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CHAPTER 1.

INTRODUCTION & BACKGROUND

1.1.  PROBLEM STATEMENT AND BACKGROUND

Many bridge rails in the United States are outdated with respect to the
Manual for Assessing Safety Hardware (MASH ). It is not economically feasible to
completely replace the obsolete bridge rails with newer MASH-compliant designs.
Oftentimes, state transportation agencies may need to utilize a crash-worthy bridge
rail that is retrofit to the existing bridge deck when an obsolete bridge railing needs
to be replaced for a MASH-compliant bridge rail system.

In the preceding research (referred to as ‘Phase 1" herein), TTI has designed
and successfully crash-tested a new Thrie-beam retrofit bridge rail design to be
used on obsolete bridges 2. Details of Phase 1 crash-tested design are shown in
Figure 1.1.

Elevation View 6112 _—Retrofit Blockout
Transducer Techniques® B P -
LWO-80 Load Washer [} d
See 1c “
. ] Sj\
L‘\_ .“..
\ \
i,
¢ 8
\ 2 —
ril g = *—5" Guardrail Bolt, x 2 @ each Post
= ¢ 34"
| e 4-1/2°
5 1
L Mj ~—@7/8" x 10" BY Threaded Rod
N x 4 @ each Post - See 1a
Detail D
Scale1:5 .
Section A-A
Scale 1:10
Y

Figure 1.1. Details of Thrie-beam Bridge Rail Retrofit [Z
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Actual conditions on bridges may vary from this as-tested design. Several
conditions such as no curb, taller curb, wider curb, changes in deck thickness and
reinforcing steel, and the location of existing obsolete bridge rails left in place will
differ from the as-tested design. Thus, following questions arose to apply this Thrie-
beam bridge rail retrofit for more bridge conditions:

« Can the as-tested design be used for bridge rails without a curb at TL-3?
« How does the as-tested design perform for MASH TL-4?
« What changes are needed to the as-tested design to meet MASH TL-4?

In the present project (Phase 2), TTI researchers conducted a study to answer
these questions using LS-DYNA simulations.

1.2.  OBIECTIVE

The main objective of this project will be to perform LS-DYNA simulations on
the as-tested design using no curb for MASH TL-3. If necessary, modification(s) will
be made to the design to improve performance to meet MASH TL-3 specifications.
In addition, LS-DYNA simulations will be performed on the as-tested design for
MASH Test 4-12. If necessary, modification(s) will be made to the design to improve
performance for MASH Test 4-12.

1.3.  BENEFITS

The main benefit of this project will be to expand the use of a new Thrie-
beam retrofit system to bridge rails without a curb to meet the crash requirements
of MASH TL-3. Also, this project will investigate if a new Thrie-beam retrofit system
can be used for MASH TL-4 and explore what changes are needed (if any) to the as-
tested design to improve performance for satisfying MASH TL-4. This will provide
broader retrofit options using a new Thrie-beam for more existing bridge rails.

14. PRODUCTS

Brief letter report summarizing the simulation efforts, design, and details for
both the no curb MASH TL-3 design and the MASH TL-4 design (2 designs).
Professional opinions (separate tasks outside the scope and funding for this
project, for each) can be provided for the following conditions:

« Taller curb (approx. 9 inches)
« Wider curb (approximately 24 inches)

2 2024-11-18



1.5.

Substandard bridge deck conditions (thinner deck, less reinforcing, lower
compressive strength (1 case here for further review after the results are
reviewed from this project).

Existing obsolete bridge rails that are left in place, i.e., reviewing the working
width from the TL-3 crash test to determine if existing rails left in place will
influence performance.

WORK PLAN

For this project, TTl investigates whether the as-tested Thrie-beam retrofit

design bridge rail without a curb meets MASH TL-3 requirements. The as tested
Thrie-beam retrofit design will be modified accordingly to meet the MASH
specifications if necessary. Also, the application of the as-tested Thrie-beam for
MASH TL-4 specification will be explored. TTI plans to develop engineering drawings
of the proposed details using SolidWorks. The crashworthiness of proposed designs
will be evaluated using LS-DYNA simulation to examine that required MASH test
level requirements are met for each design. This project focuses on developing
engineering design details and evaluating crashworthiness using computer
simulation; no testing is planned for this project. The work plan is as follows:

1.) Task 1: Engineering Analyses & Detailing of Retrofit Designs for MASH TL-4 -

TTI will develop details of the new Thrie-beam retrofit system without a curb.
Particularly, TTI proposes connection details between existing deck and Thrie-
beam bridge rail retrofit. The proposed design will be analyzed as per the
strength analysis of the current AASHTO LRFD, Section 13 Design
Specifications ¥l and modified accordingly to meet MASH TL-3 requirements.
The strength analysis using MASH TL-4 loading conditions will be also
performed on the as-tested design, and modifications will be proposed if
necessary for MASH TL-4.

2.) Task 2: TTI will prepare engineering drawings of the proposed details for both

designs from Task 1 using SolidWorks.

3.) Task 3 - Simulations of As-Tested Design without a Curb for MASH TL-3 - TTI

will perform crashworthiness evaluation on the as-tested Thrie-beam bridge
rail retrofit with no curb at MASH TL-3. TTI will generate simulation models
using LS-DYNA and assess evaluation criteria including structural adequacy
and occupant risk. Design modification will be proposed if necessary.
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4.) Task 4 - Simulations of AS-Tested Design with a Curb for MASH TL-4 - Same as
Task 3, TTI will perform crashworthiness evaluation on the as-tested Thrie-
beam bridge rail retrofit at MASH TL-4. TTI will generate simulation models
using LS-DYNA and assess evaluation criteria including structural adequacy
and occupant risk. Design modification will be proposed if necessary.

5.) Task 5 - Brief Letter Report Summarizing the from Tasks 1 to 4 - TTI will
prepare a brief letter report summarizing the results from Task 1 1 to 4.
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CHAPTER 2.

FINITE ELEMENT MODEL DEVELOPMENT

For this project LS-DYNA computer simulations were performed to determine
the predictive behavior of the designs evaluated for this study. The FE models
developed for this project were developed using the same conditions as a full-scale
crash testing to compare the results. Representative vehicle models for the small
car (MASH Tests 3-10 and 4-10) and the pickup truck (MASH Test 3-11 and 4-11), and
single unit truck (MASH Test 4-12) were used for this project. A discussion of the
simulations performed on the various systems investigated for this project are
discussed as follows in Chapter 3.

3D finite element models of two bridge rail systems were developed. LS-
PrePost was used as the primary tool to develop the models. The first model
represented the full-scale system that was tested and evaluated with full-scale
crash testing (2). Another variation of the crash tested system was developed that
did not include a curb. Figure 2.1 through Figure 2.4 shows the finite element
model of the Thrie-beam Retrofit system. Figure 2.5 and Figure 2.6 shows the finite
element model of the Thrie-beam Retrofit system without a curb.

Figure 2.1. End View of Thrie-beam Retrofit Finite Element Model.
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Figure 2.2. Overall View of Thrie-beam Retrofit Finite Element Model.

Figure 2.3. Side View of Thrie-beam Retrofit Finite Element Model.

Y Y

Figure 2.4. Top View of Thrie-beam Retrofit Finite Element Model.
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Figure 2.5. End View of Thrie-beam Retrofit (without Curb)
Finite Element Model.

Figure 2.6. Overall View of Thrie-beam Retrofit (without Curb)
Finite Element Model.

The concrete deck and curb were modeled with Solid elements and
MAT_CSCM_Concrete. A concrete strength of 3300 psi was used in the model. A
damage-based failure criterion was incorporated into the material model to allow
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for the prediction of concrete damage. The reinforcement was modeled with Beam
elements and MAT_PIECEWISE_LINEAR_PLASTICITY. A 40 ksi yield strength was used
for the reinforcement. The steel posts and Thrie-beam rail were modeled with shell
elements and MAT_PIECEWISE_LINEAR_PLASTICITY. The wood blockouts were
modeled with solid elements and MAT_ELASTIC. A boundary condition was applied
on the end of the deck to simulate attachment to a bridge deck superstructure.

8 2024-11-18



CHAPTER 3.

COMPUTER SIMULATIONS

Finite element analysis of the models was performed using impact computer
simulations. The simulations were conducted using LS-DYNA, a commercial general
purpose nonlinear finite element analysis code capable of simulating complex
engineering systems with impact-contact phenomena.

Two systems were evaluated with finite element computer simulations. First,
the Thrie-beam Retrofit finite element was evaluated according to MASH TL-4. This
consisted of conducting a MASH Test 4-12 impact with the computer simulations.
Second, the Thrie-beam Retrofit without a curb finite element model was evaluated
according to MASH TL-3. The finite element computer simulation evaluation of the
systems is presented in the below sections.

3.1.  FINITE ELEMENT MODEL VALIDATION

To validate the behavior of the finite element developed and discussed in
Chapter 2, computer simulations were performed replicating the previous full-scale
crash test MASH Test 3-11 impact conditions (2). The impact speed was 62.0 mi/h
and the impact angle was 25.1 degrees. The impact location was 8.2 ft upstream of
the centerline of post 16.

Figure 3.1 and Figure 3.2 show a comparison of the computer simulation and
full-scale crash impact. The computer simulation indicated similar performance to
the full-scale crash test. The computer simulation vehicle was redirected and
showed similar vehicle kinematics to the full-scale crash test. The occupant risk
factors were comparable (Table 3.1) between the computer simulation and full-
scale crash test.

Overall, the finite element indicated similar behavior and characteristics
when compared to the full-scale crash test. Thus, this finite element model was
used in the predictive computer simulations presented in the later sections in this
chapter.
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0.0 sec 0.0 sec

0.2 sec 0.2 sec

0.3 sec 0.3 sec

Figure 3.1. Comparison of FE Computer Simulation and Full-Scale Crash Test
(Gut View).
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0.0 sec 0.0 c

0.1 sec 0.1 sc

0.3 sec 0.3 sc

Figure 3.2. Comparison of FE Computer Simulation and Full-Scale Crash Test
(Overhead View).
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Table 3.1. Comparison of Occupant Risk Factors for Full-Scale Crash Test and
FE Computer Simulation.

Test Parameter Crash Test C.omput.er
Simulation
OlV, Longitudinal (ft/s) 26.3 18.7
OlV, Lateral (ft/s) 25.3 28.6
Ridedown, Longitudinal (g) 8.2 3.4
Ridedown, Lateral (g) 7.6 14.7
Roll (deg.) 20.0 22.1
Pitch (deg.) 9.0 4.1
Yaw (deg.) 41.0 37.5

3.2. THRIE-BEAM RETROFIT - #ASH TL-4 EVALUATION

To evaluate the performance of the Thrie-beam Retrofit bridge rail system
under MASH TL-4 conditions, a series of computer simulations for MASH Test 4-12
with the SUT vehicle model was performed. This system was previously evaluated
with full-scale crash testing according to MASH Test 3-11 (2). Thus, there was no
need to perform computer simulations with the small car (MASH Test 4-10) or
pickup truck (MASH Test 4-11) vehicle impacts.

The SUT vehicle impacted the bridge rail at an impact speed and angle of 56
mi/h and 15 degrees. The impact point was 5 ft upstream of middle of the bridge
deck where the concrete joint exists. This impact point maximized the damage on
bridge deck and was considered the critical impact point for testing.

Based on the results of the simulations, several design changes were made
to improve the performance of the bridge rail system. These changes were then
also modeled and new impact simulations were performed to arrive at the final
retrofit design to make a recommendation for full-scale crash testing.

3.2.1. As-Tested Design with a Curb

First, the researchers performed MASH Test 4-12 simulation on the MASH TL-3
compliant bridge railing system which was tested in the previous project [2].

Based on the computer simulation, the bridge rail deflection was minor: the
maximum dynamic and permanent deflection of the guardrail system was 4 inches
and 3.26 inches, respectively. However, the box of SUT excessively leaned over the
rail with the maximum intrusion width of 10.73 ft. When the front bottom corner of
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the box was torn and tended to go over the rail, the cab also engaged with the rail
and tended to go over the rail. Figure 3.3 shows the vehicle behavior at impact and
maximum box lean. Since the as-tested system could not contain the vehicle and
could not meet MASH TL-4 evaluation criteria, the researchers decided to increase
the rail height to improve the vehicle stability during impact.

Figure 3.3. Test 4-12 Simulation Images for 34-inch Tall Thrie-beam System.

3.2.2. Different Heights

To investigate the performance of the Thrie-beam rail with a taller rail height,
the height of the Thrie-beam rail was increased to 38 inches. The 38-inch tall system
was evaluated with the same impact conditions.

Figure 3.4 shows the simulation images showing when impacting the rail and
when the maximum intrusion was observed. Similar to the as-tested system, when
the front bottom corner of the box hit the rail, the box overrode the rail, and the
system likely failed to contain the vehicle. The maximum intrusion width was
10.7 ft, which was not different from that for the as-tested system. The 38-inch tall
system did not indicate satisfactory performance in redirecting and containing the
SUT vehicle. Thus, the researchers increased the rail height by an additional 4
inches to improve vehicle stability.
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(a) initial impact (b) maximum vehicle lean

Figure 3.4. Test 4-12 Simulation Images for 38-inch Tall Thrie-beam System.

As shown in Figure 3.5, the SUT vehicle was successfully contained and
redirected in the simulation with the 42-inch tall system. The maximum dynamic
and permanent deflection of the guardrail system was 5.3 inches and 3.8 inches,
respectively. The maximum intrusion width was 9.5 ft, which is 1.2 ft (approximately
15 inches) less than that for both the as-tested system and the 34-high system.
Based on the simulation results, the Thrie-beam system with a 42-inch height could
be expected to pass MASH Test 4-12 evaluation criteria in a full-scale crash test.

f 1 [

(a) initial impact (b) maximum lean (c) vehicle exit
Figure 3.5. Test 4-12 Simulation Images for 42-inch Tall Thrie-beam System.

As the height of the barrier increases, there is less vehicle roll and more floor
box is engaged in the impact, thereby increasing the impact load (shown in Figure
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3.4). At a 36-inch and 38-inch rail height, the box overrides and over-engaged to the
rail, while the box floor contact the rail in early stage and contained and redirected
vehicle at 42-inch high rail.

(@) 34-inch rail height (b) 38-inch rail height (c) 42-inch rail height
Figure 3.6. Contact Area Comparison Depending on Rail Height.

After evaluating the performance of the Thrie-beam retrofit system
according to MASH Test 4-12, it was necessary to evaluate the performance
according to MASH Test 4-11 to determine the effect of the increased rail height.

A MASH Test 4-11 computer simulation was performed with pickup truck
vehicle model impacting the 42-inch tall Thrie-beam system. Due to the large
opening between the Thrie-beam and curb, the impact side front tire was snagged,
and the vehicle could not be redirected as shown in Figure 3.7. Thus, it was
recommended to modify the system to improve the performance for the MASH Test
4-11 impact conditions.
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Figure 3.7. MASH Test 4-11 Computer Simulation with 42-inch Tall Thrie-beam
System.

3.2.3. 42-inch Tall Thire Beam Retrofit System with Rubrail

While the 42-inch tall Thrie-beam retrofit system performed adequately for
MASH Test 4-12, the performance was unsatisfactory for MASH Test 4-11 due to the
large opening between the curb and the bottom of the rail. This large opening
allowed severe wheel snag and high vehicle accelerations. Therefore, the
researchers decided to retrofit the 42-inch tall Thrie-beam system.

The first modification option was to add a rubrail to the 42-inch Thrie-beam
system. MASH Test 4-11 was performed for the 42-inch Thrie-beam system with a
rubrail. Figure 3.8 shows the sequential images for the simulation performed on
the 42-inch Thrie-beam system with a rubrail.
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(a) At initial impact (b) Just before redirection

(c) Vehicle parallel to the system (d) vehicle exiting the system
Figure 3.8. Test 4-11 Simulation on 42-inch Thrie-beam System with Rubrail.

The vehicle was successfully contained and redirected without tire snagging.
However, no MASH compliant transition system can be used to connect the Thrie-
beam system higher than 36 inches to a MASH compliant W-beam system and
terminal. Therefore, the research team and technical representatives decided to
add a hollow structural section (HSS) tube to the top of the as-tested Thrie-beam
rail system. This would allow the top of the Thrie-beam rail to stay at 34 inches. This
modified system was evaluated as discussed in the next section.

3.2.4. 42-inch Tall Thire Beam Retrofit System with Top HSS Tube

A previous research study was performed that developed a MASH TL-4
compliant guardrail system. The system included a HSS tube attached to the top of
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a standard W-beam guardrail system to increase the rail height. The system
successfully met the MASH TL-4 evaluation criteria [3]. A transition system for the
upper tube was also successfully tested and evaluated for MASH. This MASH TL-4
design concept will be referred as TxDOT MASH TL-4 guardrail system herein.

To increase the height of the Thrie-beam retrofit system and maintain the 34-
inch Thrie-beam rail height, a design concept of TxDOT MASH TL-4 guardrail system
was adapted. An HSS (10-inch x 4-inch x %-inch) rail was added to the top of the as-
tested Thrie-beam system (34 inches tall). This resulted in an increased overall
system height of 43 inches. Figure 3.9 shows a detailed drawing layout of the
modified system. This modified design keeps Thrie-beam at 34 inches high from the
deck and enables use of the existing MASH compliant transition system to connect a
Thrie-beam rail to a standard W-beam guardrail and terminal system.

Bolt, 5/8 x 5 1/2" hex
HSS10x 4 x 1/4 x 188" — Sleeve
ASTM A500 Grade B ) f
A | o

y

e

T
| ™ Plate, 7" x 1/4" x 35"
L4x3x3/8x4" | o B P
ASTM A3 Steel 1): ' } Plate, 2" x 1/4" x 35"
! 1]
| | { % S
& | i
1 L. ~
| | Detail B HSS 9% 5 x 3/8 x 36
! | Scale1:3 ‘- Set Screw, 1/4" x 1" socket head
1
W'JN\M/\_/W/"'\—\/L“ 2 Texas A&GM Rqadside Safe%.and
. /" Transportation Physical Security Division -
Section A-A Al institute Proving Ground
Scale 175 Project #619601 TL-4 Retrofit 2024-08-27
Drawn by GES Scale 1:20 Sheet 1 of 1 Test Installation

Figure 3.9. MASH TL-4 Thrie-beam Bridge Rail Design Retrofitted by HSS Tube.
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To evaluate the crashworthiness of the retrofitted system, a finite element
model was developed, and a MASH Test 4-12 simulation was performed on the
retrofitted system.

The HSS tubular rail and HSS rail attachment brackets were represented with
elastic-plastic material models. The HSS beam in the model was unrestrained at
each end of the model because the HSS rail tube primarily works by providing
lateral bending stiffness to the system and does not require anchoring at the ends.
Figure 3.10 presents images of the overall guardrail system model, as well as closer
details of the various key components of the model.
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(a) Overall System

——

(b) Detailed Retrofit Components: HSS rails, L-bracket

Figure 3.10. MASH TL-4 Thrie-beam Retrofitted Design.

MASH Test 4-12 impact simulation with the SUT model was performed on the
developed FE model. The vehicle impacted the bridge rail at an impact speed and
angle of 56 mi/h and 15 degrees. The previously determined impact point of 5 ft
upstream of a post was used.

Results of the simulation are presented in Figure 3.11. The SUT vehicle was
successfully contained and redirected in the simulation. The maximum dynamic
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deflection of the guardrail system was 17.7 inches. The permanent deflection was
15.3 inches. Results of the simulation showed that the modified Thrie-beam retrofit
design should be considered satisfactory for MASH Test 4-12 evaluation criteria.
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0.0 sec 0.4 sec

0.3 sec 1.0 sec

Figure 3.11. FE Simulation Sequential Images for Retrofitted Thrie-beam
System.
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The impact simulations for MASH Tests 4-10 and 11 with the small car and the
pickup truck model were not performed. Since the Thrie-beam system with a 34-
inch tall rail height has already met MASH TL-3 evaluation criteria (2), the retrofitted
system is expected to provide satisfactory performance when the small car and the
pickup truck impact the system.

Based on the impact simulation results presented herein, the research team
recommends performing full-scale MASH TL-4 testing with the retrofitted Thrie-
beam system as a next step.

3.3.  THRIE-BEAM RETROFIT WITHOUT CURB - #4SH TL-3 EVALUATION

To evaluate the performance of the Thrie-beam Retrofit bridge rail system
without a curb under MASH TL-3 conditions, a series of computer simulations for
MASH Test 3-10 with the small car model and MASH Test 3-11 with the pickup truck
model were performed. The vehicles impacted the bridge rail at an impact speed
and angle of 62 mi/h and 25 degrees. The impact point was 3.6 ft upstream of the
concrete joint for the Test 3-10 computer simulation. The impact point was 4.3 ft
upstream of the concrete joint for the Test 3-11 computer simulation.

Figure 3.10 present sequential images from the Test 3-10 simulation impact
event. The bridge rail system successfully contained and redirected the small car
vehicle. The vehicle remained stable throughout the impact event. Table 3.1 shows
the occupant risk parameters. The occupant risk values were within the MASH
limits. The Thrie-beam Retrofit system without a curb indicated satisfactory
performance for MASH Test 3-10.

Figure 3.11 present sequential images from the Test 3-11 simulation impact
event. The bridge rail system successfully contained and redirected the pickup truck
vehicle. The vehicle remained stable throughout the impact event. Table 3.2 shows
the occupant risk parameters. The occupant risk values were within the MASH
limits. The Thrie-beam Retrofit system without a curb indicated satisfactory
performance for MASH Test 3-11.

Based on the results of the simulations, the small car and the pickup truck
performed acceptably with respect to the MASH criteria for MASH Tests 3-10 and 3-
11. Thus, the Thrie-beam Retrofit system without a curb should be considered
acceptable as a MASH TL-3 compliant bridge rail system.
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0.0 sec 0.2 sec

0.05 sec 0.25 sec

0.1 sec 0.30 sec

0.15 sec 0.35 sec

Figure 3.12. FE Simulation Sequential Images for Thrie-beam System without
Curb - MASH Test 3-10.
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0.0 sec 0.25 sec

0.10 sec 0.30 sec

0.15 sec 0.35 sec

020 sec 040 sec

Figure 3.13. FE Simulation Sequential Images for Thrie-beam System without
Curb - MASH Test 3-11.
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Test Parameter MASH Limit| Measured
OlV, Longitudinal (ft/s) <40.0 23.1
OlV, Lateral (ft/s) <40.0 30.0
Ridedown, Longitudinal (g) <20.49 3.6
Ridedown, Lateral (g) <20.49 10.0
Roll (deg.) <75 6.5
Pitch (deg.) <75 4.0
Yaw (deg.) N/A 36.8

Test Parameter MASH Limit| Measured
OlV, Longitudinal (ft/s) <40.0 17.9
OlV, Lateral (ft/s) <40.0 27.4
Ridedown, Longitudinal (g)| <20.49 3.4
Ridedown, Lateral (g) <20.49 13.7
Roll (deg.) <75 12.8
Pitch (deg.) <75 3.0
Yaw (deg.) N/A 40.7
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Table 3.2. Occupant Risk Results for MASH Test 3-10 Simulation.

Table 3.3. Occupant Risk Results for MASH Test 3-11 Simulation.
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CHAPTER 4.

STRUCTURAL ANALYSIS

An engineering strength analysis was performed on the new MASH TL-4
design as shown in Figure 3.9 in Chapter 3. The strength analysis was performed in
accordance with the American Association of State Highways and Transportation
Officials (AASHTO) Load and Resistance Factor Design, Section 13 Specifications (4).
The calculated strength of the 43 inches high bridge rail was 113 kips @ 30 inches
height. Based on this calculated strength, the design shown in Figure 3.9 satisfies
the strength requirements for MASH TL-4 with post spacing a at 3'-1 %2" inches on
centers. For additional information, please refer to the calculations shown in
Appendix A.
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CHAPTER 5.

SUMMARY & CONCLUSIONS

1.) Task 1: Engineering Analyses & Detailing of a new retrofit designs for MASH TL-
4 was developed for this project. This new design utilized a HSS 10x4x3/8 tube
mounted to the top of the Thrie-beam Retrofit Design previously tested to
MASH TL-3 using post spacing of 3'-1 1 /2" on centers. The total height of this
design was 43 inches. LS-DYNA simulations using the MASH TL-4 Vehicle (SUT)
were successful. Engineering strength analyses were performed on the new
retrofit design. The calculated strength was 100 kips at 30 inches height. This
new design meets the strength requirements of MASH TL-4 (80 kips at 30
inches height). The new design shown herein is recommended for MASH TL-4
applications.

2.) Task 2: TTl has prepared engineering details of this recommended design
retrofit. These details are shown in Figure 3.9 and in the calculations in
Appendix A. This design is recommended for MASH TL-4.

3.) Task 3 - Simulations of As-Tested Design without a Curb for MASH TL-3 were
performed. The As-Tested design without a curb is recommended for MASH
TL-3. No design modifications were needed for MASH-TL-3.

4.) Task 4 - Simulations were performed on the as-tested Design with a Curb for

MASH TL-4. Due to strength and instability of the SUT, this design (As-Tested
for MASH TL-3 under TTI Project 615131) is not recommended for MASH TL-4.
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APPENDIX A.

CALCULATIONS
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{1) General Information and Inputs:

1) Reference: AASHTO MASH Condictions
2) Assess the adequacy of the barrier based on AASHTO LRFD Section 13 criteria

1a) General Inputs:
f=4.000 ksi Compressive strength of concrete (ksi)
Syi=60 ksi Yield strength of concrete reinforcing steel (ksi)

Total height of bridge rail system measured from the

H.:=43.0 in top of the roadway surface/overlay to the top of highest
i rail (in.)
Hj:=21.00 in Height of the bridge rail system measured from the

top of the roadway surfacefoverlay to the centroid
of the steel rail elements (in.)

curb,, =6 in “Height of curb (inches)”

t,:=0.0 in Thickness of overlay (in.)

{1b} Concrete deck and curb inputs:

H, . .,:=601in Height of Curb (in.)

Tgoesi=8.0 in Thickness of Deck (inches)

{1b} Steel Rail, Post, and Anchor Rod Inputs:

Steel Rail Inputs:
a) Use 10 gage Thrie Beam (50 ksi)

b) Use W6x15 Posts Fy = 50 ksi
Fyp:=50 ksi  Yield strength of steel rail (ksi)

hyp:=20 tn  Height of a single steel rail (in)

Np=1 Number of steel rail elements

Zgp=47000 mm® . 1.15=3.298 in® Plastice Section Modulus of Rail (in*3)
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Steel Post Inputs:

a) Steel Post is W6x15
b) A992 Fy = 50 ksi

Fyp:=>50 ksi Yield strength of steel post (ksi)

w,:=6 in Width of sleel post about the bending axis (in.)
t,=0.23 in Thickness of steel post web (in.)

t,:=0.26 n Thickness of flange (in)

Zp:=10.8 in® Plastice Section Modulus of Post (in*3)
L,=3 ft+1.5in Steel post spacing (ft)

Anchor Rod Inputs:

a) Ancher Rods are Hilti HAS-E Rods, Fu = 120 ksi
b) Anchor Rods are 7/8" ¢ x 10" embedded 7 inches

F, oai=120 ksi Tensile strength of anchor rods (ksi)

Nopai=4 Number of anchor rods

Nooi tension™= 2 Number of anchor rods in tension

dypq =10 in Distance from the anchor rods acting in tension to the back of the

steel plate (in.)

T,
Do i= g n Diameter of anchor reds (in )
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{1c) Design Force Inputs:

Design Forces for Traffic Railings:

Test Level | Rail Height (in.) | Fy(kip) | Fp(kip) | Fy(ldp) | LyLy (fi) | Ly (f0) H; (in) | Hpyig (in)
TL-1 18 or abave 155 43 45 40 18.0 180 180
TL-2 18 or above 270 2.0 45 40 18.0 200 18.0
TL-3 29 or sbove 7.0 18.0 45 40 18.0 19.0 200

TL-4 (a) 36 68.0 220 380 40 18.0 250 36.0

TL-4(b) |between 3§ and 42 80.0 270 220 50 18.0 300 36.0

TL-5(a) 42 160.0 410 80.0 10.0 40.0 350 420

TL-5 (b) greater than 42 262.0 730 1600 10.0 40.0 130 420
TL 6 1750 580 800 8.0 40.0 56.0 80.0
References:

¢« TL-1 and TL-2 Design Forces are from AASHTO LEFD Section 13 Table A13.2-1

e TL-3 Design Forces are from research conducted under NCHEP Project 20-07 Task 395

«  TL-4(a), TL-4 (b), TL-5 (a), and TL-5 (b) Design Forces are from research conducted under
NCHRP Project 22-20(2)

TL=4 Test level

F:=80 kip Transverse impact force (kips)

L,=5.0 ft Longitudinal length of distribution of impact force (ft}
H_:=301n Height of equivalent transverse load from top of overlay (in.)

H,.,=36.01in Minimum height of a MASH TL-3 barrier (in)
h,:=H_ +t,=30in Total equivalent transverse impact height (in.)

HT‘ =43 in Total height of bridge rail system measured from the top of the roadway
surfacefoverlay to the top of highest rail {in.)
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{2) Stability Criteria:

hmin =29 in

H,=43 in

Check_Barrier_Mintmum _Height=| it H. >H, .

Minimum height of 2 MASH TL-3 barrier {in.)

Subject :

Total height of bridge rail system measurad from the top of the roadway

surface/overlay to the top of highest rail (in.)

o

else

|“noT oK~

Cheeck_Buarrier_Minimuwm_Height = “OK”

{3) Geometric Criteria:

Spost =0 in Post setback (in.)
¢,:=6.375 in Vertical clear opening (in.)
YA=H, p+hp=261in Total rail contact width (in.)

H_ =43 in Total height of the bridge rail measured from the top of the roadway
surface/overlay (in.)

Note: Dencted as "H"

(=]

o
1
o

C = VERTICAL CLEAR OPENING (in)

0

W

in fiaure below

HIGH POTENTIAL

/é\sridge tails in this areq

have met NCHRP 230 safaty

evaluofion quidelines,

=8
2 b &
/C L~ RAIL
N s

=8

!

k

PREFERRED
LOW POTENTIAL

g

Ol 0 =

RAILS

0

5 1 T |5 T ﬁ T 1LU T 1
S = POST SETBACK DISTANCE (in)

Figure A13.1.1-2—Potential for Wheel, Bumper, or Hood
Impact with Post
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{3-conti.) Geometric Criteria:

Spost =61in H,» =43 in

YA=261in

YA
ratioy gy ::F =0.605

r

Setye=[0 123456789 10| Lower boundary for post
setback criteria x and y
coordinates

Sety.,=[0.75 0.63 0.52 0.4 0.315 0.28 0.27 0.26 0.25 0.245 0.245]

Setu.p.g:‘:[2'5 3456789 10} Upper boundary for post
setback criteria x and y
coordinates

Set '2[0.8 0.725 0.6 0.5 0.46 0.44 0.43 (1L.425 l].42]

upy

. Spost . . .
betsy'm =0 Post setback rail geometric point
wm
Sety,q, =ratioy, =0.605 Ratio of contact width to total height rail geometric point

Bt 9ty St [TeTuny
0 0.75 2.5 0.8
1 0.63 3 0.725
2 (.52 4 (L6
3 0.4 15 0.5
4 0.315 6 0.46
i1 (.28 7 (144
G 0.27 8 013
T 0.26 9 0.425
8 0.25 10 0.42
9 0.215
10 (2.245
9of 21
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X1 =S¢ty . Y1 :=Se iy Xa ::Setm,_T Y2 = Set,m_y X3:: Setsm_n. Y‘d ::Setmﬁ_y
Post Setback Criteria
081. v 4 1 3 N T I'-“Ittll—elll:)l,lI r

0.71

Rail Contact Width to Height

0.11

0

0.6
0.51
0.44
0.31
0.24

Not Recommended

0 06 1 15 2 25 3 35 4 45 5 55 6 65 7 75 & 85 8 95 10 |
Post Setback Distance (in.)

— Lower Bound — Upper Bound % Rail Geometrics

NotRecommended:=1 Marginal =2 Preferred:=3 Region Designation

Note: Marginal region is between Lower
and Upper Bounds

Post_Setback_Chriteria_Rail_Geometric_Point = Marginal
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{3-conti.) Geometric Criteria:

SN g = [O 3 13]

Lower boundary for snag potential criteria x and y
SNy 1= [10 12 12] coordinates

snag,, =0 1.25 4.25 5.25 13
gup.‘r, [ }

Upper boundary for snag potential criteria x and y
coordinates

mag,,,=[10 13 13 15 15]

Spust
SNG4y, ' = Z.Us =6 Post setback geometric point
in
b
ST gye =—=6.375 Vertical clear opening rail geometric point
in

LICC T Ll TR STy STHI
0 10 0 10
3 12 1.25 13
13 12 1.25 13
5.25 15
13 15
11 of 21
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I’(J = 8NAG) 0 Y1 1= ST X2 = SN,y Y2 =SNG,y X:; =SNG Y3 = SN,

Post Setback Criteria

L

20

High Snag Potential

L

—
wu
n

e

Vertical Clear Opening (in.)
S

* Low Snag Potential

bk

Ny

0 1.71 343 5.14 6.86 B.57 103 1
Post Setback Distance (in.)

— Lower Bound — Upper Bound ¥ Rail Geometrics

Region Designation
Note: Marginal region is between

HighSnagPotential:==1 Marginal:=2 LowSnagPotential =3 Lower and Upper Bounds

Snayg_Potential_Criteria_Rail_Geometric_Point := LowSnagPotential
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{3) Geometric Criteria - Summary of Results:

Check_Post_Scthack_Criteria:=|| if Post_Setback_Criteria_Rail_Geometric_Point> 2
‘ ii()Kﬂ
else

H “NOT OK”

Check_Post_Setback_Criteria="0K”

Check_Snag_Potential_Criteria:= || il Snag_Potentiol_Criterio_Rail_Geometric_Point>?2
else
|«Norox

Check_Snag_Potential_Criteria=“0QK”
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{4) Steel Rail & Post Strength Analysis:

Fyn=>50 ksi Yield Strength of all steel rail elementsl {ksi)

Zp=13.298 in®  Plastic Sectional Modulus of the Steel Thrie Beam (in.3)
npi=1 Number of Tube Rail

Hppie =34.75 in—

(M) =24.789 in

Myppie =g Fyp» Zp=13.743 kip - ft Plastic Moment Capacity of the Steel Tube Rail (kip-ft)
Zpes=19.0in"  Hpeei=414n  HSS10x4x1/4 Top Tube

M opes:=Zpss Fup="T9.167 kip- ft

A[p = ]\'IDHSS + AIDHZ.?”ZE‘ =92.91 kip L ft

Afpt}w‘ie ° chrie + M;JHSS * HHS";

M,

Yoqis = =38.602 in

h,p =Y s —curby, Height from the bottom of the post to the centroid of the steel rail (in.)
hy,=32.602 in

H,=h,+curb,, =38.602 in

Calculate the Plastic Strength of the Post: Py,
Plastic Sectional Modulus of the Steel Post about the
_ . 3 Bending axis (in.)
Zp=10.8 in

FyP: 50 ksi Yield strength of steel post (ksi)

My =Fyp+ Zp=15 kip- ft Plastic strength of the Steel Post (kip-ft)

h,=32.602 in Height from the bottom of the post to the centroid of the
rail elements (in.)

st .
Py = _16.563 kip Post strength based on the plastic failure of a steel post @
h, Ybar of rails (kip)
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Calculate the Post Strength based on the Ultimate Strength of the Anchor Rods:

Fy oa= 120 ksi

&,,q=0.875 in Diameter of anchor (in.}

=0.601 in*®

w 2
Amrl = T L

Ryp=1 oqt (0‘75 'Am(l) =54.119 kip

Subject : Thrie Beam Reftrofit
MASH TL-4 TTI #

619601

PI’?

Tensile strength of the anchor rods (ksi)

Area of a single anchor red (in.)

Nominal strength of one anchor rod in tension {kip)

Distance from anchor rods acting in tension to the

Nodtension=2  Number of ancher rods acting in tension
d,,;=101in Distance from the anchor rods acting in tension to the
back of the steel plate (in.)
dyi=1.5in Length of the steel plate bearing pressure acting on the
concrete parapet {in.}
dy .
Wy = Upog — = =9.5in

M p0a7=Wrog* Bop * Nyog tension = 85.688 kip - ft

h,=32.602 in

I\'ft.r od

Py roai= =31.54 kip

'p
B =Fy g (0'45 i Amd) =32.471 kip

Py rod=Nyoq 1, =129.885 kip

Py i=min (Pt.mdipﬂ.rod) =31.54 kip

centroid of the bearing pressure acting on the concrete
parapet {in.}

Moment strength of post based on tensile capacity of
anchor rods (kip-ft}

Height from the kottom of the post to the centroid of the
steel tube (in.)

Post strength based on the tensile capacity of anchor
rods (kip)

Nominal strength of one anchor rod in shear w/ treads in
shear plane (kip)

Post strength base on the shear capacity of anchor rods
(kip)

Post strength base on the ultimate strength of the anchor
rods (Kip)
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Calculate the Post Strength based on the Vertical Punching Shear Resistance of Concrete

from Traffic Side Baseplate edge:

Note: This failure mechanism was modeled in SolidWorks Pp,
n 42" i
N 554in"2 P
16-1/2" 14" 19-1/2"
SR
¢ |
i I
]
|
PLAN 234 in"2

G"T |4—14"——1 +

ﬁ 6" ‘\\\
14" ! i »
¥ . )
l 8 19-13/16" A\ 8 1913016,
N, ~
} \/ \ i <
A\
. 42— N 1012
\
ELEVATION  \_gg4inn2 SIDE

from Traffic Side Baseplate: Pp,
Aiges =234 in” Ap e i=9554 in’ ¢, :=0.7 Shear strength reduction factor
Avpg = Aoy + Apes = 788 in® F.=4 kst  Concrele compressive strength (ksi)
Vovert =P 20 — « psi = 88.544 psi Concrete stress from block shear of baseplate punching
pse shear based on ACI 318-19 Table 22 5 5.1

Vievert 'A‘VT’S -9 in

¢
fy,

=19.261 kip Post strength based on the lateral punching shear
resistance of concrete from centroid of rails (kip}

h,=32.602 in

Ppy:=

P,y =19.261 kip
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Calculate the Post Strength based on the Tension Bond Strength of the Anchor Bolt Epox’
Pp,

Use Hilti RES00 V3 Epoxy for 3/4" DIA. Anchors Embedded 7

inches min.
Reference: Table 25 - Hilti RE-500 V3 Epoxy Adhesive Design Strength with
congcrete bond failure for threaded rod in uncracked Concrete, 2016 Design Guide,
page 151

45000 = 7" depth
Fr gi=45000 1bf Extrapolated ultimate Strength for embedded depth =7
inches from TTI Testing of anchor with RES00V3

From Table 38 - Load Adjustment factors for 7/8" Diameter threaded rods in

uncracked concrete, Hilti Design Guide, page 158 h,=32.602 in
Ffan=0.71 Spacing Factor in tension (11 fiemp=0.9 140 deg.
inches anchor spacing) temp.
reduction
Fry=0.49 Edge Distance reduction factor for
tension (5 inches edge distance) 0.4 = 7" depth
Fragsoo =Fr gnLan s Frn fromp+ 1.5=21.135 kip Edge distance and spacing

values from Hilti are
conservative for reinforced

_ Fraps; 10 in-2 concrete use 1.5 factor for

Ppyi= =12.965 ki L ;
i h, 00 TP reinforced and dynamic
loading
Calculate the Weld Strength of Post Joint:  Pp,
(4:6)+(1.0-1) e
byeta joine = 6.0 in Width of welded joint (in.) 7
et joins = 6.0 in Depth of welded joint (in.)

oot joine = 0.707-0.25 in Thickness of welding (in.)

Detd.joint = 1,00 Strength recuction factor for welded joint
Section modulus about hrizental axis x-x {in.2)
Weld Treated as a line for a W-

d’ll eld.jotr !
veld. joint .2
8,05= 20 Bt it * Guveted juie + ———— =84 i, Shape welded all around on a
baseplate
E70XX:=70 ksi Electrodes (ksi)
it joint * S bt joins * ETOXX
Ppyi= Pucicjoint* S ;"M"’ i =31.878 kip Weld strength of rail joint (kip
1.
P
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Determine the Limiting Post Strength (kips):

Pp=16.563 kip Post strength based on the plastic failure of a steel post (kip)

Pp,=31.54 kip Post strength base cn the ultimate strength of the anchor
rods {kip)

Pp,=19.261 kip Post strength based on the vertical punching shear

resistance of concrete from traffic side anchor rods (kip)

Pp,=12.965 kip Post Strength based on adhesive bond strength of
anchors (kip) ... 7" anchor embedment

Pr.=31.878 kip Post strength based on strength
of Welds (kips)

Ppi=min (Ppl ooy Ppg Py ,Ppﬁ) =12.965 kip  Post strength found by using the limiting ("Worst case")
post strength (Kips)

Limiting Post Strength Based
Pp=12.965 kip on Bond Failure ... close to
post yeilding strength!
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L,=5ft Length of the distribution of the transverse impact force (ft)

LF =3.125 ft Steel post spacing (ft)
M,=92.91 kip- ft Flexural capacity of the steel tube (kip-ft)
Pp=12.965 kip Post strength found by using the limiting ("Worst case")

post strength (kips)

Single-Span [
.~
s
1T Loglpaio I
p— B =) .

|
—c-iL1

Single=Span Failure Mode

Ny=1  Numberofspans M, =902.91 kip- fi Flexural capacily of the steel rail (kip-ft)

Pp=12.965 kip  Post strength found by using the limiting (worst case) Lpz 3.125 ft H.=3014n
post strength (kips)
16-M + (N, —1)-(N;+1}-Pn-L H. .
L= P ( ! ) ( L ) il 2 i (1.53 . 1[]3) kip Ultimate capacity of rail over
(2 <N, ‘L-p) -L H, one span (kip)
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Two-Span

s
:%%ﬁt e

Two—Span Failure Mode

Ny:=2 Number of spans

(16-M}+N,* . Pp-L, (H, )
o= - =282.846 kip Ultimate capacity of rail over one span
(2'N2'Lp) -L e (kip}
Hp=241in H,=30in
Ny:=3
16 M, +{N;— 1)« (N.+1)«Pp- L, (H
s = i ( i ) ( i ) Chlln’ 8 P |- 169.446 kip Ultimate capacity of rail over three
(2 «N,- Lp) L L spans (kip)
Nyi=4
16-M)+N, Ppe L, (H
Ryy= ( p) ! PR 187348 kip Ultimate capacity of rail over four spans
(2N L,) — L . (kip)
Ngi=5H
16.M, + (N, — 1)« (N +1}-Pp-L, (H
Ry = ? < > ) ( 9 ) P22 =120.535 kip Ultimate capacity of rail over
(2 Ny Lp) —L, le five spans (kip}
Ny:=6
16-M )+ Ny Pp-L, (H
Rpgi= ( D)+ Ny oLy (Hy =116.605 kip
(2+Nge L) — Ly H,
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16+ M, +(N7*1)'(N7+1)'PP'LP. ﬂ =113.942 ki
(2-N~-L73)—Lt H) ’

7 3

(16-A1,,) +N e PpeL, (H
Bpg= *

: " |=116.654 kip
(2:Ng+ L)L,

[

{6) Conclusions:
Check_Bairier_Mingrmum,_Height="0K"”
Check Post_Setback Criteria=“0K”
Check_Snag_Potentral_Criterta=“0QK”
The Thrie Beam Retrofit Barrier as shown herein satisfies the
geometric requirements for MASH TL-4. The barrier
calculated minimum strength over 7 Spans = 113 kips @
30" (> 100 kips). Barrier strength satisfies the strength

requirements for MASH TL-4 with post spacings at 3'-1 1/2"
inches on centers
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