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C H A P T E R  1 .  
INTRODUCTION & BACKGROUND 
1.1. PROBLEM STATEMENT AND BACKGROUND 

Many bridge rails in the United States are outdated with respect to the 
Manual for Assessing Safety Hardware (MASH [1]). It is not economically feasible to 
completely replace the obsolete bridge rails with newer MASH-compliant designs. 
Oftentimes, state transportation agencies may need to utilize a crash-worthy bridge 
rail that is retrofit to the existing bridge deck when an obsolete bridge railing needs 
to be replaced for a MASH-compliant bridge rail system. 

In the preceding research (referred to as ‘Phase 1’ herein), TTI has designed 
and successfully crash-tested a new Thrie-beam retrofit bridge rail design to be 
used on obsolete bridges [2]. Details of Phase 1 crash-tested design are shown in 
Figure 1.1. 

 

 
Figure 1.1. Details of Thrie-beam Bridge Rail Retrofit [2] 
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Actual conditions on bridges may vary from this as-tested design. Several 
conditions such as no curb, taller curb, wider curb, changes in deck thickness and 
reinforcing steel, and the location of existing obsolete bridge rails left in place will 
differ from the as-tested design. Thus, following questions arose to apply this Thrie-
beam bridge rail retrofit for more bridge conditions:  

• Can the as-tested design be used for bridge rails without a curb at TL-3? 
• How does the as-tested design perform for MASH TL-4? 
• What changes are needed to the as-tested design to meet MASH TL-4? 

In the present project (Phase 2), TTI researchers conducted a study to answer 
these questions using LS-DYNA simulations. 

1.2. OBJECTIVE 

The main objective of this project will be to perform LS-DYNA simulations on 
the as-tested design using no curb for MASH TL-3. If necessary, modification(s) will 
be made to the design to improve performance to meet MASH TL-3 specifications. 
In addition, LS-DYNA simulations will be performed on the as-tested design for 
MASH Test 4-12. If necessary, modification(s) will be made to the design to improve 
performance for MASH Test 4-12. 

1.3. BENEFITS 

The main benefit of this project will be to expand the use of a new Thrie-
beam retrofit system to bridge rails without a curb to meet the crash requirements 
of MASH TL-3. Also, this project will investigate if a new Thrie-beam retrofit system 
can be used for MASH TL-4 and explore what changes are needed (if any) to the as-
tested design to improve performance for satisfying MASH TL-4. This will provide 
broader retrofit options using a new Thrie-beam for more existing bridge rails. 

1.4. PRODUCTS 

Brief letter report summarizing the simulation efforts, design, and details for 
both the no curb MASH TL-3 design and the MASH TL-4 design (2 designs). 
Professional opinions (separate tasks outside the scope and funding for this 
project, for each) can be provided for the following conditions: 

• Taller curb (approx. 9 inches) 
• Wider curb (approximately 24 inches) 



 

 3 2024-11-18 

• Substandard bridge deck conditions (thinner deck, less reinforcing, lower 
compressive strength (1 case here for further review after the results are 
reviewed from this project). 

• Existing obsolete bridge rails that are left in place, i.e., reviewing the working 
width from the TL-3 crash test to determine if existing rails left in place will 
influence performance. 

1.5. WORK PLAN 

For this project, TTI investigates whether the as-tested Thrie-beam retrofit 
design bridge rail without a curb meets MASH TL-3 requirements. The as tested 
Thrie-beam retrofit design will be modified accordingly to meet the MASH 
specifications if necessary. Also, the application of the as-tested Thrie-beam for 
MASH TL-4 specification will be explored. TTI plans to develop engineering drawings 
of the proposed details using SolidWorks. The crashworthiness of proposed designs 
will be evaluated using LS-DYNA simulation to examine that required MASH test 
level requirements are met for each design. This project focuses on developing 
engineering design details and evaluating crashworthiness using computer 
simulation; no testing is planned for this project. The work plan is as follows: 

 
1.) Task 1: Engineering Analyses & Detailing of Retrofit Designs for MASH TL-4 - 

TTI will develop details of the new Thrie-beam retrofit system without a curb. 
Particularly, TTI proposes connection details between existing deck and Thrie-
beam bridge rail retrofit. The proposed design will be analyzed as per the 
strength analysis of the current AASHTO LRFD, Section 13 Design 
Specifications [3] and modified accordingly to meet MASH TL-3 requirements. 
The strength analysis using MASH TL-4 loading conditions will be also 
performed on the as-tested design, and modifications will be proposed if 
necessary for MASH TL-4.  
 

2.) Task 2: TTI will prepare engineering drawings of the proposed details for both 
designs from Task 1 using SolidWorks.  

 
3.) Task 3 – Simulations of As-Tested Design without a Curb for MASH TL-3 - TTI 

will perform crashworthiness evaluation on the as-tested Thrie-beam bridge 
rail retrofit with no curb at MASH TL-3. TTI will generate simulation models 
using LS-DYNA and assess evaluation criteria including structural adequacy 
and occupant risk. Design modification will be proposed if necessary. 
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4.) Task 4 – Simulations of AS-Tested Design with a Curb for MASH TL-4 - Same as 
Task 3, TTI will perform crashworthiness evaluation on the as-tested Thrie-
beam bridge rail retrofit at MASH TL-4. TTI will generate simulation models 
using LS-DYNA and assess evaluation criteria including structural adequacy 
and occupant risk. Design modification will be proposed if necessary. 
 

5.) Task 5 – Brief Letter Report Summarizing the from Tasks 1 to 4 – TTI will 
prepare a brief letter report summarizing the results from Task 1 1 to 4. 
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C H A P T E R  2 .  
FINITE ELEMENT MODEL DEVELOPMENT 

For this project LS-DYNA computer simulations were performed to determine 
the predictive behavior of the designs evaluated for this study. The FE models 
developed for this project were developed using the same conditions as a full-scale 
crash testing to compare the results. Representative vehicle models for the small 
car (MASH Tests 3-10 and 4-10) and the pickup truck (MASH Test 3-11 and 4-11), and 
single unit truck (MASH Test 4-12) were used for this project. A discussion of the 
simulations performed on the various systems investigated for this project are 
discussed as follows in Chapter 3. 

3D finite element models of two bridge rail systems were developed. LS-
PrePost was used as the primary tool to develop the models. The first model 
represented the full-scale system that was tested and evaluated with full-scale 
crash testing (2). Another variation of the crash tested system was developed that 
did not include a curb. Figure 2.1 through Figure 2.4 shows the finite element 
model of the Thrie-beam Retrofit system. Figure 2.5 and Figure 2.6 shows the finite 
element model of the Thrie-beam Retrofit system without a curb.  

 
Figure 2.1. End View of Thrie-beam Retrofit Finite Element Model. 
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Figure 2.2. Overall View of Thrie-beam Retrofit Finite Element Model. 

 
Figure 2.3. Side View of Thrie-beam Retrofit Finite Element Model. 

 
Figure 2.4. Top View of Thrie-beam Retrofit Finite Element Model. 
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Figure 2.5. End View of Thrie-beam Retrofit (without Curb)  

Finite Element Model. 

 
Figure 2.6. Overall View of Thrie-beam Retrofit (without Curb)  

Finite Element Model. 

The concrete deck and curb were modeled with Solid elements and 
MAT_CSCM_Concrete. A concrete strength of 3300 psi was used in the model. A 
damage-based failure criterion was incorporated into the material model to allow 
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for the prediction of concrete damage. The reinforcement was modeled with Beam 
elements and MAT_PIECEWISE_LINEAR_PLASTICITY. A 40 ksi yield strength was used 
for the reinforcement. The steel posts and Thrie-beam rail were modeled with shell 
elements and MAT_PIECEWISE_LINEAR_PLASTICITY. The wood blockouts were 
modeled with solid elements and MAT_ELASTIC. A boundary condition was applied 
on the end of the deck to simulate attachment to a bridge deck superstructure.  
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C H A P T E R  3 .  
COMPUTER SIMULATIONS 

Finite element analysis of the models was performed using impact computer 
simulations. The simulations were conducted using LS-DYNA, a commercial general 
purpose nonlinear finite element analysis code capable of simulating complex 
engineering systems with impact-contact phenomena. 

Two systems were evaluated with finite element computer simulations. First, 
the Thrie-beam Retrofit finite element was evaluated according to MASH TL-4. This 
consisted of conducting a MASH Test 4-12 impact with the computer simulations. 
Second, the Thrie-beam Retrofit without a curb finite element model was evaluated 
according to MASH TL-3. The finite element computer simulation evaluation of the 
systems is presented in the below sections. 

3.1. FINITE ELEMENT MODEL VALIDATION 

To validate the behavior of the finite element developed and discussed in 
Chapter 2, computer simulations were performed replicating the previous full-scale 
crash test MASH Test 3-11 impact conditions (2). The impact speed was 62.0 mi/h 
and the impact angle was 25.1 degrees. The impact location was 8.2 ft upstream of 
the centerline of post 16.  

Figure 3.1 and Figure 3.2 show a comparison of the computer simulation and 
full-scale crash impact. The computer simulation indicated similar performance to 
the full-scale crash test. The computer simulation vehicle was redirected and 
showed similar vehicle kinematics to the full-scale crash test. The occupant risk 
factors were comparable (Table 3.1) between the computer simulation and full-
scale crash test. 

Overall, the finite element indicated similar behavior and characteristics 
when compared to the full-scale crash test. Thus, this finite element model was 
used in the predictive computer simulations presented in the later sections in this 
chapter. 
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Figure 3.1. Comparison of FE Computer Simulation and Full-Scale Crash Test 
(Gut View). 
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Figure 3.2. Comparison of FE Computer Simulation and Full-Scale Crash Test 
(Overhead View). 
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Table 3.1. Comparison of Occupant Risk Factors for Full-Scale Crash Test and 
FE Computer Simulation. 

Test Parameter Crash Test Computer 
Simulation 

OIV, Longitudinal (ft/s) 26.3 18.7 
OIV, Lateral (ft/s) 25.3 28.6 

Ridedown, Longitudinal (g) 8.2 3.4 
Ridedown, Lateral (g) 7.6 14.7 

Roll (deg.) 20.0 22.1 
Pitch (deg.) 9.0 4.1 
Yaw (deg.) 41.0 37.5 

3.2. THRIE-BEAM RETROFIT - MASH TL-4 EVALUATION 

To evaluate the performance of the Thrie-beam Retrofit bridge rail system 
under MASH TL-4 conditions, a series of computer simulations for MASH Test 4-12 
with the SUT vehicle model was performed. This system was previously evaluated 
with full-scale crash testing according to MASH Test 3-11 (2). Thus, there was no 
need to perform computer simulations with the small car (MASH Test 4-10) or 
pickup truck (MASH Test 4-11) vehicle impacts.  

The SUT vehicle impacted the bridge rail at an impact speed and angle of 56 
mi/h and 15 degrees. The impact point was 5 ft upstream of middle of the bridge 
deck where the concrete joint exists. This impact point maximized the damage on 
bridge deck and was considered the critical impact point for testing. 

Based on the results of the simulations, several design changes were made 
to improve the performance of the bridge rail system. These changes were then 
also modeled and new impact simulations were performed to arrive at the final 
retrofit design to make a recommendation for full-scale crash testing. 

3.2.1. As-Tested Design with a Curb 

First, the researchers performed MASH Test 4-12 simulation on the MASH TL-3 
compliant bridge railing system which was tested in the previous project [2].  

Based on the computer simulation, the bridge rail deflection was minor: the 
maximum dynamic and permanent deflection of the guardrail system was 4 inches 
and 3.26 inches, respectively. However, the box of SUT excessively leaned over the 
rail with the maximum intrusion width of 10.73 ft. When the front bottom corner of 
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the box was torn and tended to go over the rail, the cab also engaged with the rail 
and tended to go over the rail. Figure 3.3 shows the vehicle behavior at impact and 
maximum box lean. Since the as-tested system could not contain the vehicle and 
could not meet MASH TL-4 evaluation criteria, the researchers decided to increase 
the rail height to improve the vehicle stability during impact. 

 

  
Figure 3.3. Test 4-12 Simulation Images for 34-inch Tall Thrie-beam System. 

3.2.2. Different Heights 

To investigate the performance of the Thrie-beam rail with a taller rail height, 
the height of the Thrie-beam rail was increased to 38 inches. The 38-inch tall system 
was evaluated with the same impact conditions. 

Figure 3.4 shows the simulation images showing when impacting the rail and 
when the maximum intrusion was observed. Similar to the as-tested system, when 
the front bottom corner of the box hit the rail, the box overrode the rail, and the 
system likely failed to contain the vehicle. The maximum intrusion width was 
10.7 ft, which was not different from that for the as-tested system. The 38-inch tall 
system did not indicate satisfactory performance in redirecting and containing the 
SUT vehicle. Thus, the researchers increased the rail height by an additional 4 
inches to improve vehicle stability.  
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(a) initial impact (b) maximum vehicle lean 

Figure 3.4. Test 4-12 Simulation Images for 38-inch Tall Thrie-beam System. 

As shown in Figure 3.5, the SUT vehicle was successfully contained and 
redirected in the simulation with the 42-inch tall system. The maximum dynamic 
and permanent deflection of the guardrail system was 5.3 inches and 3.8 inches, 
respectively. The maximum intrusion width was 9.5 ft, which is 1.2 ft (approximately 
15 inches) less than that for both the as-tested system and the 34-high system. 
Based on the simulation results, the Thrie-beam system with a 42-inch height could 
be expected to pass MASH Test 4-12 evaluation criteria in a full-scale crash test.  

 

 

   
(a) initial impact (b) maximum lean (c) vehicle exit 

Figure 3.5. Test 4-12 Simulation Images for 42-inch Tall Thrie-beam System. 

As the height of the barrier increases, there is less vehicle roll and more floor 
box is engaged in the impact, thereby increasing the impact load (shown in Figure 
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3.4). At a 36-inch and 38-inch rail height, the box overrides and over-engaged to the 
rail, while the box floor contact the rail in early stage and contained and redirected 
vehicle at 42-inch high rail. 

 

   

 
(a) 34-inch rail height 

 
(b) 38-inch rail height 

 
(c) 42-inch rail height 

Figure 3.6. Contact Area Comparison Depending on Rail Height. 

After evaluating the performance of the Thrie-beam retrofit system 
according to MASH Test 4-12, it was necessary to evaluate the performance 
according to MASH Test 4-11 to determine the effect of the increased rail height.  

A MASH Test 4-11 computer simulation was performed with pickup truck 
vehicle model impacting the 42-inch tall Thrie-beam system. Due to the large 
opening between the Thrie-beam and curb, the impact side front tire was snagged, 
and the vehicle could not be redirected as shown in Figure 3.7.  Thus, it was 
recommended to modify the system to improve the performance for the MASH Test 
4-11 impact conditions. 
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Figure 3.7. MASH Test 4-11 Computer Simulation with 42-inch Tall Thrie-beam 

System. 

3.2.3. 42-inch Tall Thire Beam Retrofit System with Rubrail 

While the 42-inch tall Thrie-beam retrofit system performed adequately for 
MASH Test 4-12, the performance was unsatisfactory for MASH Test 4-11 due to the 
large opening between the curb and the bottom of the rail. This large opening 
allowed severe wheel snag and high vehicle accelerations. Therefore, the 
researchers decided to retrofit the 42-inch tall Thrie-beam system. 

The first modification option was to add a rubrail to the 42-inch Thrie-beam 
system. MASH Test 4-11 was performed for the 42-inch Thrie-beam system with a 
rubrail. Figure 3.8 shows the sequential images for the simulation performed on 
the 42-inch Thrie-beam system with a rubrail.  
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(a) At initial impact 

 

(b) Just before redirection 

 

(c) Vehicle parallel to the system 

 

(d) vehicle exiting the system 
Figure 3.8. Test 4-11 Simulation on 42-inch Thrie-beam System with Rubrail. 

The vehicle was successfully contained and redirected without tire snagging. 
However, no MASH compliant transition system can be used to connect the Thrie-
beam system higher than 36 inches to a MASH compliant W-beam system and 
terminal. Therefore, the research team and technical representatives decided to 
add a hollow structural section (HSS) tube to the top of the as-tested Thrie-beam 
rail system. This would allow the top of the Thrie-beam rail to stay at 34 inches. This 
modified system was evaluated as discussed in the next section. 

3.2.4. 42-inch Tall Thire Beam Retrofit System with Top HSS Tube 

A previous research study was performed that developed a MASH TL-4 
compliant guardrail system. The system included a HSS tube attached to the top of 
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a standard W-beam guardrail system to increase the rail height. The system 
successfully met the MASH TL-4 evaluation criteria [3]. A transition system for the 
upper tube was also successfully tested and evaluated for MASH.  This MASH TL-4 
design concept will be referred as TxDOT MASH TL-4 guardrail system herein.  

To increase the height of the Thrie-beam retrofit system and maintain the 34-
inch Thrie-beam rail height, a design concept of TxDOT MASH TL-4 guardrail system 
was adapted. An HSS (10-inch x 4-inch x ¼-inch) rail was added to the top of the as-
tested Thrie-beam system (34 inches tall). This resulted in an increased overall 
system height of 43 inches. Figure 3.9 shows a detailed drawing layout of the 
modified system. This modified design keeps Thrie-beam at 34 inches high from the 
deck and enables use of the existing MASH compliant transition system to connect a 
Thrie-beam rail to a standard W-beam guardrail and terminal system. 

 
Figure 3.9. MASH TL-4 Thrie-beam Bridge Rail Design Retrofitted by HSS Tube. 
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To evaluate the crashworthiness of the retrofitted system, a finite element 
model was developed, and a MASH Test 4-12 simulation was performed on the 
retrofitted system.  

The HSS tubular rail and HSS rail attachment brackets were represented with 
elastic-plastic material models. The HSS beam in the model was unrestrained at 
each end of the model because the HSS rail tube primarily works by providing 
lateral bending stiffness to the system and does not require anchoring at the ends. 
Figure 3.10 presents images of the overall guardrail system model, as well as closer 
details of the various key components of the model. 
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(a) Overall System 

  

(b) Detailed Retrofit Components: HSS rails, L-bracket 
Figure 3.10. MASH TL-4 Thrie-beam Retrofitted Design. 

MASH Test 4-12 impact simulation with the SUT model was performed on the 
developed FE model. The vehicle impacted the bridge rail at an impact speed and 
angle of 56 mi/h and 15 degrees. The previously determined impact point of 5 ft 
upstream of a post was used.  

Results of the simulation are presented in Figure 3.11. The SUT vehicle was 
successfully contained and redirected in the simulation. The maximum dynamic 
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deflection of the guardrail system was 17.7 inches. The permanent deflection was 
15.3 inches. Results of the simulation showed that the modified Thrie-beam retrofit 
design should be considered satisfactory for MASH Test 4-12 evaluation criteria.  
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Figure 3.11. FE Simulation Sequential Images for Retrofitted Thrie-beam 
System. 
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The impact simulations for MASH Tests 4-10 and 11 with the small car and the 
pickup truck model were not performed. Since the Thrie-beam system with a 34-
inch tall rail height has already met MASH TL-3 evaluation criteria (2), the retrofitted 
system is expected to provide satisfactory performance when the small car and the 
pickup truck impact the system.  

Based on the impact simulation results presented herein, the research team 
recommends performing full-scale MASH TL-4 testing with the retrofitted Thrie-
beam system as a next step. 

3.3. THRIE-BEAM RETROFIT WITHOUT CURB - MASH TL-3 EVALUATION 

To evaluate the performance of the Thrie-beam Retrofit bridge rail system 
without a curb under MASH TL-3 conditions, a series of computer simulations for 
MASH Test 3-10 with the small car model and MASH Test 3-11 with the pickup truck 
model were performed. The vehicles impacted the bridge rail at an impact speed 
and angle of 62 mi/h and 25 degrees. The impact point was 3.6 ft upstream of the 
concrete joint for the Test 3-10 computer simulation. The impact point was 4.3 ft 
upstream of the concrete joint for the Test 3-11 computer simulation. 

Figure 3.10 present sequential images from the Test 3-10 simulation impact 
event. The bridge rail system successfully contained and redirected the small car 
vehicle. The vehicle remained stable throughout the impact event. Table 3.1 shows 
the occupant risk parameters. The occupant risk values were within the MASH 
limits. The Thrie-beam Retrofit system without a curb indicated satisfactory 
performance for MASH Test 3-10. 

Figure 3.11 present sequential images from the Test 3-11 simulation impact 
event. The bridge rail system successfully contained and redirected the pickup truck 
vehicle. The vehicle remained stable throughout the impact event. Table 3.2 shows 
the occupant risk parameters. The occupant risk values were within the MASH 
limits. The Thrie-beam Retrofit system without a curb indicated satisfactory 
performance for MASH Test 3-11. 

Based on the results of the simulations, the small car and the pickup truck 
performed acceptably with respect to the MASH criteria for MASH Tests 3-10 and 3-
11.  Thus, the Thrie-beam Retrofit system without a curb should be considered 
acceptable as a MASH TL-3 compliant bridge rail system. 
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Figure 3.12. FE Simulation Sequential Images for Thrie-beam System without 
Curb – MASH Test 3-10. 
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Figure 3.13. FE Simulation Sequential Images for Thrie-beam System without 
Curb – MASH Test 3-11. 
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Table 3.2. Occupant Risk Results for MASH Test 3-10 Simulation. 

Test Parameter MASH Limit Measured 
OIV, Longitudinal (ft/s) ≤40.0 23.1 

OIV, Lateral (ft/s) ≤40.0 30.0 
Ridedown, Longitudinal (g) ≤20.49 3.6 

Ridedown, Lateral (g) ≤20.49 10.0 
Roll (deg.) ≤75 6.5 

Pitch (deg.) ≤75 4.0 
Yaw (deg.) N/A 36.8 

Table 3.3. Occupant Risk Results for MASH Test 3-11 Simulation. 

Test Parameter MASH Limit Measured 
OIV, Longitudinal (ft/s) ≤40.0 17.9 

OIV, Lateral (ft/s) ≤40.0 27.4 
Ridedown, Longitudinal (g) ≤20.49 3.4 

Ridedown, Lateral (g) ≤20.49 13.7 
Roll (deg.) ≤75 12.8 

Pitch (deg.) ≤75 3.0 
Yaw (deg.) N/A 40.7 

 



 

 27 2024-11-18 

C H A P T E R  4 .  
STRUCTURAL ANALYSIS 

An engineering strength analysis was performed on the new MASH TL-4 
design as shown in Figure 3.9 in Chapter 3. The strength analysis was performed in 
accordance with the American Association of State Highways and Transportation 
Officials (AASHTO) Load and Resistance Factor Design, Section 13 Specifications (4). 
The calculated strength of the 43 inches high bridge rail was 113 kips @ 30 inches 
height.  Based on this calculated strength, the design shown in Figure 3.9 satisfies 
the strength requirements for MASH TL-4 with post spacing a at 3’-1 ½” inches on 
centers. For additional information, please refer to the calculations shown in 
Appendix A.
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C H A P T E R  5 .  
SUMMARY & CONCLUSIONS 

1.) Task 1: Engineering Analyses & Detailing of a new retrofit designs for MASH TL-
4 was developed for this project. This new design utilized a HSS 10x4x3/8 tube 
mounted to the top of the Thrie-beam Retrofit Design previously tested to 
MASH TL-3 using post spacing of 3’-1 1 /2” on centers.  The total height of this 
design was 43 inches.  LS-DYNA simulations using the MASH TL-4 Vehicle (SUT) 
were successful. Engineering strength analyses were performed on the new 
retrofit design. The calculated strength was 100 kips at 30 inches height.  This 
new design meets the strength requirements of MASH TL-4 (80 kips at 30 
inches height).   The new design shown herein is recommended for MASH TL-4 
applications.   
 

2.) Task 2:  TTI has prepared engineering details of this recommended design 
retrofit. These details are shown in Figure 3.9 and in the calculations in 
Appendix A. This design is recommended for MASH TL-4.  

 
3.) Task 3 – Simulations of As-Tested Design without a Curb for MASH TL-3 were 

performed. The As-Tested design without a curb is recommended for MASH 
TL-3. No design modifications were needed for MASH-TL-3. 
 

4.) Task 4 – Simulations were performed on the as-tested Design with a Curb for 
MASH TL-4. Due to strength and instability of the SUT, this design (As-Tested 
for MASH TL-3 under TTI Project 615131) is not recommended for MASH TL-4. 

 
 





 

 31 2024-11-18 

REFERENCES 
1. AASHTO. Manual for Assessing Safety Hardware, Second Edition. American 

Association of State Highway and Transportation Officials, Washington, DC, 
2016. 

2. Williams, W.F., Moran, S., Menges, W.L., Schroeder, W.J.L., Giffith, B.L., Wegenast, 
S.W., and Kuhn, D.L. Development of Thrie-beam Retrofit for Upgrading Obsolete 
Bridge Rails. Texas A&M Transportation Institute, TX. 2021. 

3. Sheikh, N.M., Bligh, R.P., Menges, W.L., Schroeder, W., Griffith, B.L., and Kuhn, 
D.L. Development of a MASH Test-Level 4 Compliant Guardrail. Report No. 
FHWA/TX-21/0-7091-R1. Texas A&M Transportation Institute, TX, 2021. 

4. American Association of State Highways and Transportation Officials (AASHTO) 
LRFD Bridge Design Specifications, Section 13: Railings, 9th Edition, 2020



 

 32 2024-11-18 

A P P E N D I X  A .  
CALCULATIONS
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