

Test Report No. 618981-01-1

MASH TEST LEVEL 3 EVALUATION OF A SHORTER THRIE-BEAM APPROACH TRANSITION

Sponsored by Washington State Department of Transportation

TEXAS A&M TRANSPORTATION INSTITUTE PROVING GROUND

Roadside Safety & Physical Security
Texas A&M University System RELLIS Campus
Building 7091

1254 Avenue A Bryan, TX 77807

Technical Report Documentation Page

1. Report No.	2. Government Accession No.	Recipient's Catalog No.
4. Title and Subtitle		5. Report Date
MASH Test Level 3 Evaluation of	of a Shorter Thrie-Beam	February 2024
Approach Transition		6. Performing Organization Code
7. Author(s)		8. Performing Organization Report No.
William F. Williams, P.E. and Bri	anna E. Bastin	TRNo. 618981-01-1
9. Performing Organization Name and Address		10. Work Unit No. (TRAIS)
Texas A&M Transportation Instit	ute Proving Ground	
3135 TAMU		11. Contract or Grant No.
College Station, Texas 77843-31	135	Project T 4541
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
Washington State Department of	f Transportation	Technical Report:
Research Office MS 47372		September 2023 - February
Transportation Building		2024
Olympia, WA 98504-7372		
		14. Sponsoring Agency Code
15. Supplementary Notes		

Supplementary Notes

Name of Contacting Representative: Ted J. Whitmore

16. Abstract

The purpose of the tests reported herein was to assess the performance of the Shortened Transition according to the safety-performance evaluation guidelines included in the second edition of the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware (MASH)* (1). The crash test was performed in accordance with *MASH* Test Level 3 (TL-3):

1. **MASH** Test 3-21: A 2270P vehicle weighing 5000 lb impacting the Longitudinal Barrier at 25 degrees while travelling at 62 mi/h.

This report provides details on the Shortened Transition, the crash tests and results, and the performance assessment of the Shortened Transition for *MASH* TL-3 Longitudinal Barrier evaluation criteria.

The Shortened Transition met the performance criteria for MASH TL-3 Longitudinal Barrier.

17. Key Words		18. Distribution Statement		
Longitudinal barrier, 3-21, MASF	No restrictions. This document is available to			
Crash Test, Asymmetrical Thrie-	the public through NTIS:			
		National Technical Information Service		
		Alexandria, Virginia 22312		
	http://www.ntis.	gov		
19. Security Classification. (of this report) 20. Security Classification		ion. (of this page)	21. No. of Pages	22. Price
Unclassified Unclassified			80	

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized.

MASH Test Level 3 Evaluation of a Shorter Thrie-Beam Approach Transition

by
William F. Williams, P.E.
Associate Research Engineer
Texas A&M Transportation Institute

and

Brianna E. Bastin Research Assistant Texas A&M Transportation Institute

> TRNo. 618981-01-1 Contract No.: T 4541

Sponsored by the Washington State Department of Transportation

February 2024

TEXAS A&M TRANSPORTATION INSTITUTE College Station, Texas 77843-3135

DISCLAIMER

The contents of this report reflect the views of the authors, who are solely responsible for the facts and accuracy of the data and the opinions, findings, and conclusions presented herein. The contents do not necessarily reflect the official views or policies of the Washington State Department of Transportation. The Texas A&M University System, or the Texas A&M Transportation Institute (TTI). This report does not constitute a standard, specification, or regulation. In addition, the above listed agencies/companies assume no liability for its contents or use thereof. The names of specific products or manufacturers listed herein do not imply endorsement of those products or manufacturers.

The results reported herein apply only to the article tested. The full-scale crash test was performed according to TTI Proving Ground quality procedures and American Association of State Highway and Transportation Officials (AASHTO) Manual for Assessing Safety Hardware, Second Edition (MASH) guidelines and standards.

The Proving Ground Laboratory within TTI's Roadside Safety and Physical Security Division ("TTI Lab") strives for accuracy and completeness in its crash test reports. On rare occasions, unintentional or inadvertent clerical errors, technical errors, omissions, oversights, or misunderstandings (collectively referred to as "errors") may occur and may not be identified for corrective action prior to the final report being published and issued. If, and when, the TTI Lab discovers an error in a published and issued final report, the TTI Lab will promptly disclose such error to Washington State Department of Transportation, and both parties shall endeavor in good faith to resolve this situation. The TTI Lab will be responsible for correcting the error that occurred in the report, which may be in the form of errata, amendment, replacement sections, or up to and including full reissuance of the report. The cost of correcting an error in the report shall be borne by the TTI Lab. Any such errors or inadvertent delays that occur in connection with the performance of the related testing contract will not constitute a breach of the testing contract.

THE TTI LAB WILL NOT BE LIABLE FOR ANY INDIRECT, CONSEQUENTIAL, PUNITIVE, OR OTHER DAMAGES SUFFERED BY THE WASHINGTON STATE DEPARTMENT OF TRANSPORTATION OR ANY OTHER PERSON OR ENTITY, WHETHER SUCH LIABILITY IS BASED, OR CLAIMED TO BE BASED, UPON ANY NEGLIGENT ACT, OMISSION, ERROR, CORRECTION OF ERROR, DELAY, OR BREACH OF AN OBLIGATION BY THE TTI LAB.

REPORT AUTHORIZATION

REPORT REVIEWED BY:

Glenn Schroeder Research Specialist Drafting & Reporting

Glen Schraler

Adam Mayer Research Specialist Construction

Robert Kocman Research Specialist Mechanical Instrumentation Ken Reeves Research Specialist Electronics Instrumentation

Richard Badillo Research Specialist Photographic Instrumentation

William J. L. Schroeder
Research Engineering Associate
Research Evaluation and Reporting

Bill L. Griffith Research Specialist Quality Manager

Matthew N. Robinson Research Specialist Test Facility Manager & Technical Manager William F. Williams, P.E. Associate Research Engineer

William Williams

TABLE OF CONTENTS

_			Page
•		orization	viii
List of I	_		
List of			_
Chapte		Introduction	
Chapte		Background	
Chapte			
3.1.		Article and Installation Details	
3.2.		gn Modifications during Tests	
3.3.		rial Specifications	
3.4.		Conditions	
Chapte			
		h Test Performed/Matrix	
4.2.		uation Criteria	
Chapte		Test Conditions	
		Facility	
		cle Tow and Guidance System	
5.3.		Acquisition Systems	
5.3		Vehicle Instrumentation and Data Processing	
5.3		Anthropomorphic Dummy Instrumentation	
5.3	.3. I	Photographic Instrumentation Data Processing	
Chapte	r 6.	MASH Test 3-21 (Crash Test 618981-01-1)	17
6.1.		Designation and Actual Impact Conditions	
6.2.		ther Conditions	
6.3.	Test	Vehicle	19
6.4.	Test	Description	21
6.5.	Dam	age to Test Installation	21
6.6.	Dam	age to Test Vehicle	23
6.7.	Occu	ıpant Risk Factors	26
6.8.	Test	Summary	26
Chapte			
7.1.	Asse	ssment of Test Results and Conclusions	29
Chapte	r 8.	Implementation	31
Chapte	r 9.		
Append	lix A.		
Append		Supporting Certification Documents	61
Append	lix C.	MASH Test 3-21 (Crash Test 618981-01-1)	74
C.1.	Vehic	cle Properties and Information	
C.2.		iential Photographs	
C.3.	Vehic	cle Angular Displacements	80
C 4	Vehic	cle Accelerations	81

LIST OF FIGURES

	Page
Figure 2.1– Thrie Beam Guardrail Bridge Transition and Connection (WVDOT	J
Standard Drawing, 2016)	
Figure 3.1. Details of Shortened Transition.	
Figure 3.2. Shortened Transition prior to Testing.	
Figure 3.3. In-Line View of Shortened Transition prior to Testing	
Figure 3.4. View of Shortened Transition from Downstream prior to Testing	
Figure 3.5. View of Shortened Transition from Downstream prior to Testing	7
Figure 3.6. Traffic Side View of Shortened Transition at Thrie-beam Asymmetric	
Transition prior to Testing	
Figure 3.7. Field Side View of Shortened Transition prior to Testing	
Figure 4.1. Target CIP for MASH TL-3 Tests on Shortened Transition	
Figure 6.1. Shortened Transition Test Vehicle Geometrics for Test 618981-01-1	
Figure 6.2. Shortened Transition/Test Vehicle Impact Location 618981-01-1	
Figure 6.3. Impact Side of Test Vehicle before Test 618981-01-1.	
Figure 6.4. Opposite Impact Side of Test Vehicle before Test 618981-01-1	
Figure 6.5. Shortened Transition at Impact Location after Test 618981-01-1	
Figure 6.6. Field Side View of Shortened Transition of Concrete Parapet after Test	
618981-01-1	
Figure 6.7. Impact Side of Test Vehicle after Test 618981-01-1.	
Figure 6.8. Rear Impact Side of Test Vehicle after Test 618981-01-1	
Figure 6.9. Overall Interior of Test Vehicle after Test 618981-01-1	
Figure 6.10. Interior of Test Vehicle on Impact Side after Test 618981-01-1	
Figure 6.11. Summary of Results for MASH Test 3-21 on Shortened Transition	
Figure C.2. Exterior Crush Measurements for Test 618981-01-1	
Figure C.3. Occupant Compartment Measurements for Test 618981-01-1	
Figure C.4. Sequential Photographs for Test 618981-01-1 (Overhead Views)	
Figure C.5. Sequential Photographs for Test 618981-01-1 (Frontal Views)	
Figure C.6. Sequential Photographs for Test 618981-01-1 (Rear Views)	
Figure C.7. Vehicle Angular Displacements for Test 618981-01-1	80
Figure C.8. Vehicle Longitudinal Accelerometer Trace for Test 618981-01-1	
(Accelerometer Located at Center of Gravity)	81
Figure C.9. Vehicle Lateral Accelerometer Trace for Test 618981-01-1	<u> </u>
(Accelerometer Located at Center of Gravity).	81
Figure C.10. Vehicle Vertical Accelerometer Trace for Test 618981-01-1	
(Accelerometer Located at Center of Gravity)	82

LIST OF TABLES

	Page
Table 3.1. Concrete Strength	9
Table 3.2. Soil Strength for 618981-01-1	9
Table 4.1. Test Conditions and Evaluation Criteria Specified for MASH TL-3	
Longitudinal Barrier	11
Table 4.2. Evaluation Criteria Required for MASH Testing	12
Table 6.1. Impact Conditions for MASH TEST 3-21, Crash Test 618981-01-1	17
Table 6.2. Exit Parameters for MASH TEST 3-21, Crash Test 618981-01-1	17
Table 6.3. Weather Conditions 618981-01-1	19
Table 6.4. Vehicle Measurements for Test 618981-01-1	20
Table 6.5. Events during Test 618981-01-1	21
Table 6.6. Deflection and Working Width of the Shortened Transition for Test	
618981-01-1	21
Table 6.7. Occupant Compartment Deformation 618981-01-1	25
Table 6.8. Exterior Vehicle Damage 618981-01-1.	25
Table 6.9. Occupant Risk Factors for Test 618981-01-1	26
Table 7.1. Assessment Summary for MASH TL-3 Tests on Shortened Transition	29

SI* (MODERN METRIC) CONVERSION FACTORS					
APPROXIMATE CONVERSIONS TO SI UNITS					
Symbol	When You Know	Multiply By	To Find	Symbol	
		LENGTH			
in	inches	25.4	millimeters	mm	
ft	feet	0.305	meters	m	
yd	yards	0.914	meters	m	
mi	miles	1.61	kilometers	km	
. 0		AREA		0	
in ²	square inches	645.2	square millimeters	mm²	
ft ²	square feet	0.093	square meters	m²	
yd ²	square yards	0.836	square meters	m²	
ac mi ²	acres	0.405 2.59	hectares	ha km²	
1111-	square miles	VOLUME	square kilometers	KIII	
fl oz	fluid ounces	29.57	milliliters	mL	
gal	gallons	3.785	liters	I	
ft ³	cubic feet	0.028	cubic meters	m ³	
yd ³	cubic yards	0.765	cubic meters	m ³	
, a		mes greater than 1000L			
		MASS			
oz	ounces	28.35	grams	g	
lb	pounds	0.454	kilograms	kg	
Т	short tons (2000 lb)	0.907	megagrams (or metric ton")	Mg (or "t")	
	TE	MPERATURE (exac		, , , , , , , , , , , , , , , , , , ,	
°F	Fahrenheit	5(F-32)/9	Celsius	°C	
		or (F-32)/1.8			
		RCE and PRESSURE	or STRESS		
lbf	poundforce	4.45	newtons	N	
lbf/in ²	poundforce per square incl		kilopascals	kPa	
	APPROXII	MATE CONVERSION	IS FROM SI UNITS		
lbf/in ² Symbol		MATE CONVERSION Multiply By		kPa Symbol	
	APPROXII When You Know	MATE CONVERSION Multiply By LENGTH	IS FROM SI UNITS To Find		
	APPROXII	MATE CONVERSION Multiply By LENGTH 0.039	IS FROM SI UNITS To Find inches	Symbol in	
Symbol mm m	APPROXII When You Know millimeters meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28	IS FROM SI UNITS To Find inches feet	Symbol in ft	
Symbol mm m m	Mhen You Know millimeters meters meters meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09	IS FROM SI UNITS To Find inches feet yards	Symbol in ft yd	
Symbol mm m	APPROXII When You Know millimeters meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621	IS FROM SI UNITS To Find inches feet	Symbol in ft	
Symbol mm m m km	Mhen You Know millimeters meters meters meters kilometers	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA	IS FROM SI UNITS To Find inches feet yards miles	Symbol in ft yd mi	
Symbol mm m m km mm²	Mhen You Know millimeters meters meters kilometers square millimeters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016	IS FROM SI UNITS To Find inches feet yards miles square inches	Symbol in ft yd mi in²	
Symbol mm m m km mm² m²	Mhen You Know millimeters meters meters kilometers square millimeters square meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764	IS FROM SI UNITS To Find inches feet yards miles square inches square feet	Symbol in ft yd mi in² ft²	
Symbol mm m m km mm² m² m² m²	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195	inches feet yards miles square inches square feet square yards	Symbol in ft yd mi in² ft² yd²	
Symbol mm m km mm² m² m² ha	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47	inches feet yards miles square inches square feet square yards acres	Symbol in ft yd mi in² ft² yd² ac	
Symbol mm m m km mm² m² m² m²	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386	inches feet yards miles square inches square feet square yards	Symbol in ft yd mi in² ft² yd²	
Symbol mm m m km mm² m² m² ha km²	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters square meters hectares Square kilometers	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME	inches feet yards miles square inches square feet square yards acres square miles	in ft yd mi in² ft² yd² ac mi²	
Symbol mm m m km mm² m² m² ha km² mL	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters square meters hectares Square kilometers milliliters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034	inches feet yards miles square inches square feet square yards acres square miles fluid ounces	in ft yd mi in² ft² yd² ac mi² oz	
Symbol mm m m km mm² m² m² ha km²	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters square meters hectares Square kilometers	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264	inches feet yards miles square inches square feet square yards acres square miles	in ft yd mi in² ft² yd² ac mi²	
Symbol mm m m km mm² m² m² ha km² mL L	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons	in ft yd mi in² ft² yd² ac mi² oz gal	
Symbol mm m m km mm² m² m² ha km² mL L m³	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet	in ft yd mi in² ft² yd² ac mi² oz gal ft³	
Symbol mm m m km mm² m² m² ha km² mL L m³ m³	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet	in ft yd mi in² ft² yd² ac mi² oz gal ft³	
Symbol mm m m km mm² m² m² ha km² mL L m³ m³ d	Mhen You Know millimeters meters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³	
Symbol mm m m km mm² m² m² ha km² mL L m³ m³	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton	Mate Conversion Multiply By	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb)	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz	
Symbol mm m m km mm² m² m² ha km² mL L m³ m³ d y Mg (or "t")	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 ") 1.103 EMPERATURE (exace	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb)	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb T	
Symbol mm m m km mm² m² m² ha km² mL L m³ m³ d	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton TE	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 ") 1.103 EMPERATURE (exactions)	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) et degrees) Fahrenheit	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb	
Symbol mm m m km mm² m² m² ha km² mL L m³ m³ d y Mg (or "t")	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton TE	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 ") 1.103 EMPERATURE (exace	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) et degrees) Fahrenheit	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb T	
Symbol mm m m km mm² m² m² ha km² mL L m³ m³ d y Mg (or "t")	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton TE	MATE CONVERSION Multiply By LENGTH 0.039 3.28 1.09 0.621 AREA 0.0016 10.764 1.195 2.47 0.386 VOLUME 0.034 0.264 35.314 1.307 MASS 0.035 2.202 ") 1.103 EMPERATURE (exactions)	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) et degrees) Fahrenheit	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb T	
Symbol mm m m km mm² m² m² ha km² mL L m³ m³ g kg Mg (or "t")	Mhen You Know millimeters meters meters kilometers square millimeters square meters square meters hectares Square kilometers milliliters liters cubic meters cubic meters grams kilograms megagrams (or "metric ton TE Celsius	Multiply By	inches feet yards miles square inches square feet square yards acres square miles fluid ounces gallons cubic feet cubic yards ounces pounds short tons (2000lb) Et degrees) Fahrenheit	in ft yd mi in² ft² yd² ac mi² oz gal ft³ yd³ oz lb T	

^{*}SI is the symbol for the International System of Units

Chapter 1. INTRODUCTION

The purpose of the test reported herein was to assess the performance of the Sponsor's Shortened Transition according to the safety-performance evaluation guidelines included in the American Association of State Highway and Transportation Officials (AASHTO) *Manual for Assessing Safety Hardware* (*MASH*), Second Edition (1). The crash test was performed in accordance with *MASH* Test Level 3 (TL-3), (as discussed in Chapter 3).

Chapter 2. BACKGROUND

When roadways intersect with restrictive features such as a bridge rail, it becomes difficult to fit a transition system with proper length. For this project, American Association of State Highway and Transportation (AASHTO) Manual for Assessing Safety Hardware (MASH) Test Level 3 (TL-3) W beam transitions with shorter length are desired to be tested (1). These systems are used when State Departments of Transportation (DOTs) need to implement a shorter transition without compromising the integrity of the guardrail system.

The objective of this study was to model and crash test shorter W-beam transition systems for MASH TL-3 compliance. A MASH compliant transition with shorter length would provide the members of the Roadside Safety Pooled Fund with a valuable option in restrictive conditions against roadside hazards.

Figure 2.1 shows a similar transition design that was used for the installation constructed during this project. The objective was to reduce the 25-ft transition length. For this purpose, the TTI research team first performed an engineering review of available transition systems and their design variables to shortlist a set of candidates for modeling and evaluation. The researchers conducted a series of simulations of the candidate set. The final design was then crash tested for MASH TL-3 compliance.

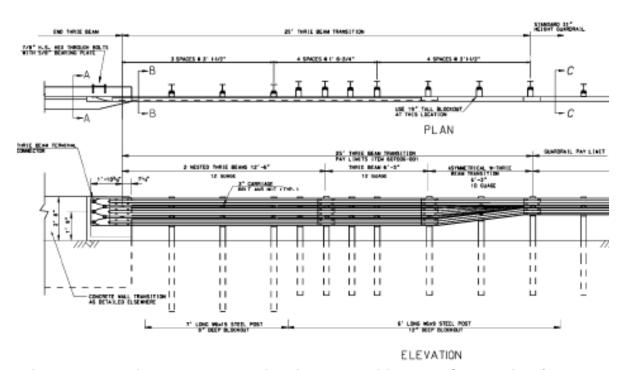


Figure 2.1– Thrie Beam Guardrail Bridge Transition and Connection (WVDOT Standard Drawing, 2016)

Chapter 3. SYSTEM DETAILS

3.1. TEST ARTICLE AND INSTALLATION DETAILS

The installation was 99 feet and 8 inches long from post 1 to the end of the concrete parapet. The top of the rail was 31 inches above grade. The rails were supported by W6x8.5 wide-flange posts and timber blockouts. The rail was anchored with a Steel Post Terminal. Posts 3 through 10 spanned 50 feet, and consisted of galvanized steel W-beam railing, with the posts spaced at 75 inches. The W-beam extended to post 14, with posts 11-14 spaced at 37-1/2 inches. An Asymmetric Thriebeam to W-beam rail extended from post 14 to post 18, and two nested Thrie-beams, spanning 75 inches, extended from post 18 to the terminal connector. Posts 14-21 were spaced at 18-3/4 inches.

The terminal connector was secured to a vertical reinforced concrete parapet that was 32 inches tall, 16 feet long, and 12 inches tall at top. A rub rail attached to the field side of post 13, and extended along the traffic side of posts 14 - 21, attaching at

Test Installation 99'-8" Steel Post Terminal 50'-0" 24'-4-3/4' Transition Length of Need Moment Slab 20 18 16 14 12 11 10 Post Numbers Plan View Existing Concrete Apron 8 spaces at 75 50'-0" W-beam Guardrail **Elevation View** 12 gauge 12.5' span 4-space Timber Blockout, for W-section Post Typ at Posts 3 - 16 10" Guardrail Bolt Typ at Posts 3 - 21 Detail B 1-1/4" Guardrail Bolt Scale 1:20 x 8 at W-beam joints 31 See 1c 72" Wide-Flange Guardrail Post Typ at Posts 3 - 12 1a. Backfill Post holes with Type D grade 1 crushed concrete road bas compacted according to TTI Proving Ground Work Instruction WI-C001. 1b. Recessed Guardrail Nuts on all 5/8" Bolts. All Steel components, Ground Line including hardware, are galvanized, and all Bolts are ASTM A307 unless otherwise indicated. 1c. Use 2" Guardrail Bolts at rail joints with 3 thicknesses, and 1-1/4" Guardrail Bolts at rail joints with 2 thicknesses. 40" Section A-A Roadside Safety and Texas A&M Physical Security Division Proving Ground Transportation Scale 1:20 Institute

alternate posts, and was attached to a bracket at the parapet.

Figure 3.1 presents the overall information on the Shortened Transition, and Figure 3.2 thru Figure 3.7 provide photographs of the installation. Appendix A provides further details on the Shortened Transition. Drawings were provided by the Texas A&M Transportation Institute (TTI) Proving Ground, and construction was performed by TTI Proving Ground personnel.

3.2. DESIGN MODIFICATIONS DURING TESTS

S:\Accreditation-17025-2017\EIR-000 Project Files\618981-Transition Test - Williams\Drafting, 618981 \618981 Drawing

No modifications were made to the installation during the testing phase.

Project #618981-01 TL-3 Transition

Drawn by GES Scale 1:140

2023-

Sheet 1 of 9 Test Installation

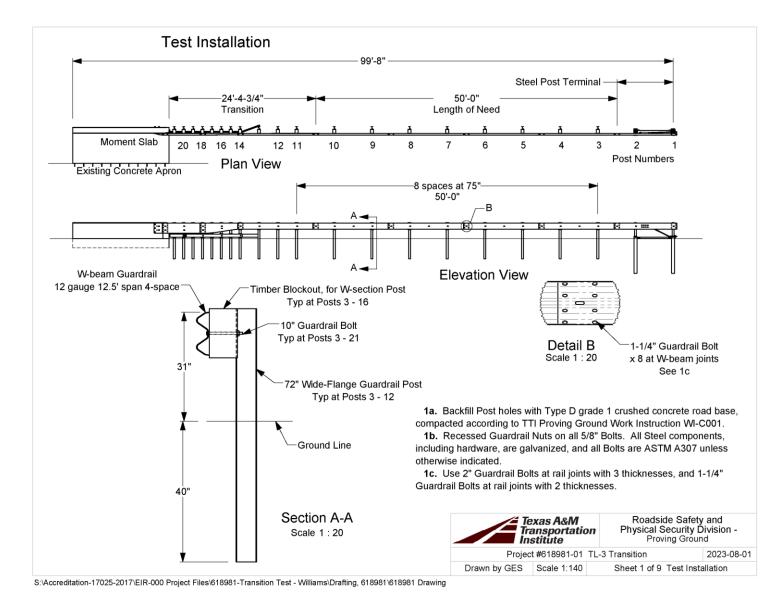


Figure 3.1. Details of Shortened Transition.

Figure 3.2. Shortened Transition prior to Testing.

Figure 3.3. In-Line View of Shortened Transition prior to Testing.

Figure 3.4. View of Shortened Transition from Downstream prior to Testing.

Figure 3.5. View of Shortened Transition from Downstream prior to Testing.

Figure 3.6. Traffic Side View of Shortened Transition at Thrie-beam Asymmetric Transition prior to Testing.

Figure 3.7. Field Side View of Shortened Transition prior to Testing.

3.3. MATERIAL SPECIFICATIONS

Appendix B provides material certification documents for the materials used to install/construct the Shortened Transition. Table 3.1 shows the average compressive strengths of the concrete on the day of the test 2023-09-21.

Table 3.1. Concrete Strength.

Location	Design Strength (psi)	Avg. Strength (psi)	Age (days)	Detailed Location
Barrier	3600	3937	44	100% of barrier

3.4. SOIL CONDITIONS

The test installation was installed in standard soil meeting Type 1 Grade D of AASHTO standard specification M147-17 "Materials for Aggregate and Soil Aggregate Subbase, Base, and Surface Courses."

In accordance with Appendix B of *MASH*, soil strength was measured the day of the crash test. During installation of the Shortened Transition for full-scale crash testing, two 6-ft long W6x16 posts were installed in the immediate vicinity of the Shortened Transition using the same fill materials and installation procedures used in the test installation and the standard dynamic test.

On the day of Test 3-21, 2023-09-21, loads on the post at deflections were as follows: the backfill material in which the Shortened Transition was installed met/did not meet minimum *MASH* requirements for soil strength.

Table 3.2. Soil Strength for 618981-01-1.

Displacement (in)	Minimum Load (lb)	Actual Load (lb)	
5	4420	8300	
10	4981	9909	
15	5282	10,879	

Chapter 4. TEST REQUIREMENTS AND EVALUATION CRITERIA

4.1. CRASH TEST PERFORMED/MATRIX

Table 4.1 shows the test conditions and evaluation criteria for *MASH* TL-3 for Longitudinal Barrier. The target critical impact point (CIPs) for the test was determined using the information provided in *MASH* Section 2.2.1 and Section 2.3.2 Figure 4.1 shows the target CIP for the *MASH* TL-3 test on the Shortened Transition.

Table 4.1. Test Conditions and Evaluation Criteria Specified for *MASH* TL-3 Longitudinal Barrier.

Test Designation	Test Vehicle	Impact Speed	Impact Angle	Evaluation Criteria
3-21	2270P	62 mi/h	25°	A, D, F, H, I

Figure 4.1. Target CIP for *MASH* TL-3 Tests on Shortened Transition.

The crash tests and data analysis procedures were in accordance with guidelines presented in *MASH*. Chapter 4 presents brief descriptions of these procedures.

4.2. EVALUATION CRITERIA

The appropriate safety evaluation criteria from Tables 2-2 and 5-1 of *MASH* were used to evaluate the crash test reported herein. Table 4.1 lists the test conditions and evaluation criteria required for *MASH* TL-3, and Table 4.2 provides detailed information on the evaluation criteria.

Table 4.2. Evaluation Criteria Required for *MASH* Testing.

Evaluation Factors	Evaluation Criteria
Α.	Test article should contain and redirect the vehicle or bring the vehicle to a controlled stop; the vehicle should not penetrate, underride, or override the installation although controlled lateral deflection of the test article is acceptable.
D.	Detached elements, fragments, or other debris from the test article should not penetrate or show potential for penetrating the occupant compartment, or present undue hazard to other traffic, pedestrians, or personnel in a work zone. Deformations of, or intrusions into, the occupant compartment should not exceed limits set forth in Section 5.2.2 and Appendix E of <i>MASH</i> .
F.	The vehicle should remain upright during and after collision. The maximum roll and pitch angles are not to exceed 75 degrees.
H.	Occupant impact velocities (OIV) should satisfy the following limits: Preferred value of 30 ft/s, or maximum allowable value of 40 ft/s.
I.	The occupant ridedown accelerations should satisfy the following: Preferred value of 15.0 g, or maximum allowable value of 20.49 g.

Chapter 5. TEST CONDITIONS

5.1. TEST FACILITY

The full-scale crash test reported herein was performed at the TTI Proving Ground, an International Standards Organization (ISO)/International Electrotechnical Commission (IEC) 17025-accredited laboratory with American Association for Laboratory Accreditation (A2LA) Mechanical Testing Certificate 2821.01. The full-scale crash test was performed according to TTI Proving Ground quality procedures, as well as *MASH* guidelines and standards.

The test facilities of the TTI Proving Ground are located on The Texas A&M University System RELLIS Campus, which consists of a 2000-acre complex of research and training facilities situated 10 mi northwest of the flagship campus of Texas A&M University. The site, formerly a United States Army Air Corps base, has large expanses of concrete runways and parking aprons well suited for experimental research and testing in the areas of vehicle performance and handling, vehicle-roadway interaction, highway pavement durability and efficacy, and roadside safety hardware and perimeter protective device evaluation. The sites selected for construction and testing are along the edge of an out-of-service apron/runway. The apron/runway consists of an unreinforced jointed-concrete pavement in 12.5-ft x 15-ft blocks nominally 6 inches deep. The aprons were built in 1942, and the joints have some displacement but are otherwise flat and level.

5.2. VEHICLE TOW AND GUIDANCE SYSTEM

For the testing utilizing the 2270P vehicles, each was towed into the test installation using a steel cable guidance and reverse tow system. A steel cable for guiding the test vehicle was tensioned along the path, anchored at each end, and threaded through an attachment to the front wheel of the test vehicle. An additional steel cable was connected to the test vehicle, passed around a pulley near the impact point and through a pulley on the tow vehicle, and then anchored to the ground such that the tow vehicle moved away from the test site. A 2:1 speed ratio between the test and tow vehicle existed with this system. Just prior to impact with the installation, the test vehicle was released and ran unrestrained. The vehicle remained freewheeling (i.e., no steering or braking inputs) until it cleared the immediate area of the test site.

5.3. DATA ACQUISITION SYSTEMS

5.3.1. Vehicle Instrumentation and Data Processing

The test vehicle was instrumented with a self-contained onboard data acquisition system. The signal conditioning and acquisition system is a multi-channel data acquisition system (DAS) produced by Diversified Technical Systems Inc. The accelerometers, which measure the x, y, and z axis of vehicle acceleration, are strain gauge type with linear millivolt output proportional to acceleration. Angular rate sensors,

measuring vehicle roll, pitch, and yaw rates, are ultra-small, solid-state units designed for crash test service. The data acquisition hardware and software conform to the latest SAE J211, Instrumentation for Impact Test. Each of the channels is capable of providing precision amplification, scaling, and filtering based on transducer specifications and calibrations. During the test, data are recorded from each channel at a rate of 10,000 samples per second with a resolution of one part in 65,536. Once data are recorded, internal batteries back these up inside the unit in case the primary battery cable is severed. Initial contact of the pressure switch on the vehicle bumper provides a time zero mark and initiates the recording process. After each test, the data are downloaded from the DAS unit into a laptop computer at the test site. The Test Risk Assessment Program (TRAP) software then processes the raw data to produce detailed reports of the test results.

Each DAS is returned to the factory annually for complete recalibration and to ensure that all instrumentation used in the vehicle conforms to the specifications outlined by SAE J211. All accelerometers are calibrated annually by means of an ENDEVCO® 2901 precision primary vibration standard. This standard and its support instruments are checked annually and receive a National Institute of Standards Technology (NIST) traceable calibration. The rate transducers used in the data acquisition system receive calibration via a Genisco Rate-of-Turn table. The subsystems of each data channel are also evaluated annually, using instruments with current NIST traceability, and the results are factored into the accuracy of the total data channel per SAE J211. Calibrations and evaluations are also made anytime data are suspect. Acceleration data are measured with an expanded uncertainty of ±1.7 percent at a confidence factor of 95 percent (k = 2).

TRAP uses the DAS-captured data to compute the occupant/compartment impact velocities, time of occupant/compartment impact after vehicle impact, and highest 10-millisecond (ms) average ridedown acceleration. TRAP calculates change in vehicle velocity at the end of a given impulse period. In addition, maximum average accelerations over 50-ms intervals in each of the three directions are computed. For reporting purposes, the data from the vehicle-mounted accelerometers are filtered with an SAE Class 180-Hz low-pass digital filter, and acceleration versus time curves for the longitudinal, lateral, and vertical directions are plotted using TRAP.

TRAP uses the data from the yaw, pitch, and roll rate transducers to compute angular displacement in degrees at 0.0001-s intervals, and then plots yaw, pitch, and roll versus time. These displacements are in reference to the vehicle-fixed coordinate system with the initial position and orientation being initial impact. Rate of rotation data is measured with an expanded uncertainty of ± 0.7 percent at a confidence factor of 95 percent (k = 2).

5.3.2. Anthropomorphic Dummy Instrumentation

According to *MASH*, use of a dummy in the 2270P vehicle is optional, and no dummy was used in the test.

5.3.3. Photographic Instrumentation Data Processing

Photographic coverage of the test included three digital high-speed cameras:

- One placed overhead with a field of view perpendicular to the ground and directly over the impact point. One placed with a field of view parallel to and aligned with the installation at the downstream end.
- One placed at an oblique angle upstream from the installation on the field side.

A flashbulb on the impacting vehicle was activated by a pressure-sensitive tape switch to indicate the instant of contact with the Shortened Transition. The flashbulb was visible from each camera. The video files from these digital high-speed cameras were analyzed to observe phenomena occurring during the collision and to obtain time-event, displacement, and angular data. A digital camera recorded and documented conditions of each test vehicle and the installation before and after the test.

Chapter 6. MASH TEST 3-21 (CRASH TEST 618981-01-1)

6.1. TEST DESIGNATION AND ACTUAL IMPACT CONDITIONS

See Table 6.1 for details of *MASH* impact conditions for this test and Table 6.2 for the exit parameters. Figure 6.1 and Figure 6.2 depict the target impact setup.

Table 6.1. Impact Conditions for MASH TEST 3-21, Crash Test 618981-01-1.

Test Parameter	Specification	Tolerance	Measured
Impact Speed (mi/h)	62	±2.5 mi/h	63.2
Impact Angle (deg)	25	±1.5°	25.1
Impact Severity (kip-ft)	106	≥106 kip-ft	120.9
Impact Location	Centerline of post 17 on the traffic side face of rail	±12 inches	1.5 inches upstream of centerline of post 17 on the traffic side face of rail

Table 6.2. Exit Parameters for MASH TEST 3-21, Crash Test 618981-01-1.

Exit Parameter	Measured
Speed (mi/h)	48.2
Trajectory (deg)	6.3
Heading (deg)	10.7
Brakes applied post impact (s)	1.1
Vehicle at rest position	246 ft downstream of impact point 12 ft to the traffic side Vehicle positioned 15° right relative to the installation
Comments:	The vehicle had a maximum roll of 59.5° but was able to right itself and come to a controlled stop in the upright position. Vehicle crossed the exit box ^a 55 ft downstream from loss of contact.

^a Not less than 32.8 ft downstream from loss of contact for cars and pickups is optimal.

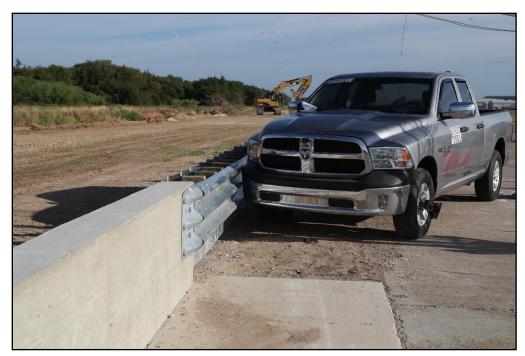


Figure 6.1. Shortened Transition Test Vehicle Geometrics for Test 618981-01-1.

Figure 6.2. Shortened Transition/Test Vehicle Impact Location 618981-01-1.

6.2. WEATHER CONDITIONS

Table 6.3 provides the weather conditions for 618981-01-1.

Table 6.3. Weather Conditions 618981-01-1.

Date of Test	2023-09-21
Wind Speed (mi/h)	4
Wind Direction (deg)	182
Temperature (°F)	87
Relative Humidity (%)	77
Vehicle Traveling (deg)	195

6.3. TEST VEHICLE

Figure 6.3 and Figure 6.4 show the 2019 RAM 1500 used for the crash test. Table 6.4 shows the vehicle measurements. Figure C.1 in Appendix C.1 gives additional dimensions and information on the vehicle.

Figure 6.3. Impact Side of Test Vehicle before Test 618981-01-1.

Figure 6.4. Opposite Impact Side of Test Vehicle before Test 618981-01-1.

Table 6.4. Vehicle Measurements for Test 618981-01-1.

Test Parameter	Specification	Tolerance	Measured
Dummy (if applicable) ^a (lb)	165	N/A	N/A
Inertial Weight (lb)	5000	±110	5031
Gross Static ^a (lb)	5000	±110	5031
Wheelbase (inches)	148	±12	140.5
Front Overhang (inches)	39	±3	40
Overall Length (inches)	237	±13	227.5
Overall Width (inches)	78	±2	78.5
Hood Height (inches)	43	±4	46
Track Width ^b (inches)	67	±1.5	68.3
CG aft of Front Axle ^c (inches)	63	±4	61.5
CG above Ground ^{c,d} (inches)	28	28	28.6

Note: N/A = not applicable; CG = center of gravity.

a If a dummy is used, the gross static vehicle mass should be increased by the mass of the dummy.

b Average of front and rear axles.c For test inertial mass.

^d 2270P vehicle must meet minimum CG height requirement.

6.4. TEST DESCRIPTION

Table 6.5 lists events that occurred during Test 618981-01-1. Figures C.4, C.5, and C.6 in Appendix C.2 present sequential photographs during the test.

Table 6.5. Events during Test 618981-01-1.

Time (s)	Events
0.0000	Vehicle impacted the installation
0.0130	Posts 16, 17, and 18 began to lean toward field side
0.0170	Posts 19 and 20 began to lean toward field side
0.0290	Post 20 began to lean downstream and toward field side
0.0350	Vehicle began to redirect
0.0980	Crack began to form on backside of concrete barrier
0.1920	Vehicle was parallel with installation
0.2000	Passenger side rear bumper impacted the rail
0.3350	Vehicle exited the installation at 48.2mi/h with a heading of 10.7 degrees and a trajectory of 6.3 degrees

6.5. DAMAGE TO TEST INSTALLATION

Table 6.6 describes the deflection and working width of the Shortened Transition. Figure 6.5 and Figure 6.6 show the damage to the Shortened Transition.

Table 6.6. Deflection and Working Width of the Shortened Transition for Test 618981-01-1.

Test Parameter	Measured
Permanent Deflection/Location	11.9 inches toward field side, at the rail at post 20
Dynamic Deflection	12.2 inches toward field side, at the rail at post 20
Working Width a and Height	31.3 inches, at a height of 31 inches, at the top of post 21

^a Per *MASH*, "The working width is the maximum dynamic lateral position of any major part of the system or vehicle. These measurements are all relative to the pre-impact traffic face of the test article." In other words, working width is the total barrier width plus the maximum dynamic intrusion of any portion of the barrier or test vehicle past the field side edge of the barrier.

Figure 6.5. Shortened Transition at Impact Location after Test 618981-01-1.

Figure 6.6.Field Side View of Shortened Transition of Concrete Parapet after Test 618981-01-1.

6.6. DAMAGE TO TEST VEHICLE

Figure 6.7 and Figure 6.8 show the damage sustained by the vehicle. Figure 6.9 and Figure 6.10 show the interior of the test vehicle. Table 6.7 and Table 6.8 provide details on the occupant compartment deformation and exterior vehicle damage. Figures C.2 and C.3 in Appendix C.1 provide exterior crush and occupant compartment measurements.

Figure 6.7. Impact Side of Test Vehicle after Test 618981-01-1.

Figure 6.8. Rear Impact Side of Test Vehicle after Test 618981-01-1.

Figure 6.9. Overall Interior of Test Vehicle after Test 618981-01-1.

Figure 6.10. Interior of Test Vehicle on Impact Side after Test 618981-01-1.

Table 6.7. Occupant Compartment Deformation 618981-01-1.

Test Parameter	Specification (inches)	Measured (inches)
Roof	≤4.0	0.0
Windshield	≤3.0	0.0
A and B Pillars	≤5.0 overall/≤3.0 lateral	0.0
Foot Well/Toe Pan	≤9.0	1
Floor Pan/Transmission Tunnel	≤12.0	1
Side Front Panel	≤12.0	0.8
Front Door (above Seat)	≤9.0	0.0
Front Door (below Seat)	≤12.0	0.0

Table 6.8. Exterior Vehicle Damage 618981-01-1.

Side Windows	Side windows remained intact
Maximum Exterior Deformation	24 inches of the front bumper
VDS	01FRQ5
CDC	01FREW8
Fuel Tank Damage	None
Description of Damage to Vehicle:	The bumper, grill, radiator, and support were severely deformed. The right headlight was broken and the right front fender was dented. There were dents and scratches all down the lower portion of the right hand side. The right rear wheel busted and the right rear tire was blown out. There was a 4-inch gap at the top of the right front door and a .5-inch gap at the top of the right rear door. The right rear bumper was dented.

6.7. OCCUPANT RISK FACTORS

Data from the accelerometers were digitized for evaluation of occupant risk, and the results are shown in Table 6.9. Figure C.7 in Appendix C.3 shows the vehicle angular displacements, and Figures C.8 through C.10 in Appendix C.4 show acceleration versus time traces.

Table 6.9. Occupant Risk Factors for Test 618981-01-1.

Test Parameter	Specification ^a	Measured	Time
OIV, Longitudinal (ft/s)	≤40.0 30.0	22.8	0.1114 seconds on right side of interior
OIV, Lateral (ft/s)	≤40.0 30.0	26.4	0.1114 seconds on right side of interior
Ridedown, Longitudinal (g)	≤20.49 15.0	11.7	0.1418 - 0.1518 seconds
Ridedown, Lateral (g)	≤20.49 15.0	12.5	0.2552 - 0.2652 seconds
Theoretical Head Impact Velocity (THIV) (m/s)	N/A	10.1	0.1084 seconds on right side of interior
Acceleration Severity Index (ASI)	N/A	1.6	0.1038 - 0.1538 seconds
50-ms Moving Avg. Accelerations (MA) Longitudinal (g)	N/A	-9.6	0.0826 - 0.1326 seconds
50-ms MA Lateral (g)	N/A	-12.1	0.0843 - 0.1343 seconds
50-ms MA Vertical (g)	N/A	-3.9	0.0494 - 0.0994 seconds
Roll (deg)	≤75	59.5	1.0002 seconds
Pitch (deg)	≤75	14.4	0.5982 seconds
Yaw (deg)	N/A	39.0	0.7118 seconds

^{a.} Values in italics are the preferred MASH values

6.8. TEST SUMMARY

Figure 6.11 summarizes the results of MASH Test 618981-01-1.

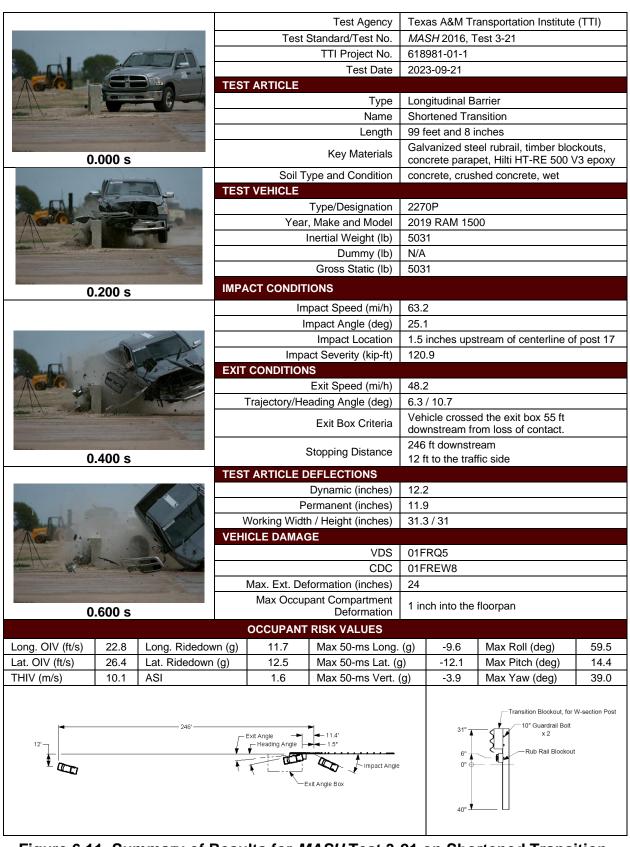


Figure 6.11. Summary of Results for MASH Test 3-21 on Shortened Transition.

Chapter 7. SUMMARY AND CONCLUSIONS

7.1. ASSESSMENT OF TEST RESULTS AND CONCLUSIONS

The crash test reported herein was performed in accordance with MASHTL-3, on the Shortened Transition.

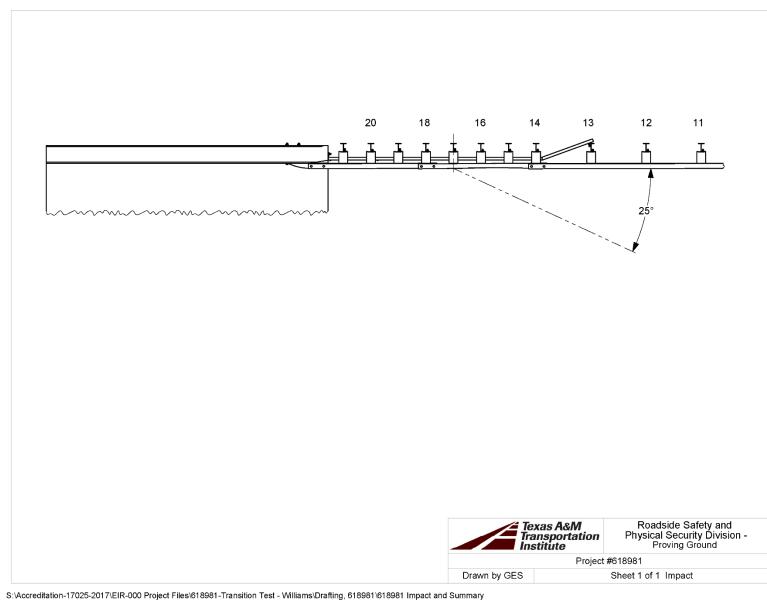
Table 7.1 shows that the Shortened Transition met the performance criteria for MASH TL-3 Longitudinal Barrier.

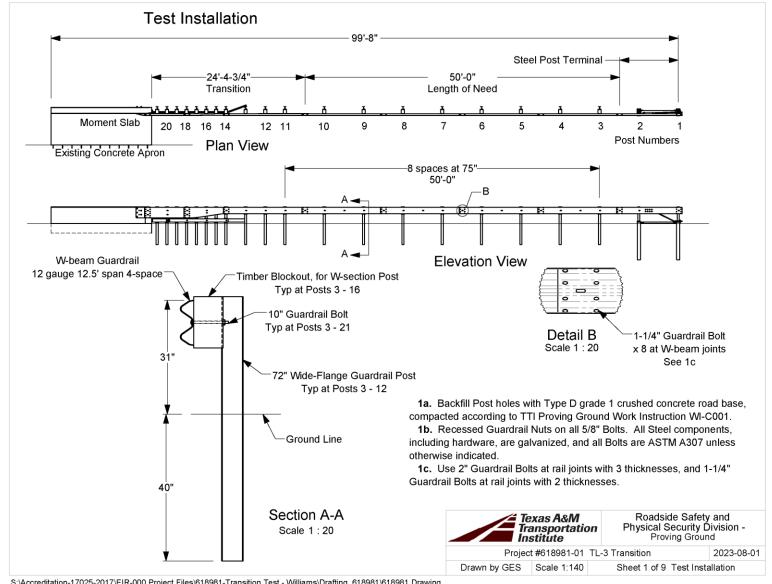
Table 7.1. Assessment Summary for MASHTL-3 Tests on Shortened Transition.

Evaluation Criteria	Description	Test 618981-01-1
А	Contain, Redirect, or Controlled Stop	S
D	No Penetration into Occupant Compartment	S
F	Roll and Pitch Limit	S
Н	OIV Threshold	S
I	Ridedown Threshold	S
Overall	Evaluation	Pass

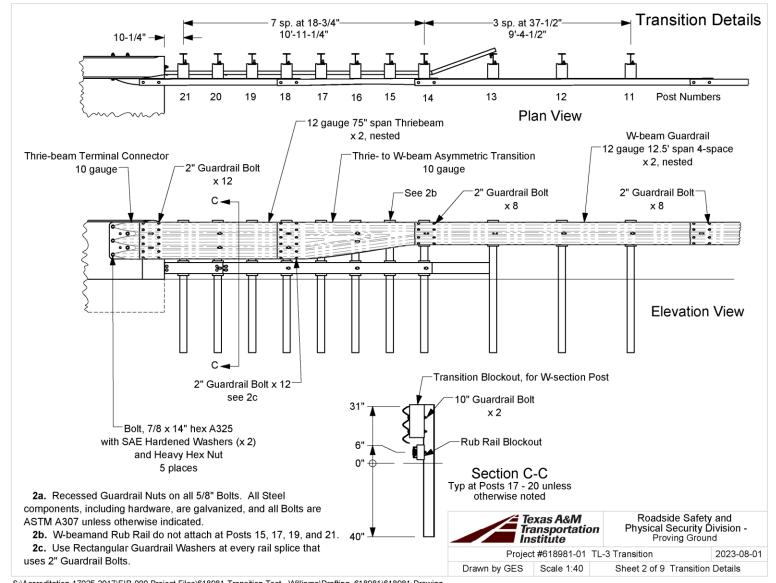
Note: S = Satisfactory; N/A = Not Applicable.

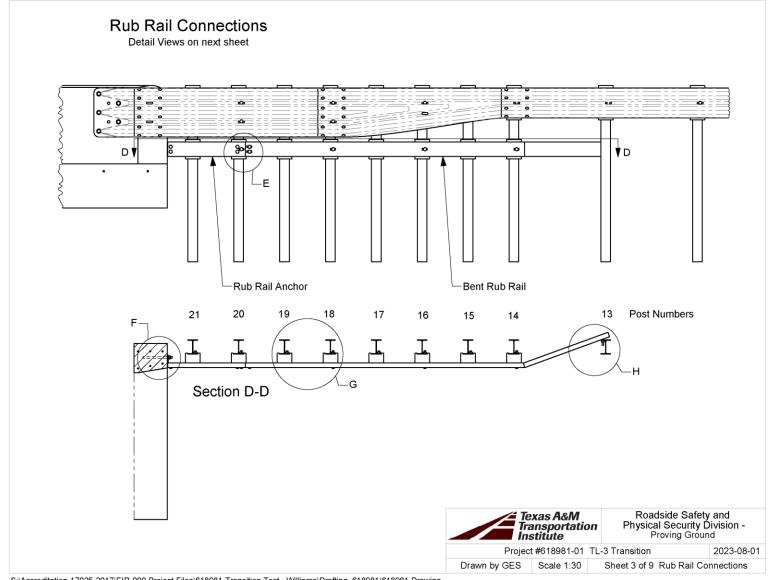
See Table 4.2 for details

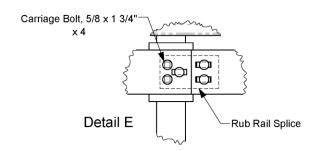

Chapter 8. IMPLEMENTATION

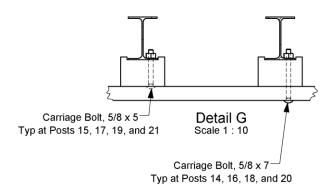

Based on the results of this successful MASH Test 3-21, this transition design as tested herein, is recommended for use on all projects requiring a shorter transition. Based on previous testing (TXDOT Project 469549 (2)), it was concluded that MASH Test 3-20 (small car) was not needed or required in the immediate transition area. Therefore, based on this testing, this design, as tested herein, meets the performance requirements of MASH Test Level 3.

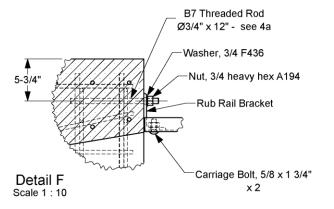
Chapter 9. REFERENCES

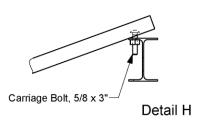

- 1. AASHTO. *Manual for Assessing Safety Hardware*, Second Edition. American Association of State Highway and Transportation Officials, Washington, DC, 2016.
- 2. Williams, William F., Akram Y. Abu-Odeh, Maysam Kiani, Melissa Martinez, Sana Moran, Wanda L. Menges, Glenn E. Schroeder, and Bill L. Griffith. *MASH TL-3 Evaluation of Guardrail to Rigid Barrier Transition Attached to Bridge or Culvert Structure.* Test Report No. 0-6954-R1. Texas A&M Transportation Institute, College Station, TX, 2019


APPENDIX A.	DETAILS OF SHORTENED TRANSITION




S:\Accreditation-17025-2017\EIR-000 Project Files\618981-Transition Test - Williams\Drafting, 618981\618981 Drawing

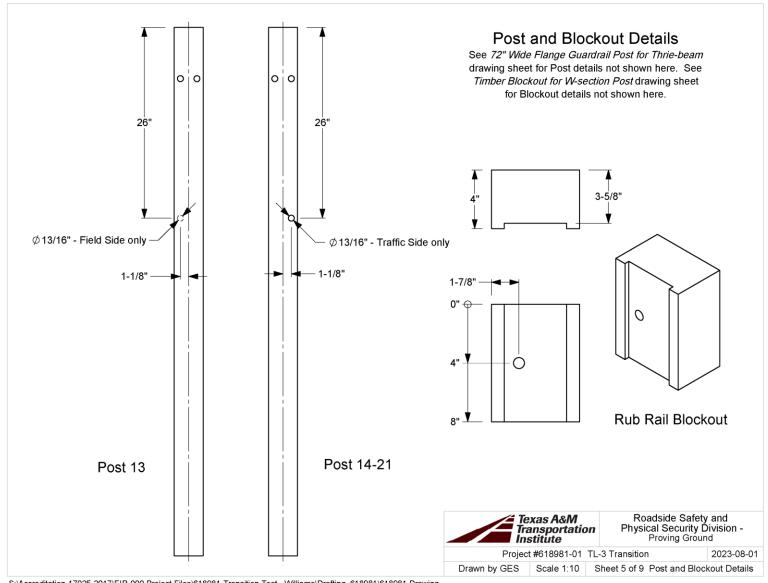


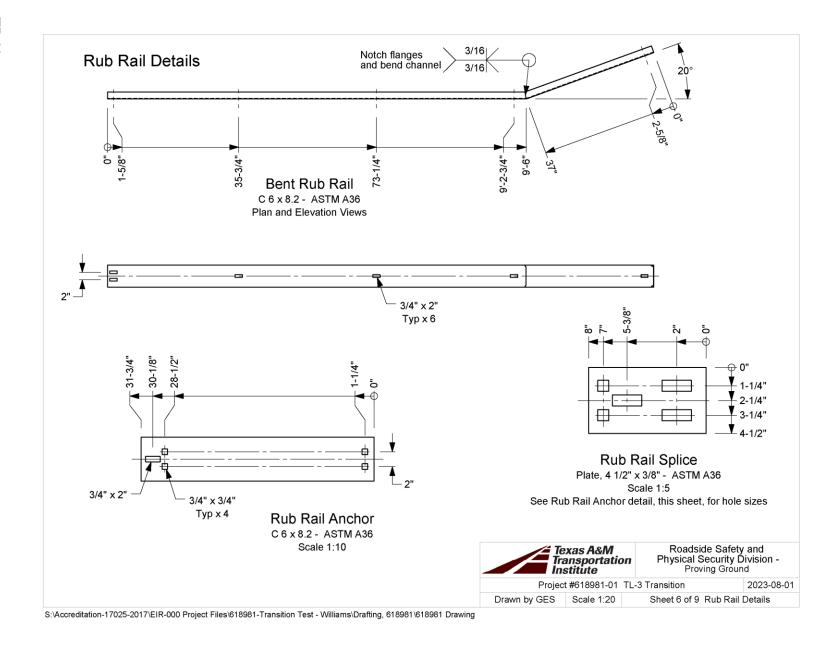


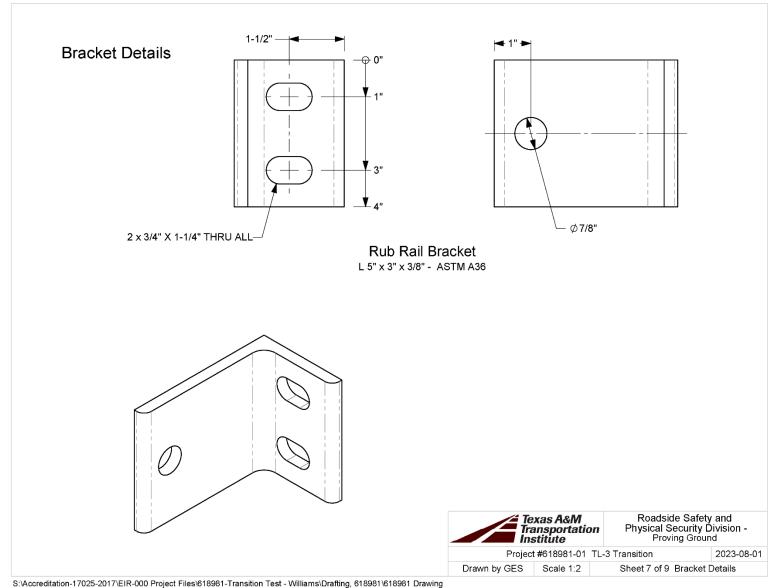
Detail Views

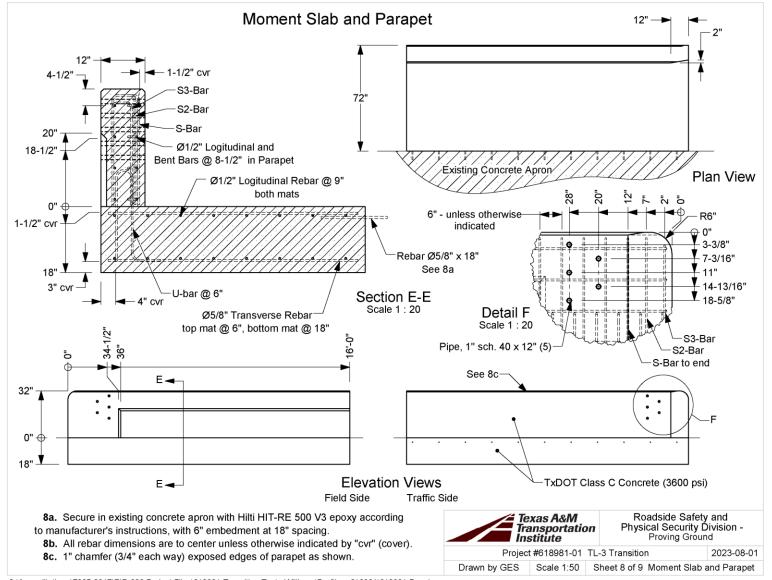
- **4a.** Secure with Hilti HIT-RE 500 V3 epoxy according to manufacturer's instructions, with 10" embedment.
- **4b.** Recessed Guardrail Nuts on all 5/8" Bolts. All Steel components, including hardware, are galvanized, and all Bolts are ASTM A307 unless otherwise indicated.

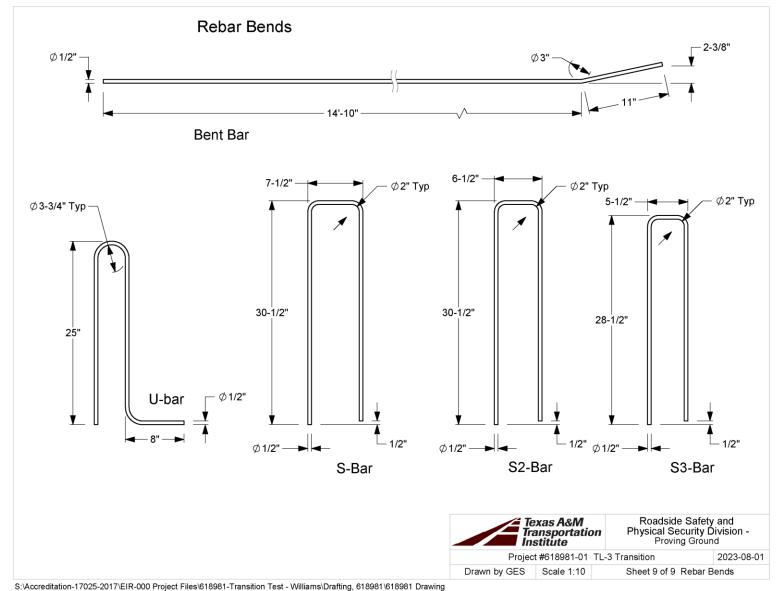
Roadside Safety and Physical Security Division -Proving Ground

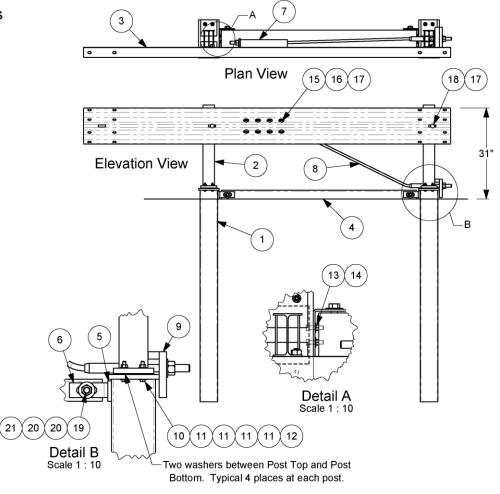

Project #618981-01 TL-3 Transition


2023-08-01


Drawn by GES


Scale 1:10

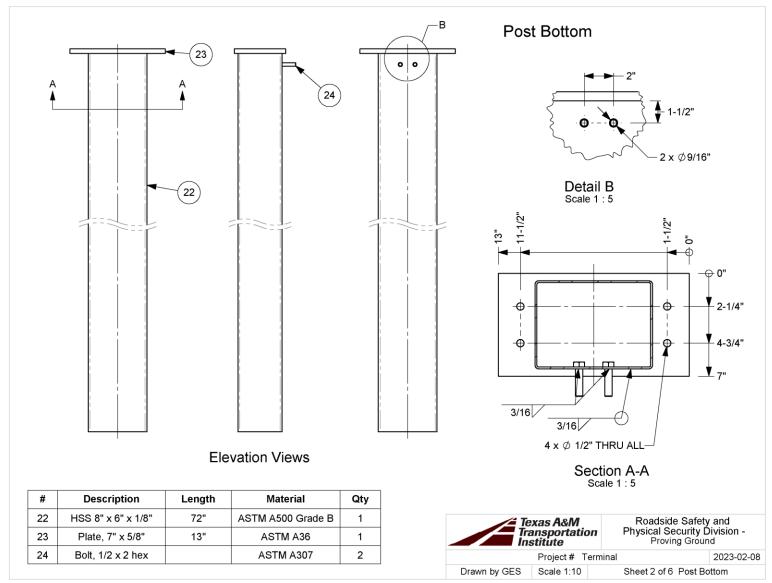

Sheet 4 of 9 Detail Views

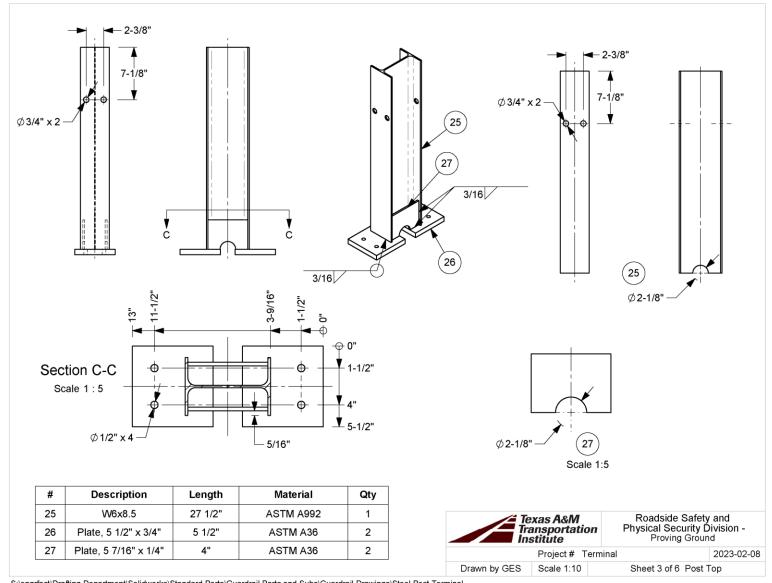


Steel Post Terminal Details

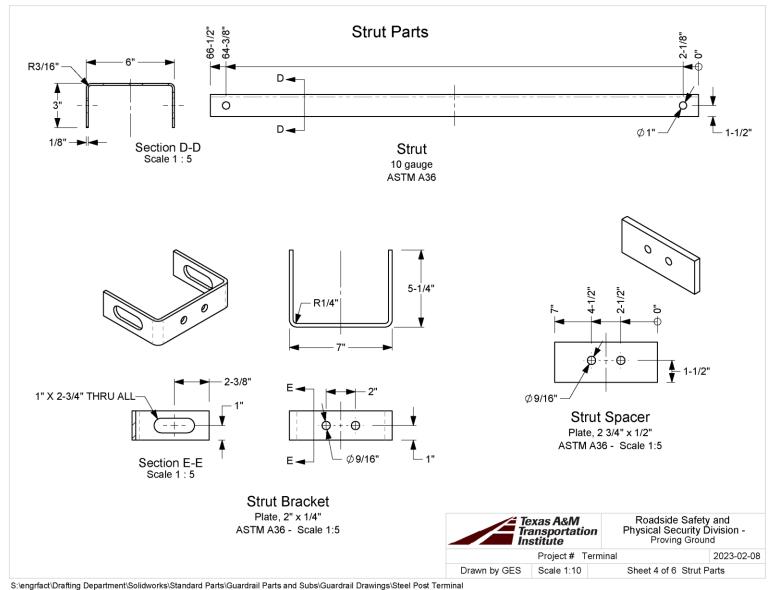
#	Part Name	QTY.
1	Post Bottom	2
2	Post Top	2
3	9'-4-1/2" span Terminal Rail	1
4	Strut	1
5	Strut Spacer	2
6	Strut Bracket	2
7	Guardrail Anchor Bracket	1
8	Anchor Cable Assembly	1
9	Bearing Plate	1
10	Bolt, 7/16 x 2 1/2" hex	8
11	Washer, 7/16 F844	32
12	Nut, 7/16 heavy hex	8
13	Nut, 1/2 hex	4
14	Washer, 1/2 F844	4
15	Bolt, 5/8 x 1 1/2" hex	8
16	Washer, 5/8 F844	8
17	Recessed Guardrail Nut	10
18	1-1/4" Guardrail Bolt	2
19	Bolt, 7/8 x 8 1/2" hex	2
20	Washer, 7/8 F844	4
21	Nut, 7/8 hex	2

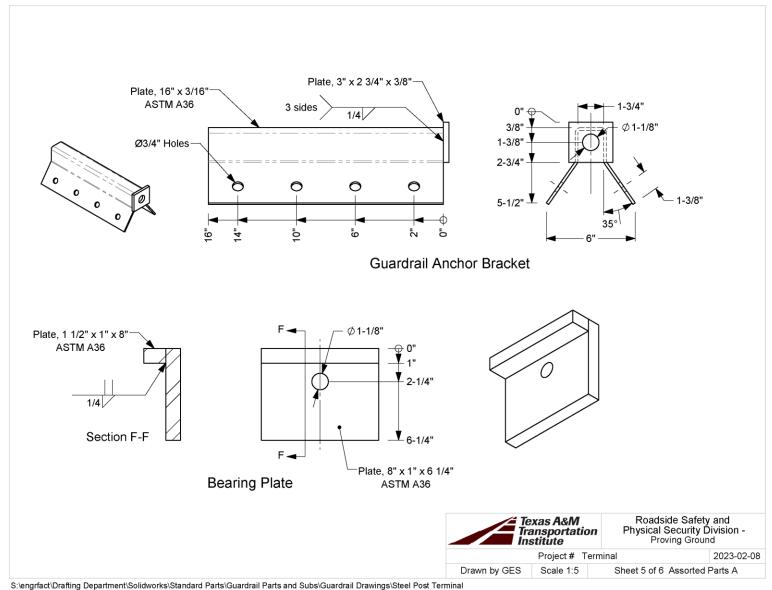
- 1a. 7/16" x 2-1/2" Bolts are ASTM A449. All other Bolts are ASTM A307. All Nuts (except Recessed Guardrail Nuts) are ASTM A563A unless otherwise indicated.
- 1b. All steel parts shall be galvanized.
- **1c.** This specific terminal configuration has not been tested. It is used as a barrier anchorage device for crash testing purposes.

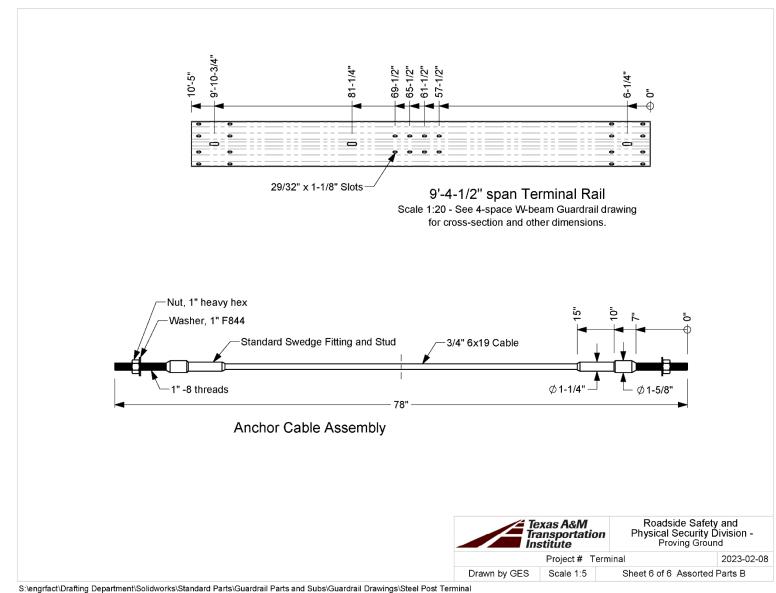



Roadside Safety and Physical Security Division -Proving Ground

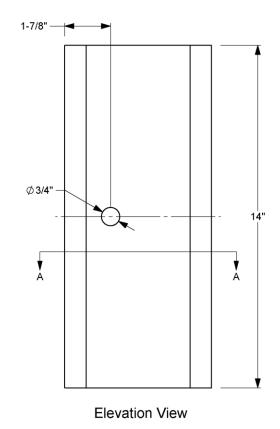
Project # Terminal


2023-02-08


Drawn by GES Scale 1:25 Sheet 1 of 6 Terminal Details



S:\engrfact\Drafting Department\Solidworks\Standard Parts\Guardrail Parts and Subs\Guardrail Drawings\Steel Post Terminal



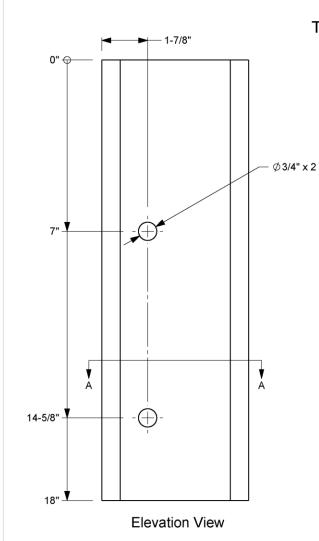
Timber Blockout for W-section Post

All dimensions except hole diameter are nominal

6"
8"
4-1/4"
Section A-A

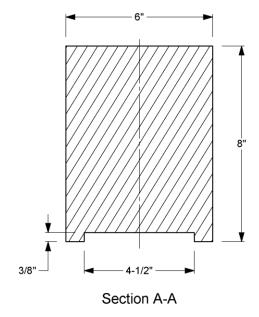
1a. Timber blockouts are treated with a preservative in accordance with AASHTO M 133 after all cutting and drilling.

Roadside Safety and Physical Security Division -Proving Ground


Timber Blockout, for W-section Post

2022-12-16

Drawn by GES


Scale 1:3

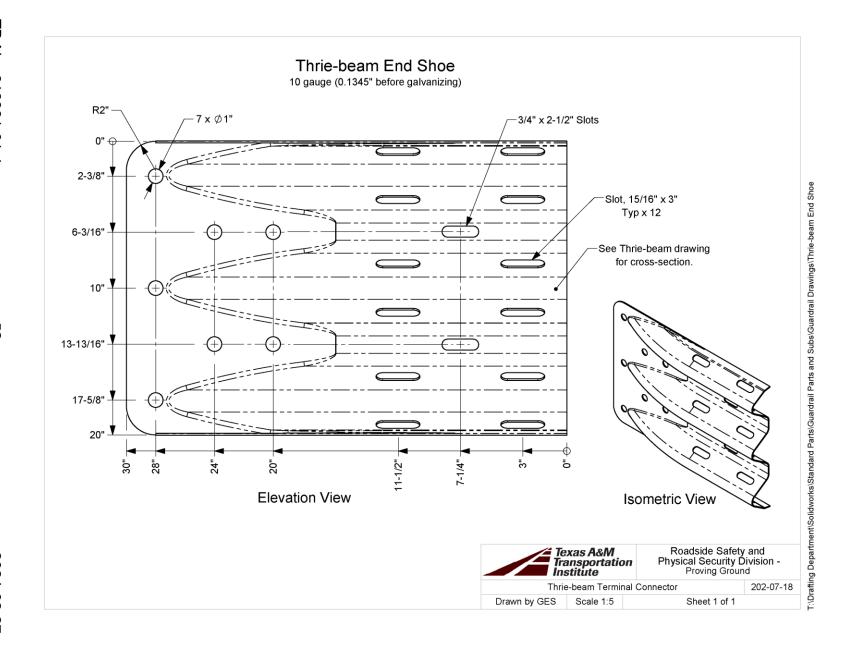
Sheet 1 of 1

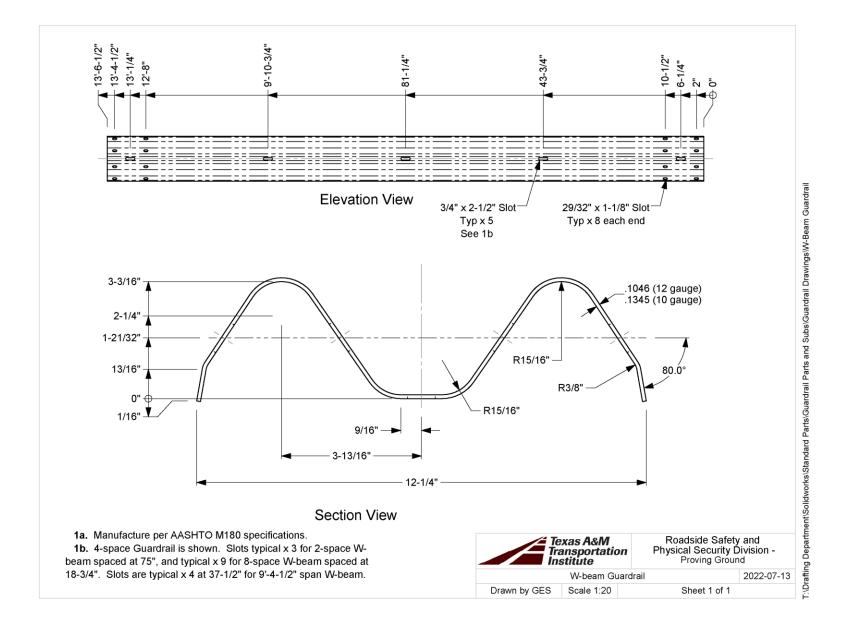
Transition Blockout for W-section Post

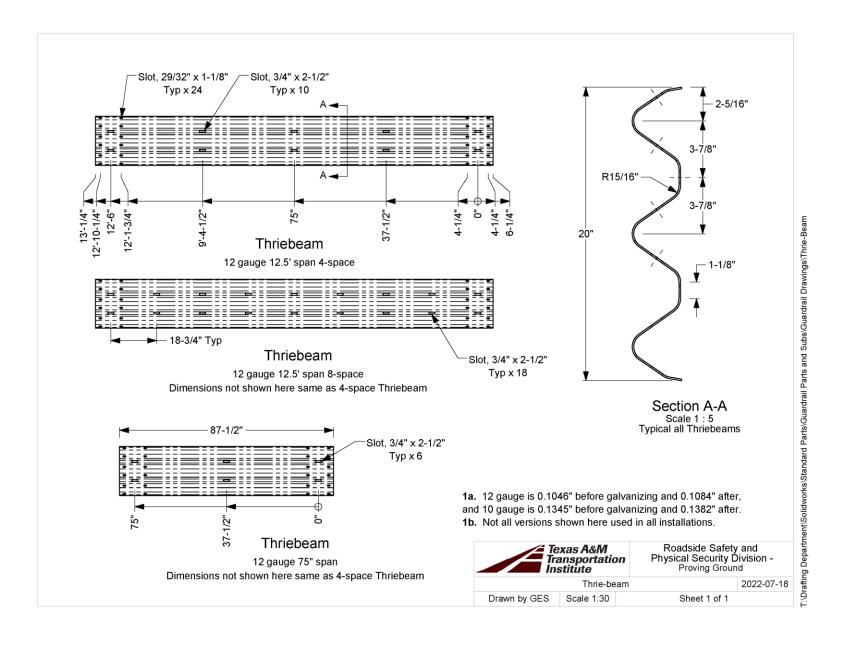
All dimensions except hole diameter are nominal

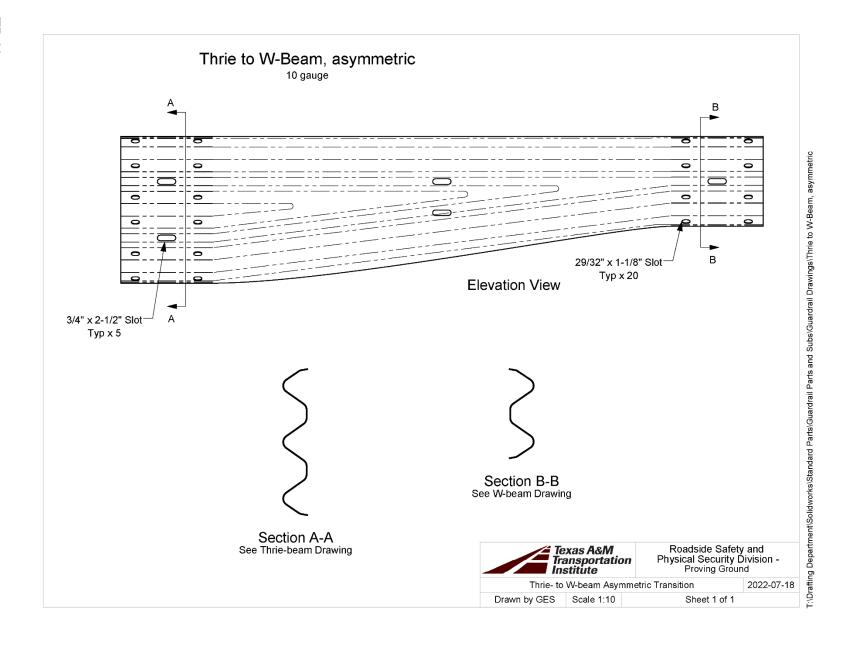
1a. Timber blockouts are treated with a preservative in accordance with AASHTO M 133 after all cutting and drilling.

Roadside Safety and Physical Security Division -Proving Ground

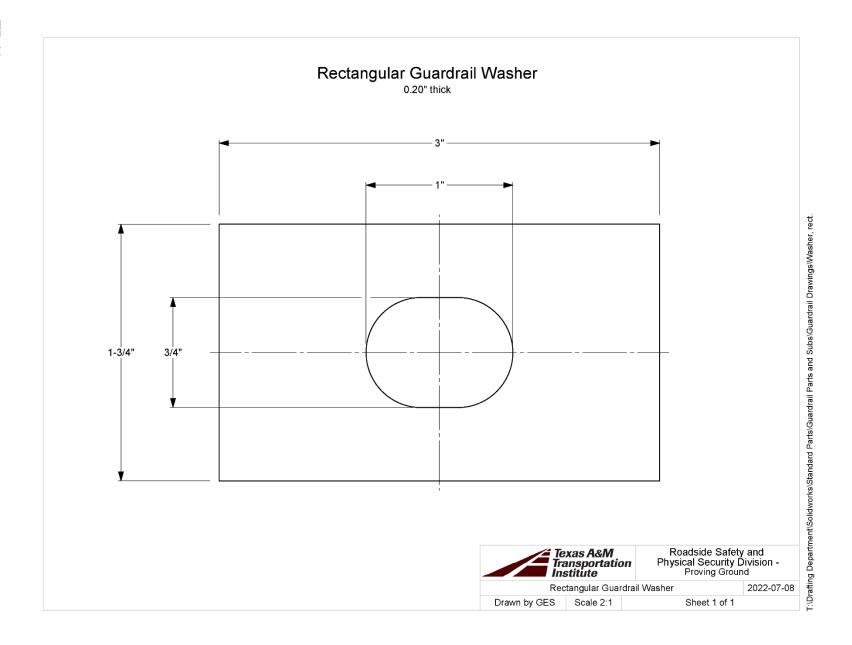

Transition Blockout, for W-section Post

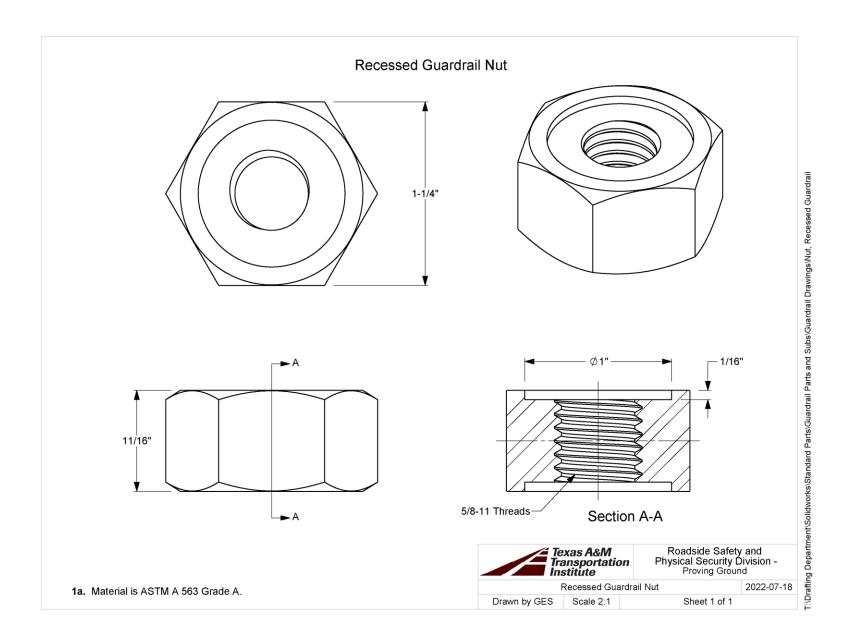

2022-10-25

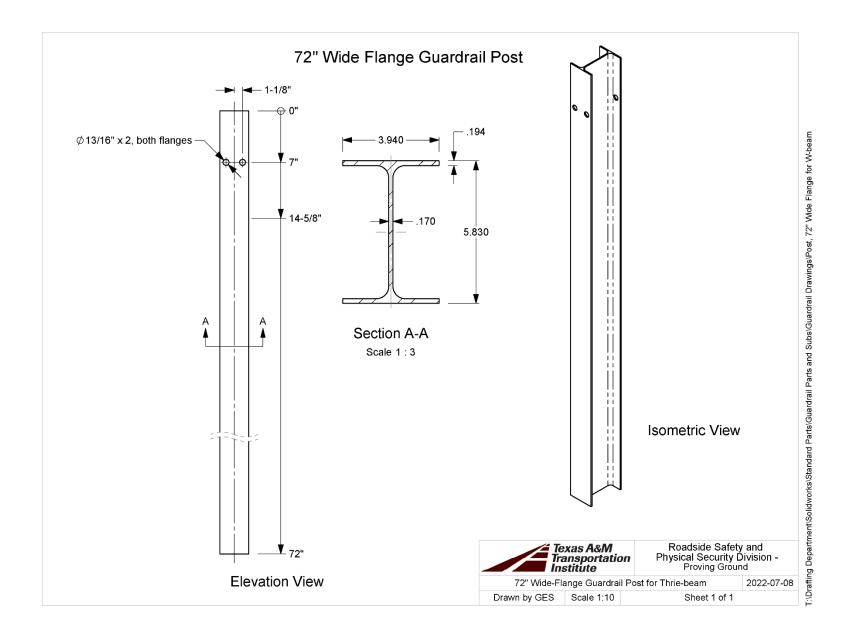

Drawn by GES

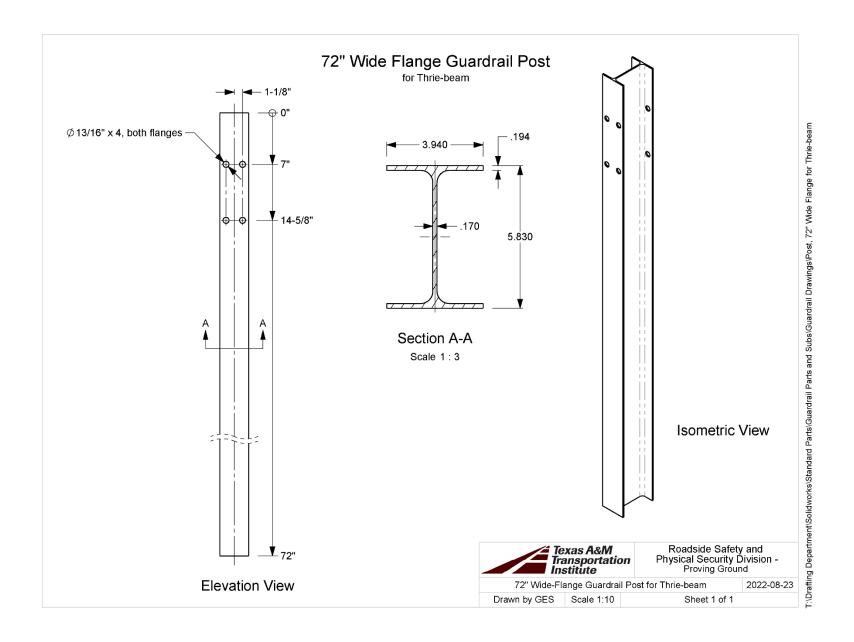

Scale 1:3


Sheet 1 of 1









APPENDIX B.	SUPPORTING CERTIFICATION DOCUMENTS

CMC STEEL TEXAS 1 STEEL MILL DRIVE SEGUIN TX 78155-7510

CERTIFIED MILL TEST REPORT For additional copies call 830-372-8771

We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Rolando A Davila

Quality Assurance Manager

IEAT NO.:3108472 SECTION: REBAR 16MM (#5) 20'0 SRADE: ASTM A615-20 Gr 420/6 ROLL DATE: 08/30/2021 MELT DATE: 08/27/2021 Sert. No.: 83605619 / 108472A3	0	0	5-7950	S H I P T O	CMC Construction Svo 10650 State Hwy 30 College Station TX US 77845-7950 979 774 5900	s College Stati	Delivery#: 83605619 BOL#: 74392050 CUST PO#: 896487 CUST P/N: DLVRY LBS / HEAT: 48072.000 LB DLVRY PCS / HEAT: 2304 EA
Characteristic	Value		Characteristic	Valu	•	Chara	cteristic Value
C	0.45%		Bend Test Diar	neter	2.188IN		
Mn	0.92%						
p	0.010%						
s	0.048%						
Si	0.19%						
Cu	0.29%						
Cr	0.11%						
Ní	0.16%						
Mo	0.061%					The Following is	true of the material represented by this MTR:
v	0.000%					*Material is fully	i killed
Cb	0.000%					*100% melted	and rolled in the USA
Sn	0.009%					*EN10204:2004	3.1 compliant
Al	0.001%					*Contains no w	eld repair
						*Contains no M	ercury contamination
Yield Strength test 1	70.1ksi						n accordance with the latest version
Tensile Strength test 1	109.6ksi					of the plant qu	
Elongation test 1	14%					!	y America" requirements of 23 CFR635.410, 49 CFR 66
Elongation Gage Lgth test 1	8IN						product can expose you to chemicals which are
Tensile to Yield ratio test1	1.56						State of California to cause cancer, birth defects
Bend Test 1	Passed					or other reprod to www.P65Wa	luctive harm. For more information go

REMARKS :

CMC STEEL TEXAS
1 STEEL MILL DRIVE
SEGUIN TX 78155-7510

CERTIFIED MILL TEST REPORT

For additional copies call 830-372-8771 We hereby certify that the test results presented here are accurate and conform to the reported grade specification

Edings & Durille

Quality Assurance Manager

S CMC Construction Svcs College Stati Delivery#: 83693955 S | CMC Construction Svcs College Stati HEAT NO.:3111183 Н BOL#: 74533988 0 SECTION: REBAR 13MM (#4) 20'0" 420/60 CUST PO#: 904440 10650 State Hwy 30 10650 State Hwy 30 GRADE: ASTM A615-20 Gr 420/60 P College Station TX CUST P/N: D College Station TX ROLL DATE: 12/19/2021 US 77845-7950 DLVRY LBS / HEAT: 15337.000 LB MELT DATE: 12/08/2021 US 77845-7950 DLVRY PCS / HEAT: 1148 EA T 979 774 5900 T 979 774 5900 Cert. No.: 83693955 / 111183A130 0 0

Characteristic	Value	Characteristic Value	Characteristic Value
C	0.43%	Bend Test Diameter 1.750IN	
Mn	0.83%		
P	0.011%		
s	0.039%		
Sì	0.16%		
Cu	0.36%		
Cr	0.12%		
Ni	0.18%		
Mo	0.056%		The Following is true of the material represented by this MTR:
V	0.000%		"Material is fully killed
Cb	0.001%		*100% melted and rolled in the USA
Sn	0.014%	and the second s	*EN10204:2004 3.1 compilant
Al	0.002%		*Contains no weld repair
			*Contains no Mercury contamination
Yield Strength test 1	64.4ksi		Manufactured in accordance with the latest version
Tensile Strength test 1	102.6ksi		of the plant quality manual
Elongation test 1	15%		"Meets the "Suy America" requirements of 23 CFR635.410, 49 CFR 6
Elongation Gage Lgth test 1	8IN		*Warning: This product can expose you to chemicals which are
Tensile to Yield ratio test1	1.59		known to the State of California to cause cancer, birth defects
Bend Test 1	Passed		or other reproductive harm. For more information go
			to www.P65Warnings.ca.gov

REMARKS :

CONCRETE SAMPLING REPORT

Report Number: A1171057.0277 Service Date: 08/07/23 Report Date: 09/20/23 PO# 618981 Task:

ierracon

6198 Imperial Loop College Station, TX 77845-5765 979-846-3767 Reg No: F-3272

Client **Project**

Texas Transportation Institute Riverside Campus Attn: Bill Griffith Riverside Campus TTI Business Office Bryan, TX

Project Number: A1171057 College Station, TX 77843-3135

General Information

3135 TAMU

Bill w/ TTI requested Terracon to be on site for concrete sampling for the following members: safety barrier. These member(s) are being constructed by TTI. The results of observation(s) for today were reported to Bill at TTI. The Terracon representative arrived on site at 0720 and departed at 0900.

Reinforcing Steel

Reinforcing steel was not previously inspected because n/a.

Concrete Placement

Terracon performed concrete sampling for the following:

Element	Location	Yardage	Supplier	Mix ID	Mix Description
Other	Safety Barrier	2	Texcrete	TXC3600	Normal Weight, 3600-psi, air-entrained

Placement Method: Direct Discharge

Tests Performed

The following tests were performed and were in accordance with project specifications: Slump, Air Content, Temperature, Unit Weight. A total of 4 compressive strength specimens [1 Sets] for lab curing were fabricated. 4 compressive strength specimens (Set No(s) 1) for field curing were fabricated.

Additional Comments

Compliance

Compliance Statement

Based on our observations, cast-in-place concrete construction activities at the above-referenced locations appeared to be completed in general accordance with the project plans and specifications.

Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and Services:

test compressive strength samples (ASTM C 31, C 39, C 1231). Start/Stop:

Terracon Rep.: Matcek, James Bill at TTI Reported To: Contractor: TTI Report Distribution:

(1) Texas Transportation Institute, Bill Griffith

(1) Texas Transportation Institute, Adam Mayer

Reviewed By: Alexander Dunigan, P.E.

Project Manager

0700-0945

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

DM005, 04-29-22, Rev.11 Page 1 of 1

CONCRETE COMPRESSIVE STRENGTH TEST REPORT

Report Number: A1171057.0277 Service Date: 08/07/23 Report Date: 09/20/23 Task: PO# 618981

College Station, TX 77845-5765 979-846-3767 Reg No: F-3272

08/07/23 Sample Time:

0845

Client

Texas Transportation Institute Attn: Bill Griffith TTI Business Office 3135 TAMU

College Station, TX 77843-3135

Project - A1171057

Riverside Campus Riverside Campus Bryan, TX

Permit No.: N/A

Material Information

Specified Strength: 3,600 psi @ 28 days

TXC 3600 Mix ID: Supplier: Texcrete

Batch Time: 0756 Plant: Brvan Truck No.: 115 Ticket No.: 81131

Result

Sample Information Sample Date:

Sampled By: Matcek, James

Weather Conditions: Cloudy

Accumulative Yards: 2.0 Batch Size (cy): 2

Placement Method: Direct Discharge Water Added Before (gal): 5

Water Added After (gal): Sample Location: Safety Barrier

Placement Location: Safety Barrier Sample Description: 6-inch diameter cylinders

Field Test Data Test

Slump (in): 4 1/2 Air Content (%): 2.4 Concrete Temp. (F): 89 Ambient Temp. (F): 83 Plastic Unit Wt. (pcf): 148.3

Yield (Cu. Yds.):

Laboratory Test Data

	,										
C-4	Smaa	C.I	Ave Diese	A	Data	Data	Age at	Max	Comp	F===	Tankad
Set	Spec	Cyl.	Avg Diam.	Area	Date	Date	Test	Load	Strength	Frac	Tested
No.	ID	Cond.	(in)	(sq in)	Received	Tested	(days)	(lbs)	(psi)	Type	Ву
1	Α	Good	6.00	28.27		09/20/23	44 F	103,540	3,660	2	DD
1	В	Good	6.00	28.27		09/20/23	44 F	120,510	4,260	2	DD
1	С	Good	6.00	28.27		09/20/23	44 F	109,900	3,890	2	DD
1	D						Hold				

Initial Cure: Outside in shade Final Cure: Field Cured

F = Field Cured

Note: Reported air content does not include Aggregate Correction Factor (ACF).

Specification

Samples Made By: Terracon

Services: Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test

compressive strength samples (ASTM C 31, C 39, C 1231).

Terracon Rep.: Matcek, James Reported To: Bill at TTI Contractor: TTI Report Distribution:

(1) Texas Transportation Institute, Bill Griffith (1) Texas Transportation Institute, Adam

Start/Stop: 0700-0945

Reviewed By: cander Dungan, P.E

Project Manager

Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

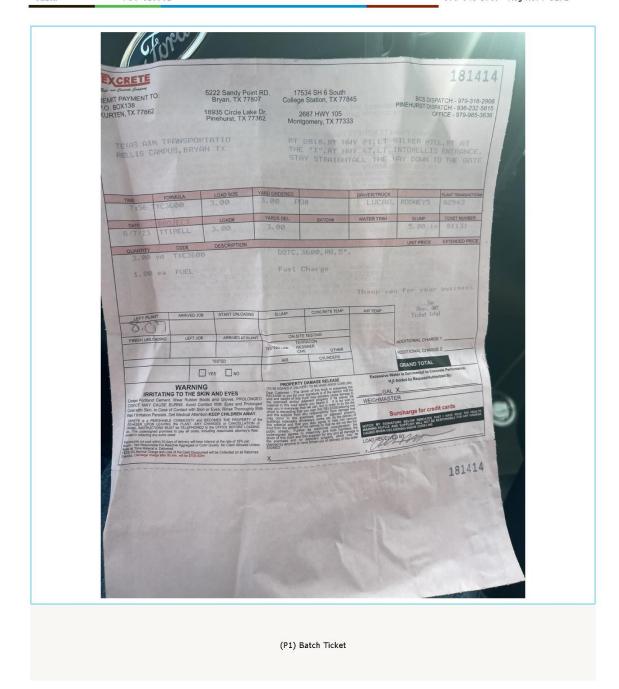
The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

CR0001, 3-31-22, Rev.7

Page 1 of 1

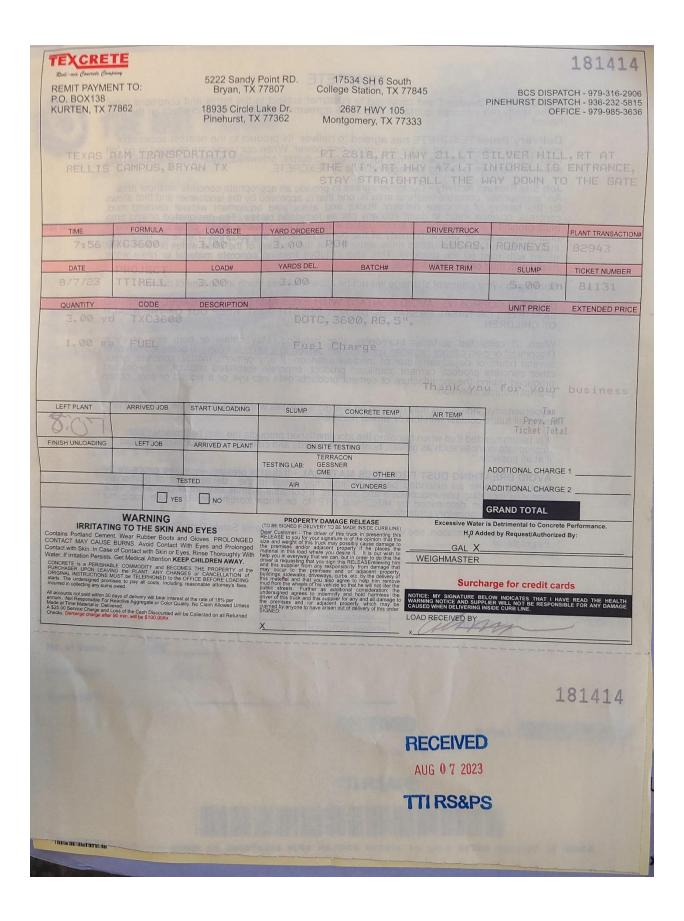
Photo Log

 Report Number:
 A1171057.0277


 Service Date:
 08/07/23

 Report Date:
 09/20/23

 Task:
 P0# 618981


6198 Imperial Loop College Station, TX 77845-5765 979-846-3767 Reg No: F-3272

CT0001, 10-16-13, Rev.10 Page 1 of 1

Texas A&M Transportation Institute	OF 7.2 01 Compresso		Revision Date: 2020-0 7- 29
Quality Form	Revised by: B.L. Griffith	Revision:	Page:
	Approved by: D. L. Kuhn	7	1 of 1

Quality	y Form	Revised by: B.L. Griffi Approved by: D. L. Ku	th hn	Revision: 7	Page: 1 of 1	
Project No:	618981	Casting Date:	8/7/2023	Mix Design (psi):	3600	
Name of Technician Taking Sample Signature of Technician Taking Sample		acon	Name of Technician Breaking Sample Signature of Technician Breaking Sample	Terracon Terracon		
Load No.	Truck No.	Ticket No.	Locat	ion (from concrete	map)	
Т1	Lucas Rodney5	81131		100% of barrier		
Load No.	Break Date	Cylinder Age	Total Load (lbs)	Break (psi)	Average	
	_					

CONCRETE SAMPLING REPORT

Report Number: A1171057.0277 Service Date: 08/07/23 Report Date: 09/20/23 PO# 618981 Task:

ierracon

6198 Imperial Loop College Station, TX 77845-5765 979-846-3767 Reg No: F-3272

Client **Project**

Texas Transportation Institute Riverside Campus Attn: Bill Griffith Riverside Campus TTI Business Office Bryan, TX

3135 TAMU Project Number: A1171057 College Station, TX 77843-3135

General Information

Bill w/ TTI requested Terracon to be on site for concrete sampling for the following members: safety barrier. These member(s) are being constructed by TTI. The results of observation(s) for today were reported to Bill at TTI. The Terracon representative arrived on site at 0720 and departed at 0900.

Reinforcing Steel

Reinforcing steel was not previously inspected because n/a.

Concrete Placement

Terracon performed concrete sampling for the following:

Element	Location	Yardage	Supplier	Mix ID	Mix Description
Other	Safety Barrier	2	Texcrete	TXC3600	Normal Weight, 3600-psi, air-entrained

Placement Method: Direct Discharge

Tests Performed

The following tests were performed and were in accordance with project specifications: Slump, Air Content, Temperature, Unit Weight. A total of 4 compressive strength specimens [1 Sets] for lab curing were fabricated. 4 compressive strength specimens (Set No(s) 1) for field curing were fabricated.

Additional Comments

Compliance

Compliance Statement

Based on our observations, cast-in-place concrete construction activities at the above-referenced locations appeared to be completed in general accordance with the project plans and specifications.

Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and Services:

test compressive strength samples (ASTM C 31, C 39, C 1231). Start/Stop:

Terracon Rep.: Matcek, James Bill at TTI Reported To: Contractor: TTI Report Distribution:

(1) Texas Transportation Institute, Bill Griffith

(1) Texas Transportation Institute, Adam Mayer

Reviewed By:

0700-0945

Alexander Dunigan, P.E. Project Manager

2024-02-27

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

DM005, 04-29-22, Rev.11 Page 1 of 1

CONCRETE COMPRESSIVE STRENGTH TEST REPORT

Report Number: A1171057.0277 08/07/23 Service Date: Report Date: 09/20/23 Task: PO# 618981

0845

College Station, TX 77845-5765 979-846-3767 Reg No: F-3272

Client Texas Transportation Institute

Attn: Bill Griffith TTI Business Office 3135 TAMU

Project - A1171057

Riverside Campus Riverside Campus Bryan, TX

Permit No.: N/A

Material Information

College Station, TX 77843-3135

Specified Strength: 3,600 psi @ 28 days

TXC 3600

Texcrete

Sample Information

08/07/23 Sample Time: Sample Date:

Sampled By: Matcek, James Weather Conditions: Cloudy

Accumulative Yards: 2.0 Batch Size (cy): 2

Placement Method: Direct Discharge

Water Added Before (gal): 5 Water Added After (gal):

Sample Location: Safety Barrier Placement Location: Safety Barrier

Sample Description: 6-inch diameter cylinders

Batch Time: 0756

Plant: Brvan Truck No.: 115 Ticket No.: 81131

Field Test Data

Mix ID:

Supplier:

Test Result Specification Slump (in): 4 1/2

Air Content (%): 2.4 Concrete Temp. (F): 89 Ambient Temp. (F): 83 Plastic Unit Wt. (pcf): 148.3

Yield (Cu. Yds.):

Laboratory Test Data

Set No.	Spec ID	Cyl. Cond.	Avg Diam. (in)	Area (sq in)	Date Received	Date Tested	Age at Test (days)	Max Load (Ibs)	Comp Strength (psi)	Frac Type	Tested By
1	Α	Good	6.00	28.27		09/20/23	44 F	103,540	3,660	2	DD
1	В	Good	6.00	28.27		09/20/23	44 F	120,510	4,260	2	DD
1	C	Good	6.00	28.27		09/20/23	44 F	109,900	3,890	2	DD
1	D						Hold				

Initial Cure: Outside in shade Final Cure: Field Cured

F = Field Cured

Note: Reported air content does not include Aggregate Correction Factor (ACF).

Samples Made By: Terracon

Services: Obtain samples of fresh concrete at the placement locations (ASTM C 172), perform required field tests and cast, cure, and test

compressive strength samples (ASTM C 31, C 39, C 1231).

Terracon Rep.: Matcek, James Reported To: Bill at TTI Contractor: TTI

Report Distribution:

(1) Texas Transportation Institute, Bill Griffith (1) Texas Transportation Institute, Adam

Start/Stop: 0700-0945

Reviewed By:

cander Dungan, P.E Project Manager

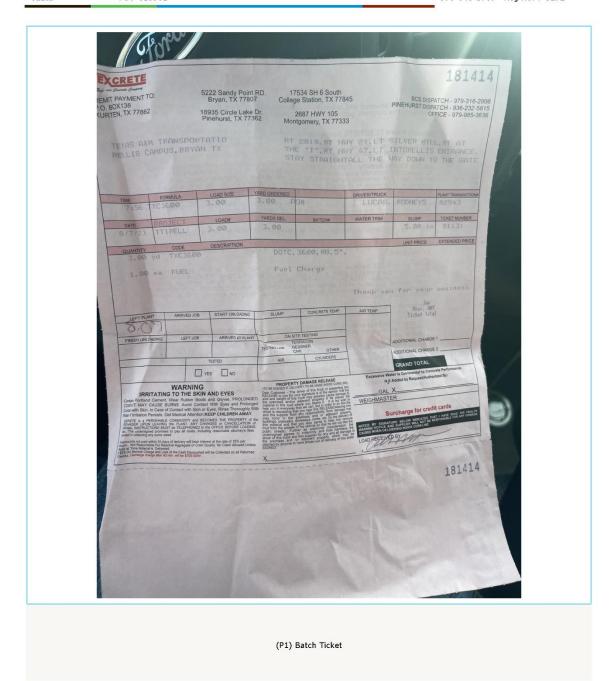
Test Methods: ASTM C 31, ASTM C143, ASTM C231, ASTM C1064

The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials.

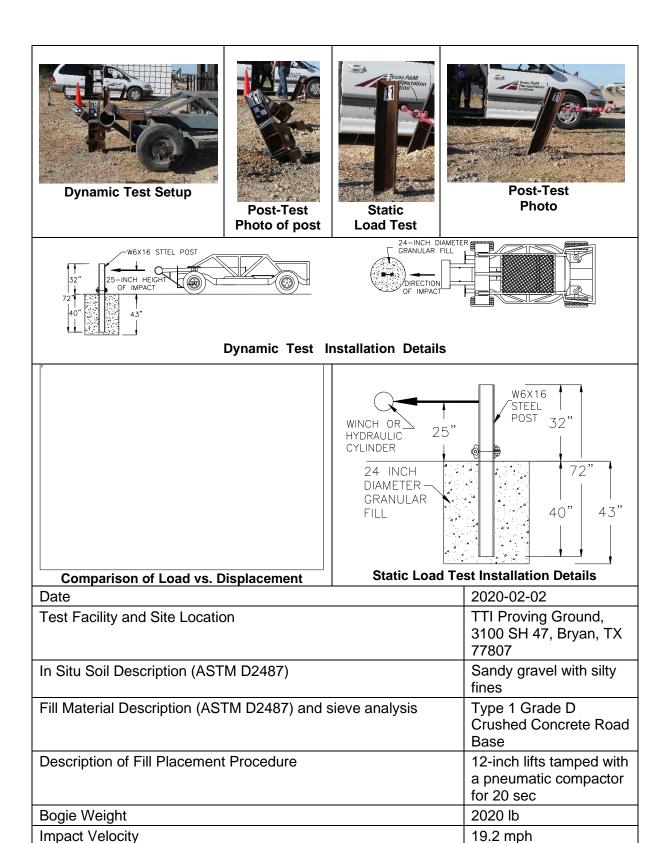
CR0001, 3-31-22, Rev.7

Photo Log

 Report Number:
 A1171057.0277


 Service Date:
 08/07/23

 Report Date:
 09/20/23


 Task:
 P0# 618981

6198 Imperial Loop College Station, TX 77845-5765 979-846-3767 Reg No: F-3272

CT0001, 10-16-13, Rev.10 Page 1 of 1

Texas A&M Transportation Institute	LF-SST1 Crushed Concrete Soil Strength Performance Test Record	Doc. No. LF-SST2	Revision Date: 2021-04-05
Laboratory Form	Revised by: B.L.Griffith	Revision:	Page:
Laboratory Porm	Approved by: D. L. Kuhn	0	1 of 1

The information contained in this document is confidential to TTI Proving Ground.

Crushed Concrete Soil Strength Performance Test *MASH*, Appendix B

Project Number: _	618981-01-1						
Date of Crash Test: 2023-09-21							
Post No. 1 of	f _1 Fill Moisture:	n/a % Native Mois	ture: <u>n/a %</u>				
Temperature:	81 ° <u>F</u> Humic	dity:89%_					
File Name: Soil S	trength_54.ASC						
Displacement (in.)	*Pull Force (Lbf)	Minimum Force (Lbf)	Pass / Fail				
5	8,300	4420	Р				
10	9,909	4981	Р				
15	10,879	5282	Р				
Do not exceed 10,0	00 lbf						
Test Post Location: 15 ft ⊠ South □ North of terminal post West of terminal post							

APPENDIX C. MASH TEST 3-21 (CRASH TEST 618981-01-1)

C.1. VEHICLE PROPERTIES AND INFORMATION

Date:	2023-09-2	21	Test No.:	618981	-01-1	_ VIN No	.: <u>106888</u>	12KS/2	12190
Year:	2019		Make:	RA	М	_ Mode	l:	1500	
Tire Siz	e: <u>265/70</u>	R 17			Tire	Inflation Pr	essure:	35 p	si
Tread T	ype: Highw	ay				Od	ometer: 104522	2	
Note an	y damage to	the veh	nicle prior to t	est: None	9				
● Dono	tes acceleron	actor la	oation		Ì	- X -	-		
• Deno	ites acceleion	ietei io	ication.			- w -			
NOTES	: None					7//			
Engine Engine				A M WHEEL TRACK				a .	WHEEL TRACK
	ission Type:	_		,			TEST INI	ERTIAL C. M.	•
	Auto or FWD [7] I	RWD	_ Manual □ 4WD		R PQ	-			
Optiona	I Equipment:			P -	•				3
None					- 5	J		6	ļ ¹
Dummy	Data:			Ŭ J- I-				D)	TK L
Type: Mass:						ם די	L _G L _V L _S		
	osition:					— n — ≠	_ E	 □ □	-
				•	1	⁷ M FRONT	7	M REAR	
Geome	-	_	40.00		20.00		c		00.75
<u> </u>	78.50 74.00	F _	40.00 28.62	. Ķ <u>—</u>	20.00 30.00	- P	3.00	U _	26.75 30.25
В	227.50	G _	61.49	. L	68.50	_ Q	18.00		61.50
C —	44.00	H _	11.75	_ M N	68.00	_ R _ s	13.00		79.00
D	140.50	' _ J	27.00	- 10 —	46.00	_ S T	77.00	× _	7 0.00
Who	eel Center		4.75	Wheel Well arance (Front)	70.00	- ' · 6.00	Bottom Frame Height - Front		12.50
Who	eel Center		4.75	Wheel Well		9.25	Bottom Frame		22.50
	eight Rear MIT: A=78 ±2 inches;			earance (Rear) inches: F=39 ±3 inc	hes; G = > 28 i		Height - Rear inches; 0=43 ±4 inches;		
	Ratings:		Mass: lb	Cur	_		: Inertial		s Static
Front	3700		M_{front}		_ 2918		2829		2829
Back	3900		M_{rear}		2055		2202		2202
Total	6700	_	M_{Total}		4973	Dongs for The	5031		5031
Mass D	istribution:				•	ŭ	nd GSM = 5000 lb ±110 lb)		
lb		LF:	1426	. RF:	1403	LR: _	F	RR:	1087

Figure C.1. Vehicle Properties for Test 618981-01-1.

Date:	2023-09-21	_ Test No.:	618981-01-1	_ VIN No.:	1C6RRFT2KS742190
Year:	2019	_ _ Make:	RAM	Model:	1500

VEHICLE CRUSH MEASUREMENT SHEET¹

Complete When Applicable						
End Damage	Side Damage					
Undeformed end width	Bowing: B1 X1					
Corner shift: A1	B2 X2					
A2						
End shift at frame (CDC)	Bowing constant					
(check one)	X1+X2					
< 4 inches						
≥ 4 inches						

Note: Measure C₁ to C₆ from Driver to Passenger Side in Front or Rear Impacts – Rear to Front in Side Impacts.

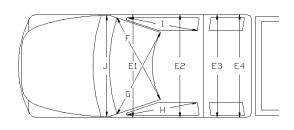
a .a		Direct Damage									
Specific Impact Number	Plane* of C-Measurements	Width** (CDC)	Max*** Crush	Field L**	C ₁	C_2	C ₃	C4	C ₅	C ₆	±D
1	AT FRONT BUMPER	16	24	40	-	-	-	-	-	ı	+13
2	ABOVE FT BUMPER	18	9	57	-	-	-	-	-	ı	68
	Measurements recorded										
	✓ inches or ☐ mm	·									

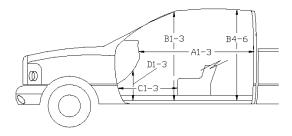
¹Table taken from National Accident Sampling System (NASS).

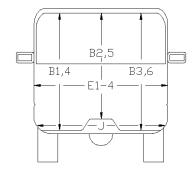
Free space value is defined as the distance between the baseline and the original body contour taken at the individual C locations. This may include the following: bumper lead, bumper taper, side protrusion, side taper, etc. Record the value for each C-measurement and maximum crush.

Note: Use as many lines/columns as necessary to describe each damage profile.

Figure C.2. Exterior Crush Measurements for Test 618981-01-1.


^{*}Identify the plane at which the C-measurements are taken (e.g., at bumper, above bumper, at sill, above sill, at beltline, etc.) or label adjustments (e.g., free space).


^{**}Measure and document on the vehicle diagram the beginning or end of the direct damage width and field L (e.g., side damage with respect to undamaged axle).


^{***}Measure and document on the vehicle diagram the location of the maximum crush.

 Date:
 2023-09-21
 Test No.:
 618981-01-1
 VIN No.:
 1C6RRFT2KS742190

 Year:
 2019
 Make:
 RAM
 Model:
 1500

*Lateral area across the cab from driver's side kickpanel to passenger's side kickpanel.

OCCUPANT COMPARTMENT DEFORMATION MEASUREMENT

DEF	JKWA HUN	INEASURI	
	Before	After	Differ.
		(inches)	
A1	65.00	65.00	0.00
A2	63.00	63.00	0.00
А3	65.50	65.50	0.00
B1	45.00	45.00	0.00
B2	38.00	38.00	0.00
В3	45.00	45.00	0.00
B4	39.50	39.50	0.00
B5	43.00	43.00	0.00
B6	39.50	39.50	0.00
C1	26.00	26.00	0.00
C2	0.00	0.00	0.00
C3	26.00	25.00	-1.00
D1	11.00	11.00	0.00
D2	0.00	0.00	0.00
D3	11.50	10.50	-1.00
E1	58.50	59.25	0.75
E2	63.50	64.00	0.50
E3	63.50	63.50	0.00
E4	63.50	63.50	0.00
F	59.00	59.00	0.00
G	59.00	59.00	0.00
Н	37.50	37.50	0.00
I	37.50	37.50	0.00
J*	25.00	24.25	-0.75

Figure C.3. Occupant Compartment Measurements for Test 618981-01-1.

C.2. SEQUENTIAL PHOTOGRAPHS

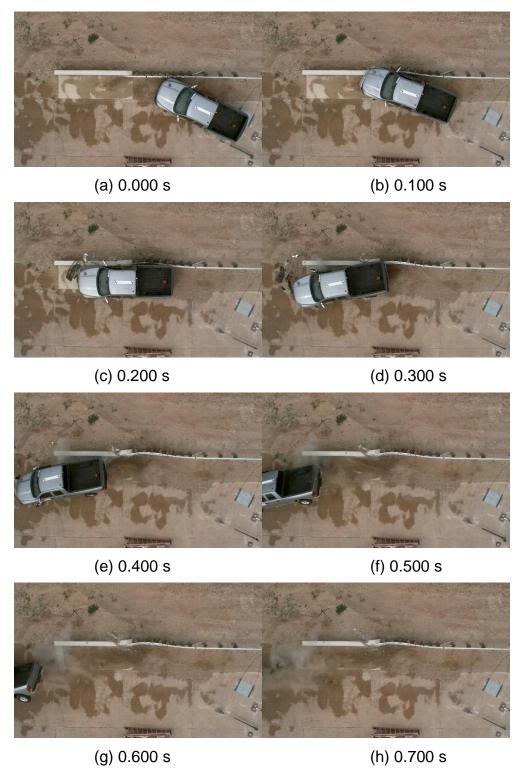


Figure C.4. Sequential Photographs for Test 618981-01-1 (Overhead Views).

Figure C.5. Sequential Photographs for Test 618981-01-1 (Frontal Views).

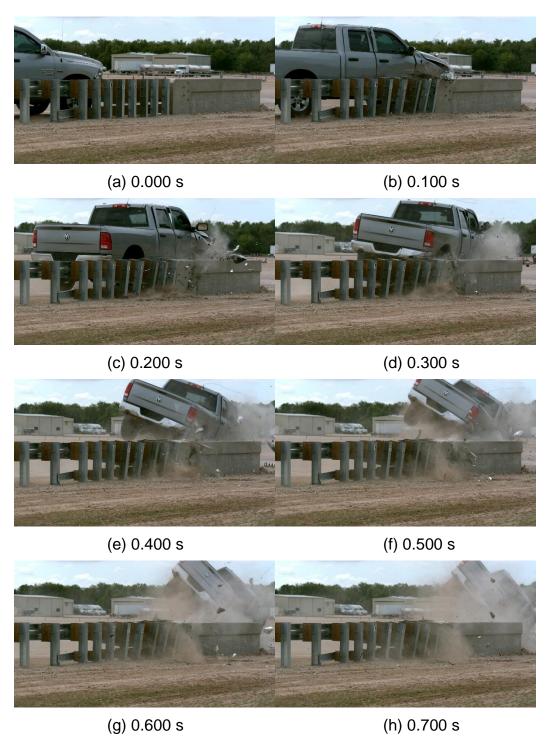
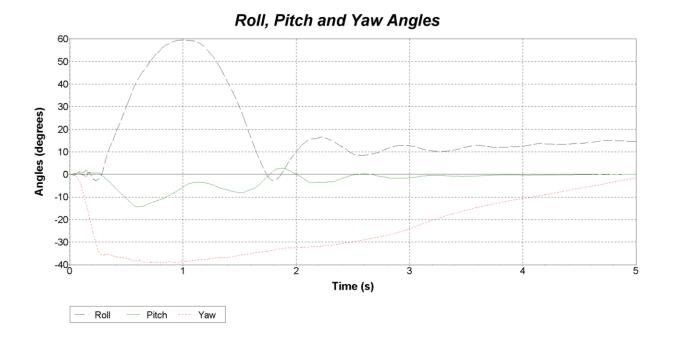



Figure C.6. Sequential Photographs for Test 618981-01-1 (Rear Views).

C.3. VEHICLE ANGULAR DISPLACEMENTS

Axes are vehicle-fixed. Sequence for determining orientation:

- 1. Yaw.
- 2. Pitch.
- 3. Roll.

Test Number: 618981-01-1

Test Standard Test Number: MASH Test 3-21

Test Article: Shortened Transition Test Vehicle: 2019 RAM 1500

Inertial Mass: 5031lbs Gross Mass: 5031 lbs Impact Speed: 63.2 mi/h Impact Angle: 25.1°

C.4. VEHICLE ACCELERATIONS

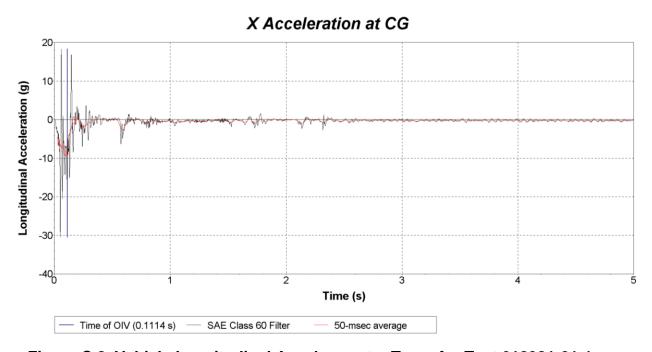


Figure C.8. Vehicle Longitudinal Accelerometer Trace for Test 618981-01-1 (Accelerometer Located at Center of Gravity).

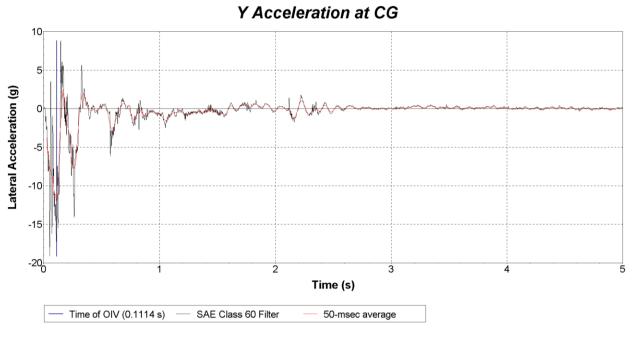


Figure C.9. Vehicle Lateral Accelerometer Trace for Test 618981-01-1 (Accelerometer Located at Center of Gravity).

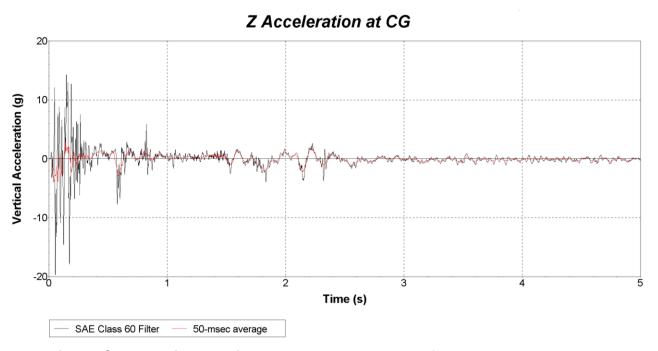


Figure C.10. Vehicle Vertical Accelerometer Trace for Test 618981-01-1 (Accelerometer Located at Center of Gravity)