Cr + Mo + V)/5 + (Ni + Cu)/1 '30 + Mn/20 + Cu/20 + Ni/60+ Ci/20 + Mo/15 + V/10	Carbon Equiva PCM = C + SV	AI N V B Ti Nb Ca CE 02 0.034 0.0028 0.004 0.0002 0.002 0.002 0.0021 0.39	C 0.20
Order Item Heat PO No. Shipping Mode Order Dimensions ISW12607-01 SZ7592 TRUCK 1.625x120x420 Image: Specification solution of the Following grades Specifications 1.625x120x420 Image: Specification solution so				Ship To: •
PO No. Shipping Mode Order Dimensions TRUCK TRUCK 1.625x120x420 Ing grades Specifications Marking Instructions 0 2017 EDITION PN LCVN PLATE NORMALIZED AT 1650 °F FOR 50 MINS Marking Instructions US 2017 EDITION PN LCVN PLATE NORMALIZED AT 1650 °F FOR 50 MINS Marking Instructions US 2017 EDITION PN LCVN PLATE NORMALIZED AT 1650 °F FOR 50 MINS Stendi in 2 location(s); X Loc. US 2017 EDITION PN LCVN PLATE NORMALIZED AT 1650 °F FOR 50 MINS Distructions US 2017 EDITION PN LCVN PLATE NORMALIZED AT 1650 °F FOR 50 MINS Distructions				Sold To:
Shipping Mode Order Dimensions TRUCK 1.625x120x420 Specifications Image: Comparison of the second sec	HT ORDERITEM PLATEID SHIPWEEK SLAE	DIM GRADE; FREIGH TRANSMODE Stamp ID; Slab ID		Hot Rolled Carbon Steel Plates Plates Manufactured In the USA
Shipping Mode Order Dimensions Slab Origin TRUCK 1.625x120x420 MEXICO Snecifications Marking Instructions	X Loc.	Stencil in 2 location(s)	PLATE NORMALIZED AT 1650 °F FOR 50 MINS	ASTM-A516-70, ASME-SA516-70 2017 EDITION PN LCVN
Order Item Heat PO No. Slab Origin JSW12607-01 S27592 TRUCK 1.625x120x420 MEXICO	v	Marking Instructions	Specifications	Plates Certified for the Following grades
Order Irenensions Stab Origin	MEXICO	121X67a1		
	Slab Origin	Order Dime	TBUCK	Order Item Heat

Phone: 281-970-6030 Fax: 281-970-6024

12777 Jones Rd. Suite 315 Houston, TX 77375

UT CERTIFIED TEST REPORT

			LCEN	UI CERTIFIED IEST REPORT	LEVI	KEPUI			
	Date Received:	9/13/19		Specification:	SA5	SA578 LVL C	Report #:	GTG	GTG-UT-751
					100	100% Scan	Rev.		
	Date Complete:	9/13/19					Release#	GTC	GTC144342
				Procedure:	Griffin Trad	Griffin Trade Group UT-01			
				Deviations:	N/A		Page 1 of 1		
				UT Inst	UT Instrument: RFD 30	D 30	S	Serial# :12110701	701
				Cou	Couplant: Water	er	Calib	Calibration Due: 5/22/20	/22/20
				Batch #: N/A	J /A		RESULTS	LTS	
	Material	Dimensions	Slab #/ID#	Heat #		Surface	Reject		Acceptable
Û	SA/A51670 N	1-5/8 120 420	02A	S27592		ROUGH	0		
	SA/A51670 N	1-1/2 120 240	03A	S25206		ROUGH	0		-
		CALIBRATION BLOCKS	LOCKS				TRANSDUCERS	S	
	DBS	Calibration	Serial #	Reflector size	Serial #	Brand	Size	Degree	Frequency
	Longitudinal								
	77	80% FSH	N/A	1/8" FBH	B14808	Britek	1"	0	2.25 Mhz
				Tech	Fechnique Used	ed			
			Transducer	h					
				~					
				Joana			rait		
	Comments:								
	All tests are perfor	All tests are performed using calibrated equipment on samples provided by Griffin Trade Group, unless noted	uipment on sa	amples provided by	Griffin Trad	e Group, unless	noted		
	in the data section reproduced in its e	in the data section. This data applies only to samples tested by Griffin Trade Group, LLC. This test report may be reproduced in its entirety without permission from Griffin Trade Group LLC. All requirements of Griffin Trade Group LLC Outsility Operating	on from Grffin ⁻	Trade Group 11C	de Group, L All requirem	LC. This test rep ents of Grffin Tra	oort may be	Ouality One	rating
	Procedures, Datec	Procedures, Dated 1/16/2014 have been fulfilled.	fulfilled.	-				and change	g
	Tested By:	Jarrod Harris		ASNT Level II			Date:	9/13/19	
	2								
	Signature:	Maria	B	1					


EXT	(مى يىرى RUSIONS, LTD.	*	MECH	<u>CERTIFICATE</u> IANICAL AND CH	OF ANALYSIS IEMICAL PROPERT	IES		P.O. E Olney; Téxa	
					۹.		and Acres		
					į				
Customer:	Centerline Supply, L	LTD					Date:	15-Dec-21	
Job #	320865		כ	ustomer P.O.	PO2008214		Die No:	15752	
			···				uantity Shipp	ed	
Item			Descript	ion		Feet		Pieces	
- 1	Aluminum Extrusic 12" PANEL Heat # Chemical Analysis	CTX54149				2520		84	
Alloy	Silicon	İrqn	Copper	Manganese	Magnesium	Chromium	Zinc	Titanium	Oth
6063	0.49	0.2	0.03	0.04	0.46	0.008	0.008	0.009	
Alloy	Tensile Str	ength:]						
6063/T6	Ultimate-	33,208							
	Yield-	30,446		-	<u>,</u>				
	Elongation-	9,70%	10						
			This is to	certify that above	test results comply wi	th ASTM B221	r.		
				TOWER EXTRUSIO	NS, LTD.	1			
•					(a) /	/			
				Kall	0 (7	-			
				Quality Control S	upervisor		,		
				»*					
								-Ear (040)	564 6
	10ne: (940) [°] 564-568	1						Fax: (940)	564-5
	ione: (940) 564-568	1:					2 ³	Fax: (940)	564-5(

T ID;) - CF	19-25	210] [0r	der - 18147108			
#/ 150 X 0000395918	HEAT / BATCH 59089275/02			ÅI 0.004							
SHAPE / SIZE Wide Flange Beam / 6 X 12#/ 150 X 18.0	WEIGHT 42,720 LB	NC		Nb % 0.018		-#88			compliance with R complies with EN	WADE LUNPKINS QUALITY ASSURANCE MGR.	npkirs@gerdau.com
SHAP Wide I 18.0	100	ATE or REVISIO	A572-15 I	× 0.007		671 8.000 8.000 8.000			are correct and in in the USA, CMT	Well' A. LL' WADE LUMPKINS	Email: Wade Lun
GRADE A992/A572-50	LENGTH 40'00"	SPECIFICATION / DATE or REVISION ASTM A6-17 ASTM A700-17	ASTM A992-11 (2015), A572-15 CSA G40.21-13 345WM	0:000		Y/T ₆ rati 0.810 0.790			ertify that these data	Well' A	Phone: 972-779-3118 Email: Wade Lumpkins@gerdau.com
NO				Mo 0.024					ompany. We c llets, was melt		
CUSTOMER BILL TO KLOECKNER METALS CORPORATI	200 COLDWAL CENTER FKW7 ROSWELL, GA 30076-8853 USA	CUSTOMER MATERIAL N° B612W401400	DATE 12/23/2019	Çr 0.20	and the second sec	MPa 510 527			are certified chemical and physical test records as contained in the permanent records of company. We certify that these data are correct and in compliance with neuts. Weld repair has not been performed on this material. This material, including the billets, was material and manufactured in the USA. CMTR complies with EN		
CUSTOMER BILL TO KLOECKNER MET	ROSWELLG	CUSTOM B612W40		Su Ni Su Ni 0.44 0.10					as contained in the <i>I</i> s material. This ma		
AETALS US	212-3502		BILL OF LADING 1327-0000351754	Si 0.24		MPa 411 419	60 and 10	5	physical test records een performed on th	BHASKAR YALAMANCHILI QUALITY DIRECTOR	Phynic. (409) 267-1071 Email: Bhasker Yalamanchili@gerdau.com
CUSTOMER SHIP TO KLOECKNER METALS US 46/6 SINGLETON RUND	DALLAS.TX 75212-3502 USA	SALES ORDER 8365961/000010		S 0.010		~ 28	6ù C O		ted chemical and		aail: Bhaskar Yalam
DAU			R NUMBER	P % 0.016		455 73972 76489	Elong. 23.30 22.70		e figures are cortificed under the second seco	machay	: (409) 267-1071 En
GERDA	US-ML-MIDLOTHIAN 300 WARD ROAD	MIDLOTHIAN, TX 76065 USA	CUSTOMER PURCHASE ORDER NUMBER 7452718	CHEMICAL COMPOSITION C Min 0.12 1.06	CHEMICAL COMPOSITION CE82A6 0.38	MECHANICAL PROPERTIES YS 0,2% SP660 60741	MECHANICAL PROPERTIES G/L 200.0 200.0	COMMENTS / NOTES	The above figures a specified requireme 10204 3.1.	×	Phone

B.3. SUPPORTING CERTIFICATION DOCUMENTS FOR 612261-05-2

<text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text>

Te In	exas A&M ansportation stitute	QF 7.3-01 Samj	pling	Doc. No. QF 7 .3-01	Revision Date: 2020-0 7- 29
Quality	Form	Revised by: B.L. Griffit Approved by: D. L. Ku		Revision: 7	Page: 1 of 1
Project No:	612261	Casting Date:	10/5/2022	Mix Design (psi):	3000
Name of Technician Taking Sample	Terr	acon	Name of Technician Breaking Sample		acon
Signature of Technician Taking Sample	Terr	acon	Signature of Technician Breaking Sample		acon
Load No.	Truck No.	Ticket No.	Locat	ion (from concret	e map)
T1	106	123612		100% of sign footer	°S
	Dural Data	Culiadar Ara	T _+_ /)	Durali (mai)	A
Load No.	Break Date	Cylinder Age	Total Load (lbs)	Break (psi)	Average

CONCRETE COMPRESSIVE STRENGTH TEST REPORT

 Report Number:
 A1171057.0250

 Service Date:
 10/05/22

 Report Date:
 11/10/22

 Task:
 PO# 612261-01

Client

Texas Transportation Institute Attn: Bill Griffith TTI Business Office 3135 TAMU College Station, TX 77843-3135

Material Information

Specified Strength: 3,000 psi @ 28 days

Mix ID:	Fn930200300		
Supplier:	Texcrete		
Batch Time:	0930	Plant:	2
Truck No.:	106	Ticket No.:	67319

Field Test Data

Test	Result	Specification
Slump (in):	2 1/2	
Air Content (%):	3.8	
Concrete Temp. (F):	83	
Ambient Temp. (F):	80	
Plastic Unit Wt. (pcf):	147.7	
Yield (Cu. Yds.):		

Project Riverside Campus Riverside Campus

Placement Location:

Bryan, TX

Project Number: A1171057 Sample Information 10/05/22 Sample Time: Sample Date: 1020 Sampled By: Brian Maass Weather Conditions: Clear light wind Batch Size (cy): 10 Accumulative Yards: 3/3 Placement Method: Direct Discharge Water Added Before (gal): 0 Water Added After (gal): 0 Sample Location: West pier

Piers - South runway

Laboratory Test Data

Set No.	Spec ID	Cyl. Cond.	Avg Diam. (in)	Area (sq in)	Date Received	Date Tested	Age at Test (days)	Max Load (lbs)	Comp Strength (psi)	Frac Type	Tested By
1	А	Good	6.00	28.27		11/07/22	33 F	86,620	3,060	4	SCG
1	В	Good	6.00	28.27		11/07/22	33 F	81,420	2,880	4	SCG
1	С	Good	6.00	28.27		11/07/22	33 F	99,290	3,510	4	SCG
1	D	Good					Hold			2	SCG
Initial C	ure: Ou	tside Plastic Li	ds	Final	Cure: Field (Cured	Si	ample Descr	i ption: 6-inch d	liameter cyl	inders

Comments: F = Field Cured

Note: Reported air content does not include Aggregate Correction Factor (ACF).

Samples Made By: Terracon

Services:

Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test compressive strength samples (ASTM C 31, C 39, C 1231).

Start/Stop: 0945-1145

Reviewed By:

Terracon Rep.: Brian Maass Reported To: Contractor: MBC Management Report Distribution:

(1) Texas Transportation Institute, Bill Griffith

Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

CR0001, 3-31-22, Rev.7

Page 1 of 1

ierracon

Nexander Dunigan Project Manager

APPENDIX C. MASH TEST 3-62 (CRASH TEST NO. 6122561-05-1)

C.1. VEHICLE PROPERTIES AND INFORMATION

Date:	2020-3-3	Те	st No.: _	61226	1-05-01	VIN No.	: <u>1C6</u>	RR6GT2E	S293323
Year:	2014		Make:	R	АМ	Model	:	1500	
Tire Size:	265/70	२ १७			Tire I	nflation Pre	essure:	35	j psi
Tread Type:	Highway	/				Odd	ometer: <u>1</u>	52503	
Note any dan	nage to th	e vehicle	orior to te	est: <u>No</u>	ne				
 Denotes ad 	ccelerome	eter locatio	n.			▲X ▲ W→I	•		
NOTES: No	one			1		71			
Engine Type: Engine CID:	: <u>V-8</u>				EL CK				WHEEL TRACK
Transmission	• •							-TEST INERTIAL C.	M.
Auto	or V R		nual _ 4WD		R				4
Optional Equ None	ipment:			I ▲				°	В
Dummy Data					Ţ [₽] (G			FO)r	
Type: Mass:	No di	ummy 0 lb		<u> </u>	- F -	U ⊷H►	L _G L _v t	S	
Seat Positio	n: NA	-				M	— Е ———	→ M	
Geometry:	inches				1	FRONT	— C ———	REAR.	
A78.	.50	F	40.00	к _	20.00	P	3.0	<u>0</u> U	
B74.	.00	G	29.25	L _	30.00	Q	30.5	<u> </u>	
C227.		н	61.27	Μ	68.50	R	18.0		
D 44.	.00	·	11.75	N	68.00	s	13.0	/ `	79.00
E <u>140</u> .		J	27.00	0	46.00	_ T_	77.0		
Wheel Cer Height Fr		14.75	Clea	Wheel We rance (Fron		6.00	Bottom Height		12.50
Wheel Cer Height R		14.75	 Clea	Wheel We arance (Rea		9.25	Bottom Height	Frame - Rear	22.50
RANGE LIMIT: A=7	-						-		
GVWR Ratin	igs:	Ma	i ss: lb	Cu	<u>urb</u>	Test	Inertial	Gr	<u>oss Static</u>
	3700	N	Ifront		2900		2842		2842
Back 🤤	3900	N	I _{rear}		2020		2198		2198
Total 6	6700	N	1 _{Total}		4920		5040		5040
Mass Distrib	oution:				(Allowable)	Range for TIM and	d GSM = 5000 lb	±110 lb)	
lb		LF:1	442	RF: _	1400	LR:	1133		1065

Figure C.1. Vehicle Properties for Test No. 6122561-05-1.

Date:	2020-03-03	Test No.:	612261-05-01	VIN No.:	1C6RR6GT2ES293323
Year:	2014	_ Make:	RAM	Model:	1500

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete Whe	en Applicable
End Damage	Side Damage
Undeformed end width	Bowing: B1 X1
Corner shift: A1	B2 X2
A2	
End shift at frame (CDC)	Bowing constant
(check one)	$X1+X2$ _
< 4 inches	2
\geq 4 inches	

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

G'6		Direct I	Damage								
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C_1	C_2	C_3	C_4	C ₅	C_6	±D
1	Front plane at bmp ht	4	8	32	2	8	З	-	-	-	-12
	Measurements recorded										
	√ inches or ☐ mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure C.2. Exterior Crush Measurements for Test No. 6122561-05-1.

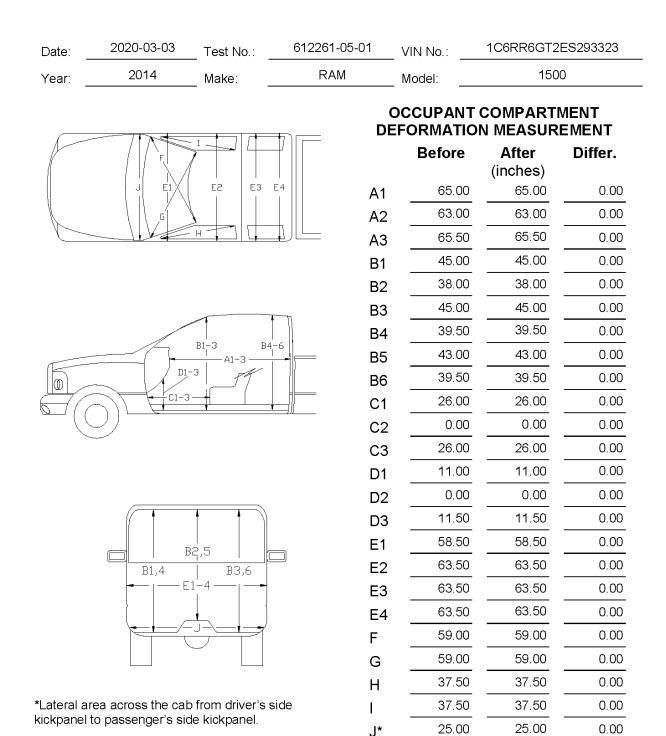


Figure C.3. Occupant Compartment Measurements for Test No. 6122561-05-1.

C.2. SEQUENTIAL PHOTOGRAPHS

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure C.4. Sequential Photographs for Test No. 6122561-05-1 (Right Angle Views).

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s

(h) 0.700 s

Figure C.5. Sequential Photographs for Test No. 6122561-05-1 (Left Oblique Views).

(a) 0.000 s

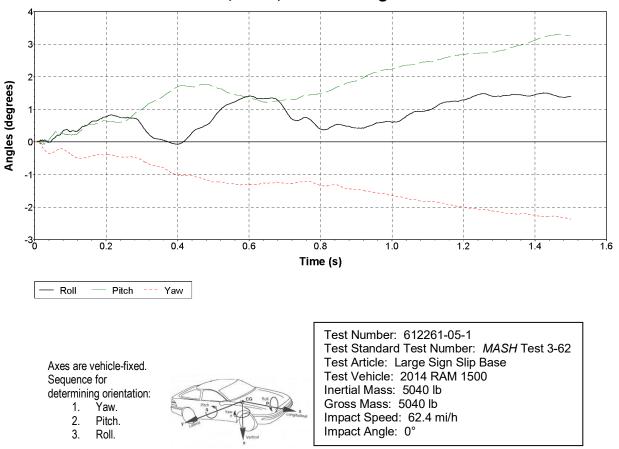
(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s


(g) 0.600 s

(h) 0.700 s

Figure C.6. Sequential Photographs for Test No. 6122561-05-1 (Right Oblique Views).

118

Roll, Pitch, and Yaw Angles

Figure C.7. Vehicle Angular Displacements for Test No. 6122561-05-1.

C.4. VEHICLE ACCELERATIONS

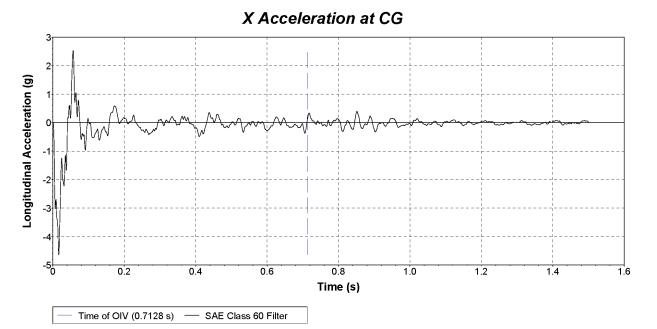


Figure C.8. Vehicle Longitudinal Accelerometer Trace for Test No. 6122561-05-1 (Accelerometer Located at Center of Gravity).

Figure C.9. Vehicle Lateral Accelerometer Trace for Test No. 6122561-05-1 (Accelerometer Located at Center of Gravity).

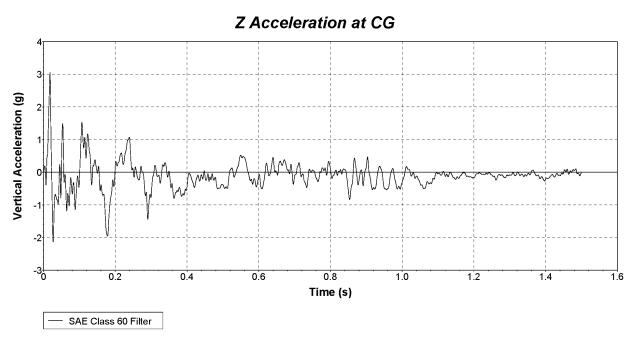


Figure C.10. Vehicle Vertical Accelerometer Trace for Test No. 6122561-05-1 (Accelerometer Located at Center of Gravity).

APPENDIX D. MASH TEST 3-62 (CRASH TEST NO. 612261-04-1)

D.1. VEHICLE PROPERTIES AND INFORMATION

Date: 2	2022-03-16	Test No.:	612261	-04-1	VIN No.:	1C6RR	6FT1GS3	32076
Year:	2016	Make:	RA	М	Model		1500	
Tire Size:	265/70 R	2 17		Tire I	nflation Pre	essure:	35 ps	si
Tread Type:	Highway				Odd	meter: <u>9017</u>	'8	
Note any da	mage to the	e vehicle prior to	test: <u>None</u>	e				
 Denotes a 	accelerome	ter location.		[◀───X ─ ◀── ₩ ──►	•		
NOTES: N	one		1		77			A A
Engine Type Engine CID:		er	A M WHEEL					- N T
Transmission	•••	🔲 Manual				TEST	Í INERTIAL C. M.	
				R				•
Optional Equ None	uipment:		P-					
Dummy Data Type: Mass:	a: <u>NONE</u>	: 0 lb	J J J I I				QL .	
Seat Positio	on:		- -		•	- E	►	
Geometry:	inches			Ψ.	M front		V M rear	
· · ·		F <u>40.00</u>	К	20.00	P _	3.00	U _	26.75
-		G28.25	_ L	30.00	_ Q _	30.50	V	30.25
C227		H60.86	_ M	68.50	_ R _	18.00	W	60.80
	1.00	I <u>11.75</u>	N	68.00	S	13.00	X	79.00
E 140		J27.00		46.00	_ Т_	77.00		
Wheel Ce Height F		14.75 Cl	Wheel Well earance (Front)		6.00	Bottom Frar Height - Fro		12.50
Wheel Ce Height F		14.75 ci	Wheel Well earance (Rear)		9.25	Bottom Frar Height - Re		22.50
-		237 ±13 inches; E=148 ±12	. ,	ches; G = > 28 ir		-	-	1.5 inches
GVWR Ratin	ngs:	Mass: Ib	Cur	b	Test	Inertial	Gross	<u>s Static</u>
	3700	Mfront		2960		2871		2871
Back	3900	M _{rear}		2087		2193		2193
Total	6700	М _{тоtal}		5047		5064		5064
Mass Distril	bution:			(Allowable	Range for TIM and	i GSM = 5000 lb ±110) lb)	
lb		LF: <u>1449</u>	RF:	1422	LR:	1108	RR:	085

Figure D.1. Vehicle Properties for Test No. 612261-04-1.

Date:	2022-03-16	Test No.:	61226	1-04-1	VIN No.:	1C6RR6FT1GS382076			
Year:	2016	Make:	RA	M	_ Model:	1500			
	T.	VEHICLE CR				Γ ¹			
			omplete Wh	en Applical		_			
	End Da	<u> </u>		Side Damage					
	Undeformed	l end width			Bowing: B1 _	X1			
	Corne	er shift: A1			B2 _	X2			
		A2							
	End shift at fran	ne (CDC)		Во	wing constant				
	(check or	ne)			X1+X2				
		<4 inches			2	·			
		\geq 4 inches							

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

G		Direct I	Damage								
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C1	C2	C3	C4	C ₅	C_6	±D
1	AT FT BUMPER	4	4	18							-13
	Measurements recorded										
	inches or mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure D.2. Exterior Crush Measurements for Test No. 612261-04-1.

Date:	2022-03-16	Test No.:	612261-04-1	<u> </u>	/IN No.:	1C6RR6FT1GS382076 1500		
Year:	2016	Make:	RAM	ľ	Model:			
P	F					COMPARTI N MEASUR After (inches)		
		E2 E3	E4	A1	65.00	65.00	0.00	
				A2	63.00	63.00	0.00	
				A3	65.50	65.50	0.00	
				B1	45.00	44.00	-1.00	
				B2	38.00	38.00	0.00	
				B3	45.00	45.00	0.00	
				B4	39.50	39.50	0.00	
		B1-3 B	4-6	B5	43.00	43.00	0.00	
0		-3		B6	39.50	39.50	0.00	
	C1-3	3-+ (C1	26.00	26.00	0.00	
<u> </u>	\mathcal{O}			C2	0.00	0.00	0.00	
				СЗ	26.00	26.00	0.00	
				D1	11.00	11.00	0.00	
				D2	0.00	0.00	0.00	
	(t	+ +)		D3	11.50	11.50	0.00	
				E1	58.50	58.50	0.00	
	B1,4	32,5 B3,6		E2	63.50	63.50	0.00	
		[1−4 ── ─►		E3	63.50	63.50	0.00	
	}			E4	63.50	63.50	0.00	
				F	59.00	59.00	0.00	
				G	59.00	59.00	0.00	
				Н	37.50	37.50	0.00	
	rea across the cal				37.50	37.50	0.00	
ckpanel to passenger's side kickpanel.				*	25.00	25.00	0.00	

Figure D.3. Occupant Compartment Measurements for Test No. 612261-04-1.

J*

25.00

25.00

0.00

D.2. SEQUENTIAL PHOTOGRAPHS

(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s

(f) 0.500 s

(g) 0.600 s (h) 0.700 s Figure D.4. Sequential Photographs for Test No. 612261-04-1 (Right Angle Views).

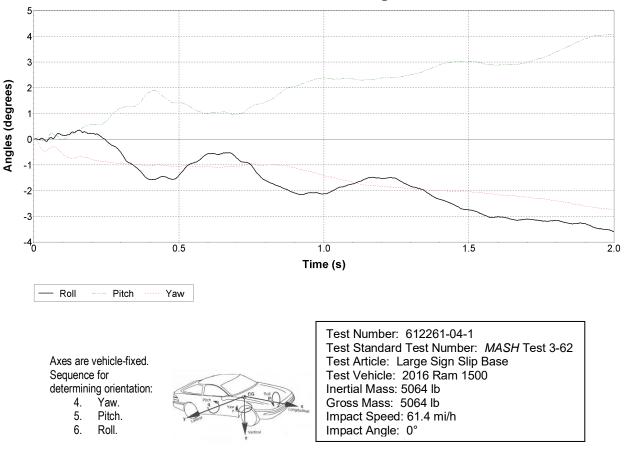
(a) 0.000 s

(b) 0.100 s

(c) 0.200 s

(d) 0.300 s

(e) 0.400 s


(f) 0.500 s

(g) 0.600 s

(h) 0.700 s

Figure D.5. Sequential Photographs for Test No. 612261-04-1 (Left Oblique Views).

Roll, Pitch and Yaw Angles

D.3. VEHICLE ANGULAR DISPLACEMENTS

Figure D.6. Vehicle Angular Displacements for Test No. 612261-04-1.

D.4. VEHICLE ACCELERATIONS

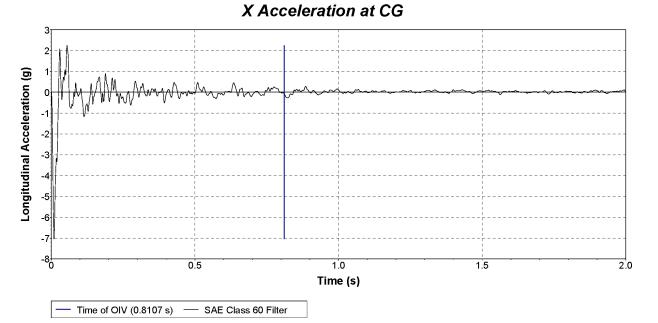


Figure D.7. Vehicle Longitudinal Accelerometer Trace for Test No. 612261-04-1 (Accelerometer Located at Center of Gravity).

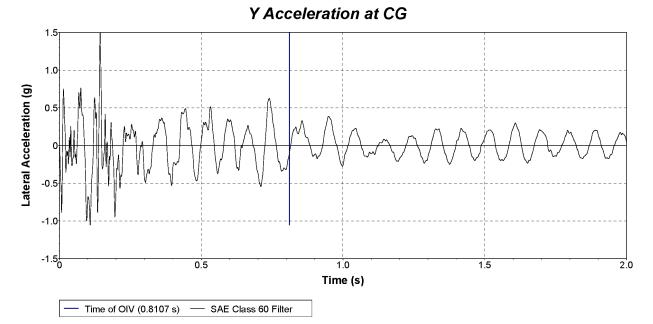


Figure D.8. Vehicle Lateral Accelerometer Trace for Test No. 612261-04-1 (Accelerometer Located at Center of Gravity).

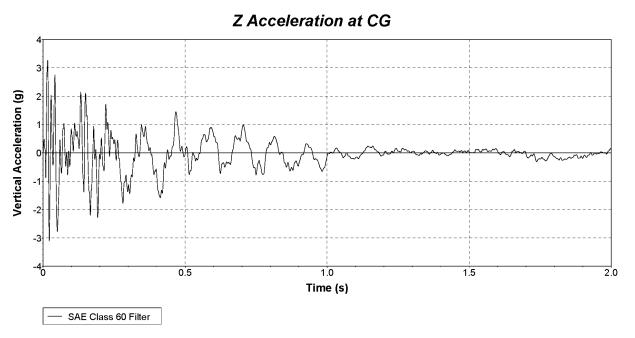


Figure D.9. Vehicle Vertical Accelerometer Trace for Test No. 612261-04-1 (Accelerometer Located at Center of Gravity).

130

APPENDIX E. MASH TEST 3-62 (CRASH TEST NO. 612261-05-2)

E.1. VEHICLE PROPERTIES AND INFORMATION

Date: 20)22-11-10	Test No.:	612261-	05-2	VIN No.:	1C6RF	R6FT8JS3	17779
Year:	2018	Make:	RAM	1	Model		1500	
Tire Size:	265/70 R 17			Tire I	nflation Pre	essure:	35 p	si
Tread Type:	Highway				Odd	meter: 7968	80	
Note any dam	age to the ve	hicle prior to te	est: <u>None</u>					
 Denotes ac 	celerometer l	ocation.		[◀───X ─ ◀── ₩ ─►	-		
NOTES: No	ne		1 +		71			
Engine Type: Engine CID:	V-8 5.7 liter		A M -					WHEEL TRACK
Transmission		1				-TES	ST INERTIAL C. M.	8
Auto □ FWD	or L	Manual		R PQ				
Optional Equi	pment:		P —					₹
None			† <u> </u>	E	T			∬i
Dummy Data:			J-J-T-T))~++		\mathbb{Q}^{\perp}	K L
Type: Mass:	NONE	lb		∢ — F → •	⊔_ — н►	L _G L _v L _s	- D-	
Seat Position	n:				•	– E	- -	
Geometry:	inches			ľ,	M FRONT	- C	∇M_{rear}	
A78.		40.00	К	20.00	P	3.00	U	26.75
B 74.0	00 G	28.75	L	30.00	Q	30.50	V	30.25
C227.5	<u>50</u> Н	61.00	Μ	68.50	_ R _	18.00	_ W_	61.00
D 44.0	<u> </u>	11.75	N	68.00	s	13.00	_ X _	79.00
E140.		27.00	0	46.00	_ T _	77.00		
Wheel Cen Height Fro		14.75 Clea	Wheel Well arance (Front)		6.00	Bottom Fra Height - Fr		12.50
Wheel Cen	ter	4 4 75	Wheel Well		9.25	Bottom Fra	me	22.50
Height Re RANGE LIMIT: A=7		13 inches; E=148 ±12 ii	arance (Rear) nches; F=39±3 inch	ies; G = > 28 ir		Height - R nches; 0=43 ±4 inch	-	
GVWR Rating	is:	Mass: Ib	Curb	1	Test	Inertial	Gros	<u>s Static</u>
	700	Mfront		1923		2832		2832
	900	Mrear		2083		2173		2173
	700	M _{Total}	5	006		5005		5005
(Allowable Range for TIM and GSM = 5000 lb ±110 lb)								
lb	LF:	1376	RF:	1456	LR:	1147	RR:	1026

Figure E.1. Vehicle Properties for Test No. 612261-05-2.

131

Date:	2022-11-10	Test No.:	612261-05-2	VIN No.:	1C6RR6FT8JS317779		
Year:	2018	_ Make:	RAM	Model:	1500		

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable							
End Damage	Side Damage						
Undeformed end width	Bowing: B1 X1						
Corner shift: A1	B2 X2						
A2							
End shift at frame (CDC)	Bowing constant						
(check one)	X1+X2						
< 4 inches	2						
\geq 4 inches							

Note: Measure C1 to C6 from Driver to Passenger Side in Front or Rear Impacts - Rear to Front in Side Impacts.

Specific		Direct Damage									l
Specific Impact Number	Plane* of C-Measurements	Width*** (CDC)	Max*** Crush	Field L**	C_1	C_2	C_3	C_4	C_5	C_6	±D
1	AT FT BUMPER	4	11	42							-16
	Measurements recorded										
	√ inches or 🗌 mm										

¹Table taken from National Accident Sampling System (NASS).

*Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).

Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

**Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).

***Measure and document on the vehicle diagram the location of the maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure E.2. Exterior Crush Measurements for Test No. 612261-05-2.

Date:	2022-11-10	Test No.:	612261-05-2	I-05-2 VIN No.: 1C6RR6FT8JS3		JS317779					
Year:	2018	Make:	RAM	Model:	1500						
		· T † 7 / / †	ت	OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT							
	F			Before	After (inches)	Differ.					
		E2 E3 E	A	65.00	65.00	0.00					
			A	2 63.00	63.00	0.00					
		н		3 65.50	65.50	0.00					
			Bŕ	45.00	43.10	-1.90					
			B2	2 38.00	38.00	0.00					
			В3	3 45.00	45.00	0.00					
		1	B4	1 39.50	39.50	0.00					
		B1-3 B4-	B	5 43.00	43.00	0.00					
6	D1-	-3	Be	39.50	39.50	0.00					
	C1-3		C [,]	26.00	26.00	0.00					
)		C	2 0.00	0.00	0.00					
			C	3 26.00	26.00	0.00					
			D	11.00	11.00	0.00					
			Dź	2 0.00	0.00	0.00					
			D	3 11.50	11.50	0.00					
	B	2,5	E,	58.50	58.50	0.00					
	B1,4	B3,6	E2	2 63.50	63.50	0.00					
	⊸ E	1-4	E	3 63.50	63.50	0.00					
			E	1 63.50	63.50	0.00					
			F	59.00	59.00	0.00					
			G	59.00	59.00	0.00					
			н	37.50	37.50	0.00					
	ea across the cab		de l	37.50	37.50	0.00					

Figure E.3. Occupant Compartment Measurements for Test No. 612261-05-2.

J*

25.00

25.00

kickpanel to passenger's side kickpanel.

0.00

E.2. SEQUENTIAL PHOTOGRAPHS

(a) 0.000 s

(b) 0.050 s

(c) 0.100 s

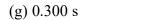
(d) 0.150 s

(e) 0.200 s

(f) 0.250 s

(g) 0.300 s (h) 0.3500 s Figure E.4. Sequential Photographs for Test No. 612261-05-2 (Overhead Views).

(b) 0.050 s


(d) 0.150 s

(h) 0.3500 s

Figure E.5. Sequential Photographs for Test No. 612261-05-2 (Frontal Views).

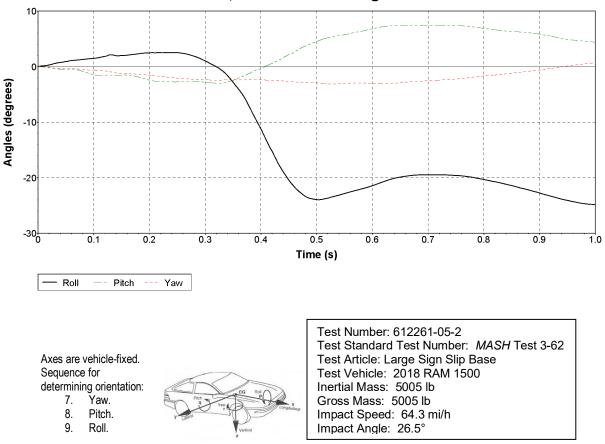
(b) 0.050 s

(c) 0.100 s

(d) 0.150 s

(e) 0.200 s

(f) 0.250 s



(g) 0.300 s

(h) 0.3500 s

Figure E.6. Sequential Photographs for Test No. 612261-05-2 (Rear Views).

Roll, Pitch and Yaw Angles

Figure E.7. Vehicle Angular Displacements for Test No. 612261-05-2.

E.4. VEHICLE ACCELERATIONS

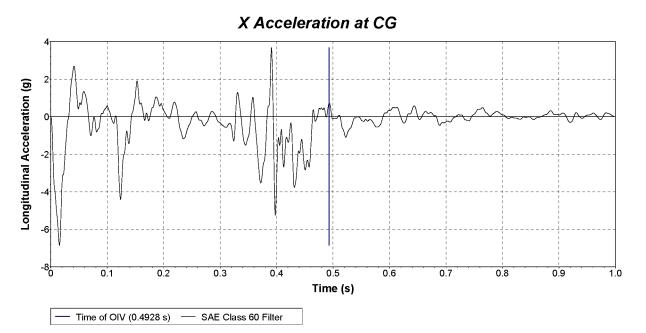


Figure E.8. Vehicle Longitudinal Accelerometer Trace for Test No. 612261-05-2 (Accelerometer Located at Center of Gravity).

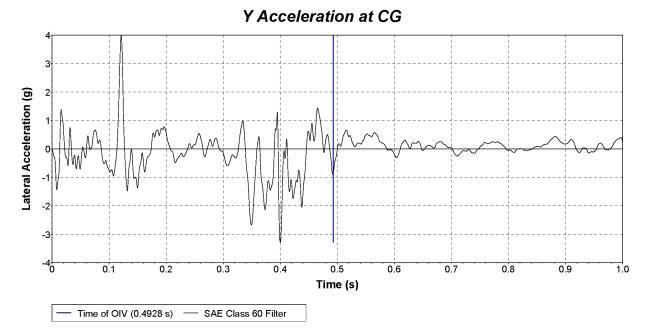


Figure E.9. Vehicle Lateral Accelerometer Trace for Test No. 612261-05-2 (Accelerometer Located at Center of Gravity).

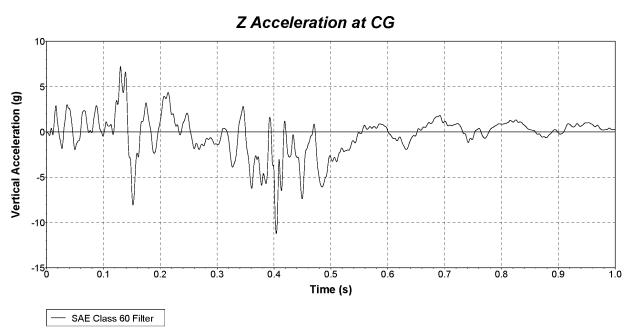


Figure E.10. Vehicle Vertical Accelerometer Trace for Test No. 612261-05-2 (Accelerometer Located at Center of Gravity).

DocuSign Envelope ID: 705CE37D-7CB7-49F5-A759-FC011CA121FE